

Exploring student perceptions about the use of visual programming
environments, their relation to student learning styles and their impact on
student motivation in undergraduate introductory programming modules

Maira Kotsovoulou (BSc, MSc)

July 2019

This thesis is submitted in partial fulfilment of the requirements for the degree
of Doctor of Philosophy.

Department of Educational Research,
Lancaster University, UK.

Exploring student perceptions about the use of visual programming
environments, their relation to student learning styles and their impact on
student motivation in undergraduate introductory programming modules

Maira Kotsovoulou (BSc, MSc)

This thesis results entirely from my own work and has not been offered
previously for any other degree or diploma.

The word count is 57,743 excluding references.

Signature ..

i

Maira Kotsovoulou (BSc, MSc)

Exploring student perceptions about the use of visual programming
environments, their relation to student learning styles and their impact on
student motivation in undergraduate introductory programming modules

Doctor of Philosophy, July 2019

Abstract

My research aims to explore how students perceive the usability and

enjoyment of visual/block-based programming environments (VPEs), to what

extent their learning styles relate to these perceptions and finally to what

extent these tools facilitate student understanding of basic programming

constructs and impact their motivation to learn programming.

My overall methodological approach is a case study that explores the nature

of potential benefits to using a VPE in an introductory programming

module, within the specific context of an English-speaking institution of higher

learning in Southern Europe. Part 1 of this research is a pilot study, which uses

participatory action research as a methodological practice to

identify which visual programming environment will be selected for the main

study. Part 2 uses an evaluative methodological practice within the case, aimed

at addressing the research questions. Data collection is performed using mixed

methods. For the quantitative part, 92 participants provided their feedback

using a questionnaire, including 3 main sections: a) an adaptation of the

Technology Acceptance Model (Davis, 1985); b) an adaptation of the

Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich & de Groot,

1990b) and the Science Motivation Questionnaire (SMQ-II) (Glynn, et al.,
2009); and c) the Index of Learning Styles (Felder & Soloman, 1993). For the

qualitative part, feedback was collected both by interviewing students and

compiling field notes during class observations. Descriptive statistics, t-tests

and Spearman correlations were used to analyse the quantitative data, while

the constant comparative method was used to generate the categories, whose

relationships emerged from the coding process of the qualitative data.

ii

Results from Part 1 revealed a student preference for Scratch over the other

three visual programming environments used in the experiment. Findings from

Part 2 suggest that students found Scratch to be easy, useful, enjoyable and

engaging, but only within the scope and purpose of the module. On the other

hand, students demonstrating strong intrinsic motivation to learn

programming and high levels of self-efficacy did not perceive Scratch to be as

useful as other students did. Results also indicate that a relationship exists

between the acceptance of a visual programming environment and students’

learning style preferences; Scratch was found more useful and enjoyable by

those reporting visual and sequential learning approaches. Furthermore,

overall student performance and pass-fail rates showed considerable

improvement following the introduction of Scratch.

iii

Contents

Abstract ... i

Contents .. iii

Acknowledgements ... vi

Dedication .. vii

Publications Derived from Work on the Doctoral Programme viii

List of Abbreviations .. ix

List of Figures ... x

List of Tables ... xii

Chapter 1 Introduction ... 1

1.1 Introduction to the Study ... 1

1.2 Research Questions .. 3

1.3 Contextual Information .. 4

1.4 Thesis Structure ... 8

Chapter 2 Computer Programming .. 9

2.1 What is Computer Programming .. 9

2.2 Programming Paradigms and Programming Languages 10

2.3 Types of Programming Environments ... 14
2.3.1 A Text-Editor and Command-Line Compiler .. 16
2.3.2 Program Visualisation Environment .. 16
2.3.3 Integrated Development Environment (IDE) ... 19
2.3.4 Visual Programming Environments .. 20

2.4 Conclusion ... 31

Chapter 3 The Theoretical Framework ... 34

3.1 Educational Theories .. 34

3.2 Learning Approaches, Learning Styles and Assessment Tools 42

3.3 Motivation and Self-Determination .. 51

3.4 Conclusion ... 57

Chapter 4 Teaching and Learning Computer Programming 60

4.1 Cognitive Aspects of Programming ... 60

4.2 Troublesome Programming Constructs and Skills ... 68

4.3 A Short History of Educational Programming Environments 76

4.4 A Classification of Educational Programming Environments 81

iv

4.5 Using Visualisations to Teach Programming ... 85

4.6 Related Research on Greenfoot, Alice, AppInventor and Scratch 90

4.7 Conclusion ... 93

Chapter 5 The Pilot Study ... 94

5.1 Purpose ... 94

5.2 Participatory Action Research .. 94
5.2.1 The Survey Tool .. 98
5.2.2 Validity and Reliability for the Pilot Study Survey Tool .. 99
5.2.3 Action Research Cycle 1 (Greenfoot) ... 103
5.2.4 Action Research Cycle 2 (Alice) .. 105
5.2.5 Action Research Cycles 3 and 4 (Workshops on AppInventor and Scratch) 107
5.2.6 Action Research Cycle 3 (AppInventor) .. 107
5.2.7 Action Research Cycle 4 (Scratch) .. 109

5.3 Action Research Findings and Discussion .. 110

5.4 Conclusion ... 117

Chapter 6 Research Design and Methodology .. 120

6.1 Purpose ... 120

6.2 Case Study and Data Collection Approaches ... 120

6.3 Pedagogic Design: Teacher’s Role and Students’ Activity 128

6.4 Development of the Questionnaire Survey Tool ... 130
6.4.1 Section 0 – Participant Information Sheet and Consent Form 131
6.4.2 Section 1 - Participant Demographic Information ... 132
6.4.3 Section 2 - Overall Evaluation and Acceptance of Scratch ... 132
6.4.4 Section 3 - Perceived Ease of Use and Perceived Usefulness 134
6.4.5 Section 4 - Motivated Strategies for Learning ... 137
6.4.6 Section 5 - Index of Learning Styles ... 145

6.5 Validity and Reliability ... 146
6.5.1 Validity ... 146
6.5.2 Validity Issues Addressed in this Study .. 147
6.5.3 Reliability ... 152
6.5.4 Reliability Issues Addressed in this Study .. 152

6.6 Qualitative Data Collection - Interviews ... 153
6.6.1 Interview Protocol ... 153
6.6.2 Interview Questions for Students .. 153

6.7 Ethical Framework ... 154

6.8 Conclusion ... 155

Chapter 7 Data Analysis and Findings .. 156

7.1 Introduction to Data Analysis ... 156

7.2 Data Gathering and Demographics ... 157

7.3 Analysis of Student Grades .. 160

v

7.4 Results from Student Surveys ... 165
7.4.1 Student Acceptance of Scratch (TAM) Analysis ... 165
7.4.2 Student Index of Learning Styles (ILS) Analysis .. 169
7.4.3 Student Motivation (MSLQ) ... 173

7.5 Results from the Analysis of Interview Data and Class Observations – Qualitative
Feedback .. 176

7.6 Conclusion ... 183

Chapter 8 Conclusions .. 185

8.1 Contribution of this Study to the Research Literature 185

8.2 Limitations of the Study ... 188

8.3 Recommended Areas for Future Research .. 189

8.4 A Final Reflection ... 190

References ... 191

Appendix One – Main Survey Instrument .. 212
Section 1 - Demographic Information .. 212
Section 2 - Introduction to Programming - General Questions .. 212
Section 3a - Overall Evaluation and Acceptance for Scratch .. 213
Section 3b - Technology Acceptance Model .. 214
Section 4 - Motivated Strategies for Learning Questionnaire .. 215
Section 5 - Index of Learning Styles (ILS) Learning Style Questionnaire 217

Appendix Two – Selection of Questions for the Motivation section of the Main

Survey .. 222

Appendix Three – Qualitative Analysis ... 226

Analysis of Interviews .. 226

Sample Interview Transcript – Participant 1 ... 228

Sample Interview Transcript – Participant 4 ... 230

Summary from Class Observation Notes ... 232

Appendix Four – Ethics Approval Forms .. 234

Lancaster University ... 234

College XYZ .. 235

Appendix Five – Pilot Study’s Programming Activities ... 236

Greenfoot – Guided Activity ("Creating Java Programs with Greenfoot") 236

Alice – Guided Activity ... 237

APP Inventor – Workshop Activities ... 238

Scratch – Workshop Activities .. 240

vi

Acknowledgements

I would like to thank first of all my husband Steve and my two children

Nikolas and Chris, who have shown their understanding, patience, love and

support during this long journey. I understand that I have not always been

there for them due to the vast amount of work required for this research study.

I would also like to thank my brother Nassos, who has always been there for

me, encouraging me to continue working when I was about to quit. I will never

forget the letter he wrote me a few years ago, reminding me of all the reasons

I started this journey…

I am very grateful to the administration of College XYZ, for their financial

assistance and their overall support towards the completion of this degree.

I would also like to thank my supervisor, Dr. Don Passey, for his support,

guidance and always valuable and timely feedback.

vii

Dedication

This thesis is dedicated to the memory of my parents, Xanthi and Christos

Kotsovoulos, who showed me that with hard work anything is possible. They

encouraged me to pursue this degree and would have been very proud of this

accomplishment.

viii

Publications Derived from Work on the Doctoral Programme

Kotsovoulou, M., Stefanou V. and Makri, D. (2017). Utilization of learning resources
by undergraduate-level students in computer programming courses: An
exploratory study. WSEAS Transactions on Advances in Engineering Education,
14(1), 1–11.

Kotsovoulou, M., & Stefanou, V. (2016). Student perceptions on the effectiveness of
collaborative problem-based learning using online pair programming tools. In
Strouhal J. (Ed.) Proceedings of the 12th International Conference on Educational
Technologies - EDUTE’16 (pp. 32–39). Barcelona, Spain: WSEAS Press.

Kotsovoulou, M. (2013). Collaborative tagging of Java learning resources: Bridging
the gap between teachers and students. International Journal of Knowledge Society
Research 4(1), 12–29. Web.

Stefanou, V., and Kotsovoulou M. (2016) Use of PowerPoint in the classroom: A
participatory research project. International Journal of Knowledge Society Research
7(4), 38–50. Web.

Stefanou, V., Kotsovoulou, M., & Makri, D. (2018). Using E-assessment software to
support formative assessment: a Phenomenographic Study of Instructors’
Experiences. In Chova L, Martinez A., & Torres I. (Eds.) Proceedings of the 12th
International Technology, Education and Development Conference - INTED 2018
(pp. 1066–1075). Valencia, Spain: IATED.

ix

List of Abbreviations

CT Computational Thinking
CFA Confirmatory Factor Analysis
ICT Information and Communications Technology
IDE Integrated Development Environment
ILE Initial Learning Environment
IT Information Technology
MSLQ Motivated Strategies for Learning Questionnaire
OOP Object Oriented Programming
PPE Pedagogical Programming Environment
TAM Technology Acceptance Model
UML Unified Meta Language
VPE Visual Programming Environment

x

List of Figures

Figure 1.1: College failure rate comparison in two Java programming courses
(2012 – 2017) ... 2
Figure 1.2: Teaching methodology .. 7
Figure 1.3: Learning resources .. 7
Figure 2.1: Programming languages popularity tag cloud 12
Figure 2.2: Programming languages used in Greek schools 13
Figure 2.3: A text-editor and a command line compiler 16
Figure 2.4: BlueJ class inspection feature and the text-based code editor 17
Figure 2.5: Jeliot programming environment - Theatre mode 18
Figure 2.6: Jeliot programming environment - Call tree mode 19
Figure 2.7: Eclipse IDE .. 20
Figure 2.8: Alice programming environment .. 23
Figure 2.9: Greenfoot's program design editor .. 24
Figure 2.10: Greenfoot's text-based Java Editor .. 24
Figure 2.11: Greenfoot's frame-based editor ... 25
Figure 2.12: LogoBlocks .. 26
Figure 2.13: EToys .. 26
Figure 2.14: Scratch stage and sprites ... 27
Figure 2.15: Image in Scratch ... 27
Figure 2.16: Sound in Scratch ... 27
Figure 2.17: Scripts in Scratch .. 27
Figure 2.18: Scratch development area ... 28
Figure 2.19: AppInventor: Program design ... 30
Figure 2.20: AppInventor: Block-based code editor .. 31
Figure 3.1: The experiential learning cycle ... 47
Figure 3.2: The nine learning styles in the KLSI 4.0 .. 48
Figure 3.3: The four scales/dimensions of the Felder-Silverman Model and
their respective learning style continuum ... 49
Figure 3.4: Differences and similarities between SMQ-II and MSLQ 57
Figure 3.5: Conceptual research framework ... 59
Figure 4.1: Programming concepts rated by 105 students and 34 professors .. 72
Figure 4.2: Educator perceptions about VPEs ... 76
Figure 4.3: Example of a BASIC program source code and runtime. 78
Figure 4.4: Logo programming environment with a virtual turtle 78
Figure 4.5: MicroworldsEX .. 79
Figure 4.6: a Lego car construction controlled by Logo programming language
 .. 79
Figure 4.7: Scratch active users .. 80
Figure 4.8: Programming development environment classification 85
Figure 4.9: Traditional chalkboard visualisation ... 85
Figure 4.10: Forms of software visualisation (Sorva et al., 2013) 86
Figure 4.11: BlueJ variable inspection feature and the text-based code editor 88

xi

Figure 4.12: Sample algorithm execution in VisuAlgo 89
Figure 4.13: Scratch visual programming code editor 89
Figure 5.1: Action research cycles ... 96
Figure 5.2: Adaption of the Technology Acceptance Model 99
Figure 5.3: Percentage of students who submitted their project per VPE 111
Figure 5.4: Mean score per question per VPE .. 112
Figure 5.5: Comparison of distributions: Student rating for each VPE 113
Figure 5.6: Participant recommendations for the adoption of each tool 118
Figure 6.1: Case study research design ... 127
Figure 6.2: TAM2 extended to include enjoyment and output quality 133
Figure 6.3: TAM of Scratch ... 137
Figure 6.4: Intrinsic motivation scores .. 141
Figure 6.5: Self-efficacy scores .. 142
Figure 6.6: Self-determination scores ... 143
Figure 6.7: Extrinsic Motivation (Career and grade) scores 144
Figure 7.1: Participant age distribution in year ranges 158
Figure 7.2: Participant gender distribution ... 159
Figure 7.3: Participant distribution of majors ... 159
Figure 7.4: Participant perceived current computer programming level of
expertise ... 160
Figure 7.5: Mean student grades per semester from 2013 – 2018 161
Figure 7.6: Grade comparison before and after the use of Scratch 162
Figure 7.7: Pass/fail rates ... 163
Figure 7.8: Mean coursework scores ... 164
Figure 7.9: NVivo coding of Scratch advantages as perceived by 12 students
 .. 178
Figure 7.10: NVivo coding of Scratch disadvantages as perceived by 12
students .. 178
Figure 7.11:Scratch "hidden" features ... 180
Figure 8.1: Hierarchy chart of nodes in the advantages theme 226
Figure 8.2: Eat the barel ... 236
Figure 8.3: Race Game .. 237
Figure 8.4: Magic-8 Ball .. 239
Figure 8.5: MoleMash ... 239
Figure 8.6: IP packet switch .. 240
Figure 8.7: "Guess the Flag" game splash screen ... 241

xii

List of Tables

Table 2.1: Popularity of programming language index 12
Table 2.2: Comparison of the main characteristics of Greenfoot, Alice,
AppInventor, Scratch .. 32
Table 4.1: Java programming: Difficult concepts – student perceptions 69
Table 4.2: Java programming: Difficult concepts – professor perceptions 70
Table 4.3: Java Programming: Ability to understand and write code – student
perceptions ... 73
Table 5.1: Grading rubric for the formative assessment used in all action
research cycles .. 97
Table 5.2: CFA - Action Research Survey .. 100
Table 5.3: Cronbach's alpha – Action Research Survey 101
Table 5.4: AVE and CR calculations for Motivation Scale 101
Table 5.5: AVE and CR values for all scales .. 102
Table 5.6: Correlation matrix for motivation scale components 102
Table 5.7: Correlation coefficients for enjoyment and usefulness scales 103
Table 5.8: Student evaluation of Greenfoot programming environment 105
Table 5.9: Student evaluation of Alice programming environment 106
Table 5.10: Student evaluation of AppInventor programming environment . 108
Table 5.11: Student evaluation of Scratch programming environment 109
Table 5.12: Action research study – Demographics: Gender 110
Table 5.13: Action research study – Demographics: Majors 110
Table 5.14: One-way ANOVA test for the equality of medians across VPEs .. 111
Table 5.15: Shapiro-Wilk’s test of normality ... 114
Table 5.16: Levene’s test of homogeneity of variances 115
Table 5.17: One-way ANOVA test for the equality of means 115
Table 5.18: Post-hoc multiple comparisons between VPEs - Tukey HSD test 116
Table 6.1: Case study designs/themes .. 122
Table 6.2: Standardisation matrix - Card Sorting .. 134
Table 6.3: Cronbach alpha for TAM .. 147
Table 6.4: CFA for TAM .. 148
Table 6.5: AVE and CR values for TAM ... 148
Table 6.6: Cronbach alpha’s for Motivation Scales .. 150
Table 6.7: CFA for Motivation scales ... 150
Table 6.8: AVE and CR values for motivation scales 151
Table 7.1: Number of participants across the years of the study 158
Table 7.2: Descriptive statistics of Scratch acceptance 166
Table 7.3: Descriptive statistics of Scratch acceptance per professor 167
Table 7.4: One-way ANOVA - Student acceptance of Scratch between
professors .. 168
Table 7.5: Spearman’s rho correlations between Scratch acceptance and
student grades .. 168
Table 7.6: Student dominant learning styles in the 4 dimensions 170

xiii

Table 7.7: Correlations between student learning styles and their perceptions
about Scratch .. 172
Table 7.8: Motivational Component Mean Scores ... 174
Table 7.9: Kruskal Wallis test for motivational scale distribution across
students taught by different professors ... 174
Table 7.10: Spearman's rho correlation between student motivation to learning
programming and acceptance of Scratch .. 175
Table 7.11: Spearman’s rho correlation between student motivation to learning
programming and performance .. 176
Table 7.12: Summary of notes from class observations 183

1

Chapter 1 Introduction

1.1 Introduction to the Study

As an information technology (IT) educator for over 20 years, with an emphasis on

teaching programming at all levels (primary, higher and vocational), one of the many

challenges I face is to make the student learning experience as meaningful,

interesting and engaging as possible, while also preparing graduates for the real-

world software development environment. I am constantly concerned with improving

my teaching, utilising and testing various techniques and approaches that could

provide students with different ways of experiencing computer programming. The

diversity of these experiences could possibly make more students understand how

they can efficiently write computer code, appreciate the challenges, and positively

relate to the process.

While the worldwide demand for computer programmers has increased and is

expected to increase even more in the following years (up to 24% from 2016 - 2026,

(Bureau of Labor Statistics, 2019)), anecdotal evidence on teaching and learning

computer programming, especially at the introductory level, shows that many

students fail introductory courses (Bennedsen & Caspersen, 2007; Watson & Li,

2014). Based on my 20-year teaching experience I have evidence to support the same

view. Statistics collected from all introductory programming modules from all courses

at the English-speaking institution of higher learning in Southern Europe where this

research takes place, shows an overall failure rate of 52%. Figure 1.1 shows a

comparison of the failure rates between introduction to programming and object-

oriented programming modules, which are the first and the second required

programming modules in the progression list for the software development track of

the information technology (IT) major.

2

Figure 1.1: College failure rate comparison in two Java programming courses (2012 – 2017)

Research also indicates that many students perceive computer-programming concepts

as being overly difficult to understand (Eckerdal et al., 2005; Eckerdal, 2006; Giraffa

et al., 2014). Some of the identified reasons for this failure include students’ lack of

problem-solving skills (Lahtinen et al., 2005; Ismail et al., 2010;) and inability to

construct mental models of “abstract” programming concepts (Ma et al., 2009).

As new hardware devices and programming methodologies evolve, affecting the way

novice programmers might understand and visualise computer programming,

additional research is warranted in order to assess the impact of these technologies

on student learning. In recent years, a number of visual programming tools, such as

Scratch, Alice, Greenfoot and App Inventor, have been used to introduce

programming to students. Although each was created for use by different age groups

(CS1/pre-CS1 for Alice, 8-16 year olds for Scratch, and 14+ year olds for Greenfoot

(Utting et al., 2010) they all share a common principle; they use visualisations and

fixed blocks of code as a means to convey fundamental programming and object

oriented programming concepts to learners.

My beliefs, as far as teaching and learning programming are concerned, have been

influenced by Bowden and Marton who claim: “Variation must be present in the
learning environment…” (2003, p.11). I agree that learners should be exposed to a

variety of experiences that could potentially allow them to change the “way of seeing”

several aspects of computer programming, focus on the “critical dimensions of these
experiences”, and relate intangible concepts to more tangible ones.

3

My foremost concern is to make my lectures meaningful, interesting and up-to-date.

In this study, I wish to explore the extent to which usage of innovative instructional

approaches impacts student motivation and performance. Although such impact can

be qualified in multiple forms, I am mostly interested in a) performance in hands-on

programming assignments and theoretical assessments; b) enjoyment; c) level of

engagement; d) perceptions of programming difficulty; and e) perceptions of value of

the new technology used in class.

Teaching computer programming is more than teaching a programming language.

Consequently, in this research, I will focus on understanding the processes of learning

and teaching programming by exploring other disciplines including psychology,

learning theories and knowledge representation, learning approaches and motivation

along with computer science. I aim to improve the teaching and learning process by

providing students with the most effective learning environment and experience.

1.2 Research Questions

In the context of the Introduction to Programming module in this English-speaking

institution of higher learning in Southern Europe, Scratch software was used to

enable students to undertake visual programming.

My research questions in this context are:

1) How do visual programming environments affect students’ performance in the

course (assessment and final grades)?

2) How do students perceive visual programming environments?

a) How do they perceive enjoyability, ease of use, usability and usefulness?

b) How do they relate these qualities to their achievement of the module’s

learning objectives (output quality)?

3) How does students’ motivation for learning programming relate to their

perceptions about visual programming environments?

4) How do students’ learning styles relate to their perceived enjoyment, ease of use,

usability and usefulness of visual programming environments?

4

1.3 Contextual Information

The current research takes place at an English-speaking institution of higher learning

in Southern Europe, which will be referred to as college XYZ. XYZ college was

founded in 1875 in Smyrna, Asia Minor, by missionaries from Boston, Massachusetts

and has been accredited by the New England Association of Schools and Colleges

(NEASC) since 1981, which is the oldest and largest accrediting organisation in the

United States.

In 2010, XYZ college partnered with the Open University of the United Kingdom

(UK), which is the largest programme validation institution in Europe and currently

offers twenty-eight undergraduate programmes validated by the Open University, UK.

The Information Technology (IT) major is fairly new at XYZ college. It was created in

2010 and the first IT major students are currently employed in the business sector.

The major went through OU revalidation in 2016, where all module learning

outcomes were revised and updated in order to reflect latest trends in technology and

to conform to the Quality Assurance Agency for Higher Education Computing

Standards. As of spring semester 2016, Scratch was used to introduce programming

to students during the first two weeks of the module.

The “Introduction to Programming” module introduces students to structured and

basic object-oriented computer programming, with an emphasis on problem-solving

strategies. The course requires no prior programming experience and is the first

programming prerequisite for students majoring in “Information Technology”.

Emphasis is given on problem analysis, algorithm design, coding and testing using the

Java programming language. The module has five learning objectives, for which

students are assessed on both a theoretical and practical level.

According to the module’s syllabus, upon successful completion of the course,

students should be able to:

1) Demonstrate understanding of fundamental programming concepts and solve

basic problems using fundamental programming constructs.

2) Create an algorithmic solution to a programming problem using pseudo-code.

3) Demonstrate understanding of how to trace source code and correctly predict the

results.

4) Make use of basic data structures and search/sort algorithms to design,

implement, test, and debug programs.

5

5) Develop well-documented, structured and maintainable programs.

The “Introduction to Programming” module’s method of teaching and learning

includes 3-hours of lecture per week and 2-hours of laboratory practical sessions.

Blackboard (TM) is used as the course management system and supports class

communication through lecture notes, web resources, assignment instructions, and

timely announcements, user forums for troubleshooting, formative quizzes and online

submission of assignments.

The “Introduction to Programming” has two formal assessments: a mid-term

examination that counts for 40% and a coursework project that counts for 60% of the

final module grade. The coursework project contains 3 parts: Part A evaluates student

understanding of fundamental programming concepts and how they can solve basic

problems using fundamental programming constructs, in Scratch. Part B tests their

ability to create an algorithmic solution to a programming problem using pseudo-

code. Part C tests their ability to write a well-documented, structured and

maintainable Java program that utilises data structures and searching/sorting

algorithms.

The module covers the following content areas:

1) Introduction to algorithms and block-based programming

2) Learning to code using Scratch

a) Variables, arithmetic, operators

b) User input

c) Selection and iteration

d) Count controlled loops/condition-controlled loops

e) Complex conditions

f) Procedures (custom blocks)

g) Introduction to event-driven programming concepts and multitasking

h) Sprite cloning (object instantiation)

i) Creating a game

i) Requirements specification

ii) Interface design

iii) Code design

iv) Implementation

6

v) Testing

3) Overview of computers and programming languages, numeric systems

4) Introduction to Java programming language, Software Development Kit (SDK),

Java Development Kit (JDK), Java Virtual Machine (JVM) and command line tools

a) Variables, primitive datatypes, arithmetic, operators

b) Strings

c) Input/output

d) Tracing programs and debugging

e) Relational operators, selection

f) Complex conditions

g) Iteration

h) Count controlled loops

i) Condition controlled loops

j) User defined methods

k) Arrays

l) Command-line arguments

m) Basic searching and sorting algorithms

n) Exception handling

5) Introduction to Object-Oriented Programming (OOP) concepts

Figure 1.12 and Figure 1.3 depict the teaching methodology and the learning

resources of the module.

7

Figure 1.2: Teaching methodology

Figure 1.3: Learning resources

This module is a requirement for all students majoring in IT and is offered four times

a year. Each occurrence of the module has a registration limit of 18-20 students. It

has been observed, though, that some students who initially choose the “Software

Development” pathway of the major, tend to shift to either “Network Technologies”

8

or “Digital Media” which are perceived by students as being easier. The basis of this

statement is grounded on input obtained from informal conversations with students

during the past seven years.

1.4 Thesis Structure

This thesis begins with an overview of computer programming and a presentation of

programming environments, providing a relevant context for the reader and

preparing the ground for justifying choice of tools used in this research project. To

address the research questions, the thesis then provides an overview of underlying

conceptual frameworks from relevant learning theories and approaches, from

motivation theory, as well as research on measurement instruments, assessment tools

and related methodologies.

A literature review then follows that explores cognitive aspects of computer

programming, difficulties imposed on novice learners, classification of programming

environments, and the rationale behind the need for educational and visual

programming environments (VPEs). The thesis follows with a review of research

related to teaching novices how to program using Scratch, App Inventor, Alice and

Greenfoot, and the effects these environments have on student motivation. Research

findings indicate a positive impact on student motivation for all four VPEs mentioned

above. Consequently, a two-year participatory action research study (referred to

henceforth as the pilot study) was conducted with the aim of identifying the most

appropriate VPE. Participants assessed Scratch to be the most suitable tool.

The thesis advances with an evaluation of a case study using mixed data collection

methodologies, and a justification as to why a combined approach was considered

appropriate, followed by a presentation of the overall research design. The steps

involved in the development and validation of the assessment instrument, which was

created by adapting 2 different tools (MSLQ, TAM) and incorporating the Index of

Learning Styles Questionnaire was an important part of the study.

Finally, a description of the collected data, their analysis and presentation of the

results complements the findings of the pilot study, before leading to the final

chapter, where conclusions of the study, its contributions to the literature, and its

limitations are discussed.

9

Chapter 2 Computer Programming

With an eye to utilising and testing various visual programming environments that

could provide students with different ways of experiencing computer programming

and potentially increase their motivation to learn, I begin by introducing the concepts

of computer programming, different programming paradigms, as well as types of

programming environments that exist in the market today. The purpose of this

introduction is to provide a relevant context, as well as preparing the ground for

justifying the choice of tools used in this research project.

2.1 What is Computer Programming

“Programming will help you learn the importance of clarity of expression” (Madan,

2003, p.97)

Pea and Kurland (1983) defined the core sense of computer programming as “that set

of activities involved in developing a reusable product consisting of a series of written

instructions that make a computer accomplish some task” (Pea & Kurland, 1983, p.5).

In other words, computer programming is a process that enables people to write a set

of directives to instruct the computer how to perform a specific task. A computer

program is like a very precise recipe. It requires a list of specific ingredients and an

exact set of ordered steps for the machine to follow in order to perform something.

The recipe should produce exactly the same result (output) each time the steps are

executed using the same ingredients (inputs).

In his work, Papert (1980) argues that a profound understanding of computer

programming can help students form “new relationships” with knowledge and receive

educational benefits in diverse learning domains: “computers can be carriers of

powerful ideas and of the seeds of cultural change, how they can help people form

new relationships with knowledge that cut across the traditional lines separating

humanities from sciences and knowledge of the self from both of these” (Papert,

1980, p.4).

The computer program is written in a programming language. There are numerous

programming languages which can be used to program a computer ranging from low

to high level. The lower the level of the programming language used the closer the

program looks like 0s and 1s, which is what the computer actually “understands”.

That is, the presence or non-presence of electrical current through its circuits.

10

High-level programming languages resemble human-like instructions, for example: if

(x>5) then print “Greater than 5”. In order for the computer to be able to execute a

program like this, a compiler is needed. The compiler will “translate” the text written

in the programming language to 0s and 1s. The higher the level of a programming

language, the higher the level of abstraction that it imposes on the programmer.

In the next section, I explain what a programming paradigm is, and types of

programming languages used to teach and learn computer programming. This also

explores the dilemmas faced by most instructors in identifying the most suitable

programming language and environment for novices.

2.2 Programming Paradigms and Programming Languages

A programming paradigm defines a way of thinking about software development and

is based on a mathematical theory or a coherent set of principles (Van Roy, 2009).

Different approaches to programming (paradigms) have been developed over time.

The most popular ones used for teaching computer programming are: the imperative;

structured/procedural; and object-oriented.

Imperative programming focuses on how a program operates. It changes state

information as needed in order to achieve a goal. Programs are composed of

variables, assignments and calculations, statements for input and output, control

statements such as selection and iteration. There is an implied sequential nature in

the program’s activities: input, processing, and output.

Structured programming relies on procedure calls to create modularised code. A

programming methodology, formulated by Dijkstra (1970), extends imperative

programming and works in two phases. In the first phase, the programmer breaks

down each problem into concrete sub-problems (problem decomposition) following a

top-down approach. In phase two, the programmer works upwards, providing

solutions to the smaller problems until the whole problem is solved. In structured

programming, programs are composed of callable blocks of code called functions and

procedures, and include all the constructs mentioned above (variables, input/output,

control statements, etc.). Even though the procedural coding style is an older form of

application development, it is still a viable approach when a task lends itself to step-

by-step execution.

The ultimate goal of both imperative programming and structured programming

paradigms is to “produce a program with exactly one entry point that can only be

11

built and executed after all its parts are (in some sense) completed” (Kölling, 1999, p.

4).

Object-oriented programming is a programming methodology that is based on the

concept of objects. The programmer should in phase one identify the objects (entities)

involved in the problem and then identify how these objects are related or interact

with each other. In phase two, the programmer should specify the relevant data for

each object and the possible operations to be performed on these data, and then

design a user interface. Interaction with a user interface is not at all a sequential

process but rather event-driven. Objects exist independently of each other, and

operations can be executed on them. As a result, a user should be able to interactively

create objects of any available class, manipulate these objects and call their interface

methods. Booch (1989) stated: “Let there be no doubt that object-oriented design is

fundamentally different from traditional structured design approaches: it requires a

different way of thinking about decomposition, and it produces software architectures

that are largely outside the realm of the structured design culture.”

There is no best approach to tackling a computer problem. Each paradigm supports a

set of concepts that makes it most applicable for a certain kind of problem (Van Roy,

2009). For some cases, the structured programming approach is more appropriate

than the object-oriented one. For example, if the purpose of the program is to solve a

mathematical formula and a Graphical User Interface (GUI) is not a requirement,

then structured programming seems more appropriate. On the other hand, if the

purpose of the program is to handle student grades in courses, then the object-

oriented approach will be more efficient. Using the object-oriented approach does not

eliminate the application of structured programming constructs; rather it is using

them within a different context. Most programming languages nowadays are multi-

paradigm ones (Van Roy, 2009).

“A multi-paradigm programming language is a programming language that supports
more than one programming paradigm. The central idea of a multi-paradigm language
is to provide a framework in which programmers can work in a variety of styles, freely
intermixing constructs from different paradigms. The design goal of such languages is to
allow programmers to use the best tool for a job, admitting that a single paradigm
cannot solve all problems in the easiest or most efficient way.” (Mozilla Developer

Network, 2013)

Table 2.1 shows the top ten programming languages based on the PPLI (Popularity of

Programming Language Index) which is created by analysing how often language

tutorials are searched on Google. The percentage change is calculated by comparing

12

the same data retrieved a year earlier in November 2017. From all the languages

included in the list below, only C is not considered object-oriented.

Rank Change Language Share Trend
1 Java 21.4 % -1.9 %

2 Python 18.6 % +5.2 %

3 PHP 8.2 % -1.5 %

4 JavaScript 8.0 % +0.5 %

5 C# 7.6 % -0.9 %

6 C++ 6.3 % -0.7 %

7 C 6.3 % -0.9 %

8 Objective-C 3.9 % -0.6 %

9 R 3.8 % +0.6 %

10 Swift 3.1 % +0.3 %
Table 2.1: Popularity of programming language index

(retrieved from http://pypl.github.io/PYPL.html, Nov. 2018)

The same source, in May 2019 in a tag cloud, shows Python, Java and JavaScript as

the first three most popular programming languages (see Figure 2.2).

Figure 2.1: Programming languages popularity tag cloud

(retrieved from http://pypl.github.io/PYPL.html, May 2019)

In the 1990s, introductory programming education shifted towards object-oriented

programming (Morris et al., 1999; Pears et al., 2007; Davies, et al., 2011; Decker &

Simkins, 2016) and until today most universities choose an object-oriented language

for their introductory course. Nevertheless, the fact that an object-oriented

programming language can also be used to teach fundamental programming

13

constructs using the “imperatives-first” approach makes them even more popular

amongst educators.

A short survey administrated during Fall Semester 2017 to 50 educators in high

schools and universities in Greece, demonstrated that most educators (40%) currently

use Python to introduce programming concepts to students while Java still holds a

strong share (23%) either with an emphasis on objects (14%) or imperatives-first

(19%) (see Figure 2.2).

Figure 2.2: Programming languages used in Greek schools

Choosing the “imperatives-first” or the “objects-first” paradigm seems to be a defining

factor for many introductory courses. Over the past ten years there has also been a

trend to introduce students to “safer” programming languages (a move from lower-

level languages such as C to higher-level languages such as Java and C++), or to

scripting and loosely-typed languages (such as Python or JavaScript) or even to

syntax-light ones (such as Alice and Scratch), but the initial debate still stands

(Davies et al., 2011; ACM Computing Curricula Task Force, 2013).

The “objects-first” approach to teaching programming seems to prevail over the

“imperatives-first” (Iling et al., 2003; Hu, 2004; Xinogalos et al., 2006), but the

14

debate as far as which of the two approaches is more effective for teaching

introductory programming courses still exists (Dale, 2006; Pears et al., 2007).

Researchers that support the introduction to programming using the “imperatives-

first” or “objects-later” paradigm argue that the object-oriented paradigm is far more

complex and has a longer learning curve (Wiedenbeck et al., 1999) and hence is more

difficult (Thomasson et al., 2006). Additionally, knowledge and experience gained

from structured programming is a requirement to form a solid basis to work

effectively with objects later on (Hu, 2004; Reges, 2006).

On the other hand, researchers that support an introduction to programming using an

“objects-first” paradigm argue that since there has been a shift in professional

programming towards object orientation (White & Sivitanides, 2005), learners should

be familiarised with it as early as possible (Decker, 2003). They also argue that a high

percentage of novice programmers only “know” how to interact with the computer

using their mouse, in a windows interface, and possibly they have never seen a

command line environment (Culwin, 1999).

To minimise the perceived difficulties and to support the “objects-first” strategy,

various educational software tools have been developed such as BlueJ, JEliot,

Greenfoot and Alice (Xinogalos et al., 2006, Sun, 2010; Dann et al., 2012; University

of Kent, 2014;) that allow the interaction with objects from the beginning. Studies

have shown that these tools can help novice programmers build a more concrete

understanding by providing appropriate conceptual models (Yiğit et al., 2015).

The “Introduction to Programming” module in XYZ college historically follows the

“imperatives-first” and “objects-later” approach to programming using Java, which is

one of the most widely used programming languages both in education and in

professional software development. The task of writing a program can be

accomplished using a number of programming environments. The choice of a

programming environment could potentially affect the understanding and

performance of a novice programmer. In this respect, in the next section, I present a

taxonomy of programming environments.

2.3 Types of Programming Environments

Writing a computer program in its pure form requires a text-editor and a command

line tool to compile and execute a program. Over the years, programming

environments have evolved and have integrated the text-editor, the compiler, the

15

execution environment and many more assistive features for programmers. There are

varying levels of assistive features provided by different programming environments,

ranging from low assistive features to very high ones.

A text-editor such as notepad and a command like compiler, is on the low assistive

side. There are no assistive features for the programmers. A program visualisation

environment such as JEliot and BlueJ contains a simplified text-editor with an

integrated compiler. Again, there are almost no assistive features for the

programmers. Code is written in Java but enables the learner to visualise a step-by-

step execution of the program. Method calls, variables and their values, arrays,

operations and output are displayed on a screen as the animation goes on.

An Integrated Development Environment (IDE) such as Eclipse, NetBeans or

JDeveloper, is considered to be on the moderate assistive side since it integrates the

text editor and the compiler and offers a number of features for authoring, modifying,

compiling, deploying, versioning and debugging software. Most professional

programmers use integrated development environments to write software.

A number of programming environments have been developed through the years to

introduce programming concepts to younger students. Their design is fundamentally

different from professional IDEs due to their pedagogical purpose for use and have

been termed Initial Learning Environments (ILE) (Fincher & Utting, 2010). ILEs

include Visual Programming Environments (VPEs) such as Scratch, Alice and

AppInventor. These environments are considered to be on the high assistive side,

since the programmer will focus only on the programming logic and will not be

required to type any code. In a symposium discussion on Computer Science Education

about the goals and effects of Alice, Scratch and Greenfoot, Steven Cooper argues

that the power of visualisation comes when an animation does not work correctly,

and students are able to understand where the “error(s)” in the code resides. He also

mentions that the focus of these programming environments is on providing an

engaging experience for the students so that they will want to learn programming

(Utting et al., 2010). Although the concept of program visualisation and visual

programming is mentioned here within the context of programming environments, a

more detailed analysis follows in Chapter 4, with a focus on the difficulties students

face when learning how to program and the role of visualisations in the facilitation of

learning computer programming.

A short presentation of each type of programming environment (along with a

representative software) follows in the next sections.

16

2.3.1 A Text-Editor and Command-Line Compiler

Using a text editor to type your program code, save it and use a command prompt in

order to compile it and execute your program requires a very strong knowledge of

both the programming language and operating system commands. Although such an

environment does not require the knowledge of using a specialised environment with

a complex set of features, it can be frustrating for novice programmers (see Figure

2.3).

Figure 2.3: A text-editor and a command line compiler

On the other hand, text editors have also evolved and can provide colour-coding,

syntax highlighting and formatting which could be helpful for novice programmers.

Without overlooking the frustration caused to students by this environment,

anecdotal research (Chen & Marx, 2005) shows that some educators might still

choose to introduce students to writing programs using a text editor and a command

line compiler. The rationale behind this choice is to provide students with a broader

understanding of programming fundamental concepts such as writing code,

compiling, executing and editing to enhance their mental models of the programming

life cycle at a lower level.

2.3.2 Program Visualisation Environment

There are two well-known program visualisation systems which are widely used in

the educational setting: BlueJ and JEliot. BlueJ offers static visualisation of Java

classes, while JEliot offers a dynamic visualisation of program execution.

17

BlueJ is one of the first programs developed, aiming at teaching introductory object-

oriented programming, in 1999. BlueJ integrates a simple text-editor with a Java

compiler and offers some assistive features to the learners, such as syntax and scope

highlighting (each code block is coloured) and this helps in spotting syntax errors and

misplaced curly brackets. The main feature of BlueJ is the static visualisation of a

class structure (attributes and method) as a Unified Meta Language (UML) diagram

and animates the creation of all possible instances of a class at run-time (see Figure

2.4). Furthermore, it allows the learner to interact with the object instances by

creating them, calling their methods and inspecting their state with easy-to-use

menus and dialogs.

Figure 2.4: BlueJ class inspection feature and the text-based code editor

However, it does not provide any dynamic visualisation of the program execution.

Jeliot on the other hand is a program visualisation application. The development of

the Jeliot family took more than ten years and was research oriented. Several versions

of the concept of visualising the execution of a program have been developed, namely

Eliot (developed at the University of Helsinki, Finland in 1993), Jeliot I (developed at

the University of Helsinki, Finland), Jeliot 2000 (developed at the Weizmann

Institute, Israel) and JEliot3 where the software has become product-like, both usable

and stable. Each version of the program incorporated findings from the previous

version’s empirical evaluations (Moreno et al., 2004).

Jeliot integrates a simple text editor and a compiler plus a live-theatre mode. The

learner has to type a program using the Java programming language and compile it.

Unfortunately, the compiler neither highlights possible syntax errors while typing the

18

program, nor during the compilation phase. The errors will appear to the user when

he/she chooses to execute the program.

The main feature of Jeliot is the “theatre mode” and the “call tree”. When the

program does not contain any syntax errors, the execution starts by animating all

methods, variables, method calls, expressions and their possible evaluations in the

theatre mode (Figure 2.5) The user can slow down, speed up or pause the animation

to observe the results.

Figure 2.5: Jeliot programming environment - Theatre mode

In the Call Tree mode, the user can observe the hierarchy of method calls. Starting

from the main method, all other method calls are depicted in a tree along with their

actual parameter(s) values and their respective return values (see Figure 2.6).

19

Figure 2.6: Jeliot programming environment - Call tree mode

As mentioned before, the main disadvantage of JEliot is its over-simplified text-editor

which does not highlight possible typographical errors or syntax errors, but Jeliot can

be incorporated into BlueJ as an extension and provide the learners with required

editor functionality.

2.3.3 Integrated Development Environment (IDE)

An integrated development environment (IDE) is a programming environment

packaged as an application. IDEs provide software developers with many tools that

assist them in writing their programs. Features provided include: colour coding, code

completion/suggestion, matching of brackets, code formatting/indentation, debugger,

creating of code documentation, version control and application deployment (see

Figure 2.7).

20

Figure 2.7: Eclipse IDE

IDEs abstract the process of compilation and execution since it happens automatically

with the press of a button. An IDE compiles the code, and if compilation is successful,

it executes the program inside the same environment (an integrated console). As a

result, there is no switching back and forth between the editor and command prompt.

In case of a syntax error, the IDE highlights the line number with the error and even

suggests possible ways to correct it.

All modern integrated development environments (IDEs) provide users with a

debugger system. The debugger is used to perform advanced step-by-step program

tracing. Using the debugger, the student can monitor the contents of the memory as

the program executes, and pause the execution upon request.

Although an IDE supports programmers with writing their code, it has a higher

learning curve than using plain text editors and command prompts. Research also

shows that students often rely too much on the automated tasks, but that they do not

really understand what is happening behind the scenes (Chen & Marx, 2005).

A study conducted by Dillon et al. (2012) showed that students struggled with using a

command prompt environment regardless of their prior experience and confidence

with programming, but they were able to use IDEs more effectively.

2.3.4 Visual Programming Environments

Since the early 1960s, researchers identified the need to make programming

accessible to a larger number of people. Since then, a number of programming

languages and environments have been built with this intention. Kelleher and Pausch

21

(2005) and Guzdial (2004) provided us with a taxonomy of programming

environments’ design to make programming more accessible to novice programmers

of all ages, up to the time their article was published.

Historically speaking, the purpose of visual programming environments as identified

by research has been three-fold: a) to make programming more accessible to some

particular audiences; b) to improve the correctness with which people perform

programming tasks; and c) to improve the speed with which people perform

programming tasks (Burnett, 1999).

Nowadays, there has been a shift from this purpose towards the engagement of the

student/developer to design programs within the context of their actual and specific

interests (stories, games, simulations, etc.) and to the immediate feedback provided

by the environment.

This is in contrast to conventional programming exercises, which ask students to

create programs that display “hello world”, perform calculations and sort numbers.

Furthermore, in visual programming environments, syntactic complexity is hidden,

and tasks are directed to hands-on problem solving. These environments are designed

to avoid common beginners’ mistakes in programming such as syntax errors and aim

to bridge the gap between program-code and the visual/human representation of the

code output. Therefore, instead of typing commands, students can drag-and-drop

blocks of code into a predefined structure to form a computer program. Because of

their shape, these blocks can only be placed in a sequence that makes sense, and the

compiler will never give an error message due to mismatched braces or a missing

semi-colon. The main focus of visual programming environments is to facilitate

hands-on problem solving and to encourage and retain “at risk” students (Utting et
al., 2010).

Just a simple search of the term “visual programming” in the ACM Digital Library

(November 2017) resulted in 134,883 articles and with conjunction with the term

“novice programming” resulted in 97,473 articles. This shows an impressive research

interest in visual programming environments.

In the next section, I will briefly introduce the most widely-used visual programming

environments: Alice, Greenfoot, AppInventor and Scratch. In Chapter 4, a discussion

on how using visualisations can assist students to overcome the barriers associated

with computer programming follows. In Chapter 5, each one of these programming

environments will be evaluated, using a participatory action research methodology, in

order to investigate student perceptions about each one - the tools’ enjoyment,

22

usability and suitability towards the achievement of the specific module’s learning

objectives, to observe how each of these tools affected students’ motivation to learn

programming, and to identify the one to be used in the main study.

2.3.4.1 Alice

Alice was created by a Research Group at Carnegie Mellon University under the

direction of Randy Pausch (http://www.alice.org) and, as described by its creator, is

“designed to be a student's first exposure to object-oriented programming” by

allowing students to easily create interactive animated stories and/or games that take

place in virtual 3-Dimensional worlds.

Alice provides students with a drag-and-drop interface that allows them to focus on

programming concepts while also protecting them from syntax errors. Initially,

students are presented with a gallery of template worlds and choose the world setting

that they will work with. Next, they instantiate numerous objects, animals and/or

people. Additionally, students define how objects will move and interact with each

other. Movement and interactions are created with scripts. A script is constructed by

dragging and dropping commands into the procedure area and changing related

properties. “Move forward 1 meter” or “turn left 30 degrees” are examples of Alice

commands. Commands can be performed in sequence (Do-in-Sequence) or

simultaneously (Do-Together). Loops can also be used (Do 5 times, or while distance

< 3 repeat a block of code).

