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Abstract 

My research aims to explore how students perceive the usability and 

enjoyment of visual/block-based programming environments (VPEs), to what 

extent their learning styles relate to these perceptions and finally to what 

extent these tools facilitate student understanding of basic programming 

constructs and impact their motivation to learn programming. 

My overall methodological approach is a case study that explores the nature 

of potential benefits to using a VPE in an introductory programming 

module, within the specific context of an English-speaking institution of higher 

learning in Southern Europe. Part 1 of this research is a pilot study, which uses 

participatory action research as a methodological practice to 

identify which visual programming environment will be selected for the main 

study. Part 2 uses an evaluative methodological practice within the case, aimed 

at addressing the research questions. Data collection is performed using mixed 

methods. For the quantitative part, 92 participants provided their feedback 

using a questionnaire, including 3 main sections: a) an adaptation of the 

Technology Acceptance Model (Davis, 1985); b) an adaptation of the 

Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich & de Groot, 

1990b) and the Science Motivation Questionnaire (SMQ-II) (Glynn, et al., 
2009); and c) the Index of Learning Styles (Felder & Soloman, 1993). For the 

qualitative part, feedback was collected both by interviewing students and 

compiling field notes during class observations. Descriptive statistics, t-tests 

and Spearman correlations were used to analyse the quantitative data, while 

the constant comparative method was used to generate the categories, whose 

relationships emerged from the coding process of the qualitative data. 
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Results from Part 1 revealed a student preference for Scratch over the other 

three visual programming environments used in the experiment. Findings from 

Part 2 suggest that students found Scratch to be easy, useful, enjoyable and 

engaging, but only within the scope and purpose of the module. On the other 

hand, students demonstrating strong intrinsic motivation to learn 

programming and high levels of self-efficacy did not perceive Scratch to be as 

useful as other students did. Results also indicate that a relationship exists 

between the acceptance of a visual programming environment and students’ 

learning style preferences; Scratch was found more useful and enjoyable by 

those reporting visual and sequential learning approaches. Furthermore, 

overall student performance and pass-fail rates showed considerable 

improvement following the introduction of Scratch.  
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Chapter 1  Introduction 

1.1  Introduction to the Study 

As an information technology (IT) educator for over 20 years, with an emphasis on 

teaching programming at all levels (primary, higher and vocational), one of the many 

challenges I face is to make the student learning experience as meaningful, 

interesting and engaging as possible, while also preparing graduates for the real-

world software development environment. I am constantly concerned with improving 

my teaching, utilising and testing various techniques and approaches that could 

provide students with different ways of experiencing computer programming. The 

diversity of these experiences could possibly make more students understand how 

they can efficiently write computer code, appreciate the challenges, and positively 

relate to the process. 

While the worldwide demand for computer programmers has increased and is 

expected to increase even more in the following years (up to 24% from 2016 - 2026, 

(Bureau of Labor Statistics, 2019)), anecdotal evidence on teaching and learning 

computer programming, especially at the introductory level, shows that many 

students fail introductory courses (Bennedsen & Caspersen, 2007; Watson & Li, 

2014). Based on my 20-year teaching experience I have evidence to support the same 

view. Statistics collected from all introductory programming modules from all courses 

at the English-speaking institution of higher learning in Southern Europe where this 

research takes place, shows an overall failure rate of 52%. Figure 1.1 shows a 

comparison of the failure rates between introduction to programming and object-

oriented programming modules, which are the first and the second required 

programming modules in the progression list for the software development track of 

the information technology (IT) major.  
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Figure 1.1: College failure rate comparison in two Java programming courses (2012 – 2017) 

Research also indicates that many students perceive computer-programming concepts 

as being overly difficult to understand (Eckerdal et al., 2005; Eckerdal, 2006; Giraffa 

et al., 2014). Some of the identified reasons for this failure include students’ lack of 

problem-solving skills (Lahtinen et al., 2005; Ismail et al., 2010;) and inability to 

construct mental models of “abstract” programming concepts (Ma et al., 2009). 

As new hardware devices and programming methodologies evolve, affecting the way 

novice programmers might understand and visualise computer programming, 

additional research is warranted in order to assess the impact of these technologies 

on student learning. In recent years, a number of visual programming tools, such as 

Scratch, Alice, Greenfoot and App Inventor, have been used to introduce 

programming to students. Although each was created for use by different age groups 

(CS1/pre-CS1 for Alice, 8-16 year olds for Scratch, and 14+ year olds for Greenfoot  

(Utting et al., 2010) they all share a common principle; they use visualisations and 

fixed blocks of code as a means to convey fundamental programming and object 

oriented programming concepts to learners. 

My beliefs, as far as teaching and learning programming are concerned, have been 

influenced by Bowden and Marton who claim: “Variation must be present in the 
learning environment…”  (2003, p.11). I agree that learners should be exposed to a 

variety of experiences that could potentially allow them to change the “way of seeing” 

several aspects of computer programming, focus on the “critical dimensions of these 
experiences”, and relate intangible concepts to more tangible ones. 
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My foremost concern is to make my lectures meaningful, interesting and up-to-date. 

In this study, I wish to explore the extent to which usage of innovative instructional 

approaches impacts student motivation and performance. Although such impact can 

be qualified in multiple forms, I am mostly interested in a) performance in hands-on 

programming assignments and theoretical assessments; b) enjoyment; c) level of 

engagement; d) perceptions of programming difficulty; and e) perceptions of value of 

the new technology used in class. 

Teaching computer programming is more than teaching a programming language.  

Consequently, in this research, I will focus on understanding the processes of learning 

and teaching programming by exploring other disciplines including psychology, 

learning theories and knowledge representation, learning approaches and motivation 

along with computer science. I aim to improve the teaching and learning process by 

providing students with the most effective learning environment and experience. 

 

1.2  Research Questions 

In the context of the Introduction to Programming module in this English-speaking 

institution of higher learning in Southern Europe, Scratch software was used to 

enable students to undertake visual programming. 

My research questions in this context are: 

1) How do visual programming environments affect students’ performance in the 

course (assessment and final grades)? 

2) How do students perceive visual programming environments? 

a) How do they perceive enjoyability, ease of use, usability and usefulness? 

b) How do they relate these qualities to their achievement of the module’s 

learning objectives (output quality)? 

3) How does students’ motivation for learning programming relate to their 

perceptions about visual programming environments? 

4) How do students’ learning styles relate to their perceived enjoyment, ease of use, 

usability and usefulness of visual programming environments? 
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1.3  Contextual Information 

The current research takes place at an English-speaking institution of higher learning 

in Southern Europe, which will be referred to as college XYZ. XYZ college was 

founded in 1875 in Smyrna, Asia Minor, by missionaries from Boston, Massachusetts 

and has been accredited by the New England Association of Schools and Colleges 

(NEASC) since 1981, which is the oldest and largest accrediting organisation in the 

United States. 

In 2010, XYZ college partnered with the Open University of the United Kingdom 

(UK), which is the largest programme validation institution in Europe and currently 

offers twenty-eight undergraduate programmes validated by the Open University, UK.  

The Information Technology (IT) major is fairly new at XYZ college. It was created in 

2010 and the first IT major students are currently employed in the business sector. 

The major went through OU revalidation in 2016, where all module learning 

outcomes were revised and updated in order to reflect latest trends in technology and 

to conform to the Quality Assurance Agency for Higher Education Computing 

Standards.  As of spring semester 2016, Scratch was used to introduce programming 

to students during the first two weeks of the module. 

The “Introduction to Programming” module introduces students to structured and 

basic object-oriented computer programming, with an emphasis on problem-solving 

strategies. The course requires no prior programming experience and is the first 

programming prerequisite for students majoring in “Information Technology”. 

Emphasis is given on problem analysis, algorithm design, coding and testing using the 

Java programming language. The module has five learning objectives, for which 

students are assessed on both a theoretical and practical level. 

According to the module’s syllabus, upon successful completion of the course, 

students should be able to: 

1) Demonstrate understanding of fundamental programming concepts and solve 

basic problems using fundamental programming constructs. 

2) Create an algorithmic solution to a programming problem using pseudo-code. 

3) Demonstrate understanding of how to trace source code and correctly predict the 

results. 

4) Make use of basic data structures and search/sort algorithms to design, 

implement, test, and debug programs. 
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5) Develop well-documented, structured and maintainable programs. 

The “Introduction to Programming” module’s method of teaching and learning 

includes 3-hours of lecture per week and 2-hours of laboratory practical sessions. 

Blackboard (TM) is used as the course management system and supports class 

communication through lecture notes, web resources, assignment instructions, and 

timely announcements, user forums for troubleshooting, formative quizzes and online 

submission of assignments. 

The “Introduction to Programming” has two formal assessments: a mid-term 

examination that counts for 40% and a coursework project that counts for 60% of the 

final module grade. The coursework project contains 3 parts: Part A evaluates student 

understanding of fundamental programming concepts and how they can solve basic 

problems using fundamental programming constructs, in Scratch. Part B tests their 

ability to create an algorithmic solution to a programming problem using pseudo-

code. Part C tests their ability to write a well-documented, structured and 

maintainable Java program that utilises data structures and searching/sorting 

algorithms. 

The module covers the following content areas: 

1) Introduction to algorithms and block-based programming 

2) Learning to code using Scratch 

a) Variables, arithmetic, operators 

b) User input  

c) Selection and iteration 

d) Count controlled loops/condition-controlled loops 

e) Complex conditions 

f) Procedures (custom blocks) 

g) Introduction to event-driven programming concepts and multitasking 

h) Sprite cloning (object instantiation) 

i) Creating a game 

i) Requirements specification 

ii) Interface design 

iii) Code design 

iv) Implementation 
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v) Testing 

3) Overview of computers and programming languages, numeric systems 

4) Introduction to Java programming language, Software Development Kit (SDK), 

Java Development Kit (JDK), Java Virtual Machine (JVM) and command line tools 

a) Variables, primitive datatypes, arithmetic, operators 

b) Strings 

c) Input/output 

d) Tracing programs and debugging 

e) Relational operators, selection 

f) Complex conditions 

g) Iteration 

h) Count controlled loops 

i) Condition controlled loops 

j) User defined methods 

k) Arrays 

l) Command-line arguments 

m) Basic searching and sorting algorithms 

n) Exception handling 

5) Introduction to Object-Oriented Programming (OOP) concepts 

Figure 1.12 and Figure 1.3 depict the teaching methodology and the learning 

resources of the module. 
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Figure 1.2: Teaching methodology 

 

Figure 1.3: Learning resources 

This module is a requirement for all students majoring in IT and is offered four times 

a year. Each occurrence of the module has a registration limit of 18-20 students.  It 

has been observed, though, that some students who initially choose the “Software 

Development” pathway of the major, tend to shift to either “Network Technologies” 
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or “Digital Media” which are perceived by students as being easier. The basis of this 

statement is grounded on input obtained from informal conversations with students 

during the past seven years. 

1.4  Thesis Structure 

This thesis begins with an overview of computer programming and a presentation of 

programming environments, providing a relevant context for the reader and 

preparing the ground for justifying choice of tools used in this research project. To 

address the research questions, the thesis then provides an overview of underlying 

conceptual frameworks from relevant learning theories and approaches, from 

motivation theory, as well as research on measurement instruments, assessment tools 

and related methodologies. 

A literature review then follows that explores cognitive aspects of computer 

programming, difficulties imposed on novice learners, classification of programming 

environments, and the rationale behind the need for educational and visual 

programming environments (VPEs).  The thesis follows with a review of research 

related to teaching novices how to program using Scratch, App Inventor, Alice and 

Greenfoot, and the effects these environments have on student motivation. Research 

findings indicate a positive impact on student motivation for all four VPEs mentioned 

above. Consequently, a two-year participatory action research study (referred to 

henceforth as the pilot study) was conducted with the aim of identifying the most 

appropriate VPE. Participants assessed Scratch to be the most suitable tool. 

The thesis advances with an evaluation of a case study using mixed data collection 

methodologies, and a justification as to why a combined approach was considered 

appropriate, followed by a presentation of the overall research design. The steps 

involved in the development and validation of the assessment instrument, which was 

created by adapting 2 different tools (MSLQ, TAM) and incorporating the Index of 

Learning Styles Questionnaire was an important part of the study.  

Finally, a description of the collected data, their analysis and presentation of the 

results complements the findings of the pilot study, before leading to the final 

chapter, where conclusions of the study, its contributions to the literature, and its 

limitations are discussed.  
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Chapter 2  Computer Programming 

With an eye to utilising and testing various visual programming environments that 

could provide students with different ways of experiencing computer programming 

and potentially increase their motivation to learn, I begin by introducing the concepts 

of computer programming, different programming paradigms, as well as types of 

programming environments that exist in the market today. The purpose of this 

introduction is to provide a relevant context, as well as preparing the ground for 

justifying the choice of tools used in this research project.  

2.1  What is Computer Programming  

“Programming will help you learn the importance of clarity of expression” (Madan, 

2003, p.97) 

Pea and Kurland (1983) defined the core sense of computer programming as “that set 

of activities involved in developing a reusable product consisting of a series of written 

instructions that make a computer accomplish some task” (Pea & Kurland, 1983, p.5). 

In other words, computer programming is a process that enables people to write a set 

of directives to instruct the computer how to perform a specific task. A computer 

program is like a very precise recipe. It requires a list of specific ingredients and an 

exact set of ordered steps for the machine to follow in order to perform something. 

The recipe should produce exactly the same result (output) each time the steps are 

executed using the same ingredients (inputs). 

In his work, Papert (1980) argues that a profound understanding of computer 

programming can help students form “new relationships” with knowledge and receive 

educational benefits in diverse learning domains: “computers can be carriers of 

powerful ideas and of the seeds of cultural change, how they can help people form 

new relationships with knowledge that cut across the traditional lines separating 

humanities from sciences and knowledge of the self from both of these” (Papert, 

1980, p.4). 

The computer program is written in a programming language. There are numerous 

programming languages which can be used to program a computer ranging from low 

to high level. The lower the level of the programming language used the closer the 

program looks like 0s and 1s, which is what the computer actually “understands”. 

That is, the presence or non-presence of electrical current through its circuits.  
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High-level programming languages resemble human-like instructions, for example: if 

(x>5) then print “Greater than 5”. In order for the computer to be able to execute a 

program like this, a compiler is needed. The compiler will “translate” the text written 

in the programming language to 0s and 1s. The higher the level of a programming 

language, the higher the level of abstraction that it imposes on the programmer. 

In the next section, I explain what a programming paradigm is, and types of 

programming languages used to teach and learn computer programming. This also 

explores the dilemmas faced by most instructors in identifying the most suitable 

programming language and environment for novices. 

2.2  Programming Paradigms and Programming Languages 

A programming paradigm defines a way of thinking about software development and 

is based on a mathematical theory or a coherent set of principles (Van Roy, 2009). 

Different approaches to programming (paradigms) have been developed over time. 

The most popular ones used for teaching computer programming are: the imperative; 

structured/procedural; and object-oriented.  

Imperative programming focuses on how a program operates. It changes state 

information as needed in order to achieve a goal. Programs are composed of 

variables, assignments and calculations, statements for input and output, control 

statements such as selection and iteration. There is an implied sequential nature in 

the program’s activities: input, processing, and output. 

Structured programming relies on procedure calls to create modularised code. A 

programming methodology, formulated by Dijkstra (1970), extends imperative 

programming and works in two phases. In the first phase, the programmer breaks 

down each problem into concrete sub-problems (problem decomposition) following a 

top-down approach. In phase two, the programmer works upwards, providing 

solutions to the smaller problems until the whole problem is solved.  In structured 

programming, programs are composed of callable blocks of code called functions and 

procedures, and include all the constructs mentioned above (variables, input/output, 

control statements, etc.). Even though the procedural coding style is an older form of 

application development, it is still a viable approach when a task lends itself to step-

by-step execution. 

The ultimate goal of both imperative programming and structured programming 

paradigms is to “produce a program with exactly one entry point that can only be 
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built and executed after all its parts are (in some sense) completed” (Kölling, 1999, p. 

4). 

Object-oriented programming is a programming methodology that is based on the 

concept of objects. The programmer should in phase one identify the objects (entities) 

involved in the problem and then identify how these objects are related or interact 

with each other. In phase two, the programmer should specify the relevant data for 

each object and the possible operations to be performed on these data, and then 

design a user interface. Interaction with a user interface is not at all a sequential 

process but rather event-driven. Objects exist independently of each other, and 

operations can be executed on them. As a result, a user should be able to interactively 

create objects of any available class, manipulate these objects and call their interface 

methods. Booch (1989) stated: “Let there be no doubt that object-oriented design is 

fundamentally different from traditional structured design approaches: it requires a 

different way of thinking about decomposition, and it produces software architectures 

that are largely outside the realm of the structured design culture.” 

There is no best approach to tackling a computer problem. Each paradigm supports a 

set of concepts that makes it most applicable for a certain kind of problem (Van Roy, 

2009). For some cases, the structured programming approach is more appropriate 

than the object-oriented one. For example, if the purpose of the program is to solve a 

mathematical formula and a Graphical User Interface (GUI) is not a requirement, 

then structured programming seems more appropriate. On the other hand, if the 

purpose of the program is to handle student grades in courses, then the object-

oriented approach will be more efficient. Using the object-oriented approach does not 

eliminate the application of structured programming constructs; rather it is using 

them within a different context. Most programming languages nowadays are multi-

paradigm ones (Van Roy, 2009). 

“A multi-paradigm programming language is a programming language that supports 
more than one programming paradigm. The central idea of a multi-paradigm language 
is to provide a framework in which programmers can work in a variety of styles, freely 
intermixing constructs from different paradigms. The design goal of such languages is to 
allow programmers to use the best tool for a job, admitting that a single paradigm 
cannot solve all problems in the easiest or most efficient way.” (Mozilla Developer 

Network, 2013) 

Table 2.1 shows the top ten programming languages based on the PPLI (Popularity of 

Programming Language Index) which is created by analysing how often language 

tutorials are searched on Google. The percentage change is calculated by comparing 



 

12 

the same data retrieved a year earlier in November 2017. From all the languages 

included in the list below, only C is not considered object-oriented. 

Rank Change Language Share Trend 
1  Java 21.4 % -1.9 % 

2  Python 18.6 % +5.2 % 

3  PHP 8.2 % -1.5 % 

4  JavaScript 8.0 % +0.5 % 

5  C# 7.6 % -0.9 % 

6  C++ 6.3 % -0.7 % 

7  C 6.3 % -0.9 % 

8  Objective-C 3.9 % -0.6 % 

9  R 3.8 % +0.6 % 

10  Swift 3.1 % +0.3 % 
Table 2.1: Popularity of programming language index 

(retrieved from http://pypl.github.io/PYPL.html, Nov. 2018) 

The same source, in May 2019 in a tag cloud, shows Python, Java and JavaScript as 

the first three most popular programming languages (see Figure 2.2). 

 
Figure 2.1: Programming languages popularity tag cloud 

(retrieved from http://pypl.github.io/PYPL.html, May 2019) 

In the 1990s, introductory programming education shifted towards object-oriented 

programming (Morris et al., 1999;  Pears et al., 2007; Davies, et al., 2011; Decker & 

Simkins, 2016) and until today most universities choose an object-oriented language 

for their introductory course. Nevertheless, the fact that an object-oriented 

programming language can also be used to teach fundamental programming 
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constructs using the “imperatives-first” approach makes them even more popular 

amongst educators. 

A short survey administrated during Fall Semester 2017 to 50 educators in high 

schools and universities in Greece, demonstrated that most educators (40%) currently 

use Python to introduce programming concepts to students while Java still holds a 

strong share (23%) either with an emphasis on objects (14%) or imperatives-first 

(19%) (see Figure 2.2). 

 

Figure 2.2: Programming languages used in Greek schools 
 

Choosing the “imperatives-first” or the “objects-first” paradigm seems to be a defining 

factor for many introductory courses. Over the past ten years there has also been a 

trend to introduce students to “safer” programming languages (a move from lower-

level languages such as C to higher-level languages such as Java and C++), or to 

scripting and loosely-typed languages (such as Python or JavaScript) or even to 

syntax-light ones (such as Alice and Scratch), but the initial debate still stands 

(Davies et al., 2011; ACM Computing Curricula Task Force, 2013).  

The “objects-first” approach to teaching programming seems to prevail over the 

“imperatives-first” (Iling et al., 2003; Hu, 2004; Xinogalos et al., 2006), but the 
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debate as far as which of the two approaches is more effective for teaching 

introductory programming courses still exists (Dale, 2006; Pears et al., 2007). 

Researchers that support the introduction to programming using the “imperatives-

first” or “objects-later” paradigm argue that the object-oriented paradigm is far more 

complex and has a longer learning curve (Wiedenbeck et al., 1999) and hence is more 

difficult (Thomasson et al., 2006). Additionally, knowledge and experience gained 

from structured programming is a requirement to form a solid basis to work 

effectively with objects later on (Hu, 2004; Reges, 2006). 

On the other hand, researchers that support an introduction to programming using an 

“objects-first” paradigm argue that since there has been a shift in professional 

programming towards object orientation (White & Sivitanides, 2005), learners should 

be familiarised with it as early as possible (Decker, 2003). They also argue that a high 

percentage of novice programmers only “know” how to interact with the computer 

using their mouse, in a windows interface, and possibly they have never seen a 

command line environment (Culwin, 1999).  

To minimise the perceived difficulties and to support the “objects-first” strategy, 

various educational software tools have been developed such as BlueJ, JEliot, 

Greenfoot and Alice (Xinogalos et al., 2006, Sun, 2010; Dann et al., 2012; University 

of Kent, 2014;) that allow the interaction with objects from the beginning. Studies 

have shown that these tools can help novice programmers build a more concrete 

understanding by providing appropriate conceptual models (Yiğit et al., 2015).  

The “Introduction to Programming” module in XYZ college historically follows the 

“imperatives-first” and “objects-later” approach to programming using Java, which is 

one of the most widely used programming languages both in education and in 

professional software development. The task of writing a program can be 

accomplished using a number of programming environments. The choice of a 

programming environment could potentially affect the understanding and 

performance of a novice programmer. In this respect, in the next section, I present a 

taxonomy of programming environments. 

 

2.3  Types of Programming Environments 

Writing a computer program in its pure form requires a text-editor and a command 

line tool to compile and execute a program. Over the years, programming 

environments have evolved and have integrated the text-editor, the compiler, the 
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execution environment and many more assistive features for programmers. There are 

varying levels of assistive features provided by different programming environments, 

ranging from low assistive features to very high ones.  

A text-editor such as notepad and a command like compiler, is on the low assistive 

side. There are no assistive features for the programmers. A program visualisation 

environment such as JEliot and BlueJ contains a simplified text-editor with an 

integrated compiler. Again, there are almost no assistive features for the 

programmers. Code is written in Java but enables the learner to visualise a step-by-

step execution of the program. Method calls, variables and their values, arrays, 

operations and output are displayed on a screen as the animation goes on. 

An Integrated Development Environment (IDE) such as Eclipse, NetBeans or 

JDeveloper, is considered to be on the moderate assistive side since it integrates the 

text editor and the compiler and offers a number of features for authoring, modifying, 

compiling, deploying, versioning and debugging software. Most professional 

programmers use integrated development environments to write software. 

A number of programming environments have been developed through the years to 

introduce programming concepts to younger students. Their design is fundamentally 

different from professional IDEs due to their pedagogical purpose for use and have 

been termed Initial Learning Environments (ILE) (Fincher & Utting, 2010). ILEs 

include Visual Programming Environments (VPEs) such as Scratch, Alice and 

AppInventor. These environments are considered to be on the high assistive side, 

since the programmer will focus only on the programming logic and will not be 

required to type any code. In a symposium discussion on Computer Science Education 

about the goals and effects of Alice, Scratch and Greenfoot, Steven Cooper argues 

that the power of visualisation comes when an animation does not work correctly, 

and students are able to understand where the “error(s)” in the code resides. He also 

mentions that the focus of these programming environments is on providing an 

engaging experience for the students so that they will want to learn programming 

(Utting et al., 2010). Although the concept of program visualisation and visual 

programming is mentioned here within the context of programming environments, a 

more detailed analysis follows in Chapter 4, with a focus on the difficulties students 

face when learning how to program and the role of visualisations in the facilitation of 

learning computer programming. 

A short presentation of each type of programming environment (along with a 

representative software) follows in the next sections. 
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2.3.1  A Text-Editor and Command-Line Compiler 

Using a text editor to type your program code, save it and use a command prompt in 

order to compile it and execute your program requires a very strong knowledge of 

both the programming language and operating system commands. Although such an 

environment does not require the knowledge of using a specialised environment with 

a complex set of features, it can be frustrating for novice programmers (see Figure 

2.3).  

 

Figure 2.3: A text-editor and a command line compiler 

On the other hand, text editors have also evolved and can provide colour-coding, 

syntax highlighting and formatting which could be helpful for novice programmers. 

Without overlooking the frustration caused to students by this environment, 

anecdotal research (Chen & Marx, 2005) shows that some educators might still 

choose to introduce students to writing programs using a text editor and a command 

line compiler. The rationale behind this choice is to provide students with a broader 

understanding of programming fundamental concepts such as writing code, 

compiling, executing and editing to enhance their mental models of the programming 

life cycle at a lower level. 

2.3.2  Program Visualisation Environment 

There are two well-known program visualisation systems which are widely used in 

the educational setting: BlueJ and JEliot. BlueJ offers static visualisation of Java 

classes, while JEliot offers a dynamic visualisation of program execution.  
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BlueJ is one of the first programs developed, aiming at teaching introductory object-

oriented programming, in 1999. BlueJ integrates a simple text-editor with a Java 

compiler and offers some assistive features to the learners, such as syntax and scope 

highlighting (each code block is coloured) and this helps in spotting syntax errors and 

misplaced curly brackets. The main feature of BlueJ is the static visualisation of a 

class structure (attributes and method) as a Unified Meta Language (UML) diagram 

and animates the creation of all possible instances of a class at run-time (see Figure 

2.4). Furthermore, it allows the learner to interact with the object instances by 

creating them, calling their methods and inspecting their state with easy-to-use 

menus and dialogs.  

 

Figure 2.4: BlueJ class inspection feature and the text-based code editor 

However, it does not provide any dynamic visualisation of the program execution. 

Jeliot on the other hand is a program visualisation application. The development of 

the Jeliot family took more than ten years and was research oriented. Several versions 

of the concept of visualising the execution of a program have been developed, namely 

Eliot (developed at the University of Helsinki, Finland in 1993), Jeliot I (developed at 

the University of Helsinki, Finland), Jeliot 2000 (developed at the Weizmann 

Institute, Israel) and JEliot3 where the software has become product-like, both usable 

and stable. Each version of the program incorporated findings from the previous 

version’s empirical evaluations (Moreno et al., 2004). 

Jeliot integrates a simple text editor and a compiler plus a live-theatre mode. The 

learner has to type a program using the Java programming language and compile it. 

Unfortunately, the compiler neither highlights possible syntax errors while typing the 
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program, nor during the compilation phase. The errors will appear to the user when 

he/she chooses to execute the program.  

The main feature of Jeliot is the “theatre mode” and the “call tree”. When the 

program does not contain any syntax errors, the execution starts by animating all 

methods, variables, method calls, expressions and their possible evaluations in the 

theatre mode (Figure 2.5) The user can slow down, speed up or pause the animation 

to observe the results.  

 

Figure 2.5: Jeliot programming environment - Theatre mode 

In the Call Tree mode, the user can observe the hierarchy of method calls. Starting 

from the main method, all other method calls are depicted in a tree along with their 

actual parameter(s) values and their respective return values (see Figure 2.6). 
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Figure 2.6: Jeliot programming environment - Call tree mode 
 

As mentioned before, the main disadvantage of JEliot is its over-simplified text-editor 

which does not highlight possible typographical errors or syntax errors, but Jeliot can 

be incorporated into BlueJ as an extension and provide the learners with required 

editor functionality. 

 

2.3.3  Integrated Development Environment (IDE) 

An integrated development environment (IDE) is a programming environment 

packaged as an application. IDEs provide software developers with many tools that 

assist them in writing their programs. Features provided include: colour coding, code 

completion/suggestion, matching of brackets, code formatting/indentation, debugger, 

creating of code documentation, version control and application deployment (see 

Figure 2.7). 
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Figure 2.7: Eclipse IDE 
 

IDEs abstract the process of compilation and execution since it happens automatically 

with the press of a button. An IDE compiles the code, and if compilation is successful, 

it executes the program inside the same environment (an integrated console). As a 

result, there is no switching back and forth between the editor and command prompt. 

In case of a syntax error, the IDE highlights the line number with the error and even 

suggests possible ways to correct it. 

All modern integrated development environments (IDEs) provide users with a 

debugger system. The debugger is used to perform advanced step-by-step program 

tracing. Using the debugger, the student can monitor the contents of the memory as 

the program executes, and pause the execution upon request.  

Although an IDE supports programmers with writing their code, it has a higher 

learning curve than using plain text editors and command prompts. Research also 

shows that students often rely too much on the automated tasks, but that they do not 

really understand what is happening behind the scenes (Chen & Marx, 2005).  

A study conducted by Dillon et al. (2012) showed that students struggled with using a 

command prompt environment regardless of their prior experience and confidence 

with programming, but they were able to use IDEs more effectively. 

2.3.4  Visual Programming Environments 

Since the early 1960s, researchers identified the need to make programming 

accessible to a larger number of people. Since then, a number of programming 

languages and environments have been built with this intention. Kelleher and Pausch  
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(2005) and Guzdial (2004) provided us with a taxonomy of programming 

environments’ design to make programming more accessible to novice programmers 

of all ages, up to the time their article was published. 

Historically speaking, the purpose of visual programming environments as identified 

by research has been three-fold: a) to make programming more accessible to some 

particular audiences; b) to improve the correctness with which people perform 

programming tasks; and c) to improve the speed with which people perform 

programming tasks (Burnett, 1999). 

Nowadays, there has been a shift from this purpose towards the engagement of the 

student/developer to design programs within the context of their actual and specific 

interests (stories, games, simulations, etc.) and to the immediate feedback provided 

by the environment. 

This is in contrast to conventional programming exercises, which ask students to 

create programs that display “hello world”, perform calculations and sort numbers. 

Furthermore, in visual programming environments, syntactic complexity is hidden, 

and tasks are directed to hands-on problem solving. These environments are designed 

to avoid common beginners’ mistakes in programming such as syntax errors and aim 

to bridge the gap between program-code and the visual/human representation of the 

code output. Therefore, instead of typing commands, students can drag-and-drop 

blocks of code into a predefined structure to form a computer program. Because of 

their shape, these blocks can only be placed in a sequence that makes sense, and the 

compiler will never give an error message due to mismatched braces or a missing 

semi-colon. The main focus of visual programming environments is to facilitate 

hands-on problem solving and to encourage and retain “at risk” students (Utting et 
al., 2010). 

Just a simple search of the term “visual programming” in the ACM Digital Library 

(November 2017) resulted in 134,883 articles and with conjunction with the term 

“novice programming” resulted in 97,473 articles. This shows an impressive research 

interest in visual programming environments.  

In the next section, I will briefly introduce the most widely-used visual programming 

environments: Alice, Greenfoot, AppInventor and Scratch. In Chapter 4, a discussion 

on how using visualisations can assist students to overcome the barriers associated 

with computer programming follows. In Chapter 5, each one of these programming 

environments will be evaluated, using a participatory action research methodology, in 

order to investigate student perceptions about each one - the tools’ enjoyment, 



 

22 

usability and suitability towards the achievement of the specific module’s learning 

objectives, to observe how each of these tools affected students’ motivation to learn 

programming, and to identify the one to be used in the main study. 

 

2.3.4.1 Alice 

Alice was created by a Research Group at Carnegie Mellon University under the 

direction of Randy Pausch (http://www.alice.org) and, as described by its creator, is 

“designed to be a student's first exposure to object-oriented programming” by 

allowing students to easily create interactive animated stories and/or games that take 

place in virtual 3-Dimensional  worlds. 

Alice provides students with a drag-and-drop interface that allows them to focus on 

programming concepts while also protecting them from syntax errors. Initially, 

students are presented with a gallery of template worlds and choose the world setting 

that they will work with. Next, they instantiate numerous objects, animals and/or 

people. Additionally, students define how objects will move and interact with each 

other. Movement and interactions are created with scripts. A script is constructed by 

dragging and dropping commands into the procedure area and changing related 

properties. “Move forward 1 meter” or “turn left 30 degrees” are examples of Alice 

commands. Commands can be performed in sequence (Do-in-Sequence) or 

simultaneously (Do-Together). Loops can also be used (Do 5 times, or while distance 

< 3 repeat a block of code).  

Sprites (objects) also respond to user interaction provided via mouse or keyboard 

(Cooper et al., 2000; Utting et al., 2010). At each point during development, students 

can run their animation, visually observing and directly relating to the results of their 

specific programming actions. Feedback is immediate and highly visual (Figure 2.8). 

“This leads to an understanding of the actual functioning of different programming 

language constructs” (Cooper et al., 2000). 
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Figure 2.8: Alice programming environment 
 

2.3.4.2 Greenfoot 

Greenfoot was created by Michael Kolling and Poul Henriksen at the University of 

Kent (http://www.greenfoot.org). 

The Greenfoot system uses the metaphor of a World subclass and one or more Actor 

subclasses that are placed in the world. Actors act and interact with the world or 

other Actors to implement the application idea (scenario). Each time a student places 

an object on the world, a new named subclass of the actor is created with its own 

image, size and placement within the world. The idea behind Greenfoot is to 

introduce students to concepts of object-oriented programming, such as inheritance, 

instantiation, polymorphism, properties and methods, in a way that is easier to 

understand. Students can view and modify the source code that is automatically 

generated for each object created. The level of abstraction provided by Greenfoot is 

comparatively lower than that in Alice, as it contains all elements of an integrated 

programming environment: a compile button and execution control (Figure 2.9); a 

text-based code editor (Figure 2.10) or a frame-based code editor (Figure 2.11). 
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Figure 2.9: Greenfoot's program design editor 

 

Figure 2.10: Greenfoot's text-based Java Editor 
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Figure 2.11: Greenfoot's frame-based editor 
 

Using Greenfoot, students come one level closer to coding their programs, but the 

nature of the program is different from traditional IDEs. Greenfoot’s latest version 3 

also includes an intermediate coding environment: a frame-based editor named 

Stride. 

A preliminary investigation on the usability of this frame-based editor by McKay and 

Kolling (2013) showed that novice programmers performed insertions, modifications, 

deletions and code replacements considerably faster than other coding editors. 

 

2.3.4.3 Scratch 

Scratch was developed in 2007 by Mitchel Resnick and Natalie Rusk as a project of 

the “Life Long Kindergarten” group in MIT 

(https://www.media.mit.edu/projects/scratch). 

Scratch is based on the ideas of Logo (Papert, 1980) to support constructionist 

learning, but replaces typing code with a drag-and-drop tile-based approach inspired 

by LogoBlocks (Begel, 1996) and EToys (Kay, 2005). LogoBlocks (Figure 2.12) and 

EToys (Figure 2.13) were both developed around 1996 and they followed a similar 

drag-and-drop approach of jigsaw-like puzzle pieces or tiles that contained 

programming instructions.  
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Figure 2.12: LogoBlocks 

 

 
Figure 2.13: EToys  

 
 

Although Scratch was inspired by these tools, the main design principle was to make 

it more ‘tinker-able’, more meaningful and more social than its predecessors or other 

programming environments in the same category (Resnick et al., 2009). Scratch took 

its name from the “scratching” technique used by disc jockeys, when they move back 

and forth a vinyl record (or a Compact Disk or even a virtual disk on a computer) to 

create a percussive or rhythmic sound while mixing music clips together in creative 

ways. Thus, “scratching” in computer terms, according to Lamb (Lamb & Larry, 2011) 

refers to reusable pieces of code which can be combined, shared and adapted. 

Scratch pedagogy is grounded on the ideas of “creativity”, “interactivity”, “sharing” 

along with “mathematical and computational ideas”. Resnick and his team based the 

development of Scratch on the idea that a computing environment should have a low 

floor (easy to get started) and a high ceiling (opportunities to create increasingly 

complex projects over time). This metaphor was initially introduced by Seymour 

Papert in Mindstorms (1980), but the Scratch development team also based the 

development of the tool on the idea that languages need “wide walls”.  An 

environment with “wide walls” supports many different types of projects so people 

with different interests and learning styles can become engaged. They also argue that 

the development of Scratch with this triplet: low-floor/high-ceiling/wide-walls was 

not easy (Resnick et al., 2009).  

