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Abstract

This paper proposes a new extended zero-order Autonomous Learning Multiple-1

Model (ALMMo-0*) neuro-fuzzy approach in order to classify different heart2

disorders through sounds. ALMMo-0* is build upon the recently introduced3

ALMMo-0. In this paper ALMMo-0 is extended by adding a pre-processing4

structure which improves the the performance of the proposed method. ALMMo-5

0* has as a learning engine composed of hierarchical a massively parallel set of6

0-order fuzzy rules, which are able to self-adapt and provide transparent and7

human understandable IF ... THEN representation. The heart sound record-8

ings considered in the analysis were sourced from several contributors around9

the world. Data were collected from both clinical and nonclinical environment,10

and from healthy and pathological patients. Differently from mainstream ma-11

chine learning approaches, ALMMo-0* is able to learn from unseen data. The12

main goal of the proposed method is to provide highly accurate models with13

high transparency, interpretability, and explainability for heart disorder diagno-14

sis. Experiments demonstrated that the proposed neuro-fuzzy-based modeling15

is an efficient framework for these challenging classification tasks surpassing its16

state-of-the-art competitors in terms of classification accuracy. Additionally,17

ALMMo-0* produced transparent AnYa type fuzzy rules, which are human in-18

terpretable, and may help specialists to provide more accurate diagnosis. Med-19

ical doctors can easily identify abnormal heart sounds by comparing a patient’s20

sample with the identified prototypes from abnormal samples by ALMMo-0*.21
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1. Introduction22

The development of models able to efficiently classify values is a hard and23

of great importance task in a variety of knowledge domains [1]. In the case of24

heart sound classification it is of vital importance as most of the heart valve25

disorders are reflected to heart sounds [2]. Heart sounds are characterized by26

low frequency signals produced by heart valves [3]. However, disorders caused27

by turbulence in the blood circulation through contracted heart valves or reflow28

through the valves between atria and ventricles cause high frequency sounds.29

Such abnormal sound is known as murmur [4].30

According to [5], cardiovascular disease is one of the leading cause of mor-31

bidity and mortality worldwide with an estimated 17.9 million, or 31.0% of the32

global population, have died from cardiovascular diseases related conditions in33

2017. In low to middle income countries, this situation is particularly alarming,34

as high quality diagnostics can be often difficult to obtain, due to its high costs in35

these regions [6]. As stated in [7], heart sounds may include indicators of disor-36

der, or warnings about future disorders. These indicators may be present during37

at all time occurring throughout the whole signal, or can occur randomly. Ac-38

curate heart sound classification allows more time for emergency management,39

preparation and mobilization of resources for recovery, and may save many lives40

[8]. Additionally, better classification results improve the predictions of other41

metrics such as blood pressure [9].42

As the quality of monitoring data has improved over the years [6], data43

become indispensable in operational heart sound classification models. However,44

uncertainty contained in numerical models vary substantially as heart sounds45

change their pattern due to complex and highly nonstationary nature of heart46

sound signals, with negative effects on the quality of the classification task [10].47
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Advanced classifiers have been proposed specifically for heart sound classi-48

fication, such as neural-network-based [3], and support vector machine [11, 12]49

classifiers. However, if they are not equipped with evolving algorithms capable50

of adapting their parameters and structure, then they are not able to capture51

certain time-varying properties of nonstationary heart sound conditions and fea-52

tures of a rich variety of vibrations of the heart and blood flow [6]. Although,53

several studies have been conducted the digital recording of heart sounds, named54

as phonocardiogram (PGC). There is a lack of studies using transparent rule-55

based approaches that provide explainable and interpretable results for special-56

ists [13, 14, 15]. Most of the existing studies are with ‘black box’ approaches or57

very complex models [16, 17, 18].58

Moreover, as the volume of the data collected continuously with a fast rate59

has increased due to the advent of the Internet of Things (IoT), automation60

of complex systems, and proliferation of small-scale computing devices, data61

stream processing has become an issue of primary importance [19, 20]. A way62

to deal with such large volumes of data is through the use of a class of compu-63

tational methods known as evolving intelligent systems [21, 22, 23, 24, 25, 26].64