Sprites (objects) also respond to user interaction provided via mouse or keyboard

(Cooper et al., 2000; Utting et al., 2010). At each point during development, students

can run their animation, visually observing and directly relating to the results of their

specific programming actions. Feedback is immediate and highly visual (Figure 2.8).

“This leads to an understanding of the actual functioning of different programming

language constructs” (Cooper et al., 2000).

23

Figure 2.8: Alice programming environment

2.3.4.2 Greenfoot

Greenfoot was created by Michael Kolling and Poul Henriksen at the University of

Kent (http://www.greenfoot.org).

The Greenfoot system uses the metaphor of a World subclass and one or more Actor

subclasses that are placed in the world. Actors act and interact with the world or

other Actors to implement the application idea (scenario). Each time a student places

an object on the world, a new named subclass of the actor is created with its own

image, size and placement within the world. The idea behind Greenfoot is to

introduce students to concepts of object-oriented programming, such as inheritance,

instantiation, polymorphism, properties and methods, in a way that is easier to

understand. Students can view and modify the source code that is automatically

generated for each object created. The level of abstraction provided by Greenfoot is

comparatively lower than that in Alice, as it contains all elements of an integrated

programming environment: a compile button and execution control (Figure 2.9); a

text-based code editor (Figure 2.10) or a frame-based code editor (Figure 2.11).

24

Figure 2.9: Greenfoot's program design editor

Figure 2.10: Greenfoot's text-based Java Editor

25

Figure 2.11: Greenfoot's frame-based editor

Using Greenfoot, students come one level closer to coding their programs, but the

nature of the program is different from traditional IDEs. Greenfoot’s latest version 3

also includes an intermediate coding environment: a frame-based editor named

Stride.

A preliminary investigation on the usability of this frame-based editor by McKay and

Kolling (2013) showed that novice programmers performed insertions, modifications,

deletions and code replacements considerably faster than other coding editors.

2.3.4.3 Scratch

Scratch was developed in 2007 by Mitchel Resnick and Natalie Rusk as a project of

the “Life Long Kindergarten” group in MIT

(https://www.media.mit.edu/projects/scratch).

Scratch is based on the ideas of Logo (Papert, 1980) to support constructionist

learning, but replaces typing code with a drag-and-drop tile-based approach inspired

by LogoBlocks (Begel, 1996) and EToys (Kay, 2005). LogoBlocks (Figure 2.12) and

EToys (Figure 2.13) were both developed around 1996 and they followed a similar

drag-and-drop approach of jigsaw-like puzzle pieces or tiles that contained

programming instructions.

26

Figure 2.12: LogoBlocks

Figure 2.13: EToys

Although Scratch was inspired by these tools, the main design principle was to make

it more ‘tinker-able’, more meaningful and more social than its predecessors or other

programming environments in the same category (Resnick et al., 2009). Scratch took

its name from the “scratching” technique used by disc jockeys, when they move back

and forth a vinyl record (or a Compact Disk or even a virtual disk on a computer) to

create a percussive or rhythmic sound while mixing music clips together in creative

ways. Thus, “scratching” in computer terms, according to Lamb (Lamb & Larry, 2011)

refers to reusable pieces of code which can be combined, shared and adapted.

Scratch pedagogy is grounded on the ideas of “creativity”, “interactivity”, “sharing”

along with “mathematical and computational ideas”. Resnick and his team based the

development of Scratch on the idea that a computing environment should have a low

floor (easy to get started) and a high ceiling (opportunities to create increasingly

complex projects over time). This metaphor was initially introduced by Seymour

Papert in Mindstorms (1980), but the Scratch development team also based the

development of the tool on the idea that languages need “wide walls”. An

environment with “wide walls” supports many different types of projects so people

with different interests and learning styles can become engaged. They also argue that

the development of Scratch with this triplet: low-floor/high-ceiling/wide-walls was

not easy (Resnick et al., 2009).

The key Scratch component is media manipulation and supports programming

activities that align with the interests of young people, such as creating animated

stories, games, and interactive presentations. Re-mixing is another key component of

Scratch pedagogy. Re-mixing a Scratch project allows a user to copy another users’

project, see the code inside, learn from it, experiment with it, and extend it (always

retaining a reference to the original work).

27

A Scratch project consists of a fixed stage (backdrop) and several movable objects

(sprites). In the following example (Figure 2.14) the airplane is the sprite and the sky

with the clouds is the stage. Each sprite contains its own set of images (Figure 2.15),

sounds (Figure 2.16), variables, and scripts (Figure 2.17).

Figure 2.14: Scratch stage and sprites

Figure 2.15: Image in Scratch

Figure 2.16: Sound in Scratch

Figure 2.17: Scripts in Scratch

In order to create a program, the learner drags command blocks from a palette

(Figure 2.18) and drops them into the code area by sticking them together in order.

The whole process is like putting together puzzle pieces.

28

Figure 2.18: Scratch development area

The full Scratch development area (see Figure 2.18) is divided into four areas:

• On the right is the stage. A button on the bar on top of the stage allows

the stage to be displayed in full screen mode. Below the stage is an area that

shows thumbnails of all sprites in the project. Clicking on one of these

thumbnails selects the corresponding sprite. When a sprite is selected, the

middle pane and the coding area display all properties of the selected sprite.

• In the middle pane, there are 3 tabs that allow the learner to view and change

the scripts, the costumes (images), or sounds of the selected sprite.

⁃ The scripts tab organises the code building blocks into 10 colour-coded

categories:

⁃ Motion: move, turn, point, go to, change x or y, set x to y, set

rotation, if on edge, etc.

⁃ Looks: say, think, show, hide, switch costume, switch backdrop,

set colour, etc.

⁃ Sound: play sound, play note, set volume, stop all sounds,

change tempo, etc.

⁃ Pen: pen down, pen up, set pen colour, change pen size, etc.

29

⁃ Data: create a variable, set a variable value, show/hide a variable

value.

⁃ Events: When flag clicked (to start the program), when button

pressed, when a sprite is clicked, etc.

⁃ Control: repeat, if… Then… Else, forever, wait, etc.

⁃ Sensing: is key pressed? Is sprite touching colour or other sprite?

Is mouse down? Etc.

⁃ Operators: +,-, *, /, <, >, and, or, pick a random number, etc.

⁃ More Blocks - Extensions: create predefined blocks (procedures),

etc.

• On the left-most pane is the scripting area. This is where the actual program is

composed.

Having the command palette always visible encourages exploration. Any individual

block of code or a stack of blocks can be executed immediately (even before the

program is complete) to preview its functionality just by double-clicking on it. This

immediate feedback reduces the novice programmers’ fear of the unknown. The fact

that not all blocks fit together makes writing code less error prone. The area where a

block can be dropped is highlighted, and a block cannot be placed at a point where it

does not make sense, program-wise.

Furthermore, when a Scratch program executes, by clicking on the green flag, the

code that is built inside every sprite executes at the same time. Scratch code is not

executed in a serial manner; some run-time events, such as a key being pressed, or a

mouse click on a sprite, can change the flow of the program. Scratch also provides the

users with another valuable visualisation: it highlights those blocks of code which are

currently being executed. Thus, Scratch users experience an event-driven, multi-

threaded runtime environment without even realising it and are exposed to advanced

programming concepts in a tangible manner. Hopefully, this will help them develop a

more solid process model of how a computer program works.

2.3.4.4 APP Inventor

MIT App Inventor is an open source visual programming language which utilises

ready-made code blocks for building Android Apps and was initially developed by

30

Google’s Mark Friedman and MIT Professor Hal Abelson in 2009; the MIT Version

was released in 2012.

APP inventor aims to introduce to inexperienced novice programmers the basic

programming constructs, while focusing on application creation concepts using drag-

and-drop visual building blocks. The perceived ease of use of the simple graphical

interface transforms the complex language syntax of a text-based coding environment

to plugging puzzle pieces together. The graphical programming user interface of APP

inventor is based on Open Blocks visual programming (see Figure 2.19, Figure 2.20)

and resembles Scratch, the Hour of Code and StarLogo TNG. Block-based

programming environments are widely used in lower and upper schools to introduce

basic programming ideas (Maloney et al., 2007; Nikou & Economides, 2014;

Panselinas et al., 2018; Papadakis & Orfanakis, 2018).

Applications created using APP Inventor can be easily deployed on Android mobile

devices and enable students to easily share their work with their family and peers.

Figure 2.19: AppInventor: Program design

31

Figure 2.20: AppInventor: Block-based code editor

2.4 Conclusion

This chapter provides the relevant context and prepares the ground for justifying the

choice of tools used in this research project. To this end, it explores the field of

computer programming, programming paradigms and programming environments,

with an emphasis on the description of the functionality of four well-known visual

programming environments (Alice, Greenfoot, AppInventor and Scratch).

These VPEs have as a common characteristic the use of predefined code blocks, but

also have some identified differences regarding the types of programs they can create,

the level of programming experience they require and the programming concepts

they can demonstrate. Table 2.2 summarises the main characteristics of the four

visual programming environments discussed above.

32

VPE Editor Mode of

user

interaction

Purpose (types of

programs they can

create)

Requires previous

programming experience

Can be used to

demonstrate

OOP Multithreading

Greenfoot Frame-based or

text-editor

Desktop

Application

Create 2-D games some X

Alice Block-based

editor

Desktop

Application

Create 3-D interactive

stories, games or

animations

none X

AppInventor Block-based

editor

Online Build mobile applications

of various types for

android devices

some understanding of

user interaction with

application elements

(buttons, input text, etc)

 X

Scratch Block-based

editor

Online and

desktop

Create 2-D interactive

stories, games or

animations

none X

Table 2.2: Comparison of the main characteristics of Greenfoot, Alice, AppInventor, Scratch

33

It should be pointed out that Greenfoot and Alice are strongly based on object-

oriented programming concepts where actors are instances of pre-defined objects and

the concept of inheritance and sub-classing is fundamental in program development,

while the ability to demonstrate multithreading concepts can best be demonstrated by

Scratch and AppInventor. Alice and Scratch do not require previous programming

experience, while Greenfoot and AppInventor (based on my teaching experience) will

be more suitable for students who have some prior experience with coding and

application development respectively.

The four VPEs addressed in this chapter have been selected for this study because

they have a long history of serving as focal programming tools in introductory

programming courses. They were all designed to support teaching and learning how

to program by making things easier and more pleasurable; support a “motivational”

approach to learning; were designed to make conceptualisations visible to learners

thus reducing cognitive load; have textbooks to support teaching; and have a vast

online presence with active educator communities. Finally, they have all been

researched in the past for their educational effectiveness (see Section 4.5).

34

Chapter 3 The Theoretical Framework

Chapter 2 introduced the concepts of computer programming and presented different

programming paradigms, as well as types of programming environments that exist in

the market today. This chapter examines cognitive and educational theories and their

application to teaching programming, the concept of approaches to learning and

theories of motivation. Finally, through a presentation and comparison of assessment

tools (for learning approaches and motivation), the discussion advances justification

for the selection of the ones used in the study.

3.1 Educational Theories

Cognitive psychologists and educators have long been interested in understanding: a)

the nature of learning as an active process (perception, thinking and knowledge

representation); b) knowledge organisation in memory (rote memorisation versus

comprehension); c) how learning evolves towards problem-solving (Mayer, 1981;

Wertheimer, 1983) and d) the importance of prior knowledge in assimilating new

material (Shuell, 1986).

“Meaningful learning” and retention, according to Ausubel (1963), are facilitated

when the learner has a meaningful cognitive framework within which to organise,

process and assimilate newly-presented material. Michael (2001) contrasts

meaningful with rote learning and stresses the importance of the ability of the learner

to actively do something with all the memorised information. He elaborates on

Ausubel’s definition that meaningful learning results in knowledge that is well

integrated with everything else that one knows and that can be accessed from many

different starting points.

Cognitive psychologists have identified three conditions (comprising an information

processing model), for meaningful learning to occur:

• Reception: the learner should pay attention to the information he/she receives to

register this within short-term memory.

• Availability: the learner needs to recognise or identify connections of similar

context within long-term memory, or “appropriate anchoring ideas”, as Ausubel

terms them.

• Activation: the learner must use existing knowledge and establish connections

between this knowledge and new material at hand.

35

A number of practical studies have concentrated on applying cognitive and

educational theories to the teaching of programming to improve student learning:

• Mayer (1981) applied Ausubel’s (1960) idea of “advance organisers” to

provide a framework for the reception and availability conditions mentioned

above and to define the process of meaningful learning (or assimilation to the

schema) of technical information.

• Du Boulay (1986) made use of metaphors and analogies in teaching

programming and based his studies on the development of a “concrete model”

for teaching LOGO and argued that there are two approaches to teaching and

learning how to interact with the computer; the “black box” approach and the

“glass box” approach. The first approach is based on the idea that the internal

operations of the machine are not visible and not even necessarily of any

interest - like a true black box - leaving the learner to focus exclusively on

inputs and outputs. The second approach is based on the idea that the learner

should attempt to understand how the computer operates internally - hence

like a glass box.

• Chalk, Boyle, and Fisher (2003) tested the application of “learning objects” in

an attempt to improve student performance.

• Hadjerrouit (1999) presented a teaching approach based on the principles of

constructivist epistemology.

The concern for learning focuses on the way in which people acquire new knowledge

and develop skills and the way in which existing knowledge and skills are modified

(Shuell, 1986). There are many different approaches to teaching and learning.

Historically, psychologists tried to develop a hypothesis of how individuals acquire,

retain, and recall knowledge. Although a number of definitions of learning appear in

the literature, Shuell (1986) provided one which is broad enough to incorporate the

views of different paradigms: “Learning is an enduring change in behaviour, or in the

capacity to behave in a given fashion, which results from practice or other forms of

experience”, as interpreted by Schunk (2012).

By studying different learning theories, we as teachers can better understand how

learning occurs and how to apply underlying principles to effectively identify

appropriate instructional tools, techniques and strategies that promote learning in the

field. A literature review on learning theories suggests that there are three widely

accepted paradigms of learning: behaviourism, cognitivism and constructivism.

36

Schunk (2012), in his book, considers the following critical issues in the study of

learning and tries to compare the manner in which each paradigm addresses them: a)

how learning occurs; b) what the role of memory is; c) how transfer occurs; and d)

which learning tasks are more appropriate for each paradigm.

The behaviourist learning paradigm is based on the view that learning occurs when

the learner presents a recognised response as a reaction to an external stimulus. Thus,

a primary focus is on how to form strong and lasting associations between stimuli and

responses. In Skinner’s (1953) view, a response to a stimulus is more likely to re-

occur in the future as a function of the consequences of prior responses and is

promoted by repetition and positive reinforcement. The learner is characterised as

being reactive to conditions in the environment. As a result, learning strategies that

follow the behaviourist approach can be applied to specific learning tasks such as

recalling facts, defining and illustrating concepts, applying explanations and

automatically performing a specified procedure (Ertmer & Newby, 2013).

The cognitive learning paradigm is based upon the view that the learner, rather than

being a passive receptor of information or knowledge, is an assimilator of knowledge,

which is actively constructed based on pre-existing cognitive structures. The

understanding of cognitive processes is essential to this paradigm, as related mental

activities must be identified and targeted to promote the most effective learning. The

learner’s knowledge schema is viewed as an organised hierarchical structure (Bruner,

1964; Gagné et al., 1993) and the emphasis is not on human behaviour but on the

mental processes that take place in order for learning to occur. The mental processes

include perception, thinking, knowledge representation, memory and transfer. The

learner is characterised as being an active participant in the learning process (Shuell,

1986). As a result, learning strategies that follow the cognitivists’ approach can be

applied to more complex learning tasks that involve reasoning, problem-solving and

information-processing (Ertmer & Newby, 2013).

The constructivist learning paradigm is based on the view that a learner is capable of

constructing his or her own knowledge, though within the framework of a subjective

model of representation. Piaget (1977) asserts that learning occurs by an active

construction of meaning, rather than by passive recipiency. This paradigm approaches

learning as a process in which one integrates new information with previous

knowledge and experiences (Duffy et al., 1993) in order to actively construct an

extended knowledge schema in a piece-wise fashion (Steffe & Gale, 1995).

A number of researchers consider constructivism as a branch of cognitivism because

both theories view learning as a mental activity, but there is a fundamental difference

37

between the two in the way that knowledge is assimilated, whether or not transferred

into the memory. Some behaviourists and cognitivists have argued that knowledge

can be “mapped” onto a learner (to acquire meaning), while constructivists have

argued that a learner builds personal interpretations (to create meaning) based on

his/her unique experiences and interactions with the world. Jonassen (1991) has

described three stages of knowledge acquisition (introductory, advanced, and expert)

and argues that constructive learning environments are most effective for the stage of

advanced knowledge acquisition, in which learners are called upon to deal with more

complex, and unstructured problems, whereas, for the introductory phase,

behavioural or cognitive approaches are more appropriate.

As a result, learning strategies that follow the constructivists’ approach can be applied

to problem-solving activities within loosely structured realms to promote self-

realisation and allow learners to adapt their mental models to newly-discovered

knowledge. A more detailed discussion on the development of mental models

required to understand and apply a programming language to solve problems follows

in Chapter 4.

Nonetheless, no traditional learning theory can be deemed absolute and all-

encompassing. For example, the possible social dimension to learning was missing

from the learning paradigms mentioned above. Learning, as a human behaviour, is

such a complex and multi-faceted process that it would be considered limiting to

describe it using only cognitive or behavioural factors. Bandura (2001), in his social

learning theory, argued that there is a continuous interplay of both, along with the

inevitable influence of the social environment and the subsequently observed

modelled activities. The social factor is also encountered in Vygotsky’s social

development theory, which is based on the idea that social interaction, culture and

language play a major role in the development of cognition. His “zone of proximal

development” defines a higher level of cognitive development which can be reached

with guidance by adults and interaction with peers (Vygotsky, 1978).

Situated learning theory (Lave & Wenger, 1991) is also based upon the view that a

social practice dimension is intrinsic to the learning process. This paradigm considers

the social environment to be that in which knowledge exists and throughout which it

can be disseminated efficiently. As such, learners enhance, challenge, validate, and

ultimately deepen their understanding within the context of peer- or group-related

activities involving communication, synergy, sharing, and overall interaction with

others in communities of practice.

38

Although the fundamental processes of learning have not changed, the world around

us has. As such, learning theories of the past have not considered the impact that

technology advancements would bear on the learning process (Siemens, 2005).

During the past 20 years, with the advent of the Internet, there has been a dramatic

change regarding how, where and with whom people learn. According to Prensky,

“More and more young people are now deeply and permanently technologically
enhanced, connected to their peers and the world in ways no generation has ever been
before” (Prensky, 2010, p.2). In respect to these fundamental changes in the learning

space and the need to develop the required skills of today’s learners, significant

consideration is given to the theoretical perspectives of constructionism (Papert &

Harel, 1991) and social constructivism (Vygotsky, 1978) and their corresponding

teaching pedagogies.

Papert, influenced by Piaget, actively supported the idea of learning-by-making. In his

essay “Situating Constructionism”, he refrains from providing a definition for

constructionism; instead, he encourages readers to construct their own meaning of

the term from the examples he provides. Papert was inspired by observing children

create “soap” sculptures throughout a semester and noticed how this process provided

them the time, opportunity, and environment to think, try out their ideas, talk about

them, and see other people’s work. He envisioned “soap-sculpture math” and learners

as designers and builders of meaningful “public-entities” with the use of technology

empowered learning tools (Papert, 1980; Papert & Harel, 1991).

In accordance with the constructionist and social constructivist approach, the social

element is highly present in professional software development. Both theories

emphasise the use of peer collaboration and problem-based learning as an

instructional method (Savery & Duffy, 2001), as opposed to social learning theory

which emphasises observation of modelled behaviour of others. In the same context,

Lave and Wenger (1991) stress the importance of collaboration among learners and

the exchange of ideas within and even across communities of practice.

Problem-based learning as an instructional method is based on Dewey’s philosophical

view that practical experience plays a significant role in learning (Dewey, 1938).

Problem-based learning involves contextualising learning, given a “real-world”

problem that requires a solution. Students work in small groups to solve a problem

provided by their teacher. Problem-based instruction aims to promote students’

critical thinking, enhance their problem-solving skills, and prepare them for their

future practice or professional endeavours.

39

Last but not least, I should refer to the alternative theory of connectivism,

characterised by Siemens as being the learning theory of the digital age (Siemens,

2005). According to connectivism, learning is no longer viewed as an individualistic

activity, but rather as a process, not entirely controlled by the learner, that occurs in

vague environments (clouds) with interconnected yet continuously changing nodes

(information sources). New information can be acquired almost instantly, but it

becomes critical that the learner is capable of differentiating between important and

unimportant information. Creating up-to-date and accurate knowledge is a key

element of all connectivist learning activities, along with the ability to create

meaningful connections between concepts and ideas. On the other hand, my own

personal experience has shown that the vast amount of information which resides on

the Internet might unwantingly lead novice learners to consume it as is, without first

trying to understand it, make connections to prior knowledge and critically evaluate

it.

In terms of software development, this is not merely an individual task.

Programming, at the professional level, requires individuals to work in teams,

collaborate and share knowledge to ensure the success of a project. Such real-world

programming requires extensive communication and collaboration amongst a

plethora of people (customers, end users, system analysts, database designers,

network architects and many other specialists) with the primary goal of creating a

solution to a real-world problem (Kotsovoulou & Stefanou, 2016).

My teaching methodology in programming modules has been influenced thus far by

the social constructivist philosophical view and the constructionist instructional

method of problem-based learning; constructivism, because it advocates that teaching

and learning should involve hands-on activities and practical sessions through which

knowledge can be built; social constructivism, because it emphasises the use of peer

collaboration (Prawat & Folden, 1994), applied in class with peer programming; and

problem-based learning because I value the importance of creative experimentation in

the construction of software as a “public entity”.

A large body of researchers in computing education is also considering instruction of

novice programmers from a constructivist viewpoint (Ben-Ari, 1998; Van Gorp &

Grissom, 2001; Wulf, 2005). Dewey’s inquiry-based education, Piaget’s

constructivism, Vygotsky’s social constructivism, Papert’s constructionism, Bruner’s

discovery learning, Pask’s conversation theory, Schank’s problem-based learning,

Marton’s deep learning and Lave’s socio-cultural learning are all in accordance with

40

Tyler’s views that “learning takes place through the active behaviour of the student: it is
what he does that he learns, not what the teacher does” (Tyler, 1949).

Laurillard (2006) points out that the most influential writers on learning have

emphasised the importance of active learning and, based on that, she argues that the

promotion of active learning in a social context should be the focus for the design of

teaching-learning environments. Laurillard’s conversational framework is based on

this view, but also underlines the importance of the iterative dialogue between the

teacher and the student. This dialogue is an interplay between theory and practice

and is essential for “making the abstract concepts concrete,” as Resnick (2007) states.

Goodman has also coined the concept of the dialectical interplay when he described

mathematics as a social product that is “created and developed by the dialectical
interplay of many minds, not just one mind” (Goodman, 1979, p. 545).

Teaching computer programming is an endeavour that goes far beyond the traditional

lecture format, which was prevalent in the past. It requires the combination of a

variable set of teaching methodologies and hands-on problem-solving activities,

including partial code completion, code walkthroughs, testing and debugging, use of

rich instruction environments including animations and visualisations, group-work

and collaboration. Most of the activities involved in computer programming

education align with the social constructivist pedagogy and have a practical

application in the design of instructional material.

Interestingly, Alesandrini and Larson (2002) specified ten activities grouped into five

phases which can provide the foundation for a constructivist approach to instruction:

investigation, invention, implementation, evaluation and celebration.

• The investigation phase includes contextualisation and clarification of the task

as well as research on how to approach the solution.

• The invention phase includes planning, designing or building a model.

• The implementation phase includes the realisation of the solution but

sometimes overlaps with the invention phase during modification of the initial

design.

• The evaluation phase includes testing, modifying, interpreting and reflecting.

• Finally, the celebration phase includes the presentation of the results in a

larger group.

41

Drawing from my experience as a software developer and an IT educator, I cannot

overlook the fact that all of the activities mentioned above have a great resemblance

to the software development lifecycle steps, which include: the preliminary analysis

and definition of the requirements (investigation); systems design (design and

modelling); development (implementation); evaluation (testing and modification);

and deployment and presentation of the solution (celebration). Thus, it can be

argued that following the software development lifecycle itself utilises a constructivist

approach to problem-solving.

I also believe that teaching computer programming to novices requires a continuous

refinement of the understanding of the concepts and that each new concept should be

built upon a solid foundation. Mayes and Fowler (1999) proposed a learning model

of gradual refinement of understanding and conceptualised teaching and learning as

an iterative process, which repetitively cycles through its three discrete stages:

conceptualisation, construction, and dialogue. It can be argued that these three stages

of the learning model actually follow the three learning theories (cognitive,

constructivist and socially-situated learning). More specifically, the conceptualisation

phase, because of its focus on organising concepts and forming relationships between

pre-existing knowledge and new information, can be viewed as being based on

cognitive theory. Next, the construction phase, because it targets the creation of new

knowledge through practice and problem-solving, can be seen as illustrating the

constructivist theory. Finally, the dialogue phase, concerned with peer collaboration

and group discussion, can be taken as being aligned with socially-situated learning

theory.

Given the above, a successful teaching methodology for introductory computer

programming is, therefore, likely to be one that builds on, and extends, useful

features from all of the theories mentioned above and aims to provide the students

with appropriate feedback and support. The role of evaluation is crucial in this

respect for the success of such a teaching methodology.

To summarise, becoming a computer programmer requires mastering a number of

diverse skills, ranging from analytical reasoning and problem-solving, to critical

thinking and research. Social skills (such as communication and collaboration) are

also imminently important for successful programmers. In order for learners to

accumulate all of these assorted and complementary skills, the instructor should

create an educational setting where diverse and constructive real-world activities take

place through repetitive and collaborative practice. This last point was critical in the

42

formulation of the teaching methodology and implementation framework I employed

in carrying out this study.

3.2 Learning Approaches, Learning Styles and Assessment Tools

“Learning is the process whereby knowledge is created through the transformation of
experience” (Kolb, 1984)

One of the research questions of this study seeks to explore possible relationships

between students’ learning approaches with the perceived enjoyment, ease of use,

usability and usefulness of visual programming environments. The purpose of this

section is to review the literature on learning approaches in the field of computer

programming, and to identify the tool to be used later in the study.

Many studies have explored the complexity of learning how to program and the

associated difficulties that students face during this process. A number of factors have

been identified as directly or indirectly contributing to this complexity. Among these

factors are: approaches to learning; learning styles; and motivation. Since one of the

research questions of the present study is to identify possible correlations between

students’ learning styles and approaches and their preference of visual programming

environments, as well as the possible effects of these environments on their

motivation to learn, there is a need to further investigate relevant background that

supports this possible relationship. Felder and Brent (2005) categorised student

diversity with regard to approaches to learning, learning styles and intellectual

development, based on the fact that students inevitably have different backgrounds,

strengths and weaknesses, levels of motivation, attitudes about teaching and learning,

approaches to studying, responses to specific classroom environments and

instructional practices. They argued that if teachers could identify key differences in

these three diversity domains and design a variety of instructional methods and

learning tasks, they could possibly conceivably address students’ learning goals and

promote intellectual development more effectively. Thus, I will commence by

exploring these diversity domains and reviewing the literature on possible findings of

their relationship to learning computer programming, with a goal of selecting the

most appropriate instrument for my investigation.

Marton and Saljo (1976) introduced the term “levels of processing”, based on the

idea that university students, when assigned a task, would adopt either a surface or a

deep level of processing information. Later on, the researchers reconsidered the term

43

and changed it to “approaches to learning”, in order to stress the element of

intentionality and awareness, along with the cognitive memory processing that takes

place during learning. Later, Pask (1976) introduced the term “learning strategy” and

identified a third approach to learning - a so-called strategic one. Ramsden (1981)

also supported the term “strategic approach”, which at a later date Biggs (1987)

called “achieving approach”.

Students who adopt a surface approach focus on memorising and reproducing facts

with the intention of satisfying course or assignment requirements, without

attempting however to reflect on or fit information into a larger context. On the other

hand, students who adopt a deep approach focus on transforming and relating ideas

to previous knowledge with the intention of understanding the facts by critically

evaluating concepts and becoming actively involved in the process. Finally, students

who adopt a strategic approach focus on organising the concepts, putting targeted

effort into their studying, managing their time and relating the ideas to assessment

criteria, all with the intention of achieving the highest grades possible. Biggs (1987)

refers to this last kind of learning approach as “model student behaviour”. Entwistle

(2005) summarised the defining features of each approach to learning that have

emerged from relative research, in the following list:

Deep Approach (Transforming) with the intention - to understand ideas for yourself

by

• Relating ideas to previous knowledge and experience

• Looking for patterns and underlying principles

• Checking evidence and relating it to conclusions

• Examining logic and argument cautiously and critically

• Becoming actively interested in the course content

Surface Approach (Reproducing) with the intention - to cope with course

requirements by

• Studying without reflecting on either purpose or strategy

• Treating the course as unrelated bits of knowledge

• Memorising facts and procedures as a matter of routine

• Finding difficulty in making sense of new ideas presented

• Feeling undue pressure and worrying about work

44

Strategic Approach (Organising) with the intention - to maximise grade potential by

• Putting consistent effort into studying

• Finding the right conditions and materials for studying

• Managing time and effort effectively

• Being alert to assessment requirements and criteria

• Gearing work to the perceived preferences of lecturers

These approaches have become central to subsequent research on studying and the

development of more effective teaching (Laurillard, 1979; Entwistle, 1991; Gibbs &

Awards, 1992).

Related research in the field of teaching computer programming and approaches to

learning has shown that learning a programming language requires a student to

employ both a “deep” and a “surface” approach (Bruce et al., 2004; Pea & Kurland,

1983; Winslow, 1996). Students that focus exclusively on coding and syntax rules

employ an inadequate “surface” approach to learning how to program, as opposed to

students that focus on problem-solving using the programming language syntax rules

as a means to reach their goal. These students employ a “deep” approach to learning.

Students that follow the “strategic” approach will use all the skills mentioned above.

The fact that a programming language can be rotely memorised (as a vocabulary and

a set of syntax rules) does not imply that a student can construct programs solely

based on that skill. In order to be efficient and proficient in programming, the student

should learn how to think in computer terms, implement abstraction and modularity,

construct algorithms and know where to look for “surface” information such as syntax

rules.

Entwistle, in his study in 1990, identified four study orientations associated with

approaches to learning:

“Thus, the deep approach was associated with a holistic style (…making use of a wide

variety of information…) and intrinsic motivation (interest in the subject matter

itself) to form a meaning orientation. Surface approach went with serialist style (a

narrow, cautious stance relying on evidence and logical analysis) and fear of failure

within a reproducing orientation, while strategic approach indicated a use of both

deep and surface approach supported by a competitive form of motivation (need for

achievement) combined with vocational motivation within an achieving orientation.”

(Entwistle & Ramsden, 1983, p.49)

45

Research also shows that students’ approaches to learning can be influenced by the

learning context. Intentionality, stemming from the specifics of a given learning

situation, is a strong motivator that may determine the approach that the student opts

to follow in that particular case. Although the internal cognitive processes that take

place during learning are more “fixed” (Rayner & Riding, 2010) than the approaches

to learning themselves, learner predispositions about the learning subject and

motivation to learn might act as a bridge for the formation of a learning strategy. This

is also supported by Laurillard (2005) and Entwistle and Tait (1990): if the origin of

the approach is the student’s intention, then, as the student may have different

intentions within different learning situations, the same student may use either

approach, on different occasions.

Apart from intention, which, as discussed above, affects the way they approach a

learning task, students further differ in how they receive, absorb and process

information. These differences in student preferences and traits are generally referred

to as learning styles. Learning styles represent a rather broad concept which can be

viewed through a number of approach angles, which accounts for the variety of

related definitions, models and measures that can be found in associated literature.

Some representative but very similar definitions include:

• “…the ways in which an individual characteristically acquires, retains, and
retrieves information” (Felder & Henriques, 1995, p.21).

• “… traits that refer to how individuals approach learning tasks and process

information” (Morrison et al., 2011, p.58).

• “… the way individuals begin to concentrate on, process, internalize, and retain

new and difficult information.” (Dunn et al., 2009, p.136).

A more elaborate definition is provided by Keefe and Languis (1983): “learning style

is the composite of characteristic cognitive, affective, and physiological factors that

serve as relatively stable indicators of how a learner perceives, interacts with, and

responds to the learning environment. It is demonstrated in that pattern of behaviour

and performance by which an individual approach of educational experiences”

(p.140-141) as cited in Keefe (1985).

Curry (1983) proposed a layered model (using the onion layer metaphor) in an

attempt to categorise the numerous learning style viewpoints, models and their

respective measurement instruments. She initially identified three general areas of

research on learning styles, which shared common characteristics: instructional

46

preference (which is considered to be the most observable, but also the most

influenceable and, as such, the least stable for measurement); information processing;

and cognitive personality (which is considered the most stable one). Later on, Curry

(1987) expanded that model further by including the social interaction layer.

In a short description of Curry’s extended onion model for the classification of the

concepts of cognitive or learning styles, the outermost and most inclusive layer,

instructional preference, encompassed individual preferences concerning the physical

environment (sound, light, temperature, space), emotion (motivation, persistence,

responsibility, structure), sociology (learning alone or in a group), physiology

(auditory, visual, tactual, and kinaesthetic) and psychology in the aspect of

processing inclinations (global/analytic, impulsive/reflective) (Dunn, Dunn, & Price,

1979). The social interaction layer involves individual preferences regarding

independence, participation and collaboration with others (Dunn et al., 1979;

Riechmann & Grasha, 1974). The information processing (or cognitive style) layer

includes individual preferences for the ideal intellectual approach to assimilating

information: holistic/analytic, verbal/imagery, sensing/intuitive (Dunn et al., 1979;

Kolb, 1984; Felder & Silverman, 1988; Riding & Sadler-Smith, 1997), as well as for

approaches to learning: surface/deep/strategic (Entwistle, 1991; Biggs, Kember, &

Leung, 2001). Finally, the innermost layer of cognitive personality involves individual

differences in observed behaviours across different learning situations (Riechmann &

Grasha, 1974; Myers, 1998; Grasha, 2002).

Having identified the diversity of learning styles’ dimensions and measurement

instruments, Curry (1990) points out a major concern in the academic field - that

being the failure to identify and agree upon those characteristics which are most

relevant to learners in a given learning situation. On the other hand, following

Felder’s recommendations on the usefulness of identifying students’ learning styles,

approaches to learning and levels of intellectual development, as well as the

correlations among them, the next step for this research is to identify an appropriate

learning style assessment instrument.

While there are a number of learning style assessment tools and methodologies

(Allert, 2004; Coffield et al, 2004; Zualkernan et al., 2006), two similar assessment

instruments are predominant in science and engineering education— Kolb’s Learning

Styles Inventory (LSI) (Kolb & Kolb, 2014), which is based on Kolb’s (Kolb, 1984)

experiential learning theory, and the Soloman–Felder (Felder & Soloman, 1993)

Index of Learning Styles Questionnaire (ILS), which is based on a learning styles

model developed by Felder and Silverman. Both instruments have been validated and

47

have been used in computer education research (Zualkernan et al., 2006; Da Silva

Carmo et al., 2007; Chen & Lin, 2011; Li & Yang, 2016).

Kolb’s experiential learning style theory (see Figure 3.1) is based on the assumption

that effective learning happens when the learner progresses through four stages in a

cyclic fashion: Concrete Experience (CE), Reflective Observation (RE), Abstract

Conceptualisation (AC), and Active Experimentation (AE). Answers to questions like

‘What? How? Why? and What if?’ are involved in the process of learning from

knowledge comprehension to knowledge transformation. He identified two

dimensions in which learning takes place: processing (doing or reflecting) and

perception (experiencing or thinking) and created a matrix to present this continuum.

He argued that “learning arises from the resolution of creative tension among these four
learning modes” (Kolb & Kolb, 2014). Concrete experiences are the basis for

observations and reflections. These reflections are grouped and refined into abstract

concepts. These abstract concepts may drive new actions which can be tested further

to initiate new experiences. Kolb also believed that a single person cannot perform

both variables at the same time, for example, doing and reflecting, or experiencing

and thinking.

Figure 3.1: The experiential learning cycle

Hence, in Kolb’s Learning Style refined Inventory (KLSI 4.0), each person’s unique

learning style is defined by the combination of his/her preferences for these 4 stages

in the learning process. This combination can be charted into a unique kite-like shape

created from the learner’s degree of preference for each of the stages. The nine-style

Concrete
Experience (CE)

Experiencing

Reflective observation
(RO) Reflecting

Active Experimentation
(AE) Doing

Abstract
Conceptualiztion

(AC) Thinking

Pro
ce

ss

Grasp / Perceive

48

typology, along with a description for each style is shown in Figure 3.2 (Kolb & Kolb,

2014).

Figure 3.2: The nine learning styles in the KLSI 4.0

In 1988, Felder and Silverman developed a model to classify engineering students

and professors according to where they fitted on a number of four scales with respect

to the way they prefer to receive, perceive, process and understand information (see

Figure 3.3). In their model, they included four dimensions extracted from previous

research. The sensing/intuition dimension was based on Jung’s theory of

psychological types, is used in Myers-Briggs Personality Type Indicator (MBTI) and is

closely related to Kolb’s concrete experience and abstract conceptualisation stages of

learning. The active/reflective processing dimension was based on Kolb’s active

experimentation/reflective observation stages, while the global/sequential dimension

was based on Pask’s holist/serialist learning strategies (Pask, 2010). The Visual-

Verbal dimension is proposed by Felder and Silverman and is based on cognitive

psychology research on how people receive sensory information (Felder & Henriques,

1995). The Index of Learning Styles (ILS) instrument was developed and validated by

Felder and Soloman, in order to assess learner preferences on the four dimensions

(see Figure 3.3).

49

Figure 3.3: The four scales/dimensions of the Felder-Silverman Model and their respective learning style

continuum

In the information processing dimension, active learners tend to retain and

understand information best by engaging with it in something active - discussing it,

applying it or explaining it to others. Learners with a reflective learning style

preference, in comparison, prefer to think things through and work alone.

In the perception dimension, learners with a sensing learning style preference tend to

like learning facts and procedures and are more practical. Conversely, learners with

an intuitive learning style preference often prefer discovering possibilities and

relationships and are more conceptual and oriented towards theories and meanings.

In the input dimension, learners with a visual learning style preference remember

best what they see—pictures, diagrams, flow charts, timelines, films, demonstrations,

etc. In contrast, learners with a verbal learning style preference get more out of words

- written and spoken explanations.

Lastly, in the understanding dimension, sequential learners tend to gain

understanding in a linear, stepwise fashion, with each step following logically from

the previous one, and to learn in an incremental manner. Global learners, on the

other hand, are holistic system thinkers who tend to learn in large jumps and absorb

material almost randomly without seeing connections, and then suddenly “get it”.

Each of the instruments discussed above classifies learning style preferences based on

opinion surveys, but Kolb’s model does not address Felder’s Visual-Verbal dimension

or the Sequential-Global dimension.

50

Both tools have been used extensively in education, while a number of studies have

identified weaknesses and limitations (Psaltidou 2009, van Zwanenberg et al., 2000).

Much criticism regarding the use of tools for the identification of students’ learning

style preferences is in line with Reylond’s quote: ‘‘Even using learning style instruments
as a convenient way of introducing the subject [of learning] generally is hazardous
because of the superficial attractions of labelling and categorizing in a world suffused
with uncertainties” (1997, p.128). Conversely, it is supported that identifying learning

style preferences can be beneficial for students’ self-development through self-

awareness of their natural learning strengths (Kozhevnikov, 2007, Felder 2010).

Additionally, within the learning styles’ literature, there is a commonly accepted view

that although a pedagogy can foster or impede a style, different learners can adopt

different strategies and styles in different tasks (Hartley, 1998). In the case of visual

programming, pedagogy can foster instruction in the visual dimension. While the

linkage among this type of instruction and a student’s learning preference may appear

logical, it is of high importance to find out to what extent their enjoyment of the

specific programming environment correlates to students’ possible tendencies to

prefer learning visually.

In this research, I am particularly interested in whether or not there is a correlation

between the likeability/enjoyment and preference to use a visual programming

environment, such as Scratch, and the learning style preference of students, especially

in the input and the processing dimensions which are assessed only in the Felder and

Soloman’s Index of Learning Styles (ILS) instrument.

Furthermore, the ILS has been utilised in several computer science studies

(Chamillard & Karolick, 1999; Thomas et al., 2002; Allert, 2004; Zualkernan et al.,
2006; Da Silva Carmo et al., 2007; Chen & Lin, 2011) in order to identify possible

correlation between students’ learning styles and their performance.

Given the above, the Index of Learning Styles (ILS) will be the instrument of choice

for this research project.

Relevant previous research on learning how to program in relation to learning styles

revealed that most students have visual learning styles (Kuri et al., 2002; Ratcliffe et
al., 2002; Allert, 2004; Gomes & Mendes, 2008; Santos et al., 2010; Tsai et al., 2011)

but there is no current research examining the relationship of learning styles with the

preference of using visual programming environments. Therefore, considering the

learning styles of students in the context of their perceived preference for visual

51

technologies in computer programming education is one of the two main subjects of

this research.

In the following section, I will introduce the second subject of this research, which is

student motivation in the context of visual technologies.

3.3 Motivation and Self-Determination

As one of the research questions of this study is to identify whether or not visual

programming environments affect student motivation to learn to programme, I will

review the fundamental concepts and theories of motivation in order to determine

what motivation is, which its primary determinants are, and how educational

activities can cultivate it. Furthermore, I will explore what has been written about the

motivational process itself and how it links to programming education outcomes.

Lastly, I will review existing assessment tools that measure student motivation within

the context of visual programming environments and identify which motivational

aspects to target.

A theory of motivation is concerned with those factors that affect people to initiate

behaviour (Dweck, 1999). The first theories of motivation were based on the idea of

motives being driven by the need for achievement or affiliation, or by rejection, and

explored how each behaviour is initiated and crafted by these motives. Motives, in

this respect, are seen as driving forces influenced by interest and ability and shaped

by experiences (Murray, 1938).

Dweck (1999) argued that motives alone are not enough to ensure outcome. Goals

that people set out to pursue also affect the degree and the intensity of their

behaviour towards their attainment. In that respect, Elliot and Harackiewicz (1996)

related the motives with the goals, and argued that, within the learning process, the

“achievement motive” can be used to predict learner orientation towards setting

“achievement goals”. Achievement motivation is defined as behaviour in which the

goal is to develop a high ability and/or demonstrate it to one’s self or to others

(Nicholls, 1984). High ability in this sense can be judged either against the learner’s

own past performance or compared to the performance of others in the same task.

Achievement motivation is affected by goal orientation (why the learners engage in

the task) and self-efficacy (personal judgements of ability to perform), and is related

to perceptions of task difficulty and task value (perceptions about task importance,

relevance and utility) (Pintrich, 2000).

52

Goal orientation refers to the learner’s general attitude towards the task as a whole,

and it manifests itself in two complementary forms: intrinsic and extrinsic, which are

based on the traditional views of motivation (DeCharms, 1968; White, 1959).

Intrinsic goal orientation concerns the degree to which the student possesses a real

interest in the task with the aspiration to increase his/her knowledge in the subject

for reasons such as challenge, curiosity, control and fantasy (Malone & Lepper, 1987).

Extrinsic goal orientation complements intrinsic goal orientation, and “concerns the
degree to which the student perceives herself to be participating in a task for reasons such
as grades, rewards, performance, evaluation by others, and competition” (Pintrich,

Smith, Garcia, & Mckeachie, 1991, p.10). In early childhood, people have the

freedom to engage in more intrinsically directed tasks, whereas, when social

responsibilities increase with age, they increasingly engage with less intrinsically

interesting tasks.

Gottfried (1985) developed the Children’s Academic Intrinsic Motivation Inventory

(CAIMI) of 122 questions to relate intrinsic academic motivation to academic

achievement, in terms of mastery, curiosity, task persistence and learning of

challenging topics, based on the works of Deci (1975; 1978), Harter (1981), Pittman,

Emery and Boggiano (1982), Nicholls (1984), and others. The results showed that,

although there is a high correlation between academic achievement and intrinsic

motivation, there is an even higher correlation between academic achievement and

perceptions of self-efficacy. Other studies also showed that there is a limit of

achievement that motivated students will reach, as other factors that affect academic

achievement come into play, such as ability, quality of instruction, the educational

environment itself, and educationally relevant aspects of the home environment

(Uguroglu & Walberg, 1979).

Self-efficacy of learning and performance refers to a learner’s ability to properly

gauge his own capabilities of successfully performing an academic task (Schunk,

1991). “Perceived self-efficacy is defined as people’s beliefs about their capabilities to
produce designated levels of performance that exercise influence over events that affect
their lives. Self-efficacy beliefs determine how people feel, think, motivate themselves and
behave. Such beliefs produce these diverse effects through four major processes. They
include cognitive, motivational, affective and selection processes” (Bandura & Wessels,

1994, p.1).

Control of learning beliefs refers to the degree of control that learners believe they

possess regarding their learning ability and learning outcomes. Bandura and Wessels

(1994) defined control of learning beliefs as the ability to actively affect one’s

53

motivation, cognition, affect, and behaviours. In his study of the role of reinforcement

in student performance, and thus in the amount of knowledge gained, he

distinguished the control on reinforcement into two categories: internal or external.

Belief in internal control concerns the degree to which a learner perceives that all

outcomes depend on his own actions, whereas external control concerns the degree to

which a learner thinks that “powerful others”, such as luck, fate and chance can affect

the outcome of his actions and his ability to complete a task (Rotter, 1966; 1990).

Task value refers to the learner’s personal interest in a given task and is driving

his/her own beliefs about how interesting, important, useful, valuable and

meaningful the task is. Pintrich (2000) also argues that a task value viewed as being

high leads to greater levels of involvement towards the completion of the task.

Findings from the literature have demonstrated that students’ intrinsic motivation and

beliefs of their self-efficacy, as well as the perceived value of a topic or an activity,

generally constitute good predictors of performance and achievement (Zusho,

Pintrich, & Coppola, 2003). A primary concern shared by educators, myself included,

is how to enable students to value and self-regulate activities which are not designed

to be intrinsically motivating, and to carry them out on their own (Ryan & Deci,

2000) or how to modify educational activities so as to be intrinsically motivating. In

my experience, the most successful students seem to employ self-regulated strategies

to direct their learning.

Pintrich (2000) provides an overall definition of self-regulated learning as “an active,

constructive process whereby learners set goals for their learning and then attempt to

monitor, regulate, and control their cognition, motivation, and behaviour, guided and

constrained by their goals and the contextual features in the environment.”