The key Scratch component is media manipulation and supports programming 

activities that align with the interests of young people, such as creating animated 

stories, games, and interactive presentations. Re-mixing is another key component of 

Scratch pedagogy. Re-mixing a Scratch project allows a user to copy another users’ 

project, see the code inside, learn from it, experiment with it, and extend it (always 

retaining a reference to the original work). 
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A Scratch project consists of a fixed stage (backdrop) and several movable objects 

(sprites). In the following example (Figure 2.14) the airplane is the sprite and the sky 

with the clouds is the stage. Each sprite contains its own set of images (Figure 2.15), 

sounds (Figure 2.16), variables, and scripts (Figure 2.17). 

 

 

Figure 2.14: Scratch stage and sprites 

 

Figure 2.15: Image in Scratch 
 

 

Figure 2.16: Sound in Scratch 
 
 
 
 

 

Figure 2.17: Scripts in Scratch 
 

In order to create a program, the learner drags command blocks from a palette 

(Figure 2.18) and drops them into the code area by sticking them together in order. 

The whole process is like putting together puzzle pieces. 
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Figure 2.18: Scratch development area 
 

The full Scratch development area (see Figure 2.18) is divided into four areas:   

• On the right is the stage. A button  on the bar on top of the stage allows 

the stage to be displayed in full screen mode. Below the stage is an area that 

shows thumbnails of all sprites in the project. Clicking on one of these 

thumbnails selects the corresponding sprite. When a sprite is selected, the 

middle pane and the coding area display all properties of the selected sprite. 

• In the middle pane, there are 3 tabs that allow the learner to view and change 

the scripts, the costumes (images), or sounds of the selected sprite.  

⁃ The scripts tab organises the code building blocks into 10 colour-coded 

categories: 

⁃ Motion: move, turn, point, go to, change x or y, set x to y, set 

rotation, if on edge, etc. 

⁃ Looks: say, think, show, hide, switch costume, switch backdrop, 

set colour, etc. 

⁃ Sound: play sound, play note, set volume, stop all sounds, 

change tempo, etc. 

⁃ Pen: pen down, pen up, set pen colour, change pen size, etc. 
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⁃ Data: create a variable, set a variable value, show/hide a variable 

value. 

⁃ Events: When flag clicked (to start the program), when button 

pressed, when a sprite is clicked, etc. 

⁃ Control: repeat, if… Then… Else, forever, wait, etc. 

⁃ Sensing: is key pressed? Is sprite touching colour or other sprite? 

Is mouse down? Etc. 

⁃ Operators: +,-, *, /, <, >, and, or, pick a random number, etc. 

⁃ More Blocks - Extensions: create predefined blocks (procedures), 

etc. 

• On the left-most pane is the scripting area. This is where the actual program is 

composed. 

Having the command palette always visible encourages exploration. Any individual 

block of code or a stack of blocks can be executed immediately (even before the 

program is complete) to preview its functionality just by double-clicking on it. This 

immediate feedback reduces the novice programmers’ fear of the unknown.  The fact 

that not all blocks fit together makes writing code less error prone. The area where a 

block can be dropped is highlighted, and a block cannot be placed at a point where it 

does not make sense, program-wise. 

Furthermore, when a Scratch program executes, by clicking on the green flag, the 

code that is built inside every sprite executes at the same time. Scratch code is not 

executed in a serial manner; some run-time events, such as a key being pressed, or a 

mouse click on a sprite, can change the flow of the program. Scratch also provides the 

users with another valuable visualisation: it highlights those blocks of code which are 

currently being executed. Thus, Scratch users experience an event-driven, multi-

threaded runtime environment without even realising it and are exposed to advanced 

programming concepts in a tangible manner. Hopefully, this will help them develop a 

more solid process model of how a computer program works. 

2.3.4.4 APP Inventor 

MIT App Inventor is an open source visual programming language which utilises 

ready-made code blocks for building Android Apps and was initially developed by 
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Google’s Mark Friedman and MIT Professor Hal Abelson in 2009; the MIT Version 

was released in 2012. 

APP inventor aims to introduce to inexperienced novice programmers the basic 

programming constructs, while focusing on application creation concepts using drag-

and-drop visual building blocks. The perceived ease of use of the simple graphical 

interface transforms the complex language syntax of a text-based coding environment 

to plugging puzzle pieces together. The graphical programming user interface of APP 

inventor is based on Open Blocks visual programming (see Figure 2.19, Figure 2.20) 

and resembles Scratch, the Hour of Code and StarLogo TNG. Block-based 

programming environments are widely used in lower and upper schools to introduce 

basic programming ideas (Maloney et al., 2007; Nikou & Economides, 2014; 

Panselinas et al., 2018; Papadakis & Orfanakis, 2018). 

Applications created using APP Inventor can be easily deployed on Android mobile 

devices and enable students to easily share their work with their family and peers. 

 

 

Figure 2.19: AppInventor: Program design 



 

31 

 

Figure 2.20: AppInventor: Block-based code editor 
 

2.4  Conclusion 

This chapter provides the relevant context and prepares the ground for justifying the 

choice of tools used in this research project. To this end, it explores the field of 

computer programming, programming paradigms and programming environments, 

with an emphasis on the description of the functionality of four well-known visual 

programming environments (Alice, Greenfoot, AppInventor and Scratch).  

These VPEs have as a common characteristic the use of predefined code blocks, but 

also have some identified differences regarding the types of programs they can create, 

the level of programming experience they require and the programming concepts 

they can demonstrate. Table 2.2 summarises the main characteristics of the four 

visual programming environments discussed above.
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VPE Editor Mode of 

user 

interaction 

Purpose (types of 

programs they can 

create) 

Requires previous 

programming experience 

Can be used to 

demonstrate  

 

OOP Multithreading 

Greenfoot Frame-based or 

text-editor 

Desktop 

Application 

Create 2-D games some X  

Alice Block-based 

editor 

Desktop 

Application 

Create 3-D interactive 

stories, games or 

animations 

none X  

AppInventor Block-based 

editor 

Online Build mobile applications 

of various types for 

android devices 

some understanding of 

user interaction with 

application elements 

(buttons, input text, etc)  

 X 

Scratch Block-based 

editor 

Online and 

desktop 

Create 2-D interactive 

stories, games or 

animations  

none  X 

Table 2.2: Comparison of the main characteristics of Greenfoot, Alice, AppInventor, Scratch 
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It should be pointed out that Greenfoot and Alice are strongly based on object-

oriented programming concepts where actors are instances of pre-defined objects and 

the concept of inheritance and sub-classing is fundamental in program development, 

while the ability to demonstrate multithreading concepts can best be demonstrated by 

Scratch and AppInventor. Alice and Scratch do not require previous programming 

experience, while Greenfoot and AppInventor (based on my teaching experience) will 

be more suitable for students who have some prior experience with coding and 

application development respectively. 

The four VPEs addressed in this chapter have been selected for this study because 

they have a long history of serving as focal programming tools in introductory 

programming courses. They were all designed to support teaching and learning how 

to program by making things easier and more pleasurable; support a “motivational” 

approach to learning; were designed to make conceptualisations visible to learners 

thus reducing cognitive load; have textbooks to support teaching; and have a vast 

online presence with active educator communities. Finally, they have all been 

researched in the past for their educational effectiveness (see Section 4.5).  
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Chapter 3   The Theoretical Framework 

Chapter 2 introduced the concepts of computer programming and presented different 

programming paradigms, as well as types of programming environments that exist in 

the market today. This chapter examines cognitive and educational theories and their 

application to teaching programming, the concept of approaches to learning and 

theories of motivation. Finally, through a presentation and comparison of assessment 

tools (for learning approaches and motivation), the discussion advances justification 

for the selection of the ones used in the study. 

 

3.1  Educational Theories 

Cognitive psychologists and educators have long been interested in understanding: a) 

the nature of learning as an active process (perception, thinking and knowledge 

representation); b) knowledge organisation in memory (rote memorisation versus 

comprehension); c) how learning evolves towards problem-solving (Mayer, 1981; 

Wertheimer, 1983) and d) the importance of prior knowledge in assimilating new 

material (Shuell, 1986). 

“Meaningful learning” and retention, according to Ausubel (1963), are facilitated 

when the learner has a meaningful cognitive framework within which to organise, 

process and assimilate newly-presented material. Michael (2001) contrasts 

meaningful with rote learning and stresses the importance of the ability of the learner 

to actively do something with all the memorised information.  He elaborates on 

Ausubel’s definition that meaningful learning results in knowledge that is well 

integrated with everything else that one knows and that can be accessed from many 

different starting points.  

Cognitive psychologists have identified three conditions (comprising an information 

processing model), for meaningful learning to occur: 

• Reception: the learner should pay attention to the information he/she receives to 

register this within short-term memory. 

• Availability: the learner needs to recognise or identify connections of similar 

context within long-term memory, or “appropriate anchoring ideas”, as Ausubel 

terms them.  

• Activation: the learner must use existing knowledge and establish connections 

between this knowledge and new material at hand. 
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A number of practical studies have concentrated on applying cognitive and 

educational theories to the teaching of programming to improve student learning: 

• Mayer (1981) applied Ausubel’s (1960) idea of “advance organisers” to 

provide a framework for the reception and availability conditions mentioned 

above and to define the process of meaningful learning (or assimilation to the 

schema) of technical information.  

• Du Boulay (1986) made use of metaphors and analogies in teaching 

programming and based his studies on the development of a “concrete model” 

for teaching LOGO and argued that there are two approaches to teaching and 

learning how to interact with the computer; the “black box” approach and the 

“glass box” approach. The first approach is based on the idea that the internal 

operations of the machine are not visible and not even necessarily of any 

interest - like a true black box - leaving the learner to focus exclusively on 

inputs and outputs. The second approach is based on the idea that the learner 

should attempt to understand how the computer operates internally - hence 

like a glass box.  

• Chalk, Boyle, and Fisher (2003) tested the application of “learning objects” in 

an attempt to improve student performance. 

• Hadjerrouit (1999) presented a teaching approach based on the principles of 

constructivist epistemology. 

The concern for learning focuses on the way in which people acquire new knowledge 

and develop skills and the way in which existing knowledge and skills are modified 

(Shuell, 1986). There are many different approaches to teaching and learning. 

Historically, psychologists tried to develop a hypothesis of how individuals acquire, 

retain, and recall knowledge.  Although a number of definitions of learning appear in 

the literature, Shuell (1986) provided one which is broad enough to incorporate the 

views of different paradigms: “Learning is an enduring change in behaviour, or in the 

capacity to behave in a given fashion, which results from practice or other forms of 

experience”, as interpreted by Schunk (2012).  

By studying different learning theories, we as teachers can better understand how 

learning occurs and how to apply underlying principles to effectively identify 

appropriate instructional tools, techniques and strategies that promote learning in the 

field. A literature review on learning theories suggests that there are three widely 

accepted paradigms of learning: behaviourism, cognitivism and constructivism.  
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Schunk (2012), in his book, considers the following critical issues in the study of 

learning and tries to compare the manner in which each paradigm addresses them: a) 

how learning occurs; b) what the role of memory is; c) how transfer occurs; and d) 

which learning tasks are more appropriate for each paradigm. 

The behaviourist learning paradigm is based on the view that learning occurs when 

the learner presents a recognised response as a reaction to an external stimulus. Thus, 

a primary focus is on how to form strong and lasting associations between stimuli and 

responses. In Skinner’s (1953) view, a response to a stimulus is more likely to re-

occur in the future as a function of the consequences of prior responses and is 

promoted by repetition and positive reinforcement. The learner is characterised as 

being reactive to conditions in the environment. As a result, learning strategies that 

follow the behaviourist approach can be applied to specific learning tasks such as 

recalling facts, defining and illustrating concepts, applying explanations and 

automatically performing a specified procedure (Ertmer & Newby, 2013).  

The cognitive learning paradigm is based upon the view that the learner, rather than 

being a passive receptor of information or knowledge, is an assimilator of knowledge, 

which is actively constructed based on pre-existing cognitive structures. The 

understanding of cognitive processes is essential to this paradigm, as related mental 

activities must be identified and targeted to promote the most effective learning. The 

learner’s knowledge schema is viewed as an organised hierarchical structure (Bruner, 

1964; Gagné et al., 1993) and the emphasis is not on human behaviour but on the 

mental processes that take place in order for learning to occur. The mental processes 

include perception, thinking, knowledge representation, memory and transfer. The 

learner is characterised as being an active participant in the learning process (Shuell, 

1986). As a result, learning strategies that follow the cognitivists’ approach can be 

applied to more complex learning tasks that involve reasoning, problem-solving and 

information-processing (Ertmer & Newby, 2013). 

The constructivist learning paradigm is based on the view that a learner is capable of 

constructing his or her own knowledge, though within the framework of a subjective 

model of representation. Piaget (1977) asserts that learning occurs by an active 

construction of meaning, rather than by passive recipiency. This paradigm approaches 

learning as a process in which one integrates new information with previous 

knowledge and experiences (Duffy et al., 1993) in order to actively construct an 

extended knowledge schema in a piece-wise fashion (Steffe & Gale, 1995). 

A number of researchers consider constructivism as a branch of cognitivism because 

both theories view learning as a mental activity, but there is a fundamental difference 
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between the two in the way that knowledge is assimilated, whether or not transferred 

into the memory. Some behaviourists and cognitivists have argued that knowledge 

can be “mapped” onto a learner (to acquire meaning), while constructivists have 

argued that a learner builds personal interpretations (to create meaning) based on 

his/her unique experiences and interactions with the world. Jonassen (1991) has 

described three stages of knowledge acquisition (introductory, advanced, and expert) 

and argues that constructive learning environments are most effective for the stage of 

advanced knowledge acquisition, in which learners are called upon to deal with more 

complex, and unstructured problems, whereas, for the introductory phase, 

behavioural or cognitive approaches are more appropriate. 

As a result, learning strategies that follow the constructivists’ approach can be applied 

to problem-solving activities within loosely structured realms to promote self-

realisation and allow learners to adapt their mental models to newly-discovered 

knowledge.  A more detailed discussion on the development of mental models 

required to understand and apply a programming language to solve problems follows 

in Chapter 4. 

Nonetheless, no traditional learning theory can be deemed absolute and all-

encompassing. For example, the possible social dimension to learning was missing 

from the learning paradigms mentioned above. Learning, as a human behaviour, is 

such a complex and multi-faceted process that it would be considered limiting to 

describe it using only cognitive or behavioural factors. Bandura (2001), in his social 

learning theory, argued that there is a continuous interplay of both, along with the 

inevitable influence of the social environment and the subsequently observed 

modelled activities. The social factor is also encountered in Vygotsky’s social 

development theory, which is based on the idea that social interaction, culture and 

language play a major role in the development of cognition.  His “zone of proximal 

development” defines a higher level of cognitive development which can be reached 

with guidance by adults and interaction with peers (Vygotsky, 1978). 

Situated learning theory (Lave & Wenger, 1991) is also based upon the view that a 

social practice dimension is intrinsic to the learning process. This paradigm considers 

the social environment to be that in which knowledge exists and throughout which it 

can be disseminated efficiently. As such, learners enhance, challenge, validate, and 

ultimately deepen their understanding within the context of peer- or group-related 

activities involving communication, synergy, sharing, and overall interaction with 

others in communities of practice.  
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Although the fundamental processes of learning have not changed, the world around 

us has. As such, learning theories of the past have not considered the impact that 

technology advancements would bear on the learning process (Siemens, 2005). 

During the past 20 years, with the advent of the Internet, there has been a dramatic 

change regarding how, where and with whom people learn. According to Prensky, 

“More and more young people are now deeply and permanently technologically 
enhanced, connected to their peers and the world in ways no generation has ever been 
before” (Prensky, 2010, p.2). In respect to these fundamental changes in the learning 

space and the need to develop the required skills of today’s learners, significant 

consideration is given to the theoretical perspectives of constructionism (Papert & 

Harel, 1991) and social constructivism (Vygotsky, 1978) and their corresponding 

teaching pedagogies. 

Papert, influenced by Piaget, actively supported the idea of learning-by-making. In his 

essay “Situating Constructionism”, he refrains from providing a definition for 

constructionism; instead, he encourages readers to construct their own meaning of 

the term from the examples he provides. Papert was inspired by observing children 

create “soap” sculptures throughout a semester and noticed how this process provided 

them the time, opportunity, and environment to think, try out their ideas, talk about 

them, and see other people’s work. He envisioned “soap-sculpture math” and learners 

as designers and builders of meaningful “public-entities” with the use of technology 

empowered learning tools (Papert, 1980; Papert & Harel, 1991). 

In accordance with the constructionist and social constructivist approach, the social 

element is highly present in professional software development. Both theories 

emphasise the use of peer collaboration and problem-based learning as an 

instructional method (Savery & Duffy, 2001), as opposed to social learning theory 

which emphasises observation of modelled behaviour of others. In the same context, 

Lave and Wenger (1991) stress the importance of collaboration among learners and 

the exchange of ideas within and even across communities of practice. 

Problem-based learning as an instructional method is based on Dewey’s philosophical 

view that practical experience plays a significant role in learning (Dewey, 1938). 

Problem-based learning involves contextualising learning, given a “real-world” 

problem that requires a solution. Students work in small groups to solve a problem 

provided by their teacher. Problem-based instruction aims to promote students’ 

critical thinking, enhance their problem-solving skills, and prepare them for their 

future practice or professional endeavours.  
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Last but not least, I should refer to the alternative theory of connectivism, 

characterised by Siemens as being the learning theory of the digital age (Siemens, 

2005). According to connectivism, learning is no longer viewed as an individualistic 

activity, but rather as a process, not entirely controlled by the learner, that occurs in 

vague environments (clouds) with interconnected yet continuously changing nodes 

(information sources). New information can be acquired almost instantly, but it 

becomes critical that the learner is capable of differentiating between important and 

unimportant information. Creating up-to-date and accurate knowledge is a key 

element of all connectivist learning activities, along with the ability to create 

meaningful connections between concepts and ideas. On the other hand, my own 

personal experience has shown that the vast amount of information which resides on 

the Internet might unwantingly lead novice learners to consume it as is, without first 

trying to understand it, make connections to prior knowledge and critically evaluate 

it. 

In terms of software development, this is not merely an individual task. 

Programming, at the professional level, requires individuals to work in teams, 

collaborate and share knowledge to ensure the success of a project. Such real-world 

programming requires extensive communication and collaboration amongst a 

plethora of people (customers, end users, system analysts, database designers, 

network architects and many other specialists) with the primary goal of creating a 

solution to a real-world problem (Kotsovoulou & Stefanou, 2016). 

My teaching methodology in programming modules has been influenced thus far by 

the social constructivist philosophical view and the constructionist instructional 

method of problem-based learning; constructivism, because it advocates that teaching 

and learning should involve hands-on activities and practical sessions through which 

knowledge can be built; social constructivism, because it emphasises the use of peer 

collaboration (Prawat & Folden, 1994), applied in class with peer programming; and 

problem-based learning because I value the importance of creative experimentation in 

the construction of software as a “public entity”. 

A large body of researchers in computing education is also considering instruction of 

novice programmers from a constructivist viewpoint (Ben-Ari, 1998; Van Gorp & 

Grissom, 2001; Wulf, 2005).  Dewey’s inquiry-based education, Piaget’s 

constructivism, Vygotsky’s social constructivism, Papert’s constructionism, Bruner’s 

discovery learning, Pask’s conversation theory, Schank’s problem-based learning, 

Marton’s deep learning and Lave’s socio-cultural learning are all in accordance with 
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Tyler’s views that “learning takes place through the active behaviour of the student: it is 
what he does that he learns, not what the teacher does” (Tyler, 1949).   

Laurillard (2006) points out that the most influential writers on learning have 

emphasised the importance of active learning and, based on that, she argues that the 

promotion of active learning in a social context should be the focus for the design of 

teaching-learning environments.  Laurillard’s conversational framework is based on 

this view, but also underlines the importance of the iterative dialogue between the 

teacher and the student. This dialogue is an interplay between theory and practice 

and is essential for “making the abstract concepts concrete,” as Resnick (2007) states. 

Goodman has also coined the concept of the dialectical interplay when he described 

mathematics as a social product that is “created and developed by the dialectical 
interplay of many minds, not just one mind” (Goodman, 1979, p. 545). 

Teaching computer programming is an endeavour that goes far beyond the traditional 

lecture format, which was prevalent in the past. It requires the combination of a 

variable set of teaching methodologies and hands-on problem-solving activities, 

including partial code completion, code walkthroughs, testing and debugging, use of 

rich instruction environments including animations and visualisations, group-work 

and collaboration. Most of the activities involved in computer programming 

education align with the social constructivist pedagogy and have a practical 

application in the design of instructional material. 

Interestingly, Alesandrini and Larson (2002) specified ten activities grouped into five 

phases which can provide the foundation for a constructivist approach to instruction: 

investigation, invention, implementation, evaluation and celebration.  

• The investigation phase includes contextualisation and clarification of the task 

as well as research on how to approach the solution. 

• The invention phase includes planning, designing or building a model. 

• The implementation phase includes the realisation of the solution but 

sometimes overlaps with the invention phase during modification of the initial 

design. 

• The evaluation phase includes testing, modifying, interpreting and reflecting. 

• Finally, the celebration phase includes the presentation of the results in a 

larger group. 
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Drawing from my experience as a software developer and an IT educator, I cannot 

overlook the fact that all of the activities mentioned above have a great resemblance 

to the software development lifecycle steps, which include: the preliminary analysis 

and definition of the requirements (investigation); systems design (design and 

modelling); development (implementation); evaluation (testing and modification); 

and deployment and presentation of the solution (celebration).  Thus, it can be 

argued that following the software development lifecycle itself utilises a constructivist 

approach to problem-solving. 

I also believe that teaching computer programming to novices requires a continuous 

refinement of the understanding of the concepts and that each new concept should be 

built upon a solid foundation. Mayes and Fowler (1999) proposed a learning model 

of gradual refinement of understanding and conceptualised teaching and learning as 

an iterative process, which repetitively cycles through its three discrete stages: 

conceptualisation, construction, and dialogue. It can be argued that these three stages 

of the learning model actually follow the three learning theories (cognitive, 

constructivist and socially-situated learning). More specifically, the conceptualisation 

phase, because of its focus on organising concepts and forming relationships between 

pre-existing knowledge and new information, can be viewed as being based on 

cognitive theory. Next, the construction phase, because it targets the creation of new 

knowledge through practice and problem-solving, can be seen as illustrating the 

constructivist theory. Finally, the dialogue phase, concerned with peer collaboration 

and group discussion, can be taken as being aligned with socially-situated learning 

theory.  

Given the above, a successful teaching methodology for introductory computer 

programming is, therefore, likely to be one that builds on, and extends, useful 

features from all of the theories mentioned above and aims to provide the students 

with appropriate feedback and support. The role of evaluation is crucial in this 

respect for the success of such a teaching methodology.  

To summarise, becoming a computer programmer requires mastering a number of 

diverse skills, ranging from analytical reasoning and problem-solving, to critical 

thinking and research. Social skills (such as communication and collaboration) are 

also imminently important for successful programmers. In order for learners to 

accumulate all of these assorted and complementary skills, the instructor should 

create an educational setting where diverse and constructive real-world activities take 

place through repetitive and collaborative practice. This last point was critical in the 
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formulation of the teaching methodology and implementation framework I employed 

in carrying out this study.  

 

3.2  Learning Approaches, Learning Styles and Assessment Tools 

“Learning is the process whereby knowledge is created through the transformation of 
experience” (Kolb, 1984) 

One of the research questions of this study seeks to explore possible relationships 

between students’ learning approaches with the perceived enjoyment, ease of use, 

usability and usefulness of visual programming environments. The purpose of this 

section is to review the literature on learning approaches in the field of computer 

programming, and to identify the tool to be used later in the study.  

Many studies have explored the complexity of learning how to program and the 

associated difficulties that students face during this process. A number of factors have 

been identified as directly or indirectly contributing to this complexity. Among these 

factors are: approaches to learning; learning styles; and motivation. Since one of the 

research questions of the present study is to identify possible correlations between 

students’ learning styles and approaches and their preference of visual programming 

environments, as well as the possible effects of these environments on their 

motivation to learn, there is a need to further investigate relevant background that 

supports this possible relationship. Felder and Brent (2005) categorised student 

diversity with regard to approaches to learning, learning styles and intellectual 

development, based on the fact that students inevitably have different backgrounds, 

strengths and weaknesses, levels of motivation, attitudes about teaching and learning, 

approaches to studying, responses to specific classroom environments and 

instructional practices. They argued that if teachers could identify key differences in 

these three diversity domains and design a variety of instructional methods and 

learning tasks, they could possibly conceivably address students’ learning goals and 

promote intellectual development more effectively. Thus, I will commence by 

exploring these diversity domains and reviewing the literature on possible findings of 

their relationship to learning computer programming, with a goal of selecting the 

most appropriate instrument for my investigation.  

Marton and Saljo (1976) introduced the term “levels of processing”, based on the 

idea that university students, when assigned a task, would adopt either a surface or a 

deep level of processing information.  Later on, the researchers reconsidered the term 
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and changed it to “approaches to learning”, in order to stress the element of 

intentionality and awareness, along with the cognitive memory processing that takes 

place during learning. Later, Pask (1976) introduced the term “learning strategy” and 

identified a third approach to learning - a so-called strategic one. Ramsden (1981) 

also supported the term “strategic approach”, which at a later date Biggs (1987) 

called “achieving approach”. 

Students who adopt a surface approach focus on memorising and reproducing facts 

with the intention of satisfying course or assignment requirements, without 

attempting however to reflect on or fit information into a larger context. On the other 

hand, students who adopt a deep approach focus on transforming and relating ideas 

to previous knowledge with the intention of understanding the facts by critically 

evaluating concepts and becoming actively involved in the process. Finally, students 

who adopt a strategic approach focus on organising the concepts, putting targeted 

effort into their studying, managing their time and relating the ideas to assessment 

criteria, all with the intention of achieving the highest grades possible. Biggs (1987) 

refers to this last kind of learning approach as “model student behaviour”. Entwistle 

(2005) summarised the defining features of each approach to learning that have 

emerged from relative research, in the following list: 

Deep Approach (Transforming) with the intention - to understand ideas for yourself 

by 

• Relating ideas to previous knowledge and experience  

• Looking for patterns and underlying principles  

• Checking evidence and relating it to conclusions 

• Examining logic and argument cautiously and critically 

• Becoming actively interested in the course content 

Surface Approach (Reproducing) with the intention - to cope with course 

requirements by 

• Studying without reflecting on either purpose or strategy 

• Treating the course as unrelated bits of knowledge 

• Memorising facts and procedures as a matter of routine 

• Finding difficulty in making sense of new ideas presented 

• Feeling undue pressure and worrying about work 
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Strategic Approach (Organising) with the intention - to maximise grade potential by 

• Putting consistent effort into studying     

• Finding the right conditions and materials for studying 

• Managing time and effort effectively 

• Being alert to assessment requirements and criteria 

• Gearing work to the perceived preferences of lecturers 

These approaches have become central to subsequent research on studying and the 

development of more effective teaching (Laurillard, 1979; Entwistle, 1991; Gibbs & 

Awards, 1992). 

Related research in the field of teaching computer programming and approaches to 

learning has shown that learning a programming language requires a student to 

employ both a “deep” and a “surface” approach (Bruce et al., 2004; Pea & Kurland, 

1983; Winslow, 1996). Students that focus exclusively on coding and syntax rules 

employ an inadequate “surface” approach to learning how to program, as opposed to 

students that focus on problem-solving using the programming language syntax rules 

as a means to reach their goal. These students employ a “deep” approach to learning. 

Students that follow the “strategic” approach will use all the skills mentioned above. 

The fact that a programming language can be rotely memorised (as a vocabulary and 

a set of syntax rules) does not imply that a student can construct programs solely 

based on that skill. In order to be efficient and proficient in programming, the student 

should learn how to think in computer terms, implement abstraction and modularity, 

construct algorithms and know where to look for “surface” information such as syntax 

rules.  

Entwistle, in his study in 1990, identified four study orientations associated with 

approaches to learning: 

“Thus, the deep approach was associated with a holistic style (…making use of a wide 

variety of information…) and intrinsic motivation (interest in the subject matter 

itself) to form a meaning orientation. Surface approach went with serialist style (a 

narrow, cautious stance relying on evidence and logical analysis) and fear of failure 

within a reproducing orientation, while strategic approach indicated a use of both 

deep and surface approach supported by a competitive form of motivation (need for 

achievement) combined with vocational motivation within an achieving orientation.” 

(Entwistle & Ramsden, 1983, p.49) 
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Research also shows that students’ approaches to learning can be influenced by the 

learning context. Intentionality, stemming from the specifics of a given learning 

situation, is a strong motivator that may determine the approach that the student opts 

to follow in that particular case. Although the internal cognitive processes that take 

place during learning are more “fixed” (Rayner & Riding, 2010) than the approaches 

to learning themselves, learner predispositions about the learning subject and 

motivation to learn might act as a bridge for the formation of a learning strategy. This 

is also supported by Laurillard (2005) and Entwistle and Tait (1990):  if the origin of 

the approach is the student’s intention, then, as the student may have different 

intentions within different learning situations, the same student may use either 

approach, on different occasions. 

Apart from intention, which, as discussed above, affects the way they approach a 

learning task, students further differ in how they receive, absorb and process 

information. These differences in student preferences and traits are generally referred 

to as learning styles. Learning styles represent a rather broad concept which can be 

viewed through a number of approach angles, which accounts for the variety of 

related definitions, models and measures that can be found in associated literature. 

Some representative but very similar definitions include: 

• “…the ways in which an individual characteristically acquires, retains, and 
retrieves information” (Felder & Henriques, 1995, p.21).  

• “… traits that refer to how individuals approach learning tasks and process 

information” (Morrison et al., 2011, p.58).   

• “… the way individuals begin to concentrate on, process, internalize, and retain 

new and difficult information.” (Dunn et al., 2009, p.136). 

A more elaborate definition is provided by Keefe and Languis (1983): “learning style 

is the composite of characteristic cognitive, affective, and physiological factors that 

serve as relatively stable indicators of how a learner perceives, interacts with, and 

responds to the learning environment. It is demonstrated in that pattern of behaviour 

and performance by which an individual approach of educational experiences” 

(p.140-141) as cited in Keefe (1985). 

Curry (1983) proposed a layered model (using the onion layer metaphor) in an 

attempt to categorise the numerous learning style viewpoints, models and their 

respective measurement instruments. She initially identified three general areas of 

research on learning styles, which shared common characteristics: instructional 
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preference (which is considered to be the most observable, but also the most 

influenceable and, as such, the least stable for measurement); information processing; 

and cognitive personality (which is considered the most stable one). Later on, Curry 

(1987) expanded that model further by including the social interaction layer.  

In a short description of Curry’s extended onion model for the classification of the 

concepts of cognitive or learning styles, the outermost and most inclusive layer, 

instructional preference, encompassed individual preferences concerning the physical 

environment (sound, light, temperature, space), emotion (motivation, persistence, 

responsibility, structure), sociology (learning alone or in a group), physiology 

(auditory, visual, tactual, and kinaesthetic) and psychology in the aspect of 

processing inclinations (global/analytic, impulsive/reflective) (Dunn, Dunn, & Price, 

1979). The social interaction layer involves individual preferences regarding 

independence, participation and collaboration with others (Dunn et al., 1979; 

Riechmann & Grasha, 1974).  The information processing (or cognitive style) layer 

includes individual preferences for the ideal intellectual approach to assimilating 

information: holistic/analytic, verbal/imagery, sensing/intuitive (Dunn et al., 1979; 

Kolb, 1984; Felder & Silverman, 1988; Riding & Sadler-Smith, 1997), as well as for 

approaches to learning: surface/deep/strategic (Entwistle, 1991; Biggs, Kember, & 

Leung, 2001). Finally, the innermost layer of cognitive personality involves individual 

differences in observed behaviours across different learning situations (Riechmann & 

Grasha, 1974; Myers, 1998; Grasha, 2002). 

Having identified the diversity of learning styles’ dimensions and measurement 

instruments, Curry (1990) points out a major concern in the academic field - that 

being the failure to identify and agree upon those characteristics which are most 

relevant to learners in a given learning situation. On the other hand, following 

Felder’s recommendations on the usefulness of identifying students’ learning styles, 

approaches to learning and levels of intellectual development, as well as the 

correlations among them, the next step for this research is to identify an appropriate 

learning style assessment instrument. 

While there are a number of learning style assessment tools and methodologies 

(Allert, 2004; Coffield et al, 2004; Zualkernan et al., 2006), two similar assessment 

instruments are predominant in science and engineering education— Kolb’s Learning 

Styles Inventory (LSI) (Kolb & Kolb, 2014), which is based on Kolb’s (Kolb, 1984) 

experiential learning theory, and the Soloman–Felder (Felder & Soloman, 1993) 

Index of Learning Styles Questionnaire (ILS), which is based on a learning styles 

model developed by Felder and Silverman. Both instruments have been validated and 
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have been used in computer education research (Zualkernan et al., 2006; Da Silva 

Carmo et al., 2007; Chen & Lin, 2011; Li & Yang, 2016). 

Kolb’s experiential learning style theory (see Figure 3.1) is based on the assumption 

that effective learning happens when the learner progresses through four stages in a 

cyclic fashion: Concrete Experience (CE), Reflective Observation (RE), Abstract 

Conceptualisation (AC), and Active Experimentation (AE). Answers to questions like 

‘What? How? Why? and What if?’ are involved in the process of learning from 

knowledge comprehension to knowledge transformation. He identified two 

dimensions in which learning takes place: processing (doing or reflecting) and 

perception (experiencing or thinking) and created a matrix to present this continuum. 

He argued that “learning arises from the resolution of creative tension among these four 
learning modes” (Kolb & Kolb, 2014). Concrete experiences are the basis for 

observations and reflections. These reflections are grouped and refined into abstract 

concepts. These abstract concepts may drive new actions which can be tested further 

to initiate new experiences. Kolb also believed that a single person cannot perform 

both variables at the same time, for example, doing and reflecting, or experiencing 

and thinking.  

 
Figure 3.1: The experiential learning cycle 

 

Hence, in Kolb’s Learning Style refined Inventory (KLSI 4.0), each person’s unique 

learning style is defined by the combination of his/her preferences for these 4 stages 

in the learning process. This combination can be charted into a unique kite-like shape 

created from the learner’s degree of preference for each of the stages. The nine-style 
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typology, along with a description for each style is shown in Figure 3.2 (Kolb & Kolb, 

2014). 

 
Figure 3.2: The nine learning styles in the KLSI 4.0 

 

In 1988, Felder and Silverman developed a model to classify engineering students 

and professors according to where they fitted on a number of four scales with respect 

to the way they prefer to receive, perceive, process and understand information (see 

Figure 3.3). In their model, they included four dimensions extracted from previous 

research. The sensing/intuition dimension was based on Jung’s theory of 

psychological types, is used in Myers-Briggs Personality Type Indicator (MBTI) and is 

closely related to Kolb’s concrete experience and abstract conceptualisation stages of 

learning. The active/reflective processing dimension was based on Kolb’s active 

experimentation/reflective observation stages, while the global/sequential dimension 

was based on Pask’s holist/serialist learning strategies (Pask, 2010). The Visual-

Verbal dimension is proposed by Felder and Silverman and is based on cognitive 

psychology research on how people receive sensory information (Felder & Henriques, 

1995). The Index of Learning Styles (ILS) instrument was developed and validated by 

Felder and Soloman, in order to assess learner preferences on the four dimensions 

(see Figure 3.3). 
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Figure 3.3: The four scales/dimensions of the Felder-Silverman Model and their respective learning style 

continuum 
 

In the information processing dimension, active learners tend to retain and 

understand information best by engaging with it in something active - discussing it, 

applying it or explaining it to others. Learners with a reflective learning style 

preference, in comparison, prefer to think things through and work alone. 