The evolving approach is an effective and efficient way of handling data streams65

due to its ability to adapt models to different situations and provide quick re-66

sponse to changes [27, 28]. Evolving systems have demonstrated great ability67

to deal with medical applications as one can see in [29, 30, 31, 32].68

A granular neural network framework for evolving fuzzy system is introduced69

by [29] and it demonstrated great ability to deal with Parkinson’s symptom70

prediction surpassing its competitors in terms of accuracy due to its ability to71

adapt itself on a non-stationary environment. According to [30] spiking neural72

networks have revealed themselves as one of the most successful approaches to73

model the behavior and learning potential of the brain, and exploit them to74

undertake practical online learning tasks due to its evolving ability. Moreover,75

[31] has shown that eClass can effectively be applied to the classification of76

diabetes and dermatological diseases from discrete numerical samples.77

This paper we propose a new a new method to autonomously classify ab-78
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normal heart disorders through sounds. It builds upon the recently introduced79

zero-order Autonomous Learning Multiple-Model (ALMMo-0) classifier [33, 34].80

The ALMMo-0 classifier is significantly extended as we add a standardization81

and normalization pre-processing structure. The pre-processing block helps to82

improve the accuracy of the classifier as it creates more stable models [35]. The83

proposed approach has a learning mechanism composed of a massively parallel84

set of 0-order fuzzy rules, which are able to self-adapt and provide transparent85

and human understandable IF ... THEN representation [36]. It is also able86

to self-evolve its structure and self-update its meta-parameters as newly ob-87

served training images arrive from the data stream, which makes the classifier88

applicable for real-time applications [37, 38]. Due to its evolving structure, the89

proposed method is able to deal with large volumes of data, avoiding the curse90

of dimensionality.91

A ‘PhysioNet’ dataset was considered in the analysis. The ‘Phisionet’ dataset92

is composed of eight independent heart sound databases sourced from several93

contributors around the world. Data were collected from either clinical and94

nonclinical environment, and from healthy and pathological patients. Both95

healthy and pathological patients include children and adults [39]. The dataset96

is provided by [39], and it was used in the ‘Computing in Cardiology Challenge’,97

which is the major challenge involving computing and cardiology.98

In brief, the main contributions of this paper are:99

• It offers a new method to automatically classify heart disorders through100

sounds.101

• An extended version of the recently zero-order Autonomous Learning102

Multiple-Model (ALMMo-0) classifier with a improved pre-processing block.103

• A human-interpretable, computationally efficient classifier outperforming104

the competitors.105

The remainder of this paper is structured as follows. Section II presents the106

proposed extended Zero-order Autonomous Learning Multiple-Model (ALMMo-107
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0*) system classification approach. Section III describes the methodology em-108

ployed in the analyses, and the performance indexes used for comparison. Re-109

sults and discussions are shown in Section IV. Conclusion and future research110

directions are given in Section V.111

2. ALMMo-0* Neuro-Fuzzy System112

Traditionally the pipeline of learning from data has the following steps:113

1)Pre-precessing, which includes different substeps like normalization, stan-114

dardization, dealing with missing data, and feature selection [40]. Specifically115

for image processing there are often other stages, such as rotation, augmenta-116

tion, scaling, elastic deformation, etc [41]. Even deep learning methods which117

claims to avoid handcrafting applies some of the cited steps.118

2)Learning phase, which can be offline, when the complete dataset is avail-119

able; or it can be done online, when the data arrives in the form of data streams120

(sample-by-sample). Evolving learning, ability of the algorithms to adapt their121

parameters and structure according to data streams, is non sophisticated form122

of online learning [42, 28].123

3)Generating outputs for new unseen data, which is the validation phase.124

Different algorithms use different strategies in order to validate the model gen-125

erated in the learning phase.126

The proposed method also starts with a pre-processing step which involves127

mostly the same steps depending on the specific problem, for example, for image128

processing we may also apply scaling, augmentation, rotation. Practically for129

all problems normalization and standardization is required. The technique we130

use is as follows:131

First of all, let {x1, x2, ..., xN , ...} (xi = [xi,1, xi,2, ..., xi,M ]T ) be a particular132