Zimmerman (1990), in his attempt to define self-regulated learning, identified three

main characteristics that self-regulated learners typically display. First, they use “self-

regulated learning strategies” in the areas of metacognition, motivation and

behaviour and are active participants in their own learning. Second, they use “self-

oriented feedback”, which enables them to keep track of their learning effectiveness

(self-monitoring) and discover their problem areas (self-evaluation). Metacognitive

theories focus on understanding the processes of self-monitoring and self-evaluation

towards the selection of appropriate strategies for learning (Borkowski et al., 1990).

As a result, learners can take necessary actions to select, structure and create their

learning environment so as to match their learning style. In that sense, self-regulated

learners can be considered as self-motivated. On the other hand, this self-regulation

54

process is activated from a number of self-motivational constructs both intrinsic and

extrinsic (Zimmerman, 2008).

Malone and Lepper, after reviewing the literature, presented a logical taxonomy of

four kinds of intrinsic motivations which are present in any learning situation:

challenge, curiosity, fantasy and control (Malone & Lepper, 1987). These motivations

were used in testing learning environments and especially those that incorporate

games. Student perceptions about task enjoyment, interest, involvement and self-

efficacy were used to assess the effectiveness of instruction using educational games

(possibly fun) by Lepper and Cordova (1992) and Garris et al. (2016). Findings from

their studies suggest that motivational and cognitive benefits can be gained from the

use of relatively small motivational embellishments in educational activities, aiming

to increase students’ intrinsic interest. Lepper and Cordova (1992) pointed out, that

adding motivational embellishments to an activity will possibly have positive effects

on learning if there is a “match” between those actions required by learners to

assimilate the material and those required to enjoy an activity. For example, the goal

to win the game should be supportive of the goal to learn the material. They also

identified areas in which adding more “seductive” details to learning activities might

draw the attention of learners away from the main concepts being taught and have a

negative effect on learning: “it appeared to have pursued motivation in expense of

learning” (Lepper & Cordova, 1992).

Keller (1987) developed a model with guidelines on how to create instruction that

stimulates motivation, based on the theory of motivation and instructional design.

The Attention, Relevance, Confidence and Satisfaction (ARCS) model is based on four

major conditions that need to be met in order for learners to become, and remain,

motivated. This model provides instructional designers with a set of strategies that

target the four conditions. The most basic motivational concern is attention. Gaining

learner attention is considered a relatively easy task, but sustaining that attention

seems to be the challenging component. Keller proposes inquiry and the use of games

or simulations to target learner participation. The second condition within the ARCS

model is perceived relevance. Strategies to stimulate relevance include relation to

student interests, presentation of worth and usefulness of the activity and relation to

past and future skills. Confidence, or expectancy for success, is the third condition.

Confidence relates to control of learning beliefs mentioned above. Strategies to

stimulate confidence include the presentation of material using an increasing degree

of difficulty, clear and realistic goals and association of effort with success. Finally,

the satisfaction condition targets a learner’s intrinsic motivation. Strategies to invoke

55

feelings of satisfaction include praise, personal attention, avoidance of threats,

regular informative feedback and frequent reinforcements.

Rieber et al. (1992; 1998) focused on the evaluation of micro-worlds, in which

learning is achieved through exploration and discovery, and on the contribution of

“serious-play” to student motivation and performance. They found that when

educational activities are designed in such a way that serious play can be

incorporated, there is an increase in intrinsic motivation and reflective knowledge

construction. When learners receive a great amount of enjoyment from their

experience, they are willing to engage with the task and spend time and energy. On

the other hand, Bloom and Hanych (2002) argued that approaching learning only

from the “fun” perspective may result in trivialising the learning process.

Learning computer programming requires a high degree of self-regulated learning,

prolonged motivation, sustained willingness to practice and even enjoyment, to a

degree, of the whole process in order to overcome the complexity and the abstraction

of computer concepts (which will be discussed in the following chapter). Visual

programming environments, such as Alice, Scratch, APP-Inventor and other block-

based programming tools, seem to be a promising alternative to more traditional text-

based programming. Their creators claim that these visual programming

environments can provide students with a more fun and learner-friendly approach to

programming, eliminating the mundanities of syntactical errors and decreasing the

overall layer of complexity.

Based on research findings mentioned above, there seems to be a connection between

intrinsic motivation, self-regulated learning and “fun” educational activities (based on

the concepts of exploration, play and learn), which I will explore further in this

context in the area of teaching and learning computer programming. Unfortunately,

since motivation is such a complex and multi-dimensional concept, it is very difficult

to measure (Ball, 1977) and indeed be absolutely certain about the results.

Associating results from a validated tool with data collected from interviews and class

observations is more likely to help researchers identify the general categories of

student motivation. To explore and qualitatively determine - to the degree possible -

the current level of motivation of information technology students at XYZ college, it is

essential to use a reliable and validated instrument.

One widely used and validated instrument to assess student achievement motivation

is the Motivated Strategies for Learning Questionnaire (MSLQ), developed by Pintrich

(2004). MSLQ is based on the cognitive view of motivation. Pintrich’s instrument,

based on theoretical, empirical and statistical analysis following a 10-year research

56

period and continuous refinement of the questionnaire, included 81 items in the

instrument’s final version. Items and scales have been tested for internal consistency,

with coefficient computation and factor analysis, and for predictive validity through

correlations with course performance, producing statistically-validated results

(Pintrich et al., 1991). MSLQ is comprised of two sections. The first part assesses

motivation through components of value (intrinsic and extrinsic goal orientation, task

value), expectancy (control of learning beliefs, self-efficacy of learning and

performance) and affectiveness (test anxiety). The second part assesses learning

strategies through components of cognitive and meta-cognitive strategies (rehearsal,

elaboration, organisation, critical thinking and self-regulation) and resource

management (time, effort, peer support and help-seeking). MSLQ has also been used

in computer education research to assess the effect of various programming

environments on student motivation (Bergin & Reilly, 2005; Dillon, 2012; Nikou &

Economides, 2014; Erol & Kurt, 2017).

Another instrument which has been used to assess student motivation, specifically

targeting science students, is the Science Motivation Questionnaire (SMQ-II),

developed by Glynn et al. (2009). Science Motivation Questionnaire II, based on the

social cognitive theory, assesses motivation in the components of value (intrinsic and

extrinsic grade and career motivation), expectancy (self-efficacy) and self-

determination (Glynn, 2011). Glynn et al. (2011) have also created a discipline-

specific version of the questionnaire for chemistry, biology and physics, simply

substituting the word science with chemistry or biology or physics. In all its

interchangeable adaptations, SMQ-II has been tested for reliability, internal

consistency, and construct validity, and findings indicate that it validly provides a

profile of the components that contribute to a student’s motivation (Glynn et al.,
2011).

Computer science is also concerned with the ability to define models, to make

predictions about the behaviour and vulnerabilities of these models, implement them

and validate the performance of computer systems and software. In that sense, I

believe that SMQ-II can also be administered to assess students’ motivation in

computer programming courses.

Despite their differences, there are many similar inquiries between the two

instruments described above (MSLQ and SMQ-II) and especially in those questions

which involve intrinsic and extrinsic motivation, expectancy and self-

determination/regulation (see Figure 3.4). It is noted that, in regard to prior research

57

on motivation in academic college settings, the majority of the studies have been

conducted using the MSLQ tool.

Figure 3.4: Differences and similarities between SMQ-II and MSLQ

The choice of approaches and concepts discussed in this chapter were made on the

basis that they align closely to teaching and learning computer programming. There

are more recent approaches, that could have been considered, such as embodied

cognition, distributed cognition, multimodality, knowledge development and socio-

materiality, but these approaches do not interplay the role of visual design,

technology mediation and interpretative processes of engagement with technology or

computing programming specifically. For example, Bergin & Reilly (2005) used the

intrinsic and extrinsic goal orientation scales of MSLQ, to analyse the relationship

between student motivation and programming performance. Nikou & Economides

(2014) used the intrinsic, extrinsic goal orientation, task value, control of learning

beliefs and self-efficacy scales of MSLQ, to examine the effects of VPEs (Scratch and

APPInventor) on students’ motivation. Erol & Kurt (2017), examined the effect of

programming instruction with Scratch on the motivation and programming

achievement, using an adapted version of MSLQ with 2 subscales: motivation and

learning strategies.

3.4 Conclusion

58

In this research study, in order to address the research question “How do students’

motivations for learning programming relate to their perceptions about programming

and their attitudes about visual programming environments?”, students’ overall

motivation towards programming needs to be assessed. A gap in the literature has

been identified – and a tool to assess student motivation in learning how to program

has been identified. To that end, questions from both instruments (MSLQ and SMQ-

II) were selected and adapted to match a programming course and a new survey

instrument was developed, tested and administered. The new instrument targets the

components of value (intrinsic and extrinsic motivation), self-efficacy, self-

determination and self-regulation. There is already a history of studies that have used

customised instruments to assess motivation, but again targeted the same

motivational components: intrinsic, extrinsic, and achievement (Jenkins, 2001; Zainal

et al., 2012).

In Chapter 6, Research Design and Methodology and more specifically in the section

“Development of the Questionnaire Survey Tool”, I will analyse the process and the

rationale behind the selection and the adaptation of questions from both MSLQ and

SMQ-II instruments.

The purpose of this study is to find whether or not there is a correlation between the

students’ learning preference (using four scales/dimensions of the Felder-Silverman

model) with their perceived preference for a visual block-based programming

environment and whether or not this preference influences their motivation towards

the achievement of the module’s learning outcomes. Creating a learning environment

by incorporating “fun” educational activities, where instruction might trigger intrinsic

motivation and self-regulated learning, is one of my personal aims as an educator.

As discussed earlier in this chapter, literature supports the theory that motivation,

learning styles and strategies are associated with achievement, but is there a

relationship between a student’s learning style preference and the perceived

acceptance of a VPE? Does motivation to learn programming relate to the acceptance

of a VPE? And finally, does the use of a VPE improve student performance?

As such, the conceptual framework of this research is summarised in Figure 3.5.

59

Figure 3.5: Conceptual research framework

60

Chapter 4 Teaching and Learning Computer Programming

In Chapter 2 , I discussed programming and programming paradigms, as well

as different types of programming environments. In this chapter, I explore the

cognitive aspects of programming and the basic programming constructs

typically taught to novices. Then, I focus this literature review on the

difficulties that students face while learning how to program and I compare

them with findings obtained from programming modules which I have

personally taught in the past. A short history of educational programming

environments follows, and the chapter concludes with the exploration of the

possible power of visualisations in learning facilitation, in accordance with the

overall theme of this study.

4.1 Cognitive Aspects of Programming

Pennington (1987b) defines computer programming as “a complex cognitive

task composed of a variety of subtasks and involving several kinds of

specialized knowledge” and Du Boulay adds that the “ability to see a program

as a whole, understand its main parts and their relation is a skill which grows

only gradually” (Du Boulay, 1986).

Teaching computer programming has traditionally been considered a

challenging endeavour, since mastering the subject matter requires a

combination of different skills (syntactic, conceptual, problem solving and

strategic), as well as considerable engagement and persistence. Kolling (1999)

partially attributes this difficulty to the introduction of numerous abstract

concepts from the very beginning of the teaching process.

In order to understand the process of learning how to program, we must first

consider the skills required to cognitively structure programming knowledge

and apply it in practice. Linn and Dalbey (1985), Fay and Mayer (1988) and

Pears et al. (2007) have identified a chain of cognitive accomplishments

required to achieve the learning outcomes expected in programming courses:

a) learn the language syntax and rules; b) comprehend what an existing

program does and be able to modify, extend and/or debug it; c) understand

61

and conceptualise a given problem and learn to design programs (problem-

solving skills); d) translate a solution into code, execute it and check for

correctness; e) build upon prior knowledge and/or experience and acquire

new programming skills; f) make appropriate generalisations and be able to

apply them to other programming languages and environments; and g) create

strategies and a “catalogue” of ready-made solutions to problems solved in the

past. All of the aforementioned aspects of computer programming require not

only knowledge of the specific programming language syntax rules, semantics

and programming conventions, but also: relative degrees of experience in real-

world problem domains, such as accounting, finance, sales, statistics, banking,

or even physics; familiarity with numerous design strategies and re-applicable

components and solutions; knowledge of computer features that impact

program performance and implementation; and awareness of the personas of a

computer program’s intended users.

In investigating the difficulties that novices face when learning how to

program, troublesome activities can be grouped using the three distinct

categories of programming skills identified in the literature, those relating to:

programming knowledge, mental models and strategy (programming plans)

(Bonar & Soloway, 1985; Soloway, 1986; Norman, 1987).

Programming Knowledge: represents the knowledge that “allows novices to
write some parts of a program correctly” (Bonar & Soloway, 1985). The

minimum skills required to complete a basic programming task is to know the

syntax of a programming language (syntactic knowledge), to understand the

semantics behind the syntax and to comprehend a program (program

comprehension).

Syntactic knowledge is precise, very detailed, and rigid, and pertains to a given

programming language. Semantic knowledge, on the other hand, is

independent of the specifics of a programming language and may range from

low-level basic notions, for example what an assignment command does, to

high-level strategies, for example how to use recursion. Higher levels and

broader degrees of semantic knowledge can be created from building upon and

anchoring concepts via experience and is required to create more complex

programs (Shneiderman & Mayer, 1979).

62

Program comprehension is the skill which enables programmers to read and

analyse the source code of a program, understand its intent and

implementation approach, and formulate an overall description of what it

does. According to Soloway and other authors program comprehension is the

programmer’s ability to recognise plans in the code, reverse engineer these

plans to identify subgoals or system components and finally create a high-level

representation of the system’s functionality (goals) by locating their inter-

relationships (Soloway et al., 1983; Soloway & Ehrlich, 1984). In line with

Soloway, Pennington (1987a) identified two main categories of program

comprehension: procedural (language structure); and functional (goals of the

program). The first category is relevant to the program text-base (commands)

and the second category relates to the domain model (the goals of the

program).

• Procedural comprehension includes the knowledge of operations,

control flow and data flow. “Operations” include all the actions the

program performs at source code level, such as declaration of variables,

assignment of values to variables, comparison of variable values.

“Control flow” involves the sequence (often conditional and dynamic)

of command execution in a program, while “data flow” relates to all the

intermediate transformations and manipulations that data undergo

from their initial state through to the final program output.

• Functional comprehension involves the understanding of the program

state and function. “State” reflects the relationships between the

execution of an action and the state of the program at a specific point in

time. “Function” involves the relation between the main goal of the

program and the hierarchy of sub-goals necessary to achieve it.

Functional comprehension thus relates closely to the semantic

knowledge mentioned above.

A complete computer program is formed by purposefully combining numerous

advanced language constructs to deal with abstract entities (i.e. pointers,

iterators, arrays). Novice programmers, having little or no past experience to

draw from, typically face difficulties relating to both procedural and functional

comprehension (Sajaniemi, 2002).

63

Similarities often noted between programming language commands and

natural (spoken) language have been found to be another reason contributing

to a novice programmer’s difficulty. Bonar and Soloway (1985) refer to these

similarities as bug generators, because novices use “pre-programming” natural

language knowledge to create “patches” to their fragmented programming

knowledge. Two kinds of such similarities are identified: functional; and

surface.

Functional similarities exist because both the natural language and

programming commands are concerned with repeated actions, choice between

conditions and counting, for example. Surface similarities exist because most

programming languages share many words with natural language. There are

many common lexical entities in the two plan-sets which can generate

confusion between surface and functional links. For example, the word

“while” in natural language, can be used:

a. as a conjunction with the meaning of “during the time that; or at the

same time as”

b. with the meaning of “despite the fact that; although”

c. with the meaning of “length of time”

This kind of semantical difference is unusual in a programming language. A

more typical use of the word “while” in a programming language is one in

which a loop condition gets discretely tested once per loop iteration. For

example, in the following piece of code:

 while (counter < 10) {
 print “Hello”;
 Counter++
 }

the condition will be tested first, then the code inside the brackets will be

executed, the counter will increase, and the condition will be tested again, and

so on.

The surface link between the divergent uses of the word “while” in natural and

programming language might lead a novice programmer to infer similar

64

semantics. Similarity in semantics might “block” his/her ability to write correct

pieces of code.

Another statement that has been found to cause programming misconceptions

is “if” (Pea, 1986). For example, in the sentence “if you want to have lunch, tell
me so…” there is an assumption of a duration, whereas the programming

construct “if” singularly evaluates a condition only at the point of execution of

the specific statement. I have personally noticed that students often use the “if”

statement to repetitively validate user input, thinking that the computer will

keep asking for input as long as the user-entered value does not satisfy the

stated condition.

To summarise, novice programmers tend to:

• concentrate more on the syntax of the language rather than the process

and the semantics;

• not fully comprehend what a program does;

• mix up natural language (often referred to as pre-programming

knowledge) with programming language commands.

Mental Models: Gentner and Stevens argue that “A mental model is a
representation of some domain or situation that supports understanding,
reasoning, and prediction” (Gentner & Stevens, 2002, p.9683). Holt and

Schultz add that the basic components of a mental model structure are the

fundamental elements of knowledge and the relationships formed between

them (Holt & Schultz, 1987). Numerous researchers have argued that the

formation of “valid” mental models is crucial to understanding the

functionality of computers. The main purpose of a mental model, according to

Norman (1987), is to enable a person to predict the operation of a target

system. He also supports that mental models could be used to explain human

reasoning about physical systems, such as the interaction of people with

computers and other devices. More specifically, people create mental

representations of objects, situations and information in the world in general,

and then they use these internal representations to understand, explain, and

predict the behaviour of external systems.

65

Mental models play a significant role in program development, program

comprehension, program modification and debugging and can be affected by

program structure and content. Holt and Schultz support that mental models

of experienced programmers, when viewed as hierarchical structures, may vary

in quality, depth, width and complexity from those of their less experienced

counterparts, due to their increased knowledge base (Holt & Schultz, 1987).

As mental models are naturally evolving, expert programmers tend to form

abstract and more conceptual representations, which consequently enable

them to make useful and valid generalisations.

On the other hand, novice programmers face significant challenges in

constructing a mental model of how the programming language commands

interact with the physical computer system. The term “notional machine” was

introduced by Benedict du Boulay to describe “the general properties of the
machine that one is learning to control” (Du Boulay, 1986, p.57). The notional

machine is “an idealised, conceptual computer whose properties are implied by
the constructs in the programming language employed” (Du Boulay & O'Shea,

1981, p.237) and serves the purpose of helping novices understand what is

going on inside the computer during program execution. The concept of a

notional machine has nothing to do with an accurate model of computer

hardware functions, but with an abstraction, or rather a simplification, of how

a particular programming language stores and processes information. Du

Boulay associated student difficulties in learning how to program with an

inability to understand and describe the machine which they are learning to

control, and he proposed that teachers follow the notional machine strategy to

help tackle this issue. In that case, the notional machine should satisfy two

basic principles: it should be conceptually simple - both functionally and

syntactically; and should provide ways for the learner to observe some

processes as they happen (Du Boulay & O'Shea, 1981). An incomplete model

of the relationship between the behaviour of the physical machine and the

properties of the notional machine will result in an incorrect and insufficient

understanding of programming concepts and vice versa.

To summarise, the main troublesome areas for novices in this category are:

a. Lack of a detailed mental model of what the computer does when a

program executes (Adelson, 1984; Winslow, 1996);

66

b. Unclear understanding of how the underlying physical machine

hardware relates to the properties of the programming language’s

notional machine.

Strategy: represents the set of tactics and plans that allow a programmer to

break down a problem into smaller parts and understand the importance of

each one, as well as their interaction, based on a higher-level plan or goal. A

skilled programmer has developed strategic skills, goals (intentions) and plans

(techniques for realising these intentions) (Letovsky & Soloway, 1986), which

allow for efficient planning, problem decomposition, algorithmic design and

debugging. Soloway refers to these plans as libraries of “stereotypical, canned
solutions” (Soloway, 1986), composed from reusable patterns of data flow and

control flow which follow rules of programming discourse. These rules -

analogous to discourse rules in a human conversation - specify conventions

that create expectations in the minds of expert programmers, which other

programmers are “expected” to follow. Novice programmers therefore should

first master following simple coding rules and master simple plans (for

example: how to obtain input, how to print the elements of an array, and how

to create a method or procedure), before they are able to move on to more

complex coding endeavours.

A major research debate can be found in the area of mastery learning - that is,

can a complex skill be decomposed into smaller component skills which can be

learned and addressed separately? In relation to computer programming,

Anderson and Corbett (1995) and McCane et al. (2017) found that there is

some correlation between mastering isolable coding skills and an increase in

programming performance, but Anderson and Corbett failed to mention the

complexity of the programming problem and the type and complexity of the

isolable skills. Carpenter et al. (1990) performed a test to measure intelligent

behaviour and postulated that, according to their findings, students that

performed well in the test showcased the ability to induce a correct strategy in

order to decompose problems into smaller manageable sections; the ability to

manage a hierarchy of goals and sub goals which resulted from problem

decomposition; and the ability to form generalisations. All of these abilities are

also recognised as vital skills of expert programmers (Anderson & Corbett,

1995).

67

To summarise, the main troublesome areas for novices in this category are:

a. Incomplete libraries of “stereotypical solutions” and limited use of rules

of programming discourse (Soloway, 1986).

b. Limited ability for problem decomposition, modularisation and

generalisation (Carpenter et al., 1990) which can be related to a not-

yet-established systematic methodology (Rugaber, 2007).

c. Difficulty in the formation of algorithms to solve a given problem.

d. Limited debugging skills (Soloway, 1986).

Relevant research on teaching and learning how to program has shown that

learning a programming language requires a student to deploy both a “deep”

and a “surface” approach to learning (refer to Chapter 3 on learning styles and

approaches).

The fact that a programming language can be memorised does not imply that a

student can thus construct programs. In order for a student to be efficient and

proficient in programming, a student should learn how to think in computer

terms, implement abstraction and modularity, construct algorithms and know

where to look for “surface” information such as syntax rules. Associating this

fact about programming to learning approaches, and the definitions provided

by Entwistle and Tait (1990) are representative: “deep approach is associated
with a holistic style and intrinsic motivation (interest in the subject matter itself)
to form a meaning orientation. Surface approach goes with a serialist style (a
narrow, cautious stance relying on evidence and logical analysis) and fear of
failure within are producing orientation, while strategic approach indicates a use
of both deep and surface approach supported by a competitive form of motivation
(need for achievement) combined with vocational motivation within an achieving
orientation” (p.171).

Applying the findings mentioned above, the following conclusion can be

reached: students that focus on coding and syntax rules employ a surface

approach to learning how to program, as opposed to students that focus on

problem-solving using the programming language syntax rules only as a means

to reach their goal. These students employ a deep approach to learning.

68

Computer programming involves so much more that learning a programming

language and producing lines of code. Programming is about producing digital

artefacts; it incorporates abstraction and creativity; involves implementing

ideas, understanding human behaviour and solving problems. If programming

is viewed in this broader sense, then Papert’s (1980) view that programming

can enhance students’ thinking skills which can be applied to other disciplines

as well provides a first definition of computational thinking (CT).

Wing (2006) stated that “Computational thinking is reformulating a seemingly

difficult problem into one we know how to solve, perhaps by reduction,

embedding, transformation, or simulation” (Wing, 2006, p.1). She also argued

that CT means to be able to engage in five cognitive processes: problem

reformulation; recursion; decomposition; abstraction; and testing, with the

goal to solve problems efficiently.

Taking into consideration that the majority of students attending XYZ college

come from Greek high schools, I should stress that at the time of this writing,

the Greek high school curriculum did not include Computational Thinking

(CT) as a subject, although it forms the basis for formulating solid problem-

solving techniques.

My teaching methodology for the ‘Introduction to Programming’ module aims

to provide a structured context for student learning, which commences with an

introduction to CT using problem-solving techniques (decomposition and

abstraction) using pseudocode and Scratch. Then the module advances to Java

programming language syntax and rules. In this module, teaching

programming with Java focuses first on how to code smaller tasks (create a

class with a main method, produce simple output, declare variables) and

finally proceeds with the process of creating a complete program:

understanding the inputs and the outputs; outlining the processing

requirements; and finally creating a program by using reusable pieces of code.

4.2 Troublesome Programming Constructs and Skills

The fact that students face academic difficulties when learning how to program

has long been identified and is one of the major concerns amongst computer

science educators. To date, numerous studies have tried to identify and

categorise types of difficulties, errors and misconceptions of students learning

69

computer programming, aiming to improve instruction and learning (

Kaczmarczyk et al., 2010; McCall & Kölling, 2015; Veerasamy et al., 2016;

Bosse & Gerosa, 2017).

Throughout my own teaching career, I have always been interested in

exploring which programming concepts are considered by students at my

college to be more challenging. To do so, from Spring Semester 2013 until

Spring Semester 2018, I conducted a web-based survey on the various

programming concepts that students registered in the Introduction to

Programming module at XYZ College found more challenging. Students were

asked to rate each concept on a scale from 1 to 5, according to their perceived

difficulty level surrounding each concept (1=extremely easy, 2=somewhat

easy, 3=neither easy not difficult, 4=somewhat difficult, and 5=extremely

difficult). The results of the study are presented in Table 4.1, ordered by the

most commonly reported troublesome concept.

Rank Concept Ranked By 105 Students Mean Score
[in a Scale 1 - 5]

1 Using Arrays 3.4

2 Defining Methods 3.0

3 Displaying Formatted Output 2.7

4
Understanding the steps required to solve a programming
problem and writing the pseudocode 2.7

5 Validating User Input 2.3

6 Using Exceptions 2.3

7 Reading from and Writing to Files 2.2

8
Tracing a program (finding out what is the value of a
variable at a given time in a program)

2.1

9 Using the WHILE loop 2.1

10 Transferring the pseudocode into a program 2.1

11 Using the FOR loop 2.0

12 Obtaining Input from the User 1.9

13 Writing IF statements 1.7

14
Declaring variables with correct naming standards and
datatypes 1.6

Table 4.1: Java programming: Difficult concepts – student perceptions
 (105 undergraduate students, June 2013-May 2018)

70

The same web-based questionnaire was administered to 34 professors teaching

introduction to programming modules, during the same period, in a number of

universities in Greece. Of the participating professors, seven (7) were from

XYZ college and twenty-seven (27) from other universities. The results are

presented in Table 4.2.

Rank Concept Ranked By 34 Professors
Mean Score [Scale 1 - 5]

27
Professors
from other

universities

7 Professors
from XYZ

College

1
Understanding the steps required to solve a
programming problem and writing the
pseudocode (problem solving)

3.79 3.86

2 Using Arrays 3.74 3.71

3 Transferring the pseudocode to a program 3.71 3.71

4 Defining Methods 3.65 3.57

5 Using Exceptions 3.62 3.71

6 Reading from and Writing to Files 3.38 3.43

7 Validation Input from the User 3.35 3.57

8 Using the FOR loop 3.29 3.29

9 Using the WHILE loop 3.26 3.29

10
Tracing a program (finding out what is the
value of a variable at a given time in a
program)

2.91 2.86

11 Writing IF statements 2.56 2.57

12 Displaying Formatted Output 2.44 2.43

13 Obtaining Input from the User 2.29 2.43

14 Declaring variables with correct datatype 2.12 2.14
Table 4.2: Java programming: Difficult concepts – professor perceptions

(34 professors, June 2013-May 2018)

I should also point out that the mean score (3.18) of perceptions of the 7

professors from XYZ College is not found to be statistically different from the

mean score of the perceptions of the professors of other Universities (3.15). A

t-test derived a p-value of 0.8821 with a 99% significance interval, which leads

to acceptance of the null hypothesis that the means are equal. The resulting

ranking was generally the same with two slight exceptions around the

71

difficulty of using exceptions and validating user input, which were ranked a

bit higher by XYZ College’s professors.

From the rankings obtained from this survey, I found some differences but also

some similarities between the concepts that students find as more difficult and

the ones that professors consider as more troublesome. An example of such a

difference is “transferring the pseudocode to a program”, which professors

consider a rather difficult concept with a mean score of 3.71, whereas students

rate the same concept with a mean score of 2.1 (10th in the Rank). An

example of a similarity is in the “use of arrays”, which both students (3.4) and

professors (3.7) rate as a difficult concept. Declaring variables and datatypes is

another example of a similarity in the perceptions. Both students and

professors perceive it as being a rather easy concept.

Another very interesting finding is that students and professors have quite

different perceptions on how difficult a concept is. Students’ mean difficulty

score for all concepts is 2.29 on a scale from 1 to 5 (1=extremely easy, 2=

somewhat easy, 3=neither easy not difficult, 4=somewhat difficult, and

5=extremely difficult), whereas the professors’ mean score is 3.15. See Figure

4.1 for the difference of students’ and teachers’ responses concerning the

programming concepts.

72

Figure 4.1: Programming concepts rated by 105 students and 34 professors

A Welch two-sample t-test in R produces a p-value of 0.0002852, which shows

that there is a statistically significant difference between the two means. This

leads us to think that students in this sample tend to find programming

concepts as being easier than how the professors would regard them. This

underestimation of their understanding might be one reason for not

performing very well in their examinations. For example, while professors

think that transferring a pseudocode to a program is at the top of the list of the

perceived difficulties, students rank it as a “somewhat easy” concept.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Pr
ob

le
m

So
liv

ng

Ps
eu

do
co

de

De
cl

ar
in

g
va

ria
bl

es

Tr
ac

in
g IF

FO
R

W
HI

LE

U
se

r I
np

ut

Va
lid

at
io

n

Fo
rm

at
te

d
O

ut
pu

t

Ar
ra

ys

M
et

ho
ds

Fi
le

s

Ex
ce

pt
io

ns

PROGRAMMING CONCEPTS RATED FROM 1 (LOW DIFFICULTY) TO
5 (HIGH DIFFICULTY)

BY 105 STUDENTS AND 34 PROFESSORS

STUDENT PROFESSOR

73

The results obtained from this study align with results obtained from a similar

study performed by Lahtinen et al. (2005), where the average student

perception about the difficulty of programming concepts (mean 2.8) was

smaller than that of instructors (mean 3.5). In another study in 2002, Milne

and Rowe also noticed a difference in the mean scores of students and tutors.

They claimed that students “may believe they understand a topic, but upon
detailed examination or one-to-one querying from a tutor it turns out that they
are often wrong in their belief” (Milne & Rowe, 2002, p. 58).

The last question in the study administrated to students was to select from a

list of predefined statements the one that best matched their ability to

understand the concepts taught in the course and produce correct code by

implementing them. The results are presented in Table 4.3.

Ability to understand and write correct code Student PCT

1. understand the concepts and manage to write correct code 6%

2. understand the concepts and usually manage to write correct
code

10%

3. understand the concepts but only sometimes manage to write
correct code

47%

4. somewhat understand the concepts but do not know how to
write correct code

34%

5. do not understand the concepts and do not know how to write
correct code

3%

Table 4.3: Java Programming: Ability to understand and write code – student perceptions
 (105 undergraduate students, June 2013-May 2018)

A finding from this study is that 47% of the students claim that they

“understand the concepts but only sometimes manage to write correct code”

and 37% of students feel that they “somewhat understand” these concepts “but

do not know how to write correct code” to implement them. This is also

supported by the literature (Sanders et al., 2012) and is generally an accepted

fact in computer science education. Students need first to understand the

theory and then develop practical skills in order to become successful IT

professionals. Unfortunately, novice programmers lack those problem-solving

strategies that will enable them to design and code functional programs.

Interestingly enough, although students in the initial evaluation considered

programming concepts to be rather easy, most of them were not very confident

74

in their ability to code correctly. To further explore the rationale behind why

they thought they could not write correct code, students that selected choices 3

and 4 were asked to fill in an open text area describing the main reason why

they could not produce correct code. Of the eighty-five (85) participating

students, there were only twenty-five (25) responses to this open-ended

question. Some characteristic responses included:

• I get frustrated with the error messages.

• I do not know how to fix compiler errors.

• I do not understand compiler syntax error messages.

• I get lost with the brackets.

• I think that my code is correct, I just do not know why it does not

compile.

• I do not understand why my program is not doing what I think it is

supposed to do.

• I know what I want to do, but I do not know how to put the commands

together.

• Even when I have a correct pseudocode, I do not know where to start

coding.

After performing coding on the given 25 responses, three general themes were

identified: syntax errors; logic/semantic errors; and translation to code.

Effectively resolving syntax errors requires a very detailed knowledge of the

programming language’s syntax rules and experience in understanding the

meaning or the implications of the error message(s) produced by the compiler.

This task can sometimes be particularly challenging - for example, a single

curly bracket (extra or missing) can cause a misleading compile-time error

message which points to a different and completely unrelated line in the

program and can also be affected by the programming environment itself. As

Freund and Roberts claim in their research: “student frustration is less a
function of the language than of the programming environment” (Freund &

Roberts, 1996).

75

On the other hand, locating logical or semantic errors requires enhanced

debugging skills, a detailed understanding of the effects of each command, and

proper appreciation of the algorithm being employed.

Finally, the last theme of “translation of pseudocode to code” shows a student

inability to construct an actual program despite having a clear idea of the

requirements or steps involved. In order to put it in context in terms of the

difficulties explored in the previous section of the questionnaire, this theme is

similar to the rated difficulty “transfer the algorithm to program code”. A

number of reasons are found in the literature that attribute to the difficulty of

transferring an algorithm to a programming language and relate closely to the

cognitive aspects of programming mentioned in the previous section:

• Lack of “one-by-one” translation rule from a pseudocode to code. This

statement is also supported by Sanders et al. (2012).

• Inadequate/incomplete mental models of the process (Kessler &

Anderson, 1986; Freund & Roberts, 1996; Winslow, 1996).

• Abstraction of the underlying notional machine that the students should

learn to understand and manipulate (Xinogalos, 2014)

However, the introduction to coding using a visual programming environment

could assist students to overcome at least some of the difficulties mentioned

above, due to their inherent design and purpose: to prevent syntax errors and

make the process of developing a program more intuitive and creative, without

compromising the development of computational thinking skills.

Since 1986, professor have made attempts to overcome these difficulties with

the integration of visual technologies into their teaching. Their main focus was

(and still is) to motivate students by cultivating positive attitudes (less

frustration) towards learning computer programming (Myers, 1986) .

In response to the last question in this study, to investigate professor

perceptions as to whether students should be introduced to programming via

the usage of visual programming environments, twenty-six professors (75%)

answered yes, six professors (19%) answered that they were not sure and only

two (6%) answered no (see Figure 4.2).

76

Figure 4.2: Educator perceptions about VPEs

A number of visual programming environments are available today, used by

teachers with the intention to overcome at least some of the learning

difficulties, discussed above.

To this end, a short review of the development and use of educational

programming environments and software visualisation tools follows in the next

section.

4.3 A Short History of Educational Programming Environments

As stated before, programming is a highly cognitive activity that requires

acquiring new reasoning skills, understanding unfamiliar technical information

and developing abstract representations of a process (Cañas, Bajo, & Gonzalvo,

1994; Ramalingam, LaBelle, & Wiedenbeck, 2004). An accurate framework or

a so-called mental model of how the computer works is required to be formed

in order to incorporate programming domain-specific knowledge. Norman

(1987; 1988) defines mental models as the internal representations that

people have about themselves, others, the environment and the things they

interact with. He also argues that people use these mental representations to

77

reason about, explain, and predict the behaviour of external systems. The

mental model of a system is formed through experience, training and

instruction and by interpreting its perceived actions and its visible structure

but “People’s mental models are apt to be deficient in a number of ways, perhaps
including contradictory, erroneous, and unnecessary concepts” (Norman, 1987).

However, the internal components of the computer, where all data storage and

processing take place do not have a visible structure. As a result, it is very

important for novice programmers to develop an accurate mental model of

how a program works.

Educators in the programming discipline have long faced the complexity of

teaching programming, and as a result numerous educational programming

languages and tools have been developed (from as early as the beginning of

the discipline) that aim to enrich students’ learning experience and reduce the

obstacles imposed by the complex cognitive activities required by the process.

Many educators believe that using a higher conceptual level of simplicity

makes it easier for students to comprehend how a program works and thus

learn programming more effectively (Du Boulay & O'Shea, 1981).

Initially, the purpose of educational or so-called pedagogical programming

environments (PPEs) was to simplify the programming language - they later

evolved to allow students to construct programs using graphical objects aimed

at preventing syntax errors, to provide visualisations to assist in the formation

of a solid model of the “notional machine”, and to enhance the social learning

dimension in order to motivate and engage students.

The first simplified programming language, “B.A.S.I.C.” (Beginner’s All-

purpose Symbolic Instruction Code), was designed in 1964 by Kemeny, Kurtz

and Keller aspired to provide an easier environment for non-science students

to create computer programs (Figure 4.3).

78

Figure 4.3: Example of a BASIC program source code and runtime.

Following BASIC, in 1967, Feurzeig, Papert and Solomon designed another

educational programming language named Logo. Logo is widely known by a

small robot called the turtle, which sat on the floor and which novice

programmers learned to move around by typing English language commands

on the computer, such as forward, left, etc. Soon the turtle was migrated to the

computer screen using graphics. Flexibility, easy to remember commands,

friendly error messages and immediate visual feedback were some of the main

advantages of Logo (Figure 4.4).

Figure 4.4: Logo programming environment with a virtual turtle

In 1980, Papert, based on the philosophy of “constructionism”, introduced the

concept of Microworlds, a larger set of Logo-based implementations (yet

having a limited scope) where children could actively experiment with

“powerful” ideas by developing meaningful software projects (Papert, 1980;

1987). Microworlds allowed students to gain fundamental programming

knowledge and experience without the barriers imposed by programming

complexity (Figure 4.5).

79

Figure 4.5: MicroworldsEX

In 1988, the Logo language was interfaced with traditional LEGO Bricks with

the addition of newer components, such as motors and gears to create an

“intelligent Brick”. This new enhancement allowed children to construct and

control their own mechanical toys. Resnick and Ocko mention that “students
rarely get the opportunity to design and invent things” (1990, p.1) and describe

how LEGO/Logo could provide them with this opportunity. LEGO/Logo has

been evolved since then with the latest version LEGO Mindstorms EV3 released

in 2013 (Figure 4.6).

Figure 4.6: A Lego car construction controlled by Logo programming language

80

The first visual programming language, Logo Blocks, was developed in 1996,

at the MIT Media Lab, and served as the basis for all block-based visual

programming environments, including Alice, Crickets, Scratch, Code.org,

AppInventor and others. The purpose of the visual programming languages is

to shift the focus of the novice programmer from syntax to problem solving

research. Rigby and Thompson (2005) and Vogts, Calitz and Greyling (2008)

have also shown that students face more difficulties when they try to learn

programming using professional programming environments due to the

complexity of the interface.

Block-based programming utilises ready-made blocks of commands, organised

in palettes, that the user assembles to create a program. Since the programmer

neither has to type nor memorise the instructions, there is no possibility of

syntax-errors. The most widely known block-based programming environment

is Scratch. The first version of Scratch was released in 2007. Scratch has

gained great popularity in teaching programming over the past 5 years and has

been used to introduce programming to students (from lower schools to

universities) all over the world (Malan & Leitner, 2007; Resnick et al., 2009).

Currently, there are more than 27 million registered users in the Scratch

website, with a continuing growing trend (see Figure 4.7).

Figure 4.7: Scratch active users
 (Retrieved from: https://scratch.mit.edu/statistics/ June 2018)

In the next section, I will discuss the various aspects of software visualisation

tools and programming environments which are used in introductory

81

programming modules and attempt a categorisation based on their features

and characteristics.

4.4 A Classification of Educational Programming Environments

Based on a literature review on programming environments classification

(Myers, 1990; Burnett & Baker, 1993; Price et al., 1993; Kelleher & Pausch,

2005; Sorva et al., 2013; Xinogalos et al., 2015) from a personal evaluation of

the related characteristics/features, and the uses of the educational tools in the

discipline, I have adapted and extended the existing classifications to include

currently-used tools. The following classification in Figure 4.8 includes the

main categories: type of editor; runtime environment (desktop/online);

features; use; and type of visualisation each programming environment

provides.

The primary distinction in this classification is between pedagogical/novice/

educational programming environments, professional integrated development

environments (IDEs) and command-line compilers (appearing in purple). At

the second level of categorisation, in this study’s pedagogical area of interest,

most tools provide some kind of software visualisation (appearing in green):

visual programming and algorithm/program visualisation. In a further

breakdown of program visualisations as proposed by Price et al. (1993),

visualisation of memory contents and program tracing are included as features

in the proposed classification. The third level (appearing in yellow) includes

the type of editor each tool provides to the user: block-based, icon-based,

frame-based and text-based. The fourth level of classification relates to the

type of execution environment: online or standalone. The last level (appearing

in white) displays the name of the tool in the subcategory. Finally, features

(appearing in purple), uses (appearing in light yellow) and types of

visualisation provided (appearing in mauve) are linked with each tool using

dotted lines.

The main purpose of this classification is to enable readers to understand

where each of the numerous educational programming tools discussed in the

study stands, as well as their similarities and differences. A limitation of this

classification is that it is not fully comprehensive (due to the very large number

82

of educational programming tools in the market) and that it has been reviewed

only by one other researcher in the area.

83

84

85

Figure 4.8: Programming development environment classification

4.5 Using Visualisations to Teach Programming

Many claims have been made that support the power of visualisations in

learning facilitation (Shu, 1989; Pattis, 1993; Bergin et al., 1996; Naps, 1997).

Visualisations enable the learner to understand what happens inside the

computer. Traditionally, teachers, including myself, have used graphical

external representations to address the concept of visualisations (Gries et al.,
2005; Mselle, 2010; Hertz & Jump, 2013). One such technique is to draw

boxes on the chalkboard/whiteboard (see Figure 4.9) to represent the contents

of variables in computer memory handled by the program and attempt to

perform a step-by-step program tracing.

Figure 4.9: Traditional chalkboard visualisation

Another traditional visualisation technique involves using actual physical boxes

like file cabinets. These boxes can be labelled with variable names, in which

the learner can place a piece of paper with the written value to be assigned to

the box, while hand-tracing the program code. I have found both of these

techniques to be an excellent initial introduction of the variable concepts in my

teaching. The main disadvantage, however, of such traditional approaches is

that, as a program grows longer or more complex, teachers find it extremely

time-consuming to draw and redraw the memory contents on the board or

introduce more physical boxes to the class presentation. To assist in this

process, researchers and educators have created software tools which provide

computerised ways to create these visualisations.

Du Boulay and O’Shea (1981) used the following metaphor to describe

software visualisation environments: “A black-box inside the glass-box”. Burnett

(1999) defines visual programming as programming in which more than one

86

dimension is used to convey semantics. Dimensions include, but are not

limited to, diagrams, relationships, time dependencies (before-after), sketches,

icons, or even demonstrations of performed actions.

Software visualisation and visual programming environments were proven to

be successful with students and to impart a positive impact on students’

understanding, organisation of the concepts (Du Boulay & O'Shea, 1981;

Eisenstadt,1992; Cañas et al., 1994; Dann et al., 2001; Boyle et al., 2003; Čisar
et	al., 2011) and student motivation. On the other hand, researchers in the

area have found that experienced programmers consider novice programming

languages as being overly simplified and even distasteful and in a sense, not

telling the complete “truth” (Du Boulay & O'Shea, 1981).

Myers (1990) provided a classification of types of visualisations: program

visualisation and visual programming. A more recent classification by Sorva et
al. (2013) (Figure 4.10) provides a more detailed classification.

Figure 4.10: Forms of software visualisation (Sorva et al., 2013)

The formal definition of Software Visualisation (SV) comes from Price

(1993): “Software visualisation is the use of the crafts of typography, graphic
design, animation and cinematography with modern human-computer interaction

87

to facilitate both the human understanding and effective use of computer
software” (p.213).

The two main subcategories of software visualisation are program visualisation

and algorithm visualisation.

Program Visualisation (PV) is the ability of an environment to provide and

utilise graphics in order to illustrate some aspects of a program or its runtime

execution, while the actual program code is written in text. Gershon et al.
(1998) consider visualisation as the “link between the two most powerful
information processing systems: the human mind and the modern computer”
(p.29) and provides a definition outside the boundaries of computing, as the

process of transforming data and information into a visual form enabling

people to observe, explore and manipulate data more effectively. Cañas et al.
(1994) tested program visualisation by utilising automatic code tracing, that

demonstrated the status of all program variables during code execution. Their

study showed that students in the tracing group developed semantically-

oriented mental representations, as opposed to students in the non-tracing

group, who developed syntactically-oriented mental representations, while

their performance was not related to the way their mental representations

were formed.

BlueJ is a representative example of a pedagogical development environment,

classified in the subcategory of program visualisation, which specifically

provides learners with visualisation of object instantiation, as well as direct

observation and manipulation of memory contents (Figure 4.11). BlueJ

enables students to view which values exist inside each variable at any given

point in execution, thus supporting the notion of “a glass box”.

88

Figure 4.11: BlueJ variable inspection feature and the text-based code editor

Algorithm visualisation (AV) is the ability of an environment to use discrete

images or animations to depict the execution of an algorithm and how it

affects the data, while the user controls its execution

(play/replay/pause/stop). Using algorithm visualisations, students can actively

compare and contrast algorithms in terms of speed and efficiency. On the

other hand, tools in this category operate at a high level of abstraction and

their purpose is not to demonstrate the fundamentals of the program

execution, but to provide concrete representations of the abstract notions of

algorithm methodologies (Kehoe, Stasko, & Taylor, 2001). Grissom, McNally

and Naps (2003), in a study measuring the effects of algorithm visualisation,

found that learning increases with a rise in the level of student engagement.

Simply viewing an animated algorithm does not necessarily demonstrate a

noticeable gain in learning, while responding to questions during algorithm

execution and provoking and engaging in additional exploration activities does

improves learning. Hundhausen et al. (2002) performed a meta-study based on

24 research projects about the effectiveness of algorithm visualisation, of

which 11 showed a positive impact, 10 showed no significant difference, 1

showed a negative effect and 1 showed a positive effect not directly related to

algorithmic visualisation. VisuAlgo (Figure 4.12) is such an online tool which

enables students to observe the step-by-step animated execution of an

algorithm.

89

Figure 4.12: Sample algorithm execution in VisuAlgo

Visual programming, a subcategory of program visualisation, is the ability of

the programming environment to specify the code by letting the user spatially

arrange ready-make blocks of code, such as Scratch, Alice, App Inventor,

Code.org, etc. (see Figure 4.13). Visual programming can assist users to

reduce or even completely eliminate the potential of making syntax errors.

Figure 4.13: Scratch visual programming code editor

Furthermore, creating code with visual programming environments enables

students to build multimodal artefacts (incorporating text, sound, graphics,

animation and user interactions) while interacting with multimodal interfaces.

The multimodalities imposed by the use of visual programming environments

especially within the context of game creation have been shown to be a great

90

motivation tool (Gee, 2003; Jewitt, 2005) and found to enhance through

programming a sense of accomplishment and self-esteem (Muraina et al.,
2019).

Visual programming environments could possibly provide a framework for

novices to learn programming, by targeting all three conditions of meaningful

learning: reception, availability and activation, without the frustration caused

by syntax errors. All commands (depicted in the form of blocks) are illustrated

by the professor during the reception stage. This can be performed using

examples and live-coding. During the availability stage, the learner - when

faced with a programming assignment - must process the requirements and

identify which are the most appropriate commands to use to solve the

problem. Availability could be enhanced with VPEs because they provide the

learner with a full list of all available commands, categorised according to their

functionality (motion, sound, control, events, variables, etc.). Finally, the

learner must connect new commands to the ones previously learned to create a

project. Using problem-decomposition skills and a step-by-step development

approach, activation could be enhanced.