In the perception dimension, learners with a sensing learning style preference tend to 

like learning facts and procedures and are more practical. Conversely, learners with 

an intuitive learning style preference often prefer discovering possibilities and 

relationships and are more conceptual and oriented towards theories and meanings. 

In the input dimension, learners with a visual learning style preference remember 

best what they see—pictures, diagrams, flow charts, timelines, films, demonstrations, 

etc. In contrast, learners with a verbal learning style preference get more out of words 

- written and spoken explanations. 

Lastly, in the understanding dimension, sequential learners tend to gain 

understanding in a linear, stepwise fashion, with each step following logically from 

the previous one, and to learn in an incremental manner. Global learners, on the 

other hand, are holistic system thinkers who tend to learn in large jumps and absorb 

material almost randomly without seeing connections, and then suddenly “get it”. 

Each of the instruments discussed above classifies learning style preferences based on 

opinion surveys, but Kolb’s model does not address Felder’s Visual-Verbal dimension 

or the Sequential-Global dimension.  
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Both tools have been used extensively in education, while a number of studies have 

identified weaknesses and limitations (Psaltidou 2009, van Zwanenberg et al., 2000). 

Much criticism regarding the use of tools for the identification of students’ learning 

style preferences is in line with Reylond’s quote: ‘‘Even using learning style instruments 
as a convenient way of introducing the subject [of learning] generally is hazardous 
because of the superficial attractions of labelling and categorizing in a world suffused 
with uncertainties” (1997, p.128). Conversely, it is supported that identifying learning 

style preferences can be beneficial for students’ self-development through self-

awareness of their natural learning strengths (Kozhevnikov, 2007, Felder 2010). 

Additionally, within the learning styles’ literature, there is a commonly accepted view 

that although a pedagogy can foster or impede a style, different learners can adopt 

different strategies and styles in different tasks (Hartley, 1998). In the case of visual 

programming, pedagogy can foster instruction in the visual dimension. While the 

linkage among this type of instruction and a student’s learning preference may appear 

logical, it is of high importance to find out to what extent their enjoyment of the 

specific programming environment correlates to students’ possible tendencies to 

prefer learning visually.  

In this research, I am particularly interested in whether or not there is a correlation 

between the likeability/enjoyment and preference to use a visual programming 

environment, such as Scratch, and the learning style preference of students, especially 

in the input and the processing dimensions which are assessed only in the Felder and 

Soloman’s Index of Learning Styles (ILS) instrument.  

Furthermore, the ILS has been utilised in several computer science studies 

(Chamillard & Karolick, 1999; Thomas et al., 2002; Allert, 2004; Zualkernan et al., 
2006; Da Silva Carmo et al., 2007; Chen & Lin, 2011) in order to identify possible 

correlation between students’ learning styles and their performance.  

Given the above, the Index of Learning Styles (ILS) will be the instrument of choice 

for this research project. 

Relevant previous research on learning how to program in relation to learning styles 

revealed that most students have visual learning styles (Kuri et al., 2002; Ratcliffe et 
al., 2002; Allert, 2004; Gomes & Mendes, 2008; Santos et al., 2010; Tsai et al., 2011) 

but there is no current research examining the relationship of learning styles with the 

preference of using visual programming environments. Therefore, considering the 

learning styles of students in the context of their perceived preference for visual 
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technologies in computer programming education is one of the two main subjects of 

this research.  

In the following section, I will introduce the second subject of this research, which is 

student motivation in the context of visual technologies. 

 

3.3  Motivation and Self-Determination 

As one of the research questions of this study is to identify whether or not visual 

programming environments affect student motivation to learn to programme, I will 

review the fundamental concepts and theories of motivation in order to determine 

what motivation is, which its primary determinants are, and how educational 

activities can cultivate it. Furthermore, I will explore what has been written about the 

motivational process itself and how it links to programming education outcomes. 

Lastly, I will review existing assessment tools that measure student motivation within 

the context of visual programming environments and identify which motivational 

aspects to target. 

A theory of motivation is concerned with those factors that affect people to initiate 

behaviour (Dweck, 1999). The first theories of motivation were based on the idea of 

motives being driven by the need for achievement or affiliation, or by rejection, and 

explored how each behaviour is initiated and crafted by these motives. Motives, in 

this respect, are seen as driving forces influenced by interest and ability and shaped 

by experiences (Murray, 1938). 

Dweck (1999) argued that motives alone are not enough to ensure outcome. Goals 

that people set out to pursue also affect the degree and the intensity of their 

behaviour towards their attainment. In that respect, Elliot and Harackiewicz (1996) 

related the motives with the goals, and argued that, within the learning process,  the 

“achievement motive” can be used to predict learner orientation towards setting 

“achievement goals”. Achievement motivation is defined as behaviour in which the 

goal is to develop a high ability and/or demonstrate it to one’s self or to others 

(Nicholls, 1984). High ability in this sense can be judged either against the learner’s 

own past performance or compared to the performance of others in the same task. 

Achievement motivation is affected by goal orientation (why the learners engage in 

the task) and self-efficacy (personal judgements of ability to perform), and is related 

to perceptions of task difficulty and task value (perceptions about task importance, 

relevance and utility) (Pintrich, 2000).  
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Goal orientation refers to the learner’s general attitude towards the task as a whole, 

and it manifests itself in two complementary forms: intrinsic and extrinsic, which are 

based on the traditional views of motivation (DeCharms, 1968; White, 1959). 

Intrinsic goal orientation concerns the degree to which the student possesses a real 

interest in the task with the aspiration to increase his/her knowledge in the subject 

for reasons such as challenge, curiosity, control and fantasy (Malone & Lepper, 1987). 

Extrinsic goal orientation complements intrinsic goal orientation, and “concerns the 
degree to which the student perceives herself to be participating in a task for reasons such 
as grades, rewards, performance, evaluation by others, and competition” (Pintrich, 

Smith, Garcia, & Mckeachie, 1991, p.10). In early childhood, people have the 

freedom to engage in more intrinsically directed tasks, whereas, when social 

responsibilities increase with age, they increasingly engage with less intrinsically 

interesting tasks.  

Gottfried (1985) developed the Children’s Academic Intrinsic Motivation Inventory 

(CAIMI) of 122 questions to relate intrinsic academic motivation to academic 

achievement, in terms of mastery, curiosity, task persistence and learning of 

challenging topics, based on the works of Deci (1975; 1978), Harter (1981), Pittman, 

Emery and Boggiano (1982), Nicholls (1984), and others. The results showed that, 

although there is a high correlation between academic achievement and intrinsic 

motivation, there is an even higher correlation between academic achievement and 

perceptions of self-efficacy. Other studies also showed that there is a limit of 

achievement that motivated students will reach, as other factors that affect academic 

achievement come into play, such as ability, quality of instruction, the educational 

environment itself, and educationally relevant aspects of the home environment 

(Uguroglu & Walberg, 1979). 

Self-efficacy of learning and performance refers to a learner’s ability to properly 

gauge his own capabilities of successfully performing an academic task (Schunk, 

1991). “Perceived self-efficacy is defined as people’s beliefs about their capabilities to 
produce designated levels of performance that exercise influence over events that affect 
their lives. Self-efficacy beliefs determine how people feel, think, motivate themselves and 
behave. Such beliefs produce these diverse effects through four major processes. They 
include cognitive, motivational, affective and selection processes” (Bandura & Wessels, 

1994, p.1).  

Control of learning beliefs refers to the degree of control that learners believe they 

possess regarding their learning ability and learning outcomes. Bandura and Wessels 

(1994) defined control of learning beliefs as the ability to actively affect one’s 
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motivation, cognition, affect, and behaviours. In his study of the role of reinforcement 

in student performance, and thus in the amount of knowledge gained, he 

distinguished the control on reinforcement into two categories: internal or external. 

Belief in internal control concerns the degree to which a learner perceives that all 

outcomes depend on his own actions, whereas external control concerns the degree to 

which a learner thinks that “powerful others”, such as luck, fate and chance can affect 

the outcome of his actions and his ability to complete a task (Rotter, 1966; 1990). 

Task value refers to the learner’s personal interest in a given task and is driving 

his/her own beliefs about how interesting, important, useful, valuable and 

meaningful the task is. Pintrich (2000) also argues that a task value viewed as being 

high leads to greater levels of involvement towards the completion of the task. 

Findings from the literature have demonstrated that students’ intrinsic motivation and 

beliefs of their self-efficacy, as well as the perceived value of a topic or an activity, 

generally constitute good predictors of performance and achievement (Zusho, 

Pintrich, & Coppola, 2003). A primary concern shared by educators, myself included, 

is how to enable students to value and self-regulate activities which are not designed 

to be intrinsically motivating, and to carry them out on their own (Ryan & Deci, 

2000) or how to modify educational activities so as to be intrinsically motivating.  In 

my experience, the most successful students seem to employ self-regulated strategies 

to direct their learning.  

Pintrich (2000) provides an overall definition of self-regulated learning as “an active, 

constructive process whereby learners set goals for their learning and then attempt to 

monitor, regulate, and control their cognition, motivation, and behaviour, guided and 

constrained by their goals and the contextual features in the environment.”  

Zimmerman (1990), in his attempt to define self-regulated learning, identified three 

main characteristics that self-regulated learners typically display. First, they use “self-

regulated learning strategies” in the areas of metacognition, motivation and 

behaviour and are active participants in their own learning. Second, they use “self-

oriented feedback”, which enables them to keep track of their learning effectiveness 

(self-monitoring) and discover their problem areas (self-evaluation). Metacognitive 

theories focus on understanding the processes of self-monitoring and self-evaluation 

towards the selection of appropriate strategies for learning (Borkowski et al., 1990). 

As a result, learners can take necessary actions to select, structure and create their 

learning environment so as to match their learning style. In that sense, self-regulated 

learners can be considered as self-motivated. On the other hand, this self-regulation 
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process is activated from a number of self-motivational constructs both intrinsic and 

extrinsic (Zimmerman, 2008). 

Malone and Lepper, after reviewing the literature, presented a logical taxonomy of 

four kinds of intrinsic motivations which are present in any learning situation: 

challenge, curiosity, fantasy and control (Malone & Lepper, 1987). These motivations 

were used in testing learning environments and especially those that incorporate 

games. Student perceptions about task enjoyment, interest, involvement and self-

efficacy were used to assess the effectiveness of instruction using educational games 

(possibly fun) by Lepper and Cordova (1992) and Garris et al. (2016). Findings from 

their studies suggest that motivational and cognitive benefits can be gained from the 

use of relatively small motivational embellishments in educational activities, aiming 

to increase students’ intrinsic interest.  Lepper and Cordova (1992) pointed out, that 

adding motivational embellishments to an activity will possibly have positive effects 

on learning if there is a “match” between those actions required by learners to 

assimilate the material and those required to enjoy an activity. For example, the goal 

to win the game should be supportive of the goal to learn the material. They also 

identified areas in which adding more “seductive” details to learning activities might 

draw the attention of learners away from the main concepts being taught and have a 

negative effect on learning: “it appeared to have pursued motivation in expense of 

learning” (Lepper & Cordova, 1992). 

Keller (1987) developed a model with guidelines on how to create instruction that 

stimulates motivation, based on the theory of motivation and instructional design. 

The Attention, Relevance, Confidence and Satisfaction (ARCS) model is based on four 

major conditions that need to be met in order for learners to become, and remain, 

motivated. This model provides instructional designers with a set of strategies that 

target the four conditions. The most basic motivational concern is attention. Gaining 

learner attention is considered a relatively easy task, but sustaining that attention 

seems to be the challenging component. Keller proposes inquiry and the use of games 

or simulations to target learner participation. The second condition within the ARCS 

model is perceived relevance. Strategies to stimulate relevance include relation to 

student interests, presentation of worth and usefulness of the activity and relation to 

past and future skills. Confidence, or expectancy for success, is the third condition. 

Confidence relates to control of learning beliefs mentioned above. Strategies to 

stimulate confidence include the presentation of material using an increasing degree 

of difficulty, clear and realistic goals and association of effort with success. Finally, 

the satisfaction condition targets a learner’s intrinsic motivation. Strategies to invoke 
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feelings of satisfaction include praise, personal attention, avoidance of threats, 

regular informative feedback and frequent reinforcements. 

Rieber et al. (1992; 1998) focused on the evaluation of micro-worlds, in which 

learning is achieved through exploration and discovery, and on the contribution of 

“serious-play” to student motivation and performance. They found that when 

educational activities are designed in such a way that serious play can be 

incorporated, there is an increase in intrinsic motivation and reflective knowledge 

construction. When learners receive a great amount of enjoyment from their 

experience, they are willing to engage with the task and spend time and energy. On 

the other hand, Bloom and Hanych (2002) argued that approaching learning only 

from the “fun” perspective may result in trivialising the learning process. 

Learning computer programming requires a high degree of self-regulated learning, 

prolonged motivation, sustained willingness to practice and even enjoyment, to a 

degree, of the whole process in order to overcome the complexity and the abstraction 

of computer concepts (which will be discussed in the following chapter). Visual 

programming environments, such as Alice, Scratch, APP-Inventor and other block-

based programming tools, seem to be a promising alternative to more traditional text-

based programming. Their creators claim that these visual programming 

environments can provide students with a more fun and learner-friendly approach to 

programming, eliminating the mundanities of syntactical errors and decreasing the 

overall layer of complexity. 

Based on research findings mentioned above, there seems to be a connection between 

intrinsic motivation, self-regulated learning and “fun” educational activities (based on 

the concepts of exploration, play and learn), which I will explore further in this 

context in the area of teaching and learning computer programming. Unfortunately, 

since motivation is such a complex and multi-dimensional concept, it is very difficult 

to measure (Ball, 1977) and indeed be absolutely certain about the results. 

Associating results from a validated tool with data collected from interviews and class 

observations is more likely to help researchers identify the general categories of 

student motivation. To explore and qualitatively determine - to the degree possible - 

the current level of motivation of information technology students at XYZ college, it is 

essential to use a reliable and validated instrument. 

One widely used and validated instrument to assess student achievement motivation 

is the Motivated Strategies for Learning Questionnaire (MSLQ), developed by Pintrich 

(2004). MSLQ is based on the cognitive view of motivation. Pintrich’s instrument, 

based on theoretical, empirical and statistical analysis following a 10-year research 
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period and continuous refinement of the questionnaire, included 81 items in the 

instrument’s final version. Items and scales have been tested for internal consistency, 

with coefficient computation and factor analysis, and for predictive validity through 

correlations with course performance, producing statistically-validated results 

(Pintrich et al., 1991). MSLQ is comprised of two sections. The first part assesses 

motivation through components of value (intrinsic and extrinsic goal orientation, task 

value), expectancy (control of learning beliefs, self-efficacy of learning and 

performance) and affectiveness (test anxiety). The second part assesses learning 

strategies through components of cognitive and meta-cognitive strategies (rehearsal, 

elaboration, organisation, critical thinking and self-regulation) and resource 

management (time, effort, peer support and help-seeking). MSLQ has also been used 

in computer education research to assess the effect of various programming 

environments on student motivation (Bergin & Reilly, 2005; Dillon, 2012; Nikou & 

Economides, 2014; Erol & Kurt, 2017). 

Another instrument which has been used to assess student motivation, specifically 

targeting science students, is the Science Motivation Questionnaire (SMQ-II), 

developed by Glynn et al. (2009). Science Motivation Questionnaire II, based on the 

social cognitive theory, assesses motivation in the components of value (intrinsic and 

extrinsic grade and career motivation), expectancy (self-efficacy) and self-

determination (Glynn, 2011). Glynn et al. (2011) have also created a discipline-

specific version of the questionnaire for chemistry, biology and physics, simply 

substituting the word science with chemistry or biology or physics. In all its 

interchangeable adaptations, SMQ-II has been tested for reliability, internal 

consistency, and construct validity, and findings indicate that it validly provides a 

profile of the components that contribute to a student’s motivation (Glynn et al., 
2011).  

Computer science is also concerned with the ability to define models, to make 

predictions about the behaviour and vulnerabilities of these models, implement them 

and validate the performance of computer systems and software. In that sense, I 

believe that SMQ-II can also be administered to assess students’ motivation in 

computer programming courses.  

Despite their differences, there are many similar inquiries between the two 

instruments described above (MSLQ and SMQ-II) and especially in those questions 

which involve intrinsic and extrinsic motivation, expectancy and self-

determination/regulation (see Figure 3.4). It is noted that, in regard to prior research 
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on motivation in academic college settings, the majority of the studies have been 

conducted using the MSLQ tool. 

 
Figure 3.4: Differences and similarities between SMQ-II and MSLQ 

 

The choice of approaches and concepts discussed in this chapter were made on the 

basis that they align closely to teaching and learning computer programming. There 

are more recent approaches, that could have been considered, such as embodied 

cognition, distributed cognition, multimodality, knowledge development and socio-

materiality, but these approaches do not interplay the role of visual design, 

technology mediation and interpretative processes of engagement with technology or 

computing programming specifically. For example, Bergin & Reilly (2005) used the 

intrinsic and extrinsic goal orientation scales of MSLQ, to analyse the relationship 

between student motivation and programming performance. Nikou & Economides 

(2014) used the intrinsic, extrinsic goal orientation, task value, control of learning 

beliefs and self-efficacy scales of MSLQ, to examine the effects of VPEs (Scratch and 

APPInventor) on students’ motivation. Erol & Kurt (2017), examined the effect of 

programming instruction with Scratch on the motivation and programming 

achievement, using an adapted version of MSLQ with 2 subscales: motivation and 

learning strategies. 

3.4  Conclusion 
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In this research study, in order to address the research question “How do students’ 

motivations for learning programming relate to their perceptions about programming 

and their attitudes about visual programming environments?”, students’ overall 

motivation towards programming needs to be assessed.  A gap in the literature has 

been identified – and a tool to assess student motivation in learning how to program 

has been identified. To that end, questions from both instruments (MSLQ and SMQ-

II) were selected and adapted to match a programming course and a new survey 

instrument was developed, tested and administered. The new instrument targets the 

components of value (intrinsic and extrinsic motivation), self-efficacy, self-

determination and self-regulation. There is already a history of studies that have used 

customised instruments to assess motivation, but again targeted the same 

motivational components: intrinsic, extrinsic, and achievement (Jenkins, 2001; Zainal 

et al., 2012). 

In Chapter 6, Research Design and Methodology and more specifically in the section 

“Development of the Questionnaire Survey Tool”, I will analyse the process and the 

rationale behind the selection and the adaptation of questions from both MSLQ and 

SMQ-II instruments. 

The purpose of this study is to find whether or not there is a correlation between the 

students’ learning preference (using four scales/dimensions of the Felder-Silverman 

model) with their perceived preference for a visual block-based programming 

environment and whether or not this preference influences their motivation towards 

the achievement of the module’s learning outcomes. Creating a learning environment 

by incorporating “fun” educational activities, where instruction might trigger intrinsic 

motivation and self-regulated learning, is one of my personal aims as an educator.  

As discussed earlier in this chapter, literature supports the theory that motivation, 

learning styles and strategies are associated with achievement, but is there a 

relationship between a student’s learning style preference and the perceived 

acceptance of a VPE? Does motivation to learn programming relate to the acceptance 

of a VPE? And finally, does the use of a VPE improve student performance? 

As such, the conceptual framework of this research is summarised in Figure 3.5. 
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Figure 3.5: Conceptual research framework 
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Chapter 4  Teaching and Learning Computer Programming 

In Chapter 2 , I discussed programming and programming paradigms, as well 

as different types of programming environments. In this chapter, I explore the 

cognitive aspects of programming and the basic programming constructs 

typically taught to novices. Then, I focus this literature review on the 

difficulties that students face while learning how to program and I compare 

them with findings obtained from programming modules which I have 

personally taught in the past. A short history of educational programming 

environments follows, and the chapter concludes with the exploration of the 

possible power of visualisations in learning facilitation, in accordance with the 

overall theme of this study. 

 

4.1  Cognitive Aspects of Programming 

Pennington (1987b) defines computer programming as “a complex cognitive 

task composed of a variety of subtasks and involving several kinds of 

specialized knowledge” and Du Boulay adds that the “ability to see a program 

as a whole, understand its main parts and their relation is a skill which grows 

only gradually” (Du Boulay, 1986).  

Teaching computer programming has traditionally been considered a 

challenging endeavour, since mastering the subject matter requires a 

combination of different skills (syntactic, conceptual, problem solving and 

strategic), as well as considerable engagement and persistence. Kolling (1999) 

partially attributes this difficulty to the introduction of numerous abstract 

concepts from the very beginning of the teaching process. 

In order to understand the process of learning how to program, we must first 

consider the skills required to cognitively structure programming knowledge 

and apply it in practice. Linn and Dalbey (1985), Fay and Mayer (1988) and 

Pears et al. (2007) have identified a chain of cognitive accomplishments 

required to achieve the learning outcomes expected in programming courses: 

a) learn the language syntax and rules; b) comprehend what an existing 

program does and be able to modify, extend and/or debug it; c) understand 
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and conceptualise a given problem and learn to design programs (problem-

solving skills); d) translate a solution into code, execute it and check for 

correctness; e) build upon prior knowledge and/or experience and acquire 

new programming skills; f) make appropriate generalisations and be able to 

apply them to other programming languages and environments; and g) create 

strategies and a “catalogue” of ready-made solutions to problems solved in the 

past. All of the aforementioned aspects of computer programming require not 

only knowledge of the specific programming language syntax rules, semantics 

and programming conventions, but also: relative degrees of experience in real-

world problem domains, such as accounting, finance, sales, statistics, banking, 

or even physics; familiarity with numerous design strategies and re-applicable 

components and solutions; knowledge of computer features that impact 

program performance and implementation; and awareness of the personas of a 

computer program’s intended users.  

In investigating the difficulties that novices face when learning how to 

program, troublesome activities can be grouped using the three distinct 

categories of programming skills identified in the literature, those relating to: 

programming knowledge, mental models and strategy (programming plans) 

(Bonar & Soloway, 1985; Soloway, 1986; Norman, 1987). 

Programming Knowledge: represents the knowledge that “allows novices to 
write some parts of a program correctly” (Bonar & Soloway, 1985). The 

minimum skills required to complete a basic programming task is to know the 

syntax of a programming language (syntactic knowledge), to understand the 

semantics behind the syntax and to comprehend a program (program 

comprehension).  

Syntactic knowledge is precise, very detailed, and rigid, and pertains to a given 

programming language. Semantic knowledge, on the other hand, is 

independent of the specifics of a programming language and may range from 

low-level basic notions, for example what an assignment command does, to 

high-level strategies, for example how to use recursion. Higher levels and 

broader degrees of semantic knowledge can be created from building upon and 

anchoring concepts via experience and is required to create more complex 

programs (Shneiderman & Mayer, 1979). 
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Program comprehension is the skill which enables programmers to read and 

analyse the source code of a program, understand its intent and 

implementation approach, and formulate an overall description of what it 

does. According to Soloway and other authors program comprehension is the 

programmer’s ability to recognise plans in the code, reverse engineer these 

plans to identify subgoals or system components and finally create a high-level 

representation of the system’s functionality (goals) by locating their inter-

relationships (Soloway et al., 1983; Soloway & Ehrlich, 1984). In line with 

Soloway, Pennington (1987a) identified two main categories of program 

comprehension: procedural (language structure); and functional (goals of the 

program). The first category is relevant to the program text-base (commands) 

and the second category relates to the domain model (the goals of the 

program). 

• Procedural comprehension includes the knowledge of operations, 

control flow and data flow. “Operations” include all the actions the 

program performs at source code level, such as declaration of variables, 

assignment of values to variables, comparison of variable values. 

“Control flow” involves the sequence (often conditional and dynamic) 

of command execution in a program, while “data flow” relates to all the 

intermediate transformations and manipulations that data undergo 

from their initial state through to the final program output. 

• Functional comprehension involves the understanding of the program 

state and function. “State” reflects the relationships between the 

execution of an action and the state of the program at a specific point in 

time. “Function” involves the relation between the main goal of the 

program and the hierarchy of sub-goals necessary to achieve it. 

Functional comprehension thus relates closely to the semantic 

knowledge mentioned above. 

A complete computer program is formed by purposefully combining numerous 

advanced language constructs to deal with abstract entities (i.e. pointers, 

iterators, arrays). Novice programmers, having little or no past experience to 

draw from, typically face difficulties relating to both procedural and functional 

comprehension (Sajaniemi, 2002).  
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Similarities often noted between programming language commands and 

natural (spoken) language have been found to be another reason contributing 

to a novice programmer’s difficulty.  Bonar and Soloway (1985) refer to these 

similarities as bug generators, because novices use “pre-programming” natural 

language knowledge to create “patches” to their fragmented programming 

knowledge. Two kinds of such similarities are identified: functional; and 

surface.  

Functional similarities exist because both the natural language and 

programming commands are concerned with repeated actions, choice between 

conditions and counting, for example. Surface similarities exist because most 

programming languages share many words with natural language. There are 

many common lexical entities in the two plan-sets which can generate 

confusion between surface and functional links.  For example, the word 

“while” in natural language, can be used:  

a. as a conjunction with the meaning of “during the time that; or at the 

same time as” 

b. with the meaning of “despite the fact that; although” 

c. with the meaning of “length of time” 

This kind of semantical difference is unusual in a programming language. A 

more typical use of the word “while” in a programming language is one in 

which a loop condition gets discretely tested once per loop iteration. For 

example, in the following piece of code:   

 while (counter < 10) {  
  print “Hello”;  
  Counter++ 
  }   

the condition will be tested first, then the code inside the brackets will be 

executed, the counter will increase, and the condition will be tested again, and 

so on.  

The surface link between the divergent uses of the word “while” in natural and 

programming language might lead a novice programmer to infer similar 
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semantics. Similarity in semantics might “block” his/her ability to write correct 

pieces of code.  

Another statement that has been found to cause programming misconceptions 

is “if” (Pea, 1986). For example, in the sentence “if you want to have lunch, tell 
me so…” there is an assumption of a duration, whereas the programming 

construct “if” singularly evaluates a condition only at the point of execution of 

the specific statement. I have personally noticed that students often use the “if” 

statement to repetitively validate user input, thinking that the computer will 

keep asking for input as long as the user-entered value does not satisfy the 

stated condition. 

To summarise, novice programmers tend to: 

• concentrate more on the syntax of the language rather than the process 

and the semantics; 

• not fully comprehend what a program does; 

• mix up natural language (often referred to as pre-programming 

knowledge) with programming language commands. 

Mental Models: Gentner and Stevens argue that “A mental model is a 
representation of some domain or situation that supports understanding, 
reasoning, and prediction” (Gentner & Stevens, 2002, p.9683). Holt and 

Schultz add that the basic components of a mental model structure are the 

fundamental elements of knowledge and the relationships formed between 

them (Holt & Schultz, 1987). Numerous researchers have argued that the 

formation of “valid” mental models is crucial to understanding the 

functionality of computers. The main purpose of a mental model, according to 

Norman (1987), is to enable a person to predict the operation of a target 

system. He also supports that mental models could be used to explain human 

reasoning about physical systems, such as the interaction of people with 

computers and other devices. More specifically, people create mental 

representations of objects, situations and information in the world in general, 

and then they use these internal representations to understand, explain, and 

predict the behaviour of external systems.  
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Mental models play a significant role in program development, program 

comprehension, program modification and debugging and can be affected by 

program structure and content. Holt and Schultz support that mental models 

of experienced programmers, when viewed as hierarchical structures, may vary 

in quality, depth, width and complexity from those of their less experienced 

counterparts, due to their increased knowledge base (Holt & Schultz, 1987). 

As mental models are naturally evolving, expert programmers tend to form 

abstract and more conceptual representations, which consequently enable 

them to make useful and valid generalisations.  

On the other hand, novice programmers face significant challenges in 

constructing a mental model of how the programming language commands 

interact with the physical computer system. The term “notional machine” was 

introduced by Benedict du Boulay to describe “the general properties of the 
machine that one is learning to control” (Du Boulay, 1986, p.57). The notional 

machine is “an idealised, conceptual computer whose properties are implied by 
the constructs in the programming language employed” (Du Boulay & O'Shea, 

1981, p.237) and serves the purpose of helping novices understand what is 

going on inside the computer during program execution.  The concept of a 

notional machine has nothing to do with an accurate model of computer 

hardware functions, but with an abstraction, or rather a simplification, of how 

a particular programming language stores and processes information. Du 

Boulay associated student difficulties in learning how to program with an 

inability to understand and describe the machine which they are learning to 

control, and he proposed that teachers follow the notional machine strategy to 

help tackle this issue. In that case, the notional machine should satisfy two 

basic principles: it should be conceptually simple - both functionally and 

syntactically; and should provide ways for the learner to observe some 

processes as they happen (Du Boulay & O'Shea, 1981). An incomplete model 

of the relationship between the behaviour of the physical machine and the 

properties of the notional machine will result in an incorrect and insufficient 

understanding of programming concepts and vice versa.  

To summarise, the main troublesome areas for novices in this category are: 

a. Lack of a detailed mental model of what the computer does when a 

program executes (Adelson, 1984; Winslow, 1996); 
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b. Unclear understanding of how the underlying physical machine 

hardware relates to the properties of the programming language’s 

notional machine.  

Strategy: represents the set of tactics and plans that allow a programmer to 

break down a problem into smaller parts and understand the importance of 

each one, as well as their interaction, based on a higher-level plan or goal. A 

skilled programmer has developed strategic skills, goals (intentions) and plans 

(techniques for realising these intentions) (Letovsky & Soloway, 1986), which 

allow for efficient planning, problem decomposition, algorithmic design and 

debugging. Soloway refers to these plans as libraries of “stereotypical, canned 
solutions” (Soloway, 1986), composed from reusable patterns of data flow and 

control flow which follow rules of programming discourse. These rules - 

analogous to discourse rules in a human conversation - specify conventions 

that create expectations in the minds of expert programmers, which other 

programmers are “expected” to follow. Novice programmers therefore should 

first master following simple coding rules and master simple plans (for 

example: how to obtain input, how to print the elements of an array, and how 

to create a method or procedure), before they are able to move on to more 

complex coding endeavours.  

A major research debate can be found in the area of mastery learning - that is, 

can a complex skill be decomposed into smaller component skills which can be 

learned and addressed separately? In relation to computer programming, 

Anderson and Corbett (1995) and McCane et al. (2017) found that there is 

some correlation between mastering isolable coding skills and an increase in 

programming performance, but Anderson and Corbett failed to mention the 

complexity of the programming problem and the type and complexity of the 

isolable skills. Carpenter et al. (1990) performed a test to measure intelligent 

behaviour and postulated that, according to their findings, students that 

performed well in the test showcased the ability to induce a correct strategy in 

order to decompose problems into smaller manageable sections; the ability to 

manage a hierarchy of goals and sub goals which resulted from problem 

decomposition; and the ability to form generalisations. All of these abilities are 

also recognised as vital skills of expert programmers (Anderson & Corbett, 

1995).  



 
 
 
 

67 
 
 
 

To summarise, the main troublesome areas for novices in this category are: 

a. Incomplete libraries of “stereotypical solutions” and limited use of rules 

of programming discourse (Soloway, 1986). 

b. Limited ability for problem decomposition, modularisation and 

generalisation (Carpenter et al., 1990) which can be related to a not-

yet-established systematic methodology (Rugaber, 2007). 

c. Difficulty in the formation of algorithms to solve a given problem.  

d. Limited debugging skills (Soloway, 1986). 

Relevant research on teaching and learning how to program has shown that 

learning a programming language requires a student to deploy both a “deep” 

and a “surface” approach to learning (refer to Chapter 3 on learning styles and 

approaches). 

The fact that a programming language can be memorised does not imply that a 

student can thus construct programs. In order for a student to be efficient and 

proficient in programming, a student should learn how to think in computer 

terms, implement abstraction and modularity, construct algorithms and know 

where to look for “surface” information such as syntax rules. Associating this 

fact about programming to learning approaches, and the definitions provided 

by Entwistle and Tait (1990) are representative: “deep approach is associated 
with a holistic style and intrinsic motivation (interest in the subject matter itself) 
to form a meaning orientation. Surface approach goes with a serialist style (a 
narrow, cautious stance relying on evidence and logical analysis) and fear of 
failure within are producing orientation, while strategic approach indicates a use 
of both deep and surface approach supported by a competitive form of motivation 
(need for achievement) combined with vocational motivation within an achieving 
orientation” (p.171).  

Applying the findings mentioned above, the following conclusion can be 

reached: students that focus on coding and syntax rules employ a surface 

approach to learning how to program, as opposed to students that focus on 

problem-solving using the programming language syntax rules only as a means 

to reach their goal. These students employ a deep approach to learning.  
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Computer programming involves so much more that learning a programming 

language and producing lines of code. Programming is about producing digital 

artefacts; it incorporates abstraction and creativity; involves implementing 

ideas, understanding human behaviour and solving problems. If programming 

is viewed in this broader sense, then Papert’s (1980) view that programming 

can enhance students’ thinking skills which can be applied to other disciplines 

as well provides a first definition of computational thinking (CT).   

Wing (2006) stated that “Computational thinking is reformulating a seemingly 

difficult problem into one we know how to solve, perhaps by reduction, 

embedding, transformation, or simulation” (Wing, 2006, p.1). She also argued 

that CT means to be able to engage in five cognitive processes: problem 

reformulation; recursion; decomposition; abstraction; and testing, with the 

goal to solve problems efficiently. 

Taking into consideration that the majority of students attending XYZ college 

come from Greek high schools, I should stress that at the time of this writing, 

the Greek high school curriculum did not include Computational Thinking 

(CT) as a subject, although it forms the basis for formulating solid problem-

solving techniques.  

My teaching methodology for the ‘Introduction to Programming’ module aims 

to provide a structured context for student learning, which commences with an 

introduction to CT using problem-solving techniques (decomposition and 

abstraction) using pseudocode and Scratch. Then the module advances to Java 

programming language syntax and rules. In this module, teaching 

programming with Java focuses first on how to code smaller tasks (create a 

class with a main method, produce simple output, declare variables) and 

finally proceeds with the process of creating a complete program: 

understanding the inputs and the outputs; outlining the processing 

requirements; and finally creating a program by using reusable pieces of code.  

4.2  Troublesome Programming Constructs and Skills 

The fact that students face academic difficulties when learning how to program 

has long been identified and is one of the major concerns amongst computer 

science educators. To date, numerous studies have tried to identify and 

categorise types of difficulties, errors and misconceptions of students learning 
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computer programming, aiming to improve instruction and learning ( 

Kaczmarczyk et al., 2010; McCall & Kölling, 2015; Veerasamy et al., 2016; 

Bosse & Gerosa, 2017). 

Throughout my own teaching career, I have always been interested in 

exploring which programming concepts are considered by students at my 

college to be more challenging. To do so, from Spring Semester 2013 until 

Spring Semester 2018, I conducted a web-based survey on the various 

programming concepts that students registered in the Introduction to 

Programming module at XYZ College found more challenging. Students were 

asked to rate each concept on a scale from 1 to 5, according to their perceived 

difficulty level surrounding each concept (1=extremely easy, 2=somewhat 

easy, 3=neither easy not difficult, 4=somewhat difficult, and 5=extremely 

difficult). The results of the study are presented in Table 4.1, ordered by the 

most commonly reported troublesome concept.  

Rank Concept Ranked By 105 Students Mean Score  
[in a Scale 1 - 5] 

1 Using Arrays 3.4 

2 Defining Methods 3.0 

3 Displaying Formatted Output 2.7 

4 
Understanding the steps required to solve a programming 
problem and writing the pseudocode 2.7 

5 Validating User Input 2.3 

6 Using Exceptions 2.3 

7 Reading from and Writing to Files 2.2 

8 
Tracing a program (finding out what is the value of a 
variable at a given time in a program) 

2.1 

9 Using the WHILE loop 2.1 

10 Transferring the pseudocode into a program 2.1 

11 Using the FOR loop 2.0 

12 Obtaining Input from the User 1.9 

13 Writing IF statements 1.7 

14 
Declaring variables with correct naming standards and 
datatypes 1.6 

Table 4.1: Java programming: Difficult concepts – student perceptions 
 (105 undergraduate students, June 2013-May 2018) 
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The same web-based questionnaire was administered to 34 professors teaching 

introduction to programming modules, during the same period, in a number of 

universities in Greece. Of the participating professors, seven (7) were from 

XYZ college and twenty-seven (27) from other universities. The results are 

presented in Table 4.2. 