data stream in a M dimensional real space, sM . The subscript i denotes the133

time instance at which xi arrives. It is assumed that the data stream is com-134

posed of samples of C different categories/classes, and, thus, the stream can be135

divided into C sub-data streams in accordance to the categories that the data136
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samples belong to (one sub-stream per category). At the N th time instance,137

the cth sub data-stream is denoted as {xc,1, xc,2, ..., xc,Nc
}, where c = 1, 2, ..., C138

and
∑C
c=1Nc = N . Unless specifically declared otherwise, all the mathemat-139

ical derivations in the remainder of this paper are conducted at the N th time140

instance by default.141

142

2.1. Architecture143

The ALMMo-0* is build upon on the ALMMo-0 neuro-fuzzy system [33]144

which based on the zero-order parallel IF...THEN rules of AnYa type [43]. The145

general architecture of the ALMMo-0* is given in Figure 1. Figure 1(a) presents146

the architecture of the neuro-fuzzy system during the system identification stage;147

Figure 1(b) gives the system architecture during the validation stage; Figure 1(c)148

is the zoomed-in architecture of the cth parallel IF...THEN rule (c = 1, 2, ..., C).149

150

The ALMMo-0* neuro-fuzzy system, as illustrated in Figure 1, is composed

of C parallel IF...THEN rules, each of which corresponds to one of the C cate-

gories and has the following form (c = 1, 2, ..., C)[33]:

IF (x ∼ p1c)OR (x ∼ p2c)OR ...OR (x ∼ pPc
c )

THEN (category c)
(1)

where pc,j (j = 1, 2, ..., Pc) is the jth prototype of the cth category; Pc is the151

number of the identified prototypes in total from the observed data samples of152

the cth category.153

154

As one can see from equation (1) and Figure 1, each parallel IF...THEN155

rule is built upon a number of prototypes that are identified from data samples156

of the corresponding sub-data stream through a nonparametric, self-organizing,157

self-evolving, online learning process in parallel. The prototypes are connected158

by the local decision-maker, which decides the output of the IF...THEN rule159
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during the validation process using the “winner takes all” principle. There-160

fore, the IF...THEN rule can be also viewed as a series of simpler fuzzy rules of161

AnYa type [43] with singleton consequences connected by logic “OR” operator.162

Thanks to the prototype-based nature, the ALMMo-0 neuro-fuzzy system sup-163

ports collaborative learning as well [44].164

165

Figure 1: The general architecture of ALMMo-0*.
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In the following two subsections, we will summarize the main steps of the166

system identification and validation processes. For the detailed algorithmic167

procedures, please refer to [33, 44].168

2.2. Identification Process169

As each parallel IF...THEN rule is identified through a independent pro-170

cess from others, we present the identification process of the cth rule as follows171

(c = 1, 2, ..., C). One can apply the same principle to all IF...THEN rules of the172

rule base.173

174

The same principle to all IF...THEN rules of the rule base may be applied.175

176

Step 1. Standardize the newly observed data sample, xc,k177

xc,k =
xc,k −min

∀k
(xc,k)

std(xc,k)
(2)

Then, the data are rescaled within the range [0, 1] to consider variables in178

the same proportion. Unity-based normalization of the c-th element of the k-th179

sample is given by:180

xc,k =
xc,k −min

∀k
(xc,k)

max
∀k

(xc,k)−min
∀k

(xc,k)
(3)

If k = 1, go to Step 2; otherwise, go to Step 3.181

182

Step 2. Initialize the global meta-parameters with the first data sample,

xc,1 observed:

Pc ← 1; µc ← xc,1; (4)

where µc denotes the global mean of data samples of the cth category.183

184
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Secondly, initialize the first data cloud, Cc,1:

Cc,1 ← {xc,1}; pc,1 ← xc,1;

Sc,1 ← 1; rc,1 ← ro;
(5)

where, pc,1 is the prototype of Cc,1; Sc,1 is the corresponding support (num-185

ber of members); rc,1 is the corresponding radius of area of influence of Cc,1;186

ro is a constant for stabilizing the new data cloud. In this paper, we use187

ro =
√

2− 2cos(30o), which is the same as [33].188

189

Finally, initialize the IF...THEN rule:

Rc : IF (x ∼ pc,1) THEN (category c) (6)

Step 3. Calculate the data density at xc,k and pc,j (j = 1, 2, ..., Pc) [44]:

Dc,k(z) =
1

1 + ||z−µc||2
1−||µc||2

; (7)

where, z = xc,k, pc,1, pc,2, ..., pc,Pc
.190

191

Then, identify the nearest prototype pc,n∗ to xc,k:

n∗ = argmin
j=1,2,...,Pc

(||xc,k − pc,j ||) (8)

If the following condition (equation (9)) [33] is met, go to Step 4; otherwise,

go to Step 5.

IF (Dc,k(xc,k) > max
j=1,2,...,Pc

(Dc,k(pc,j)))

OR (Dc,k(xc,k) < min
j=1,2,...,Pc

(Dc,k(pc,j)))

OR (||pc,n∗ − xc,k|| > rc,n∗)

THEN (add a new data cloud)

(9)

Step 4. Add a new data cloud:

Pc ← Pc + 1; Cc,Pc ← {xc,k};

pc,Pc
← xc,k; Sc,Pc

← 1;

rc,Pc ← ro;

(10)
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Then, go to Step 6.192

Step 5. Update the meta-parameters of the nearest data cloud:

Cc,n∗ ← Cc,n∗ + {xc,k};

pc,n∗ ← Sc,n∗

Sc,n∗ + 1
pc,n∗ +

Sc,n∗

Sc,n∗ + 1
xc,k;

Sc,n∗ ← Sc,n∗ + 1;

rc,n∗ ←
√
rc,n∗ + (1− ||pc,n∗ ||2)2

2
;

(11)

Then, go to Step 6.193

Step 6. Update the IF...THEN rule, Rc with the identified prototypes:194

Rc : IF (x ∼ pc,1)OR ...OR (x ∼ pc,Pc)

THEN (category c)
(12)

The ALMMo-0* Predict learning and estimation algorithm is summarized195

below.196

197

ALMMo-0*: Learning Procedure198

1: While the new data sample of the the c−th class xc,k available199

2: Standardize and Normalize xc,k according to equations 2 and 3200

3: IF k = 1201

4: Pc ← 1;202

5: µc ← xc,1;203

6: Cc,1 ← xc,1;204

7: pc,1 ← xc,1;205

8: Sc,1 ← 1;206

9: rc,1 ← ro;207

10: ELSE208

11: Calculate Dc,k using equation 7;209

12: Update pc,j (j = 1, 2, ..., Pc) using equation 7;210

13: IF Condition (eq. 9) is satisfied THEN211
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14: Add a new data cloud using equation 10;212

15: ELSE213

16: Updated nearest data cloud using equation 11;214

17: END215

18: END216

2.3. Validation Process217

Each available validation data sample is sent to all AnYa FRB sub-classifiers218

corresponding to the C classes of the dataset. As each class may have several219

AnYa type of fuzzy rules, the output, namely, the score of confidence λ of each220

AnYa FRB rule is given as follows:221

Rc : IF (x ∼ pc,1) THEN (λj = exp(−1

2
‖x− pc,1‖2)) (13)

The “winner takes all” operator is used to select the most confident rule and222

assign the validation data sample the corresponding label. In other words, each223

validation data sample is compared to all prototypes identified in the training224

phase, and a label is attached to his validation data sample according to the225

label of the nearest identified prototype as illustrated in Figure 2.226

Label = argmax
j=1,2,...,P

(λi) (14)

3. Numerical Results227

The ‘PhysioNet’ dataset contains a total of 13015 samples of heart sound228

recordings, lasting from 5 seconds to just over 120 seconds. Recordings were229

collected from different locations on the body, including aortic area, pulmonic230

area, tricuspid area and mitral area. The collected heart sound recordings were231

divided into two types: normal and abnormal heart sound recordings. The232

normal recordings were from healthy subjects and the abnormal ones were from233
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Figure 2: Validation phase illustration.