As stated in the previous chapter, students use motivational strategies to drive

and inspire them to accomplish academic tasks (Pintrich & de Groot, 1990;

Wolters, 1999; Pintrich, 2004; Code et al., 2006). Understanding how students

are motivated to explore, discover, learn and set their personal achievement

goals could have a significant impact on choosing the most appropriate

learning environment and teaching pedagogy.

In the next section, I intend to justify the selection of Greenfoot, Alice,

AppInventor and Scratch as the pedagogical programming environments used

for the preliminary investigation of this research study.

4.6 Related Research on Greenfoot, Alice, AppInventor and Scratch

As mentioned previously in Chapter 2 , there are numerous programming

languages and many different programming environments including the ones

which aim to teach object oriented programming by creating computer games

like Greenfoot, the ones which employ visual elements (blocks) to replace the

typing of programming instructions like Scratch and AppInventor, and a later

91

addition to this large list of tools, the ones that “restrict” the typing of code in

pre-determined frames, making coding less error prone.

The third research question of this study considers primarily the exploration of

students’ motivations for learning programming and how these relate to their

perceptions about programming and more specifically to their perceptions

about visual programming environments. To support this aim, I seek to

discover whether or not visual programming environments affect student

motivation to learn programming.

The need to assess the assumption that a visual programming environment

might affect student motivation imposed the selection of an appropriate visual

programming tool but also created another challenge for this project. Most

visual programming environments mentioned previously satisfy the

requirements that form the basis of this research, which is to promote ‘fun’ and

engaging learning experiences. First of all, the selected tool should be able to

fulfil the educational goals and learning outcomes of the module (refer to

Chapter 1, contextual information). Then the selected tool should conform

with the underlying constructivist philosophical view and the constructionist

instructional method of problem-based learning by engaging learners in the

learning process and setting a game-like context for the programming

assignments. Finally, the main focus of the tool should be on promoting the

understanding of programming logic by eliminating the burden of syntax

errors.

Greenfoot with the frame-based editor, Alice, AppInventor and Scratch with

their block-based code building blocks, all satisfied the above requirements.

They are very popular and widely used for the introduction of programming

concepts around the world and are also extensively used in related research

because they all address the need to reduce complexity and at the same time

enhance students’ motivation to learn how to program (Malan & Leitner, 2007;

Leitner et al., 2009; Maloney, et al., 2010; Nikou & Economides, 2014).

Greenfoot has been used in studies and workshops aiming at teaching

computational thinking by creating two-dimensional board games and

simulations using the Object-Oriented Programming approach (Henriksen &

Kölling, 2004; Gallant & Mahmoud, 2008; Hijon-Neira et al. 2013; University

92

of Kent, 2014). Findings from these studies have shown increased student

engagement and motivation. Furthermore, the students’ subjective opinion

about Greenfoot from a key study was overall positive and they enjoyed all

activities they successfully completed (Gallant & Mahmoud, 2008). Greenfoot’s

characteristics such as interactivity and visualisation supported active

experimentation and exploration while providing immediate feedback, leading

to more than 60% success in learning the concepts taught (Begosso & Begosso,

2012). One main difference of Greenfoot in relation to the other three

pedagogical programming environments, discussed in this section, is that

coding tasks are completed either by typing the commands in the Java

programming language or using frames.

Alice’s main similarity with Greenfoot is that it is based on the Object-Oriented

Programming (OOP) approach but its main difference from the rest of the

visual programming environments is that it uses three-dimensional animated

actors and scenes for the construction of virtual worlds. Coding tasks are

completed by using blocks. Research studies have reported improvement in

student performance, enjoyment and confidence in understanding

programming concepts when using it (Cooper et al., 2004; Moskal et al., 2004;

Bishop-Clark et al., 2007; Sykes, 2007). More specifically, Bishop-Clark et al.
(2007) reported a significant decrease in creativity and overall attitude

towards programming for students that did not use Alice. On the other hand,

Cliburn (2008), in his study about student opinions of Alice, reported that

40.5% of students were not convinced that Alice contributed to their learning

of Java.

Choice of program can also be considered in terms of the adoption rate of

mobile devices among students, which is exponentially growing. APPInventor’s

driving force is on “what is being built” (Wolber, 2011; Wolber et al. 2015)

with emphasis on exploring how to solve real-world problems, using

applications for mobile devices; again by “hiding” code complexity, these are

reducing syntax errors with the use of blocks. Taking advantage of mobile

devices to motivate and expose students to problem-solving and computational

thinking is the main target for AppInventor. Research studies again report

increase in engagement, intrinsic goal orientation, self-efficacy and task value

(Wagner et al., 2013; Nikou & Economides, 2014) for students who are

exposed to programming using AppInventor.

93

Scratch, with the media-rich block-based programming environment, has also

been extensively used in research relative to teaching introductory

programming modules for lower school (Calder, 2010; Wilson B., 2010; Tsai &

Chen, 2011; López et al., 2016; Chiang & Qin, 2018), middle school

(Meerbaum-Salant et al., 2011; Fields et al., 2013; Nikou & Economides,

2014), upper school (Moreno-León, Robles 2015; Weintrop, 2015; Pellas &

Peroutseas, 2016) and universities (Malan & Leitner, 2007; Malan, 2010;

Ozoran et al., 2012; Saltan & Kara, 2016; Yukselturk & Altiok, 2016; Erol &

Kurt, 2017) aiming to examine its effects on the students’ motivation,

achievement, self-efficacy and overall attitude towards programming. In a

recent study by Erol and Kurt (2017), it was revealed that their participants’

programming achievements increased for the Scratch group, but also

demonstrated skill transferability to C# which was the programming language

used after Scratch.

4.7 Conclusion

It seems apparent that all the VPEs discussed above have active

experimentation and exploration as a common underpinning pedagogy. They

all conform with an underlying constructivist philosophical view and a

constructionist instructional method of problem-based learning by engaging

learners in learning processes and setting a game-like context for the

programming assignments. They have all been used in a range of studies to

examine their effects in student motivation to learn programming, with

positive results.

The question that then arises is which VPE is the most appropriate to be used

in this study; the answer to this question is sought in the next chapter, which

presents the detailed methodology leading to the selection process.

94

Chapter 5 The Pilot Study

5.1 Purpose

The purpose of this chapter is to present and outline the research design and

present the rationale as to why participatory action research has been

identified as the most appropriate methodological practice for the preliminary

investigation into selection of the visual programming environment to be used

for the main study.

5.2 Participatory Action Research

Action research is an iterative process and is sometimes referred to as an

“iterative case study”. It involves researchers and practitioners acting together

on a cycle of tasks, including problem diagnosis, action intervention and

reflective learning (Avison et al., 1999). Action research focuses on a change

process (Runeson, 2012) and on the outcomes of interventions and aims, and

improvement, reflection, monitoring and evaluation of the outcomes (Cohen et
al., 2013).

The aim of the action research cycles is to investigate the possible effects of a

particular change before considering it for my main research. As a researcher, I

attempt to solve a real-world problem (how to motivate students to learn

programming) while simultaneously studying the experience of solving that

problem (Davison et al., 2004).

According to Stringer et al. (2010), action research works through three basic

phases:

• Look: build a picture and gather information, define and describe the

problem to be investigated and the context in which it is set.

• Think: interpret, analyse and explain the situation.

• Act: judge the worth, effectiveness, appropriateness, and outcomes of

the activities.

95

Action research can be incorporated into all phases of instruction and works in

cycles, where each cycle is informed by the previous one:

• phase 1 during lesson planning and preparation;

• phase 2 during instruction; and

• phase 3 during assessment and evaluation.

Action research is neither quantitative nor qualitative in nature, but it may use

data collection techniques that involve either one or both of these approaches,

such as collection of quantitative data (student performance examination

results) and qualitative data (student opinions), by conducting experimental

case studies. Action research focuses on the outcomes of interventions and

aims and improvement, reflection, monitoring and evaluation of the outcomes

(Cohen et al., 2013).

Action research, and participatory action research in particular, has been

considered a desirable tool for educators, in that it helps them to search for

better ways to meet their students’ needs, monitor and evaluate the impact of

changes, reflect on the process, and thus promote positive change in

educational settings. Critical participatory action research brings together the

“self-reflective collective self-study of practice, and transformational action to
improve things” (Kemmis et al., 2013). Carr and Kemmis (1986) criticised the

idea that the researcher should remain an “objective” and “disinterested”

observer, but rather should engage in active self-reflection of the conduct and

the consequences of his/her practices.

Based on the definition of the aims of action research and the previously

mentioned criticism of detached researchers, I found participatory action

research to be a suitable research methodology for the preliminary

investigation regarding selection of the visual programming environment,

because my aim is to find more desirable and interesting ways to introduce

students to the art of programming.

Action research, in this context, aligns with the postulation of Stenhouse

(1985), referred to in Bassey (1999), that it “is concerned with contributing to

96

the development of the case under investigation by feedback of information

which can guide revision and refinement of the action” (p.28).

Having identified the problem area of the study, which is the difficulty novice

programmers face when they learn how to program, and having conducted a

literature review on relevant educational theories, learning approaches and

motivation, I selected Greenfoot, Alice, AppInventor and Scratch as the visual

programming tools to be used for this pilot research for the reasons mentioned

at the end of Section 2.3.4.

I planned to go through 4 action research cycles (one for each of the tools

mentioned). Each action research cycle aims to investigate student

perceptions about the tools’ enjoyment, usability and suitability towards the

achievement of the specific module’s learning objectives and, secondly, to

observe how each of these tools affected students’ motivation to learn

programming (see Figure 5.1).

Figure 5.1: Action research cycles

To this end, I prepared lesson materials, trained fellow professors and jointly

introduced each tool to our students. Upon completion of each cycle, data

were collected from student assessment scores (from a homework exercise), a

short survey and via in-class discussions.

97

All participants, in all cycles, were given the same exercise to complete at the

end of the instruction.

The homework exercise, which required students to create a hangman game,

was designed in such a way that it could be completed using any of the four

participating Visual Programming Environments. Grading was performed using

the same rubric (see Table 5.1) based on the following criteria: functionality,

complexity, use of graphics and animation, use of sound, scoring, levels, player

mode and use of word dictionaries).

Criterion Evaluation and Points
Is the game
functional? No Small Bugs Yes

 0 5 10

Code complexity No code
delivered

Easy (Only Basic
Structures)

Most
programming
constructs are
correctly used

Complex -
Advanced &
modular code

 0 5 10 15

Use of graphics
and animation No graphics

Simple (from the
existing Library)

Simple graphics
(from the
existing Library)

Advanced (use of
graphics and
animation)

 0 5 10 15

Use of sound No Sound
Simple sounds
(from existing
library)

Advanced (custom recorded sounds
or many sounds for different events)

 0 5 10

Code to keep
scores No Scores

Simple Scores
(just display
Score)

Keep Ranks and Store Past Scores

 0 5 10

Single player or
two player mode

Single Player
(one player
inputs the word)

Two Players
(alternating
turns)

One Player
against the
computer

Two Players
(alternating
turns) against
the computer

 0 5 10 15

Increasing level of
difficulty

There is not
increasing level
of difficulty

2 levels more than two levels

 0 5 10

Words Dictionary no dictionary
used

static dictionary
(seeded into the
program)

user can upload
a dictionary

program
downloads the
dictionary from
the web

 0 5 10 15
Table 5.1: Grading rubric for the formative assessment used in all action research cycles

98

5.2.1 The Survey Tool

The survey questionnaire contained 2 demographic questions (regarding

gender and age), 5 general questions concerning their major course of study,

pathway, year of study, level of programming experience, programming

languages they knew, and previous experience with the tool.

The next section of the questionnaire contained 5 questions adapted from

Pintrich et al.’s MSLQ (1991) concerning students’ intrinsic motivation (Q9 -

Q12), extrinsic motivation (Q13) to learn programming and 1 question

concerning self-efficacy (Q14). The keyword “this tool” was replaced in each

action research cycle with the name of the visual programming environment

which was introduced as part of the intervention. Following Pintrich et al.’s
(1991) recommendation, students were asked to read each question and rate

how much they agreed or disagreed with the statement using a seven-point

Likert Scale (1 = strongly disagree, 2 = moderately disagree, 3 = somewhat

disagree, 4 = neutral (neither disagree nor agree), 5 = somewhat agree, 6 =

moderately agree, 7 = strongly agree). For the evaluation of the results, scales

were constructed by taking the mean of the items that made up each scale.

The last section contained 8 questions. Specifically, questions 15, 17, 19

informed the enjoyment factor, questions 16, 18 and 21 informed usefulness

factor, question 20 provided an idea about the intention to use the tool outside

the classroom environment and finally questions 22 and 23 acted as the final

“vote” of the participants so that the “tool” could be adopted for the

Introduction to Programming module.

Enjoyment factor adjective pairs were: boring/fun, unenjoyable/enjoyable and

unpleasant/pleasant, while perceived usefulness adjective pairs were:

ineffective/effective, useless/useful (adapted from Davis et al.’s questionnaire

(1992)). The not beneficial/beneficial pair was not included in Davis’s

questionnaire, but was proposed by a focus group of 4 IT professors who teach

programming in XYZ college, who studied the Davis et al. questionnaire and

found that “improve job performance” and “increase productivity” questions did

not fit in the case under investigation.

99

Students were asked to rate their perceptions utilising semantic differential

(bipolar) rating scales from 1 (strongly disagree) to 7(strongly agree), based

on Martin Fishbein and Icek Ajzen’s theory of reasoned action (Fishbein &

Ajzen, 1975).

Figure 5.2 shows the adaption of the technology acceptance model used for the

evaluation of the perceived acceptance of each of the visual programming

environments tested in this pilot study and the justification of the selection of

the tool to be used for the main study.

Figure 5.2: Adaption of the Technology Acceptance Model

5.2.2 Validity and Reliability for the Pilot Study Survey Tool

The final version the tool was tested with a sample of 127 student responses for
construct, convergent and discriminant validity.

5.2.2.1 Construct Validity

Confirmatory Factor Analysis (CFA) was used to test whether or not the data

collected from the questionnaire fit the hypothesized measurement model and

as such to evaluate construct validity. Table 5.2 presents the factor loadings of

the questionnaire and the three components extracted: Usefulness, Enjoyment

and Intrinsic Motivation.

100

Rotated Component Matrix

 1 Usefulness 2 Enjoyment 3 Intrinsic Motivation

VPE is Fun (q15) 0.947

VPE is Enjoyable (q17) 0.930

VPE is Pleasant (q19) 1.002
VPE is Effective (q16) 0.906

VPE is Beneficial (q18) 0.935

Create Useful Programs (q21) 1.171

Intent to Use (q20) 1.052

Preferable over Java (q22) 1.101

Interest in Programming (q9) 1.104

Prefer Challenging work (q10) 0.848

Enjoy module subject (q11) 1.065

Useful module subject (q12) 1.235

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser
Normalization. a Rotation converged in 5 iterations.

Table 5.2: CFA - Action Research Survey

Reliability analysis using SPSS was performed to analyse the internal

consistency of the scales. The resulting Cronbach’s alpha values were all above

the recommended level of .70, thus indicating adequate internal consistency

(Cronbach, 1951; Peterson, 1994; Tavakol & Dennick, 2011; Vogt, 2007) (see

Table 5.3).

101

Intrinsic Motivation Scale (4 Items, Cronbach’s alpha = 0.844)

Scale Mean
if Item
Deleted

Scale
Variance if
Item Deleted

Corrected
Item-Total
Correlation

Cronbach's
Alpha if Item
Deleted

Interest in Programming (q9) 15.9213 10.295 0.785 0.758

Prefer Challenging work (q10) 16.0236 12.055 0.633 0.824

Enjoy module subject (q11) 15.8504 10.557 0.744 0.776

Useful module subject (q12) 16.3858 10.112 0.599 0.852

Usefulness Scale (5 Items, Cronbach’s alpha = 0.844)

VPE is Effective (q16) 12.1654 19.393 0.648 0.821

VPE is Beneficial (q18) 12.4803 19.077 0.719 0.805

Create Useful Programs (q21) 12.4803 17.680 0.692 0.809

Intent to Use (q20) 12.7165 18.236 0.678 0.812

Preferable over Java (q22) 12.4567 18.520 0.578 0.842

Enjoyment Scale (3 Items, Cronbach’s alpha = 0.838)

VPE is Fun (q15) 7.4488 4.329 0.733 0.744

VPE is Enjoyable (q17) 7.0866 4.588 0.618 0.855

VPE is Pleasant (q19) 7.4016 4.099 0.757 0.719
Table 5.3: Cronbach's alpha – Action Research Survey

5.2.2.2 Convergent Validity

Convergent validity is the assessment to measure the level of correlation of

multiple indicators of the same construct that are in agreement. According to

Hair et al. (2016) to establish convergent validity, the factor loading of the

indicator, composite reliability (CR) and the average variance extracted (AVE)

should be considered. Table 5.4 presents the calculations for AVE and CR for

the intrinsic motivation scale.

N=4 λ Factor Loadings λ2 Ε Error Variance

 0.881 0.77616 0.22384

 0.763 0.58217 0.41783

 0.850 0.72250 0.27750

 0.816 0.66586 0.33414

SUM 3.310 2.74669 1.25331

AVE 0.687 SQRT of AVE 0.82866

CR 0.897
Table 5.4: AVE and CR calculations for Motivation Scale

102

The same calculations were performed for the usefulness and enjoyment scales

and the results are presented in Table 5.5.

Scale AVE CR SQRT(AVE)
Motivation 0.687000 0.897349 0.828660
Enjoyment 0.582410 0.874481 0.763158
Usefulness 0.714723 0.882392 0.845413

Table 5.5: AVE and CR values for all scales
AVE > 0.50 (Acceptable), AVE > 0.70 Very Good, CR > 0.70 Acceptable

The calculated AVE values exceed the recommended value of 0.50 and CR

values exceed 0.70, so the questionnaire scales can be considered as adequate

for convergent validity (Fornell & Larcker, 1981; Hair et al., 2016).

5.2.2.3 Discriminant Validity

Discriminant validity is the extent to which a construct is truly distinct from

other constructs by empirical standards. Thus, establishing discriminant

validity implies that a construct is unique and captures phenomena not

represented by other constructs in the model. According to the Fornell-Larcker

testing system, discriminant validity can be assessed by comparing the square

root of each AVE in the diagonal with the correlation coefficients (off-

diagonal) for each construct in the relevant rows and columns (Fornell &

Larcker, 1981).

For intrinsic motivation, the value obtained for the square root of AVE

(0.828660) is greater than the correlation coefficients (see Table 5.6) which

leads us to accept the discriminant validity of the scale.

Intrinsic Motivation Scale

 q9 q10 q11 q12

Interest in Programming (q9) 1

Prefer Challenging work (q10) .598 1

Enjoy module subject (q11) .766 .602 1

Useful module subject (q12) .590 .460 .521 1
Table 5.6: Correlation matrix for motivation scale components

For enjoyment and usefulness scales, the value obtained for the square root of

AVE (0.763158, 0.845413 respectively) is greater than the correlation

103

coefficients (see Table 5.7) which leads us to accept the discriminant validity

of the scales.

Enjoyment Scale

 q15 q17 q19 q16 q18 q21 q20 q22

q15 1

q17 0.561 1

q19 0.747 0.593 1

Usefulness Scale

q16 0.330 0.271 0.267 1

q18 0.289 0.322 0.270 0.668 1

q21 0.306 0.232 0.355 0.555 0.519 1

q20 0.338 0.379 0.391 0.492 0.620 0.606 1

q22 0.289 0.250 0.332 0.406 0.498 0.531 0.469 1
Table 5.7: Correlation coefficients for enjoyment and usefulness scales

5.2.3 Action Research Cycle 1 (Greenfoot)

During Spring Semester 2015, I performed the first action research cycle with

the introduction and evaluation of Greenfoot.

To begin with, the literature review on Greenfoot as a visual programming

environment reported intriguing research results (Gallant & Mahmoud, 2008;

Decker & Trees, 2010; Begosso & Begosso, 2012). More specifically, as

mentioned in an impact case study submitted by the University of Kent,

students benefit from the use of Greenfoot by “being able to achieve more
tangible results more quickly, leading to increased motivation and satisfaction, as
well as better understanding of programming concepts” (University of Kent,

2014)

The test this theory in the context of the ‘Introduction to Programming’

module, Greenfoot was incorporated in the module’s material. Students were

first introduced to the Java programming language and, during the last 2

weeks (12-hours of instruction) of the module, students learned how to create

games using Greenfoot. The material used for teaching Greenfoot was taken

from Oracle Academy’s Java Fundamentals course ("Java Fundamentals –

Course Description”). A sample in-class activity is included in Appendix Five.

104

Thirty-five (35) students, consisting of two females and thirty-three males,

participated in the study and were registered in 2 separate classes. One class

was taught by me and the other by a fellow professor. Both of us had extensive

teaching experience in teaching the ‘Introduction to Programming’ module

(15-18 years).

At first glance, project grade statistics showed an improvement in the pass/fail

rate. More specifically, 25 students passed the course and only 9 failed. This

translates to a 74% pass rate, while the pass rate was as low as 51% during the

previous two years (2013-2014). Although the increase in the pass/fail rate

from previous semesters is obvious, feedback obtained from the post-

instruction survey (see Appendix Two - Action Research Survey) and 5 semi-

structured interviews showed that students not only deemed Greenfoot

inappropriate for the course, but also found it confusing and difficult to

program. One of the main disadvantages reported by students was that they

were obligated to learn - along with the programming language - the use of

Greenfoot’s specific libraries of commands. Some negative comments of

students in the last open-ended question of the survey included: “Greenfoot did
not help me in any way to finish my project” and “The reason I did not like
Greenfoot was mainly because I would like to know what is the original code of
that game we created for example, “main” code was locked by the creator”.
Another reported difficulty was that Greenfoot is heavily based on object-

oriented programming concepts, whereas the module serves as an introduction

to programming concepts. On the other hand, only one student reported that

“Greenfoot was a fun and creative way to learn programming”.

Table 5.8 shows the mean, median, standard deviation, minimum and

maximum scores for intention to use, preferability over Java, overall

enjoyment and tool usefulness as perceived by students who participated in the

survey, as well as their recommendation for future adoption of the tool for the

module.

105

VPE Visual Programming Environment - 1 Greenfoot

 Median Mean Standard
Deviation

Minimum Maximum Count

q20 Intent to Use 3.00 2.37 1.09 1.00 5.00
q22 Preferable over Java 3.00 2.63 1.40 1.00 7.00
Overall Enjoyable 3.00 3.22 0.88 1.00 5.00
Overall Useful 3.00 3.00 0.61 1.00 4.00
Assessment Grade 40.00 32.86 32.70 0.00 95.00
Recommendation for use
No 28
Maybe 3
Yes 4

Table 5.8: Student evaluation of Greenfoot programming environment
(Scale 1=Negative Opinion, 4=Neutral, 7=Positive Opinion)

Data obtained from the survey and student feedback from the interviews did

not demonstrate a high student preference to use Greenfoot. Twenty-eight out

of thirty-five students did not recommend the use of Greenfoot for the module.

The average assessment grade of 40 also did not show optimal outcomes.

These results from the first cycle initiated the second cycle, which took place

during Fall Semester 2015. This cycle involved the evaluation of Alice as an

instructional tool for the introduction to programming.

5.2.4 Action Research Cycle 2 (Alice)

A literature review on Alice as a visual programming environment also

reported intriguing research results (Cooper et al., 2000; Moskal et al., 2004;

Powers et al., 2007; Al-Linjawi et al., 2010; Dann et al., 2012). For example,

Moskal et al. (2004) in a two-year study which took place in two universities in

order to examine the effectiveness of Alice for improving performance and

retention, reported improved student performance, highly positive student

experiences, as well as a stimulated interest for computer science in general.

Dann et al. (2012) also reported that using Alice to introduce programming

concepts before Java in a college first-year programming course (for two

semesters) showed a significant positive impact on students’ learning.

Inspired by these findings, Alice was incorporated in the material of the

‘Introduction to Programming’ module and its instruction cycle lasted for 2

weeks (12-hours of instruction).

106

The material used for teaching Alice was taken from Oracle Academy’s Java

Fundamentals course ("Java Fundamentals – Course Description”) and a

number of activities from the Alice.org website. A sample car race activity is

included in Appendix Five.

Thirty-five (35) students participated in this study (registered in 2 classes).

The first class was taught by me and the second by another professor. The

results from the second preliminary investigation were not very promising

either. Formative assessment scores and final course grades did not

demonstrate an increase from past semesters, and feedback obtained from a

survey and 4 semi-structured interviews showed that students overall found

Alice very childish and not useful for the module.

Table 5.9 shows the mean, median, standard deviation, minimum and

maximum scores for intention to use, preferability over Java, overall

enjoyment, tool usefulness as perceived by students who participated in the

survey, as well as their score in the homework exercise and their

recommendation for a future adoption of the tool for the module.

VPE Visual Programming Environment – 2 Alice

 Median Mean Standard
Deviation

Minimum Maximum Count

q20 Intent to Use 3.00 2.26 1.01 1.00 4.00
q22 Preferable over
Java 3.00 2.74 1.20 1.00 5.00

Overall Enjoyable 3.00 3.28 0.97 1.00 5.00
Overall Useful 3.00 2.83 0.79 2.00 5.00
Assessment Grade 40.00 33.71 28.24 0.00 90.00
Recommendation for
use

No 25
Maybe 7
Yes 3

Table 5.9: Student evaluation of Alice programming environment
(Scale 1=Negative Opinion, 4=Neutral, 7=Positive Opinion)

Based on the above findings, which were not encouraging and with the intent

on finding a Visual Programming Environment that could potentially increase

student motivation to program, I found relative research on Scratch and

AppInventor block-based educational programming environments that showed

107

positive results when used by students with no prior programming experience

(Liu et al., 2012; Nikou & Economides, 2014; Papadakis et al., 2014).

5.2.5 Action Research Cycles 3 and 4 (Workshops on AppInventor and
Scratch)

The third and fourth cycles were shortened in duration and did not involve

changes in the content of the module or in the teaching methodology, but an

introduction of two new programming environments in the form of workshops.

Participation was voluntary and not formally assessed.

These two short cycles were designed in the form of workshops aiming to

explore student experiences and whether there was a perceived increase in

motivation from the viewpoint of students and instructors. Students who

participated in the workshops filled out the same survey, assessing their

motivation to participate in the workshop, their expectations and finally their

opinion on the suitability of the tools as an entry-level teaching environment

for the ‘Introduction to Programming’ module. Students were given a

programming project to complete on their own after the end of the workshop,

which they had to upload on a shared forum space on Blackboard. The

rationale behind this formative assessment was to evaluate students’ interest,

motivation and capability to create their own game using the tool, after the

end of the workshop. Also, my goal was to gauge the level of their involvement

and whether they would take their training one step further, in terms of

knowledge, beyond what they were taught in the workshop.

5.2.6 Action Research Cycle 3 (AppInventor)

The third action research short cycle took place during the Spring Semester

2016. I organised three short 2-hour workshops on AppInventor. One

advantage of AppInventor over other visual programming environments is the

possible increased motivation level which stems from creating applications that

execute on a mobile device. The fact that students can create a game or an

application which can be demonstrated and used by their friends and family

might lead them to consider that they are not merely consumers of technology,

but also producers of it (Wolber, 2011).

108

Twenty-five (25) students majoring in IT and two professors teaching

introduction to programming attended the workshops. Although shorter in

duration than the preceding cycles, student participants in this workshop

showed greater involvement in the process. APPInventor utilises blocks as the

basis for writing programs and students seemed to truly enjoy their interaction

with the tool. During the workshop, students were introduced to the

programming environment and created two mobile applications using tutorial

resources from the official MIT APP Inventor website (see Appendix Five).

Summative assessment scores were not available, since the workshop was not

part of a module but instead open to all students that were interested in

attending. The assessment grade mentioned in the table below was calculated

from the optional hangman project which they were asked to complete. Data

were collected from post-workshop surveys, in-class discussions at the end of

the workshop and from the programming projects students completed after the

workshops.

Table 5.10 shows the mean, median, standard deviation, minimum and

maximum scores for intention to use, preferability over Java, overall

enjoyment, tool usefulness as perceived by students who participated in the

survey, as well as their score in the homework exercise and their

recommendation for future adoption of the tool for the module.

VPE Visual Programming Environment - 3 App Inventor

 Median Mean Standard
Deviation

Minimum Maximum Count

q20 Intent to Use 3.00 3.27 1.34 1.00 5.00
q22 Preferable over Java 3.00 2.88 1.31 1.00 5.00
Overall Enjoyable 4.00 3.95 0.91 2.33 6.00
Overall Useful 4.00 3.85 0.80 2.00 5.00
Assessment Grade 65.00 57.88 26.80 0.00 100.00
Recommendation for use
No 16
Maybe 6
Yes 4

Table 5.10: Student evaluation of AppInventor programming environment
 (Scale 1=Negative Opinion, 4=Neutral, 7=Positive Opinion)

The survey showed an increased motivation of students to get involved with

mobile application development, but the students’ recommendation to adopt

the tool was still low.

109

Based on the fact that student perceptions about this specific kind of block-

based programming was positive overall along with an assessment average

score of 57.88% and in accordance with research findings, I decided to

evaluate Scratch, despite the fact that its main target audience primarily spans

the age group from 8 to 16 years.

5.2.7 Action Research Cycle 4 (Scratch)

The last cycle took place again during the Spring Semester 2016, when I

organised another short 6-hour workshop on Scratch. Participation was even

greater. Thirty-one (31) students from all major courses attended the

workshop. During the workshop, students were introduced to the

programming environment and created two programs: an IP packet switcher

and a game (see Appendix Five). Data were collected from the short survey, an

in-class group discussion, and scores from the formative assessment hangman

project. Results demonstrated positive attitudes of students towards the

usability of Scratch and a greater motivation to develop programs with it.

Table 5.11 shows the mean, median, standard deviation, minimum and

maximum scores for intention to use, preferability over Java, overall

enjoyment, tool usefulness as perceived by students who participated in the

survey, as well as their score in the homework exercise and their

recommendation for future adoption of the tool for the module.

VPE Visual Programming Environment - 4 Scratch

 Median Mean
Standard
Deviation Minimum Maximum Count

q20 Intention to Use 4.00 3.74 1.46 1.00 6.00
q22 Preferable over
Java

4.00 4.29 1.37 2.00 7.00

Overall Enjoyable 4.33 4.33 0.80 3.00 6.33
Overall Useful 4.33 4.38 0.74 3.00 6.33
Assessment Grade 60.00 54.03 27.03 0.00 100.00
Recommendation for
use

No 9
Maybe 7
Yes 15

Table 5.11: Student evaluation of Scratch programming environment
 (Scale 1=Negative Opinion, 4=Neutral, 7=Positive Opinion)

110

5.3 Action Research Findings and Discussion

One hundred and twenty-seven (127) students in total participated in the

study, of which only eighteen (18) were female and one hundred and nine

(109) male, which is a representative sample of XYZ college’s IT modules

population (see Table 5.12 and 5.13).

Action Research Cycles – Demographics - Gender
 Cycle 1 Cycle 2 Cycle 3 Cycle 4

 Greenfoot Alice App
Inventor

Scratch Total

Gender Age Count
Female 18-24 3 2 6 7 18
 24-34 0 0 0 0 0
Total Female 3 2 6 7 18

Male 18-24 28 30 18 20 96
 24-34 4 3 2 4 13
Total Male 32 33 20 24 109
Total 35 35 26 31 127

Table 5.12: Action research study – Demographics: Gender

Action Research Cycles – Demographics - Major
Major Cycle 1 Cycle 2 Cycle 3 Cycle 4 Total
Communications 2 0 0 0 2
Economics 1 0 1 3 5
International Business 0 3 0 0 3
Information Technology 27 26 16 19 88
Management Information
Systems 3 4 5 7 19

Marketing 0 2 1 0 3
Non-Degree 1 0 0 0 1
Undecided 1 0 3 2 6
All Majors 34 35 23 29 127

Table 5.13: Action research study – Demographics: Majors

A very interesting outcome of this research is that 72% of the students actually

completed the homework (formative) assessment exercise. In the first action

research cycle, 57% of the students submitted their work, as opposed to 63%

for the second action research cycle. Even better results were demonstrated in

the last two cycles, with 66% and 77% submission rates respectively (see

Figure 5.3). At this point, I should stress the fact that attendance was

“voluntary” for those last two cycles and the project was optional.

111

Figure 5.3: Percentage of students who submitted their project per VPE

One assumption for the analysis of the results is that the motivation to learn

computer programming was not statistically different among groups. In order

to test this hypothesis, I performed a non-parametric Kruskal-Wallis Test,

which showed that the medians of motivation to learn programming (see

Table 5.14) were the same across all four action research cycles (one per VPE).

Hypothesis Test Summary

 Null Hypothesis Test Sig. Decision

1

The medians of Motivation to learn
programming are the same across
categories of VPE Visual Programming
Environment.

Independent-
Samples Median
Test

.956 Retain the null
hypothesis.

2

The distribution of Motivation to learn
programming is the same across
categories of VPE Visual Programming
Environment.

Independent-
Samples Kruskal-
Wallis Test

.804 Retain the null
hypothesis.

Table 5.14: One-way ANOVA test for the equality of medians across VPEs

Before moving on with the analysis of the data collected from the

questionnaires, Figure 5.4 shows the mean scores in each question per VPE.

112

Figure 5.4: Mean score per question per VPE

By observing the line chart, we can see some differences in student opinions

about each tool (q15–q22), while for the overall motivation to learn

programming student opinions tend to converge (q9-q14). In order to test

whether the observed difference of the means has a statistical significance and

to decide on which is the most appropriate statistical test to perform, the

following assumptions must be tested: a) that there are no significant outliers;

b) data follows a normal distribution (Figure 5.5); and c) homogeneity

variances are low.

113

Figure 5.5: Comparison of distributions: Student rating for each VPE

The Shapiro-Wilk’s test (p > 0.05) (Shapiro & Wilk, 1965) in Table 5.15 and a

visual inspection of the histograms, normal QQ Plots and box plots, showed

that mean scores for (b) perceived enjoyment and (c) perceived usefulness

were approximately normally distributed for all VPEs; so, parametric tests can

be employed for the comparison of their means. On the other hand, mean

scores for (a) motivation to learn programming are not normally distributed,

suggesting that non-parametric tests should be used to test for equality of

means.

114

Shapiro-Wilk’s Test of Normality

 Kolmogorov-
Smirnova Shapiro-

Wilk

 Statistic df Sig. Statistic df Sig.

A) Motivation to Learning Programming

1 Greenfoot .118 35 .200* .925 35 .020

2 Alice .117 35 .200* .919 35 .013

3 App Inventor .137 26 .200* .920 26 .044

4 Scratch .173 31 .019 .900 31 .007

B) Perceived Overall Enjoyment

1 Greenfoot .152 35 .039 .941 35 .058

2 Alice .113 35 .200* .966 35 .348

3 App Inventor .135 26 .200* .959 26 .374

4 Scratch .145 31 .093 .943 31 .101

C) Perceived Overall Usefulness

1 Greenfoot .150 35 .046 .943 35 .068

2 Alice .109 35 .200* .953 35 .137

3 App Inventor .192 26 .015 .946 26 .189

4 Scratch .122 31 .200* .955 31 .211

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction
Table 5.15: Shapiro-Wilk’s test of normality

The next step for the normally distributed dependent variables (b) and (c) is to

test homogeneity of variances using Levene’s test to check the assumption that

the variances for the 4 groups are equal. The result of the Levene’s Test was

not significant (see Table 5.176).

(b) perceived enjoyment: F (3/123) = 0.579, p=0.630 at 0.95 alpha level.

(c) perceived usefulness: F (3/123) =1.088, p=0.357 at 0.95 alpha level.

115

 Levene Statistic df1 df2 Sig.

Perceived Enjoyment .579 3 123 0.630

Perceived Usefulness 1.088 3 123 0.357

Table 5.16: Levene’s test of homogeneity of variances

Thus, the assumption of homogeneity of variance is met and the one-way

ANOVA test can be used to test the null hypothesis that the mean difference of

enjoyment and usefulness across tools is not significant (see Table 5.17).

 Sum of
Squares

df Mean
Square

F Sig. (p)

Perceived
Enjoyment Between Groups 28181 3 9394 11760 .000

 Within Groups 98249 123 .799
 Total 126430 126
Perceived
Usefulness Between Groups 51267 3 17089 31599 .000

 Within Groups 66521 123 .541
 Total 117788 126

Table 5.17: One-way ANOVA test for the equality of means

Since p < 0.001 and thus < 0.05, which is the chosen level of significance, I

can reject the null hypothesis that the means of perceived enjoyment and

perceived usefulness between the 4 VPEs are equal.

Having understood that there is a mean difference between the four visual

programming environments, the next step is to investigate which are those

that cause the reported difference with a post-hoc multiple comparisons

Turkey HSD test (see Table 5.18).

116

A Post-Hoc Multiple Comparisons - Tukey HSD Test
Depe-
ndent
Variable

(I) VPE (J) VPE
Mean
Difference
(I-J)

Std.
Error Sig.

95% Confidence
Interval

Perceived Enjoyment Lower
Bound

Upper
Bound

 1
Greenfoot

2 Alice -0.0571 0.2136 .993 -0.6136 0.4993

 3 App Inventor -0.7296 0.2314 .011 -1.3323 -0.1270
 4 Scratch -1.1142 0.2204 .000 -1.6884 -0.5402
 2 Alice 1 Greenfoot 0.0571 0.2136 .993 -0.4993 0.6136
 3 App Inventor -0.6725 0.2314 .022 -1.2752 -0.0699
 4 Scratch -1.0571 0.2204 .000 -1.6313 -0.4830

 3 App
Inventor 1 Greenfoot 0.7296 0.2314 .011 0.1270 1.3323

 2 Alice 0.6725 0.2314 .022 0.0699 1.2752
 4 Scratch -0.3846 0.2376 .372 -1.0036 0.2344
 4 Scratch 1 Greenfoot 1.1142 0.2204 .000 0.5402 1.6884
 2 Alice 1.0571 0.2204 .000 0.4830 1.6313
 3 App Inventor 0.3846 0.2376 .372 -0.2344 1.0036

Perceived Usefulness
Lower
Bound

Upper
Bound

 1
Greenfoot

2 Alice 0.1714 0.1758 .764 -0.2864 0.6293

 3 App Inventor -0.8461 0.1904 .000 -1.3421 -0.3503
 4 Scratch -1.3763 0.1813 .000 -1.8487 -0.9039
 2 Alice 1 Greenfoot -0.1714 0.1758 .764 -0.6293 0.2864
 3 App Inventor -1.0175 0.1904 .000 -1.5135 -0.5217
 4 Scratch -1.5477 0.1813 .000 -2.0202 -1.0754

3 App
Inventor 1 Greenfoot 0.8461 0.1904 .000 0.3503 1.3421

 2 Alice 1.0175 0.1904 .000 0.5217 1.5135
 4 Scratch -0.5301 0.1955 .038 -1.0395 -0.0208
 4 Scratch 1 Greenfoot 1.3763 0.1813 .000 0.9039 1.8487
 2 Alice 1.5477 0.1813 .000 1.0754 2.0202
 3 App Inventor 0.5301 .19557 .038 0.0208 1.0395

Table 5.18: Post-hoc multiple comparisons between VPEs - Tukey HSD test

The Turkey post-hoc test revealed that the overall perceived enjoyment of:

1) GreenFoot (M=3.219, SD=0.8776) was statistically significantly lower (-

0.7296) compared to AppInventor (M=3.9487 SD=0.9125, p=0.11) and even

lower (-1.1142) compared to Scratch (M=4.33, SD=0.8027, p=0.0001),

117

while there was no statistical difference compared to Alice (-0.0571)

(M=3.2762, SD=0.9684, p=.993).

2) Alice (M=3.2762, SD=0.9684) was statistically significantly lower

(-0.6725) compared to AppInventor (M=3.9487 SD=0.9125, p=0.001) and

even lower (-1.0571) compared to Scratch (M=4.33, SD=0.8027, p<0.001),

while there was no statistical difference compared to Greenfoot.

3) Scratch on the other hand (M=4.3333, SD=0.8027) was statistically

significantly higher (1.1142) compared to Greenfoot and Alice (1.0571) but

there was no statistically significant difference (0.3846) compared to App

Inventor (M=3.9487, SD=0.7957, p=0.3720).

The Turkey post-hoc test revealed that the overall perceived usefulness of:

1) Greenfoot (M=3.000, SD=0.6103) was statistically significantly lower (-

0.8461) compared to AppInventor (M=3.8462, SD=0.7957, p<0.001) and

even lower (-1.3763) compared to Scratch (M=4.3763, SD=0.7441,

p<0.001), while there was no statistical difference compared to Alice (0.1714)

(M=2.8286, SD=0.7936, p=0.7640).

2) Alice (M=3.2762, SD=0.9684) was statistically significantly lower (-

1.01758) compared to AppInventor (M=3.8462, SD=.7957, p<0.001) and

even lower (-1.5477) compared to Scratch (M=4.3763, SD=0.7441,

p<0.001), while there was no statistical difference compared to Greenfoot.

3) Scratch on the other hand (M=4.3763, SD=0.7441) was statistically

significantly higher (1.3763) compared to Greenfoot (M=3.000, SD=0.6104,

p<0.001), Alice (1.5477) and App Inventor (0.5302).

5.4 Conclusion

Based on the above, we can conclude that the specific groups of students did

not enjoy programming using Greenfoot and Alice as much as the groups of

students did using AppInventor and Scratch. As far as perceived usefulness is

concerned, Scratch was deemed to be more useful for the ‘Introduction to

Programming’ module than all the other 3 visual programming environments.

118

Feedback obtained from the in-class discussion indicated that, although

students seemed to enjoy mobile application development using APPInventor,

they did not find it appropriate for the introductory course.

The last question in the survey, “would you recommend the addition of ‘this tool’
as part of the teaching material for the Introduction to Programming module?”
can be used to verify the results obtained from the statistical tests. Eighty per

cent, 71% and 62% of the students would not recommend Greenfoot, Alice

and AppInventor respectively for the introduction to programming module,

while only 29% of the students were negative about Scratch. The results are

depicted in Figure 5.6.

Figure 5.6: Participant recommendations for the adoption of each tool

The findings described above were instrumental in my decision to use Scratch

as the Visual Programming Environment tool of choice for my main study.

It should be noted that a limitation of the data analysis carried out was that

data obtained from the two “workshop” cycles, which informed the study

about overall student perceptions around AppInventor and Scratch enjoyability

and usefulness, cannot be accurately compared to that of the first and second

action research cycles, in which the visual programming environment was

actually incorporated into the material of the module.

119

Another limitation of this preliminary study might stem from the divergence

across the in-class activities used in Alice, Greenfoot, APPInventor and Scratch.

The nature of the programming activities performed during the workshops as

well as the user interface and capabilities of each VPE might have affected

student perceptions.

The “childish” interface of Alice (according to student comments) might have

predisposed them to reject the tool, without carefully considering its

capabilities to demonstrate and apply advanced programming concepts. On the

other hand, the task developed in Scratch, using an Internet Protocol (IP)

packet switching “computing concept” compared the “game” development

activities demonstrated using Greenfoot, as well as the “fun” activities

developed in APPInventor, might have altered learners’ perceptions.

To help mitigate the bias resulting from the variation in the activities

undertaken across action research cycles, students were introduced to the

same concepts in all VPEs (see Appendix Five). Furthermore, students were

given the same final assignment and graded using the same rubric (see Table

5.19). It thus seems unlikely that the variation in the learning activities would

have led to a significant difference in the results.

Experience gained from the design, execution and data analysis of this

preliminary research, in addition to the findings reported by existing literature,

informed the case study design and formed the basis of my subsequent

research.

120

Chapter 6 Research Design and Methodology

6.1 Purpose

The purpose of this chapter is to present and justify the research design and

evaluate the suitability of the proposed methodology for conducting this type

of research, as well as the reasoning by which case study was identified as the

most appropriate methodology to evaluate and explain why the proposed

innovation succeeded or failed to motivate students when learning how to

program.

In addition, the chapter provides readers with background information and an

explanation of the rationale for using mixed methods for data collection and

the strategy behind the data collection process. It concludes with a detailed

description of the steps taken to develop the questionnaires used to implement

quantitative data collection, as well as the interview protocol used to perform

qualitative data collection.

6.2 Case Study and Data Collection Approaches

Research methodology is defined by Leedy and Ormrod (2010) as “the general
approach the researcher takes in carrying out the research project” (p. 14). The

selection of a research methodology is based on the subject, the nature and the

aims of the research questions being addressed, including the theoretical and

philosophical assumptions upon which research is based and it will provide the

general framework guiding the research project.

A case study methodology is considered to be appropriate when a researcher

wishes to examine a unique issue or phenomenon in detail, as well as its real-

life manifestation (Baxter & Jack, 2008). Additionally, a case study is a design

of inquiry found in many fields, especially evaluation, in which the researcher

develops an in-depth analysis of a case, often a program, event, activity,

process, or one or more individuals (Stake, 1995).

Yin (2003) defines a case study as “an empirical inquiry that aims to

investigate a contemporary phenomenon in-depth and within its real-life

121

context, especially when the boundaries between phenomenon and context are

not clearly evident”.

According to Yin, five components are crucial in a case study design:

1. The study’s research questions;

2. Its propositions;

3. Its unit of analysis;

4. The logic linking the data to the propositions; and

5. The criteria for interpreting the findings.

Cases are bounded by time and activity, and researchers collect detailed

information using a variety of data collection procedures over a sustained

period of time (Stake, 1995; Yin, 2003).

Using case study as my methodological approach, I can study the complexity of

learning programming as perceived by students (my unit of analysis) as well as

their motivation to learn. Further, I can explore a possible connection between

students’ preference for visual programming environments with their learning

styles, while observing their behaviour, and keeping track of their performance

in this unique situation.

The phenomenon under investigation is unique as far as the group of

individuals that will be studied, their age group, gender, ethnicity, their role in

the class and XYZ college in which the study takes place is concerned. These

independent variables cannot be controlled and might have an effect on the

results obtained by the study.

Case study methodology has previously been used to explore topics including

education and teaching of programming (Hadjerrouit, 2007; Jones, 2010;

López et al., 2016; Pellas & Peroutseas, 2016). While the focus of this research

is mainly grounded in the IT field and more specifically in computer

programming, the flexibility of the case study methodology will enable cross-

disciplinary themes to be addressed such as educational and motivational

theories and their implications. It could be argued that since human behaviour

is a such a complex phenomenon, statistics alone cannot adequately describe

it. As a result, blending both qualitative and quantitative methods can help

122

researchers enhance the understanding of technical and behavioural aspects

(Seaman, 1999). Case study methodology allows for a mixed method data

collection strategy as the exactness of quantitative, and ‘richness’ of qualitative,

approaches can be combined (Runeson, 2012).