 

Rank Concept Ranked By 34 Professors 
Mean Score [Scale 1 - 5] 

27 
Professors 
from other 

universities  

7 Professors 
from XYZ 

College  

1 
Understanding the steps required to solve a 
programming problem and writing the 
pseudocode (problem solving) 

3.79 3.86 

2 Using Arrays 3.74 3.71 

3 Transferring the pseudocode to a program 3.71 3.71 

4 Defining Methods 3.65 3.57 

5 Using Exceptions 3.62 3.71 

6 Reading from and Writing to Files 3.38 3.43 

7 Validation Input from the User 3.35 3.57 

8 Using the FOR loop 3.29 3.29 

9 Using the WHILE loop 3.26 3.29 

10 
Tracing a program (finding out what is the 
value of a variable at a given time in a 
program) 

2.91 2.86 

11 Writing IF statements 2.56 2.57 

12 Displaying Formatted Output 2.44 2.43 

13 Obtaining Input from the User 2.29 2.43 

14 Declaring variables with correct datatype 2.12 2.14 
Table 4.2: Java programming: Difficult concepts – professor perceptions 

(34 professors, June 2013-May 2018) 
 

I should also point out that the mean score (3.18) of perceptions of the 7 

professors from XYZ College is not found to be statistically different from the 

mean score of the perceptions of the professors of other Universities (3.15). A 

t-test derived a p-value of 0.8821 with a 99% significance interval, which leads 

to acceptance of the null hypothesis that the means are equal.  The resulting 

ranking was generally the same with two slight exceptions around the 
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difficulty of using exceptions and validating user input, which were ranked a 

bit higher by XYZ College’s professors.  

From the rankings obtained from this survey, I found some differences but also 

some similarities between the concepts that students find as more difficult and 

the ones that professors consider as more troublesome. An example of such a 

difference is “transferring the pseudocode to a program”, which professors 

consider a rather difficult concept with a mean score of 3.71, whereas students 

rate the same concept with a mean score of 2.1 (10th in the Rank).  An 

example of a similarity is in the “use of arrays”, which both students (3.4) and 

professors (3.7) rate as a difficult concept. Declaring variables and datatypes is 

another example of a similarity in the perceptions. Both students and 

professors perceive it as being a rather easy concept. 

Another very interesting finding is that students and professors have quite 

different perceptions on how difficult a concept is. Students’ mean difficulty 

score for all concepts is 2.29 on a scale from 1 to 5 (1=extremely easy, 2= 

somewhat easy, 3=neither easy not difficult, 4=somewhat difficult, and 

5=extremely difficult), whereas the professors’ mean score is 3.15. See Figure 

4.1 for the difference of students’ and teachers’ responses concerning the 

programming concepts.  
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Figure 4.1: Programming concepts rated by 105 students and 34 professors 

A Welch two-sample t-test in R produces a p-value of 0.0002852, which shows 

that there is a statistically significant difference between the two means. This 

leads us to think that students in this sample tend to find programming 

concepts as being easier than how the professors would regard them. This 

underestimation of their understanding might be one reason for not 

performing very well in their examinations. For example, while professors 

think that transferring a pseudocode to a program is at the top of the list of the 

perceived difficulties, students rank it as a “somewhat easy” concept.  
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The results obtained from this study align with results obtained from a similar 

study performed by Lahtinen et al. (2005), where the average student 

perception about the difficulty of programming concepts (mean 2.8) was 

smaller than that of instructors (mean 3.5). In another study in 2002, Milne 

and Rowe also noticed a difference in the mean scores of students and tutors. 

They claimed that students “may believe they understand a topic, but upon 
detailed examination or one-to-one querying from a tutor it turns out that they 
are often wrong in their belief” (Milne & Rowe, 2002, p. 58).  

The last question in the study administrated to students was to select from a 

list of predefined statements the one that best matched their ability to 

understand the concepts taught in the course and produce correct code by 

implementing them. The results are presented in Table 4.3. 

Ability to understand and write correct code Student PCT 

1. understand the concepts and manage to write correct code 6% 

2. understand the concepts and usually manage to write correct 
code 

10% 

3. understand the concepts but only sometimes manage to write 
correct code 

47% 

4. somewhat understand the concepts but do not know how to 
write correct code 

34% 

5. do not understand the concepts and do not know how to write 
correct code 

3% 

Table 4.3: Java Programming: Ability to understand and write code – student perceptions 
 (105 undergraduate students, June 2013-May 2018) 

A finding from this study is that 47% of the students claim that they 

“understand the concepts but only sometimes manage to write correct code” 

and 37% of students feel that they “somewhat understand” these concepts “but 

do not know how to write correct code” to implement them. This is also 

supported by the literature (Sanders et al., 2012) and is generally an accepted 

fact in computer science education. Students need first to understand the 

theory and then develop practical skills in order to become successful IT 

professionals. Unfortunately, novice programmers lack those problem-solving 

strategies that will enable them to design and code functional programs. 

Interestingly enough, although students in the initial evaluation considered 

programming concepts to be rather easy, most of them were not very confident 
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in their ability to code correctly. To further explore the rationale behind why 

they thought they could not write correct code, students that selected choices 3 

and 4 were asked to fill in an open text area describing the main reason why 

they could not produce correct code. Of the eighty-five (85) participating 

students, there were only twenty-five (25) responses to this open-ended 

question. Some characteristic responses included: 

• I get frustrated with the error messages. 

• I do not know how to fix compiler errors. 

• I do not understand compiler syntax error messages. 

• I get lost with the brackets. 

• I think that my code is correct, I just do not know why it does not 

compile. 

• I do not understand why my program is not doing what I think it is 

supposed to do. 

• I know what I want to do, but I do not know how to put the commands 

together. 

• Even when I have a correct pseudocode, I do not know where to start 

coding. 

After performing coding on the given 25 responses, three general themes were 

identified: syntax errors; logic/semantic errors; and translation to code. 

Effectively resolving syntax errors requires a very detailed knowledge of the 

programming language’s syntax rules and experience in understanding the 

meaning or the implications of the error message(s) produced by the compiler. 

This task can sometimes be particularly challenging - for example, a single 

curly bracket (extra or missing) can cause a misleading compile-time error 

message which points to a different and completely unrelated line in the 

program and can also be affected by the programming environment itself. As 

Freund and Roberts claim in their research: “student frustration is less a 
function of the language than of the programming environment” (Freund & 

Roberts, 1996).  
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On the other hand, locating logical or semantic errors requires enhanced 

debugging skills, a detailed understanding of the effects of each command, and 

proper appreciation of the algorithm being employed.  

Finally, the last theme of “translation of pseudocode to code” shows a student 

inability to construct an actual program despite having a clear idea of the 

requirements or steps involved. In order to put it in context in terms of the 

difficulties explored in the previous section of the questionnaire, this theme is 

similar to the rated difficulty “transfer the algorithm to program code”.  A 

number of reasons are found in the literature that attribute to the difficulty of 

transferring an algorithm to a programming language and relate closely to the 

cognitive aspects of programming mentioned in the previous section: 

• Lack of “one-by-one” translation rule from a pseudocode to code. This 

statement is also supported by Sanders et al. (2012).  

• Inadequate/incomplete mental models of the process (Kessler & 

Anderson, 1986;  Freund & Roberts, 1996; Winslow, 1996). 

• Abstraction of the underlying notional machine that the students should 

learn to understand and manipulate (Xinogalos, 2014) 

However, the introduction to coding using a visual programming environment 

could assist students to overcome at least some of the difficulties mentioned 

above, due to their inherent design and purpose: to prevent syntax errors and 

make the process of developing a program more intuitive and creative, without 

compromising the development of computational thinking skills. 

Since 1986, professor have made attempts to overcome these difficulties with 

the integration of visual technologies into their teaching. Their main focus was 

(and still is) to motivate students by cultivating positive attitudes (less 

frustration) towards learning computer programming (Myers, 1986) .  

In response to the last question in this study, to investigate professor 

perceptions as to whether students should be introduced to programming via 

the usage of visual programming environments, twenty-six professors (75%) 

answered yes, six professors (19%) answered that they were not sure and only 

two (6%) answered no (see Figure 4.2). 
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Figure 4.2: Educator perceptions about VPEs 

A number of visual programming environments are available today, used by 

teachers with the intention to overcome at least some of the learning 

difficulties, discussed above. 

To this end, a short review of the development and use of educational 

programming environments and software visualisation tools follows in the next 

section. 

 

4.3  A Short History of Educational Programming Environments 

As stated before, programming is a highly cognitive activity that requires 

acquiring new reasoning skills, understanding unfamiliar technical information 

and developing abstract representations of a process (Cañas, Bajo, & Gonzalvo, 

1994; Ramalingam, LaBelle, & Wiedenbeck, 2004). An accurate framework or 

a so-called mental model of how the computer works is required to be formed 

in order to incorporate programming domain-specific knowledge. Norman 

(1987; 1988) defines mental models as the internal representations that 

people have about themselves, others, the environment and the things they 

interact with. He also argues that people use these mental representations to 
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reason about, explain, and predict the behaviour of external systems. The 

mental model of a system is formed through experience, training and 

instruction and by interpreting its perceived actions and its visible structure 

but “People’s mental models are apt to be deficient in a number of ways, perhaps 
including contradictory, erroneous, and unnecessary concepts” (Norman, 1987). 

However, the internal components of the computer, where all data storage and 

processing take place do not have a visible structure. As a result, it is very 

important for novice programmers to develop an accurate mental model of 

how a program works.   

Educators in the programming discipline have long faced the complexity of 

teaching programming, and as a result numerous educational programming 

languages and tools have been developed (from as early as the beginning of 

the discipline) that aim to enrich students’ learning experience and reduce the 

obstacles imposed by the complex cognitive activities required by the process. 

Many educators believe that using a higher conceptual level of simplicity 

makes it easier for students to comprehend how a program works and thus 

learn programming more effectively (Du Boulay & O'Shea, 1981). 

Initially, the purpose of educational or so-called pedagogical programming 

environments (PPEs) was to simplify the programming language - they later 

evolved to allow students to construct programs using graphical objects aimed 

at preventing syntax errors, to provide visualisations to assist in the formation 

of a solid model of the “notional machine”, and to enhance the social learning 

dimension in order to motivate and engage students.  

The first simplified programming language, “B.A.S.I.C.” (Beginner’s All-

purpose Symbolic Instruction Code), was designed in 1964 by Kemeny, Kurtz 

and Keller aspired to provide an easier environment for non-science students 

to create computer programs (Figure 4.3). 
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Figure 4.3: Example of a BASIC program source code and runtime. 

Following BASIC, in 1967, Feurzeig, Papert and Solomon designed another 

educational programming language named Logo. Logo is widely known by a 

small robot called the turtle, which sat on the floor and which novice 

programmers learned to move around by typing English language commands 

on the computer, such as forward, left, etc. Soon the turtle was migrated to the 

computer screen using graphics. Flexibility, easy to remember commands, 

friendly error messages and immediate visual feedback were some of the main 

advantages of Logo (Figure 4.4).  

 

Figure 4.4: Logo programming environment with a virtual turtle 

In 1980, Papert, based on the philosophy of “constructionism”, introduced the 

concept of Microworlds, a larger set of Logo-based implementations (yet 

having a limited scope) where children could actively experiment with 

“powerful” ideas by developing meaningful software projects (Papert, 1980; 

1987). Microworlds allowed students to gain fundamental programming 

knowledge and experience without the barriers imposed by programming 

complexity (Figure 4.5).  
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Figure 4.5: MicroworldsEX 

In 1988, the Logo language was interfaced with traditional LEGO Bricks with 

the addition of newer components, such as motors and gears to create an 

“intelligent Brick”. This new enhancement allowed children to construct and 

control their own mechanical toys. Resnick and Ocko mention that “students 
rarely get the opportunity to design and invent things” (1990, p.1) and describe 

how LEGO/Logo could provide them with this opportunity. LEGO/Logo has 

been evolved since then with the latest version LEGO Mindstorms EV3 released 

in 2013 (Figure 4.6). 

 

Figure 4.6: A Lego car construction controlled by Logo programming language 
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The first visual programming language, Logo Blocks, was developed in 1996, 

at the MIT Media Lab, and served as the basis for all block-based visual 

programming environments, including Alice, Crickets, Scratch, Code.org,  

AppInventor and others. The purpose of the visual programming languages is 

to shift the focus of the novice programmer from syntax to problem solving 

research. Rigby and Thompson (2005) and Vogts, Calitz and Greyling (2008) 

have also shown that students face more difficulties when they try to learn 

programming using professional programming environments due to the 

complexity of the interface.  

Block-based programming utilises ready-made blocks of commands, organised 

in palettes, that the user assembles to create a program. Since the programmer 

neither has to type nor memorise the instructions, there is no possibility of 

syntax-errors. The most widely known block-based programming environment 

is Scratch. The first version of Scratch was released in 2007. Scratch has 

gained great popularity in teaching programming over the past 5 years and has 

been used to introduce programming to students (from lower schools to 

universities) all over the world (Malan & Leitner, 2007; Resnick et al., 2009). 

Currently, there are more than 27 million registered users in the Scratch 

website, with a continuing growing trend (see Figure 4.7). 

 

Figure 4.7: Scratch active users 
 (Retrieved from: https://scratch.mit.edu/statistics/ June 2018) 

In the next section, I will discuss the various aspects of software visualisation 

tools and programming environments which are used in introductory 
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programming modules and attempt a categorisation based on their features 

and characteristics. 

 

4.4  A Classification of Educational Programming Environments  

Based on a literature review on programming environments classification 

(Myers,  1990; Burnett & Baker, 1993; Price et al., 1993; Kelleher & Pausch, 

2005;  Sorva et al., 2013; Xinogalos et al., 2015) from a personal evaluation of 

the related characteristics/features, and the uses of the educational tools in the 

discipline, I have adapted and extended the existing classifications to include 

currently-used tools. The following classification in Figure 4.8 includes the 

main categories: type of editor; runtime environment (desktop/online); 

features; use; and type of visualisation each programming environment 

provides. 

The primary distinction in this classification is between pedagogical/novice/ 

educational programming environments, professional integrated development 

environments (IDEs) and command-line compilers (appearing in purple). At 

the second level of categorisation, in this study’s pedagogical area of interest, 

most tools provide some kind of software visualisation (appearing in green): 

visual programming and algorithm/program visualisation. In a further 

breakdown of program visualisations as proposed by Price et al. (1993), 

visualisation of memory contents and program tracing are included as features 

in the proposed classification. The third level (appearing in yellow) includes 

the type of editor each tool provides to the user: block-based, icon-based, 

frame-based and text-based. The fourth level of classification relates to the 

type of execution environment: online or standalone. The last level (appearing 

in white) displays the name of the tool in the subcategory. Finally, features 

(appearing in purple), uses (appearing in light yellow) and types of 

visualisation provided (appearing in mauve) are linked with each tool using 

dotted lines. 

The main purpose of this classification is to enable readers to understand 

where each of the numerous educational programming tools discussed in the 

study stands, as well as their similarities and differences. A limitation of this 

classification is that it is not fully comprehensive (due to the very large number 
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of educational programming tools in the market) and that it has been reviewed 

only by one other researcher in the area.  

  



 
 
 
 

83 
 
 
 

 



 
 
 
 

84 
 
 
 

 



 
 
 
 

85 
 
 
 

Figure 4.8: Programming development environment classification 

4.5  Using Visualisations to Teach Programming 

Many claims have been made that support the power of visualisations in 

learning facilitation (Shu, 1989; Pattis, 1993; Bergin et al., 1996; Naps, 1997). 

Visualisations enable the learner to understand what happens inside the 

computer. Traditionally, teachers, including myself, have used graphical 

external representations to address the concept of visualisations (Gries et al., 
2005; Mselle, 2010; Hertz & Jump, 2013). One such technique is to draw 

boxes on the chalkboard/whiteboard (see Figure 4.9) to represent the contents 

of variables in computer memory handled by the program and attempt to 

perform a step-by-step program tracing.  

 

Figure 4.9: Traditional chalkboard visualisation 

Another traditional visualisation technique involves using actual physical boxes 

like file cabinets. These boxes can be labelled with variable names, in which 

the learner can place a piece of paper with the written value to be assigned to 

the box, while hand-tracing the program code. I have found both of these 

techniques to be an excellent initial introduction of the variable concepts in my 

teaching. The main disadvantage, however, of such traditional approaches is 

that, as a program grows longer or more complex, teachers find it extremely 

time-consuming to draw and redraw the memory contents on the board or 

introduce more physical boxes to the class presentation. To assist in this 

process, researchers and educators have created software tools which provide 

computerised ways to create these visualisations. 

Du Boulay and O’Shea (1981) used the following metaphor to describe 

software visualisation environments: “A black-box inside the glass-box”. Burnett 

(1999) defines visual programming as programming in which more than one 
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dimension is used to convey semantics. Dimensions include, but are not 

limited to, diagrams, relationships, time dependencies (before-after), sketches, 

icons, or even demonstrations of performed actions.  

Software visualisation and visual programming environments were proven to 

be successful with students and to impart a positive impact on students’ 

understanding, organisation of the concepts (Du Boulay & O'Shea, 1981; 

Eisenstadt,1992; Cañas et al., 1994; Dann et al., 2001; Boyle et al., 2003; Čisar 
et	al., 2011) and student motivation. On the other hand, researchers in the 

area have found that experienced programmers consider novice programming 

languages as being overly simplified and even distasteful and in a sense, not 

telling the complete “truth” (Du Boulay & O'Shea, 1981). 

Myers (1990) provided a classification of types of visualisations: program 

visualisation and visual programming.  A more recent classification by Sorva et 
al. (2013) (Figure 4.10) provides a more detailed classification. 

 
Figure 4.10: Forms of software visualisation (Sorva et al., 2013) 

 

The formal definition of Software Visualisation (SV) comes from Price 

(1993): “Software visualisation is the use of the crafts of typography, graphic 
design, animation and cinematography with modern human-computer interaction 
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to facilitate both the human understanding and effective use of computer 
software” (p.213). 

The two main subcategories of software visualisation are program visualisation 

and algorithm visualisation.  

Program Visualisation (PV) is the ability of an environment to provide and 

utilise graphics in order to illustrate some aspects of a program or its runtime 

execution, while the actual program code is written in text. Gershon et al. 
(1998) consider visualisation as the “link between the two most powerful 
information processing systems: the human mind and the modern computer” 
(p.29) and provides a definition outside the boundaries of computing, as the 

process of transforming data and information into a visual form enabling 

people to observe, explore and manipulate data more effectively. Cañas et al. 
(1994) tested program visualisation by utilising automatic code tracing, that 

demonstrated the status of all program variables during code execution. Their 

study showed that students in the tracing group developed semantically-

oriented mental representations, as opposed to students in the non-tracing 

group, who developed syntactically-oriented mental representations, while 

their performance was not related to the way their mental representations 

were formed. 

BlueJ is a representative example of a pedagogical development environment, 

classified in the subcategory of program visualisation, which specifically 

provides learners with visualisation of object instantiation, as well as direct 

observation and manipulation of memory contents (Figure 4.11). BlueJ 

enables students to view which values exist inside each variable at any given 

point in execution, thus supporting the notion of “a glass box”. 
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Figure 4.11: BlueJ variable inspection feature and the text-based code editor 

Algorithm visualisation (AV) is the ability of an environment to use discrete 

images or animations to depict the execution of an algorithm and how it 

affects the data, while the user controls its execution 

(play/replay/pause/stop). Using algorithm visualisations, students can actively 

compare and contrast algorithms in terms of speed and efficiency.  On the 

other hand, tools in this category operate at a high level of abstraction and 

their purpose is not to demonstrate the fundamentals of the program 

execution, but to provide concrete representations of the abstract notions of 

algorithm methodologies (Kehoe, Stasko, & Taylor, 2001). Grissom, McNally 

and Naps (2003), in a study measuring the effects of algorithm visualisation, 

found that learning increases with a rise in the level of student engagement. 

Simply viewing an animated algorithm does not necessarily demonstrate a 

noticeable gain in learning, while responding to questions during algorithm 

execution and provoking and engaging in additional exploration activities does 

improves learning. Hundhausen et al. (2002) performed a meta-study based on 

24 research projects about the effectiveness of algorithm visualisation, of 

which 11 showed a positive impact, 10 showed no significant difference, 1 

showed a negative effect and 1 showed a positive effect not directly related to 

algorithmic visualisation. VisuAlgo (Figure 4.12) is such an online tool which 

enables students to observe the step-by-step animated execution of an 

algorithm.  
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Figure 4.12: Sample algorithm execution in VisuAlgo 

 

Visual programming, a subcategory of program visualisation, is the ability of 

the programming environment to specify the code by letting the user spatially 

arrange ready-make blocks of code, such as Scratch, Alice, App Inventor, 

Code.org, etc. (see  Figure 4.13). Visual programming can assist users to 

reduce or even completely eliminate the potential of making syntax errors.  

 

Figure 4.13: Scratch visual programming code editor 
 

 

Furthermore, creating code with visual programming environments enables 

students to build multimodal artefacts (incorporating text, sound, graphics, 

animation and user interactions) while interacting with multimodal interfaces. 

The multimodalities imposed by the use of visual programming environments 

especially within the context of game creation have been shown to be a great 
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motivation tool (Gee, 2003; Jewitt, 2005) and found to enhance through 

programming a sense of accomplishment and self-esteem (Muraina et al., 
2019). 

Visual programming environments could possibly provide a framework for 

novices to learn programming, by targeting all three conditions of meaningful 

learning: reception, availability and activation, without the frustration caused 

by syntax errors. All commands (depicted in the form of blocks) are illustrated 

by the professor during the reception stage. This can be performed using 

examples and live-coding. During the availability stage, the learner - when 

faced with a programming assignment - must process the requirements and 

identify which are the most appropriate commands to use to solve the 

problem. Availability could be enhanced with VPEs because they provide the 

learner with a full list of all available commands, categorised according to their 

functionality (motion, sound, control, events, variables, etc.). Finally, the 

learner must connect new commands to the ones previously learned to create a 

project. Using problem-decomposition skills and a step-by-step development 

approach, activation could be enhanced. 

As stated in the previous chapter, students use motivational strategies to drive 

and inspire them to accomplish academic tasks (Pintrich & de Groot, 1990; 

Wolters, 1999; Pintrich, 2004; Code et al., 2006). Understanding how students 

are motivated to explore, discover, learn and set their personal achievement 

goals could have a significant impact on choosing the most appropriate 

learning environment and teaching pedagogy. 

In the next section, I intend to justify the selection of Greenfoot, Alice, 

AppInventor and Scratch as the pedagogical programming environments used 

for the preliminary investigation of this research study. 

4.6  Related Research on Greenfoot, Alice, AppInventor and Scratch  

As mentioned previously in Chapter 2 , there are numerous programming 

languages and many different programming environments including the ones 

which aim to teach object oriented programming by creating computer games 

like Greenfoot, the ones which employ visual elements (blocks) to replace the 

typing of programming instructions like Scratch and AppInventor, and a later 
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addition to this large list of tools, the ones that “restrict” the typing of code in 

pre-determined frames, making coding less error prone. 

The third research question of this study considers primarily the exploration of 

students’ motivations for learning programming and how these relate to their 

perceptions about programming and more specifically to their perceptions 

about visual programming environments. To support this aim, I seek to 

discover whether or not visual programming environments affect student 

motivation to learn programming.  

The need to assess the assumption that a visual programming environment 

might affect student motivation imposed the selection of an appropriate visual 

programming tool but also created another challenge for this project. Most 

visual programming environments mentioned previously satisfy the 

requirements that form the basis of this research, which is to promote ‘fun’ and 

engaging learning experiences. First of all, the selected tool should be able to 

fulfil the educational goals and learning outcomes of the module (refer to 

Chapter 1, contextual information). Then the selected tool should conform 

with the underlying constructivist philosophical view and the constructionist 

instructional method of problem-based learning by engaging learners in the 

learning process and setting a game-like context for the programming 

assignments.  Finally, the main focus of the tool should be on promoting the 

understanding of programming logic by eliminating the burden of syntax 

errors.  

Greenfoot with the frame-based editor, Alice, AppInventor and Scratch with 

their block-based code building blocks, all satisfied the above requirements. 

They are very popular and widely used for the introduction of programming 

concepts around the world and are also extensively used in related research 

because they all address the need to reduce complexity and at the same time 

enhance students’ motivation to learn how to program (Malan & Leitner, 2007; 

Leitner et al., 2009; Maloney, et al., 2010; Nikou & Economides, 2014). 

Greenfoot has been used in studies and workshops aiming at teaching 

computational thinking by creating two-dimensional board games and 

simulations using the Object-Oriented Programming approach (Henriksen & 

Kölling, 2004; Gallant & Mahmoud, 2008; Hijon-Neira et al. 2013; University 
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of Kent, 2014). Findings from these studies have shown increased student 

engagement and motivation. Furthermore, the students’ subjective opinion 

about Greenfoot from a key study was overall positive and they enjoyed all 

activities they successfully completed (Gallant & Mahmoud, 2008). Greenfoot’s 

characteristics such as interactivity and visualisation supported active 

experimentation and exploration while providing immediate feedback, leading 

to more than 60% success in learning the concepts taught (Begosso & Begosso, 

2012). One main difference of Greenfoot in relation to the other three 

pedagogical programming environments, discussed in this section, is that 

coding tasks are completed either by typing the commands in the Java 

programming language or using frames.  

Alice’s main similarity with Greenfoot is that it is based on the Object-Oriented 

Programming (OOP) approach but its main difference from the rest of the 

visual programming environments is that it uses three-dimensional animated 

actors and scenes for the construction of virtual worlds.  Coding tasks are 

completed by using blocks. Research studies have reported improvement in 

student performance, enjoyment and confidence in understanding 

programming concepts when using it (Cooper et al., 2004; Moskal et al., 2004; 

Bishop-Clark et al., 2007; Sykes, 2007). More specifically, Bishop-Clark et al. 
(2007) reported a significant decrease in creativity and overall attitude 

towards programming for students that did not use Alice. On the other hand, 

Cliburn (2008), in his study about student opinions of Alice, reported that 

40.5% of students were not convinced that Alice contributed to their learning 

of Java. 

Choice of program can also be considered in terms of the adoption rate of 

mobile devices among students, which is exponentially growing. APPInventor’s 

driving force is on “what is being built” (Wolber, 2011; Wolber et al. 2015) 

with emphasis on exploring how to solve real-world problems, using 

applications for mobile devices; again by “hiding” code complexity, these are 

reducing syntax errors with the use of blocks. Taking advantage of mobile 

devices to motivate and expose students to problem-solving and computational 

thinking is the main target for AppInventor. Research studies again report 

increase in engagement, intrinsic goal orientation, self-efficacy and task value 

(Wagner et al., 2013; Nikou & Economides, 2014) for students who are 

exposed to programming using AppInventor. 
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Scratch, with the media-rich block-based programming environment, has also 

been extensively used in research relative to teaching introductory 

programming modules for lower school (Calder, 2010; Wilson B., 2010; Tsai & 

Chen, 2011; López et al., 2016; Chiang & Qin, 2018), middle school 

(Meerbaum-Salant et al., 2011; Fields et al., 2013; Nikou & Economides, 

2014), upper school (Moreno-León, Robles 2015; Weintrop, 2015; Pellas & 

Peroutseas, 2016) and universities ( Malan & Leitner, 2007; Malan, 2010; 

Ozoran et al., 2012; Saltan & Kara, 2016; Yukselturk & Altiok, 2016; Erol & 

Kurt, 2017) aiming to examine its effects on the students’ motivation, 

achievement, self-efficacy and overall attitude towards programming. In a 

recent study by Erol and Kurt (2017), it was revealed that their participants’ 

programming achievements increased for the Scratch group, but also 

demonstrated skill transferability to C# which was the programming language 

used after Scratch.  

4.7  Conclusion 

It seems apparent that all the VPEs discussed above have active 

experimentation and exploration as a common underpinning pedagogy. They 

all conform with an underlying constructivist philosophical view and a 

constructionist instructional method of problem-based learning by engaging 

learners in learning processes and setting a game-like context for the 

programming assignments.  They have all been used in a range of studies to 

examine their effects in student motivation to learn programming, with 

positive results.  

The question that then arises is which VPE is the most appropriate to be used 

in this study; the answer to this question is sought in the next chapter, which 

presents the detailed methodology leading to the selection process. 
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Chapter 5  The Pilot Study  

5.1  Purpose 

The purpose of this chapter is to present and outline the research design and 

present the rationale as to why participatory action research has been 

identified as the most appropriate methodological practice for the preliminary 

investigation into selection of the visual programming environment to be used 

for the main study. 

5.2  Participatory Action Research  

Action research is an iterative process and is sometimes referred to as an 

“iterative case study”. It involves researchers and practitioners acting together 

on a cycle of tasks, including problem diagnosis, action intervention and 

reflective learning (Avison et al., 1999). Action research focuses on a change 

process (Runeson, 2012) and on the outcomes of interventions and aims, and 

improvement, reflection, monitoring and evaluation of the outcomes (Cohen et 
al., 2013). 

The aim of the action research cycles is to investigate the possible effects of a 

particular change before considering it for my main research. As a researcher, I 

attempt to solve a real-world problem (how to motivate students to learn 

programming) while simultaneously studying the experience of solving that 

problem (Davison et al., 2004).  

According to Stringer et al. (2010), action research works through three basic 

phases: 

• Look: build a picture and gather information, define and describe the 

problem to be investigated and the context in which it is set.  

• Think: interpret, analyse and explain the situation.  

• Act: judge the worth, effectiveness, appropriateness, and outcomes of 

the activities.  
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Action research can be incorporated into all phases of instruction and works in 

cycles, where each cycle is informed by the previous one:  

• phase 1 during lesson planning and preparation;  

• phase 2 during instruction; and  

• phase 3 during assessment and evaluation. 

Action research is neither quantitative nor qualitative in nature, but it may use 

data collection techniques that involve either one or both of these approaches, 

such as collection of quantitative data (student performance examination 

results) and qualitative data (student opinions), by conducting experimental 

case studies. Action research focuses on the outcomes of interventions and 

aims and improvement, reflection, monitoring and evaluation of the outcomes 

(Cohen et al., 2013). 

Action research, and participatory action research in particular, has been 

considered a desirable tool for educators, in that it helps them to search for 

better ways to meet their students’ needs, monitor and evaluate the impact of 

changes, reflect on the process, and thus promote positive change in 

educational settings. Critical participatory action research brings together the 

“self-reflective collective self-study of practice, and transformational action to 
improve things” (Kemmis et al., 2013). Carr and Kemmis (1986) criticised the 

idea that the researcher should remain an “objective” and “disinterested” 

observer, but rather should engage in active self-reflection of the conduct and 

the consequences of his/her practices.  

Based on the definition of the aims of action research and the previously 

mentioned criticism of detached researchers, I found participatory action 

research to be a suitable research methodology for the preliminary 

investigation regarding selection of the visual programming environment, 

because my aim is to find more desirable and interesting ways to introduce 

students to the art of programming.  

Action research, in this context, aligns with the postulation of Stenhouse 

(1985), referred to in Bassey (1999), that it “is concerned with contributing to 
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the development of the case under investigation by feedback of information 

which can guide revision and refinement of the action” (p.28).  

Having identified the problem area of the study, which is the difficulty novice 

programmers face when they learn how to program, and having conducted a 

literature review on relevant educational theories, learning approaches and 

motivation, I selected Greenfoot, Alice, AppInventor and Scratch as the visual 

programming tools to be used for this pilot research for the reasons mentioned 

at the end of Section 2.3.4. 

I planned to go through 4 action research cycles (one for each of the tools 

mentioned).  Each action research cycle aims to investigate student 

perceptions about the tools’ enjoyment, usability and suitability towards the 

achievement of the specific module’s learning objectives and, secondly, to 

observe how each of these tools affected students’ motivation to learn 

programming (see Figure 5.1).  

 
Figure 5.1: Action research cycles 

To this end, I prepared lesson materials, trained fellow professors and jointly 

introduced each tool to our students. Upon completion of each cycle, data 

were collected from student assessment scores (from a homework exercise), a 

short survey and via in-class discussions.    



 
 
 
 

97 
 
 
 

All participants, in all cycles, were given the same exercise to complete at the 

end of the instruction.  

The homework exercise, which required students to create a hangman game, 

was designed in such a way that it could be completed using any of the four 

participating Visual Programming Environments. Grading was performed using 

the same rubric (see Table 5.1) based on the following criteria: functionality, 

complexity, use of graphics and animation, use of sound, scoring, levels, player 

mode and use of word dictionaries). 

Criterion Evaluation and Points 
Is the game 
functional?  No Small Bugs Yes 

 0 5 10 

Code complexity No code 
delivered 

Easy (Only Basic 
Structures) 

Most 
programming 
constructs are 
correctly used 

Complex - 
Advanced & 
modular code 

 0 5 10 15 

Use of graphics 
and animation No graphics 

Simple (from the 
existing Library) 

Simple graphics 
(from the 
existing Library) 

Advanced (use of 
graphics and 
animation) 

 0 5 10 15 

Use of sound No Sound 
Simple sounds 
(from existing 
library) 

Advanced (custom recorded sounds 
or many sounds for different events) 

 0 5 10 

Code to keep 
scores No Scores 

Simple Scores 
(just display 
Score) 

Keep Ranks and Store Past Scores 

 0 5 10 

Single player or 
two player mode 

Single Player 
(one player 
inputs the word) 

Two Players 
(alternating 
turns) 

One Player 
against the 
computer 

Two Players 
(alternating 
turns) against 
the computer 

 0 5 10 15 

Increasing level of 
difficulty 

There is not 
increasing level 
of difficulty 

2 levels more than two levels 

 0 5 10 

Words Dictionary no dictionary 
used 

static dictionary 
(seeded into the 
program) 

user can upload 
a dictionary 

program 
downloads the 
dictionary from 
the web 

 0 5 10 15 
Table 5.1: Grading rubric for the formative assessment used in all action research cycles 
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5.2.1  The Survey Tool 

The survey questionnaire contained 2 demographic questions (regarding 

gender and age), 5 general questions concerning their major course of study, 

pathway, year of study, level of programming experience, programming 

languages they knew, and previous experience with the tool.  

The next section of the questionnaire contained 5 questions adapted from 

Pintrich et al.’s MSLQ (1991) concerning students’ intrinsic motivation (Q9 - 

Q12), extrinsic motivation (Q13) to learn programming and 1 question 

concerning self-efficacy (Q14).  The keyword “this tool” was replaced in each 

action research cycle with the name of the visual programming environment 

which was introduced as part of the intervention. Following Pintrich et al.’s 
(1991) recommendation, students were asked to read each question and rate 

how much they agreed or disagreed with the statement using a seven-point 

Likert Scale (1 = strongly disagree, 2 = moderately disagree, 3 = somewhat 

disagree, 4 = neutral (neither disagree nor agree), 5 = somewhat agree, 6 = 

moderately agree, 7 = strongly agree). For the evaluation of the results, scales 

were constructed by taking the mean of the items that made up each scale.  

The last section contained 8 questions. Specifically, questions 15, 17, 19 

informed the enjoyment factor, questions 16, 18 and 21 informed usefulness 

factor, question 20 provided an idea about the intention to use the tool outside 

the classroom environment and finally questions 22 and 23 acted as the final 

“vote” of the participants so that the “tool” could be adopted for the 

Introduction to Programming module.  

Enjoyment factor adjective pairs were: boring/fun, unenjoyable/enjoyable and 

unpleasant/pleasant, while perceived usefulness adjective pairs were: 

ineffective/effective, useless/useful (adapted from Davis et al.’s questionnaire 

(1992)). The not beneficial/beneficial pair was not included in Davis’s 

questionnaire, but was proposed by a focus group of 4 IT professors who teach 

programming in XYZ college, who studied the Davis et al. questionnaire and 

found that “improve job performance” and “increase productivity” questions did 

not fit in the case under investigation.  
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Students were asked to rate their perceptions utilising semantic differential 

(bipolar) rating scales from 1 (strongly disagree) to 7(strongly agree), based 

on Martin Fishbein and Icek Ajzen’s theory of reasoned action (Fishbein & 

Ajzen, 1975). 