patients with a confirmed cardiac diagnosis.Figure 3 illustrates the normal and234

abnormal heart sound over time, while Figure 4 shows the power spectrum over235

the normalized frequency for both normal and abnormal heart sound conditions236

[39, 45].237

3.1. Pre-Processing238

The ‘PhisioNet’ dataset was divided into 70% for training and 30% for val-239

idation purposes. It is important to highlight that the ‘PhysioNet’ dataset is240

imbalanced as it contains 3158 samples of normal condition heart sounds and241

9857 samples of abnormal sounds.242

The following types of features were extracted from the heart sound record-243

ings:244

• Statistical features: mean, median, and standard deviation.245
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Figure 3: Normal and abnormal heart sound over time

Figure 4: Power spectrum over the normalized frequency

• Signal processing features: dominant frequency, spectrum entropy, and246

Mel Frequency Cepstral Coefficients (MFCC).247

Dominant frequency refers to the most relevant frequency in the sound spec-248
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trum [46]. Spectrum entropy is defined as a measure of its spectral power249

distribution, and it is based on the Shannon entropy [47]. Spectrum entropy250

treats as a probability distribution the signal’s normalized power distribution251

in the frequency domain. Then, it calculates the Shannon entropy of it, see [48]252

for detailed proof for spectrum entropy.253

Mel Frequency Cepstral Coefficients is a representation of the short-term254

power spectrum of a sound, based on a linear cosine transform of a log power255

spectrum on a nonlinear mel scale of frequency [49].256

MFCCs are commonly derived as follows [49]:257

• Divide the signals into frames258

• Take the Fourier transform of each signal.259

• Take the logs of the amplitude spectrum.260

• Take the discrete cosine transform of the list of logs generated in the261

previous step.262

• The MFCCs feautres are the amplitudes of the resulting spectrum.263

Therefore, 27 features extracted from the audio recordings signals are de-264

scribed in Table 1.265
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Table 1: Features Summary

Features Quantity Type

Mean 1 Statistical

Median 1 Statistical

Standard Deviation 1 Statistical

Mean Absolute Deviation 1 Statistical

Quantile 25 1 Statistical

Quantile 75 1 Statistical

Signal IQR 1 Signal Processing

Sample Skewness 1 Statistical

Sample Kurtosis 1 Statistical

Signal Entropy 1 Signal Processing

Spectral Entropy 1 Signal Processing

Dominant Frequency Value 1 Signal Processing

Dominant Frequency Magnitude 1 Signal Processing

Dominant Frequency Ratio 1 Signal Processing

MFCC 13 Signal Processing

3.2. Performance Evaluation266

In order to evaluate the performance of the considered methods the follow-267

ing indexes are considered: sensitivity (Se), specificity (Sp), and overall score268

(MAcc). These indexes are calculated as:269

Se =
TP

TP + FN
, (15)

Sp =
TN

TN + FP
, (16)

MAcc =
Se+ Sp

2
. (17)
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where TP, FP, TN, FN denote true and false, negative and positive respectively.270

Sensitivity is considered as an indicator of the classifier’s ability to discover271

the true class. Specificity is considered as a index of the classifier’s ability to272

define other classes. The overall score (MAcc) is given by the mean of sensitivity273

and specificity indexes.274

The receiver operating characteristic (ROC) method is also considered in the275

analysis. As the ROC method is insensitive to both changes in class distribution276

and proportion of samples per class it provides a convenient way to evaluate the277

quality of evolving classifiers in nonstationary environment [50].278

TPratio =
TP

TP + FN
(18)

FPratio =
FP

FP + TN
(19)

Each cut-off threshold in the ROC approach corresponds to a point (sensi-279

tivity/specificity pair) in the ROC space [50]. The closer the ROC curve is to280

the upper left corner, the better is the classification rate.281

All the experiments were conducted with MATLAB 2018a using a personal282

computer with a 1.8 GHz Intel Core i5 processor, 8-GB RAM, and MacOS oper-283

ating system. The classification experiments were executed using 10-fold cross284

validation under the same ratio of training-to-testing sample sets. The proposed285

approach is compared with results obtained by Computing in Cardiology Chal-286

lenge winners in order to determine the efficiency of the proposed model. Data287

and methods used in this research are available upon request.288

3.3. Classification Results289

In this section we will demonstrate the results obtained for heart sounds clas-290

sification. Computational simulations were performed to assess the accuracy of291

the classification methods considering heart sounds recordings. Table ?? sum-292

marizes the results obtained by the proposed ALMMo-0* and its competitors293
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considering the ‘Classification of Normal/Abnormal Heart Sound Recordings’294

dataset provided by Phisionet. Were considered 27 features inputs in the data295

space in order to determine if the patient heart sound is classified as normal or296

abnormal. Initial parameters were set in order that the final structure of the297