At the same time, according to Eisenhardt (1989), a major limitation of a case

study design is that the results obtained, although very rich in detail, might

lack the simplicity of a generalised perspective or may result in a very narrow

and idiosyncratic theory.

However, a methodological debate is found in the literature, where different

authors identify distinct themes which are used to categorise the direction,

organisation and design of case studies. Thomas (2011) provides a table

summarising the characteristics of most recent general themes in the

methodological debate. I used Table 6.1 as a tool to identify the common

categories and I highlighted and emboldened the ones that fit my

methodological approach.

Merriam
(1988)

Bassey
(1999) de Vaus (2001) Yin (2009) Creswell

(2011)

Descriptive Educational
theory seeking

Descriptive /
Explanatory Critical Convergent

Interpretative Theory testing
Theory testing /
Theory building

Extreme/
unique Explanatory

Evaluative Storytelling
Single Case /
Multiple case Longitudinal Exploratory

Concrete and
Contextual

Picture
drawing

Holistic/embedded Representative Embedded

 Evaluative Parallel /
Sequential Revelatory Transformative

Retrospective/

prospective Multiphase

Table 6.1: Case study designs/themes

123

In the context of this research, I share Merriam’s (1998) view that a case study

is particular (concrete and contextual), descriptive and heuristic, and as such,

it can be used to evaluate and explain why an innovation worked or failed to

work, as well as to summarise and make conclusions.

The evaluative nature of case studies in educational settings is also discussed

by Bassey (1999) referring to Stenhouse’s (1978) views, who claims that the

purpose of an evaluative case study is to provide teachers (and other

educational actors) with information that will help them judge the worth of a

program (or a policy or even an institution).

As far as the data collection and analysis is concerned, three generalised

categories or so-called strategies of inquiry are found in the literature:

quantitative, qualitative and mixed methods.

One simplified distinction between quantitative and qualitative informing

results is that, to explore and understand a case, the quantitative data rely on

numbers while their qualitative counterpart rely on words. Creswell (2014)

notes that quantitative research is an approach for testing objective theories by

examining the relationship among variables, while qualitative research is an

approach for exploring and understanding the meaning individuals or groups

use to describe to a social or human problem, while mixed (hybrid) methods

reside in between the two approaches by incorporating elements from both.

Mixed methods data techniques involve collecting both quantitative and

qualitative data, integrating the two forms of information, and using distinct

designs that may involve philosophical assumptions and theoretical

frameworks. The core assumption of this form of inquiry is that the

combination of qualitative and quantitative data provides a more complete

understanding of a research problem than either approach could provide if

applied alone. More specifically, Creswell (2014) mentions that “mixed
methods involve combining or integration of qualitative and quantitative research
and data in a research study. Qualitative data tends to be open-ended without
predetermined responses while quantitative data usually includes closed-ended
responses such as found on questionnaires or psychological instruments” (p.43).

A literature review on the quantitative/qualitative debate shows that a

researcher can use mixed methods as a means to attain meaningful and valid

124

results and to answer pertinent research questions. Any quantitative measure

can be expressed qualitatively, and any qualitative measure can be expressed

in a quantitative manner. Krauss (2005), Creswell and Clark (2011) and

Robson and McCartan (2016), support the argument that mixed forms of

evidence will lead us to a comprehensive understanding of the problem and

extract meaning from “the real world”. Merton and Kendall (1946) express the

same sentiment that social scientists have come to abandon the spurious

choice between qualitative and quantitative data: they are rather concerned

with the combination of both that makes use of the most valuable features of

each. The problem becomes one of determining at which points they should

adopt the one, and at which the other, approach.

This research study follows an explanatory sequential mixed method design for

data collection. Explanatory mixed methods are those in which the researcher

first conducts quantitative research, analyses the results and then builds on the

results to explain them in more detail with qualitative research. It is considered

explanatory because the initial quantitative data collected for the survey will

provide a more general statistical picture of the variables, which can then be

explained further with the qualitative data to provide us with a more in-depth

understanding of student perceptions, thus following the evaluative (Bassey,

1999) and explanatory (Creswell & Clark, 2011) sequential framework.

The timing of the research is sequential (quantitative followed by qualitative

data collection). The quantitative part will be used to provide the general

statistical picture of the phenomenon under investigation as well as identifying

possible participants for the qualitative part. The qualitative part, on the other

hand, will be used to explore the participant views in-depth to look to explain

the statistical results obtained from the survey.

Based on the above, my overarching methodological approach is an evaluative

case study and the data collection follows an explanatory sequential mixed

method design. The case study is within the context of the ‘Introduction to

Programming’ module at an English-speaking institution of higher learning in

Southern Europe, college XYZ and is based upon participatory action research

practice. The population being studied are students registered in the module

for four consecutive semesters. Scratch software was used to enable students

to undertake visual programming. My research questions in this context were:

125

RQ1: How do visual programming environments affect students’ performance

in the course (assessment and final grades)?

RQ2: How do students perceive the Scratch visual programming environment?

a) How do students perceive enjoyability, ease of use, usability and

usefulness?

b) How do students relate these qualities to their achievement of the

module’s learning objectives (output quality)?

RQ3: How does students’ motivation for learning programming relate to their

perceptions about visual programming environments?

RQ4: How do students’ learning styles relate to their perceived enjoyment,

ease of use, usability and usefulness of Scratch visual programming

environment?

The dependent variables and the methods which will be used for their analysis,

in order to address the above-mentioned research questions, are:

• Students’ perceptions about Scratch visual programming environment’s

enjoyability, ease of use, usability and usefulness, measured both

quantitatively using data collected from the survey (Technology

Acceptance Model part) and qualitatively using semi-structured

interviews to address research question 1.

• Students’ performance in the course, measured quantitatively using

assignment and examination scores (leading to final course grades).

This can be compared to students’ performance in previous semesters

(before the introduction on the visual programming environments), to

address research question 2: Students’ performance in the Scratch

assessment compared to their performance in a Java assessment.

• Students’ motivation for learning programming is measured

quantitatively using data collected from the survey (Motivated

Strategies for Learning) and explored qualitatively using semi-

structured interviews and class observations to address research

question 3.

126

• Students’ learning approaches, measured quantitatively using data

collected from the survey (Learning Styles Questionnaire), compared to

students’ perceptions about the Scratch visual programming

environment’s enjoyability to address research question 4.

Data collected from the semi-structured interviews are studied in depth in

order to identify the variations in students’ perceptions about programming in

general as well as about visual programming environments and to form an

outcome space. On the other hand, data collected from the surveys are

analysed quantitatively using statistics. Data collected from the formative

examinations will be used to inform the research about the possible variations

between students’ perceptions and their actual performance in an examination

setting.

Given this perspective, I will summarise my own stance about the overall

design of this research in Figure 6.1.

127

Figure 6.1: Case study research design

128

6.3 Pedagogic Design: Teacher’s Role and Students’ Activity

From Fall Semester 2016 onwards, Scratch 2.0 was used during the first two

weeks of instruction of the introduction to programming module, spanning six

theory and four laboratory sessions (a total of ten instructional hours).

The teaching pedagogy of this part of the module combined elements of design

(prescribed tasks) and improvisation (within pre-designed learning activities).

This approach promoted a creative class environment in which students

proposed or recommended next steps in an activity, especially because it

involved game development. The prescribed content outline is presented as

follows.

Theory Session 1: Introduction to the environment, description of code-blocks

and practice with the code editor, using sprites, costumes, changing

backgrounds.

Activity 1: Understand/predict the output of the Scratch program.

Activity 2: Execute the program to visualise the output and fix the

logical error.

Theory Session 2: Introduction to basic programming constructs, such as

variables, input, output, conditions, loops and basic event handling available in

Scratch toolbox.

Activity 1: Write the pseudocode for a Body Mass Index calculator.
Implement the pseudocode using Scratch.

Activity 2: a step-by-step tutorial of how to create a pong game.

Laboratory Session 1 – assignment: solve the maze (level of difficulty: easy).

Laboratory Session 2 – assignment: create a birthday cake (level of difficulty:

easy).

Theory Session 3: Explanation of more advanced programming concepts,

such as arrays, cloning (instantiation) and message-broadcasting. All concepts

were demonstrated by the professor using live coding.

129

Activity 1: Read the specifications and create an Internet Protocol (IP)

packet switcher, using a Domain Name Server (DNS) resolver array.

Laboratory Session 3 – assignment: create a fruit ninja game (level of

difficulty: medium).

Laboratory Session 4 – assignment: create a hunting game (level of difficulty:

medium-hard).

Theory Sessions 3-4-5: In-class group work - Donkey-Kong inspired platform

game. Students work in pairs towards the development of a Donkey-Kong

inspired platform game. The instructor’s role in this phase was more of a

facilitator than a teacher, assisting whenever students did not know how to

progress.

While students worked on their computers during laboratory sessions,

instructors kept general notes on their interaction with the program, their

emotional expressions, their levels of attention and perseverance, and their

performance (see Appendix Three).

Keeping notes of human behaviour imposes a limitation on the study due to

inherent partiality of the observer; furthermore, the process could not be

exhaustive in terms of data gathering, given that there was only one observer

for the over fifteen students in the classroom. Performing audio-visual

recordings could have been used to overcome this limitation (Cohen et al.,
2013) and multimodal discourse analysis (Kress & Van Leeuwen, 2001) could

have enriched the study with additional perspectives including the analysis of

student interactions with the environment (recorded using screen capture

software) and the recording of student facial expressions and verbal comments

(recording using computer cameras).

Visual research methods would have provided a rich amount of data for

analysis; however, constrained by the fact that the study took place within a

formal classroom setting, video or screen recording might have proved to be

obtrusive to the lesson, and would additionally require the consent of all the

students. Furthermore, according to Bassey (1999), making it obvious to

subjects that they are being recorded might instigate a change in behaviour.

130

At the end of the two weeks, students were assigned the first part of their

summative coursework: to develop a hangman game in Scratch, utilising a

fixed dictionary of ten words. The program had to randomly pick a word from

the dictionary and the user had to guess the word. User input was to be

validated and compared to the letters of the word picked, allowing one to

evaluate the appropriate use of strings and conditionals by the programmer.

Ten tries were allowed in each game, thus demonstrating the appropriate

usage of repetition. Code had to be documented using comments. Modularity

of the code was also a factor to be assessed. As an additional challenge,

students were asked to propose and implement extra functionality to enhance

their game.

Scratch coursework assessed students’ knowledge of all concepts taught:

arrays; random numbers; conditions; loops; event-handling; message

broadcasting; cloning; timers; custom blocks; game mechanics (score, win/lose

conditions); and code documentation. This coursework part accounted for

20% of the students’ final grade.

After the 2 weeks of VPE instruction, students progressed to learning how to

program using Java (refer to section 1.3). For their Java coursework

assessment, students were required to implement the same hangman game.

The Java assessment accounted for 40% of the students’ final grade.

Students were also assessed with a midterm examination in pseudocode and

Java, accounting for the remaining 40% of the students’ final grade.

6.4 Development of the Questionnaire Survey Tool

To identify student perceptions of the enjoyment, ease of use, usefulness,

output quality and attitude towards using Scratch, Davis’s Technology

Acceptance Model was adapted and validated. Details about adaptations follow

in sub-section 6.3.3 concerning the questionnaire Section 2 - Overall

Evaluation and Acceptance of Scratch and in sub-section 6.3.4 concerning

questionnaire Section 3 - Perceived Ease of Use and Perceived Usefulness.

131

To identify student motivations to learn programming, a mixture of questions

from Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich & de

Groot, 1990b) and from the Science Motivation Questionnaire (SMQ-II)

(Glynn et al., 2009) were adapted. The process of the identification and

selection of questions included, follows in sub-section 6.3.5 concerning

questionnaire Section 4 - Motivated Strategies for Learning.

Finally, to identify student learning styles, Felder and Soloman’s Index of

Learning Styles instrument was adopted without modification (see sub-section

6.3.6 concerning questionnaire Section 5 - Index of Learning Styles).

All three instruments, along with general demographic information were

included in the final survey instrument and administered to students enrolled

in the ‘Introduction to Programming’ module.

The finalised survey contains six main sections and was administrated online

using the Qualtrics Survey Platform of Lancaster University.

6.4.1 Section 0 – Participant Information Sheet and Consent Form

Section 0 contains the participant information sheet where the students are

informed of the purpose of the study and are requested to check all questions.

Participants that provide at least one negative response to the questions above

are immediately disqualified and are transferred to the “Thank you” exit page.

The participant information sheet, as well as the concept form, obtained ethics

clearance from ethics committees of both Lancaster University and XYZ College

where the study took place.

132

6.4.2 Section 1 - Participant Demographic Information

In section 1, participants were asked five demographic questions, one question

concerning the reason they took the course, one question about their current

programming level (which branched to which programming languages they

were already being taught and whether they were familiar with block-based

programming in the past), three Likert-type scale questions based on their

overall opinion about Scratch and their intentions of using it in the future, and

two open-ended questions about Scratch features that they found useful and

ones they disliked (possible perceived barriers).

6.4.3 Section 2 - Overall Evaluation and Acceptance of Scratch

Questions included in Section 2 are based on Davis’s overall system evaluation

in the Technology Acceptance Model (TAM) (Davis, 1985). TAM has been

widely applied to identify user attitudes towards the use of technology and to

predict the adoption of a system (Chang & Cheung, 2001; Wixom & Todd,

2005; Shroff et al., 2011; Weng et al., 2018). Wording of the questions was

modified to fit the context under investigation.

The final survey tool section 2 contained five questions (Q15 – Q21) aiming to

measure “attitude” towards using Scratch, utilising semantic differential

(bipolar) rating scales, based on Martin Fishbein and Icek Ajzen’s theory of

reasoned action (Fishbein & Ajzen, 1975) and Osgood measurement

techniques of belief, attitude, intention and behaviour (Osgood et al. 1957).

Enjoyment according to the definition provided by the Collins English

dictionary is the “feeling of pleasure and satisfaction that you have when you

do or experience something that you like” (Collins English Dictionary, 2019).

Carroll and Thomas add that in order for students to engage in activities and

consider them fun “is all right to fail” (Carroll & Thomas, 1988). The same

view is supported by Deci (1976) stressing that there is external reward related

to the “fun” activity apart from the feeling of competency. Davis et al. (1992)

align with the views of Deci (1976), Malone (1981) and Carroll and Thomas

(1988) that perceived enjoyment could be considered as an example of

intrinsic motivation, whereas perceived output quality, relevance and

133

effectiveness could be considered as examples of extrinsic motivation. Both of

them have been included in this study following the TAM2 technology

acceptance model (see Figure 6.2) to measure perceived enjoyment and

output quality along with ease of use and usefulness to support the learning

objectives of the introduction to programming module.

 Figure 6.2: TAM2 extended to include enjoyment and output quality

Osgood has proven that the semantic differential approach with five items (five

bipolar pairs of adjectives) yields reliable findings, which highly correlate with

alternative Likert numerical measures of the same attitude (Osgood et al.,
1957). Examples of responses in the form of adjective pairs have been found to

reflect the evaluation or judgement about an object, concept, or behaviour

along a dimension of favour or disfavour, good or bad, like or dislike,

enjoyable or unenjoyable, desirable or undesirable, good or bad, pleasant or

unpleasant, relevant or irrelevant, interesting or not interesting on the

Semantic Differential (SD) scale.

The reason to adopt the specific adjective pairs: boring-fun, ineffective-

effective, unenjoyable-enjoyable, irrelevant-relevant, unpleasant-pleasant is

three-fold. Firstly, their validity has been established in previous research

(Davis, 1985; Igbaria et al., 1995; Chang & Cheung, 2001; Wixom & Todd,

2005). Secondly, they reflect motives of using technology derived from a

larger pool extracted from past research which is similar to this research

context. Lastly, they were selected from a larger item pool of adjectives as

being the most representative ones, using a card-sorting survey. Ten professors

who teach various programming modules (subject field experts) at XYZ college

134

were asked to choose 6 adjectives from a larger pool and place them in the two

categories (enjoyment/output quality). The larger pool contained also the

adjectives: efficient, beneficial, important, interesting and demonstrable. The

results using a standardisation matrix are shown in Table 6.2.

Standardisation Matrix

Variable name Construct: Enjoyment Construct: Output Quality
Beneficial 1 3
Demonstrable 3 4
Effective 9
Efficient 5
Enjoyable 9
Fun 10
Functional 10
Important 2 3
Interesting 5 1
Pleasant 9
Relevant 10

Table 6.2: Standardisation matrix - Card Sorting

As a result, the overall attitude construct included in the survey encompasses

an enjoyment sub-construct (questions 15, 17 and 19) and a cognitive

instrumental process sub-factor (questions 16, 18, 21). Both enjoyment and

cognitive instrumental processes (output quality, result demonstrability,

relevance) have been shown by prior studies to significantly influence user

acceptance (Venkatesh & Davis, 2000).

6.4.4 Section 3 - Perceived Ease of Use and Perceived Usefulness

In Section 3, questions were again adapted from Davis’s Technology

Acceptance Model (1985).

Davis (1985), in his doctoral thesis, proposed that an information system’s user

acceptance can be predicted by user motivation. He also argued that user

motivation is influenced by an external stimulus of the actual system’s features

and capabilities (see Figure 6.2).

135

The technology acceptable model contains twelve Likert-type questions of the

same scale. Davis’s technology acceptance survey (Davis, 1989) consists of two

factors: perceived usefulness and perceived ease of use and six (6) statements

in which the (…) ellipse can be replaced by the system under consideration for

user acceptance.

Perceived ease of use (PEU)

• EASE1: Learning to operate the (. . .) is easy for me

• EASE2: I find it easy to get the (. . .) to do what I want it to do

• EASE3: Usage of the (. . .) is clear and understandable

• EASE4: I find it cumbersome to use the (. . .)

• EASE5: It is easy for me to remember how to perform tasks using (. . .)

• EASE6: Overall, I find the (. . .) easy to use

Perceived Usefulness (PU)

• USE1: Using (. . .) enables me to accomplish tasks more quickly

• USE2: Using (. . .) improves my job performance

• USE3: Using (. . .) increases my productivity

• USE4: Using (. . .) enhances my effectiveness on the job

• USE5: Using (. . .) makes it easier to do my job

• USE6: Overall, I find (. . .) useful in my job

I studied the questions originally created and tested by Davis during the

development of the tool, as well as a number of other similar questions

adapted by subsequent studies.

Keeping similar wording where possible, I included five questions concerning

student opinion about Scratch’s perceived ease of use. The selection of the final

statements, as they appear below, was finalised after a focus-group review

136

session with the four fellow professors (subject field experts) who participated

in the selection of the adjectives for the previous survey section.

• Q23: Learning to operate Scratch is often frustrating. (EASE1)

• Q24: It is easy for me to remember how to perform tasks inside the

Scratch Environment. (EASE2)

• Q25: I find it easy to get Scratch to do what I want it to do. (EASE3)

• Q26: Usage of Scratch is clear and understandable. (EASE4)

• Q27: Overall, I find Scratch easy to use. (EASE5)

Again, maintaining similar wording where possible, I included five questions

concerning student opinion about Scratch’s perceived usefulness.

• Q28: Using Scratch helped me improve my computing skills. (USE1)

• Q29: Scratch makes it easier for me to convey an algorithm into a

program, rather than using a text-based programming language. (USE2)

• Q30: Scratch improved my understanding of all critical aspects of the

software development process (which are the main learning outcomes

of this module). (USE3)

• Q31: Scratch makes it easier for me to understand the main

programming concepts (variables, loops, decisions, etc.). (USE4)

• Q32: Overall, I find Scratch useful for this module. (USE5)

The version of the TAM used to evaluate the perceived enjoyment, output

quality, ease of use and usefulness of Scratch is depicted in Figure 6.3. The

arrows which demonstrate the relationships between the variables are missing,

since the scope of this study was not to create and verify a model for the

acceptance of Scratch rather than relate the TAM variables to the participants’

learning styles.

137

Figure 6.3: TAM of Scratch

6.4.5 Section 4 - Motivated Strategies for Learning

In order to standardise terminology between the two distinct tools, I will use

the word “category” in this section to represent the meaning of components or

scales or summative scales and the word “statement” to represent the items or

the questions of the questionnaire.

The MSLQ is a self-reporting instrument developed to measure students’

motivation, orientations and use of learning strategies. The first version of the

Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich & de Groot,

1990) contained 5 categories: intrinsic value, self-efficacy, test anxiety,

cognitive strategy for use and self-regulation, with a total of fifty-six

statements. The final version (Pintrich et al., 1991) is composed of two

sections. The motivation section contains six categories and a total of thirty-

one statements, while the learning strategies section contains nine categories

and a total of fifty statements. More specifically:

The motivation section contains three main components which include the size

scales mentioned above:

1) a value component which includes scales for:

a) intrinsic goal orientation,

b) extrinsic goal orientation, and

138

c) task value;

2) an expectancy component which includes scales for:

a) control of learning beliefs,

b) self-efficacy for learning and performance,

c) an affective component which includes a scale for, and

d) test anxiety.

The learning strategies section includes two main components:

1) the cognitive and metacognitive strategies component which include scales

for:

a. rehearsal,

b. elaboration,

c. organisation,

d. critical thinking, and

e. metacognitive self-regulation;

2) the resource management strategies component which includes scales for:

a. time and study environment,

b. effort regulation,

c. peer learning, and

d. help seeking (Duncan & Mckeachie, 1991; Pintrich et al., 1991).

The Science Motivation Questionnaire II, on the other hand, contains five

categories and each category is composed of five statements, totalling twenty-

five statements, related to intrinsic motivation, self-efficacy, self-

determination, grade motivation and career motivation.

These two questionnaires have common categories: intrinsic motivation, task

value, extrinsic motivation, self-efficacy, self-regulation and self-determination.

Both tools consist of statements and use Likert-type scales to obtain user input

which are reflecting extreme positions on a continuum across which people are

likely to agree (very true of me) or disagree (not at all true to me). Summative

scores are constructed by taking the mean of the statement scores that make

139

up each category. Both tools have been tested multiple times for their validity

and reliability by their creators (Glynn et al., 2009; Pintrich et al., 1993; Glynn

et al., 2011).

There are three main reasons for not applying the scales from the existing

questionnaires. The main reason for creating a new questionnaire is because I

identified a gap in the literature in finding a tool to access student motivation

in learning how to program. Secondly, the statements of the existing

questionnaires did not fully address the topic of computer programming and,

finally, not a single questionnaire addressed all motivational components

required for this research. For example, career motivation exists only on the

SMQ-II and is directly related to extrinsic motivation. Intrinsic motivation is

addressed in the Science Motivation questionnaire in a way that lacks the

component of task value, while the Motivated Strategies for Learning

Questionnaire lacks the component of career motivation. The motivational

components that influence learning provided the basis of the selection of the

main categories: intrinsic motivation (including task value), self-efficacy, self-

determination and extrinsic motivation (grade and career motivation). The

existing statements were rephrased to include “computer programming” or

“learn how to program” concepts, in order to make them more specific.

The first step taken to create section 4 of this survey was to merge all existing

statements in the categories of interest and attempt to establish face and

content validity. As mentioned previously, content validity can be measured by

relying on the knowledge of people who are familiar with the construct being

measured. Eight experts in the field of education reviewed all statements for

readability, clarity and comprehensiveness. Experts reviewed all questions by

grading them as “essential” (score of 1), “useful but not essential” and “not

necessary” (score 0) in order to measure student motivation. A Content

Validity Ratio (CVR) was calculated for all statements using the formula:

(Score of items - Total number of panellists /2) / (Total number of Panellists /

2) (Lawshe, 1975).

Given the table provided by Lawshe (1975), the minimum CVR required for

any item to be included in a questionnaire is 0.75 when the number of

reviewers (panellists) are eight. As a result, all questions with a CVR >= 0.75

140

were selected to be included in the subsequent test for scale reduction and are

highlighted in Appendix Two.

In a second test for content validity, 15 professionals in the areas of

educational psychology and 15 educators in the areas of computing,

information systems and informational technology were asked to select the five

most representative items out of the ones which had a CVR >= 0.75 in each of

the six motivational components. Following the recommendations of Hinkin

(1998), the goal could be the retention of four to six items per construct.

Schriesheim (1995) and Hinkin (2006) also support that, although including

more items might increase the internal consistency of a single construct, a

lengthy questionnaire can maximise the bias caused by boredom and fatigue

(Schmitt & Stuits, 1985). The resulting scales were composed of the 5 top-

rated questions in the sections of intrinsic motivation (see Figure 6.4), self-

efficacy (see Figure 6.5), self-determination (see Figure 6.6) and extrinsic

(career and grade) motivation (see Figure 6.7). In the figures following, the

top 5 questions which were selected for the study are highlighted with blue

color. Reversed questions are marked with (*R).

141

Figure 6.4: Intrinsic motivation scores

0

2

4

4

8

12

14

16

20

20

20

22

24

26

28

30

0 5 10 15 20 25 30 35

I often choose programming exercises which will
help me learn something, even if they require…

I think the course material in this class is useful for
me to learn.

I am very interested in the content area of this
course.

It is important for me to learn the course material in
this class.

In a class like this, I prefer course material that
arouses my curiosity, even if it is more difficult to…

I think I will be able to use what I learn in this class in
other classes.

Understanding computer programming is important
to me.

I like what I am learning in this class.

Even when I do poorly on a test, I try to learn from
my mistakes.

I am curious about latest develoments in the field of
computer programming.

Learning computer programming makes my life
more meaningful.

I think that what I am learning in this class is not
useful for me to know. (*R)

It is important for me to learn how to program.

I enjoy learning computer programming.

In a class like this, I prefer class work that is
challenging so I can learn new things.

Learning computer programming is interesting.

Questions on Intrinsic Motivation (Goal Orientation and
Task Value)

142

Figure 6.5: Self-efficacy scores

4

14

14

14

16

18

18

18

20

24

24

24

28

30

0 5 10 15 20 25 30 35

Considering the difficulty of this couse, the
teacher, and my skill, I think I will do well in this

class

I expect to do very well in this class.

Compared with others in this class, I think I'm a
good student.

Compared with other students in this class I
expect to do well.

I believe I can earn an "A" in computer
programming.

I am sure I can understand computer
programming.

I am sure I can do an excellent job on the
problems and tasks assigned for this class.

Compared with other students in this class I think
I know a great deal about the subject.

My study skills are excellent compared with
others in this class.

I believe I can earn a good grade in computer
programming.

I am not confident I will do well on computer
programming tests. (*R)

I am confident I will do well on computer
programming labs and projects.

I believe I can master computer programming
knowledge and skills.

I am confident I can learn all programming
concepts taught in the course.

Questions on Self-Efficacy

143

Figure 6.6: Self-determination scores

4

4

4

4

4

4

14

18

20

20

22

24

28

30

30

0 5 10 15 20 25 30 35

I ask myself questions to make sure I know the
material I have been studying.

When work is hard I either give up or study only
the easy parts. (*R)

Even when study materials are dull and
uninteresting, I keep working until I finish.

I work hard to get a good grade even when I
don't like a class.

Before I begin studying I think about the things I
will need to do to learn.

When I'm reading I stop once in a while and go
over what I have read.

I spend a lot of time learning (practicing and
studying) computer programming.

I study hard to learn computer programming.

I use strategies (online courses, forums, books) to
learn computer programming well.

I spend a lot of time creating computer programs
to improve my skills.

I put enough effort into learning computer
programming.

I find that when the teacher is talking I think of
other things and don't really listen to what is

being said. (*R)

I work on practicing exercises and answer end of
chapter questions even when I don't have to.

I prepare well for computer programming tests
and labs.

I work on solving all exercises assigned by the
instructor.

Questions on Self-Determination and Efford Regulation

144

Figure 6.7: Extrinsic Motivation (Career and grade) scores

4

4

6

8

8

10

12

16

22

24

25

26

28

30

0 5 10 15 20 25 30 35

Scoring high on computer programming tests
and labs matters to me.

I think about the grade I will get in computer
programming.

Getting a good grade in this class is the most
satisfying thing for me right now

Understanding computer programming will
benefit me in my career.

I like to do better than other students on
computer programming tests.

Getting a good computer programming grade
is important to me.

If I can, I want to get better grades in this class
than most of the other students

I want to do well in this class because it is
important to show my ability to my family,

friends or others

The most important thing for me right now is
improving my overall GPA, so my main concern

in this class is getting a good grade

I will use computer programming problem-
solving skills in my career.

Knowing computer programming will give me a
career advantage.

It is important that I get an "A" in computer
programming.

Learning computer programming will help me
get a good job.

My career will not involve computer
programming. (*R)

Questions for Extrinsic Motivation (Career and Grade)

145

To identify students who check the Likert-scale values without reading the

questions carefully, one item in each scale has been reversed and the statement

has a negative meaning (shown with *R). Examples of reversed questions are

q35, q39, q44 and q49 (see Appendix One, Section 4). The ratings of these

reversed statements were reversed before computing the individual scores on

the summative scales.

6.4.6 Section 5 - Index of Learning Styles

In section 5 of the questionnaire, I applied Felder and Soloman’s Index of

Learning Styles instrument (Felder & Soloman, 1993) to collect information

about student learning styles. The aim was to compare the data obtained with

the students’ learning styles in order to identify possible patterns and verify if

there was some correlation between students’ learning styles and their

preference towards visual programming environments.

The Index of Learning Styles® (ILS) is a forty-four-item forced-choice

instrument developed in 1991 by Richard Felder and Barbara Soloman to

assess preferences on the four scales of the Felder-Silverman model, discussed

in section 2.2.

The classification of students in each dimension (visual/verbal,

active/reflective, sequential/global, intuitive/sensing) is based on the answers

they provide to these questions. Each learning style dimension score is

calculated by adding up the individual scores of 11 yes/no questions that

represent that dimension.

For example, a score ranging from 0 to 11 in the visual/verbal dimension will

place the student somewhere in a line from strongly verbal (0) to strongly

visual (11), from strongly reflective (0) to strongly active (11), from strongly

global (0) to strongly sequential (11) and from strongly sensing (0) to strongly

intuitive (11) (Felder, 2005). Moderate preference for learning in a particular

style (score 2-3 on the left or 8-9 on the right) or mild preference (score 4-5 or

the left or 6-7 on the right) is also calculated and reported. Mild preferences

do not generally classify a person in any of the two poles in that dimension. On

146

the other hand, a learner’s strong preference for a learning style might expose

learning difficulties in an environment which does not support that style.

The questions can be found in Appendix One in Section 5.

6.5 Validity and Reliability

6.5.1 Validity

Polit and Beck (2004) define validity as the degree to which an instrument

measures what it is designed to measure. Cronbach and Murphy (1970) state

that “the end goal of validation is explanation and understanding” and their

views are in accordance with Messick (1987) who describes a test’s validity in

terms of “construct validity”. A construct is a hypothetical characteristic of the

participants taking the test, assumed to be measured in the test’s results

(Cronbach & Meehl, 1955). Essentially, the main question is “does the test
measure the construct it is supposed to measure?” Wainer and Braun (2013) also

agree that all information collected about a test can contribute to the overall

understanding of its construct validity, which includes all forms of validity

evidence (content-related, criterion-related and construct-related). More

specifically:

• content-related validity can be evaluated based on professional

judgments about the content relevance and appropriateness of the test’s

items with regards to the construct being measured (Messick, 1987;

Polit & Beck, 2004);

• criterion-related validity can be evaluated by comparing test scores with

external variables (criteria) which can also measure the qualities under

investigation (Messick, 1987); and

• construct-related validity can be evaluated by examining which qualities

the test measures and the degree to which the test scores relate to the

theory that defines these qualities (Cronbach, 1957).

There are many different methods by which researchers can address the issues

of validity and reliability, although their inherent weaknesses cannot be

147

completely removed (Cohen et al., 2013). These methods can be used to

examine both internal and external construct validity and include among

others: content validity ratios (CVR), test/retest, confirmatory factor analysis,

group differences, correlation matrices, comparison with external criteria,

analysis of variances and alpha coefficients.

It should be noted that both Gronlund (1971) and Messick (1987) claim that

validity should be seen as a matter of degree and not as an absolute value.

6.5.2 Validity Issues Addressed in this Study

The TAM questionnaire, which was used as the basis for section 2 in the

questionnaire, was tested for construct validity during its initial development

(Davis, 1985) and in numerous studies afterwards (Davis, 1989; Davis,

Bagozzi, & Warshaw, 1989; Venkatesh & Davis, 2000; Wixom & Todd, 2005).

Additionally, to further verify the scales, a confirmatory factor analysis was

used to test whether or not the data collected from the questionnaire fit the

hypothesized measurement model and as such to confirm construct validity of

the tool.

Table 6.3 presents the Cronbach Alpha coefficients for TAM scales.

TAM Scales
Cronbach
Alpha N of Items

Ease of use (q23, q24, q25, q26, q27) 0.840 5

Usefulness (q29, q28, q30, q31, q32) 0.946 5

Enjoyment (q15, q19, q17) 0.952 3

Output quality (q16, q18, q21) 0.943 3
Table 6.3: Cronbach alpha for TAM

Table 6.4 presents the factor loadings of the questionnaire and the four

components extracted: Usefulness, Ease of Use, Enjoyment and Output

Quality.

148

Rotated Component Matrix

 1 – Usefulness 2 – Ease of Use 3- Enjoyment 4- Output Quality

Q29 .856
Q28 .848
Q30 .840
Q31 .835 .310
Q32 .785 .356 .350

Q25 .842
Q24 .827
Q26 .786
Q27 .734
Q23 .682
Q15 .892
Q19 .891
Q17 .392 .809
Q16 .914
Q18 .841
Q21 .347 .832

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser
Normalization. a Rotation converged in 5 iterations.

Table 6.4: CFA for TAM

The obtained values were above the recommended level of .70, thus indicating

adequate internal consistency (Cronbach, 1951; Peterson, 1994; Tavakol &

Dennick, 2011). This pattern of high reliability and validity is consistent with

much prior research (Davis, 1989; Venkatesh & Davis, 2000; Wixom & Todd,

2005). The scales were also tested for convergent validity, considering the

factor loadings, composite reliability (CR) and the average variance extracted

(AVE) (see Table 6.5).

TAM Scales AVE CR SQRT(AVE)
Usefulness 0.694178 0.918958 0.833173
Ease of Use 0.748009 0.898859 0.864875
Enjoyment 0.694178 0.918958 0.833173
Output Quality 0.744967 0.897408 0.863115

Table 6.5: AVE and CR values for TAM

149

The calculated AVE values exceeded the recommended value of 0.50 and CR

values exceed 0.70, so the questionnaire scales can be considered as adequate

(Fornell & Larcker, 1981; Hair et al., 2016).

For the purpose of obtaining content validity regarding the selection of the

adjective pairs used in the TAM section of the questionnaire, 10 professors

from college XYZ provided their feedback by performing a card sorting exercise

(see Table 6.2).

The MSLQ and Science Motivation Questionnaire, the tests from which the

motivation section items were selected, have been examined for

generalisability, content, face, structural, construct and predictive validities

during their development studies and beyond (Pintrich et al., 1993; Glynn et
al., 2009; 2011; Taylor R., 2012; Salta & Koulougliotis, 2015).

For the purpose of obtaining content validity for the motivation section of the

questionnaire (using questions from both MSLQ and the Science Motivation

Questionnaire) and with a goal to retain four to six items per construct, 30

professionals (subject experts) provided their feedback which resulted in the

selection of the most representative items per construct using the content

validity ratio (CVR) method as described in sub-section 6.4.5 .

Four IT professors, including myself, who have extensive teaching background

in introduction to programming and other programming courses, reviewed the

resulting questionnaire and made appropriate suggestions, which were taken

into consideration.

Finally, a pilot survey was conducted among 4 senior IT graduates to

determine whether there were any misconceptions in the wording of the

statements and to test the effort required to complete the questionnaire.

Feedback from the pilot survey resulted in minor revisions to the questions and

the removal of 3 items.

Before analysing all collected data, the resulting motivation scales were tested

to measure the internal consistency among the items of the scales using

Cronbach alpha coefficients (see Table 6.6).

150

Motivation scales
Cronbach's
Alpha N of Items

Intrinsic value (q39, q41, q43, q47, q52) 0.825 5
Extrinsic value (q35, q37, q40, q46, q53) 0.840 5
Self-regulation (q36, q38, q45, q49, q50) 0.805 5
Self-efficacy (q34, q42, q44, q48, q51) 0.888 5

Table 6.6: Cronbach alpha’s for Motivation Scales

A confirmatory factor analysis also verified that the questions fitted into the

four scales. Table 6.7 presents the factor loadings for each extracted

component.

Rotated Component Matrix

 1. Self-Regulation 2. Extrinsic 3. Self-Efficacy 4. Intrinsic
Q39 0.858

Q41 0.787

Q43 0.690

Q47 0.822

Q39 0.703

Q37 0.642

Q40 0.860

Q46 0.699
Q35 0.660

Q53 0.548

Q36 0.644

Q38 0.775

Q49 0.453

 1. Self-Regulation 2. Extrinsic 3. Self-Efficacy 4. Intrinsic
Q50 0.834

Q54 0.817

Q34 0.781

Q42 0.568

Q44 0.783

Q45 0.784

Q48 0.526

Q51 0.720
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization. a Rotation converged in 13 iterations.

Table 6.7: CFA for Motivation scales

151

The scales were also tested for convergent validity considering the factor

loadings, composite reliability (CR) and the average variance extracted (AVE)

(see Table 6.8).

Motivation Scale AVE CR SQRT(AVE)
Intrinsic 0.6000 0.8820 0.7747
Extrinsic 0.5360 0.8490 0.7321
Self-regulation 0.5170 0.8370 0.7188
Self-efficacy 0.5810 0.8920 0.7620

Table 6.8: AVE and CR values for motivation scales

The calculated AVE values exceeded the recommended value of 0.50 and CR

values exceed 0.70, so the questionnaire scales can be considered as adequate

(Fornell & Larcker, 1981; Hair et al., 2016).

The Index of Learning Styles questionnaire was also examined for validity

during its development. Construct validity, test-retest reliability, internal

consistency and inter-scale orthogonality measurements have been carried out

by a number of researchers as stated by Felder (2005) and since this

questionnaire was used without any modifications, no further tests for validity

were performed.

152

6.5.3 Reliability

Joppe (2000) defines reliability as the extent to which test results can be

consistently reproduced under similar methodologies and to which the data

can be collected from a representative sample of the population under study.

Reliability in quantitative research differs from reliability in qualitative

research. In quantitative research reliability can be addressed in terms of

replicability over time and over groups of responders (Cohen et al., 2013).

6.5.4 Reliability Issues Addressed in this Study

In the context of this study, and to ensure reliability, two different checks were

made. The first check was performed to assure stability and replicability over

time. Six students took the survey twice, within a period of a month. Their

results were tested for deviations. Five students were more or less consistent in

all of their answers, while one student had some differences in the individual

answers for the acceptance of Scratch (TAM) but the overall average in each

scale was very close.

The second test was performed to ensure replicability over groups of

respondents. Eight different groups of students participated in the research

and consistently produced similar results. These students were registered in

eight different classes of the ‘Introduction to Programming’ module during four

semesters. Two classes were taught by me and six by other professors of

college XYZ. The conditions under which the data collection took place were

standardised. The survey took place in the classroom at the end of the

semester and during the last 30 minutes of the instruction period. Students

who did not wish to participate were allowed to leave the room. To ensure

that I (as the researcher) was not affecting the test results, the mean scores in

the 8 groups (in all sections of the survey) were tested and found that they did

not vary significantly. Additionally, the mean grades for coursework, midterm

and final grades were tested for mean differences using a t-test and no

statistically significant differences were found.

153

6.6 Qualitative Data Collection - Interviews

6.6.1 Interview Protocol

Students to be interviewed were selected from the survey by indicating their

intention to participate in an interview. They were contacted through email to

make a face-to-face appointment. In this email, students were informed about

the location, purpose and duration of the interview.

All interviews took place in the same environment (an office at XYZ College)

with which students and professors are familiar. Before the interview, I

addressed terms of confidentiality, and obtained participant permission to

voice-record the interview. Before initiating the interview, participants were

asked if they had any questions concerning the study or the protocol.

6.6.2 Interview Questions for Students

Although the interviews were semi-structured, I used the following questions

as a general guideline:

• What is your perception about programming?

• Have you attended a course on Scratch in the past?

• Overall, did you enjoy working Scratch? If so, why? If not, why not?

⁃ Do you find Scratch easy to use? Why?

⁃ Do you find Scratch useful for the specific module? Why?

⁃ Do you find Scratch interesting? If yes, mention some

characteristics of Scratch that made it interesting for you…

• Which are the major disadvantages you see in the use of Scratch in the

‘Introduction to Programming’ module?

• Where you motivated to use Scratch outside the scope of this module?

To develop your own games…

• Did you try to further enhance (at home) Scratch projects we developed

in class?

154

• Which of the two coursework assessments (Scratch/Java) did you spend

more time developing? Why?

• Which of the two coursework assessments did you enjoy developing

more?

6.7 Ethical Framework

My research was carried out in a real-world situation involving real students

participating in a required course for their major and involved open

communication among the people involved. I, as the researcher, paid close

attention to ethical considerations in the conduct of my work. Having in mind

a number of principles concerning research ethics, I followed the guidelines

presented by Winter (Winter, 1987).

All the involved parties in my research (students, teachers, and XYZ College

administration) were fully informed about the aims of my research and

requested in advance to give me permission to conduct my research, using the

participant information sheet.

• Ethical approval was obtained from both the University of Lancaster and

the XYZ college ethics committee (see Appendix Four).

⁃ The letter of approval obtained from the University of Lancaster

confirmed that the study could be conducted ethically.

⁃ The letter of approval obtained from XYZ College’s ethics

committee confirmed that the research could be carried out using

a sample group of students attending the ‘Introduction to

Programming’ module and professors with teaching

programming experience. XYZ college also approved the survey

questionnaire and interview protocol process.

• All participants were you allowed to influence my research (I did not

exclude any student who volunteered to participate).

• Students who did not wish to participate were respected and their

decision did not in any way affect their course grade.

155

• My research progress was visible and open to suggestions from others.

• I obtained written permission before making any in-class observations,

interviews or using survey results.

• Participants were reported anonymously. Participants’ names and

addresses were omitted from the data and did not appear on any

documents other than the consent forms, which were stored in a

private, secure cupboard. The anonymity of information provided was

taken into consideration at all stages of the study, including

transcription, coding and data analysis, as well as writing up the results.

• Students were allowed to read their own interview transcripts before

they were used in my research and/or published.

• I accepted full responsibility for maintaining confidentiality.

• All student feedback was immediately downloaded and deleted from

the online survey tool as soon as each semester survey was closed.

• Survey results were kept in password encrypted Microsoft (MS) Excel

files. No personal student information was kept in the MS Excel files.

• In the transcription of the interviews, each student name was replaced

with a participant number.

6.8 Conclusion

This chapter presented the research design and justified the selection of an

evaluative case study as the overarching methodological approach and an

explanatory sequential mixed method design as the data collection strategy. It

provided a detailed description of the development process of the

questionnaire tool and presented the interview protocols. It addressed validity

and reliability issues and concluded with a description of the ethical

framework.

The next chapter proceeds with a description of the data gathering process and

a detailed analysis of the data collected from student surveys, interviews and

class observations.

156

Chapter 7 Data Analysis and Findings

7.1 Introduction to Data Analysis

“Data analysis is the process of making sense out of the data. And making
sense out of data involves consolidating, reducing, and interpreting what
people have said and what the researcher has seen and read – it is the
process of making meaning.” (Merriam, 1998)

In order to answer the research questions, four sources of data were used as

input: student grades and results from the surveys, which were analysed

quantitatively, and interview transcripts and class observations, which were

analysed qualitatively. More specifically:

1) Student grades were used for the overall comparison of student

performance before and after the introduction of Scratch, and for the

comparison of student performance in the Scratch coursework to that in the

Java coursework, to address RQ1: “How do visual programming
environments affect students’ performance in the course (assessment and final
grades)?”

2) Results from student surveys were used in:

i) identifying overall acceptance of Scratch as a teaching and learning

tool, to address RQ2: “How do students perceive visual programming

environments?”

ii) identifying student learning styles and their possible correlation to

Scratch acceptance: enjoyment, ease of use, usefulness and output

quality, to address RQ4: “How do students’ learning styles relate to

their perceived enjoyment, ease of use, usability and usefulness of visual

programming environments?”

iii) identifying student motivation to learn programming and its possible

correlation to their perceptions about Scratch, to address RQ3: “How

do students’ motivations for learning programming relate to their

perceptions about visual programming environments?”

157

3) In addressing RQ2 and RQ3, feedback provided by students during

interview sessions and analysis from class observations were used to

provide a better insight into student perceptions about Scratch VPE

enjoyment and motivation and to complement the quantitative results.

7.2 Data Gathering and Demographics

Data were gathered during the Fall Semester 2016, Spring Semester 2017, Fall

Semester 2017 and Spring Semester 2018. Each semester, there are two

classes of the ‘Introduction to Programming’ module, with a maximum of 18

students in each. Each class has its own timetabled sessions and might be

taught by a different professor. Students register for a specific module class,

and then attend the same one for the duration of the semester. The

assessments and the module outline are common to each class. Formal class

contact hours per semester are composed of thirty-five lecture hours and

twenty-four laboratory sessions.

The number of participants per session is shown in Table 7.1, as well as the

total number of students registered. Four different professors taught these

sessions and their names were replaced by letters to maintain anonymity.

Ninety-two of the 113 students registered in the module through the years

agreed to participate in the study and provided their feedback using an online

survey software (Qualtrics) hosted at Lancaster University. Twelve students

volunteered to be interviewed and enrich this study with their qualitative

feedback.

158

Academic
Year Semester Module

Occurrence
Number of

Participants

Number of
students

registered

2016-2017

Fall 2016
A, Prof a 15 16

B, Prof d 14 14

Semester Total 29 30

Spring 2017
A, Prof a 13 16

B, Prof c 5 7

Semester Total 18 23

2017-2018

Fall 2017
A, Prof a 14 16

B, Prof d 9 16

Semester Total 23 32

Spring 2018
A, Prof d 12 12

B, Prof b 10 16

Semester Total 22 28

Total number of participants 92 113
Table 7.1: Number of participants across the years of the study

The following figures depict demographic information provided by students in

section 1 of the survey (refer to Appendix Two) concerning their age range

(see Figure 7.1); gender (see Figure 7.2); and academic major (see Figure

7.3).

Figure 7.1: Participant age distribution in year ranges

18 - 24
87%

25 - 34
12%

> 35
1%

Age Range Distribution

159

Figure 7.2: Participant gender distribution

Gender distribution for the IT course has been the same for more than 10 years

with male students outnumbering female ones.

Figure 7.3: Participant distribution of majors

F. 15%

M. 85%

Gender Distribution

70, 76%

6, 7%

6, 7%
5, 5% 2, 2%

2, 2%
1, 1%

Distribution of majors

Information Technology Undecided

MIS Non Degree

Marketing Communications

Finance

160

The distribution of majors is as expected, because the ‘Introduction to

Programming’ module is a requirement for students majoring in IT and an

elective for all other students.