Figure 5.2 shows the adaption of the technology acceptance model used for the 

evaluation of the perceived acceptance of each of the visual programming 

environments tested in this pilot study and the justification of the selection of 

the tool to be used for the main study. 

  
 

Figure 5.2: Adaption of the Technology Acceptance Model 
 

5.2.2  Validity and Reliability for the Pilot Study Survey Tool 

The final version the tool was tested with a sample of 127 student responses for 
construct, convergent and discriminant validity. 

5.2.2.1 Construct Validity 

Confirmatory Factor Analysis (CFA) was used to test whether or not the data 

collected from the questionnaire fit the hypothesized measurement model and 

as such to evaluate construct validity. Table 5.2 presents the factor loadings of 

the questionnaire and the three components extracted: Usefulness, Enjoyment 

and Intrinsic Motivation.   
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Rotated Component Matrix 

 1 Usefulness 2 Enjoyment 3 Intrinsic Motivation 

VPE is Fun (q15)  0.947  

VPE is Enjoyable (q17)  0.930  

VPE is Pleasant (q19)  1.002  
VPE is Effective (q16) 0.906   

VPE is Beneficial (q18) 0.935   

Create Useful Programs (q21) 1.171   

Intent to Use (q20) 1.052   

Preferable over Java (q22) 1.101   

Interest in Programming (q9)   1.104 

Prefer Challenging work (q10)   0.848 

Enjoy module subject (q11)   1.065 

Useful module subject (q12)   1.235 
 

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser 
Normalization. a Rotation converged in 5 iterations. 

Table 5.2: CFA - Action Research Survey 

Reliability analysis using SPSS was performed to analyse the internal 

consistency of the scales. The resulting Cronbach’s alpha values were all above 

the recommended level of .70, thus indicating adequate internal consistency 

(Cronbach, 1951; Peterson, 1994; Tavakol & Dennick, 2011; Vogt, 2007) (see 

Table 5.3).  
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Intrinsic Motivation Scale (4 Items, Cronbach’s alpha = 0.844) 

 

Scale Mean 
if Item 
Deleted 

Scale 
Variance if 
Item Deleted 

Corrected 
Item-Total 
Correlation 

Cronbach's 
Alpha if Item 
Deleted 

Interest in Programming (q9) 15.9213 10.295 0.785 0.758 

Prefer Challenging work (q10) 16.0236 12.055 0.633 0.824 

Enjoy module subject (q11) 15.8504 10.557 0.744 0.776 

Useful module subject (q12) 16.3858 10.112 0.599 0.852 

Usefulness Scale (5 Items, Cronbach’s alpha = 0.844) 

VPE is Effective (q16) 12.1654 19.393 0.648 0.821 

VPE is Beneficial (q18) 12.4803 19.077 0.719 0.805 

Create Useful Programs (q21) 12.4803 17.680 0.692 0.809 

Intent to Use (q20) 12.7165 18.236 0.678 0.812 

Preferable over Java (q22) 12.4567 18.520 0.578 0.842 

Enjoyment Scale (3 Items, Cronbach’s alpha = 0.838) 

VPE is Fun (q15) 7.4488 4.329 0.733 0.744 

VPE is Enjoyable (q17) 7.0866 4.588 0.618 0.855 

VPE is Pleasant (q19) 7.4016 4.099 0.757 0.719 
Table 5.3: Cronbach's alpha – Action Research Survey 

5.2.2.2 Convergent Validity  

Convergent validity is the assessment to measure the level of correlation of 

multiple indicators of the same construct that are in agreement. According to 

Hair et al. (2016) to establish convergent validity, the factor loading of the 

indicator, composite reliability (CR) and the average variance extracted (AVE) 

should be considered. Table 5.4 presents the calculations for AVE and CR for 

the intrinsic motivation scale.  

N=4 λ Factor Loadings λ2 Ε Error Variance 

 0.881 0.77616 0.22384 

 0.763 0.58217 0.41783 

 0.850 0.72250 0.27750 

 0.816 0.66586 0.33414 

SUM 3.310 2.74669 1.25331 

AVE 0.687 SQRT of AVE 0.82866 

CR 0.897 
Table 5.4: AVE and CR calculations for Motivation Scale 
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The same calculations were performed for the usefulness and enjoyment scales 

and the results are presented in Table 5.5. 

Scale AVE CR SQRT(AVE) 
Motivation 0.687000 0.897349 0.828660 
Enjoyment 0.582410 0.874481 0.763158 
Usefulness 0.714723 0.882392 0.845413 

Table 5.5: AVE and CR values for all scales 
AVE > 0.50 (Acceptable), AVE > 0.70 Very Good, CR > 0.70 Acceptable 

The calculated AVE values exceed the recommended value of 0.50 and CR 

values exceed 0.70, so the questionnaire scales can be considered as adequate 

for convergent validity (Fornell & Larcker, 1981; Hair et al., 2016). 

5.2.2.3 Discriminant Validity 

Discriminant validity is the extent to which a construct is truly distinct from 

other constructs by empirical standards. Thus, establishing discriminant 

validity implies that a construct is unique and captures phenomena not 

represented by other constructs in the model. According to the Fornell-Larcker 

testing system, discriminant validity can be assessed by comparing the square 

root of each AVE in the diagonal with the correlation coefficients (off-

diagonal) for each construct in the relevant rows and columns (Fornell & 

Larcker, 1981).  

For intrinsic motivation, the value obtained for the square root of AVE 

(0.828660) is greater than the correlation coefficients (see Table 5.6) which 

leads us to accept the discriminant validity of the scale.  

 

Intrinsic Motivation Scale  

 q9 q10 q11 q12 

Interest in Programming (q9) 1    

Prefer Challenging work (q10) .598 1   

Enjoy module subject (q11) .766 .602 1  

Useful module subject (q12) .590 .460 .521 1 
Table 5.6: Correlation matrix for motivation scale components 

For enjoyment and usefulness scales, the value obtained for the square root of 

AVE (0.763158, 0.845413 respectively) is greater than the correlation 
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coefficients (see Table 5.7) which leads us to accept the discriminant validity 

of the scales.  

Enjoyment Scale 

 q15  q17  q19  q16  q18  q21  q20  q22  

q15  1        

q17  0.561 1       

q19  0.747 0.593 1      

Usefulness Scale 

q16 0.330 0.271 0.267 1     

q18 0.289 0.322 0.270 0.668 1    

q21 0.306 0.232 0.355 0.555 0.519 1   

q20 0.338 0.379 0.391 0.492 0.620 0.606 1  

q22 0.289 0.250 0.332 0.406 0.498 0.531 0.469 1 
Table 5.7: Correlation coefficients for enjoyment and usefulness scales 

 

5.2.3  Action Research Cycle 1 (Greenfoot) 

During Spring Semester 2015, I performed the first action research cycle with 

the introduction and evaluation of Greenfoot.  

To begin with, the literature review on Greenfoot as a visual programming 

environment reported intriguing research results (Gallant & Mahmoud, 2008; 

Decker & Trees, 2010; Begosso & Begosso, 2012). More specifically, as 

mentioned in an impact case study submitted by the University of Kent, 

students benefit from the use of Greenfoot by “being able to achieve more 
tangible results more quickly, leading to increased motivation and satisfaction, as 
well as better understanding of programming concepts” (University of Kent, 

2014) 

The test this theory in the context of the ‘Introduction to Programming’ 

module, Greenfoot was incorporated in the module’s material. Students were 

first introduced to the Java programming language and, during the last 2 

weeks (12-hours of instruction) of the module, students learned how to create 

games using Greenfoot. The material used for teaching Greenfoot was taken 

from Oracle Academy’s Java Fundamentals course ("Java Fundamentals – 

Course Description”). A sample in-class activity is included in Appendix Five. 
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Thirty-five (35) students, consisting of two females and thirty-three males, 

participated in the study and were registered in 2 separate classes. One class 

was taught by me and the other by a fellow professor. Both of us had extensive 

teaching experience in teaching the ‘Introduction to Programming’ module 

(15-18 years). 

At first glance, project grade statistics showed an improvement in the pass/fail 

rate. More specifically, 25 students passed the course and only 9 failed. This 

translates to a 74% pass rate, while the pass rate was as low as 51% during the 

previous two years (2013-2014). Although the increase in the pass/fail rate 

from previous semesters is obvious, feedback obtained from the post-

instruction survey (see Appendix Two - Action Research Survey) and 5 semi-

structured interviews showed that students not only deemed Greenfoot 

inappropriate for the course, but also found it confusing and difficult to 

program. One of the main disadvantages reported by students was that they 

were obligated to learn - along with the programming language - the use of 

Greenfoot’s specific libraries of commands. Some negative comments of 

students in the last open-ended question of the survey included: “Greenfoot did 
not help me in any way to finish my project” and “The reason I did not like 
Greenfoot was mainly because I would like to know what is the original code of 
that game we created for example, “main” code was locked by the creator”. 
Another reported difficulty was that Greenfoot is heavily based on object-

oriented programming concepts, whereas the module serves as an introduction 

to programming concepts. On the other hand, only one student reported that 

“Greenfoot was a fun and creative way to learn programming”. 

Table 5.8 shows the mean, median, standard deviation, minimum and 

maximum scores for intention to use, preferability over Java, overall 

enjoyment and tool usefulness as perceived by students who participated in the 

survey, as well as their recommendation for future adoption of the tool for the 

module. 
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VPE Visual Programming Environment - 1 Greenfoot 

 Median Mean Standard 
Deviation 

Minimum Maximum Count 

q20 Intent to Use 3.00 2.37 1.09 1.00 5.00  
q22 Preferable over Java 3.00 2.63 1.40 1.00 7.00  
Overall Enjoyable 3.00 3.22 0.88 1.00 5.00  
Overall Useful 3.00 3.00 0.61 1.00 4.00  
Assessment Grade 40.00 32.86 32.70 0.00 95.00  
Recommendation for use       
No      28 
Maybe      3 
Yes      4 

Table 5.8: Student evaluation of Greenfoot programming environment 
(Scale 1=Negative Opinion, 4=Neutral, 7=Positive Opinion) 

 

Data obtained from the survey and student feedback from the interviews did 

not demonstrate a high student preference to use Greenfoot. Twenty-eight out 

of thirty-five students did not recommend the use of Greenfoot for the module. 

The average assessment grade of 40 also did not show optimal outcomes. 

These results from the first cycle initiated the second cycle, which took place 

during Fall Semester 2015. This cycle involved the evaluation of Alice as an 

instructional tool for the introduction to programming.  

5.2.4  Action Research Cycle 2 (Alice) 

A literature review on Alice as a visual programming environment also 

reported intriguing research results (Cooper et al., 2000; Moskal et al., 2004; 

Powers et al., 2007; Al-Linjawi et al., 2010; Dann et al., 2012). For example, 

Moskal et al. (2004) in a two-year study which took place in two universities in 

order to examine the effectiveness of Alice for improving performance and 

retention, reported improved student performance, highly positive student 

experiences, as well as a stimulated interest for computer science in general. 

Dann et al. (2012) also reported that using Alice to introduce programming 

concepts before Java in a college first-year programming course (for two 

semesters) showed a significant positive impact on students’ learning. 

Inspired by these findings, Alice was incorporated in the material of the 

‘Introduction to Programming’ module and its instruction cycle lasted for 2 

weeks (12-hours of instruction).   
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The material used for teaching Alice was taken from Oracle Academy’s Java 

Fundamentals course ("Java Fundamentals – Course Description”) and a 

number of activities from the Alice.org website. A sample car race activity is 

included in Appendix Five.  

Thirty-five (35) students participated in this study (registered in 2 classes). 

The first class was taught by me and the second by another professor. The 

results from the second preliminary investigation were not very promising 

either. Formative assessment scores and final course grades did not 

demonstrate an increase from past semesters, and feedback obtained from a 

survey and 4 semi-structured interviews showed that students overall found 

Alice very childish and not useful for the module. 

Table 5.9 shows the mean, median, standard deviation, minimum and 

maximum scores for intention to use, preferability over Java, overall 

enjoyment, tool usefulness as perceived by students who participated in the 

survey, as well as their score in the homework exercise and their 

recommendation for a future adoption of the tool for the module. 

 
VPE Visual Programming Environment – 2 Alice 

 Median Mean Standard 
Deviation 

Minimum Maximum Count 

q20 Intent to Use 3.00 2.26 1.01 1.00 4.00  
q22 Preferable over 
Java 3.00 2.74 1.20 1.00 5.00  

Overall Enjoyable 3.00 3.28 0.97 1.00 5.00  
Overall Useful 3.00 2.83 0.79 2.00 5.00  
Assessment Grade 40.00 33.71 28.24 0.00 90.00  
Recommendation for 
use       

No      25 
Maybe      7 
Yes      3 

Table 5.9: Student evaluation of Alice programming environment 
(Scale 1=Negative Opinion, 4=Neutral, 7=Positive Opinion) 

Based on the above findings, which were not encouraging and with the intent 

on finding a Visual Programming Environment that could potentially increase 

student motivation to program, I found relative research on Scratch and 

AppInventor block-based educational programming environments that showed 
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positive results when used by students with no prior programming experience 

(Liu et al., 2012; Nikou & Economides, 2014; Papadakis et al., 2014).  

5.2.5  Action Research Cycles 3 and 4 (Workshops on AppInventor and 
Scratch) 

The third and fourth cycles were shortened in duration and did not involve 

changes in the content of the module or in the teaching methodology, but an 

introduction of two new programming environments in the form of workshops. 

Participation was voluntary and not formally assessed.  

These two short cycles were designed in the form of workshops aiming to 

explore student experiences and whether there was a perceived increase in 

motivation from the viewpoint of students and instructors. Students who 

participated in the workshops filled out the same survey, assessing their 

motivation to participate in the workshop, their expectations and finally their 

opinion on the suitability of the tools as an entry-level teaching environment 

for the ‘Introduction to Programming’ module. Students were given a 

programming project to complete on their own after the end of the workshop, 

which they had to upload on a shared forum space on Blackboard. The 

rationale behind this formative assessment was to evaluate students’ interest, 

motivation and capability to create their own game using the tool, after the 

end of the workshop. Also, my goal was to gauge the level of their involvement 

and whether they would take their training one step further, in terms of 

knowledge, beyond what they were taught in the workshop. 

 

5.2.6  Action Research Cycle 3 (AppInventor) 

The third action research short cycle took place during the Spring Semester 

2016. I organised three short 2-hour workshops on AppInventor. One 

advantage of AppInventor over other visual programming environments is the 

possible increased motivation level which stems from creating applications that 

execute on a mobile device. The fact that students can create a game or an 

application which can be demonstrated and used by their friends and family 

might lead them to consider that they are not merely consumers of technology, 

but also producers of it (Wolber, 2011).   
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Twenty-five (25) students majoring in IT and two professors teaching 

introduction to programming attended the workshops. Although shorter in 

duration than the preceding cycles, student participants in this workshop 

showed greater involvement in the process. APPInventor utilises blocks as the 

basis for writing programs and students seemed to truly enjoy their interaction 

with the tool. During the workshop, students were introduced to the 

programming environment and created two mobile applications using tutorial 

resources from the official MIT APP Inventor website (see Appendix Five). 

Summative assessment scores were not available, since the workshop was not 

part of a module but instead open to all students that were interested in 

attending. The assessment grade mentioned in the table below was calculated 

from the optional hangman project which they were asked to complete. Data 

were collected from post-workshop surveys, in-class discussions at the end of 

the workshop and from the programming projects students completed after the 

workshops.  

Table 5.10 shows the mean, median, standard deviation, minimum and 

maximum scores for intention to use, preferability over Java, overall 

enjoyment, tool usefulness as perceived by students who participated in the 

survey, as well as their score in the homework exercise and their 

recommendation for future adoption of the tool for the module. 

VPE Visual Programming Environment - 3 App Inventor 

 Median Mean Standard 
Deviation 

Minimum Maximum Count 

q20 Intent to Use 3.00 3.27 1.34 1.00 5.00  
q22 Preferable over Java 3.00 2.88 1.31 1.00 5.00  
Overall Enjoyable 4.00 3.95 0.91 2.33 6.00  
Overall Useful 4.00 3.85 0.80 2.00 5.00  
Assessment Grade 65.00 57.88 26.80 0.00 100.00  
Recommendation for use       
No      16 
Maybe      6 
Yes      4 

Table 5.10: Student evaluation of AppInventor programming environment 
 (Scale 1=Negative Opinion, 4=Neutral, 7=Positive Opinion) 

The survey showed an increased motivation of students to get involved with 

mobile application development, but the students’ recommendation to adopt 

the tool was still low. 
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Based on the fact that student perceptions about this specific kind of block-

based programming was positive overall along with an assessment average 

score of 57.88% and in accordance with research findings, I decided to 

evaluate Scratch, despite the fact that its main target audience primarily spans 

the age group from 8 to 16 years.  

5.2.7  Action Research Cycle 4 (Scratch) 

The last cycle took place again during the Spring Semester 2016, when I 

organised another short 6-hour workshop on Scratch. Participation was even 

greater. Thirty-one (31) students from all major courses attended the 

workshop. During the workshop, students were introduced to the 

programming environment and created two programs: an IP packet switcher 

and a game (see Appendix Five). Data were collected from the short survey, an 

in-class group discussion, and scores from the formative assessment hangman 

project. Results demonstrated positive attitudes of students towards the 

usability of Scratch and a greater motivation to develop programs with it.  

Table 5.11 shows the mean, median, standard deviation, minimum and 

maximum scores for intention to use, preferability over Java, overall 

enjoyment, tool usefulness as perceived by students who participated in the 

survey, as well as their score in the homework exercise and their 

recommendation for future adoption of the tool for the module. 

 
VPE Visual Programming Environment - 4 Scratch 

 Median Mean 
Standard 
Deviation Minimum Maximum Count 

q20 Intention to Use 4.00 3.74 1.46 1.00 6.00  
q22 Preferable over 
Java 

4.00 4.29 1.37 2.00 7.00  

Overall Enjoyable 4.33 4.33 0.80 3.00 6.33  
Overall Useful 4.33 4.38 0.74 3.00 6.33  
Assessment Grade 60.00 54.03 27.03 0.00 100.00  
Recommendation for 
use        

No      9 
Maybe      7 
Yes      15 

Table 5.11: Student evaluation of Scratch programming environment 
 (Scale 1=Negative Opinion, 4=Neutral, 7=Positive Opinion) 
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5.3  Action Research Findings and Discussion 

One hundred and twenty-seven (127) students in total participated in the 

study, of which only eighteen (18) were female and one hundred and nine 

(109) male, which is a representative sample of XYZ college’s IT modules 

population (see Table 5.12 and 5.13).  

Action Research Cycles – Demographics - Gender 
  Cycle 1 Cycle 2 Cycle 3   Cycle 4  

  Greenfoot Alice App 
Inventor 

Scratch Total 

Gender Age Count 
Female 18-24 3 2 6 7 18 
 24-34 0 0 0 0 0 
Total Female 3 2 6 7 18 
       
Male 18-24 28 30 18 20 96 
 24-34 4 3 2 4 13 
Total Male  32 33 20 24 109 
Total  35 35 26 31 127 

Table 5.12: Action research study – Demographics: Gender 
 
 

Action Research Cycles – Demographics - Major 
Major Cycle 1 Cycle 2 Cycle 3   Cycle 4 Total 
Communications 2 0 0 0 2 
Economics 1 0 1 3 5 
International Business 0 3 0 0 3 
Information Technology 27 26 16 19 88 
Management Information 
Systems 3 4 5 7 19 

Marketing 0 2 1 0 3 
Non-Degree 1 0 0 0 1 
Undecided 1 0 3 2 6 
All Majors 34 35 23 29 127 

Table 5.13: Action research study – Demographics: Majors 

A very interesting outcome of this research is that 72% of the students actually 

completed the homework (formative) assessment exercise.  In the first action 

research cycle, 57% of the students submitted their work, as opposed to 63% 

for the second action research cycle. Even better results were demonstrated in 

the last two cycles, with 66% and 77% submission rates respectively (see 

Figure 5.3). At this point, I should stress the fact that attendance was 

“voluntary” for those last two cycles and the project was optional. 
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Figure 5.3: Percentage of students who submitted their project per VPE 

One assumption for the analysis of the results is that the motivation to learn 

computer programming was not statistically different among groups. In order 

to test this hypothesis, I performed a non-parametric Kruskal-Wallis Test, 

which showed that the medians of motivation to learn programming (see 

Table 5.14) were the same across all four action research cycles (one per VPE). 

Hypothesis Test Summary 

 Null Hypothesis Test Sig. Decision 

1 

The medians of Motivation to learn 
programming are the same across 
categories of VPE Visual Programming 
Environment. 

Independent-
Samples Median 
Test 

.956 Retain the null 
hypothesis. 

2 

The distribution of Motivation to learn 
programming is the same across 
categories of VPE Visual Programming 
Environment. 

Independent-
Samples Kruskal-
Wallis Test 

.804 Retain the null 
hypothesis. 

Table 5.14: One-way ANOVA test for the equality of medians across VPEs 
 

Before moving on with the analysis of the data collected from the 

questionnaires, Figure 5.4 shows the mean scores in each question per VPE.  
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Figure 5.4: Mean score per question per VPE 

 

By observing the line chart, we can see some differences in student opinions 

about each tool (q15–q22), while for the overall motivation to learn 

programming student opinions tend to converge (q9-q14). In order to test 

whether the observed difference of the means has a statistical significance and 

to decide on which is the most appropriate statistical test to perform, the 

following assumptions must be tested: a) that there are no significant outliers; 

b) data follows a normal distribution (Figure 5.5); and c) homogeneity 

variances are low.  

 



 
 
 
 

113 
 
 
 

  

 

 

Figure 5.5: Comparison of distributions: Student rating for each VPE 

The Shapiro-Wilk’s test (p > 0.05) (Shapiro & Wilk, 1965) in Table 5.15 and a 

visual inspection of the histograms, normal QQ Plots and box plots, showed 

that mean scores for (b) perceived enjoyment and (c) perceived usefulness 

were approximately normally distributed for all VPEs; so, parametric tests can 

be employed for the comparison of their means. On the other hand, mean 

scores for (a) motivation to learn programming are not normally distributed, 

suggesting that non-parametric tests should be used to test for equality of 

means. 
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Shapiro-Wilk’s Test of Normality 

 Kolmogorov-
Smirnova  Shapiro-

Wilk   

 Statistic df Sig. Statistic df Sig. 

A) Motivation to Learning Programming 

1 Greenfoot .118 35 .200* .925 35 .020 

2 Alice .117 35 .200* .919 35 .013 

3 App Inventor .137 26 .200* .920 26 .044 

4 Scratch .173 31 .019 .900 31 .007 

B) Perceived Overall Enjoyment 

1 Greenfoot .152 35 .039 .941 35 .058 

2 Alice .113 35 .200* .966 35 .348 

3 App Inventor .135 26 .200* .959 26 .374 

4 Scratch .145 31 .093 .943 31 .101 

C) Perceived Overall Usefulness 

1 Greenfoot .150 35 .046 .943 35 .068 

2 Alice .109 35 .200* .953 35 .137 

3 App Inventor .192 26 .015 .946 26 .189 

4 Scratch .122 31 .200* .955 31 .211 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
Table 5.15: Shapiro-Wilk’s test of normality 

The next step for the normally distributed dependent variables (b) and (c) is to 

test homogeneity of variances using Levene’s test to check the assumption that 

the variances for the 4 groups are equal. The result of the Levene’s Test was 

not significant (see Table 5.176). 

(b) perceived enjoyment:  F (3/123) = 0.579, p=0.630 at 0.95 alpha level.  

(c) perceived usefulness:  F (3/123) =1.088, p=0.357 at 0.95 alpha level. 

  



 
 
 
 

115 
 
 
 

 Levene Statistic df1 df2 Sig. 

Perceived Enjoyment .579 3 123 0.630 

Perceived Usefulness 1.088 3 123 0.357 

Table 5.16: Levene’s test of homogeneity of variances 

Thus, the assumption of homogeneity of variance is met and the one-way 

ANOVA test can be used to test the null hypothesis that the mean difference of 

enjoyment and usefulness across tools is not significant (see Table 5.17). 

 

  Sum of 
Squares 

df Mean 
Square 

F Sig. (p) 

Perceived 
Enjoyment Between Groups 28181 3 9394 11760 .000 

 Within Groups 98249 123 .799   
 Total 126430 126    
Perceived 
Usefulness Between Groups 51267 3 17089 31599 .000 

 Within Groups 66521 123 .541   
 Total 117788 126    

Table 5.17: One-way ANOVA test for the equality of means 
 

Since p < 0.001 and thus < 0.05, which is the chosen level of significance, I 

can reject the null hypothesis that the means of perceived enjoyment and 

perceived usefulness between the 4 VPEs are equal. 

Having understood that there is a mean difference between the four visual 

programming environments, the next step is to investigate which are those 

that cause the reported difference with a post-hoc multiple comparisons 

Turkey HSD test (see Table 5.18). 
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A Post-Hoc Multiple Comparisons - Tukey HSD Test 
Depe-
ndent 
Variable 

(I) VPE  (J) VPE  
Mean 
Difference 
(I-J) 

Std. 
Error Sig. 

95% Confidence 
Interval 

Perceived Enjoyment Lower 
Bound 

Upper 
Bound 

 1 
Greenfoot 

2 Alice -0.0571 0.2136 .993 -0.6136 0.4993 

  3 App Inventor -0.7296 0.2314 .011 -1.3323 -0.1270 
  4 Scratch -1.1142 0.2204 .000 -1.6884 -0.5402 
 2 Alice 1 Greenfoot 0.0571 0.2136 .993 -0.4993 0.6136 
  3 App Inventor -0.6725 0.2314 .022 -1.2752 -0.0699 
  4 Scratch -1.0571 0.2204 .000 -1.6313 -0.4830 

 3 App 
Inventor 1 Greenfoot 0.7296 0.2314 .011 0.1270 1.3323 

  2 Alice 0.6725 0.2314 .022 0.0699 1.2752 
  4 Scratch -0.3846 0.2376 .372 -1.0036 0.2344 
 4 Scratch 1 Greenfoot 1.1142 0.2204 .000 0.5402 1.6884 
  2 Alice 1.0571 0.2204 .000 0.4830 1.6313 
  3 App Inventor 0.3846 0.2376 .372 -0.2344 1.0036 

Perceived Usefulness 
Lower 
Bound 

Upper 
Bound 

 1 
Greenfoot 

2 Alice 0.1714 0.1758 .764 -0.2864 0.6293 

  3 App Inventor -0.8461 0.1904 .000 -1.3421 -0.3503 
  4 Scratch -1.3763 0.1813 .000 -1.8487 -0.9039 
 2 Alice 1 Greenfoot -0.1714 0.1758 .764 -0.6293 0.2864 
  3 App Inventor -1.0175 0.1904 .000 -1.5135 -0.5217 
  4 Scratch -1.5477 0.1813 .000 -2.0202 -1.0754 

 
3 App 
Inventor 1 Greenfoot 0.8461 0.1904 .000 0.3503 1.3421 

  2 Alice 1.0175 0.1904 .000 0.5217 1.5135 
  4 Scratch -0.5301 0.1955 .038 -1.0395 -0.0208 
 4 Scratch 1 Greenfoot 1.3763 0.1813 .000 0.9039 1.8487 
  2 Alice 1.5477 0.1813 .000 1.0754 2.0202 
  3 App Inventor 0.5301 .19557 .038 0.0208 1.0395 

 
Table 5.18: Post-hoc multiple comparisons between VPEs - Tukey HSD test 

The Turkey post-hoc test revealed that the overall perceived enjoyment of: 

1) GreenFoot (M=3.219, SD=0.8776) was statistically significantly lower (-

0.7296) compared to AppInventor (M=3.9487 SD=0.9125, p=0.11) and even 

lower (-1.1142) compared to Scratch (M=4.33, SD=0.8027, p=0.0001), 
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while there was no statistical difference compared to Alice (-0.0571) 

(M=3.2762, SD=0.9684, p=.993).  

2) Alice (M=3.2762, SD=0.9684) was statistically significantly lower             

(-0.6725) compared to AppInventor (M=3.9487 SD=0.9125, p=0.001) and 

even lower (-1.0571) compared to Scratch (M=4.33, SD=0.8027, p<0.001), 

while there was no statistical difference compared to Greenfoot. 

3) Scratch on the other hand (M=4.3333, SD=0.8027) was statistically 

significantly higher (1.1142) compared to Greenfoot and Alice (1.0571) but 

there was no statistically significant difference (0.3846) compared to App 

Inventor (M=3.9487, SD=0.7957, p=0.3720). 

The Turkey post-hoc test revealed that the overall perceived usefulness of: 

1) Greenfoot (M=3.000, SD=0.6103) was statistically significantly lower (-

0.8461) compared to AppInventor (M=3.8462, SD=0.7957, p<0.001) and 

even lower (-1.3763) compared to Scratch (M=4.3763, SD=0.7441, 

p<0.001), while there was no statistical difference compared to Alice (0.1714) 

(M=2.8286, SD=0.7936, p=0.7640).  

2) Alice (M=3.2762, SD=0.9684) was statistically significantly lower (-

1.01758) compared to AppInventor (M=3.8462, SD=.7957, p<0.001) and 

even lower (-1.5477) compared to Scratch (M=4.3763, SD=0.7441, 

p<0.001), while there was no statistical difference compared to Greenfoot. 

3) Scratch on the other hand (M=4.3763, SD=0.7441) was statistically 

significantly higher (1.3763) compared to Greenfoot (M=3.000, SD=0.6104, 

p<0.001), Alice (1.5477) and App Inventor (0.5302). 

 

5.4  Conclusion 

Based on the above, we can conclude that the specific groups of students did 

not enjoy programming using Greenfoot and Alice as much as the groups of 

students did using AppInventor and Scratch. As far as perceived usefulness is 

concerned, Scratch was deemed to be more useful for the ‘Introduction to 

Programming’ module than all the other 3 visual programming environments. 
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Feedback obtained from the in-class discussion indicated that, although 

students seemed to enjoy mobile application development using APPInventor, 

they did not find it appropriate for the introductory course.  

The last question in the survey, “would you recommend the addition of ‘this tool’ 
as part of the teaching material for the Introduction to Programming module?” 
can be used to verify the results obtained from the statistical tests. Eighty per 

cent, 71% and 62% of the students would not recommend Greenfoot, Alice 

and AppInventor respectively for the introduction to programming module, 

while only 29% of the students were negative about Scratch. The results are 

depicted in Figure 5.6. 

 
Figure 5.6: Participant recommendations for the adoption of each tool 

The findings described above were instrumental in my decision to use Scratch 

as the Visual Programming Environment tool of choice for my main study. 

It should be noted that a limitation of the data analysis carried out was that 

data obtained from the two “workshop” cycles, which informed the study 

about overall student perceptions around AppInventor and Scratch enjoyability 

and usefulness, cannot be accurately compared to that of the first and second 

action research cycles, in which the visual programming environment was 

actually incorporated into the material of the module. 
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Another limitation of this preliminary study might stem from the divergence 

across the in-class activities used in Alice, Greenfoot, APPInventor and Scratch. 

The nature of the programming activities performed during the workshops as 

well as the user interface and capabilities of each VPE might have affected 

student perceptions.  

The “childish” interface of Alice (according to student comments) might have 

predisposed them to reject the tool, without carefully considering its 

capabilities to demonstrate and apply advanced programming concepts. On the 

other hand, the task developed in Scratch, using an Internet Protocol (IP) 

packet switching “computing concept” compared the “game” development 

activities demonstrated using Greenfoot, as well as the “fun” activities 

developed in APPInventor, might have altered learners’ perceptions.  

To help mitigate the bias resulting from the variation in the activities 

undertaken across action research cycles, students were introduced to the 

same concepts in all VPEs (see Appendix Five). Furthermore, students were 

given the same final assignment and graded using the same rubric (see Table 

5.19). It thus seems unlikely that the variation in the learning activities would 

have led to a significant difference in the results.    

Experience gained from the design, execution and data analysis of this 

preliminary research, in addition to the findings reported by existing literature, 

informed the case study design and formed the basis of my subsequent 

research.  
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Chapter 6  Research Design and Methodology  

6.1  Purpose 

The purpose of this chapter is to present and justify the research design and 

evaluate the suitability of the proposed methodology for conducting this type 

of research, as well as the reasoning by which case study was identified as the 

most appropriate methodology to evaluate and explain why the proposed 

innovation succeeded or failed to motivate students when learning how to 

program.  

In addition, the chapter provides readers with background information and an 

explanation of the rationale for using mixed methods for data collection and 

the strategy behind the data collection process. It concludes with a detailed 

description of the steps taken to develop the questionnaires used to implement 

quantitative data collection, as well as the interview protocol used to perform 

qualitative data collection. 

 

6.2  Case Study and Data Collection Approaches 

Research methodology is defined by Leedy and Ormrod (2010) as “the general 
approach the researcher takes in carrying out the research project” (p. 14).  The 

selection of a research methodology is based on the subject, the nature and the 

aims of the research questions being addressed, including the theoretical and 

philosophical assumptions upon which research is based and it will provide the 

general framework guiding the research project.  

A case study methodology is considered to be appropriate when a researcher 

wishes to examine a unique issue or phenomenon in detail, as well as its real-

life manifestation (Baxter & Jack, 2008). Additionally, a case study is a design 

of inquiry found in many fields, especially evaluation, in which the researcher 

develops an in-depth analysis of a case, often a program, event, activity, 

process, or one or more individuals (Stake, 1995).  

Yin (2003) defines a case study as “an empirical inquiry that aims to 

investigate a contemporary phenomenon in-depth and within its real-life 
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context, especially when the boundaries between phenomenon and context are 

not clearly evident”.   

According to Yin, five components are crucial in a case study design:  

1. The study’s research questions; 

2. Its propositions; 

3. Its unit of analysis; 

4. The logic linking the data to the propositions; and 

5. The criteria for interpreting the findings. 

Cases are bounded by time and activity, and researchers collect detailed 

information using a variety of data collection procedures over a sustained 

period of time (Stake, 1995; Yin, 2003). 

Using case study as my methodological approach, I can study the complexity of 

learning programming as perceived by students (my unit of analysis) as well as 

their motivation to learn. Further, I can explore a possible connection between 

students’ preference for visual programming environments with their learning 

styles, while observing their behaviour, and keeping track of their performance 

in this unique situation.  

The phenomenon under investigation is unique as far as the group of 

individuals that will be studied, their age group, gender, ethnicity, their role in 

the class and XYZ college in which the study takes place is concerned. These 

independent variables cannot be controlled and might have an effect on the 

results obtained by the study. 

Case study methodology has previously been used to explore topics including 

education and teaching of programming (Hadjerrouit, 2007; Jones, 2010; 

López et al., 2016; Pellas & Peroutseas, 2016). While the focus of this research 

is mainly grounded in the IT field and more specifically in computer 

programming, the flexibility of the case study methodology will enable cross-

disciplinary themes to be addressed such as educational and motivational 

theories and their implications. It could be argued that since human behaviour 

is a such a complex phenomenon, statistics alone cannot adequately describe 

it. As a result, blending both qualitative and quantitative methods can help 
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researchers enhance the understanding of technical and behavioural aspects 

(Seaman, 1999). Case study methodology allows for a mixed method data 

collection strategy as the exactness of quantitative, and ‘richness’ of qualitative, 

approaches can be combined (Runeson, 2012).  

At the same time, according to Eisenhardt (1989), a major limitation of a case 

study design is that the results obtained, although very rich in detail, might 

lack the simplicity of a generalised perspective or may result in a very narrow 

and idiosyncratic theory.  

However, a methodological debate is found in the literature, where different 

authors identify distinct themes which are used to categorise the direction, 

organisation and design of case studies. Thomas (2011) provides a table 

summarising the characteristics of most recent general themes in the 

methodological debate. I used Table 6.1 as a tool to identify the common 

categories and I highlighted and emboldened the ones that fit my 

methodological approach.  