ALMMo-0*, and ALMMo-0 contained a reasonable amount of identified proto-298

types, improving interpretability of the final model. The following parameter299

was chosen: ro =
√

2− 2cos(30o) for the ALMMo-0*, and ALMMo-0 neuro-300

fuzzy classifiers.301

Table 2: Performance Comparasion: Heart sound classification

Method Sensitivity(Se) Specificity(Sp) MAcc

ALMMo-0* 0.9082 0.9526 0.9304

ALMMo-0 0.7930 0.9430 0.8680

AdaBoost & CNN [6] 0.9424 0.7781 0.8602

Ensemble of SVMs [6] 0.8691 0.8490 0.8590

Regularized Neural Network [6] 0.8743 0.8297 0.8520

MFCCs, Wavelets, Tensors & KNN [6] 0.8639 0.8269 0.8454

Random Forest + LogitBoost [6] 0.8848 0.8048 0.8448

Ensemble of neural networks [51] 0.8982 0.9253 0.9117

Deep Structured Features [10] 0.8450 0.8690 8380

Matrix norm sparse coding + 20 time-domain features [52] 0.8867 0.8816 0.8841

Table 2 shows that the ALMMo-0* approach has the higher accuracy per-302

formance. ALMMo-0* could obtain better results in terms of Sp and MAcc303

than its competitors, including ALMMo-0. The AdaBoost & CNN could ob-304

tain a better performance in terms of sensitity, in other words, it had a better305

ability to discover the true class. However, ALMMo-0* showed a better perfor-306

mance in terms of specificity (classifier’s ability to define other classes), due to307

its prototype-based nature. Moreover, it had the second best result in terms308

of sensitivity. Therefore, the proposed approach could obtain the best result in309
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terms of overall score (MAcc). Figure 5 illustrates the overall accuracy perfor-310

mance of the best considered approaches.311

Figure 5: Overall accuracy performance of the best considered approaches

The area under the ROC curves confirms that ALMMo-0 is able to work312

efficiently in this classification problem, no matter if the distribution is changed313

to any other distribution or if the dataset is imbalanced. The area above the314

ALMMo-0 ROC curve refers in part to 5.81% of classification error with different315

assigned labels.316

The prototypes identified by ALMMo-0* are visualized in Figure 7, where317

the first two principal components are used for visual clarity. Voronoi tessel-318

lations are created by using these prototypes to attract nearby data samples319

forming data clouds. Thanks to its prototype-based nature, medical doctors320

can easily identify abnormal heart sounds by comparing a patient’s sample with321

the identified prototypes from abnormal samples by ALMMo-0* (also see Figure322

7).323
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Figure 6: ROC analysis for heart sound classification using ALMMo-0*

Figure 7: Voronoi Tesselation of the identified prototypes - ALMMo-0*

AnYa type fuzzy rules generated by the ALMMo-0* model provide a very324

intuitive representation for specialists. Moreover, each of the AnYa type fuzzy325

rules can be interpreted as a number of simpler fuzzy rules with single prototype326

connected by ‘OR’ operators. As a result, a massive parallelization is possible.327

The transparent process provided by the ALMMo-0* model supports under-328
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standability of the system, differing from other machine learning approaches,329

which are called ‘black box’, since they hide (due to its nature) from users all330

the insights used to generate the final resulting structure.331

AnYa fuzzy rule for the Normal class in ALMMo-0* top layer can be written332

as following:333

IF (x ∼
{
p11
}

) OR (x∼
{
p21
}

) OR (x∼
{
p31
}

) OR ... OR (x∼
{
p201
}

)