Section 2 of the survey asked students to describe their perceived level of

programming expertise and whether they were familiar with the Scratch

programming environment.

Figure 7.4: Participant perceived current computer programming level of expertise

The distribution of programming expertise in Figure 7.4 does not represent a

formally assessed evaluation but how students self-evaluated their expertise.

An explanation of each selection was included in the survey (Appendix One –

Main Survey Instrument).

7.3 Analysis of Student Grades

The ‘Introduction to Programming’ module historically used the Java

programming language to introduce students to programming up until Spring

Semester 2016. From Fall Semester 2016 onwards Scratch was used during

the first 2 weeks of instruction and students were introduced to basic

programming constructs, such as variables, obtaining and validating input,

19%

53%

22%

5% 1%

Distribution of perceived
level of current computer programming expertise

Fundamental Awareness Novice (limited experience)

Intermediate (practical application) Advanced

Expert

161

output, conditions, loops, event handling, modularity, and code

documentation; subsequently, the students moved on to programming using

Java.

Student final grades were calculated based on a coursework assessment, which

accounted for 60%, and a midterm examination, which accounted for the

remaining 40%. Until Fall Semester 2016, coursework historically consisted of

two parts, the first part being the development of a problem solution using

pseudocode and the second being the implementation of the same problem

using Java. From Fall Semester 2016, the first part was modified to include the

implementation of a program in Scratch. Mean student final grades through

the years are shown in Figure 7.5.

Figure 7.5: Mean student grades per semester from 2013 – 2018

Semesters appearing in blue are those that pre-dated introduction of the

Scratch visual programming environment, while those appearing in orange

include the usage of Scratch. Since the instruction of Scratch has not ended

with the end of this study, more recent data (Fall Semester 2018) are included

for this comparison. Group statistics (before and after the use of Scratch) show

a mean grade difference of 9.15% (see Figure 7.6).

47.97 48.76
45.56

52.9
47.96

53.13

60.19
53.89

59.17 57.16 59.71

0

10

20

30

40

50

60

70

2013 Fall 2014
Spring

2014 Fall 2015
Spring

2015 Fall 2016
Spring

2016 Fall 2017
Spring

2017 Fall 2018
Spring

2018 Fall

Mean student grades per semester

162

Figure 7.6: Grade comparison before and after the use of Scratch

I should stress that the student selection process has not changed since 2010

when the college XYZ was affiliated with the Open University; the module

class time has been the same and so are the professors who teach the module.

Other factors might have affected this shift in grades such as the students’

growing familiarity with technology and motivation to learn programming.

However, these factors have not been noted by any professors teaching

programming modules during the past years.

A Shapiro-Wilk test of Normality (p>0.05), as well as a visual inspection of the

histogram, box plots and QQ-plots, showed that student grades for all students

in all years are approximately normally distributed. As such, an independent

samples t-test was run to determine if there were differences between the

grades achieved by students before and after the intervention. Homogeneity of

variances was noted, as assessed by Levene’s test (p=0.476). The grades of

students who were introduced to programming using Scratch were greater

(N=110, M=58.26% +/- 1.78, SD=18.6) than those of students who were

introduced to programming using Java (N=141, M=49.11% +/- 1.48,

SD=17.6), demonstrating a statistically significant difference of 9.15% (95%,

CI from 4.63 to 13.48), t(249) = 3.84 and p=0.000089 (d=0.5). This leads us

to conclude that the difference of means of students’ grades is noteworthy and

that they were improved substantially for the Scratch group.

44.00%

46.00%

48.00%

50.00%

52.00%

54.00%

56.00%

58.00%

60.00%

USING JAVA USING SCRATCH AND JAVA

49.11%

58.26%

Grade comparison

163

Another interesting finding comes from the observation of pass/fail rates (see

Figure 7.7). There was homogeneity of variances, as assessed by Levene’s test

(p=0.884). The overall pass/fail rate of students introduced to programming

using Scratch demonstrated an improvement of 15% (69% of students passed

and only 26% failed the module) over the pass/fail rate of students introduced

to programming using Java (57% of students passed and 42% failed). This

statistically significant improvement (95%, CI from 2.76 to 28.87),

t(20)=2.528 and p=0.02, leads us to conclude that the pass/fail rates were

considerably enhanced with the introduction of Scratch.

 Figure 7.7: Pass/fail rates

Similar research in the area was performed by Weintrop and Wilensky (2017),

who compared student performance, learning gains and enjoyment amongst

high school students being introduced to block-based programming prior to

text-based programming versus students being solely introduced to text-based

programming. Findings from their study also showed that students in the

block’s pre-condition demonstrated greater learning gains and increased

interest, while students with the text-based instruction perceived their

experience as being more effective in improving their programming ability.

0%

10%

20%

30%

40%

50%

60%

70%

Before Scratch After Scratch

42.25%

26.62%

1.41% 3.60%

56.34%

69.78%

Comparison of Pass/Fail Rates between the two
groups

FAIL RATE W Rate PASS RATE

164

A second comparison of student performance with my data was done using the

grades obtained by 92 students from the Scratch part of the coursework and

the grades of the same students from the Java part of the coursework.

Both assessment rubrics evaluated the understanding and appropriate use of

the same constructs, and the programming requirements focused on

implementing similar functionality. Students were required to develop a

hangman game both in Scratch and in Java, utilising a fixed dictionary of 10

words. The program had to randomly pick a word from the dictionary and the

user had to guess the word. User input was to be validated and compared to

the letters of the word picked, allowing one to evaluate the appropriate use of

strings and conditionals by the programmer. Ten tries were allowed in each

game, thus demonstrating the appropriate usage of repetition. Both programs

had to be documented using in-line code comments. Modularity of the code

was also a factor to be assessed.

A paired-samples t-test was used to determine the importance of the mean

difference of 18.2% obtained. Students performed 18.2% better in the Scratch

part of the coursework (M=71.86%, SD=16.7) compared to the Java part of

the coursework (M=53.60%, SD=20.61), using the same marking scheme. A

statistically significant mean score increase (95% CI:14.53 to 21.99,

t(91)=9.72 p< 0.0005, d=1.01) is depicted in Figure 7.8.

Figure 7.8: Mean coursework scores

0%

10%

20%

30%

40%

50%

60%

70%

80%

JAVA COURSEWORK SCRATCH COURSEWORK

54%

72%

Mean Scores in Scratch vs Java
Coursework

165

It is worth restating, at this point, that students writing programs in Scratch do

not need to be concerned about and focus on syntax errors; they need only to

focus on the required functionality (see section 4.5).

Research on the comparison of student performance using different

programming languages has been performed in the past. Savic et al. (2016)

compared student performance in Modula-2 and Java but did not find any

statistically significant differences while Papadakis and Orfanakis (2018)

compared student performance in Alice and App Inventor and found that

students performed better in App Inventor projects. Kowalczyk et al. (2016),

on the other hand, compared the student perceptions on the readability and

look and feel of both apps, but not student performance.

7.4 Results from Student Surveys

7.4.1 Student Acceptance of Scratch (TAM) Analysis

“The most challenging task is to get everything right at once: a programming
language that is easy for beginners, has enough power for experts, comes with an
environment which meets the user’s needs, and is attractive to use...” (Green,

1990).

As described in section 6.3, the instrument for measuring overall student

acceptance of Scratch is composed of 4 dimensions: perceived enjoyment;

output quality; ease of use; and usefulness, as well as 2 outcome variables:

intention to use (for personal reasons); and recommendation that it continues

to be employed as a teaching tool in the module.

Perceived enjoyment and output quality scales consist of 3 questions each,

whereas ease of use and usefulness scales consist of 5 questions each. Intention

to use and recommendation to adopt are based on a single question each.

Student responses are given on a Likert scale ranging from 1 (strongly

negative) to 7 (strongly positive). Overall acceptance is calculated as a mean

of the student answers to all questions.

The overall descriptive results of the study are presented in Table 7.2, while a

breakdown per semester and per professor follows in Table 7.3. Using this

166

detailed information, a further investigation can be conducted, to identify

whether each professor’s teaching style might have influenced student

perceptions about Scratch.

Output
Quality Enjoyable

Ease
of

Use
Useful-

ness

Use for
the

Module?
Intend
to Use

Overall
Acceptance

N 92 92 92 92 92 92 92

Missing 0 0 0 0 0 0 0

Mean 4.36 4.80 5.27 4.21 4.46 3.32 4.40
Median 4.67 5.00 5.60 4.40 5.00 3.00 4.54
Std. Deviation 1.43 1.29 1.14 1.50 1.75 1.42 0.98

Range 5.67 5.33 5.60 5.60 6.00 5.00 4.31

Minimum 1.33 1.33 1.20 1.40 1.00 1.00 1.90

Maximum 7.00 6.67 6.80 7.00 7.00 6.00 6.21
Table 7.2: Descriptive statistics of Scratch acceptance

Observing the means for each subscale, we can see that, although they find the

tool very easy to use (5.27) and somewhat enjoyable (4.80), students are

almost neutral in their opinion about the software output quality (which is the

demonstrability of the final programs and their functionality) and its

usefulness (4.21). What is interesting to explore qualitatively is why their

intention to use Scratch outside the scope of the module is much lower (3.32)

than their recommendation that the tool be adopted into this introductory

course (4.46). In Table 7.3, descriptive statistics for each acceptance

dimension per professor are presented.

Dimensions
(Scales) Professor N Mean Std.

Deviation
Std.

Error
Min

.
Max

.

Output Quality

p1 24 4.29 1.52 0.31 1.33 6.33
p2 21 4.36 1.21 0.26 1.67 6.33
p3 28 4.37 1.28 0.24 1.67 6.33
p4 19 4.44 1.83 0.42 1.33 7.00

Total 92 4.36 1.43 0.15 1.33 7.00

Enjoyable

p1 24 4.54 1.39 0.28 1.33 6.33
p2 21 5.12 1.07 0.23 2.67 6.67
p3 28 5.02 1.09 0.21 2.67 6.67
p4 19 4.46 1.57 0.36 1.33 6.67

Total 92 4.80 1.29 0.13 1.33 6.67

167

Dimensions
(Scales) Professor N Mean Std.

Deviation
Std.

Error
Min

.
Max

.

Ease of Use

p1 24 5.02 1.42 0.29 1.20 6.80
p2 21 5.31 0.93 0.20 3.33 6.60
p3 28 5.25 1.11 0.21 2.40 6.80
p4 19 5.56 1.02 0.24 3.33 6.80

Total 92 5.27 1.14 0.12 1.20 6.80

Usefulness

p1 24 4.13 1.29 0.26 1.80 6.80
p2 21 4.71 1.28 0.28 2.80 6.80
p3 28 4.26 1.69 0.32 1.40 7.00
p4 19 3.69 1.62 0.37 1.40 6.40

Total 92 4.21 1.50 0.16 1.40 7.00

For the Module?

p1 24 4.46 1.59 0.32 1.00 7.00
p2 21 4.00 1.64 0.36 1.00 7.00
p3 28 4.75 1.82 0.34 1.00 7.00
p4 19 4.53 1.98 0.46 1.00 7.00

Total 92 4.46 1.75 0.18 1.00 7.00

Intend to Use

p1 24 3.46 1.41 0.29 1.00 6.00
p2 21 3.14 1.28 0.28 1.00 6.00
p3 28 3.11 1.52 0.29 1.00 5.00
p4 19 3.63 1.46 0.34 1.00 6.00

Total 92 3.32 1.42 0.15 1.00 6.00

Overall
Acceptance of

Scratch

p1 24 4.32 1.07 0.22 1.90 6.21
p2 21 4.44 0.63 0.14 3.20 5.47
p3 28 4.46 1.01 0.19 2.64 6.10
p4 19 4.39 1.20 0.28 2.18 6.08

Total 92 4.40 0.98 0.10 1.90 6.21
Table 7.3: Descriptive statistics of Scratch acceptance per professor

A one-way ANOVA was conducted to determine if the overall student

acceptance of Scratch, along with its sub-scales, was statistically different for

groups of students which were taught by different professors. Participants were

classified - for this test - into 4 groups: p1 (n=24); p2 (n=21); p3 (n=28);

and p4 (n=19). There were no outliers, as assessed by visual inspection of the

box-plots; data were normally distributed, as assessed by the Shapiro-Wilk test

(p>0.05); and there was homogeneity of variances, as assessed by Levene’s

test (p=0.079) for the overall TAM, but the differences in the student

perceptions about Scratch were not statistically significant, as shown in Table

7.4.

168

One-way ANOVA
Between Groups

 (df = 3) F Sig.

Output Quality 0.037 0.991

Enjoyable 1.509 0.218

Ease of Use 0.820 0.486
Usefulness 1.601 0.195

For the Module? 0.742 0.530

Intend to Use 0.691 0.560

Overall Acceptance 0.105 0.957
Table 7.4: One-way ANOVA - Student acceptance of Scratch between professors

Since there were no significant differences between the groups, and each

professor’s unique teaching style or personal opinion about the tool did not

influence the students’ perceptions, it was deemed that all data could be

treated as one group for the analysis to follow.

A Spearman’s rank-order correlation was run to assess the relationship

between the TAM subscales for Scratch and grades obtained in the Scratch

assessment, as well as the final grades. The test did not show a statistically

significant correlation between the variables (see Table 7.5).

Spearman's rho Correlation Coefficient / Sig (2-tailed)

TAM Scales Scratch
Assessment Final Grade

Overall Acceptance of Scratch
-0.027 0.026

0.801 0.803

Output Quality
-0.201 -0.108

0.054 0.306

Enjoyable
0.007 -0.031

0.945 0.772

Ease of Use
0.011 -0.025

0.919 0.816

Usefulness
-0.157 -0.126

0.135 0.233

Appropriate for the Module?
0.006 0.059

0.957 0.579

Intend to Use
0.019 0.079

0.856 0.456
Table 7.5: Spearman’s rho correlations between Scratch acceptance and student grades

169

Interpreting the results, we can conclude that, for the specific group of

students, their acceptance of Scratch did not correlate to their performance in

the assessments. It is interesting to note that, although students found the tool

very easy to use (5.27) and somewhat enjoyable (4.80), this did not relate to

their performance in the coursework.

7.4.2 Student Index of Learning Styles (ILS) Analysis

The Index of Learning Styles (Felder & Soloman, 1993) is composed of 44

questions, designed to assess the level of a student’s learning preference using

the 4 dimensions of the Felder-Silverman model (Felder & Silverman, 1988):

active/reflective; visual/verbal; global/sequential; and sensing/intuitive.

Eleven questions are associated with each dimension, with each question

having only 2 possible answers (a and b). The scoring method, according to

Felder counts all “a” and “b” responses and produces a dimension score of 0 to

11 for “a” and from 0 to 11 for “b”. As the count of “a” answers increases, the

count of “b” answers decreases and vice versa. If counting “a” scores only, a

value from 10 to 11 shows a strong preference on one side of the dimension, 8

to 9 a moderate one, 4 to 7 a mild preference on either side, 2 to 3 a moderate

preference on the other side, and 0 to 1 a strong preference on the other side.

For the data analysis of this study, participants were placed in one of three

groups per category, distinguishing a preference, for example, between: visual,

balanced or verbal; active, balanced or reflective; sequential, balanced or

global; or sensing, balanced or intuitive.

In most studies considering the implications of student learning styles (Abdul-

Rahman & Du Boulay, 2014), researchers examine students with moderate and

strong preferences, as students with mild preferences do not demonstrate

clearly-defined behaviour which could associate them with one or another side

of the dimension. Therefore, in this study also, strong and moderate styles

were grouped together while low scores on either side indicated a balanced

preference.

Visual programming environments aim at providing learners with an

environment where they can learn programming while having ‘fun’ and, at the

170

same time, create demonstrable programs (output quality). Effectiveness and

usefulness towards accomplishing the learning objectives of the module is also

an important factor. Considering the learning style preferences of the learners

and the possible correlation between student beliefs about these software

qualities can help instructors decide whether such a programming

environment is generally beneficial or is more applicable to specific groups of

students.

Some descriptive statistics from the 92 students who participated in the study

are shown in Table 7.6.

Strong &
Moderate Balanced Strong &

Moderate

 INPUT: Visual Verbal

N 47 24 21

Percent 51% 26% 23%

 UNDERSTANDING: Global Sequential

N 23 31 38
Percent 25% 34% 41%

 PERCEPTION: Sensing Intuitive

N 39 34 19

Percent 42% 37% 21%

 PROCESSING: Active Reflective

N 17 65 10

Percent 19% 71% 11%
Table 7.6: Student dominant learning styles in the 4 dimensions

Table 7.6 shows that most students in this study associate with visual (51%),

sequential (42%) and sensing (41%), while the majority (71%) are balanced in

the processing (active/reflective) dimension.

According to Felder’s implications of learning styles preferences:

• learners with a visual learning style preference tend to prefer pictures,

diagrams and flowcharts, as opposed to verbal learners, who prefer

spoken or written explanations;

171

• learners with a sequential learning style preference tend to gain

understanding in a linear, step-wise incremental manner, while global

learners prefer a holistic approach;

• learners with a sensing learning style preference tend to like learning

facts and procedures, are more practical compared to intuitive learners,

who are conceptual and oriented towards theories;

• learners with an active learning style preference tend to learn by trying

things out and working in groups, in contrast to learners with a

reflective learning style preference, who prefer to think things through

and work alone.

The statistics describing the learning preferences for this group of students

(most majoring in Information Technology, see Figure 7.3), are similar to

research findings for CS students (Zualkernan et al., 2006; Chen & Lin, 2011),

which show that most programming students have a strong preference in the

visual dimension.

The practical orientation of the computer programming discipline, which has

been discussed in the literature, also matches the dominant sensing learning

preference identified in this study.

To address RQ4: “How do students’ learning styles relate to their perceived

enjoyment, ease of use, usability and usefulness of visual programming

environments?” a Spearman’s correlation analysis was performed between the

two categories (see Table 7.7). The assumptions for a Spearman’s correlation

analysis for ordinal variables, paired observations and monotonic relationship

(Spearman, 1904) are met.

172

Spearman’s correlation analysis

 PERCEPTION INPUT PROCESSING UNDERSTANDING

SENSIN

G
INTUITI

VE VISUAL VERBAL ACTIVE
REFLECTI

VE
SEQUENTI

AL GLOBAL
Output
Quality 0.215* -0.215* 0.154 -0.154 0.112 -0.112 0.049 -0.049

Enjoyable -0.115 0.115 0.543** -0.543** 0.186 -0.186 0.044 -0.044

Ease of Use 0.420** -0.420** 0.279** -0.279** 0.012 -0.012 0.030 -0.030

Useful-ness -0.086 0.086 0.366** -0.366** 0.011 -0.011 0.776** -0.776**
For the
Module? 0.083 -0.201 0.286** -0.286** 0.156 -0.156 0.334** -0.334**
Intend to
Use 0.184 -0.184 0.176 -0.108 0.08 -0.08 0.019 -0.019
Overall
Acceptance 0.184 -0.184 0.511** -0.511** 0.143 -0.143 0.380** -0.380**

N 92 92 92 92 92 92 92 92

** Correlation is significant at the 0.01 level (2-tailed) p<0.01

* Correlation is significant at the 0.05 level (2-tailed) p<0.05
Table 7.7: Correlations between student learning styles and their perceptions about Scratch

After the execution of the test, the following can be observed:

• Perceived output quality of the programs written in Scratch shows a

statistically significant correlation (p=0.215) with learners with a

sensing learning style preference, at the 0.05 level of significance;

• Perceived enjoyment shows a statistically significant correlation

(p=0.543) with learners with a visual learning style preference, at the

0.01 level;

• Ease of use shows a statistically significant correlation with learners

having a sensing (p=0.420) and visual (p=0.279) learning style

preference, at the 0.01 level;

• Usefulness shows a statistically significant correlation with learners

having a visual (p=0.391) and sequential (p=0.776) learning style

preference, at the 0.01 level;

• Student recommendation to continue the use of Scratch for this module

shows a statistically significant correlation with learners having a visual

(p=0.286) and sequential (p=0.334) learning style preference, at the

0.01 level;

173

• It is interesting to also note that there is no significant correlation

between students’ learning style preferences and the intent to use

Scratch outside the scope of the module.

For the overall acceptance of Scratch (which is the average of student

perceptions in all TAM scales), we observe a higher correlation for learners

having a visual learning style preference (p=0.511) and a lower correlation for

learners having a sequential learning style preference (p=0.380), while there

is no correlation in the sensing/intuitive and active/reflective dimensions.

7.4.3 Student Motivation (MSLQ)

Table 7.8 presents the means and ranges for all individual statements

concerning student motivation to learn computer programming, grouped by

motivational scales. A colour heat map shows the highest-rated motivational

items in green, with 6.11 as the maximum mean value and lowest in red, with

4.34 the minimum mean value, in a scale from 1 - 7.

N=92 Mean Median Minimum Maximum

Extrinsic
(Mean = 5.88,
SD = 0.93011)

Q35 5.34 5.5 3 7

Q37 6.10 6 3 7

Q40 5.96 6 3 7

Q46 6.10 7 3 7

Q53 5.91 6 1 7

Intrinsic
(Mean = 5.86,
SD = 0.89616)

Q39 5.96 6 3 7

Q41 6.11 6 2 7

Q43 6.00 6 3 7

Q47 6.02 7 1 7

Q39 5.21 5 2 7

Self-Efficacy
(Mean = 5.538,
SD = 1.19917)

Q34 5.74 6 1 7

Q42 5.71 6 2 7

Q44 5.27 6 1 7

Q48 5.55 6 1 7

Q51 5.42 6 1 7

Self-Regulation
(Mean = 4.998,
SD = 1.05581)

Q36 5.29 5.5 2 7

Q38 4.34 4 1 7

Q45 5.26 6 1 7

174

N=92 Mean Median Minimum Maximum

Q49 5.18 6 1 7

Q50 4.92 5 2 7
Table 7.8: Motivational Component Mean Scores

The results show that “better job/career prospect” is the highest rated extrinsic

motivational factor among participants while “enjoyment of programming” is
the highest rated intrinsic one. Students overall reported a rather high level of

self-efficacy but almost neutral levels of self-regulation. Given the importance

of student motivation to learn and the positive linear correlation of motivation

and self-efficacy with their academic performance studies (Mega, Ronconi, &

De Beni, 2014; Walker, Greene, & Mansell, 2006; Zimmerman, 2008), these

results could possibly explain the high student performance in the module over

the previous 2 years.

A Shapiro-Wilk test of normality and a visual inspection of the histograms and

Q-Q plots revealed that motivational scores in all categories (intrinsic,

extrinsic, self-regulation and self-efficacy) are not normally distributed. Thus,

to identify whether the professor has an effect on student motivation, a non-

parametric Kruskal-Wallis test showed the distribution of all motivational

scores are the same across professors (see Table 7.9).

Table 7.9: Kruskal Wallis test for motivational scale distribution across students taught by different

professors

175

A Spearman’s 2-tailed correlation test was performed to identify possible

relationships between student motivational components and their acceptance

of Scratch. Results are presented in Table 7.10.

Spearman's rho Correlation Coefficients
(N=92) Intrinsic Extrinsic Self-regulation Self-efficacy

Usefulness -0.713** -0.577** -0.689** -0.972**

Enjoyable 0.116 0.186 0.112 -0.005

Output Quality 0.025 0.09 0.127 -0.019

Ease of Use 0.065 0.051 0.041 0.025

Recommendation for
the Module? -0.17 -0.143 -0.193 -0.361**

Intend to Use -0.238* -0.201 -0.295** -0.438**

** Correlation is significant at the 0.01 level (2-tailed).
Table 7.10: Spearman's rho correlation between student motivation to learning programming and

acceptance of Scratch

Results show:

• strong negative correlations between all components of student

motivation to learn programming and the perceived usefulness of

Scratch, with the strongest negative correlation between self-efficacy

and perceived usefulness;

• moderate negative correlation between self-efficacy, student

recommendations to use Scratch for the module and their intention to

use it outside the scope of the class;

• moderate negative correlation between self-efficacy and intention to use

Scratch;

• weak negative correlations between intrinsic motivation, self-regulation

and their intention to use Scratch.

The characterisation of the correlations as strong, moderate, modest and low

was made according to Cohen’s guidelines (Cohen et al., 2013).

An interesting observation is that students who believed in their abilities and

had a strong intrinsic and extrinsic motivation to learn programming did not

perceive Scratch as useful for the module. In a related study, Martinez et al.,

176

(2017) reported negative feedback concerning the suitability of Scratch for an

introduction to programming, where 55% of university students majoring in

game development thought that Scratch should be suppressed or deserve

shorter instruction time.

A final Spearman’s 2-tailed correlation test was performed to identify possible

relationships between student motivational components and performance in

both assessments as well as their final module grade. Results are presented in

Table 7.11.

Spearman's rho Correlation between student motivation to learn
programming and performance

N= 92 Scratch Assessment
Grade

Java Assessment
Grade

Final Grade

Self-efficacy .692** .742** .776**

Extrinsic .542** .628** .641**

Self-regulation .649** .730** .741**

Intrinsic .591** .637** .665**

** Correlation is significant at the 0.01 level (2-tailed).
Table 7.11: Spearman’s rho correlation between student motivation to learning programming and

performance

The test revealed significant positive correlations between student

performance and motivation, with even higher correlations with the Java

assessment grade. Examining the correlation coefficients, it can be observed

that self-efficacy and self-regulation might have a greater impact on student

performance than extrinsic motivation, but all factors significantly influence

performance. This interpretation is in line with related research on motivation

and academic performance (Pintrich & de Groot, 1990; Schunk, 1991;

Zimmerman, Bandura, & Martinez-Pons, 1992).

7.5 Results from the Analysis of Interview Data and Class
Observations – Qualitative Feedback

Qualitative feedback was collected from 12 students who volunteered to be

interviewed. Seven students were interviewed by me personally and 5 students

were interviewed by the professor teaching a different section of the same

module who also followed the same interview protocol. In order to reduce the

177

possible influence (or “interview bias”) stemming from direct student-teacher

relationships, my colleague and I decided to cross-interview each other’s

students. The interviews were recorded, transcribed and coded using NVivo

software.

In order to obtain student feedback on research question 1: “How do students

perceive Scratch visual programming environment, how they perceive its

enjoyability, ease of use, usability and usefulness and how they relate these

qualities to their achievement of the module’s learning objectives?”, I focused

the questions on the perceived advantages and disadvantages of using Scratch

for the introduction to programming. Findings from the qualitative analysis

were used to enhance, explain and elaborate on the results collected from the

surveys.

The coding frame for the advantages theme was developed in advance, using

the deductive approach, while the code frame for the disadvantages theme was

created from the analysis using the inductive approach (see Appendix Three).

The resulting child nodes (sub-codes) were grouped into the main codes after

the analysis of the interview transcripts using the constant comparative

method (Glaser & Anselm, 1967). The coding scheme, as well as the quotes in

each category, were reviewed and agreed upon by both interviewers.

A summary of associated categories is presented in Figure 7.9 and Figure 7.10.

The numbers which appear on each node are the frequency tallies of each

concept as reported by each participant. In some cases, participants reported

the same concept more than once.

178

Figure 7.9: NVivo coding of Scratch advantages as perceived by 12 students

Figure 7.10: NVivo coding of Scratch disadvantages as perceived by 12 students

179

From analysis of the interview transcripts, it became obvious that students

found more advantages than disadvantages in the use of Scratch. As such, I

gained an insight as to why students found Scratch useful, enjoyable,

interesting and easy.

“Freedom to improvise” and “having more things to explore” were new

concepts, which have not been identified in the literature, as to why Scratch is

interesting. “Interactivity”, “engagement” and “fun” were identified as the

reasons why students enjoyed using Scratch. “Code animation during program

execution” helped students clarify repetition programming constructs and

generally many respondents considered that programming knowledge gained

from Scratch “transferred into Java” by clarifying concepts. “Availability of

commands” and “easy integration of sound and animation” were two of the

reasons why students found Scratch easy. Another perceived advantage was

the easier transfer of an algorithm to a Scratch program.

Several disadvantages were mentioned regarding the use of Scratch, but most

of these were reported by a single student, who clearly disliked it. The

participant specifically said that: “I found Scratch extremely confusing with low
graphics and not helpful at all. It’s not real programming and I am afraid that if I
tell someone that in my college, we use Scratch to understand programming
concepts, he/she will think that we have a very low educational level”. The

student’s belief that code produced in a visual programming environment is

not real code or does not have a real-world applicability, has also been reported

in the literature, along with the perception that it is limited in scope and thus

less powerful (Weintrop & Wilensky, 2015). In a sense, this is not far from

reality, as Scratch is an educational programming environment and should be

evaluated as such.

The most commonly expressed disadvantage (reported 6 times) is that Scratch

is “confusing, complex and hard”, but its number of mentions was lower

compared to how often Scratch was referred to as easy (17 comments) and

contradicts the results obtained from the qualitative analysis concerning the

ease of use (see Table 7.2).

180

The fact that 5 students considered that Scratch has “hidden functionality” was

a surprise, since similar comments have not been found reported in the

literature. Indeed, in the environment of Scratch, there are some hidden

features, which could possibly confuse novice programmers. By holding down

the Shift, Control or Command Key and clicking on an object or area on the

screen, more options appear. For example, from using shift and clicking on the

file menu in the web applications, more commands appear. The same happens

on the desktop application with more commands appearing in the edit menu

(see Figure 7.11).

Figure 7.11:Scratch "hidden" features

Three participants characterised Scratch as “boring”, while the rest considered

it “fun” and “engaging”. Similar findings are reported by Ouahbi et al. (2015)

where 15% of high school students in his study, found programming with

Scratch to be boring.

It is worth noting that a student, who claimed that Scratch is interesting, also

stated that he/she would be bored to use it outside of the class.

The following interview questions aimed to investigate students’ motivation

concerning the use of Scratch outside the scope of the module’s assessments:

• Did you try to furtherly enhance (at home) Scratch projects we

developed in class? Why?

• Where you motivated to use Scratch outside the scope of this module?

i.e. developing your own games?

181

To the above questions, only one of the 12 participants answered positively,

stating: “Yes, I sometimes enhanced games we did in class” and another

participant said: “I started to develop one, but I did not finish it due to time
restrictions”. Given the above feedback, it is reasonable to conclude that

students’ motivation to work at home on enhancing a program was not

affected by their perception of Scratch as being fun, interesting and easy. Even

students who viewed Scratch as useful did not demonstrate a greater

motivation to develop a Scratch game outside the scope of the module. Studies

on student motivation (Black & Wiliam, 2006; Stefanou et al., 2018) have also

pointed out the problem related to diminishing motivation when students

work on a project which will not be academically assessed.

Representative student comments on why they would not use Scratch outside

the scope of the lesson include:

• “Let’s say Scratch is interesting... just for the duration we got involved in
class. If I had to use it for a greater amount of time, I think I would be
bored”

• “I found Scratch fun in the class, but not fun enough to create a program,
if there was no grading involved”

• “If I did not have anything else to do... maybe”
• “I do not have time for childish games, I am more interested in learning

real programming”

The final two interview questions aimed to compare student perceptions

between Scratch and Java programming:

• Which of the two coursework assessments did you enjoy more

developing?

• Which of the two coursework assessments (Scratch/Java) did you spend

more time developing? Why?

Nine students mentioned that they enjoyed developing the Scratch game more

than the Java game, and only 3 enjoyed coding in Java. This may be

attributable to the level of previous programming experience these students

had. It should be noted that the 3 students who preferred Java over Scratch

182

did in fact have prior programming experience and were the same ones that

highlighted many Scratch disadvantages.

Surprisingly enough, all the participants stated that they spent more time in

developing the Java game. Most participants ascribed this to difficulties in

translating their ideas into programming language commands and finding

“bugs”. Some representative student responses were:

• “I found it very difficult to translate my thoughts in a programming
language”

• “Debugging was harder”
• “It was easier to program in Scratch… I could see clearly how the code was

executing and finding logical errors was more obvious that in Java code”
• “I found the whole Java programming process difficult and time

consuming”
• “I spend hours trying to figure out what I was doing wrong [in Java]”

Referencing the qualitative feedback obtained during the interviews in an

attempt to explain the higher grades obtained in Scratch coursework compared

to Java coursework (see section 7.3), most interviewees found the difficulty

level of performing the same tasks in Scratch to be lower than in Java, when

performing identical tasks. This might be a possible explanation of why they

performed significantly better.

To complement, complete and contrast student motivation findings created

from the analysis of interviews and questionnaires, students’ behaviour was

observed while using Scratch in the classroom. This was done to mitigate the

risks and limitations of addressing the concept termed “motivation”. As

explained by Madrid and Canado (2001), we cannot observe a person’s

motivation; what we can do is observe a person’s behaviour. Through the

observation of behaviour, we can deduce the existence of a greater or lesser

degree of motivation (West & Uhlenberg, 1970). In these class observations,

the tutors agreed to follow a systematic direct observation and keep notes

around four behaviours of interest, which were defined a priori: emotional

expressions (positive or negative); attention to the task; perseverance in

completing the activity; and performance (see Appendix Three). A summary

from the class observations extracted from the professors’ notes, grouped

183

according to the four behaviours of interest, is shown in Table 7.12.Table 7.12:

Summary of notes from class observations

Assignment
/ Difficulty

Emotional
Expressions

Attention to the
task

Perseverance Performance

1
easy

mostly smiles great attention,
competition

great excellent

2
easy

playful mood;
laughs and
smiles

initially bored,
then focused and
intrigued

Not recorded by
instructors

excellent

3
medium

excitement, curiosity great excellent,
including
improvements

4
medium-
hard

interest mostly focused,
few bored

some very good

Table 7.12: Summary of notes from class observations

Motivation, fun, and enthusiasm levels were reflected in the class observations.

Overall, students demonstrated a positive engagement with Scratch in the

classroom (see Appendix Three). This finding corroborates the questionnaire

results, which show that students accepted Scratch with a mean score of 4.4/7

on the Likert scale (see section 7.4.1 Therefore, we can conclude that students

were overall in favour of this pedagogical approach.

7.6 Conclusion

This chapter presented and analysed the data collected from multiple sources

(survey tools, interviews and class observations) during this case study and

reported on the findings.

Evidence suggests that students found Scratch to be easy, useful, enjoyable and

engaging, but only within the scope and purpose of the module. On the other

hand, students demonstrating strong intrinsic motivation to learn

programming and high levels of self-efficacy did not perceive Scratch to be as

useful as other students did. Results also indicate that a relationship exists

between the acceptance of a visual programming environment and students’

learning style preferences; Scratch was found more useful and enjoyable by

those reporting visual and sequential learning approaches. Furthermore,

overall student performance and pass-fail rates showed considerable

improvement following the introduction of Scratch.

184

In the following chapter, the findings are discussed in relation to the research

questions, the study’s limitations are acknowledged and suggestions for future

work are provided.

185

Chapter 8 Conclusions

8.1 Contribution of this Study to the Research Literature

Teaching novices computational thinking and computer programming is a

challenging endeavour. This thesis, inspired by my own experience as an

educator and reported challenges that computer science educators face in

introductory programming courses, presents an extensive investigation into the

use of visual programming environments to support the teaching and learning

of introductory programming modules. The work of this thesis contributes to

the enhancement of existing knowledge surrounding such usage.

More specifically, evidence from the first part of this study (pilot study),

indicates that Scratch gained more acceptance in terms of student preference

compared to Greenfoot, Alice and APP Inventor visual programming

environments. Scratch was found to be easy, enjoyable and engaging.

In relation to the first research question: “How do visual programming
environments affect students’ performance in the course (assessment and final
grades)?”, evidence demonstrates a clear effect (15% improvement) on the

pass/fail rate of students. The educational effectiveness of Scratch is supported

by the noticeable increase (9.15%) in mean final grades across semesters. The

average final student grade from Fall 2013 until Spring 2016 (before the

introduction of Scratch) was 49.11% (n=141), whereas, from Fall 2016 until

Fall 2018, the average student grade increased to 58.26% (n=110). Despite

having examined and eliminated some known factors which might have

contributed to this improvement, such as different professors, changes to

module learning objectives, different student selection processes, and

variability in difficulty levels of assessments, any other factors that might have

influenced this shift of grades are not apparent, and are outside the control of

the study. It should also be stressed that students performed better in the

Scratch part of the coursework compared to the Java part of the coursework,

using the same project idea and within a consistent marking scheme. The

aforementioned finding that the Scratch VPE could potentially help students

perform better in introductory modules verifies findings in the literature that

have been previously reported (Cooper et al., 2002; Ozoran et al., 2012;

Topalli & Cagiltay, 2018).

186

In relation to the second research question: “How do students perceive the
Scratch visual programming environment? How do students perceive enjoyability,
ease of use, usability and usefulness? How do students relate these qualities to
their achievement of the module’s learning objectives (output quality)?”, students

found Scratch very easy to use and somewhat enjoyable but were almost

neutral in their opinion about its usefulness and the demonstrability of the

final programs. This contradicts findings from the qualitative analysis of the

interviews, which indicate that students found many more advantages than

disadvantages in the use of Scratch within the module, namely:

• “freedom to improvise”;

• “having more things to explore”;

• “interactivity”, “engagement” and “fun”;

• “code animation during program execution”;

• “availability of commands”;

• “easy integration of sound and animation”;

• “easier transfer of an algorithm to a Scratch program”.

Interestingly, the perceptions of the specific group of students about Scratch’s

ease of use, usefulness and enjoyment did not correlate with those students’

performance in Scratch or Java assessments. The fact that students showed no

inclination to use it outside the scope of the module is arguably another

important finding.

Conclusions raised from class observations showed that, as long as the

assignment was relatively easy, all students demonstrated high performance

and perseverance regarding the task at hand. As difficulty levels rose, those

students who found Scratch to be easy, useful and enjoyable demonstrated

increased engagement, while those who found Scratch to be confusing,

difficult, and not particularly useful showed signs of diminishing engagement.

This confirms that learners are far more likely to succeed when factors such as

perceived usefulness, enjoyment, and ease of use, are in place.

In relation to research question 3: “How do students’ motivation for learning
programming relate to their perceptions about visual programming

187

environments?”, findings indicate a negative correlation between the two.

Thus, students who believed in their abilities and had a strong extrinsic and

intrinsic motivation to learn programming did not perceive Scratch as being as

useful for the module as less motivated students did. Educators need to

address the reality that highly motivated students generally require a more

academically challenging course content. The fact that Scratch was perceived

by most students as being easy and fun, might not satisfy this condition. A

similar conclusion was reached by Howey in his doctoral dissertation (Howey,

1999). On the other hand, this research comes to verify related findings that

highly motivated students exhibit better performance.

In relation to the research question RQ4: “How do students’ learning styles
relate to their perceived enjoyment, ease of use, usability and usefulness of visual
programming environments?”, evidence suggests that the Scratch visual

programming environment might be more suitable for learners demonstrating

a visual and sequential learning preference, since they consider Scratch more

enjoyable and useful. A negative implication that might affect learning,

identified in the literature, could arise from a mismatch between the teaching

style and the students’ learning style preference (Felder & Henriques, 1995;

Schmeck, 1988; Felder & Brent, 2005; Lawrence, 2012). In this case, educators

should have in mind that the use of a tool with highly visual and structured

pedagogical underpinnings could possibly have a negative learning effect on

students with strong verbal or global learning style preferences.

A final contribution of this thesis to the literature is the development and

validation of the associated data collection instruments, which include a

technology acceptance model questionnaire, used to identify user attitudes

towards the use of visual programming environments, and a Motivated

Strategies for Learning Questionnaire, used to measure students’ motivation,

orientation and use of learning strategies in learning computer programming.

These instruments were based on previously established research (Davis 1985;

Pintrich & de Groot, 1990; Pintrich et al., 1991; Glynn et al., 2009) but were

adapted and modified to meet the requirements of the specific case study.

These resources (included in Appendix One) will be made freely available for

use by other educators and researchers alike, realising a practical research

contribution beyond this thesis that is both original and substantial.

188

My pragmatic approach to the study examined the findings from the point of

view of a practitioner aiming to support and improve the practice itself, both

for my own benefit and that of other practitioners.To conclude, as an

educational researcher, my aim was not to generalise the findings from this

study, since the case study was conducted in a specific undergraduate module

of a single college, but rather to understand student perceptions about the use

of a virtual programming environment while also relating them to their

learning style preferences.

The value of the work reported in this thesis is not limited to the discussed

findings; it also presents a teaching methodology and a tool for obtaining

student feedback. This framework might assist other educators to perform

future investigations and make informed decisions with regards to

incorporating a visual programming environment in their own modules.

8.2 Limitations of the Study

A participant-related limitation of the study has to do with the gender

breakdown of the study. There were only 14 (15%) female participants, as

opposed to 78 males (85%). This gender composition was beyond my control,

since it was affected by the overall enrolment in the module and is actually

quite representative of the student population across the information

technology department.

Comparison of student grades (before and after the use of a VPE) was

performed using data from past semesters. As a result, it cannot be ascertained

to what extent the observed differences between mean scores were due to the

effectiveness of Scratch, or if they simply reflect existing differences between

the groups due to the differences in the annual student intake. A possible

limitation of this study might be attributed to this fact. Using an experimental

group (Scratch prior to Java) and a control group (only Java) would be an

ideal research design, but it was not possible to obtain permission from the

college to have the same module taught using different teaching

methodologies.

189

Another potential bias might be attributed to the fact that I was an “insider

researcher” – in other words, I, the researcher, was also the tutor, the class

observer and the interviewer for almost half of the participant population. This

has been taken into consideration and I attempted to mitigate such potential

bias by involving other professors during the data collection and analysis

stages. I acknowledge the significance of partiality, which might arise based on

my own pre-conceived ideas about the use of visual programming

environments, and this was one of the reasons behind the decision to perform

mixed-methods data collection.

8.3 Recommended Areas for Future Research

A Motivated Strategies for Learning Questionnaire was used to assess overall

student motivation to learn programming, but this did not provide answers as

to the possible effects of Scratch in student motivation; further research would

be required to explore this aspect, as motivation was only observed through

student behaviour while using the tool. Observer notes were not very detailed

and, in some cases, not very consistent. In order to better address the issue of

motivation, more qualitative feedback is required to provide an insight into

student motivation to use Scratch, which has not been established through the

findings of this study.

The technology acceptance model part of the survey was not analysed as per

the relationship amongst its variables - perceived enjoyment, ease of use,

usefulness, output quality (attitude towards using), and intention to use -

because it was not within the scope of the current research. In the future, a

regression analysis on the data could provide a goodness-of-fit test and

produce the path coefficients of the model. The model could subsequently be

tested to verify whether the intention to use a visual programming

environment can be reliably predicted from the rest of the variables.

The quantitative data collected from this study are rich and multi-faceted.

They can be analysed further to answer future research questions. A

recommendation for future research would be to explore the relationship (if

any) between students’ levels of prior programming experience and their

acceptance of Scratch.

190

It would also be interesting to explore qualitatively the reasons why student

intention to use Scratch outside the scope of the module is much lower than

their recommendation that the tool be permanently incorporated into this

introductory course.

8.4 A Final Reflection

The process of realising this study has helped me improve delivery of the

introduction to programming module at my college, by making it more

approachable and engaging for the students. It has provided me with greater

insight into student perceptions about visual programming environments and

perceived advantages/disadvantages from the student point of view, informed

me about students’ overall motivation to learn programming, and assisted me

in choosing appropriate tools that satisfy student needs and motivate them to

practise. These findings could serve as a reference for educators to better

address student needs in their pursuit to teach programming to novices. The

instruments created could be used as measurement tools for gauging students’

acceptance of VPEs and their motivation to learn programming, as well as a

starting point for future research.

191

References

Abdul-Rahman, S.-S., & Boulay, Du, B. (2014). Learning programming via worked-
examples: Relation of learning styles to cognitive load. Computers in Human
Behavior, 30(1), 286–298.

ACM Computing Curricula Task Force (Ed.). (2013). Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer
Science. New York, NY: ACM Press.

Adelson, B. (1984). When novices surpass experts: The difficulty of a task may
increase with expertise. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 10(3), 483–495.

Al-Linjawi, A., Al-Nuaim, H., & Al-Nuaim, H. (2010). Using Alice to Teach Novice
Programmers OOP Concepts. Journal of King Abdulaziz University-Science, 22(1),
59–68.

Alesandrini, K., & Larson, L. (2002). Teachers bridge to constructivism. The Clearing
House: A Journal of Educational Strategies, Issues and Ideas, 75(3), 118–121.

Allert, J.D. (2004). Learning style and factors contributing to success in an
introductory computer science course. In Looi, C-K., Sutinen, E., Sampson,
D.G., Aedo, I., Uden, L. & Kähkonen, E. (Eds.) Proceedings of the IEEE
International Conference on Advanced Learning Technologies - ICALT 2004 (pp.
385-389). Los Alamitos, CA: IEEE.

Anderson, J. R., & Corbett, A. T. (1995). Knowledge decomposition and subgoal
reification in the ACT programming tutor. In Greer, J. E. (Ed.) Proceedings of AI-
ED ‘95, 7th World Conference on Artificial Intelligence in Education (pp. 1-7).
Washington, DC: AACE.

Ausubel, D. P. (1963). The psychology of meaningful verbal learning. Oxford: Grune
& Stratton.

Avison, D., Lau, F., Myers, M., & Nielsen, P. A. (1999). Action research.
Communications of the ACM, 42(1), 94–97.

Ball, S. (Ed.). (1977). Motivation in education. New York, NY: Academic Press.
Bandura, A. (2001). Social Cognitive Theory: An Agentic Perspective. Annual Review

of Psychology, 52(1), 1–26.
Bandura, A., & Wessels, S. (1994). Self-efficacy. Encyclopedia of Human Behavior, 4,

71–81.
Bassey, M. (1999). Case Study Research in Educational Settings. Maidenhead: Open

University Press.
Begel, A. (1996). LogoBlocks: A graphical programming language for interacting with

the world. Unpublished Advanced Undergraduate Project, MIT Media Lab,
Boston, MA.

Begosso, L. C., & Begosso, L. R. (2012). An approach for teaching algorithms and
computer programming using Greenfoot and Python. In Proceedings of 2012
Frontiers in Education Conference (FIE) (pp. 1–6). Piscataway, NJ: IEEE.

Ben-Ari, M. (1998). Constructivism in computer science education. ACM SIGCSE
Bulletin, 30(1), 257–261.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming.
ACM SIGCSE Bulletin, 39(2), 32–36.

192

Bergin, J., Jiménez-Peris, R., Brodie, K., Patiño-Martínez, M., McNally, M., Naps, T., et
al. (1996). An overview of visualization: its use and design. ACM SIGCSE Bulletin,
28(SI), 192–200.

Bergin, S., & Reilly, R. (2005). The influence of motivation and comfort-level on
learning to program, In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant
(Eds.) Proceedings of the PPIG (Vol. 17) (pp. 293-304). Brighton, UK: University of
Sussex.

Biggs, J. (1987). Student Approaches to Learning and Studying. Hawthorn,VIC:
Australian Council for Educational Research.

Biggs, J., Kember, D., & Leung, D. Y. (2001). The revised two-factor Study Process
Questionnaire: R-SPQ-2F. The British Journal of Educational Psychology, 71(Pt 1),
133–149.