Merriam 
(1988) 

Bassey 
(1999) de Vaus (2001) Yin (2009) Creswell 

(2011) 

Descriptive Educational 
theory seeking 

Descriptive / 
Explanatory Critical Convergent 

Interpretative Theory testing 
Theory testing / 
Theory building 

Extreme/ 
unique Explanatory 

Evaluative Storytelling 
Single Case / 
Multiple case Longitudinal Exploratory 

Concrete and 
Contextual 

Picture 
drawing 

Holistic/embedded Representative Embedded 

 Evaluative Parallel /  
Sequential Revelatory Transformative 

  
Retrospective/ 

prospective  Multiphase 

     

Table 6.1: Case study designs/themes 
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In the context of this research, I share Merriam’s (1998) view that a case study 

is particular (concrete and contextual), descriptive and heuristic, and as such, 

it can be used to evaluate and explain why an innovation worked or failed to 

work, as well as to summarise and make conclusions. 

The evaluative nature of case studies in educational settings is also discussed 

by Bassey (1999) referring to Stenhouse’s (1978) views, who claims that the 

purpose of an evaluative case study is to provide teachers (and other 

educational actors) with information that will help them judge the worth of a 

program (or a policy or even an institution).  

As far as the data collection and analysis is concerned, three generalised 

categories or so-called strategies of inquiry are found in the literature: 

quantitative, qualitative and mixed methods. 

One simplified distinction between quantitative and qualitative informing 

results is that, to explore and understand a case, the quantitative data rely on 

numbers while their qualitative counterpart rely on words. Creswell (2014) 

notes that quantitative research is an approach for testing objective theories by 

examining the relationship among variables, while qualitative research is an 

approach for exploring and understanding the meaning individuals or groups 

use to describe to a social or human problem, while mixed (hybrid) methods 

reside in between the two approaches by incorporating elements from both. 

Mixed methods data techniques involve collecting both quantitative and 

qualitative data, integrating the two forms of information, and using distinct 

designs that may involve philosophical assumptions and theoretical 

frameworks. The core assumption of this form of inquiry is that the 

combination of qualitative and quantitative data provides a more complete 

understanding of a research problem than either approach could provide if 

applied alone. More specifically, Creswell (2014) mentions that “mixed 
methods involve combining or integration of qualitative and quantitative research 
and data in a research study. Qualitative data tends to be open-ended without 
predetermined responses while quantitative data usually includes closed-ended 
responses such as found on questionnaires or psychological instruments” (p.43). 

A literature review on the quantitative/qualitative debate shows that a 

researcher can use mixed methods as a means to attain meaningful and valid 
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results and to answer pertinent research questions. Any quantitative measure 

can be expressed qualitatively, and any qualitative measure can be expressed 

in a quantitative manner. Krauss (2005), Creswell and Clark (2011) and 

Robson and McCartan (2016), support the argument that mixed forms of 

evidence will lead us to a comprehensive understanding of the problem and 

extract meaning from “the real world”. Merton and Kendall (1946) express the 

same sentiment that social scientists have come to abandon the spurious 

choice between qualitative and quantitative data: they are rather concerned 

with the combination of both that makes use of the most valuable features of 

each. The problem becomes one of determining at which points they should 

adopt the one, and at which the other, approach.  

This research study follows an explanatory sequential mixed method design for 

data collection. Explanatory mixed methods are those in which the researcher 

first conducts quantitative research, analyses the results and then builds on the 

results to explain them in more detail with qualitative research. It is considered 

explanatory because the initial quantitative data collected for the survey will 

provide a more general statistical picture of the variables, which can then be 

explained further with the qualitative data to provide us with a more in-depth 

understanding of student perceptions, thus following the evaluative (Bassey, 

1999) and explanatory (Creswell & Clark, 2011) sequential framework.  

The timing of the research is sequential (quantitative followed by qualitative 

data collection). The quantitative part will be used to provide the general 

statistical picture of the phenomenon under investigation as well as identifying 

possible participants for the qualitative part. The qualitative part, on the other 

hand, will be used to explore the participant views in-depth to look to explain 

the statistical results obtained from the survey. 

Based on the above, my overarching methodological approach is an evaluative 

case study and the data collection follows an explanatory sequential mixed 

method design. The case study is within the context of the ‘Introduction to 

Programming’ module at an English-speaking institution of higher learning in 

Southern Europe, college XYZ and is based upon participatory action research 

practice. The population being studied are students registered in the module 

for four consecutive semesters. Scratch software was used to enable students 

to undertake visual programming. My research questions in this context were: 
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RQ1: How do visual programming environments affect students’ performance 

in the course (assessment and final grades)? 

RQ2: How do students perceive the Scratch visual programming environment?  

a) How do students perceive enjoyability, ease of use, usability and 

usefulness?  

b) How do students relate these qualities to their achievement of the 

module’s learning objectives (output quality)? 

RQ3: How does students’ motivation for learning programming relate to their 

perceptions about visual programming environments? 

RQ4: How do students’ learning styles relate to their perceived enjoyment, 

ease of use, usability and usefulness of Scratch visual programming 

environment? 

The dependent variables and the methods which will be used for their analysis, 

in order to address the above-mentioned research questions, are: 

• Students’ perceptions about Scratch visual programming environment’s 

enjoyability, ease of use, usability and usefulness, measured both 

quantitatively using data collected from the survey (Technology 

Acceptance Model part) and qualitatively using semi-structured 

interviews to address research question 1. 

• Students’ performance in the course, measured quantitatively using 

assignment and examination scores (leading to final course grades). 

This can be compared to students’ performance in previous semesters 

(before the introduction on the visual programming environments), to 

address research question 2: Students’ performance in the Scratch 

assessment compared to their performance in a Java assessment. 

• Students’ motivation for learning programming is measured 

quantitatively using data collected from the survey (Motivated 

Strategies for Learning) and explored qualitatively using semi-

structured interviews and class observations to address research 

question 3. 
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• Students’ learning approaches, measured quantitatively using data 

collected from the survey (Learning Styles Questionnaire), compared to 

students’ perceptions about the Scratch visual programming 

environment’s enjoyability to address research question 4. 

Data collected from the semi-structured interviews are studied in depth in 

order to identify the variations in students’ perceptions about programming in 

general as well as about visual programming environments and to form an 

outcome space. On the other hand, data collected from the surveys are 

analysed quantitatively using statistics. Data collected from the formative 

examinations will be used to inform the research about the possible variations 

between students’ perceptions and their actual performance in an examination 

setting. 

Given this perspective, I will summarise my own stance about the overall 

design of this research in Figure 6.1. 
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Figure 6.1: Case study research design 
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6.3  Pedagogic Design: Teacher’s Role and Students’ Activity 

From Fall Semester 2016 onwards, Scratch 2.0 was used during the first two 

weeks of instruction of the introduction to programming module, spanning six 

theory and four laboratory sessions (a total of ten instructional hours).  

The teaching pedagogy of this part of the module combined elements of design 

(prescribed tasks) and improvisation (within pre-designed learning activities). 

This approach promoted a creative class environment in which students 

proposed or recommended next steps in an activity, especially because it 

involved game development. The prescribed content outline is presented as 

follows. 

Theory Session 1: Introduction to the environment, description of code-blocks 

and practice with the code editor, using sprites, costumes, changing 

backgrounds.  

Activity 1: Understand/predict the output of the Scratch program. 

Activity 2: Execute the program to visualise the output and fix the 

logical error. 

Theory Session 2: Introduction to basic programming constructs, such as 

variables, input, output, conditions, loops and basic event handling available in 

Scratch toolbox.  

Activity 1: Write the pseudocode for a Body Mass Index calculator. 
Implement the pseudocode using Scratch. 

Activity 2: a step-by-step tutorial of how to create a pong game.  

Laboratory Session 1 – assignment: solve the maze (level of difficulty: easy). 

Laboratory Session 2 – assignment: create a birthday cake (level of difficulty: 

easy). 

Theory Session 3: Explanation of more advanced programming concepts, 

such as arrays, cloning (instantiation) and message-broadcasting. All concepts 

were demonstrated by the professor using live coding. 
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Activity 1: Read the specifications and create an Internet Protocol (IP) 

packet switcher, using a Domain Name Server (DNS) resolver array. 

Laboratory Session 3 – assignment: create a fruit ninja game (level of 

difficulty: medium). 

Laboratory Session 4 – assignment: create a hunting game (level of difficulty: 

medium-hard). 

Theory Sessions 3-4-5: In-class group work - Donkey-Kong inspired platform 

game. Students work in pairs towards the development of a Donkey-Kong 

inspired platform game. The instructor’s role in this phase was more of a 

facilitator than a teacher, assisting whenever students did not know how to 

progress.  

While students worked on their computers during laboratory sessions, 

instructors kept general notes on their interaction with the program, their 

emotional expressions, their levels of attention and perseverance, and their 

performance (see Appendix Three).  

Keeping notes of human behaviour imposes a limitation on the study due to 

inherent partiality of the observer; furthermore, the process could not be 

exhaustive in terms of data gathering, given that there was only one observer 

for the over fifteen students in the classroom. Performing audio-visual 

recordings could have been used to overcome this limitation (Cohen et al., 
2013) and multimodal discourse analysis (Kress & Van Leeuwen, 2001) could 

have enriched the study with additional perspectives including the analysis of 

student interactions with the environment (recorded using screen capture 

software) and the recording of student facial expressions and verbal comments 

(recording using computer cameras).  

Visual research methods would have provided a rich amount of data for 

analysis; however, constrained by the fact that the study took place within a 

formal classroom setting, video or screen recording might have proved to be 

obtrusive to the lesson, and would additionally require the consent of all the 

students. Furthermore, according to Bassey (1999), making it obvious to 

subjects that they are being recorded might instigate a change in behaviour.  
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At the end of the two weeks, students were assigned the first part of their 

summative coursework: to develop a hangman game in Scratch, utilising a 

fixed dictionary of ten words. The program had to randomly pick a word from 

the dictionary and the user had to guess the word. User input was to be 

validated and compared to the letters of the word picked, allowing one to 

evaluate the appropriate use of strings and conditionals by the programmer. 

Ten tries were allowed in each game, thus demonstrating the appropriate 

usage of repetition. Code had to be documented using comments. Modularity 

of the code was also a factor to be assessed. As an additional challenge, 

students were asked to propose and implement extra functionality to enhance 

their game. 

Scratch coursework assessed students’ knowledge of all concepts taught: 

arrays; random numbers; conditions; loops; event-handling; message 

broadcasting; cloning; timers; custom blocks; game mechanics (score, win/lose 

conditions); and code documentation. This coursework part accounted for 

20% of the students’ final grade. 

After the 2 weeks of VPE instruction, students progressed to learning how to 

program using Java (refer to section 1.3). For their Java coursework 

assessment, students were required to implement the same hangman game. 

The Java assessment accounted for 40% of the students’ final grade.  

Students were also assessed with a midterm examination in pseudocode and 

Java, accounting for the remaining 40% of the students’ final grade. 

 

6.4  Development of the Questionnaire Survey Tool 

To identify student perceptions of the enjoyment, ease of use, usefulness, 

output quality and attitude towards using Scratch, Davis’s Technology 

Acceptance Model was adapted and validated. Details about adaptations follow 

in sub-section 6.3.3 concerning the questionnaire Section 2 - Overall 

Evaluation and Acceptance of Scratch and in sub-section 6.3.4 concerning 

questionnaire Section 3 - Perceived Ease of Use and Perceived Usefulness. 
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To identify student motivations to learn programming, a mixture of questions 

from Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich & de 

Groot, 1990b) and from the Science Motivation Questionnaire (SMQ-II) 

(Glynn et al., 2009) were adapted. The process of the identification and 

selection of questions included, follows in sub-section 6.3.5 concerning 

questionnaire Section 4 - Motivated Strategies for Learning.  

Finally, to identify student learning styles, Felder and Soloman’s Index of 

Learning Styles instrument was adopted without modification (see sub-section 

6.3.6 concerning questionnaire Section 5 - Index of Learning Styles). 

All three instruments, along with general demographic information were 

included in the final survey instrument and administered to students enrolled 

in the ‘Introduction to Programming’ module.  

The finalised survey contains six main sections and was administrated online 

using the Qualtrics Survey Platform of Lancaster University.  

6.4.1  Section 0 – Participant Information Sheet and Consent Form 

Section 0 contains the participant information sheet where the students are 

informed of the purpose of the study and are requested to check all questions. 

Participants that provide at least one negative response to the questions above 

are immediately disqualified and are transferred to the “Thank you” exit page. 

The participant information sheet, as well as the concept form, obtained ethics 

clearance from ethics committees of both Lancaster University and XYZ College 

where the study took place. 
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6.4.2  Section 1 - Participant Demographic Information 

In section 1, participants were asked five demographic questions, one question 

concerning the reason they took the course, one question about their current 

programming level (which branched to which programming languages they 

were already being taught and whether they were familiar with block-based 

programming in the past), three Likert-type scale questions based on their 

overall opinion about Scratch and their intentions of using it in the future, and 

two open-ended questions about Scratch features that they found useful and 

ones they disliked (possible perceived barriers).  

6.4.3  Section 2 - Overall Evaluation and Acceptance of Scratch 

Questions included in Section 2 are based on Davis’s overall system evaluation 

in the Technology Acceptance Model (TAM) (Davis, 1985). TAM has been 

widely applied to identify user attitudes towards the use of technology and to 

predict the adoption of a system (Chang & Cheung, 2001; Wixom & Todd, 

2005; Shroff et al., 2011; Weng et al., 2018). Wording of the questions was 

modified to fit the context under investigation.  

The final survey tool section 2 contained five questions (Q15 – Q21) aiming to 

measure “attitude” towards using Scratch, utilising semantic differential 

(bipolar) rating scales, based on Martin Fishbein and Icek Ajzen’s theory of 

reasoned action (Fishbein & Ajzen, 1975) and Osgood measurement 

techniques of belief, attitude, intention and behaviour (Osgood et al. 1957).  

Enjoyment according to the definition provided by the Collins English 

dictionary is the “feeling of pleasure and satisfaction that you have when you 

do or experience something that you like” (Collins English Dictionary, 2019). 

Carroll and Thomas add that in order for students to engage in activities and 

consider them fun “is all right to fail” (Carroll & Thomas, 1988).  The same 

view is supported by Deci (1976) stressing that there is external reward related 

to the “fun” activity apart from the feeling of competency. Davis et al. (1992) 

align with the views of Deci (1976), Malone (1981) and Carroll and Thomas 

(1988) that perceived enjoyment could be considered as an example of 

intrinsic motivation, whereas perceived output quality, relevance and 
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effectiveness could be considered as examples of extrinsic motivation. Both of 

them have been included in this study following the TAM2 technology 

acceptance model (see  Figure 6.2) to measure perceived enjoyment and 

output quality along with ease of use and usefulness to support the learning 

objectives of the introduction to programming module. 

 
 Figure 6.2: TAM2 extended to include enjoyment and output quality 

Osgood has proven that the semantic differential approach with five items (five 

bipolar pairs of adjectives) yields reliable findings, which highly correlate with 

alternative Likert numerical measures of the same attitude (Osgood et al., 
1957). Examples of responses in the form of adjective pairs have been found to 

reflect the evaluation or judgement about an object, concept, or behaviour 

along a dimension of favour or disfavour, good or bad, like or dislike, 

enjoyable or unenjoyable, desirable or undesirable, good or bad, pleasant or 

unpleasant, relevant or irrelevant, interesting or not interesting on the 

Semantic Differential (SD) scale. 

The reason to adopt the specific adjective pairs: boring-fun, ineffective-

effective, unenjoyable-enjoyable, irrelevant-relevant, unpleasant-pleasant is 

three-fold. Firstly, their validity has been established in previous research 

(Davis, 1985; Igbaria et al., 1995; Chang & Cheung, 2001; Wixom & Todd, 

2005).  Secondly, they reflect motives of using technology derived from a 

larger pool extracted from past research which is similar to this research 

context. Lastly, they were selected from a larger item pool of adjectives as 

being the most representative ones, using a card-sorting survey. Ten professors 

who teach various programming modules (subject field experts) at XYZ college 
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were asked to choose 6 adjectives from a larger pool and place them in the two 

categories (enjoyment/output quality). The larger pool contained also the 

adjectives: efficient, beneficial, important, interesting and demonstrable. The 

results using a standardisation matrix are shown in Table 6.2. 

 
Standardisation Matrix 

Variable name Construct: Enjoyment Construct: Output Quality 
Beneficial 1 3 
Demonstrable 3 4 
Effective   9 
Efficient   5 
Enjoyable 9   
Fun 10   
Functional   10 
Important 2 3 
Interesting 5 1 
Pleasant 9   
Relevant   10 

Table 6.2: Standardisation matrix - Card Sorting  
 

As a result, the overall attitude construct included in the survey encompasses 

an enjoyment sub-construct (questions 15, 17 and 19) and a cognitive 

instrumental process sub-factor (questions 16, 18, 21). Both enjoyment and 

cognitive instrumental processes (output quality, result demonstrability, 

relevance) have been shown by prior studies to significantly influence user 

acceptance (Venkatesh & Davis, 2000).  

 

6.4.4  Section 3 - Perceived Ease of Use and Perceived Usefulness 

In Section 3, questions were again adapted from Davis’s Technology 

Acceptance Model (1985). 

Davis (1985), in his doctoral thesis, proposed that an information system’s user 

acceptance can be predicted by user motivation. He also argued that user 

motivation is influenced by an external stimulus of the actual system’s features 

and capabilities (see  Figure 6.2).  
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The technology acceptable model contains twelve Likert-type questions of the 

same scale. Davis’s technology acceptance survey (Davis, 1989) consists of two 

factors: perceived usefulness and perceived ease of use and six (6) statements 

in which the (…) ellipse can be replaced by the system under consideration for 

user acceptance.   

Perceived ease of use (PEU) 

• EASE1: Learning to operate the (. . .) is easy for me 

• EASE2: I find it easy to get the (. . .) to do what I want it to do 

• EASE3: Usage of the (. . .) is clear and understandable 

• EASE4: I find it cumbersome to use the (. . .) 

• EASE5: It is easy for me to remember how to perform tasks using (. . .) 

• EASE6: Overall, I find the (. . .) easy to use  

Perceived Usefulness (PU) 

• USE1: Using (. . .) enables me to accomplish tasks more quickly 

• USE2: Using (. . .) improves my job performance 

• USE3: Using (. . .) increases my productivity 

• USE4: Using (. . .) enhances my effectiveness on the job 

• USE5: Using (. . .) makes it easier to do my job 

• USE6: Overall, I find (. . .) useful in my job 

I studied the questions originally created and tested by Davis during the 

development of the tool, as well as a number of other similar questions 

adapted by subsequent studies.  

Keeping similar wording where possible, I included five questions concerning 

student opinion about Scratch’s perceived ease of use. The selection of the final 

statements, as they appear below, was finalised after a focus-group review 
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session with the four fellow professors (subject field experts) who participated 

in the selection of the adjectives for the previous survey section. 

• Q23: Learning to operate Scratch is often frustrating.  (EASE1) 

• Q24: It is easy for me to remember how to perform tasks inside the 

Scratch Environment. (EASE2) 

• Q25: I find it easy to get Scratch to do what I want it to do. (EASE3) 

• Q26: Usage of Scratch is clear and understandable. (EASE4) 

• Q27: Overall, I find Scratch easy to use. (EASE5) 

Again, maintaining similar wording where possible, I included five questions 

concerning student opinion about Scratch’s perceived usefulness.  

• Q28: Using Scratch helped me improve my computing skills. (USE1) 

• Q29: Scratch makes it easier for me to convey an algorithm into a 

program, rather than using a text-based programming language. (USE2) 

• Q30: Scratch improved my understanding of all critical aspects of the 

software development process (which are the main learning outcomes 

of this module). (USE3) 

• Q31: Scratch makes it easier for me to understand the main 

programming concepts (variables, loops, decisions, etc.). (USE4) 

• Q32: Overall, I find Scratch useful for this module. (USE5) 

The version of the TAM used to evaluate the perceived enjoyment, output 

quality, ease of use and usefulness of Scratch is depicted in Figure 6.3. The 

arrows which demonstrate the relationships between the variables are missing, 

since the scope of this study was not to create and verify a model for the 

acceptance of Scratch rather than relate the TAM variables to the participants’ 

learning styles. 
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Figure 6.3: TAM of Scratch 

6.4.5  Section 4 - Motivated Strategies for Learning 

In order to standardise terminology between the two distinct tools, I will use 

the word “category” in this section to represent the meaning of components or 

scales or summative scales and the word “statement” to represent the items or 

the questions of the questionnaire. 

The MSLQ is a self-reporting instrument developed to measure students’ 

motivation, orientations and use of learning strategies. The first version of the 

Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich & de Groot, 

1990) contained 5 categories: intrinsic value, self-efficacy, test anxiety, 

cognitive strategy for use and self-regulation, with a total of fifty-six 

statements. The final version (Pintrich et al., 1991) is composed of two 

sections. The motivation section contains six categories and a total of thirty-

one statements, while the learning strategies section contains nine categories 

and a total of fifty statements. More specifically: 

The motivation section contains three main components which include the size 

scales mentioned above:  

1) a value component which includes scales for:  

a) intrinsic goal orientation,  

b) extrinsic goal orientation, and  
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c) task value;  

2) an expectancy component which includes scales for:  

a) control of learning beliefs, 

b) self-efficacy for learning and performance,  

c) an affective component which includes a scale for, and 

d) test anxiety. 

The learning strategies section includes two main components:  

1) the cognitive and metacognitive strategies component which include scales 

for: 

a. rehearsal,  

b. elaboration,  

c. organisation,  

d. critical thinking, and  

e. metacognitive self-regulation;   

2) the resource management strategies component which includes scales for:  

a. time and study environment,  

b. effort regulation,  

c. peer learning, and  

d. help seeking (Duncan & Mckeachie, 1991; Pintrich et al., 1991). 

The Science Motivation Questionnaire II, on the other hand, contains five 

categories and each category is composed of five statements, totalling twenty-

five statements, related to intrinsic motivation, self-efficacy, self-

determination, grade motivation and career motivation. 

These two questionnaires have common categories: intrinsic motivation, task 

value, extrinsic motivation, self-efficacy, self-regulation and self-determination. 

Both tools consist of statements and use Likert-type scales to obtain user input 

which are reflecting extreme positions on a continuum across which people are 

likely to agree (very true of me) or disagree (not at all true to me). Summative 

scores are constructed by taking the mean of the statement scores that make 
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up each category. Both tools have been tested multiple times for their validity 

and reliability by their creators ( Glynn et al., 2009; Pintrich et al., 1993; Glynn 

et al., 2011). 

There are three main reasons for not applying the scales from the existing 

questionnaires. The main reason for creating a new questionnaire is because I 

identified a gap in the literature in finding a tool to access student motivation 

in learning how to program. Secondly, the statements of the existing 

questionnaires did not fully address the topic of computer programming and, 

finally, not a single questionnaire addressed all motivational components 

required for this research. For example, career motivation exists only on the 

SMQ-II and is directly related to extrinsic motivation. Intrinsic motivation is 

addressed in the Science Motivation questionnaire in a way that lacks the 

component of task value, while the Motivated Strategies for Learning 

Questionnaire lacks the component of career motivation. The motivational 

components that influence learning provided the basis of the selection of the 

main categories: intrinsic motivation (including task value), self-efficacy, self-

determination and extrinsic motivation (grade and career motivation). The 

existing statements were rephrased to include “computer programming” or 

“learn how to program” concepts, in order to make them more specific. 

The first step taken to create section 4 of this survey was to merge all existing 

statements in the categories of interest and attempt to establish face and 

content validity. As mentioned previously, content validity can be measured by 

relying on the knowledge of people who are familiar with the construct being 

measured. Eight experts in the field of education reviewed all statements for 

readability, clarity and comprehensiveness. Experts reviewed all questions by 

grading them as “essential” (score of 1), “useful but not essential” and “not 

necessary” (score 0) in order to measure student motivation. A Content 

Validity Ratio (CVR) was calculated for all statements using the formula: 

(Score of items - Total number of panellists /2) / (Total number of Panellists / 

2) (Lawshe, 1975). 

Given the table provided by Lawshe (1975), the minimum CVR required for 

any item to be included in a questionnaire is 0.75 when the number of 

reviewers (panellists) are eight. As a result, all questions with a CVR >= 0.75 
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were selected to be included in the subsequent test for scale reduction and are 

highlighted in Appendix Two.  

In a second test for content validity, 15 professionals in the areas of 

educational psychology and 15 educators in the areas of computing, 

information systems and informational technology were asked to select the five 

most representative items out of the ones which had a CVR >= 0.75 in each of 

the six motivational components. Following the recommendations of Hinkin 

(1998), the goal could be the retention of four to six items per construct. 

Schriesheim (1995) and Hinkin (2006) also support that, although including 

more items might increase the internal consistency of a single construct, a 

lengthy questionnaire can maximise the bias caused by boredom and fatigue 

(Schmitt & Stuits, 1985). The resulting scales were composed of the 5 top-

rated questions in the sections of intrinsic motivation (see Figure 6.4), self-

efficacy (see Figure 6.5), self-determination (see Figure 6.6) and extrinsic 

(career and grade) motivation (see Figure 6.7). In the figures following, the 

top 5 questions which were selected for the study are highlighted with blue 

color. Reversed questions are marked with (*R). 
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Figure 6.4: Intrinsic motivation scores 
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I often choose programming exercises which will
help me learn something, even if they require…

I think the course material in this class is useful for
me to learn.

I am  very interested in the content area of this
course.

It is important for me to learn the course material in
this class.

In a class like this, I prefer course material that
arouses my curiosity, even if it is more difficult to…

I think I will be able to use what I learn in this class in
other classes.

Understanding computer programming is important
to me.

I like what I am learning in this class.

Even when I do poorly on a test, I try to learn from
my mistakes.

I am curious about latest develoments in the field of
computer programming.

Learning computer programming makes my life
more meaningful.

I think that what I am learning in this class is not
useful for me to know. (*R)

It is important for me to learn how to program.

I enjoy learning computer programming.

In a class like this, I prefer class work that is
challenging so I can learn new things.

Learning computer programming is interesting.

Questions on Intrinsic Motivation (Goal Orientation and 
Task Value)
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Figure 6.5: Self-efficacy scores 
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Considering the difficulty of this couse, the
teacher, and my skill, I think I will do well in this

class

I expect to do very well in this class.

Compared with others in this class, I think I'm a
good student.

Compared with other students in this class I
expect to do well.

I believe I can earn an "A" in computer
programming.

I am sure I can understand computer
programming.

I am sure I can do an excellent job on the
problems and tasks assigned for this class.

Compared with other students in this class I think
I know a great deal about the subject.

My study skills are excellent compared with
others in this class.

I believe I can earn a good grade in computer
programming.

I am not confident I will do well on computer
programming tests. (*R)

I am confident I will do well on computer
programming labs and projects.

I believe I can master computer programming
knowledge and skills.

I am confident I can learn all programming
concepts taught in the course.

Questions on Self-Efficacy
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Figure 6.6: Self-determination scores 
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I ask myself questions to make sure I know the
material I have been studying.

When work is hard I either give up or study only
the easy parts. (*R)

Even when study materials are dull and
uninteresting, I keep working until I finish.

I work hard to get a good grade even when I
don't like a class.

Before I begin studying I think about the things I
will need to do to learn.

When I'm reading I stop once in a while and go
over what I have read.

I spend a lot of time learning (practicing and
studying) computer programming.

I study hard to learn computer programming.

I use strategies (online courses, forums, books) to
learn computer programming well.

I spend a lot of time creating computer programs
to improve my skills.

I put enough effort into learning computer
programming.

I find that when the teacher is talking I think of
other things and don't really listen to what is

being said. (*R)

I work on practicing exercises and answer end of
chapter questions even when I don't have to.

I prepare well for computer programming tests
and labs.

I work on solving all exercises assigned by the
instructor.

Questions on Self-Determination and Efford Regulation
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Figure 6.7: Extrinsic Motivation (Career and grade) scores 
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Scoring high on computer programming tests
and labs matters to me.

I think about the grade I will get in computer
programming.

Getting a good grade in this class is the most
satisfying thing for me right now

Understanding computer programming will
benefit me in my career.

I like to do better than other students on
computer programming tests.

Getting a good computer programming grade
is important to me.

If I can, I want to get better grades in this class
than most of the other students

I want to do well in this class because it is
important to show my ability to my family,

friends or others

The most important thing for me right now is
improving my overall GPA, so my main concern

in this class is getting a good grade

I will use computer programming problem-
solving skills in my career.

Knowing computer programming will give me a
career advantage.

It is important that I get an "A" in computer
programming.

Learning computer programming will help me
get a good job.

My career will not involve computer
programming. (*R)

Questions for Extrinsic Motivation (Career and Grade)
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To identify students who check the Likert-scale values without reading the 

questions carefully, one item in each scale has been reversed and the statement 

has a negative meaning (shown with *R). Examples of reversed questions are 

q35, q39, q44 and q49 (see Appendix One, Section 4). The ratings of these 

reversed statements were reversed before computing the individual scores on 

the summative scales. 

 

6.4.6  Section 5 - Index of Learning Styles 

In section 5 of the questionnaire, I applied Felder and Soloman’s Index of 

Learning Styles instrument (Felder & Soloman, 1993) to collect information 

about student learning styles. The aim was to compare the data obtained with 

the students’ learning styles in order to identify possible patterns and verify if 

there was some correlation between students’ learning styles and their 

preference towards visual programming environments.  

The Index of Learning Styles® (ILS) is a forty-four-item forced-choice 

instrument developed in 1991 by Richard Felder and Barbara Soloman to 

assess preferences on the four scales of the Felder-Silverman model, discussed 

in section 2.2.  

The classification of students in each dimension (visual/verbal, 

active/reflective, sequential/global, intuitive/sensing) is based on the answers 

they provide to these questions. Each learning style dimension score is 

calculated by adding up the individual scores of 11 yes/no questions that 

represent that dimension.  

For example, a score ranging from 0 to 11 in the visual/verbal dimension will 

place the student somewhere in a line from strongly verbal (0) to strongly 

visual (11), from strongly reflective (0) to strongly active (11), from strongly 

global (0) to strongly sequential (11) and from strongly sensing (0) to strongly 

intuitive (11) (Felder, 2005). Moderate preference for learning in a particular 

style (score 2-3 on the left or 8-9 on the right) or mild preference (score 4-5 or 

the left or 6-7 on the right) is also calculated and reported. Mild preferences 

do not generally classify a person in any of the two poles in that dimension. On 
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the other hand, a learner’s strong preference for a learning style might expose 

learning difficulties in an environment which does not support that style. 

The questions can be found in Appendix One in Section 5.  

 

6.5  Validity and Reliability 

6.5.1  Validity 

Polit and Beck (2004) define validity as the degree to which an instrument 

measures what it is designed to measure. Cronbach and Murphy (1970) state 

that “the end goal of validation is explanation and understanding” and their 

views are in accordance with Messick (1987) who describes a test’s validity in 

terms of “construct validity”. A construct is a hypothetical characteristic of the 

participants taking the test, assumed to be measured in the test’s results 

(Cronbach & Meehl, 1955). Essentially, the main question is “does the test 
measure the construct it is supposed to measure?” Wainer and Braun (2013) also 

agree that all information collected about a test can contribute to the overall 

understanding of its construct validity, which includes all forms of validity 

evidence (content-related, criterion-related and construct-related). More 

specifically: 

• content-related validity can be evaluated based on professional 

judgments about the content relevance and appropriateness of the test’s 

items with regards to the construct being measured (Messick, 1987; 

Polit & Beck, 2004);  

• criterion-related validity can be evaluated by comparing test scores with 

external variables (criteria) which can also measure the qualities under 

investigation (Messick, 1987); and 

• construct-related validity can be evaluated by examining which qualities 

the test measures and the degree to which the test scores relate to the 

theory that defines these qualities (Cronbach, 1957).  

There are many different methods by which researchers can address the issues 

of validity and reliability, although their inherent weaknesses cannot be 
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completely removed (Cohen et al., 2013). These methods can be used to 

examine both internal and external construct validity and include among 

others: content validity ratios (CVR), test/retest, confirmatory factor analysis, 

group differences, correlation matrices, comparison with external criteria, 

analysis of variances and alpha coefficients.  

It should be noted that both Gronlund (1971) and Messick (1987) claim that 

validity should be seen as a matter of degree and not as an absolute value.  

6.5.2  Validity Issues Addressed in this Study 

The TAM questionnaire, which was used as the basis for section 2 in the 

questionnaire, was tested for construct validity during its initial development 

(Davis, 1985) and in numerous studies afterwards (Davis, 1989; Davis, 

Bagozzi, & Warshaw, 1989; Venkatesh & Davis, 2000; Wixom & Todd, 2005). 

Additionally, to further verify the scales, a confirmatory factor analysis was 

used to test whether or not the data collected from the questionnaire fit the 

hypothesized measurement model and as such to confirm construct validity of 

the tool. 

Table 6.3 presents the Cronbach Alpha coefficients for TAM scales.  

TAM Scales 
Cronbach 
Alpha N of Items 

Ease of use (q23, q24, q25, q26, q27) 0.840 5 

Usefulness (q29, q28, q30, q31, q32) 0.946 5 

Enjoyment (q15, q19, q17) 0.952 3 

Output quality (q16, q18, q21) 0.943 3 
Table 6.3: Cronbach alpha for TAM 

 

Table 6.4 presents the factor loadings of the questionnaire and the four 

components extracted: Usefulness, Ease of Use, Enjoyment and Output 

Quality.    

  



 
 
 
 

148 
 
 
 

 

Rotated Component Matrix 

 1 – Usefulness 2 – Ease of Use 3- Enjoyment 4- Output Quality 

Q29 .856    
Q28 .848    
Q30 .840    
Q31 .835  .310  
Q32 .785  .356 .350 

Q25  .842   
Q24  .827   
Q26  .786   
Q27  .734   
Q23  .682   
Q15   .892  
Q19   .891  
Q17 .392  .809  
Q16    .914 
Q18    .841 
Q21 .347   .832 

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser 
Normalization. a Rotation converged in 5 iterations. 

Table 6.4: CFA for TAM 

The obtained values were above the recommended level of .70, thus indicating 

adequate internal consistency (Cronbach, 1951; Peterson, 1994; Tavakol & 

Dennick, 2011). This pattern of high reliability and validity is consistent with 

much prior research (Davis, 1989; Venkatesh & Davis, 2000; Wixom & Todd, 

2005). The scales were also tested for convergent validity, considering the 

factor loadings, composite reliability (CR) and the average variance extracted 

(AVE) (see Table 6.5).  

TAM Scales AVE CR SQRT(AVE) 
Usefulness 0.694178 0.918958 0.833173 
Ease of Use 0.748009 0.898859 0.864875 
Enjoyment 0.694178 0.918958 0.833173 
Output Quality 0.744967 0.897408 0.863115 

Table 6.5: AVE and CR values for TAM 



 
 
 
 

149 
 
 
 

The calculated AVE values exceeded the recommended value of 0.50 and CR 

values exceed 0.70, so the questionnaire scales can be considered as adequate 

(Fornell & Larcker, 1981; Hair et al., 2016).  

For the purpose of obtaining content validity regarding the selection of the 

adjective pairs used in the TAM section of the questionnaire, 10 professors 

from college XYZ provided their feedback by performing a card sorting exercise 

(see Table 6.2). 

The MSLQ and Science Motivation Questionnaire, the tests from which the 

motivation section items were selected, have been examined for 

generalisability, content, face, structural, construct and predictive validities 

during their development studies and beyond (Pintrich et al., 1993; Glynn et 
al., 2009; 2011; Taylor R., 2012; Salta & Koulougliotis, 2015).  

For the purpose of obtaining content validity for the motivation section of the 

questionnaire (using questions from both MSLQ and the Science Motivation 

Questionnaire) and with a goal to retain four to six items per construct, 30 

professionals (subject experts) provided their feedback which resulted in the 

selection of the most representative items per construct using the content 

validity ratio (CVR) method as described in sub-section 6.4.5 . 

Four IT professors, including myself, who have extensive teaching background 

in introduction to programming and other programming courses, reviewed the 

resulting questionnaire and made appropriate suggestions, which were taken 

into consideration.  

Finally, a pilot survey was conducted among 4 senior IT graduates to 

determine whether there were any misconceptions in the wording of the 

statements and to test the effort required to complete the questionnaire. 

Feedback from the pilot survey resulted in minor revisions to the questions and 

the removal of 3 items. 