THEN ‘Normal heart sound’

The prototypes identified for the ‘Normal heart sound’ rule are demonstrated334

on Table 3.335

In short, experiments have shown that the proposed deep neuro-fuzzy mod-336

eling is an efficient framework for heart sound classification tasks. Classification337

accuracies were higher than those produced by state-of-the-art approaches con-338

sidered for this problem. The proposed ALMMo-0* could also achieve better339

results than achieve better results than ALMMo-0. Differently from the state-340

of-the-art approaches which are ‘black box’, the proposed method produced341

transparent linguistic fuzzy rules, which are human interpretable, and helpful342

for specialists to make a full diagnosis about the patient situation.343

Generally, time to process data and adapt a fuzzy model is not a constraint344

for the classification problems. However, it may be an issue in higher-frequency345

data streams applications in real-time, as heart sound classification. ALMMo-346

0* adaptation deals with nonstationarities very efficiently and fast. Therefore,347

ALMMo-0 becomes interesting for real-time sound classification scenarios.348

4. Conclusion349

In this paper, we propose an extended version of the zero-order Autonomous350

Learning Multiple-Model neuro-fuzzy classifier in order to classify heart sounds351

recordings. The proposed method extends the recently introduced ALMMo-0352

classifier by adding a standardization and normalization pre-processing struc-353

ture, which improves the accuracy of the method as illustrated in the analysis.354
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The proposed method could obtain better results in terms of classification355

accuracy than the state-of-the-art methods for this type of problem. Moreover,356

the proposed autonomous learning neuro-fuzzy classifier has demonstrated to be357

able to self-adapt its structure and provide human-understandable IF ... THEN358

fuzzy rule-based system structure. Rules generated may support specialists in359

order to make a deeper diagnosis of the patient situation. Due to its prototype-360

based the proposed method showed a better performance in terms of specificity361

(classifier’s ability to define other classes), and also a better overall score result.362

ALMMo-0* is able to deal with the data without making any prior assumptions363

or training any parameters, differently from its competitors as the Convolutional364

Neural Networwk approach.365

Future research will concentrate on the development of hierarchical struc-366

tures, in order to favor the human interpretability of the results obtained. Fur-367

thermore, a density-based feature will be proposed to select the best features368

that explains the problem, and also provide more interpretable results for spe-369

cialists.370
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Table 3: Identified Prototypes for the ‘Normal heart sound’ rule

Features p11 p21 p31 p201

f1 -2.7121e-05 1.5511e-04 -8.0804e-05 -5.4135e-05

f2 1.5259e-04 0.0013 0 -1.2207e-04

f3 0.0203 0.0795 0.0167 0.0096

f4 0.0123 0.0441 0.0099 0.0057

f5 -0.0084 -0.0220 -0.0067 -0.0034

f6 0.0082 0.0237 0.0063 0.0030

f7 0.0166 0.0457 0.0130 0.0064

f8 1.4484 -0.4713 0.0276 0.2136

f9 21.1471 15.7475 22.7916 15.4637

f10 -2.7659 -1.5085 -2.9793 -3.5261

f11 0.2868 0.3124 0.4749 0.3184

f12 17.0982 41.0357 35.6619 21.0064

f13 0.0669 0.0439 0.0278 0.0633

f14 0.2244 0.2951 0.1133 0.2680

f15 88.1961 100.0686 92.9163 87.5767

f16 7.3405 2.4487 4.5780 5.2651

f17 6.4674 7.0189 -2.6415 -4.2657

f18 -0.0512 1.3058 -1.1482 6.2212

f19 -2.5149 -2.9223 -3.8693 4.6041

f20 -3.1430 -2.3074 -6.2024 -4.0199

f21 -1.9638 0.8658 -6.2406 -7.7832

f22 -0.1132 -4.5618 -3.1221 -3.3297

f23 -0.2849 -5.7582 0.8459 -0.3391

f24 1.6218 0.9306 -0.6360 -0.1036

f25 -0.5334 -3.0779 -0.6840 -2.0954

f26 -1.6926 -2.3390 1.9931 -3.0208

f27 -2.0239 -0.8391 0.6190 -0.9700
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