Bishop-Clark, C., Courte, J., Evans, D., & Howard, E. V. (2007). A quantitative and
qualitative investigation of using Alice programming to improve confidence,
enjoyment and achievement among non-majors. Journal of Educational Computing
Research, 37(2), 193–207.

Black, P., & Wiliam, D. (2006). Assessment and classroom learning. Assessment in
Education: Principles, Policy & Practice, 5(1), 7–74.

Bloom, M. V., & Hanych, D. A. (2002). Skeptics and true believers hash it out.
Community College Week, 14(15), 17.

Bonar, J., & Soloway, E. (1985). Pre-programming knowledge: a major source of
misconceptions in novice programmers. Human-Computer Interaction, 1(2), 133–
161.

Booch, G. (1989). What is and what isn't object-oriented design. American
Programmer, 2(7-8), 14–21.

Borkowski, J. G., Carr, M., Rellinger, E., & Pressley, M. (1990). Self-regulated
cognition: Interdependence of metacognition, attributions, and self-esteem. In B.
F. Jones & L. Idol (Eds.) Dimensions of thinking and cognitive instruction (pp. 53-
92). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Bosse, Y., & Gerosa, M. A. (2017). Difficulties of programming learning from the point
of view of students and instructors. IEEE Latin America Transactions, 15(11),
2191–2199.

Bowden, J., & Marton, F. (2003). The university of learning: Beyond quality and
competence. London: Taylor & Francis.

Boyle, T., Bradley, C., Chalk, P., Jones, R., & Pickard, P. (2003). Using Blended
Learning to Improve Student Success Rates in Learning to Program. Journal of
Educational Media, 28(2-3), 165–178.

Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M., & Stoodley, I.
(2004). Ways of experiencing the act of learning to program: A
phenomenographic study of introductory programming students at university.
Journal of Information Technology Education, 3(1), 143-160.

Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 19(1), 1–
15.

Bureau of Labor Statistics. (2019). Software Developers: Occupational Outlook
Handbook: U.S. Retrieved June 22, 2019, from
https://www.bls.gov/ooh/computer-and-information-technology/software-
developers.htm

Burnett, M. M. (1999). Visual Programming. In J.G. Webster (Ed.) Wiley Encyclopedia
of Electrical and Electronics Engineering, 1–13. Hoboken, NJ: Wiley.

193

Burnett, M. M., & Baker, M. J. (1993). A classification system for visual programming
languages. Technical Report (pp. 1-20). Corvallis, OR: Oregon State University.

Calder, N. (2010). Using Scratch: An Integrated Problem-solving Approach to
Mathematical Thinking, Australian Primary Mathematics Classroom, 15(4), 9-14.

Cañas, J. J., Bajo, M. T., & Gonzalvo, P. (1994). Mental models and computer
programming. International Journal of Human-Computer Studies, 40(5), 795–811.

Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures:
A theoretical account of the processing in the Raven Progressive Matrices Test.
Psychological Review, 97(3), 404–431.

Carr, W., & Kemmis, S. (1986). Becoming critical: Knowledge, education and action
research. The Journal of Educational Thought (JET), 23(3), 209-216.

Carroll, J. M., & Thomas, J. C. (1988). Fun. ACM SIGCHI Bulletin, 19(3), 21–24.
Chalk, P., Boyle, T., & Fisher, K. (2003). Improving pass rates in introductory

programming. In O'Reilly, U (Ed.) Proceedings of the 4th Annual Conference of the
LTSN Centre for the Information and Computer Sciences (pp. 6-10). Galway,
Ireland: LTSN-ICS.

Chamillard, A. T., & Karolick, D. (1999). Using learning style data in an introductory
computer science course. ACM SIGCSE Bulletin, 31(1), 291–295.

Chang, M. K., & Cheung, W. (2001). Determinants of the intention to use
Internet/WWW at work: a confirmatory study. Information & Management, 39(1),
1–14.

Chen, Z., & Marx, D. (2005). Experiences with Eclipse IDE in programming courses.
Journal of Computing Sciences in Colleges, 1(2), 1–9.

Chen, C. L., & Lin, J. M. C. (2011). Learning styles and student performance in java
programming courses. In Gersting, J., Walker, H., Grissom, S. (Eds.) Proceedings
of the 33rd International Conference on Frontiers in Education Computer Science and
Computer Engineering (SIGCSE '02). New York, NY: ACM. 33-37.

Chiang, F.-K., & Qin, L. (2018). A Pilot study to assess the impacts of game-based
construction learning, using scratch, on students’ multi-step equation-solving
performance. Interactive Learning Environments, 15(4), 1–12.

Čisar, S., Radosav, D., Pinter, R., & Čisar, P. (2011). Effectiveness of program
visualization in learning java: a case study with Jeliot 3. International Journal of
Computers Communications & Control, 6(4), 668–14.

Cliburn, D. C. (2008). Student opinions of Alice in CS1. In IEEE Frontiers in Education
Conference (pp. T3B-7-T3B-11), New York, NY: IEEE.

Code, J. R., MacAllister, K., Gress, C. L. Z., & Nesbit, J. C. (2006). Self-regulated
learning, motivation and goal theory: implications for instructional design and e-
learning. In Proceedings of the Sixth IEEE International Conference on Advanced
Learning Technologies - ICALT '06 (pp. 872-874). Washington, DC: IEEE Computer
Society.

Coffield, F., & Learning and Skills Research Centre. (2004). Learning styles and
pedagogy in post-16 learning: A systematic and critical review. London: Learning
and Skills Research Centre.

Cohen, L., Manion, L., & Morrision, K. (2013). Research methods in education.
London: Routledge.

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory
programming concepts. In John G. Meinke (Ed.) The journal of computing in small
colleges (CCSC '00), 15(5),107-116.

194

Cooper, S., Dann, W., & Pausch, R. (2002). Teaching objects-first in introductory
computer science, In Grissom S., Knox D., Joyce D., Dann W. (Eds.) Proceedings of
the 34th SIGCSE Technical Symposium on Computer Science Education - SIGCSE '03
(pp. 191-195). New York, NY: ACM.

Cooper, S., Moskal, B., & Lurie, D. (2004). Evaluating the effectiveness of a new
instructional approach. In Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education - SIGCSE '04 (pp. 75-79). New York, NY: ACM.

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches (4 ed). Thousand Oaks, CA: Sage Publications, Inc.

Creswell, J. W., & Clark, V. L. P. (2011). Designing and conducting mixed methods
research. Thousand Oaks, CA: Sage Publications, Inc.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.
Psychometrika, 16(3), 297–334.

Cronbach, L. J. (1957). The two disciplines of scientific psychology. American
Psychologist, 12(11), 1–14.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests.
Psychological Bulletin, 52(4).

Cronbach, L. J., & Murphy, G. (1970). Essentials of psychological testing. New York,
NY: Harper & Row.

Culwin, F. (1999). Object imperatives! ACM SIGCSE Bulletin, 31(1) 31–36.
Curry, L. (1983). An organization of learning styles theory and constructs. Halifax,

NS: Dalhousie University.
Curry, L. (1987). Integrating concepts of cognitive or learning style: a review with

attention to psychometric standards. New York, NY: Learning Styles Network.
Curry, L. (1990). A critique of the research on learning styles. Educational Leadership,

48(2), 50.
Da Silva C., Marcelino, M. J., & Mendes, A. J. (2007). The Impact of Learning Styles

in Introductory Programming Learning. In International Conference on Engineering
Education, Coimbra, Portugal. European Journal of Engineering Education. 32(1),
3-7.

Dale, N. B. (2006). Most difficult topics in CS1. ACM SIGCSE Bulletin, 38(2), 49–5.
Dann, W., Cooper, S., & Pausch, R. (2001). Using visualization to teach novices

recursion. ACM SIGCSE Bulletin, 33(3), 109–112.
Dann, W., Cosgrove, D., & Slater, D. (2012). Mediated transfer: Alice 3 to Java. In

Proceedings of the 43rd ACM technical symposium on Computer Science Education -
SIGCSE '12 (pp. 141-146). New York, NY: ACM.

Davies, S., Polack-Wahl, J. A., & Anewalt, K. (2011). A snapshot of current practices
in teaching the introductory programming sequence. In Proceedings of the 42nd
ACM technical symposium on Computer science education - SIGCSE ’11 (pp. 625-
630). New York, NY: Association for Computing Machinery.

Davis, F. D. (1985). A Technology Acceptance Model for Empirically Testing New
End-User Information Systems (Doctoral dissertation). Massachusetts Institute of
Technology, Boston, MA.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance
of information technology. MIS Quarterly, 13(3), 319.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models. Management Science,
35(8), 982–1003.

195

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic
motivation to use computers in the workplace. Journal of Applied Social
Psychology, 22(14), 1111–1132.

Davison, R. M., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action
research. Information Systems Journal, 14(1), 65–86.

DeCharms, R. (1968). Personal causation; the internal affective determinants of
behavior. New York, NY: Academic Press.

Deci, E. L. (1975). Intrinsic motivation. New York, NY: Plenum Publishing Company.
Deci, E. L. (1976). The hidden costs of rewards. Organizational Dynamics, 4(3), 61–

72.
Deci, E. L. (1978). Applications of research on the effects of rewards. The Hidden Costs

of Reward: New Perspectives on the Psychology of Human Motivation, 193–203.
Decker, A. (2003). A tale of two paradigms. Journal of Computing Sciences in Colleges,

19(2), 238–246.
Decker, A., & Simkins, D. (2016). Uncovering difficulties in learning for the

intermediate programmer. In Proceedings of the IEEE Frontiers in Education
Conference – FIE (pp. 1-8). Pennsylvania, PA: IEEE.

Decker, A., & Trees, F. P. (2011). Greenfoot: Introducing Java with Games and
Simulations: pre-conference workshop/tutorial presentation. Journal of
Computing Sciences in Colleges archive. 26(6), 7-9.

Dewey, J. (1938). Experience and Education. Educational Forum, 50(3), 241-252.
Dijkstra, E. W. (1970). Notes on Structured Programming. Eindhoven, Netherlands:

Technological University of Eindhoven.
Dillon, E. C. (2012). Measuring the effects of low assistive vs. Moderately assistive

environments on novice programmers (Doctoral dissertation). The University of
Alabama, Tuscaloosa, AL.

Dillon, E., Anderson, M., & Brown, M. (2012). Comparing feature assistance between
programming environments and their “effect” on novice programmers. Journal of
Computing Sciences in Colleges, 27(5), 69-77.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1), 57–73.

Du Boulay, B., & O’Shea, T. (1981). The black box inside the glass box: presenting
computing concepts to novices. International Journal of Man-Machine Studies, 14,
237–249.

Duffy, T. M., Jonassen, D. H., & Lowyck, J. (1993). Designing environments for
constructive learning. Berlin, Germany: Springer-Verlag.

Duncan, T., & Mckeachie, W. J. (1991). A manual for the use of the motivated
strategies for learning questionnaire (MSLQ). Ann Arbor, MI: National Center for
Research to Improve Postsecondary Teaching and Learning.

Dunn, R. S., Dunn, K. J., & Price, G. E. (1979). Identifying individual learning styles.
In Student learning styles: Diagnosing and prescribing programs. Reston, VA:
National Association of Secondary School Principles, 39-54.

Dunn, R., Honigsfeld, A., Doolan, L. S., Bostrom, L., Russo, K., Schiering, M. S., et al.
(2009). Impact of learning-style instructional strategies on students' achievement
and attitudes: perceptions of educators in diverse institutions. The Clearing House:
a Journal of Educational Strategies, Issues and Ideas, 82(3), 135–140.

Dweck, C. S. (1999). Self-theories: Their role in motivation, personality, and
development. New York, NY: Psychology Press.

196

Eckerdal, A. (2006). Novice students’ learning of object-oriented programming.
(Doctoral dissertation). Uppsala University, Uppsala, Sweden.

Eckerdal, A., Thuné, M., & Berglund, A. (2005). What does it take to learn
'programming thinking'? In Proceedings of the first international workshop on
Computing education research -ICER '05 (pp. 135-142). New York, NY: ACM.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of
Management Review, 14(4), 532–550.

Eisenstadt, M., (1992). In Eisenstadt, M., Keane, M. T., & Rajan, T. (Eds.) Novice
programming environments. Explorations in Human-Computer Interaction and
Artificial Intelligence. London: Routledge.

Elliot, A. J., & Harackiewicz, J. M. (1996). Approach and avoidance achievement
goals and intrinsic motivation: A mediational analysis. Journal of Personality and
Social Psychology, 70(3), 461–475.

Entwistle, N. (2005). Contrasting Perspectives on Learning. In N. Entwistle, F.
Marton, & H. Dai (Eds.) The Experience of Learning: Implications for teaching and
studying in higher education (pp. 1–11). Edinburgh: University of Edinburgh.

Entwistle, N. J. (1991). Approaches to learning and perceptions of the learning
environment. Higher Education, 22(3), 201–204.

Entwistle, N., & Ramsden, P. (1983). Understanding student learning. New York, NY:
Croom Helm Ltd.

Entwistle, N., & Tait, H. (1990). Approaches to learning, evaluations of teaching, and
preferences for contrasting academic environments. Higher Education, 19(2),
169–194.

Erol, O., & Kurt, A. A. (2017). The effects of teaching programming with Scratch on
pre-service information technology teachers' motivation and achievement.
Computers in Human Behavior, 77(1), 11–18.

Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, Cognitivism, Constructivism:
Comparing critical features from an instructional design perspective. Performance
Improvement Quarterly, 26(2), 43–71.

Fay, A. I., & Mayer, R. E. (1988). Learning Logo: A cognitive analysis. In R. E. Mayer
(Ed.), Teaching and Learning Computer Programming Multiple Research Perspectives
(pp.55-74). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Felder, R. M. (2005). Applications, reliability and validity of the index of learning
styles. International Journal of Engineering Education, 21(1), 103–112.

Felder, R. M. (2010). Are learning styles invalid? (hint: no!). On-course Newsletter, 57-
72.

Felder, R. M., & Brent, R. (2005). Understanding student differences. Journal of
Engineering Education, 94(1), 57–72.

Felder, R. M., & Henriques, E. R. (1995). Learning and teaching styles in foreign and
second language education, Foreign Language Annals, 28(1), 21-31.

Felder, R. M., & Silverman, L. K. (1988). Learning and Teaching Styles in Engineering
Education. International Journal of Engineering Education, 78(7), 674–681.

Felder, R. M., & Soloman, B. A. (1993). Index of Learning Styles Questionnaire (ILS).
Retrieved from: https://www.webtools.ncsu.edu/learningstyles/

Fields, D. A., Giang, M., & Kafai, Y. B. (2013). Understanding collaborative practices
in the Scratch online community: Patterns of participation among youth
designers. In N. Rummel, M. Kapur, M. Nathan and S. Puntambekar (Eds.)
Proceedings of the Computer Supported Collaborative Learning – CSCL 2013 (pp.
200-207). Madison, WI: International Society of the Learning Sciences, Inc.

197

Fincher, S., Utting, I. (2010). Machines for Thinking. ACM Transactions on Computing
Education (TOCE), 10(4), 13.

Fishbein, M., & Ajzen, I. (1975). Measurement techniques. Belief, attitude, intention,
and behavior an introduction to theory and research. Philosophy and Rhetoric,
10(2), 1–54.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with
unobservable variables and measurement error. Journal of Marketing Research,
18(1), 39.

Freund, S. N., & Roberts, E. S. (1996). Thetis: an ANSI C Programming Environment
Designed for Introductory Use. In Karl J. Klee (Ed.) Proceedings of the twenty-
seventh SIGCSE technical symposium on Computer science education -SIGCSE '96
(pp. 300-304). New York, NY: ACM.

Gagné, E. D., Yekovich, C. W., & Yekovich, F. R. (1993). The cognitive psychology of
school learning. New York, NY: Harper Collins College Publishers.

Gallant, R. J., & Mahmoud, Q. H. (2008). Using Greenfoot and a moon scenario to
teach Java programming in CS1 In Proceedings of the 46th Annual Southeast
Regional Conference on XX - ACM-SE 46 (pp.118-121). New York, NY: ACM.

Garris, R., Ahlers, R., & Driskell, J. E. (2016). Games, motivation, and learning: a
research and practice model. Simulation & Gaming, 33(4), 441–467.

Gentner, D., & Stevens, A. L. (2002). Mental Models. International Encyclopedia of the
Social and Behavioral Sciences (pp. 9683–9687). Amsterdam: Psychology Press.

Gershon, N., Eick, S. G. & Card S. (1998). Information Visualization. Interactions,
5(2), 5-15.

Gibbs, G., & Awards, C. F. N. A. (1992). Improving the quality of student learning.
(Doctoral dissertation), University of Glamorgan, Wales.

Giraffa, L., Moraes, M. C., & Uden, L. (2014). Teaching object-oriented programming
in first-year undergraduate courses supported by virtual classrooms. In Uden L.,
Yu-Hui T., Hsin-Chang Y., I-Hsien T. (Eds) The 2nd International Workshop on
Learning Technology for Education in Cloud (pp. 15-26). Dordrecht, The
Netherlands: Springer.

Given, L. M. (Ed.). (2008). The SAGE encyclopedia of qualitative research methods.
Thousand Oaks, CA: Sage Publications, Inc.

Glaser, B. G., & Anselm L, S. (1967). The discovery of grounded theory: Strategies for
qualitative research. Chicago, IL: Aldine Publishing.

Glynn, S. M. (2011). Science motivation questionnaire II (SMQ-II): Components.
Retrieved from: https://coe.uga.edu/assets/downloads/mse/smqii-
components.pdf.

Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science
motivation questionnaire II: Validation with science majors and nonscience
majors. Journal of Research in Science Teaching, 48(10), 1159–1176.

Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2009). Science Motivation
Questionnaire: Construct validation with nonscience majors. Journal of Research
in Science Teaching, 46(2), 127–146.

Gomes, A., & Mendes, A. (2008). A study on student’s characteristics and
programming learning. In J. Luca & E. R. Weippl (Eds.) World Conference on
Educational Media and Technology (pp. 2895–2904). Vienna, Austria: Association
for the Advancement of Computing in Education (AACE).

Goodman, N. D. (1979). Mathematics as an objective science. The American
Mathematical Monthly, 86(7), 540.

198

Gottfried, A. E. (1985). Academic intrinsic motivation in elementary and junior high
school students. Journal of Educational Psychology, 77(6), 631–645.

Grasha A. (2002). Teaching with style: A practical guide to enhancing learning by
understanding teaching and learning styles. Pittsburg, PA: Alliance Publishers.

Green, T. R. G. (1990). The nature of programming. In Hoc J. M, Green T., Samurçay
R., Gilmore D. (Eds). Psychology of Programming (pp. 23–44), London: Academic
Press.

Gries, P., Mnih, V., Taylor, J., Wilson, G., & Zamparo, L. (2005). Memview: A
pedagogically-motivated visual debugger (Vol. 2005). In Proceedings of the 35th
Annual Frontiers in Education (pp. S1J-11). Indianapolis, IN: IEEE.

Grissom, S., McNally, M. F., & Naps, T. (2003). Algorithm visualization in CS
education: comparing levels of student engagement. In Proceedings of the 2003
ACM symposium on Software Visualization (pp. 87–94). New York, NY: ACM.

Gronlund, N. E. (1971). Measurement and evaluation in teaching. Journal of Teacher
Education, 23(1), 96–97.

Guzdial, M. (2004). Programming environments for novices. In S. Fincher, & M. Petre
(Eds.) Computer science education research (pp. 127-154). Lisse: Taylor & Francis.

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and
programming. ACM SIGCSE Bulletin, 31(3), 171–174.

Hadjerrouit, S. (2007). A blended learning model in Java programming: A design-
based research approach. In Proceedings of the 2007 Computer Science and IT
Education Conference (pp. 283-308). Arlington: Information Sciences Institute.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2016). A Primer on partial
least squares structural equation modelling (PLS-SEM). Los Angeles, CA: Sage
Publications.

Harter, S. (1981). A new self-report scale of intrinsic versus extrinsic orientation in
the classroom: Motivational and informational components. Developmental
Psychology, 17(3), 300.

Hartley, J. (1998). Learning and studying: A research perspective. Routledge, London,
1998.

Henriksen, P., & Kölling, M. (2004). Greenfoot: combining object visualisation with
interaction. In Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications - OOPSLA '04 (pp. 73–
82), New York, NY: ACM Press.

Hertz, M., & Jump, M. (2013). Trace-based teaching in early programming courses. In
Proceedings of the 44th ACM Technical Symposium on Computer Science Education -
SIGCSE 2013 (pp. 561-566), New York, NY: ACM Press.

Hijon-Neira, R., Velazquez-Iturbide, A., Pizarro-Romero, C., & Carrico, L. (2013).
Improving students learning programming skills with ProGames - Programming
through games system. In Gary M., Gitte L., Janet W., Marco W. (Eds.)
Proceedings of Human-Computer Interaction – INTERACT 2013 (pp. 579-586).
Berlin, Germany: Springer Berlin Heidelberg.

Hinkin, T. R. (1998). A brief tutorial on the development of measures for use in
survey questionnaires. Organizational Research Methods, 2(1), 104-121.

Hogan, J. P. (1998). Mind matters: exploring the world of artificial intelligence. New
York, NY: Ballantine Publishing Group.

Holt, R. W., & Schultz, A. C. (1987). Mental representation of programs for student
and professional programmers. In G. M. Olson, S. Sheppard, & E. Soloway (Eds.),

199

Empirical Studies of Programmers (pp. 100–113). Norwood: Ablex Publishing
Corp.

Howey, S. C. (1999). The relationship between motivation and academic success of
community college freshmen orientation students. (Doctoral Dissertation). Kansas
State University, Kansas City, KS.

Hu, C. (2004). Rethinking of teaching objects-first. Education and Information
Technologies, 9(3), 209–218.

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages & Computing, 13(3), 259–
290.

Igbaria, M., Iivary, J., & Maragahh, H. (1995). Why do individuals use computer-
technology - A finnish case-study. Information & Management, 29(5), 227–238.

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010). Instructional strategy in the teaching
of computer programming: A need assessment analyses. Turkish Online Journal of
Educational Technology, 9(2), 125–131.

Jenkins, T. (2001). The motivation of students of programming. ACM SIGCSE Bulletin,
33(1) 53–56.

Jonassen, D. H. (1991). Evaluating constructivistic learning. Educational Technology,
31(9), 28–33.

Jones, M. W. (2010). An extended case study on the introductory teaching of
programming (Doctoral Dissertation). University of Southampton, Southampton.

Joppe, M. (2000). The research process. Retrieved from:
https://www.uoguelph.ca/hftm/research-process.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying
student misconceptions of programming. In Proceedings of the 41st ACM technical
symposium on Computer science education -SIGCSE '10 (pp. 107-111). New York,
NY: ACM Press.

Kay, A. (2005). Squeak Etoys authoring & media. Retrieved from:
http://www.squeakland.org/content/articles/attach/etoys_n_authoring.pdf

Keefe, J. W., & Languis, M. L. (1983). Operational definitions. Paper presented to the
NASSP Learning Styles Task Force. Reston, VA.

Keefe, James W. (1985) Assessment of learning style variables: the NASSP Task Force
model. Theory into practice, 24(2), 138–144.

Kehoe, C., Stasko, J., & Taylor, A. (2001). Rethinking the evaluation of algorithm
animations as learning aids: an observational study. International Journal of
Human-Computer Studies, 54(2), 265–284.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy
of programming environments and languages for novice programmers. ACM
Computing Surveys (CSUR), 37(2), 83–137.

Keller, J. M. (1987). Development and use of the ARCS model of instructional design.
Journal of Instructional Development, 10(3), 2–10.

Kemmis, S., McTaggart, R., & Nixon, R. (2013). Introducing Critical Participatory
Action Research. In the Action Research Planner (pp. 1–31). Singapore: Springer
Singapore.

Kessler, C., & Anderson, J. (1986). Learning flow of control: recursive and iterative
procedures. Human-Computer Interaction, 2(2), 135–166.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and
development. Englewood Cliffs, CA: Prentice-Hall.

200

Kolb, D. A., & Kolb, A. Y. (2014). The Kolb learning style inventory 4.0: Guide to
theory, psychometrics, research & applications. Experience based learning
systems. Retrieved from:
https://learningfromexperience.com/downloads/research-library/the-kolb-
learning-style-inventory-4-0.pdf.

Kölling, M. (1999). The problem of teaching object-oriented programming. Journal of
Object-Oriented Programming, 11(8), 8–15.

Kotsovoulou, M., & Stefanou, V. (2016). Student perceptions on the effectiveness of
collaborative problem-based learning using online pair programming tools. In
Strouhal J. (Ed.) Proceedings of the 12th International Conference on Educational
Technologies (pp. 32–39). Barcelona: WSEAS Press.

Kowalczyk, R., Turczy�ski, Ł., & �yła, K. (2016). Comparison of app inventor 2 and
java in creating personal applications for android on example of a notepad.
Advances in Science and Technology Research Journal, 10(31), 247–254.

Kozhevnikov, M. (2007). Cognitive styles in the context of modern psychology:
Toward an integrated framework of cognitive style. Psychological Bulletin, 133(3),
464–481.

Krauss, S. E. (2005). Research Paradigms and Meaning Making: A Primer. Qualitative
Report, 10(4), 758-770.

Kress, G., & van Leeuwen, T. (2001). Multimodal Discourse: The modes and media of
contemporary communication. Journal of Communication Inquiry, 26(3), 338–
339.

Kuri, N. P., & Truzzi, O. M. S. (2002). Learning styles of freshmen engineering
students. In proceedings of 2002 International Conference on Engineering Education.
Manchester: International Network for Engineering Education and Research.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of
novice programmers. In Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education - ITiCSE '05 (pp. 14–18).
New York, NY: ACM Press.

Lamb, A., & Larry, J. (2011). Scratch: Computer Programming for 21st Century
Learners. Teacher Librarian, 38(4), 64- 75.

Laurillard, D. (1979). The processes of student learning. Higher Education, 8(4), 395–
409.

Laurillard, D. (2005). Styles and approaches in problem-solving. In N. Entwistle, F.
Marton, & H. Dai (Eds.), The Experience of Learning (pp. 126–144). Edinburgh:
Scottish Academic Press

Laurillard, D., & Laurillard, D. (2006). E-learning in higher education. In Ashwin P.
(Ed.) Changing Higher Education (pp. 87-100). London: Routledge.

Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation.
Cambridge: Cambridge university press.

Lawrence, G. (2012). People types and tiger stripes: a practical guide to learning
styles (3rd ed.). Gainesville, FL: Center for Applications of Psychological Type, Inc.

Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel
Psychology, 28(4), 563–575.

Leedy, P., & Ormrod, J. (2010). Practical research: planning and design. Boston, MA:
Pearson.

Leitner, H. H., Malan, D. J., Maloney, J., & Wolz, U. (2009). Starting with Scratch in
CS1. ACM SIGCSE Bulletin, 41(1), 2–3.

201

Lepper, M. R., & Cordova, D. I. (1992). A desire to be taught: Instructional
consequences of intrinsic motivation. Motivation and Emotion, 16(3), 187–208.

Letovsky, S., & Soloway, E. (1986). Delocalized plans and program comprehension.
IEEE Software, 3(3), 41–49.

Li, X., & Yang, X. (2016). Effects of learning styles and interest on concentration and
achievement of students in mobile learning. Journal of Educational Computing
Research, 54(7), 922–945.

Linn, M. C., & Dalbey, J. (1985). Cognitive consequences of programming instruction:
Instruction, access, and ability. Educational Psychologist, 20(4), 191–206.

Liu, J., Lin, C.-H., Potter, P., Hasson, E. P., Barnett, Z. D., & Singleton, M. (2012).
Going mobile with App Inventor for Android: A one-week computing workshop
for K-12 teacher. In Proceeding of the 44th ACM technical symposium on Computer
science education - SIGCSE '13 (pp. 433-438). New York, NY: ACM Press.

lling, M. K., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its
pedagogy. Computer Science Education, 13(4), 249–268.

López, J. M. S., González, M. R., & Cano, E. V. (2016). Visual programming languages
integrated across the curriculum in elementary school: A two-year case study
using “scratch” in five schools. Computers & Education, 97(1), 1–26.

Ma, L., Ferguson, J., Roper, M., Ross, I., & Wood, M. (2009). Improving the mental
models held by novice programmers using cognitive conflict and Jeliot
visualisations. ACM SIGCSE Bulletin, 41(3), 166.

Madan, R. L., & Tuli, G. D. (2003). Physical Chemistry. New Delhi: S. Chand
Publishing.

Madrid, D. F., & Canado, M. L. P. (2001). Exploring the student’s motivation in the
EFL class. Present and Future Trends in TEFL, 12(1), 321–364.

Malan, D. J. (2010). Reinventing CS50. In Proceedings of the 41st ACM technical
symposium on Computer science education - SIGCSE’10 (pp. 152–156). New York,
NY: ACM Press.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. In
Proceedings of the 38th SIGCSE technical symposium on Computer science education
- SIGCSE '07 (pp. 223–227). New York, NY: ACM Press.

Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction.
Cognitive Science, 5(4), 333–369.

Malone, T. W., & Lepper, M. R. (1987). Making learning fun: A taxonomy of intrinsic
motivations for learning. In Snow, R. & Farr, M. J. (Ed), Aptitude, Learning, and
Instruction Volume 3: Conative and Affective Process Analyses. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., & Rusk, N. (2007). Programming by
choice: urban youth learning programming with Scratch. In Proceedings of the
39th SIGCSE technical symposium on Computer science education - SIGCSE '08 (pp.
367-371). New York, NY: ACM Press.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch
programming language and environment. ACM Transactions on Computing
Education, 10(4), 1–15.

Martínez-Valdés, J. A., Velazquez-Iturbide, J. A., & Hijon-Neira, R. (2017). A
(relatively) unsatisfactory experience of use of Scratch in CS1. In Dodero J., Sáiz
M., Rube I. (Eds.) Proceedings of the 5th International Conference on Technological
Ecosystems for Enhancing Multiculturality - TEEM 2017 (pp. 1-7). New York, NY:
ACM Press.

202

Marton, F., & Saljo, R. (1976). On qualitative differences in learning: Outcome and
process. British Journal of Educational Psychology, 46(1), 4–11.

Mayer, R. E. (1981). The psychology of how novices learn computer programming.
ACM Computing Surveys (CSUR), 13(1), 121–141.

Mayes, J. T., & Fowler, C. J. (1999). Learning technology and usability: a framework
for understanding courseware. Interacting with Computers 11(5), 485–497.

McCall, D., & Kölling, M. (2015). Meaningful categorisation of novice programmer
errors. In Proceedings of 2014 IEEE Frontiers in Education Conference – FIE (pp. 1–
9). Madrid, Spain: IEEE.

McCane, B., Ott, C., Meek, N., & Robins, A. (2017). Mastery learning in introductory
programming. In Proceedings of the Nineteenth Australasian Computing Education
Conference - ACE '17 (pp. 1-10). New York, NY: ACM Press.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming in
Scratch. In Proceedings of the 16th annual joint conference on Innovation and
technology in computer science education - ITiCSE '11 (pp. 168-172). New York,
NY: ACM Press.

Mega, C., Ronconi, L., & De Beni, R. (2014). What makes a good student? How
emotions, self-regulated learning, and motivation contribute to academic
achievement. Journal of Educational Psychology, 106(1), 121–131.

Merriam, S. B. (1998). Qualitative research and case study applications in education.
Revised and Expanded from "Case Study Research in Education.". San Francisco:
CA, Jossey-Bass Publishers.

Merton, R. K., & Kendall, P. L. (1946). The Focused Interview. American Journal of
Sociology, 51(6), 541–557.

Messick, S. (1987). Validity. ETS Research Report Series, 1987(2), i–208.
Michael, J. (2001). In pursuit of meaningful learning. Advances in Physiology

Education, 25(3), 145-158.
Milne, I., & Rowe, G. (2002). Difficulties in learning and teaching programming -

Views of students and tutors. Education and Information Technologies, 7(1), 55–
66.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with
Jeliot 3. In Proceedings of the working conference on Advanced visual interfaces - AVI
'04 (pp. 373–376). New York, NY: ACM Press.

Moreno-León, J., Robles G. (2015). Dr. Scratch: a web tool to automatically evaluate
Scratch projects. In Proceedings of the Workshop in Primary and Secondary
Computing Education -WiPSCE '15 (pp132-133). New York, NY: ACM Press.

Morris, M. G., Speier, C., & Hoffer, J. A. (1999). An examination of procedural and
object-oriented systems analysis methods: does prior experience help or hinder
performance? Decision Sciences, 30(1), 107–136.

Morrison, G. R., Ross, S. M., Kemp, J. E., & Kalman, H. (2011). Designing effective
instruction (6 ed.). Hoboken, NJ: Wiley.

Moskal, Barbara, Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new
instructional approach. ACM SIGCSE Bulletin, 36(1), 75–79.

Mozilla Developer Network. (2013). Multi-Paradigm Programming Language.
Retrieved from: https://developer.mozilla.org/en-
US/docs/multiparadigmlanguage.html

Mselle, L. J. (2010). Enhancing comprehension by using random access memory
(RAM) diagrams in teaching programming: Class experiment. In Proceedings of
22nd Annual Workshop - PPIG 2010. Madrid, Spain: PPIG.

203

Muraina, I. O., Adegboye, A., Adegoke, M. A., & Olojido, J. B. (2019). Multimodal
Instructional Approach: The Use of Videos, Games, Practical and Online
Classroom to Enhance Students’ Performance in Programming
Languages. American Journal of Software Engineering and Applications, 8(2), 44–
49.

Murray, H. A. (1938). Explorations in personality. Oxford: Oxford University Press.
Myers, B. (1990). Taxonomies of visual programming and program visualization.

Journal of Visual Languages & Computing, 1(1) 97–123.
Myers, I. B. (1998). MBTI manual: a guide to the development and use of the Myers-

Briggs Type Indicator. Palo Alto, CA: Consulting Psychologists Press.
Naps, T. L. (1997). Algorithm Visualization on The World Wide Web - The Difference

Java Makes! In Miller J., Davies G. (Eds.) Proceedings of the 2nd conference on
Integrating technology into computer science education - ITiCSE '97 (pp. 59-61).
New York, NY: ACM Press.

Nicholls, J. G. (1984). Achievement motivation: conceptions of ability, subjective
experience, task choice, and performance. Psychological Review, 91(3), 328–346.

Nikou, S. A., & Economides, A. A. (2014). Transition in student motivation during a
scratch and an app inventor course. In Proceedings of IEEE Global Engineering
Education Conference - EDUCON (pp. 1042–1045). Istanbul: IEEE.

Norman, D. A. (1987). Some observations on mental models. In R. M. Baecker & W.
A. S. Buxton (Eds.), Human-computer interaction: a multidisciplinary approach
(pp. 241-244). San Francisco: Morgan Kaufmann Publishers Inc.

Norman, D. A. (1988). Design of everyday things. London: The MIT Press.
Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of

meaning. Champaign, IL: University of Illinois Press.
Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2015). Learning

basic programming concepts by creating games with Scratch programming
environment. Procedia - Social and Behavioural Sciences, 191, 1479–1482.

Ozoran, D., Cagiltay, N., & Topalli, D. (2012). Using Scratch in introduction to
programming course for engineering students. In Proceedings of 2nd International
Engineering Education Conference - IEEC2012 (pp. 125–132). Antalya, Turkey.

Panselinas, G., Fragkoulaki, E., Angelidakis, N., Papadakis, S., Tzagkarakis, E., &
Manassakis, V. (2018). Monitoring students’ perceptions in an App Inventor
school course. European Journal of Engineering Research and Science, (CIE), 5–7.

Papadakis, S., & Orfanakis, V. (2018). Comparing novice programming environments
for use in secondary education: App Inventor for Android vs. Alice. International
Journal of Technology Enhanced Learning, 10(1/2), 44–30.

Papadakis, S., Kalogiannakis, M., Orfanakis, V., & Zaranis, N. (2014). Novice
Programming Environments. Scratch & App Inventor: a first comparison. In
Proceedings of the 2014 Workshop on Interaction Design in Educational
Environments - IDEE '14 (pp. 1-7). New York, NY: ACM Press.

Papert, S. (1980). Mindstorms: Computers, children, and powerful ideas. New York,
NY: Basic Books.

Papert, S. (1987). Microworlds: transforming education. In R. W. Lawler & M.
Yazdani (Eds.), Artificial intelligence and education (pp. 1–16). Norwood, NJ:
Ablex Publishing.

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11.
Pask, G. (1976). Styles and strategies of learning. British Journal of Educational

Psychology, 46(2), 128–148.

204

Pask, G. (2010). Learning strategies, teaching strategies, and conceptual or learning
style. In Schmeck, R (Ed.) Learning Strategies and Learning Styles (pp. 83–100).
Boston, MA: Springer.

Pattis, R. E. (1993). The "procedures early” approach in CS1: a heresy. In Proceedings
of the twenty-fourth SIGCSE technical symposium on Computer science education -
SIGCSE '93 (pp. 122–126). New York, NY: ACM Press.

Pea, R. D. (1986). Language-independent conceptual “bugs” in novice programming.
Journal of Educational Computing Research, 2(1), 1–13.

Pea, R. D., & Kurland, D. M. (1983). On the cognitive prerequisites of learning
computer programming. AEDS Journal, 18(3), 183-194.

Pears, A., Malmi, L., Adams, E., Bennedsen, J., Devlin, M., Seidman, S., et al. (2007).
A survey of literature on the teaching of introductory programming. ACM SIGCSE
Bulletin, 39(4), 204–223.

Pellas, N., & Peroutseas, E. (2016). Leveraging Scratch4SL and Second Life to
motivate high school students’ participation in introductory programming courses:
findings from a case study. New Review of Hypermedia and Multimedia, 23(1), 51–
79.

Pennington, N. (1987a). Comprehension strategies in programming. In E. Soloway, G.
M. Olson, & S. Sheppard (Eds.), Empirical Studies of Programmers: Second
Workshop (pp. 100–113). Norwood, NJ: Ablex Publishing Corp.

Pennington, N. (1987b). Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19(3), 295–341.

Peterson, R. A. (1994). A meta-analysis of Cronbach's coefficient alpha. Journal of
Consumer Research, 21(2), 381–12.

Piaget, J. (1977). The development of thought: Equilibration of cognitive structures.
(Trans A. Rosin). Oxford: Viking.

Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In P. R.
Pintrich, M. Boekaerts, & M. Zeidner (Eds.), Handbook of Self-Regulation (pp.
451–502). San Diego, CA: Academic Press.

Pintrich, P. R. (2004). A Conceptual Framework for Assessing Motivation and Self-
Regulated Learning in College Students. Educational Psychology Review, 16(4),
385–407.

Pintrich, P. R., & de Groot, E. V. (1990). Motivational and Self-Regulated Learning
Components of Classroom Academic Performance. Journal of Educational
Psychology, 82(1), 33–40.

Pintrich, P. R., Smith, D. A. F., Garcia, T., & Mckeachie, W. J. (1991). A Manual for
the Use of the Motivated Strategies for Learning (MSLQ) (pp. 1–75). Ann Arbor,
Michigan: National Center for Research to Improve Postsecondary Teaching and
Learning.

Pintrich, P. R., Smith, D. A. F., Garcia, T., & Mckeachie, W. J. (1993). Reliability and
predictive validity of the motivated strategies for learning questionnaire (MSLQ).
Educational and Psychological Measurement, 53(3), 801–813.

Pittman, T. S., Emery, J., & Boggiano, A. K. (1982). Intrinsic and extrinsic
motivational orientations: Reward-induced changes in preference for complexity.
Journal of Personality and Social Psychology, 42(5), 789–797.

Platsidou, M., & Metallidou, P. (2009). Validity and Reliability Issues of Two Learning
Style Inventories in a Greek Sample: Kolb’s Learning Style Inventory and Felder &
Soloman’s Index of Learning Styles. International Journal of Teaching and
Learning in Higher Education, 20(3), 324–335.

205

Polit, D. F., & Beck, C. T. (2004). Nursing research: Principles and methods (7th
Edition). Philadelphia, PA: Lippincott Williams & Wilkins.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: teaching
CS0 with Alice, 213–217. In Proceedings of the 38th SIGCSE technical symposium
on Computer science education - SIGCSE '07 (pp. 213-217). New York, NY: ACM
Press.

Prawat, R. S., & Folden, R. E. (1994). Philosophical perspectives on constructivist
views of learning. Educational Psychology, 29(1), 37–48.

Prensky, M. (2010). Teaching digital natives: Partnering for real learning. Thousand
Oaks, CA: Corwin Press.

Price, B. A., Baecker, R. M., & Small, I. S. (1993). A Principled Taxonomy of Software
Visualization. Journal of Visual Languages & Computing, 4(3), 211–266.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and mental
models in learning to program. ACM SIGCSE Bulletin, 36(3), 171-176.

Ramsden, P. (1981). A study of the relationship between student learning and its
academic context (Doctoral Dissertation). University of Lancaster, Lancaster.

Ratcliffe, M., Thomas, L., Woodbury, J., & Jarman, E. (2002). Learning styles and
performance in the introductory programming sequence. ACM SIGCSE Bulletin,
34, 33–37.

Rayner, S., & Riding, R. (2010). Towards a categorisation of cognitive styles and
learning atyles. Educational Psychology, 17(1-2), 5–27.

Reges, S. (2006). Back to basics in CS1 and CS2. ACM SIGCSE Bulletin, 38, 293–297.
Resnick, M., & Ocko, S. (1990). LEGO/logo: Learning through and about design. In

Ferguson, D. (Ed.) Advanced educational technologies for mathematics and science
(pp. 61–89). Berlin, Germany: Springer Berlin Heidelberg.

Resnick, M. (2007). All I really need to know (about creative thinking) I learned (by
studying how children learn) in kindergarten, In Proceedings of the 6th ACM
SIGCHI conference on Creativity & cognition -C&C '07 (pp.1-6). New York, NY:
ACM Press.

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., et
al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60.

Reynolds, M. (1997). Learning Styles: A Critique. Management Learning, 28(2), 115–
133.

Riding, R. J., & Sadler-Smith, E. (1997). Cognitive style and learning strategies: some
implications for training design. International Journal of Training and
Development, 1(3), 199–208.

Rieber, Lloyd P, Smith, L., & Noah, D. (1998). The Value of Serious Play. Educational
Technology, 38(6), 29–37.

Rieber, Loyd P. (1992). Computer-based microworlds: A bridge between
constructivism and direct instruction. Educational Technology Research and
Development, 40(1), 1–14.

Riechmann, S. W., & Grasha, A. F. (1974). A rational approach to developing and
assessing the construct validity of a student learning style scales instrument. The
Journal of Psychology, 87(2), 213–223.

Rigby, P. C., & Thompson, S. (2005). Study of novice programmers using Eclipse and
Gild. In Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange -
eclipse '05 (pp. 105–109). New York, NY: ACM Press.

Robson, C., & McCartan K. (2016). Real world research (4nd ed). Chichester: John
Wiley & Sons.

206

Rotter, J. B. (1966). Generalized expectancies for internal versus external control of
reinforcement. Psychological Monographs General and Applied, 80(1), 1–28.

Rotter, J. B. (1990). Internal versus external control of reinforcement: A case history
of a variable. American Psychologist, 45(4), 489–493.

Rugaber, S. (2007). Program comprehension for reverse engineering. In AAAI
Workshop on AI and Automated Program Understanding (pp. 1-5). San Jose, CA:
AAAI Press.

Runeson, P. (2012). Case study research in software engineering: guidelines and
examples. Case Study Research in Software Engineering: Guidelines and Examples.
Hoboken, NJ: John Wiley & Sons, Inc.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: classic
definitions and new directions. Contemporary Educational Psychology, 25(1), 54–
67.

Sajaniemi, J. (2002). Visualizing roles of variables to novice programmers. In Jing Y.
(Ed.) Proceedings of the 14th Annual Workshop on the Psychology of Programming
Interest Group - PPIG-2012 (pp. 111–127). London: Brunel University.

Salta, K., & Koulougliotis, D. (2015). Assessing motivation to learn chemistry:
adaptation and validation of Science Motivation Questionnaire II with Greek
secondary school students. Chemistry Education Research and Practice, 16(2), 237–
250.

Saltan, F., & Kara, M. (2016). ICT teachers’ acceptance of “Scratch” as algorithm
visualization software. Higher Education Studies, 6(4), 146–10.

Sanders, K., Boustedt, J., Eckerdal, A., Mccartney, R., Moström, J. E., Thomas, L., &
Zander, C. (2012). Threshold concepts and threshold skills in computing. In
Proceedings of the ninth annual international conference on International computing
education research - ICER '12 (pp.23-30). New York, NY: ACM Press.

Santos, Á., Gomes, A., & Mendes, A. J. (2010). Integrating new technologies and
existing tools to promote programming learning. Algorithms, 3(2), 183–196.

Savery, J. R., & Duffy, T. M. (2001). Problem based learning: An instructional model
and its constructivist framework. Educational technology, 35(5), 31-38.

Savi�, M., Ivanovic, M., Radovanovi�, M., & Budimac, Z. (2016). Modula-2 versus Java
as the first programming language: Evaluation of students' performance. In
Proceedings of the 17th International Conference on Computer Systems and
Technologies 2016, Vol. 1164 (pp. 415-422). New York, NY: ACM Press.

Schmitt, N., & Stuits, D. M. (1985). Factors defined by negatively keyed items: The
Result of Careless Respondents? Applied Psychological Measurement, 9(4), 367–
373.

Schriesheim, C. A. (1995). An exploratory and confirmatory factor-analytic
investigation of item wording effects on the obtained factor structures of survey
questionnaire measures. American Educational Research Journal, 21(6), 1177–
1193.

Schmeck, R. R. (Ed.). (1988). Learning strategies and learning styles. New York, NY:
Plenum Press.

Schunk, D. H. (1991). Self-Efficacy and Academic Motivation. Educational
Psychologist, 26(3-4), 207–231.

Schunk, D. H. (2012). Learning theories: an educational perspective. Boston, MA:
Pearson.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering, 25(4), 557-572.

207

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality.
Biometrics, 52(3), 591–611.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in programmer
behavior: A model and experimental results. International Journal of Computer &
Information Sciences, 8(3), 219–238.

Shroff, R. H., Deneen, C. C., & Ng, E. M. W. (2011). Analysis of the technology
acceptance model in examining students' behavioural intention to use an e-
portfolio system. Australasian Journal of Educational Technology, 27(4), 600-618.

Shu, N. C. (1989). Visual programming: perspectives and approaches. IBM Systems
Journal, 28(4), 525–547.

Shuell, T. J. (1986). Cognitive conceptions of learning. Review of Educational Research,
56(4), 411.

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International
Journal of Instructional Technology and Distance Learning, 2(1). Retrieved from:
http://itdl.org/journal/jan_05/article01.htm.