Before analysing all collected data, the resulting motivation scales were tested 

to measure the internal consistency among the items of the scales using 

Cronbach alpha coefficients (see Table 6.6).  



 
 
 
 

150 
 
 
 

Motivation scales 
Cronbach's 
Alpha N of Items 

Intrinsic value (q39, q41, q43, q47, q52) 0.825 5 
Extrinsic value (q35, q37, q40, q46, q53) 0.840 5 
Self-regulation (q36, q38, q45, q49, q50) 0.805 5 
Self-efficacy (q34, q42, q44, q48, q51) 0.888 5 

Table 6.6: Cronbach alpha’s for Motivation Scales 
 

A confirmatory factor analysis also verified that the questions fitted into the 

four scales. Table 6.7 presents the factor loadings for each extracted 

component. 

 
Rotated Component Matrix 

 1. Self-Regulation 2. Extrinsic 3. Self-Efficacy 4. Intrinsic 
Q39      0.858 

Q41       0.787 

Q43       0.690 

Q47       0.822 

Q39      0.703 

Q37   0.642     

Q40   0.860     

Q46   0.699    
Q35  0.660     

Q53   0.548     

Q36 0.644       

Q38 0.775       

Q49 0.453       

 1. Self-Regulation 2. Extrinsic 3. Self-Efficacy 4. Intrinsic 
Q50 0.834      

Q54 0.817       

Q34     0.781   

Q42     0.568   

Q44    0.783   

Q45    0.784   

Q48    0.526   

Q51     0.720   
Extraction Method: Principal Component Analysis.  
Rotation Method: Varimax with Kaiser Normalization. a Rotation converged in 13 iterations. 

Table 6.7: CFA for Motivation scales 
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The scales were also tested for convergent validity considering the factor 

loadings, composite reliability (CR) and the average variance extracted (AVE) 

(see Table 6.8).  

Motivation Scale AVE CR SQRT(AVE) 
Intrinsic 0.6000 0.8820 0.7747 
Extrinsic  0.5360 0.8490 0.7321 
Self-regulation 0.5170 0.8370 0.7188 
Self-efficacy 0.5810 0.8920 0.7620 

Table 6.8: AVE and CR values for motivation scales 

The calculated AVE values exceeded the recommended value of 0.50 and CR 

values exceed 0.70, so the questionnaire scales can be considered as adequate 

(Fornell & Larcker, 1981; Hair et al., 2016).  

The Index of Learning Styles questionnaire was also examined for validity 

during its development. Construct validity, test-retest reliability, internal 

consistency and inter-scale orthogonality measurements have been carried out 

by a number of researchers as stated by Felder (2005) and since this 

questionnaire was used without any modifications, no further tests for validity 

were performed.  
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6.5.3  Reliability 

Joppe (2000) defines reliability as the extent to which test results can be 

consistently reproduced under similar methodologies and to which the data 

can be collected from a representative sample of the population under study. 

Reliability in quantitative research differs from reliability in qualitative 

research. In quantitative research reliability can be addressed in terms of 

replicability over time and over groups of responders (Cohen et al., 2013). 

6.5.4  Reliability Issues Addressed in this Study 

In the context of this study, and to ensure reliability, two different checks were 

made. The first check was performed to assure stability and replicability over 

time. Six students took the survey twice, within a period of a month. Their 

results were tested for deviations. Five students were more or less consistent in 

all of their answers, while one student had some differences in the individual 

answers for the acceptance of Scratch (TAM) but the overall average in each 

scale was very close. 

The second test was performed to ensure replicability over groups of 

respondents. Eight different groups of students participated in the research 

and consistently produced similar results. These students were registered in 

eight different classes of the ‘Introduction to Programming’ module during four 

semesters. Two classes were taught by me and six by other professors of 

college XYZ. The conditions under which the data collection took place were 

standardised. The survey took place in the classroom at the end of the 

semester and during the last 30 minutes of the instruction period. Students 

who did not wish to participate were allowed to leave the room. To ensure 

that I (as the researcher) was not affecting the test results, the mean scores in 

the 8 groups (in all sections of the survey) were tested and found that they did 

not vary significantly. Additionally, the mean grades for coursework, midterm 

and final grades were tested for mean differences using a t-test and no 

statistically significant differences were found. 
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6.6  Qualitative Data Collection - Interviews 

6.6.1  Interview Protocol 

Students to be interviewed were selected from the survey by indicating their 

intention to participate in an interview. They were contacted through email to 

make a face-to-face appointment. In this email, students were informed about 

the location, purpose and duration of the interview. 

All interviews took place in the same environment (an office at XYZ College) 

with which students and professors are familiar. Before the interview, I 

addressed terms of confidentiality, and obtained participant permission to 

voice-record the interview. Before initiating the interview, participants were 

asked if they had any questions concerning the study or the protocol. 

6.6.2  Interview Questions for Students 

Although the interviews were semi-structured, I used the following questions 

as a general guideline: 

• What is your perception about programming? 

• Have you attended a course on Scratch in the past? 

• Overall, did you enjoy working Scratch? If so, why? If not, why not? 

⁃ Do you find Scratch easy to use? Why? 

⁃ Do you find Scratch useful for the specific module? Why? 

⁃ Do you find Scratch interesting? If yes, mention some 

characteristics of Scratch that made it interesting for you… 

• Which are the major disadvantages you see in the use of Scratch in the 

‘Introduction to Programming’ module? 

• Where you motivated to use Scratch outside the scope of this module? 

To develop your own games… 

• Did you try to further enhance (at home) Scratch projects we developed 

in class? 
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• Which of the two coursework assessments (Scratch/Java) did you spend 

more time developing? Why? 

• Which of the two coursework assessments did you enjoy developing 

more? 

6.7  Ethical Framework 

My research was carried out in a real-world situation involving real students 

participating in a required course for their major and involved open 

communication among the people involved. I, as the researcher, paid close 

attention to ethical considerations in the conduct of my work. Having in mind 

a number of principles concerning research ethics, I followed the guidelines 

presented by Winter (Winter, 1987). 

All the involved parties in my research (students, teachers, and XYZ College 

administration) were fully informed about the aims of my research and 

requested in advance to give me permission to conduct my research, using the 

participant information sheet. 

• Ethical approval was obtained from both the University of Lancaster and 

the XYZ college ethics committee (see Appendix Four).  

⁃ The letter of approval obtained from the University of Lancaster 

confirmed that the study could be conducted ethically. 

⁃ The letter of approval obtained from XYZ College’s ethics 

committee confirmed that the research could be carried out using 

a sample group of students attending the ‘Introduction to 

Programming’ module and professors with teaching 

programming experience. XYZ college also approved the survey 

questionnaire and interview protocol process. 

• All participants were you allowed to influence my research (I did not 

exclude any student who volunteered to participate). 

• Students who did not wish to participate were respected and their 

decision did not in any way affect their course grade. 



 
 
 
 

155 
 
 
 

• My research progress was visible and open to suggestions from others. 

• I obtained written permission before making any in-class observations, 

interviews or using survey results.  

• Participants were reported anonymously. Participants’ names and 

addresses were omitted from the data and did not appear on any 

documents other than the consent forms, which were stored in a 

private, secure cupboard. The anonymity of information provided was 

taken into consideration at all stages of the study, including 

transcription, coding and data analysis, as well as writing up the results.   

• Students were allowed to read their own interview transcripts before 

they were used in my research and/or published. 

• I accepted full responsibility for maintaining confidentiality. 

• All student feedback was immediately downloaded and deleted from 

the online survey tool as soon as each semester survey was closed. 

• Survey results were kept in password encrypted Microsoft (MS) Excel 

files. No personal student information was kept in the MS Excel files. 

• In the transcription of the interviews, each student name was replaced 

with a participant number. 

6.8  Conclusion 

This chapter presented the research design and justified the selection of an 

evaluative case study as the overarching methodological approach and an 

explanatory sequential mixed method design as the data collection strategy. It 

provided a detailed description of the development process of the 

questionnaire tool and presented the interview protocols. It addressed validity 

and reliability issues and concluded with a description of the ethical 

framework. 

The next chapter proceeds with a description of the data gathering process and 

a detailed analysis of the data collected from student surveys, interviews and 

class observations.   
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Chapter 7  Data Analysis and Findings  

7.1  Introduction to Data Analysis 

“Data analysis is the process of making sense out of the data. And making 
sense out of data involves consolidating, reducing, and interpreting what 
people have said and what the researcher has seen and read – it is the 
process of making meaning.” (Merriam, 1998) 

In order to answer the research questions, four sources of data were used as 

input: student grades and results from the surveys, which were analysed 

quantitatively, and interview transcripts and class observations, which were 

analysed qualitatively. More specifically: 

1) Student grades were used for the overall comparison of student 

performance before and after the introduction of Scratch, and for the 

comparison of student performance in the Scratch coursework to that in the 

Java coursework, to address RQ1: “How do visual programming 
environments affect students’ performance in the course (assessment and final 
grades)?” 

2) Results from student surveys were used in: 

i) identifying overall acceptance of Scratch as a teaching and learning 

tool, to address RQ2: “How do students perceive visual programming 

environments?” 

ii) identifying student learning styles and their possible correlation to 

Scratch acceptance: enjoyment, ease of use, usefulness and output 

quality, to address RQ4: “How do students’ learning styles relate to 

their perceived enjoyment, ease of use, usability and usefulness of visual 

programming environments?” 

iii) identifying student motivation to learn programming and its possible 

correlation to their perceptions about Scratch, to address RQ3: “How 

do students’ motivations for learning programming relate to their 

perceptions about visual programming environments?” 
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3) In addressing RQ2 and RQ3, feedback provided by students during 

interview sessions and analysis from class observations were used to 

provide a better insight into student perceptions about Scratch VPE 

enjoyment and motivation and to complement the quantitative results. 

 

7.2  Data Gathering and Demographics 

Data were gathered during the Fall Semester 2016, Spring Semester 2017, Fall 

Semester 2017 and Spring Semester 2018. Each semester, there are two 

classes of the ‘Introduction to Programming’ module, with a maximum of 18 

students in each. Each class has its own timetabled sessions and might be 

taught by a different professor. Students register for a specific module class, 

and then attend the same one for the duration of the semester. The 

assessments and the module outline are common to each class. Formal class 

contact hours per semester are composed of thirty-five lecture hours and 

twenty-four laboratory sessions.  

 

The number of participants per session is shown in Table 7.1, as well as the 

total number of students registered. Four different professors taught these 

sessions and their names were replaced by letters to maintain anonymity. 

Ninety-two of the 113 students registered in the module through the years 

agreed to participate in the study and provided their feedback using an online 

survey software (Qualtrics) hosted at Lancaster University.  Twelve students 

volunteered to be interviewed and enrich this study with their qualitative 

feedback.  
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Academic 
Year  Semester Module 

Occurrence 
Number of 

Participants 

Number of 
students 

registered 

2016-2017 

Fall 2016 
A, Prof a 15 16 

B, Prof d  14 14 

Semester Total 29 30 

Spring 2017 
A, Prof a 13 16 

B, Prof c 5 7 

Semester Total 18 23 

2017-2018 

Fall 2017 
A, Prof a 14 16 

B, Prof d 9 16 

Semester Total 23 32 

Spring 2018 
A, Prof d 12 12 

B, Prof b 10 16 

Semester Total 22 28 

Total number of participants 92 113 
Table 7.1: Number of participants across the years of the study 

The following figures depict demographic information provided by students in 

section 1 of the survey (refer to Appendix Two) concerning their age range 

(see Figure 7.1); gender (see Figure 7.2); and academic major (see Figure 

7.3).  

 
Figure 7.1: Participant age distribution in year ranges 
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Figure 7.2: Participant gender distribution 

Gender distribution for the IT course has been the same for more than 10 years 

with male students outnumbering female ones. 

 

 
Figure 7.3: Participant distribution of majors 
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The distribution of majors is as expected, because the ‘Introduction to 

Programming’ module is a requirement for students majoring in IT and an 

elective for all other students. 

Section 2 of the survey asked students to describe their perceived level of 

programming expertise and whether they were familiar with the Scratch 

programming environment.  

 
Figure 7.4: Participant perceived current computer programming level of expertise 

The distribution of programming expertise in Figure 7.4 does not represent a 

formally assessed evaluation but how students self-evaluated their expertise. 

An explanation of each selection was included in the survey (Appendix One – 

Main Survey Instrument). 

 

7.3  Analysis of Student Grades 

The ‘Introduction to Programming’ module historically used the Java 

programming language to introduce students to programming up until Spring 

Semester 2016. From Fall Semester 2016 onwards Scratch was used during 

the first 2 weeks of instruction and students were introduced to basic 

programming constructs, such as variables, obtaining and validating input, 
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output, conditions, loops, event handling, modularity, and code 

documentation; subsequently, the students moved on to programming using 

Java.  

Student final grades were calculated based on a coursework assessment, which 

accounted for 60%, and a midterm examination, which accounted for the 

remaining 40%. Until Fall Semester 2016, coursework historically consisted of 

two parts, the first part being the development of a problem solution using 

pseudocode and the second being the implementation of the same problem 

using Java. From Fall Semester 2016, the first part was modified to include the 

implementation of a program in Scratch.  Mean student final grades through 

the years are shown in Figure 7.5. 

 

Figure 7.5: Mean student grades per semester from 2013 – 2018 

Semesters appearing in blue are those that pre-dated introduction of the 

Scratch visual programming environment, while those appearing in orange 

include the usage of Scratch. Since the instruction of Scratch has not ended 

with the end of this study, more recent data (Fall Semester 2018) are included 

for this comparison. Group statistics (before and after the use of Scratch) show 

a mean grade difference of 9.15% (see Figure 7.6).  
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Figure 7.6: Grade comparison before and after the use of Scratch 

I should stress that the student selection process has not changed since 2010 

when the college XYZ was affiliated with the Open University; the module 

class time has been the same and so are the professors who teach the module. 

Other factors might have affected this shift in grades such as the students’ 

growing familiarity with technology and motivation to learn programming. 

However, these factors have not been noted by any professors teaching 

programming modules during the past years. 

A Shapiro-Wilk test of Normality (p>0.05), as well as a visual inspection of the 

histogram, box plots and QQ-plots, showed that student grades for all students 

in all years are approximately normally distributed. As such, an independent 

samples t-test was run to determine if there were differences between the 

grades achieved by students before and after the intervention. Homogeneity of 

variances was noted, as assessed by Levene’s test (p=0.476).  The grades of 

students who were introduced to programming using Scratch were greater 

(N=110, M=58.26% +/- 1.78, SD=18.6 ) than those of students who were 

introduced to programming using Java (N=141, M=49.11% +/- 1.48, 

SD=17.6), demonstrating a statistically significant difference of 9.15% (95%, 

CI from 4.63 to 13.48), t(249) = 3.84 and p=0.000089 (d=0.5). This leads us 

to conclude that the difference of means of students’ grades is noteworthy and 

that they were improved substantially for the Scratch group. 
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Another interesting finding comes from the observation of pass/fail rates (see 

Figure 7.7). There was homogeneity of variances, as assessed by Levene’s test 

(p=0.884). The overall pass/fail rate of students introduced to programming 

using Scratch demonstrated an improvement of 15% (69% of students passed 

and only 26% failed the module) over the pass/fail rate of students introduced 

to programming using Java (57% of students passed and 42% failed).  This 

statistically significant improvement (95%, CI from 2.76 to 28.87), 

t(20)=2.528 and p=0.02, leads us to conclude that the pass/fail rates were 

considerably enhanced with the introduction of Scratch. 

 

 Figure 7.7: Pass/fail rates 

Similar research in the area was performed by Weintrop and Wilensky (2017), 

who compared student performance, learning gains and enjoyment amongst 

high school students being introduced to block-based programming prior to 

text-based programming versus students being solely introduced to text-based 

programming. Findings from their study also showed that students in the 

block’s pre-condition demonstrated greater learning gains and increased 

interest, while students with the text-based instruction perceived their 

experience as being more effective in improving their programming ability.   
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A second comparison of student performance with my data was done using the 

grades obtained by 92 students from the Scratch part of the coursework and 

the grades of the same students from the Java part of the coursework.   

Both assessment rubrics evaluated the understanding and appropriate use of 

the same constructs, and the programming requirements focused on 

implementing similar functionality. Students were required to develop a 

hangman game both in Scratch and in Java, utilising a fixed dictionary of 10 

words. The program had to randomly pick a word from the dictionary and the 

user had to guess the word. User input was to be validated and compared to 

the letters of the word picked, allowing one to evaluate the appropriate use of 

strings and conditionals by the programmer. Ten tries were allowed in each 

game, thus demonstrating the appropriate usage of repetition. Both programs 

had to be documented using in-line code comments. Modularity of the code 

was also a factor to be assessed. 

A paired-samples t-test was used to determine the importance of the mean 

difference of 18.2% obtained. Students performed 18.2% better in the Scratch 

part of the coursework (M=71.86%, SD=16.7) compared to the Java part of 

the coursework (M=53.60%, SD=20.61), using the same marking scheme. A 

statistically significant mean score increase (95% CI:14.53 to 21.99, 

t(91)=9.72 p< 0.0005, d=1.01) is depicted in Figure 7.8. 

 
Figure 7.8: Mean coursework scores 
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It is worth restating, at this point, that students writing programs in Scratch do 

not need to be concerned about and focus on syntax errors; they need only to 

focus on the required functionality (see section 4.5).  

Research on the comparison of student performance using different 

programming languages has been performed in the past. Savic et al. (2016) 

compared student performance in Modula-2 and Java but did not find any 

statistically significant differences while Papadakis and Orfanakis (2018) 

compared student performance in Alice and App Inventor and found that 

students performed better in App Inventor projects. Kowalczyk et al. (2016), 

on the other hand, compared the student perceptions on the readability and 

look and feel of both apps, but not student performance.  

 

7.4  Results from Student Surveys 

7.4.1  Student Acceptance of Scratch (TAM) Analysis 

“The most challenging task is to get everything right at once: a programming 
language that is easy for beginners, has enough power for experts, comes with an 
environment which meets the user’s needs, and is attractive to use...” (Green, 

1990). 

As described in section 6.3, the instrument for measuring overall student 

acceptance of Scratch is composed of 4 dimensions: perceived enjoyment; 

output quality; ease of use; and usefulness, as well as 2 outcome variables: 

intention to use (for personal reasons); and recommendation that it continues 

to be employed as a teaching tool in the module. 

Perceived enjoyment and output quality scales consist of 3 questions each, 

whereas ease of use and usefulness scales consist of 5 questions each. Intention 

to use and recommendation to adopt are based on a single question each. 

Student responses are given on a Likert scale ranging from 1 (strongly 

negative) to 7 (strongly positive). Overall acceptance is calculated as a mean 

of the student answers to all questions. 

The overall descriptive results of the study are presented in Table 7.2, while a 

breakdown per semester and per professor follows in Table 7.3. Using this 
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detailed information, a further investigation can be conducted, to identify 

whether each professor’s teaching style might have influenced student 

perceptions about Scratch. 

  
Output 
Quality Enjoyable 

Ease 
of 

Use 
Useful- 

ness 

Use for 
the 

Module? 
Intend 
to Use 

Overall 
Acceptance 

N 92 92 92 92 92 92 92 

Missing 0 0 0 0 0 0 0 

Mean 4.36 4.80 5.27 4.21 4.46 3.32 4.40 
Median 4.67 5.00 5.60 4.40 5.00 3.00 4.54 
Std. Deviation 1.43 1.29 1.14 1.50 1.75 1.42 0.98 

Range 5.67 5.33 5.60 5.60 6.00 5.00 4.31 

Minimum 1.33 1.33 1.20 1.40 1.00 1.00 1.90 

Maximum 7.00 6.67 6.80 7.00 7.00 6.00 6.21 
Table 7.2: Descriptive statistics of Scratch acceptance 

Observing the means for each subscale, we can see that, although they find the 

tool very easy to use (5.27) and somewhat enjoyable (4.80), students are 

almost neutral in their opinion about the software output quality (which is the 

demonstrability of the final programs and their functionality) and its 

usefulness (4.21). What is interesting to explore qualitatively is why their 

intention to use Scratch outside the scope of the module is much lower (3.32) 

than their recommendation that the tool be adopted into this introductory 

course (4.46). In Table 7.3, descriptive statistics for each acceptance 

dimension per professor are presented.  

Dimensions 
(Scales) Professor N Mean Std. 

Deviation 
Std. 

Error 
Min

. 
Max

. 

Output Quality 

p1 24 4.29 1.52 0.31 1.33 6.33 
p2 21 4.36 1.21 0.26 1.67 6.33 
p3 28 4.37 1.28 0.24 1.67 6.33 
p4 19 4.44 1.83 0.42 1.33 7.00 

Total 92 4.36 1.43 0.15 1.33 7.00 

Enjoyable 

p1 24 4.54 1.39 0.28 1.33 6.33 
p2 21 5.12 1.07 0.23 2.67 6.67 
p3 28 5.02 1.09 0.21 2.67 6.67 
p4 19 4.46 1.57 0.36 1.33 6.67 

Total 92 4.80 1.29 0.13 1.33 6.67 
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Dimensions 
(Scales) Professor N Mean Std. 

Deviation 
Std. 

Error 
Min

. 
Max

. 

Ease of Use 

p1 24 5.02 1.42 0.29 1.20 6.80 
p2 21 5.31 0.93 0.20 3.33 6.60 
p3 28 5.25 1.11 0.21 2.40 6.80 
p4 19 5.56 1.02 0.24 3.33 6.80 

Total 92 5.27 1.14 0.12 1.20 6.80 

Usefulness 

p1 24 4.13 1.29 0.26 1.80 6.80 
p2 21 4.71 1.28 0.28 2.80 6.80 
p3 28 4.26 1.69 0.32 1.40 7.00 
p4 19 3.69 1.62 0.37 1.40 6.40 

Total 92 4.21 1.50 0.16 1.40 7.00 

For the Module? 

p1 24 4.46 1.59 0.32 1.00 7.00 
p2 21 4.00 1.64 0.36 1.00 7.00 
p3 28 4.75 1.82 0.34 1.00 7.00 
p4 19 4.53 1.98 0.46 1.00 7.00 

Total 92 4.46 1.75 0.18 1.00 7.00 

Intend to Use 

p1 24 3.46 1.41 0.29 1.00 6.00 
p2 21 3.14 1.28 0.28 1.00 6.00 
p3 28 3.11 1.52 0.29 1.00 5.00 
p4 19 3.63 1.46 0.34 1.00 6.00 

Total 92 3.32 1.42 0.15 1.00 6.00 

Overall 
Acceptance of 

Scratch 

p1 24 4.32 1.07 0.22 1.90 6.21 
p2 21 4.44 0.63 0.14 3.20 5.47 
p3 28 4.46 1.01 0.19 2.64 6.10 
p4 19 4.39 1.20 0.28 2.18 6.08 

Total 92 4.40 0.98 0.10 1.90 6.21 
Table 7.3: Descriptive statistics of Scratch acceptance per professor 

A one-way ANOVA was conducted to determine if the overall student 

acceptance of Scratch, along with its sub-scales, was statistically different for 

groups of students which were taught by different professors. Participants were 

classified - for this test - into 4 groups: p1 (n=24); p2 (n=21); p3 (n=28); 

and p4 (n=19). There were no outliers, as assessed by visual inspection of the 

box-plots; data were normally distributed, as assessed by the Shapiro-Wilk test 

(p>0.05); and there was homogeneity of variances, as assessed by Levene’s 

test (p=0.079) for the overall TAM, but the differences in the student 

perceptions about Scratch were not statistically significant, as shown in Table 

7.4. 
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One-way ANOVA 
Between Groups 

 (df = 3) F Sig. 

Output Quality 0.037 0.991 

Enjoyable 1.509 0.218 

Ease of Use 0.820 0.486 
Usefulness 1.601 0.195 

For the Module? 0.742 0.530 

Intend to Use 0.691 0.560 

Overall Acceptance 0.105 0.957 
Table 7.4: One-way ANOVA - Student acceptance of Scratch between professors 

Since there were no significant differences between the groups, and each 

professor’s unique teaching style or personal opinion about the tool did not 

influence the students’ perceptions, it was deemed that all data could be 

treated as one group for the analysis to follow. 

A Spearman’s rank-order correlation was run to assess the relationship 

between the TAM subscales for Scratch and grades obtained in the Scratch 

assessment, as well as the final grades. The test did not show a statistically 

significant correlation between the variables (see Table 7.5). 

Spearman's rho Correlation Coefficient / Sig (2-tailed) 

TAM Scales Scratch  
Assessment Final Grade 

Overall Acceptance of Scratch 
-0.027 0.026 

0.801 0.803 

Output Quality 
-0.201 -0.108 

0.054 0.306 

Enjoyable 
0.007 -0.031 

0.945 0.772 

Ease of Use 
0.011 -0.025 

0.919 0.816 

Usefulness 
-0.157 -0.126 

0.135 0.233 

Appropriate for the Module? 
0.006 0.059 

0.957 0.579 

Intend to Use 
0.019 0.079 

0.856 0.456 
Table 7.5: Spearman’s rho correlations between Scratch acceptance and student grades 



 
 
 
 

169 
 
 
 

Interpreting the results, we can conclude that, for the specific group of 

students, their acceptance of Scratch did not correlate to their performance in 

the assessments. It is interesting to note that, although students found the tool 

very easy to use (5.27) and somewhat enjoyable (4.80), this did not relate to 

their performance in the coursework. 

 

7.4.2  Student Index of Learning Styles (ILS) Analysis 

The Index of Learning Styles (Felder & Soloman, 1993) is composed of 44 

questions, designed to assess the level of a student’s learning preference using 

the 4 dimensions of the Felder-Silverman model (Felder & Silverman, 1988): 

active/reflective; visual/verbal; global/sequential; and sensing/intuitive. 

Eleven questions are associated with each dimension, with each question 

having only 2 possible answers (a and b). The scoring method, according to 

Felder counts all “a” and “b” responses and produces a dimension score of 0 to 

11 for “a” and from 0 to 11 for “b”. As the count of “a” answers increases, the 

count of “b” answers decreases and vice versa. If counting “a” scores only, a 

value from 10 to 11 shows a strong preference on one side of the dimension, 8 

to 9 a moderate one, 4 to 7 a mild preference on either side, 2 to 3 a moderate 

preference on the other side, and 0 to 1 a strong preference on the other side.  

For the data analysis of this study, participants were placed in one of three 

groups per category, distinguishing a preference, for example, between: visual, 

balanced or verbal; active, balanced or reflective; sequential, balanced or 

global; or sensing, balanced or intuitive.  

In most studies considering the implications of student learning styles (Abdul-

Rahman & Du Boulay, 2014), researchers examine students with moderate and 

strong preferences, as students with mild preferences do not demonstrate 

clearly-defined behaviour which could associate them with one or another side 

of the dimension. Therefore, in this study also, strong and moderate styles 

were grouped together while low scores on either side indicated a balanced 

preference.  

Visual programming environments aim at providing learners with an 

environment where they can learn programming while having ‘fun’ and, at the 
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same time, create demonstrable programs (output quality). Effectiveness and 

usefulness towards accomplishing the learning objectives of the module is also 

an important factor. Considering the learning style preferences of the learners 

and the possible correlation between student beliefs about these software 

qualities can help instructors decide whether such a programming 

environment is generally beneficial or is more applicable to specific groups of 

students. 

Some descriptive statistics from the 92 students who participated in the study 

are shown in Table 7.6. 

  

Strong & 
Moderate Balanced Strong & 

Moderate 

 INPUT: Visual   Verbal 

N 47 24 21 

Percent 51% 26% 23% 

 UNDERSTANDING:  Global   Sequential 

N 23 31 38 
Percent 25% 34% 41% 

 PERCEPTION: Sensing   Intuitive 

N 39 34 19 

Percent 42% 37% 21% 

 PROCESSING: Active   Reflective 

N 17 65 10 

Percent 19% 71% 11% 
Table 7.6: Student dominant learning styles in the 4 dimensions 

Table 7.6 shows that most students in this study associate with visual (51%), 

sequential (42%) and sensing (41%), while the majority (71%) are balanced in 

the processing (active/reflective) dimension.  

According to Felder’s implications of learning styles preferences: 

• learners with a visual learning style preference tend to prefer pictures, 

diagrams and flowcharts, as opposed to verbal learners, who prefer 

spoken or written explanations; 
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• learners with a sequential learning style preference tend to gain 

understanding in a linear, step-wise incremental manner, while global 

learners prefer a holistic approach;  

• learners with a sensing learning style preference tend to like learning 

facts and procedures, are more practical compared to intuitive learners, 

who are conceptual and oriented towards theories;  

• learners with an active learning style preference tend to learn by trying 

things out and working in groups, in contrast to learners with a 

reflective learning style preference, who prefer to think things through 

and work alone. 

The statistics describing the learning preferences for this group of students 

(most majoring in Information Technology, see Figure 7.3), are similar to 

research findings for CS students (Zualkernan et al., 2006; Chen & Lin, 2011), 

which show that most programming students have a strong preference in the 

visual dimension. 

The practical orientation of the computer programming discipline, which has 

been discussed in the literature, also matches the dominant sensing learning 

preference identified in this study.  

To address RQ4: “How do students’ learning styles relate to their perceived 

enjoyment, ease of use, usability and usefulness of visual programming 

environments?” a Spearman’s correlation analysis was performed between the 

two categories (see Table 7.7). The assumptions for a Spearman’s correlation 

analysis for ordinal variables, paired observations and monotonic relationship 

(Spearman, 1904) are met.  
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Spearman’s correlation analysis 

 PERCEPTION INPUT PROCESSING UNDERSTANDING 

  
SENSIN

G 
INTUITI

VE VISUAL VERBAL ACTIVE 
REFLECTI

VE 
SEQUENTI

AL GLOBAL 
Output 
Quality 0.215* -0.215* 0.154 -0.154 0.112 -0.112 0.049 -0.049 

Enjoyable -0.115 0.115 0.543** -0.543** 0.186 -0.186 0.044 -0.044 

Ease of Use 0.420** -0.420** 0.279** -0.279** 0.012 -0.012 0.030 -0.030 

Useful-ness -0.086 0.086 0.366** -0.366** 0.011 -0.011 0.776** -0.776** 
For the 
Module? 0.083 -0.201 0.286** -0.286** 0.156 -0.156 0.334** -0.334** 
Intend to 
Use 0.184 -0.184 0.176 -0.108 0.08 -0.08 0.019 -0.019 
Overall 
Acceptance 0.184 -0.184 0.511** -0.511** 0.143 -0.143 0.380** -0.380** 

N 92 92 92 92 92 92 92 92 

** Correlation is significant at the 0.01 level (2-tailed) p<0.01 

* Correlation is significant at the 0.05 level (2-tailed) p<0.05 
Table 7.7: Correlations between student learning styles and their perceptions about Scratch 

After the execution of the test, the following can be observed:  

• Perceived output quality of the programs written in Scratch shows a 

statistically significant correlation (p=0.215) with learners with a 

sensing learning style preference, at the 0.05 level of significance; 

• Perceived enjoyment shows a statistically significant correlation 

(p=0.543) with learners with a visual learning style preference, at the 

0.01 level; 

• Ease of use shows a statistically significant correlation with learners 

having a sensing (p=0.420) and visual (p=0.279) learning style 

preference, at the 0.01 level; 

• Usefulness shows a statistically significant correlation with learners 

having a visual (p=0.391) and sequential (p=0.776) learning style 

preference, at the 0.01 level; 

• Student recommendation to continue the use of Scratch for this module 

shows a statistically significant correlation with learners having a visual  

(p=0.286) and sequential (p=0.334) learning style preference, at the 

0.01 level;  
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• It is interesting to also note that there is no significant correlation 

between students’ learning style preferences and the intent to use 

Scratch outside the scope of the module.  

For the overall acceptance of Scratch (which is the average of student 

perceptions in all TAM scales), we observe a higher correlation for learners 

having a visual learning style preference (p=0.511) and a lower correlation for 

learners having a sequential learning style preference (p=0.380), while there 

is no correlation in the sensing/intuitive and active/reflective dimensions. 

7.4.3  Student Motivation (MSLQ) 

Table 7.8 presents the means and ranges for all individual statements 

concerning student motivation to learn computer programming, grouped by 

motivational scales. A colour heat map shows the highest-rated motivational 

items in green, with 6.11 as the maximum mean value and lowest in red, with 

4.34 the minimum mean value, in a scale from 1 - 7.  

 

N=92  Mean Median Minimum Maximum 

Extrinsic  
(Mean = 5.88,  
SD = 0.93011) 

Q35 5.34 5.5 3 7 

Q37 6.10 6 3 7 

Q40 5.96 6 3 7 

Q46 6.10 7 3 7 

Q53 5.91 6 1 7 

Intrinsic  
(Mean = 5.86,  
SD = 0.89616) 

Q39 5.96 6 3 7 

Q41 6.11 6 2 7 

Q43 6.00 6 3 7 

Q47 6.02 7 1 7 

Q39 5.21 5 2 7 

Self-Efficacy  
(Mean = 5.538,  
SD = 1.19917) 

Q34 5.74 6 1 7 

Q42 5.71 6 2 7 

Q44 5.27 6 1 7 

Q48 5.55 6 1 7 

Q51 5.42 6 1 7 

Self-Regulation 
(Mean = 4.998,  
SD = 1.05581) 

Q36 5.29 5.5 2 7 

Q38 4.34 4 1 7 

Q45 5.26 6 1 7 
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N=92  Mean Median Minimum Maximum 

Q49 5.18 6 1 7 

Q50 4.92 5 2 7 
Table 7.8: Motivational Component Mean Scores 

 

The results show that “better job/career prospect” is the highest rated extrinsic 

motivational factor among participants while “enjoyment of programming” is 
the highest rated intrinsic one. Students overall reported a rather high level of 

self-efficacy but almost neutral levels of self-regulation. Given the importance 

of student motivation to learn and the positive linear correlation of motivation 

and self-efficacy with their academic performance studies (Mega, Ronconi, & 

De Beni, 2014; Walker, Greene, & Mansell, 2006; Zimmerman, 2008), these 

results could possibly explain the high student performance in the module over 

the previous 2 years. 

A Shapiro-Wilk test of normality and a visual inspection of the histograms and 

Q-Q plots revealed that motivational scores in all categories (intrinsic, 

extrinsic, self-regulation and self-efficacy) are not normally distributed. Thus, 

to identify whether the professor has an effect on student motivation, a non-

parametric Kruskal-Wallis test showed the distribution of all motivational 

scores are the same across professors (see Table 7.9).  

 
Table 7.9: Kruskal Wallis test for motivational scale distribution across students taught by different 

professors 
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A Spearman’s 2-tailed correlation test was performed to identify possible 

relationships between student motivational components and their acceptance 

of Scratch. Results are presented in Table 7.10. 

Spearman's rho Correlation Coefficients  
(N=92) Intrinsic Extrinsic Self-regulation Self-efficacy 

Usefulness -0.713** -0.577** -0.689** -0.972** 

Enjoyable 0.116 0.186 0.112 -0.005 

Output Quality 0.025 0.09 0.127 -0.019 

Ease of Use 0.065 0.051 0.041 0.025 

Recommendation for 
the Module? -0.17 -0.143 -0.193 -0.361** 

Intend to Use -0.238* -0.201 -0.295** -0.438** 

** Correlation is significant at the 0.01 level (2-tailed). 
Table 7.10: Spearman's rho correlation between student motivation to learning programming and 

acceptance of Scratch 

Results show: 

• strong negative correlations between all components of student 

motivation to learn programming and the perceived usefulness of 

Scratch, with the strongest negative correlation between self-efficacy 

and perceived usefulness;  

• moderate negative correlation between self-efficacy, student 

recommendations to use Scratch for the module and their intention to 

use it outside the scope of the class; 

• moderate negative correlation between self-efficacy and intention to use 

Scratch;  

• weak negative correlations between intrinsic motivation, self-regulation 

and their intention to use Scratch. 

The characterisation of the correlations as strong, moderate, modest and low 

was made according to Cohen’s guidelines (Cohen et al., 2013).  