Skinner, B. F. (1953). Science and human behaviour. New York, NY: Macmillan.
Soloway, E. (1986). Learning to program = learning to construct mechanisms and

explanations. Communications of the ACM, 29(9), 840–841.
Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. New

Haven: Department of Computer Science, Yale University.
Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive strategies and looping

constructs: an empirical study. Communications of the ACM, 26(11), 853–860.
Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization

systems for introductory programming education. ACM Transactions on Computing
Education, 13(4), 1–64.

Spearman, C. (1904). The proof and measurement of association between two things.
The American Journal of Psychology, 15(1), 72–101.

Stake, R. E. (1995). The Art of Case Study Research. Thousand Oaks, CA: Sage
Publications, Inc.

Stefanou, V., Kotsovoulou, M., & Makri, D. (2018). Using E-Assessment Software to
Support Formative Assessment: a Phenomenographic Study of Instructors’
Experiences. In Chova L, Martinez A., & Torres I. (Eds.) Proceedings of the 12th
International Technology, Education and Development Conference - INTED 2018
(pp. 1066–1075), Valencia, Spain: IATED.

Steffe, L. P., & Gale, J. (1995). Constructivism in education. Hillsdale, N.J.: Lawrence
Erlbaum.

Stenhouse, L. (1978). Case study and case records: towards a contemporary history of
education. British Educational Research Journal, 4(2), 21–39.

Stringer, E. T., Christensen, L. M. F., & Baldwin, S. C. (2010). Integrating teaching,
learning, and action research: enhancing instruction in the k-12 classroom. Los
Angeles, CA: Sage.

Sun, B. (2010). Java teaching based on BlueJ platform. In Zhiwei Y., Jun S. (Eds.)
Proceeding of the 2nd International Conference on Information Engineering and
Computer Science -ICIECS (pp. 1–4). Red Hook, NY: Curran Associates, Inc.

Sykes, E. R. (2007). Determining the effectiveness of the 3D Alice programming
environment at the computer science I level. Journal of Educational Computing
Research, 36(2), 223–244.

Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International
Journal of Medical Education, 2, 53–55.

208

Taylor, R. (2012, May). Review of the Motivated Strategies for Learning
Questionnaire (MSLQ) Using Reliability Generalization Techniques to Assess
Scale Reliability (Doctoral dissertation). Auburn University, Auburn, AL.

Thomas, G. (2011). A typology for the case study in social science following a review
of definition, discourse, and structure. Qualitative Inquiry, 17(6), 511–521.

Thomasson, B., Ratcliffe, M., & Thomas, L. (2006). Identifying novice difficulties in
object-oriented design. ACM SIGCSE Bulletin, 38(3), 28–32.

Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering
education through problem-based game projects with Scratch. Computers &
Education, 120, 64–74.

Tsai, L. C., Tsai, L.-C., Hwang, S. L., Tang, K. H., Hwang, S.-L., & Tang, K.-H. (2011).
Analysis of keyword-based tagging behaviors of experts and novices. Online
Information Review, 35(2), 272–290.

Tsai, W.-H., & Chen, L.-S. (2011). A study on adaptive learning of scratch
programming language, In Proceedings of the International Conference on e-
Learning, e-Business, Enterprise Information Systems, and e-Government - EEE (pp.
1–7). Athens, Greece: CSREA Press.

Tyler, R. W. (1949). Basic principles of curriculum and instruction. In Flinders D.,
Flinders S., Thornton D. (Eds.) The Curriculum Studies Reader E2 (pp 60–68).
London: Routledge.

Uguroglu, M. E., & Walberg, H. J. (1979). Motivation and achievement: A quantitative
synthesis. American Educational Research Journal, 16(4), 375–389.

University of Kent. (2014). Greenfoot: Transforming the way programming is taught.
Impact Case Studies - REF2014. Retrieved from:
https://impact.ref.ac.uk/casestudies/CaseStudy.aspx?Id=911.

Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. (2010). Alice, Greenfoot,
and Scratch - A discussion. ACM Transactions on Computing Education (TOCE),
10(4), 17–11.

Van Gorp, M. J., & Grissom, S. (2001). An Empirical Evaluation of Using Constructive
Classroom Activities to Teach Introductory Programming. Computer Science
Education, 11(3), 247–260.

Van Roy, P. (2009). Programming paradigms for dummies: what every programmer
should know, In G. Assayag and A. Gerzso (Eds.) New Computational Paradigms
for Computer Music (pp. 1-9). Paris, France: Delatour.

Veerasamy, A. K., DSouza, D., & Laakso, M.-J. (2016). Identifying novice student
programming misconceptions and errors from summative assessments. Journal of
Educational Technology Systems, 45(1), 50–73.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology
acceptance model: four longitudinal field studies. Management Science, 46(2),
186–204.

Vogt, W. P. (2007). Quantitative research methods for professionals. Boston, MA:
Pearson/Allyn and Bacon.

Vogts, D., Calitz, A., & Greyling, J. (2008). Comparison of the effects of professional
and pedagogical program development environments on novice programmers. In
Proceedings of the 2008 annual research conference of the South African Institute of
Computer Scientists and Information Technologists on IT research in developing
countries: riding the wave of technology - SAICSIT '08 (pp. 286–295). New York,
NY: ACM Press.

209

Vygotsky, L. S. (1978). Mind in society: the development of higher psychological
processes. Cambridge, MA: Harvard University Press.

Wagner, A., Gray, J., Corley, J., & Wolber, D. (2013). Using App Inventor in a K-12
summer camp. In Proceeding of the 44th ACM technical symposium on Computer
science education -SIGCSE '13 (pp. 621–626). New York, NY: ACM.

Wainer, H., & Braun, H. I. (2013). Test Validity. Hillsdale, N.J: L. Erlbaum Associates.
Walker, C. O., Greene, B. A., & Mansell, R. A. (2006). Identification with academics,

intrinsic/extrinsic motivation, and self-efficacy as predictors of cognitive
engagement. Learning and Individual Differences, 16(1), 1–12.

Watson, C., & Li, F. W. B. (2014). Failure rates in introductory programming revisited,
In Proceedings of the 2014 conference on Innovation & technology in computer
science education - ITiCSE '14 (pp. 39–44). New York, NY: ACM.

Weintrop, D. (2015). Comparing text-based, blocks-based, and hybrid blocks/text
programming tools. In Proceedings of the eleventh annual International Conference
on International Computing Education Research - ICER '15 (pp. 283–284). New
York, NY: ACM Press.

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question. In
Proceedings of the 14th International Conference on Interaction Design and Children
- IDC '15 (pp. 199–208). New York, NY: ACM Press.

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions on
Computing Education, 18(1), 1–25.

Weng, F., Yang, R.-J., Ho, H.-J., & Su, H.-M. (2018). A TAM-based study of the
attitude towards use intention of multimedia among school teachers. Applied
System Innovation, 1(3), 36–9.

Wertheimer, M. (1983). A Gestalt perspective on computer simulations of cognitive
processes. Computers in Human Behavior, 1(1), 19–33.

West, S., & Uhlenberg, D. (1970). Measuring motivation. Theory into Practice, 9(1),
47-55.

White, G., & Sivitanides, M. (2005). Cognitive differences between procedural
programming and object-oriented programming. Information Technology and
management, 6(4), 333-350.

White, R. W. (1959). Motivation reconsidered: The concept of competence.
Psychological Review, 66(5), 297–333.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. (1999). A
comparison of the comprehension of object-oriented and procedural programs by
novice programmers. Interacting with Computers, 11(3), 255–282.

Wilson, B. C. (2010). A study of factors promoting success in computer science
including gender differences. Computer Science Education, 12(1-2), 141–164.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
Winslow, L. E. (1996). Programming pedagogy - a psychological overview. ACM

SIGCSE Bulletin, 28(3), 17–22.
Winter, R. (1987). Action-research and the nature of social inquiry: Professional

innovation and educational work. Aldershot: Avebury.
Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and

technology acceptance. Information Systems Research, 16(1), 85–102.
Wolber, D. (2011). App Inventor and real-world motivation. In Proceedings of the

42nd ACM technical symposium (pp. 601–606). New York, NY: ACM.

210

Wolber, D., Abelson, H., & Friedman, M. (2015). Democratizing computing with App
Inventor. GetMobile: Mobile Computing and Communications, 18(4), 53–58.

Wolters, C. A. (1999). The relation between high school students' motivational
regulation and their use of learning strategies, effort, and classroom performance.
Learning and Individual Differences, 11(3), 281–299.

Wulf, T. (2005). Constructivist approaches for teaching computer programming. In
Proceedings of the 6th conference on Information technology education - SIGITE '05
(pp. 245–248). New York, NY: ACM.

Xinogalos, S. (2014). Designing and deploying programming courses: Strategies,
tools, difficulties and pedagogy. Education and Information Technologies, 21(3),
559–588.

Xinogalos, S., Satratzemi, M., & Dagdilelis, V. (2006). An introduction to object-
oriented programming with a didactic microworld: objectKarel. Computers &
Education, 47(2), 148–171.

Xinogalos, S., Satratzemi, M., & Malliarakis, C. (2015). Microworlds, games,
animations, mobile apps, puzzle editors and more: What is important for an
introductory programming environment? Education and Information Technologies,
22(1), 145-176.

Yi�it, M. F., Ba�er, M., & Ondokuz, M. (2015). Learning difficulties and use of visual
technologies in learning to program. Participatory Educational Research, 15(2),
27–34.

Yin, R. K. (2003). Designing case studies. In Yin R. Case study research: Design and
methods (pp. 19–56). Thousand Oaks, CA: Sage Publications.

Yukselturk, E., & Altiok, S. (2017). An investigation of the effects of programming
with Scratch on the preservice IT teachers’ self-efficacy perceptions and attitudes
towards computer programming. British Journal of Educational Technology, 48(3),
789-801.

Zainal, N. F. A., Shahrani, S., Yatim, N. F. M., Rahman, R. A., Rahmat, M., & Latih, R.
(2012). Students perception and motivation towards programming. Procedia -
Social and Behavioral Sciences, 59(1), 277–286.

Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: an
overview. Educational Psychologist, 25(1), 3–17.

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: historical
background, methodological developments, and future prospects. American
Educational Research Journal, 45(1), 166–183.

Zimmerman, B. J., Bandura, A., & Martinez-Pons, M. (1992). Self-motivation for
academic attainment: The role of self-efficacy beliefs and personal goal setting.
American Educational Research Journal, 29(3), 663–676.

Zualkernan, I. A., Allert, J., & Qadah, G. Z. (2006). Learning styles of computer
programming students: A Middle Eastern and American comparison. IEEE
Transactions on Education, 49(4), 443–450.

Zusho, A., Pintrich, P. R., & Coppola, B. (2003). Skill and will: The role of motivation
and cognition in the learning of college chemistry. International Journal of Science
Education, 25(9), 1081–1094.

Zwanenberg, N. V., Wilkinson, L. J., & Anderson, A. (2000). Felder and Silverman’s
Index of Learning Styles and Honey and Mumford’s Learning Styles
Questionnaire: How do they compare and do they predict academic
performance? Educational Psychology, 20(3), 365–380.

211

"Creating Java Programs with Greenfoot". Oracle Academy, 2015,

https://academy.oracle.com/pages/greenfoot_course.pdf
"Design Process Games – Alice". Alice.org, 2016,

https://www.alice.org/resources/lessons/design-process-games/
"Getting Started with Java Using Alice". Oracle Academy, 2016,

https://academy.oracle.com/pages/alice_course.pdf.
"Java Fundamentals – Course Description". Oracle Academy, 2016,

https://academy.oracle.com/pages/java_fundamentals_course.pdf
"Magic 8 Ball". Appinventor.mit.edu, 2016,

https://appinventor.mit.edu/explore/ai2/magic-8-ball
"Mole Mash". Appinventor.mit.edu, 2016,

https://appinventor.mit.edu/explore/ai2/molemash

212

Appendix One – Main Survey Instrument

Introduction to Information Technology and Programming

Section 1 - Demographic Information

6) Gender
Male Female Other (write in)_____ Prefer not to say

7) What is your age*
under 18 18-24 25-34 35-54 55+

8) What is your current College Level? *
Freshman Sophomore Junior Senior Graduate

9) What is your major? *
MIS IT Other Business Administration Major Other Arts & Sciences
Major

10) What it your pathway?
Software Development Digital Media Network Technologies
Undecided

Section 2 - Introduction to Programming - General Questions

11) Describe your current level of computer programming expertise in any
programming language:

Fundamental Awareness
Novice (limited experience)
Intermediate (practical application)
Advanced
Expert

Explanation of selections:
Fundamental Awareness means that you just have an idea of what programming is, but you have never
written a computer program.
Novice means that you had some limited experience in the past. For example, in ITC1070 Introduction to
information systems, you had written small programs or even in high school you were taught programming
concepts, but you do not feel that you know well the subject. Intermediate means that you had some
programming experience in the past, and you are able to write small programs utilising the basic
programming constructs (variables, selections and repetitions).
Advanced means that you are able to understand and write complete programs utilising object-oriented
concepts.
Expert means that you are professional programmer and you have implemented complete software systems.

213

12) Which programming languages have you been taught in the past? *
Java JavaScript Python C C++
Other - Write In:

13) Were you familiar with SCRATCH or any other block-based programming
environment before this class?
Yes No

14) What was the main reason for registering for this module? (Check the one
that BEST describes your feelings)

I enjoy programming
Jobs in programming pay well
I find programming challenging:
I think that it will improve my career prospects
I am interested in programming
I consider it an easy elective
Course time and day fitted my schedule
Introduction to programming is a requirement for my major
It was recommended by my advisor/friend/family
I am curious to find out what programmers do
Other - Write In:

Section 3a - Overall Evaluation and Acceptance for Scratch

What is your opinion about using Scratch as part of Introduction to
Programming?
15) Boring 1 ______________[4 Neutral]_____________ 7 Fun
16) Not Effective 1 ______________[4 Neutral]_____________ 7 Effective
17) Not Enjoyable 1 ______________[4 Neutral]_____________ 7 Enjoyable
18) Irrelevant 1 ______________[4 Neutral]_____________ 7 Relevant
19) Unpleasant 1 ______________[4 Neutral]_____________ 7 Pleasant

20) I _____ to use Scratch to create my own programs/games.
Do not Intend 1 ______________[4 Neutral]_____________ 7 Intend

21) Using Scratch, I can create functional/operational games, which I can
demonstrate to my friends and family.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

22) I find Scratch as a preferable way to introduce novices to programming
than traditional teaching with Java
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

214

Section 3b - Technology Acceptance Model

Perceived Ease of Use

23) Learning to operate Scratch is often frustrating. (*R)
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

24) It is easy for me to remember how to perform tasks inside the Scratch
environment.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

25) I find it easy to get the Scratch to do what I want it to do.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

26) Usage of Scratch is clear and understandable.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

27) Overall, I find Scratch easy to use.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

Perceived Usefulness

28) Scratch helped me improve my computing skills.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

29) Scratch makes it easier to convey an algorithm into a program than in a
text-based programming language.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

30) Scratch helped me clarify all stages of the software development process:
requirements analysis, design, development and testing.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

31) Learning Scratch improved my programming skills (such as: using
variables, obtaining user input, iteration, selection, code modularity etc).
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

32) Overall, I find Scratch useful for this module.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

215

(This question appears when the participant provides an answer greater than 4 in question 32)
33) For the clarification, of which basic programming concepts did you find
Scratch useful?

Program Logic and Algorithm development
Variables
Loops (Iterations)
Conditions (Selections)
Procedures
Event-Handling
Keyboard Input
Input validation
Other - Write In: _________

Section 4 - Motivated Strategies for Learning Questionnaire

34) I believe I can master programming knowledge and skills.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

35) My career will not involve computer programming.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

36) I put enough effort into learning computer programming.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

37) Learning computer programming will help me get a good job.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

38) I work on practicing exercises and answering end of chapter questions
even when I do not have to.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

39) I think that what I am learning in this class is not useful for me to know.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

40) I will use computer programming skills in my career.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

41) Learning computer programming is interesting.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

42) I believe I can earn a good grade in introduction to programming.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

216

43) It is important for me to learn how to program.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

44) I am not confident I will do well on computer programming tests/exams.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

45) I prepare well for programming tests and labs.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

46) Knowing how to program will give me a career advantage.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

47) I enjoy learning computer programming. I enjoy/like what I am learning in
this programming class.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

48) I am confident I will do well on computer programming labs and projects.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

49) I find that when the teacher is talking, I think about other things and don’t
really listen to want is being said.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

50) I work on solving all exercises assigned by the instructor.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

51) I am confident I can learn all programming concepts taught in the course.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

52) I prefer class work that is challenging so I can learn new things.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

53) It’s important to me to get an “A” in computer programming.
Strongly Disagree 1 __________ [4 Neutral] __________ 7 Strongly Agree

217

Section 5 - Index of Learning Styles (ILS) Learning Style Questionnaire

54) I understand something better after I...
a. try it out.
b. think it through.

55) I would rather be considered ...

a. realistic.
b. innovative.

56) When I think about what I did yesterday, I am most likely to get ...

a. a picture.
b. words.

57) I tend to ...

a. understand details of a subject but may be fuzzy about its overall
structure.

b. understand the overall structure but may be fuzzy about details.

58) When I am learning something new, it helps me to...

a. talk about it.
b. think about it.

59) If I were a teacher, I would rather teach a course...

a. that deals with facts and real-life situations.
b. that deals with ideas and theories.

60) I prefer to get new information in...

a. pictures, diagrams, graphs, or maps.
b. written directions or verbal information.

61) Once I understand...

a. all the parts, I understand the whole thing.
b. the whole thing, I see how the parts fit.

62) In a study group working on difficult material, I am more likely to...

a. jump in and contribute ideas.
b. sit back and listen.

63) I find it easier...

a. to learn facts.
b. to learn concepts.

218

64) In a book with lots of pictures and charts, I am likely to...
a. look over the pictures and charts carefully.
b. focus on the written text.

65) When I solve math problems...

a. I usually work my way to the solutions one step at a time.
b. I often just see the solutions but then have to struggle to figure out the

steps to get to them.

66) In classes I have taken...

a. I have usually got to know many of the students.
b. I have rarely got to know many of the students.

67) In reading non-fiction, I prefer...
something that teaches me new facts or tells me how to do something.
something that gives me new ideas to think about.

68) I like teachers...

a. who put a lot of diagrams on the board.
b. who spend a lot of time explaining.

69) When I'm analysing a story or a novel...

a. I think of the incidents and try to put them together to figure out the
themes.

b. I just know what the themes are when I finish reading and then I have
to go back and find the incidents that demonstrate them.

70) When I start a homework problem, I am more likely to...

a. start working on the solution immediately.
b. try to fully understand the problem first.

71) I prefer the idea of...

a. certainty.
b. theory.

72) I remember best...

a. what I see.
b. what I hear.

73) It is more important to me that an instructor...

a. lays out the material in clear sequential steps.
b. gives me an overall picture and relates the material to other subjects.

74) I prefer to study...

a. in a group.

219

b. alone.

75) I am more likely to be considered...

a. careful about the details of my work.
b. creative about how to do my work.

76) When I get directions to a new place, I prefer...

a. a map.
b. written instructions.

77) I learn...

a. at a fairly regular pace. If I study hard, I'll "get it."
b. in fits and starts. I'll be totally confused and then suddenly it all "clicks."

78) I would rather first...

a. try things out.
b. think about how I'm going to do it.

79) When I am reading for enjoyment, I like writers to...

a. clearly say what they mean.
b. say things in creative, interesting ways.

80) When I see a diagram or sketch in class, I am most likely to remember...

a. the picture.
b. what the instructor said about it.

81) When considering a body of information, I am more likely to...

a. focus on details and miss the big picture.
b. try to understand the big picture before getting into the details.

82) I more easily remember...

a. something I have done.
b. something I have thought a lot about.

83) When I have to perform a task, I prefer to...

a. master one way of doing it.
b. come up with new ways of doing it.

84) When someone is showing me data, I prefer...

a. charts or graphs.
b. text summarising the results.

85) When writing a paper, I am more likely to...

a. work on (think about or write) the beginning of the paper and progress
forward.

220

b. work on (think about or write) different parts of the paper and then
order them.

86) When I have to work on a group project, I first want to...

a. have a "group brainstorming" where everyone contributes ideas.
b. brainstorm individually and then come together as a group to compare

ideas.

87) I consider it higher praise to call someone...

a. sensible.
b. imaginative.

88) When I meet people at a party, I am more likely to remember...

a. what they looked like.
b. what they said about themselves.

89) When I am learning a new subject, I prefer to...

a. stay focused on that subject, learning as much about it as I can.
b. try to make connections between that subject and related subjects.

90) I am more likely to be considered...

a. outgoing.
b. reserved.

91) I prefer courses that emphasise...

a. concrete material (facts, data).
b. abstract material (concepts, theories).

92) For entertainment, I would rather...

a. watch television.
b. read a book.

93) Some teachers start their lectures with an outline of what they will cover.
Such outlines are...

a. somewhat helpful to me.
b. very helpful to me.

94) The idea of doing homework in groups, with one grade for the entire
group...

a. appeals to me.
b. does not appeal to me.

95) When I am doing long calculations...

a. I tend to repeat all my steps and check my work carefully.
b. I find checking my work tiresome and have to force myself to do it.

221

96) I tend to picture places I have been...

a. easily and fairly accurately.
b. with difficulty and without much detail.

97) When solving problems in a group, I would be more likely to...

a. think of the steps in the solution process.
b. think of possible consequences or applications of the solution in a wide

range of areas.

98) Can I contact you for a short interview? *

Yes No

99) Type your email to receive your Learning Style results!

Thank you, for your time and effort.

Maira Kotsovoulou

222

Appendix Two – Selection of Questions for the Motivation
section of the Main Survey

In the following tables, all questions with Content Validity Ratio > 0.75, are

highlighted. Minimum level of CVR for inclusion for 8 panellists is .75

Intrinsic Motivation Scale - CVR
 Score CVR
Glynn S. (2011) - Intrinsic Goal Orientation & Task Value
1 The computer programming, I learn is relevant to my life. 2 -0.5
3 Learning computer programming is interesting. 7 0.75

12
Learning computer programming makes my life more
meaningful. 8 1

17
I am curious about latest developments in the field of computer
programming. 7 0.75

19 I enjoy learning computer programming. 8 1
Pintrich P. & Groot E (1990) - Intrinsic Goal Orientation & Task Value
1 I prefer class work that is challenging so I can learn new things. 7 0.75
5 It is important for me to learn how to programme. 8 1
6 I like what I am learning in this class. 8 1

9
I think I will be able to use what I learn in this class in other
classes. 7 0.75

12
I often choose programming exercises which will help me learn
something, even if they require more work. 8 1

17 Even when I do poorly on a test, I try to learn from my mistakes. 8 1

18
I think that what I am learning in this class is useful for me to
know. 8 1

21 I think that what we are learning in this class is interesting. 6 0.5
25 Understanding this subject is important to me. 7 0.75
Pintrich et al. (1991) - Intrinsic Goal Orientation

1
In a class like this, I prefer course material that really challenges
me so I can learn new things. 7 0.75

16
In a class like this, I prefer course material that arouses my
curiosity, even if it is more difficult to learn 8 1

22
The most satisfying thing for me in this course is trying to understand
the content as thoroughly as possible 6 0.5

24
When I have the opportunity, I choose course assignments that I can
learn from even if they don't guarantee a good grade. 6 0.5

Pintrich et al. (1991) - Task Value

4
I think I will be able to use what I learn in this course in other
courses 8 1

10 It is important for me to learn the course material in this class 8 1
17 I am very interested in the content area of this course 7 0.75
23 I think the course material in this class is useful for me to learn. 7 0.75
26 I like the subject matter of this course 6 0.5

27
Understanding the subject matter of this course is very important to
me. 6 0.5

223

Self-Efficacy Scale - CVR

 Score CVR
Glynn S. (2011)
9 I am confident I will do well on computer programming tests. 8 1

14
I am confident I will do well on computer programming labs and
projects. 8 1

15
I believe I can master computer programming knowledge and
skills. 8 1

18 I believe I can earn a grade of “A” in computer programming. 8 1
21 I am sure I can understand computer programming. 7 0.75
Pintrich P. & Groot E (1990)
2 Compared with other students in this class I expect to do well. 7 0.75
7 I'm certain I can understand the ideas taught in this course. 8 1
10 I expect to do very well in this class. 7 0.75
11 Compared with others in this class, I think I'm a good student. 7 0.75

13
I am sure I can do an excellent job on the problems and tasks
assigned for this class. 7 0.75

15 I think I will receive a good grade in this class. 7 0.75
20 My study skills are excellent compared with others in this class. 7 0.75

22
Compared with other students in this class I think I know a great
deal about the subject. 8 1

23 I know that I will be able to learn the material for this class. 7 0.75
Pintrich et al. (1991)

12
I am confident I can understand the basic concepts taught in this
course. 6 0.5

6
I am certain I can understand the most difficult material presented in
this course. 6 0.5

29 I am certain I can master the skills being taught in this class. 6 0.5

31
Considering the difficulty of this course, the teacher, and my skill, I
think I will do well in this class 6 0.5

Extrinsic Motivation - CVR

 Score CVR
Glynn S. (2011) - Grade Motivation

2
I like to do better than other students on computer
programming tests. 8 1

4
Getting a good computer programming grade is important to
me. 8 1

8 It is important that I get an "A" in computer programming. 7 0.75
20 I think about the grade I will get in computer programming. 7 0.75

24
Scoring high on computer programming tests and labs matters
to me. 8 1

224

 Score CVR
Glynn S. (2011) - Career Motivation
7 Learning computer programming will help me get a good job. 8 1

10
Knowing computer programming will give me a career
advantage. 7 0.75

13
Understanding computer programming will benefit me in my
career. 8 1

23 My career will involve computer programming. 7 0.75

25
I will use computer programming problem-solving skills in my
career. 8 1

Pintrich et al. (1991) - Extrinsic Goal Orientation

7
Getting a good grade in this class is the most satisfying thing for
me right now 6 0.5

11

The most important thing for me right now is improving my
overall GPA, so my main concern in this class is getting a good
grade 5 0.25

13
If I can, I want to get better grades in this class than most of the
other students 5 0.25

30
I want to do well in this class because it is important to show my
ability to my family, friends or others 6 0.5

Self-Regulation and Self-Determination - CVR

 Score CVR
Glynn S. (2011) - Self-determination
5 I put enough effort into learning computer programming. 8 1

6
I use strategies (online courses, forums, books) to learn
computer programming well. 8 1

11 I spend a lot of time learning computer programming. 8 1
16 I prepare well for computer programming tests and labs. 8 1
22 I study hard to learn computer programming. 8 1
 Questions proposed by the focus group

I spend a lot of time creating computer programs to improve my
skills. 8 1

I believe that is important to practice solving problems in order
to learn to program. 8 1

225

 Score CVR
Pintrich P. & Groot E (1990) - Self-Regulation & Effort Regulation

32
I ask myself questions to make sure I know the material I have
been studying. 8 1

34
When work is hard I either give up or study only the easy parts.
(*R) 8 1

40
I work on practice exercises and answer end of chapter
questions even when I don't have to. 8 1

41
Even when study materials are dull and uninteresting, I keep
working until I finish. 8 1

43
Before I begin studying, I think about the things I will need to do
to learn. 8 1

45
I often find that I have been reading for class but don't know
what it is all about. (*R) 8 1

46
I find that when the teacher is talking, I think of other things
and don't really listen to what is being said. (*R) 8 1

52
When I'm reading, I stop once in a while and go over what I have
read. 5 0.25

55 I work hard to get a good grade even when I don't like a class. 8 1
Pintrich et al. (1991) - Self-Regulation

33
During class time I often miss important points because I am
thinking of other things 6 0.5

36
When study for this course, I make up questions to help me focus my
studying 6 0.5

41
When I become confused about something I am trying, I go back
and try to figure it out 8 1

44
If course materials are difficult to understand, I change the way
study the material. 8 1

54
Before I study new course material thoroughly, I often skim it to see
how it is organised. 5 0.25

55
I ask myself questions to make sure I understand the material I have
been studying in this class 5 0.25

56
I try to change the way I study in order to fit the course requirements
and instructor's teaching style. 5 0.25

57
I often find that I have been reading for class, but I do not know
what it was all about 5 0.25

61
I try to think through a topic and decide what I am supposed to learn
from it rather than just reading it over when studying 5 0.25

76
When studying for this course I try to determine which concepts I
don’t understand well. 6 0.5

78
When I study for this class, I set goals for myself in order to
direct my activities in each study period 7

0.7
5

79
If I get confused taking notes in class, I make sure I sort it out
afterwards. 5 0.25

226

Appendix Three – Qualitative Analysis

Analysis of Interviews

Interviews were coded using a deductive/inductive approach. Using the

deductive approach, I created the two main themes (advantages and

disadvantages) before starting the analysis.

The next step was to break up each interview into paragraphs and classify

related paragraphs into one of the two general themes.

Grouping all quotes which were identified to clearly belong in each theme

(refer to the extract below) and using a list of closed codes relative to the

interests of study (useful, easy, enjoyable and interesting), I created the main

codes. Similar codes which emerged from the text were merged into the main

codes. Such an example is the code “like” which was merged with the code

“enjoyable”. Sub-codes were then created from the text with open coding and

using constant comparisons codes were grouped into similar concepts. Figure

8.1 shows the final hierarchy chart of nodes, produced by NVivo software, in

the Advantages Theme.

Figure 8.1: Hierarchy chart of nodes in the advantages theme

In the following extract, which was generated by grouping all student quotes

which were identified as advantages in NVivo, I have highlighted in yellow the

main codes and in green the sub-codes. For example, some students found

Scratch useful because of code aminations and transferable knowledge into

Java.

Participant 1 - 8 references coded

Yes, yes, I found it useful. A nice idea. Code animation made clear the
execution of the program.

Advantages

Easy

Algorithm	into	S...

Co...

Integr...

Enjoyable

Engaging

Fun

Nice...

Interes=ng

More	thing...

Useful

Code	Anima=on

Transferable	knowledge	...

227

It introduced to me complex concepts in an easy way, like implementing code
which could execute concurrently and across sprites, I guess. I had not
encountered that before.

I also liked the interface...…all the commands required to develop a program
were easily available and grouped

Participant 2 - 4 references coded

I found useful how it grouped the commands... For example, the all the
commands that had to be executed if a condition was true were grouped
together...

I think is just so satisfying to fix a program and see that it can actually do it...
à VISUALIZE

Participant 3 - 4 references coded

The first project in SCRATCH motivated me to spend more time and put effort
to make a more complete program, rather than a simple game. à ENGAGING

Yes, it was fun.

Participant 4 - 4 references coded

Yes, it was enjoyable...I worked a lot for the assignment... to make it better…

It got more interesting as I had to develop my game.

There were more things to explore, It helped me compartmentalise my
thinking in order to achieve certain things. Make it a mechanical process... I
think it helped very much with the organisation of thoughts. You knew that
you wanted your project to do these things and it helped you visualise the end
result...

I also did several other games... it was fun.

Participant 5 - 5 references coded

I liked SCRATCH. It makes thing more simple and easier to understand. Shows
you how things work.

For the basic constructs, loops etc. I found it useful.

Participant 6 - 5 references coded

I think I enjoyed the SCRATCH process more...especially the game concept.

228

And aside from the programming, we could access the sprites themselves and
change the colour and the backgrounds and make it more interactive...

I did enjoy it more... it was more engaging than JAVA.

Participant 7 - 9 references coded

I found it interesting...
I think it helps because it demonstrates how thinks work.
It is similar to JAVA. I found many similarities.
Yes, is was useful because it taught me the logic... how to approach a problem,
find the inputs, the processing and produce results...

Yes, I understood that we used it in order to enhance our understanding of the
steps required to create a program.

Participant 8 - 7 references coded

I found SCRATCH enjoyable. In my SCRATCH project I had more freedom to
improvise... I had the opportunity to make it as easy or as difficult as I
wanted...

It helped in understanding loops as well but more it helped me in algorithmic
thinking... visualize the program structure.

Sample Interview Transcript – Participant 1

Transcript Speaker
Hello, participant 1! Before we start, I would like to know what your
pathway is?

Interviewer

Software Development Participant 1
Let's begin from your past experience with computers. Did you have any
prior programming experience?

Interviewer

I did not have any prior experience with programming...
Maybe flowcharts in high school... very basic concepts... no pseudocode.

Participant 1

When did you decide that you wanted to study Information Technology? Interviewer

Before coming to college, I was for 5 years in Medical School. I did not
finish it, I got bored... and I decided to study Information Technology

Participant 1

What is your opinion about programming? Interviewer

In general, I like computers, now that I have seen programming, I really like
it, but I also like computer games!

Participant 1

Do you play games? Interviewer

229

Yes, I do... but I was not involved with programming a game in the past. Participant 1

Did you enjoy SCRATCH? Interviewer

Yes, I did. Participant 1

What did you like about SCRATCH? Interviewer

I liked the interface...…all the commands required to develop a program
were easily available and grouped.

Participant 1

Did you find SCRATCH easy to use? Interviewer

Yes, I found SCRATCH pretty easy to use. Participant 1

Was there something about SCRATCH that struct to you as important? Interviewer

Yes, now that I know the basics, I find it easy to convert an algorithm into a
SCRATCH program... SCRATCH code looks like pseudocode… but I general
I find programming easy...I think I have programming thinking...

Participant 1

So, you say that you find it easy to write a computer program with or
without SCRATCH...

Interviewer

Yes, in general I am good in Math and Physics. I think I have the required
structured thinking and logic which is required for programming as well...
programming is easy for me...

Participant 1

So, did you find SCRATCH useful for this introductory module? Interviewer

Yes, yes, I found it useful. A nice idea overall. Code animation made clear
the execution of the program.

Participant 1

Did you find it interesting? Interviewer

In the beginning I found it easy. Interesting became when the requirements
and problems got more challenging. It was interesting to explore how to
solve a problem, focus on the details and produce a near perfect result

Participant 1

Which where the main advantages that you saw in the use of SCRATCH? Interviewer

It’s easy to learn and I liked the interface... The programmer has all the
commands available required to develop a program. He/she can insert
images... can integrate sounds and animation, which would not be easy in
other development environments.

Participant 1

Did you find any disadvantages? Interviewer

I am not sure... I think it has some limitations... and it looks somewhat
childish.

Participant 1

In SCRATCH you were introduced to basic programming concepts like
variables, loops, conditions etc. Do you think that the knowledge you gained
transferred or helped you understand better the concepts using JAVA?

Interviewer

230

Yes, I think it did. It also introduced to me more complex concepts in an
easy way, like implementing code which could execute concurrently and
across sprites, I guess. I had not encountered that before.

Participant 1

Do you think you were more motivated to create your SCRATCH game or
your JAVA program?

Interviewer

Although SCRATCH was fun, I was more motivated to develop my JAVA
program because it was more advanced…

Participant 1

At CS50 in Harvard university, they also use SCRATCH for the introduction
to programming… Any comments on that?

Interviewer

Really? I had no idea… Maybe they know better… Participant 1

If there was one thing you would recommend, in respect to technology used
in this course, what would this be?

Interviewer

I found the course too easy. I need to be challenged more...But I also
observed that some students were challenged.

Participant 1

Are other comments about the course? Interviewer

No, no other comments... Participant 1
Thank you very much for your time! Interviewer

Sample Interview Transcript – Participant 4

Transcript Speaker
Hello, P4. Before we start, I would like to know what your pathway is? Interviewer
It's between software development and digital media... Participant 4
When did you decide that we wanted to study Information Technology? Interviewer

Hm... from a very young age... Maybe junior high... My mom introduced me
to CodeAcademy, and I found it very interesting... I started with basic
HTML... and I like that way of thinking. Algorithmic structure.

Participant 4

What is your opinion about programming? Interviewer

My general opinion is that it is interesting and can be easy at certain aspects
and difficult as well like learning a new language...
So far, I like programming and the logic behind it. I also like the different
ways which you can solve a problem...I guess

Participant 4

Did you enjoy SCRATCH? Interviewer

In the beginning I thought it was a bit tedious, I guess because it was so
simple, but I understand why it was necessary...for people who may not
have done programming...

Participant 4

Did you find SCRATCH easy to use? Interviewer
Yes. Participant 4

Was there something about SCRATCH that struct to you as important? Interviewer

Yes, implementing code which could execute concurrently and across
sprites, I guess. I had not encountered that before...

Participant 4

231

Did you find it useful for this introductory module? Interviewer

I found it useful. I did know SCRATCH before this course, but I did not
know it that well, at that level.

Participant 4

Interesting? Interviewer

It got more interesting as I had to develop my game. Required me to explore
it more because I had it and then it became more interesting.

It looks pretty easy in the beginning, but it becomes increasingly difficult...
It did come to me to search for other people’s project to see how they did
some tasks...

Participant 4

Which where the main advantages that you saw in the use of SCRATCH? Interviewer

It helped me compartmentalise my thinking in order to achieve certain
things. Make it a mechanical process... I think it helped very much with the
organisation of thoughts. You knew that you wanted your project to do
these things and it helped you visualise the end result...

Participant 4

Any disadvantages? Interviewer

Maybe... the fact that if you did not know that something was possible in
SCRATCH you might not be able to do it at all...

Participant 4

In SCRATCH you were introduced to basic programming concepts like
variables, loops, conditions etc. Do you think that the knowledge you gained
transferred or helped you understand better the concepts using JAVA?

Interviewer

I think I had the thinking already, but it helped me solidify it more.
I can see how it would help someone that does not have it already... can
help them develop their thinking.

Participant 4

Do you think you were more motivated to create your SCRATCH game than
your JAVA program?

Interviewer

I think I enjoyed the SCRATCH process more...the game concept. And we
had aside from the programming, we could access the sprites themselves
and change the colour and the backgrounds and make it more interactive...
I did enjoy it more... it was more engaging...

Participant 4

Did you create any other SCRATCH games for entertainment purposes? Interviewer

Yes, I enhanced sometimes games we did in class...
I also did several other games... it was fun.

Participant 4

Did you find some transferable skills to your JAVA programming? Interviewer

I think that the concept of methods... I was able to understand it better after
we did SCRATCH.

Participant 4

Comment on HARVARD using SCRATCH in CS50 Interviewer

ha! (surprise) Participant 4

Where there any concepts which you found more challenging? Interviewer

In general, the entire section of arrays... it did not just click for me
immediately I guess... It took me more time to adapt to it...

Participant 4

232

Where there any concepts which you found easy? Interviewer

No, no… Participant 4

Are there any aspects of the course, that motivated you to learn... Interviewer

I guess the whole structure. The handwritten algorithm on the board and
the use of SCRATCH demonstrated the proper structure of how it should go,
because it helps people that may not know.
Help me also understand and get a more well-rounded idea of how we
should structure our code...

Participant 4

Any aspects of the course that discouraged you from learning? Interviewer

No, I liked following along with the live programming. It was very helpful
that you demonstrated the code and then we had to do an exercise from the
very beginning...

Participant 4

Do you have anything to recommend as far as the teaching methodology is
concerned? Or Are there any recommendations for the course in general?

Interviewer

Yes, towards the end of the course in the last few lessons, we were able to
look at more advanced IDEs like Oracle's JDeveloper, maybe if we had seen
a little bit more of it... it would be easier for students to move on and we
were explaining object oriented programming and ready-made code... and
all these things that seemed impossibly complex...

Participant 4

Are other comments about the course? Interviewer
I liked the video tutorials you posted. Especially in programming. when you
do not understand something the first time, you can repeat it until you get
it. Also, the video with the demonstration of the completed coursework was
very useful...

Participant 4

Thank you very much for your time! Interviewer

Summary from Class Observation Notes

• Session 1 – assignment: solve the maze (level of difficulty: easy)

Emotional expressions: mostly smiles.

Attention to the task: student demonstrated great attention, they wanted to

solve it… competition (I did it!!!).

Perseverance: the ones who could not complete the code they used a search

engine to search on the internet for solutions, they implemented the solutions

and tested them out.

Performance: all students solved the problem.

• Session 2 – assignment: create a birthday cake (level of difficulty: easy)

Emotional expressions: Playful mood; laughs and smiles.

233

Attention to the task: initially bored with birthday cake childishness, but later

intrigued by the fact that the candles could be blown out using input from the

computer microphone.

Performance: all students solved the problem.

• Session 3 – assignment: create a fruit ninja game (level of difficulty:

medium)

Emotional expressions: excitement to develop a “familiar” game, overall

positive expressions.

Attention to the task: curiosity: some of them were wondering how it could be

played on the computer

Performance: all students solved the basic problem. 50% of the students

improved the code by adding extra elements like scores, timers, improved

graphics.

• Session 4 – assignment: create a hunting game (level of difficulty:

medium-hard)

Emotional expressions: most students demonstrated positive emotions such as

enjoyment, interest and curiosity.

Attention to the task: Most students were focused, but few were bored and

appeared distracted (went online and started browsing other websites).

Persistence in accomplishing the task: most students completed the task on

time, while some others stayed even after the break to finish their game. The

ones who were initially bored did not complete the task.

Performance: Almost all students finished the game except the ones who

appeared bored (but they mentioned that they found the task difficult to

complete and did not know how to approach the solution. Not all

implementations were excellent.

234

Appendix Four – Ethics Approval Forms

Lancaster University

From: Ethics (RSO) Enquiries <ethics@lancaster.ac.uk>
Date: June 25, 2013 7:21 PM
To: Kotsovoulou, Maria <m.kotsovoulou@lancaster.ac.uk>
CC: Passey, Don <d.passey@lancaster.ac.uk>, Jesmont, Alice <a.jesmont@lancaster.ac.uk>

Stage 1 self-assessment approval

Dear Maira��
 Thank you for submitting your completed stage 1 self-assessment form and the additional
information for Exploring student perceptions about the use of visual programming environments,
their relation to student learning styles and their impact on student motivation in undergraduate
introductory programming modules. I can confirm that approval has been granted for this project. As
principal investigator your responsibilities include:

• ensuring that (where applicable) all the necessary legal and regulatory requirements in order to
conduct the research are met, and the necessary licenses and approvals have been obtained;

• reporting any ethics-related issues that occur during the course of the research or arising from
the research (e.g. unforeseen ethical issues, complaints about the conduct of the research,
adverse reactions such as extreme distress) to the Research Ethics Officer;

• submitting details of proposed substantive amendments to the protocol to the Research Ethics
Officer for approval.

Please contact the Research Ethics Officer, Debbie Knight (ethics@lancaster.ac.uk 01542 592605) if
you have any queries or require further information.

Kind regards,

Debbie Knight

Research Ethics Officer Research Support Office B58, B Floor,

Bowland Main Lancaster University Lancaster, LA1 4YT
Email: ethics@lancaster.ac.uk Tel: 01524 592605

Web: Ethical Research at Lancaster: http://www.lancs.ac.uk/depts/research/lancaster/ethics.html

235

College XYZ

236

Appendix Five – Pilot Study’s Programming Activities

Greenfoot – Guided Activity ("Creating Java Programs with Greenfoot")

Consider the following scenario: you are the pilot of a plane that has been sent

out to pick up barrels that have fallen off a cargo ship. By flying over a barrel,

you will automatically collect it. The problem is that sea is rough, and the

barrels keep going under the water, so you have to collect them when they are

at the surface. To make matters worse the area is a rocket testing site for

rockets from NASA and they are unable to stop these being fired into the same

area that you are in! You are going to program the above game.

The plane will always be moving but we can control its left and right turning.

Flying over a barrel will mean you collect it and search for the next one.

Collecting a barrel will give us a score point. The barrel will randomly appear

on the screen, but only stay for a set amount of time and then go under and

reappear randomly elsewhere on the screen. The rockets will appear at the top

of the screen then randomly move down the screen until they disappear off the

map. You must not hit the rocket. It is estimated that you will be able to

survive 3 direct rocket hits and then the game will be over.

A sample of a completed game is shown in Figure 8.2: .

Figure 8.2: Eat the barel

237

Concepts demonstrated:

• variables, arrays, methods, parameters;

• conditions;

• loops;

• classes, subclasses and inheritance;

• abstraction;

• user-defined methods;

• keyboard movement and event listeners;

• sound, animation;

• game mechanics (score, win/lose conditions);

• code documentation.

Alice – Guided Activity

Lets’ create a racing game. The first step is to create the map and include the

start and finish lines and include a number of barriers for collision, see Figure

8.3. We will define game mechanics, such as a timer to complete the race and

car health, and write custom procedures to implement it. The player will use

the keyboard to drive the car.

Figure 8.3: Race Game

238

Concepts demonstrated:

• variables, methods, parameters;

• conditions;

• loops;

• user-defined methods (procedures/functions)

• math expressions and random numbers;

• classes, subclasses and inheritance;

• repositioning objects at runtime;

• sound;

• keyboard movement and event listeners;

• camera views and markers;

• game mechanics (score, win/lose conditions);

• code documentation.

APP Inventor – Workshop Activities

Activity 1 - Magic 8 Ball (“Magic 8 Ball”)

This introductory application demonstrates basic programming concepts and

will help you learn how to navigate APP Inventor environment: Designer,

Blocks editor and Emulator.

239

Concepts demonstrated:

• image sprites

• variables and lists (arrays)

• conditions

• events and basic event handling

• Accelerometer

Figure 8.4: Magic-8 Ball

Activity 2 - Mole Mash (“Mole Mash”)

In the game MoleMash, a mole pops up at random positions on a playing field,

and the player scores points by hitting the mole before it jumps away. You'll

design the game so that the mole moves once every half-second. If it is

touched, the score increases by one, and the phone vibrates. When you miss

the mole ten times the games should end. Pressing restart resets the score to

zero.

Concepts demonstrated:

• variables;

• buttons and text blocks;

• math expressions and random numbers;

• conditions

• loops

• procedures;

• events and event handling;

• repositioning objects at runtime;

• timers and the clock component;

• game mechanics (score, win/lose conditions)

Figure 8.5: MoleMash

240

Scratch – Workshop Activities

Activity 1 – Virtual Network and DNS

In this activity, you are going to create a virtual network using Scratch. The

idea is that you tell the packet (the yellow ball) to go to a certain computer

(one of five) using an IP address. You type in a message (the data) and the

packet should travel to the router and then to the destination computer with

the correct IP address. The packet has to touch the computer in order to

deliver the message. Extend your project by adding domain name server

functionality. Instead of asking the user to go to a computer using its IP

number, associate each IP with a domain name and ask the user to type a

name. Your final project should look like figure.

Figure 8.6: IP packet switch

Concepts demonstrated:

• user input;

• variables;

• arrays;

• mouse interactions;

• animation.

Activity 2 – Match the Flag (Quiz)

241

In this activity, you are going to a create a Quiz Game. Game starts with a

splash screen, see Error! Reference source not found. and the purpose of the g

ame is to display a random set of 6 flags from a collection of 24 flags. When

game starts a sprite character calls out the name of a country. The player has

to select the correct flag within 5 seconds. The quiz should end after 6 rounds

and display as a score as correct answer percentage.

Concepts demonstrated:

• variables;

• arrays;

• random numbers;

• conditions;

• loops;

• code modularity and custom blocks;

• message broadcasting;

• cloning;

• timers;

• game mechanics (score, win/lose conditions)

Figure 8.7: "Guess the Flag" game splash screen

		2020-05-24T16:39:47+0300
	MARIA KOTSOVOULOU