An interesting observation is that students who believed in their abilities and 

had a strong intrinsic and extrinsic motivation to learn programming did not 

perceive Scratch as useful for the module. In a related study, Martinez et al., 



 
 
 
 

176 
 
 
 

(2017) reported negative feedback concerning the suitability of Scratch for an 

introduction to programming, where 55% of university students majoring in 

game development thought that Scratch should be suppressed or deserve 

shorter instruction time. 

A final Spearman’s 2-tailed correlation test was performed to identify possible 

relationships between student motivational components and performance in 

both assessments as well as their final module grade. Results are presented in 

Table 7.11.  

Spearman's rho Correlation between student motivation to learn 
programming and performance 

N= 92 Scratch Assessment 
Grade 

Java Assessment 
Grade 

Final Grade 

Self-efficacy .692** .742** .776** 

Extrinsic .542** .628** .641** 

Self-regulation .649** .730** .741** 

Intrinsic .591** .637** .665** 

** Correlation is significant at the 0.01 level (2-tailed). 
Table 7.11: Spearman’s rho correlation between student motivation to learning programming and 

performance 
 

The test revealed significant positive correlations between student 

performance and motivation, with even higher correlations with the Java 

assessment grade. Examining the correlation coefficients, it can be observed 

that self-efficacy and self-regulation might have a greater impact on student 

performance than extrinsic motivation, but all factors significantly influence 

performance. This interpretation is in line with related research on motivation 

and academic performance (Pintrich & de Groot, 1990; Schunk, 1991; 

Zimmerman, Bandura, & Martinez-Pons, 1992). 

 

7.5  Results from the Analysis of Interview Data and Class 
Observations – Qualitative Feedback 

Qualitative feedback was collected from 12 students who volunteered to be 

interviewed. Seven students were interviewed by me personally and 5 students 

were interviewed by the professor teaching a different section of the same 

module who also followed the same interview protocol. In order to reduce the 
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possible influence (or “interview bias”) stemming from direct student-teacher 

relationships, my colleague and I decided to cross-interview each other’s 

students. The interviews were recorded, transcribed and coded using NVivo 

software. 

In order to obtain student feedback on research question 1: “How do students 

perceive Scratch visual programming environment, how they perceive its 

enjoyability, ease of use, usability and usefulness and how they relate these 

qualities to their achievement of the module’s learning objectives?”, I focused 

the questions on the perceived advantages and disadvantages of using Scratch 

for the introduction to programming.  Findings from the qualitative analysis 

were used to enhance, explain and elaborate on the results collected from the 

surveys. 

The coding frame for the advantages theme was developed in advance, using 

the deductive approach, while the code frame for the disadvantages theme was 

created from the analysis using the inductive approach (see Appendix Three). 

The resulting child nodes (sub-codes) were grouped into the main codes after 

the analysis of the interview transcripts using the constant comparative 

method (Glaser & Anselm, 1967). The coding scheme, as well as the quotes in 

each category, were reviewed and agreed upon by both interviewers.  

A summary of associated categories is presented in Figure 7.9 and Figure 7.10. 

The numbers which appear on each node are the frequency tallies of each 

concept as reported by each participant. In some cases, participants reported 

the same concept more than once.   
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Figure 7.9: NVivo coding of Scratch advantages as perceived by 12 students 
 
 
 

 
Figure 7.10: NVivo coding of Scratch disadvantages as perceived by 12 students 
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From analysis of the interview transcripts, it became obvious that students 

found more advantages than disadvantages in the use of Scratch. As such, I 

gained an insight as to why students found Scratch useful, enjoyable, 

interesting and easy. 

“Freedom to improvise” and “having more things to explore” were new 

concepts, which have not been identified in the literature, as to why Scratch is 

interesting. “Interactivity”, “engagement” and “fun” were identified as the 

reasons why students enjoyed using Scratch. “Code animation during program 

execution” helped students clarify repetition programming constructs and 

generally many respondents considered that programming knowledge gained 

from Scratch “transferred into Java” by clarifying concepts. “Availability of 

commands” and “easy integration of sound and animation” were two of the 

reasons why students found Scratch easy. Another perceived advantage was 

the easier transfer of an algorithm to a Scratch program. 

Several disadvantages were mentioned regarding the use of Scratch, but most 

of these were reported by a single student, who clearly disliked it. The 

participant specifically said that: “I found Scratch extremely confusing with low 
graphics and not helpful at all. It’s not real programming and I am afraid that if I 
tell someone that in my college, we use Scratch to understand programming 
concepts, he/she will think that we have a very low educational level”. The 

student’s belief that code produced in a visual programming environment is 

not real code or does not have a real-world applicability, has also been reported 

in the literature, along with the perception that it is limited in scope and thus 

less powerful (Weintrop & Wilensky, 2015). In a sense, this is not far from 

reality, as Scratch is an educational programming environment and should be 

evaluated as such. 

The most commonly expressed disadvantage (reported 6 times) is that Scratch 

is “confusing, complex and hard”, but its number of mentions was lower 

compared to how often Scratch was referred to as easy (17 comments) and 

contradicts the results obtained from the qualitative analysis concerning the 

ease of use (see Table 7.2). 
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The fact that 5 students considered that Scratch has “hidden functionality” was 

a surprise, since similar comments have not been found reported in the 

literature. Indeed, in the environment of Scratch, there are some hidden 

features, which could possibly confuse novice programmers. By holding down 

the Shift, Control or Command Key and clicking on an object or area on the 

screen, more options appear. For example, from using shift and clicking on the 

file menu in the web applications, more commands appear. The same happens 

on the desktop application with more commands appearing in the edit menu 

(see Figure 7.11).  

 

 

Figure 7.11:Scratch "hidden" features 

 

Three participants characterised Scratch as “boring”, while the rest considered 

it “fun” and “engaging”. Similar findings are reported by Ouahbi et al. (2015) 

where 15% of high school students in his study, found programming with 

Scratch to be boring. 

It is worth noting that a student, who claimed that Scratch is interesting, also 

stated that he/she would be bored to use it outside of the class. 

The following interview questions aimed to investigate students’ motivation 

concerning the use of Scratch outside the scope of the module’s assessments: 

• Did you try to furtherly enhance (at home) Scratch projects we 

developed in class? Why? 

• Where you motivated to use Scratch outside the scope of this module? 

i.e. developing your own games? 
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To the above questions, only one of the 12 participants answered positively, 

stating: “Yes, I sometimes enhanced games we did in class” and another 

participant said: “I started to develop one, but I did not finish it due to time 
restrictions”. Given the above feedback, it is reasonable to conclude that 

students’ motivation to work at home on enhancing a program was not 

affected by their perception of Scratch as being fun, interesting and easy. Even 

students who viewed Scratch as useful did not demonstrate a greater 

motivation to develop a Scratch game outside the scope of the module. Studies 

on student motivation (Black & Wiliam, 2006; Stefanou et al., 2018) have also 

pointed out the problem related to diminishing motivation when students 

work on a project which will not be academically assessed.  

Representative student comments on why they would not use Scratch outside 

the scope of the lesson include: 

• “Let’s say Scratch is interesting... just for the duration we got involved in 
class. If I had to use it for a greater amount of time, I think I would be 
bored” 

• “I found Scratch fun in the class, but not fun enough to create a program, 
if there was no grading involved” 

• “If I did not have anything else to do... maybe” 
• “I do not have time for childish games, I am more interested in learning 

real programming” 

The final two interview questions aimed to compare student perceptions 

between Scratch and Java programming: 

• Which of the two coursework assessments did you enjoy more 

developing? 

• Which of the two coursework assessments (Scratch/Java) did you spend 

more time developing? Why? 

Nine students mentioned that they enjoyed developing the Scratch game more 

than the Java game, and only 3 enjoyed coding in Java. This may be 

attributable to the level of previous programming experience these students 

had. It should be noted that the 3 students who preferred Java over Scratch 
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did in fact have prior programming experience and were the same ones that 

highlighted many Scratch disadvantages.  

Surprisingly enough, all the participants stated that they spent more time in 

developing the Java game. Most participants ascribed this to difficulties in 

translating their ideas into programming language commands and finding 

“bugs”. Some representative student responses were: 

• “I found it very difficult to translate my thoughts in a programming 
language” 

• “Debugging was harder” 
• “It was easier to program in Scratch… I could see clearly how the code was 

executing and finding logical errors was more obvious that in Java code” 
• “I found the whole Java programming process difficult and time 

consuming” 
• “I spend hours trying to figure out what I was doing wrong [in Java]” 

Referencing the qualitative feedback obtained during the interviews in an 

attempt to explain the higher grades obtained in Scratch coursework compared 

to Java coursework (see section 7.3 ), most interviewees found the difficulty 

level of performing the same tasks in Scratch to be lower than in Java, when 

performing identical tasks. This might be a possible explanation of why they 

performed significantly better. 

To complement, complete and contrast student motivation findings created 

from the analysis of interviews and questionnaires, students’ behaviour was 

observed while using Scratch in the classroom. This was done to mitigate the 

risks and limitations of addressing the concept termed “motivation”. As 

explained by Madrid and Canado (2001), we cannot observe a person’s 

motivation; what we can do is observe a person’s behaviour. Through the 

observation of behaviour, we can deduce the existence of a greater or lesser 

degree of motivation (West & Uhlenberg, 1970). In these class observations, 

the tutors agreed to follow a systematic direct observation and keep notes 

around four behaviours of interest, which were defined a priori: emotional 

expressions (positive or negative); attention to the task; perseverance in 

completing the activity; and performance (see Appendix Three). A summary 

from the class observations extracted from the professors’ notes, grouped 
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according to the four behaviours of interest, is shown in Table 7.12.Table 7.12: 

Summary of notes from class observations 

Assignment 
/ Difficulty 

Emotional 
Expressions 

Attention to the 
task 

Perseverance Performance 

1 
easy 

mostly smiles great attention, 
competition 

great excellent 

2 
easy 

playful mood; 
laughs and 
smiles 

initially bored, 
then focused and 
intrigued 

Not recorded by 
instructors 

excellent 

3 
medium 

excitement,  curiosity great excellent, 
including 
improvements 

4 
medium- 
hard 

interest mostly focused, 
few bored 

some very good 

Table 7.12: Summary of notes from class observations 
 

Motivation, fun, and enthusiasm levels were reflected in the class observations. 

Overall, students demonstrated a positive engagement with Scratch in the 

classroom (see Appendix Three). This finding corroborates the questionnaire 

results, which show that students accepted Scratch with a mean score of 4.4/7 

on the Likert scale (see section 7.4.1  Therefore, we can conclude that students 

were overall in favour of this pedagogical approach. 

7.6  Conclusion 

This chapter presented and analysed the data collected from multiple sources 

(survey tools, interviews and class observations) during this case study and 

reported on the findings.  

Evidence suggests that students found Scratch to be easy, useful, enjoyable and 

engaging, but only within the scope and purpose of the module. On the other 

hand, students demonstrating strong intrinsic motivation to learn 

programming and high levels of self-efficacy did not perceive Scratch to be as 

useful as other students did. Results also indicate that a relationship exists 

between the acceptance of a visual programming environment and students’ 

learning style preferences; Scratch was found more useful and enjoyable by 

those reporting visual and sequential learning approaches. Furthermore, 

overall student performance and pass-fail rates showed considerable 

improvement following the introduction of Scratch. 



 
 
 
 

184 
 
 
 

In the following chapter, the findings are discussed in relation to the research 

questions, the study’s limitations are acknowledged and suggestions for future 

work are provided.  
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Chapter 8  Conclusions 

8.1  Contribution of this Study to the Research Literature 

Teaching novices computational thinking and computer programming is a 

challenging endeavour. This thesis, inspired by my own experience as an 

educator and reported challenges that computer science educators face in 

introductory programming courses, presents an extensive investigation into the 

use of visual programming environments to support the teaching and learning 

of introductory programming modules. The work of this thesis contributes to 

the enhancement of existing knowledge surrounding such usage.  

More specifically, evidence from the first part of this study (pilot study), 

indicates that Scratch gained more acceptance in terms of student preference 

compared to Greenfoot, Alice and APP Inventor visual programming 

environments. Scratch was found to be easy, enjoyable and engaging.   

In relation to the first research question: “How do visual programming 
environments affect students’ performance in the course (assessment and final 
grades)?”, evidence demonstrates a clear effect (15% improvement) on the 

pass/fail rate of students. The educational effectiveness of Scratch is supported 

by the noticeable increase (9.15%) in mean final grades across semesters. The 

average final student grade from Fall 2013 until Spring 2016 (before the 

introduction of Scratch) was 49.11% (n=141), whereas, from Fall 2016 until 

Fall 2018, the average student grade increased to 58.26% (n=110). Despite 

having examined and eliminated some known factors which might have 

contributed to this improvement, such as different professors, changes to 

module learning objectives, different student selection processes, and 

variability in difficulty levels of assessments, any other factors that might have 

influenced this shift of grades are not apparent, and are outside the control of 

the study. It should also be stressed that students performed better in the 

Scratch part of the coursework compared to the Java part of the coursework, 

using the same project idea and within a consistent marking scheme. The 

aforementioned finding that the Scratch VPE could potentially help students 

perform better in introductory modules verifies findings in the literature that 

have been previously reported (Cooper et al., 2002; Ozoran et al., 2012; 

Topalli & Cagiltay, 2018). 
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In relation to the second research question: “How do students perceive the 
Scratch visual programming environment? How do students perceive enjoyability, 
ease of use, usability and usefulness? How do students relate these qualities to 
their achievement of the module’s learning objectives (output quality)?”, students 

found Scratch very easy to use and somewhat enjoyable but were almost 

neutral in their opinion about its usefulness and the demonstrability of the 

final programs. This contradicts findings from the qualitative analysis of the 

interviews, which indicate that students found many more advantages than 

disadvantages in the use of Scratch within the module, namely:  

• “freedom to improvise”; 

• “having more things to explore”; 

• “interactivity”, “engagement” and “fun”;  

• “code animation during program execution”;  

• “availability of commands”;  

• “easy integration of sound and animation”;  

• “easier transfer of an algorithm to a Scratch program”. 

Interestingly, the perceptions of the specific group of students about Scratch’s 

ease of use, usefulness and enjoyment did not correlate with those students’ 

performance in Scratch or Java assessments. The fact that students showed no 

inclination to use it outside the scope of the module is arguably another 

important finding.  

Conclusions raised from class observations showed that, as long as the 

assignment was relatively easy, all students demonstrated high performance 

and perseverance regarding the task at hand. As difficulty levels rose, those 

students who found Scratch to be easy, useful and enjoyable demonstrated 

increased engagement, while those who found Scratch to be confusing, 

difficult, and not particularly useful showed signs of diminishing engagement. 

This confirms that learners are far more likely to succeed when factors such as 

perceived usefulness, enjoyment, and ease of use, are in place. 

In relation to research question 3: “How do students’ motivation for learning 
programming relate to their perceptions about visual programming 
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environments?”, findings indicate a negative correlation between the two. 

Thus, students who believed in their abilities and had a strong extrinsic and 

intrinsic motivation to learn programming did not perceive Scratch as being as 

useful for the module as less motivated students did. Educators need to 

address the reality that highly motivated students generally require a more 

academically challenging course content. The fact that Scratch was perceived 

by most students as being easy and fun, might not satisfy this condition. A 

similar conclusion was reached by Howey in his doctoral dissertation (Howey, 

1999). On the other hand, this research comes to verify related findings that 

highly motivated students exhibit better performance.  

In relation to the research question RQ4: “How do students’ learning styles 
relate to their perceived enjoyment, ease of use, usability and usefulness of visual 
programming environments?”, evidence suggests that the Scratch visual 

programming environment might be more suitable for learners demonstrating 

a visual and sequential learning preference, since they consider Scratch more 

enjoyable and useful. A negative implication that might affect learning, 

identified in the literature, could arise from a mismatch between the teaching 

style and the students’ learning style preference (Felder & Henriques, 1995; 

Schmeck, 1988; Felder & Brent, 2005; Lawrence, 2012). In this case, educators 

should have in mind that the use of a tool with highly visual and structured 

pedagogical underpinnings could possibly have a negative learning effect on 

students with strong verbal or global learning style preferences. 

A final contribution of this thesis to the literature is the development and 

validation of the associated data collection instruments, which include a 

technology acceptance model questionnaire, used to identify user attitudes 

towards the use of visual programming environments, and a Motivated 

Strategies for Learning Questionnaire, used to measure students’ motivation, 

orientation and use of learning strategies in learning computer programming. 

These instruments were based on previously established research (Davis 1985; 

Pintrich & de Groot, 1990; Pintrich et al., 1991; Glynn et al., 2009) but were 

adapted and modified to meet the requirements of the specific case study. 

These resources (included in Appendix One) will be made freely available for 

use by other educators and researchers alike, realising a practical research 

contribution beyond this thesis that is both original and substantial.  
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My pragmatic approach to the study examined the findings from the point of 

view of a practitioner aiming to support and improve the practice itself, both 

for my own benefit and that of other practitioners.To conclude, as an 

educational researcher, my aim was not to generalise the findings from this 

study, since the case study was conducted in a specific undergraduate module 

of a single college, but rather to understand student perceptions about the use 

of a virtual programming environment while also relating them to their 

learning style preferences. 

The value of the work reported in this thesis is not limited to the discussed 

findings; it also presents a teaching methodology and a tool for obtaining 

student feedback. This framework might assist other educators to perform 

future investigations and make informed decisions with regards to 

incorporating a visual programming environment in their own modules.  

 

8.2  Limitations of the Study 

A participant-related limitation of the study has to do with the gender 

breakdown of the study. There were only 14 (15%) female participants, as 

opposed to 78 males (85%). This gender composition was beyond my control, 

since it was affected by the overall enrolment in the module and is actually 

quite representative of the student population across the information 

technology department.  

Comparison of student grades (before and after the use of a VPE) was 

performed using data from past semesters. As a result, it cannot be ascertained 

to what extent the observed differences between mean scores were due to the 

effectiveness of Scratch, or if they simply reflect existing differences between 

the groups due to the differences in the annual student intake. A possible 

limitation of this study might be attributed to this fact. Using an experimental 

group (Scratch prior to Java) and a control group (only Java) would be an 

ideal research design, but it was not possible to obtain permission from the 

college to have the same module taught using different teaching 

methodologies.  
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Another potential bias might be attributed to the fact that I was an “insider 

researcher” – in other words, I, the researcher, was also the tutor, the class 

observer and the interviewer for almost half of the participant population. This 

has been taken into consideration and I attempted to mitigate such potential 

bias by involving other professors during the data collection and analysis 

stages. I acknowledge the significance of partiality, which might arise based on 

my own pre-conceived ideas about the use of visual programming 

environments, and this was one of the reasons behind the decision to perform 

mixed-methods data collection.     

8.3  Recommended Areas for Future Research 

A Motivated Strategies for Learning Questionnaire was used to assess overall 

student motivation to learn programming, but this did not provide answers as 

to the possible effects of Scratch in student motivation; further research would 

be required to explore this aspect, as motivation was only observed through 

student behaviour while using the tool. Observer notes were not very detailed 

and, in some cases, not very consistent. In order to better address the issue of 

motivation, more qualitative feedback is required to provide an insight into 

student motivation to use Scratch, which has not been established through the 

findings of this study. 

The technology acceptance model part of the survey was not analysed as per 

the relationship amongst its variables - perceived enjoyment, ease of use, 

usefulness, output quality (attitude towards using), and intention to use - 

because it was not within the scope of the current research. In the future, a 

regression analysis on the data could provide a goodness-of-fit test and 

produce the path coefficients of the model. The model could subsequently be 

tested to verify whether the intention to use a visual programming 

environment can be reliably predicted from the rest of the variables.  

The quantitative data collected from this study are rich and multi-faceted. 

They can be analysed further to answer future research questions. A 

recommendation for future research would be to explore the relationship (if 

any) between students’ levels of prior programming experience and their 

acceptance of Scratch.  
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It would also be interesting to explore qualitatively the reasons why student 

intention to use Scratch outside the scope of the module is much lower than 

their recommendation that the tool be permanently incorporated into this 

introductory course.  

8.4  A Final Reflection 

The process of realising this study has helped me improve delivery of the 

introduction to programming module at my college, by making it more 

approachable and engaging for the students. It has provided me with greater 

insight into student perceptions about visual programming environments and 

perceived advantages/disadvantages from the student point of view, informed 

me about students’ overall motivation to learn programming, and assisted me 

in choosing appropriate tools that satisfy student needs and motivate them to 

practise. These findings could serve as a reference for educators to better 

address student needs in their pursuit to teach programming to novices. The 

instruments created could be used as measurement tools for gauging students’ 

acceptance of VPEs and their motivation to learn programming, as well as a 

starting point for future research. 
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Appendix One – Main Survey Instrument 

Introduction to Information Technology and Programming 

Section 1 - Demographic Information 

6) Gender 
Male   Female   Other (write in)_____  Prefer not to say 
 
7) What is your age* 
under 18 18-24  25-34  35-54   55+ 
 
8) What is your current College Level? * 
Freshman  Sophomore Junior  Senior  Graduate 
 
9) What is your major? * 
MIS IT Other Business Administration Major Other Arts & Sciences 
Major 
 
10) What it your pathway? 
Software Development Digital Media  Network Technologies   
Undecided 

Section 2 - Introduction to Programming - General Questions 

11) Describe your current level of computer programming expertise in any 
programming language:  

Fundamental Awareness 
Novice (limited experience) 
Intermediate (practical application) 
Advanced 
Expert 

 
Explanation of selections:  
Fundamental Awareness means that you just have an idea of what programming is, but you have never 
written a computer program. 
Novice means that you had some limited experience in the past. For example, in ITC1070 Introduction to 
information systems, you had written small programs or even in high school you were taught programming 
concepts, but you do not feel that you know well the subject. Intermediate means that you had some 
programming experience in the past, and you are able to write small programs utilising the basic 
programming constructs (variables, selections and repetitions).  
Advanced means that you are able to understand and write complete programs utilising object-oriented 
concepts.  
Expert means that you are professional programmer and you have implemented complete software systems. 
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12) Which programming languages have you been taught in the past? * 
Java   JavaScript  Python  C  C++  
Other - Write In:  
 
13) Were you familiar with SCRATCH or any other block-based programming 
environment before this class?  
Yes  No 
 
14) What was the main reason for registering for this module?  (Check the one 
that BEST describes your feelings)  

I enjoy programming 
Jobs in programming pay well 
I find programming challenging:  
I think that it will improve my career prospects 
I am interested in programming 
I consider it an easy elective 
Course time and day fitted my schedule 
Introduction to programming is a requirement for my major 
It was recommended by my advisor/friend/family 
I am curious to find out what programmers do 
Other - Write In:  

 

Section 3a - Overall Evaluation and Acceptance for Scratch 

What is your opinion about using Scratch as part of Introduction to 
Programming? 
15) Boring   1 ______________[4 Neutral]_____________ 7 Fun 
16) Not Effective  1 ______________[4 Neutral]_____________ 7   Effective 
17) Not Enjoyable  1 ______________[4 Neutral]_____________ 7   Enjoyable 
18) Irrelevant  1 ______________[4 Neutral]_____________ 7 Relevant 
19) Unpleasant  1 ______________[4 Neutral]_____________ 7 Pleasant 
 
20) I _____ to use Scratch to create my own programs/games. 
Do not Intend  1 ______________[4 Neutral]_____________ 7 Intend 
 
21) Using Scratch, I can create functional/operational games, which I can 
demonstrate to my friends and family. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
22) I find Scratch as a preferable way to introduce novices to programming 
than traditional teaching with Java 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
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Section 3b - Technology Acceptance Model 

Perceived Ease of Use  
 
23) Learning to operate Scratch is often frustrating. (*R) 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
24) It is easy for me to remember how to perform tasks inside the Scratch 
environment. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
25) I find it easy to get the Scratch to do what I want it to do. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
26) Usage of Scratch is clear and understandable. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
27) Overall, I find Scratch easy to use. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
Perceived Usefulness  
 
28) Scratch helped me improve my computing skills. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
29) Scratch makes it easier to convey an algorithm into a program than in a 
text-based programming language. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
30) Scratch helped me clarify all stages of the software development process: 
requirements analysis, design, development and testing. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
31) Learning Scratch improved my programming skills (such as: using 
variables, obtaining user input, iteration, selection, code modularity etc). 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
32) Overall, I find Scratch useful for this module. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
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(This question appears when the participant provides an answer greater than 4 in question 32) 
33) For the clarification, of which basic programming concepts did you find 
Scratch useful? 

Program Logic and Algorithm development 
Variables 
Loops (Iterations) 
Conditions (Selections) 
Procedures 
Event-Handling 
Keyboard Input 
Input validation 
Other - Write In: _________ 

 

Section 4 - Motivated Strategies for Learning Questionnaire  

34) I believe I can master programming knowledge and skills. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
35) My career will not involve computer programming. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
36) I put enough effort into learning computer programming. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
37) Learning computer programming will help me get a good job. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
38) I work on practicing exercises and answering end of chapter questions 
even when I do not have to. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
39) I think that what I am learning in this class is not useful for me to know. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
40) I will use computer programming skills in my career. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
41) Learning computer programming is interesting. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
42) I believe I can earn a good grade in introduction to programming. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
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43) It is important for me to learn how to program. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
44) I am not confident I will do well on computer programming tests/exams. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
45) I prepare well for programming tests and labs. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
46) Knowing how to program will give me a career advantage. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
47) I enjoy learning computer programming. I enjoy/like what I am learning in 
this programming class. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
48) I am confident I will do well on computer programming labs and projects. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
49) I find that when the teacher is talking, I think about other things and don’t 
really listen to want is being said. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
50) I work on solving all exercises assigned by the instructor. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
51) I am confident I can learn all programming concepts taught in the course. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
52) I prefer class work that is challenging so I can learn new things.  
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
 
53) It’s important to me to get an “A” in computer programming. 
Strongly Disagree      1 __________ [4 Neutral] __________ 7 Strongly Agree 
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Section 5 - Index of Learning Styles (ILS) Learning Style Questionnaire 

 

54) I understand something better after I... 
a. try it out. 
b. think it through. 

 
55) I would rather be considered ... 

a. realistic. 
b. innovative. 

 
56) When I think about what I did yesterday, I am most likely to get ... 

a. a picture. 
b. words. 

 
57) I tend to ... 

a. understand details of a subject but may be fuzzy about its overall 
structure. 

b. understand the overall structure but may be fuzzy about details. 
 
58) When I am learning something new, it helps me to... 

a. talk about it. 
b. think about it. 

 
59) If I were a teacher, I would rather teach a course... 

a. that deals with facts and real-life situations. 
b. that deals with ideas and theories. 

 
60) I prefer to get new information in... 

a. pictures, diagrams, graphs, or maps. 
b. written directions or verbal information. 

 
61) Once I understand... 

a. all the parts, I understand the whole thing. 
b. the whole thing, I see how the parts fit. 

 
62) In a study group working on difficult material, I am more likely to... 

a. jump in and contribute ideas. 
b. sit back and listen. 

 
63) I find it easier... 

a. to learn facts. 
b. to learn concepts. 
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64) In a book with lots of pictures and charts, I am likely to... 
a. look over the pictures and charts carefully. 
b. focus on the written text. 

 
65) When I solve math problems... 

a. I usually work my way to the solutions one step at a time. 
b. I often just see the solutions but then have to struggle to figure out the 

steps to get to them. 
 
66) In classes I have taken... 

a. I have usually got to know many of the students. 
b. I have rarely got to know many of the students. 

 
67) In reading non-fiction, I prefer... 
something that teaches me new facts or tells me how to do something. 
something that gives me new ideas to think about. 
 
68) I like teachers... 

a. who put a lot of diagrams on the board. 
b. who spend a lot of time explaining. 

 
69) When I'm analysing a story or a novel... 

a. I think of the incidents and try to put them together to figure out the 
themes. 

b. I just know what the themes are when I finish reading and then I have 
to go back and find the incidents that demonstrate them. 

 
70) When I start a homework problem, I am more likely to... 

a. start working on the solution immediately. 
b. try to fully understand the problem first. 

 
71) I prefer the idea of... 

a. certainty. 
b. theory. 

 
72) I remember best... 

a. what I see. 
b. what I hear. 

 
73) It is more important to me that an instructor... 

a. lays out the material in clear sequential steps. 
b. gives me an overall picture and relates the material to other subjects. 

 
74) I prefer to study... 

a. in a group. 
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b. alone. 
 
75) I am more likely to be considered... 

a. careful about the details of my work. 
b. creative about how to do my work. 

 
76) When I get directions to a new place, I prefer... 

a. a map. 
b. written instructions. 

 
77) I learn... 

a. at a fairly regular pace. If I study hard, I'll "get it." 
b. in fits and starts. I'll be totally confused and then suddenly it all "clicks." 

 
78) I would rather first... 

a. try things out. 
b. think about how I'm going to do it. 

 
79) When I am reading for enjoyment, I like writers to... 

a. clearly say what they mean. 
b. say things in creative, interesting ways. 

 
80) When I see a diagram or sketch in class, I am most likely to remember... 

a. the picture. 
b. what the instructor said about it. 

 
81) When considering a body of information, I am more likely to... 

a. focus on details and miss the big picture. 
b. try to understand the big picture before getting into the details. 

 
82) I more easily remember... 

a. something I have done. 
b. something I have thought a lot about. 

 
83) When I have to perform a task, I prefer to... 

a. master one way of doing it. 
b. come up with new ways of doing it. 

 
84) When someone is showing me data, I prefer... 

a. charts or graphs. 
b. text summarising the results. 

 
85) When writing a paper, I am more likely to... 

a. work on (think about or write) the beginning of the paper and progress 
forward. 
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b. work on (think about or write) different parts of the paper and then 
order them. 

 
86) When I have to work on a group project, I first want to... 

a. have a "group brainstorming" where everyone contributes ideas. 
b. brainstorm individually and then come together as a group to compare 

ideas. 
 
87) I consider it higher praise to call someone... 

a. sensible. 
b. imaginative. 

 
88) When I meet people at a party, I am more likely to remember... 

a. what they looked like. 
b. what they said about themselves. 

 
89) When I am learning a new subject, I prefer to... 

a. stay focused on that subject, learning as much about it as I can. 
b. try to make connections between that subject and related subjects. 

 
90) I am more likely to be considered... 

a. outgoing. 
b. reserved. 

 
91) I prefer courses that emphasise... 

a. concrete material (facts, data). 
b. abstract material (concepts, theories). 

 
92) For entertainment, I would rather... 

a. watch television. 
b. read a book. 

 
93)  Some teachers start their lectures with an outline of what they will cover. 
Such outlines are... 

a. somewhat helpful to me. 
b. very helpful to me. 

 
94) The idea of doing homework in groups, with one grade for the entire 
group... 

a. appeals to me. 
b. does not appeal to me. 

 
95) When I am doing long calculations... 

a. I tend to repeat all my steps and check my work carefully. 
b. I find checking my work tiresome and have to force myself to do it. 
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96) I tend to picture places I have been... 

a. easily and fairly accurately. 
b. with difficulty and without much detail. 

 
97) When solving problems in a group, I would be more likely to... 

a. think of the steps in the solution process. 
b. think of possible consequences or applications of the solution in a wide 

range of areas. 
 
98) Can I contact you for a short interview? * 

Yes  No 
 
99) Type your email to receive your Learning Style results! 
________________________ 
 
Thank you, for your time and effort. 
 
Maira Kotsovoulou 
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Appendix Two – Selection of Questions for the Motivation 
section of the Main Survey  

In the following tables, all questions with Content Validity Ratio > 0.75, are 

highlighted. Minimum level of CVR for inclusion for 8 panellists is .75 

Intrinsic Motivation Scale - CVR 
  Score CVR 
Glynn S. (2011) - Intrinsic Goal Orientation & Task Value   
1 The computer programming, I learn is relevant to my life. 2 -0.5 
3 Learning computer programming is interesting. 7 0.75 

12 
Learning computer programming makes my life more 
meaningful. 8 1 

17 
I am curious about latest developments in the field of computer 
programming. 7 0.75 

19 I enjoy learning computer programming. 8 1 
Pintrich P. & Groot E (1990) - Intrinsic Goal Orientation & Task Value    
1 I prefer class work that is challenging so I can learn new things.  7 0.75 
5 It is important for me to learn how to programme. 8 1 
6 I like what I am learning in this class.  8 1 

9 
I think I will be able to use what I learn in this class in other 
classes. 7 0.75 

12 
I often choose programming exercises which will help me learn 
something, even if they require more work. 8 1 

17 Even when I do poorly on a test, I try to learn from my mistakes. 8 1 

18 
I think that what I am learning in this class is useful for me to 
know. 8 1 

21 I think that what we are learning in this class is interesting. 6 0.5 
25 Understanding this subject is important to me. 7 0.75 
Pintrich et al. (1991) - Intrinsic Goal Orientation     

1 
In a class like this, I prefer course material that really challenges 
me so I can learn new things. 7 0.75 

16 
In a class like this, I prefer course material that arouses my 
curiosity, even if it is more difficult to learn 8 1 

22 
The most satisfying thing for me in this course is trying to understand 
the content as thoroughly as possible 6 0.5 

24 
When I have the opportunity, I choose course assignments that I can 
learn from even if they don't guarantee a good grade. 6 0.5 

Pintrich et al. (1991) - Task Value      

4 
I think I will be able to use what I learn in this course in other 
courses 8 1 

10 It is important for me to learn the course material in this class 8 1 
17 I am very interested in the content area of this course  7 0.75 
23 I think the course material in this class is useful for me to learn. 7 0.75 
26 I like the subject matter of this course 6 0.5 

27 
Understanding the subject matter of this course is very important to 
me. 6 0.5 
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Self-Efficacy Scale - CVR 

  Score CVR 
Glynn S. (2011) 
9 I am confident I will do well on computer programming tests. 8 1 

14 
I am confident I will do well on computer programming labs and 
projects.  8 1 

15 
I believe I can master computer programming knowledge and 
skills. 8 1 

18 I believe I can earn a grade of “A” in computer programming. 8 1 
21 I am sure I can understand computer programming. 7 0.75 
Pintrich P. & Groot E (1990) 
2 Compared with other students in this class I expect to do well. 7 0.75 
7 I'm certain I can understand the ideas taught in this course.  8 1 
10 I expect to do very well in this class.  7 0.75 
11 Compared with others in this class, I think I'm a good student.  7 0.75 

13 
I am sure I can do an excellent job on the problems and tasks 
assigned for this class. 7 0.75 

15 I think I will receive a good grade in this class.  7 0.75 
20 My study skills are excellent compared with others in this class.  7 0.75 

22 
Compared with other students in this class I think I know a great 
deal about the subject. 8 1 

23 I know that I will be able to learn the material for this class. 7 0.75 
Pintrich et al. (1991) 

12 
I am confident I can understand the basic concepts taught in this 
course. 6 0.5 

6 
I am certain I can understand the most difficult material presented in 
this course. 6 0.5 

29 I am certain I can master the skills being taught in this class. 6 0.5 

31 
Considering the difficulty of this course, the teacher, and my skill, I 
think I will do well in this class 6 0.5 

 

Extrinsic Motivation - CVR 

    Score CVR 
Glynn S. (2011) - Grade Motivation 

2 
I like to do better than other students on computer 
programming tests. 8 1 

4 
Getting a good computer programming grade is important to 
me. 8 1 

8 It is important that I get an "A" in computer programming. 7 0.75 
20 I think about the grade I will get in computer programming. 7 0.75 

24 
Scoring high on computer programming tests and labs matters 
to me.  8 1 
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    Score CVR 
Glynn S. (2011) - Career Motivation 
7 Learning computer programming will help me get a good job. 8 1 

10 
Knowing computer programming will give me a career 
advantage. 7 0.75 

13 
Understanding computer programming will benefit me in my 
career. 8 1 

23 My career will involve computer programming. 7 0.75 

25 
I will use computer programming problem-solving skills in my 
career.  8 1 

Pintrich et al. (1991) - Extrinsic Goal Orientation   

7 
Getting a good grade in this class is the most satisfying thing for 
me right now 6 0.5 

11 

The most important thing for me right now is improving my 
overall GPA, so my main concern in this class is getting a good 
grade 5 0.25 

13 
If I can, I want to get better grades in this class than most of the 
other students 5 0.25 

30 
I want to do well in this class because it is important to show my 
ability to my family, friends or others 6 0.5 

 

Self-Regulation and Self-Determination - CVR 

  Score CVR 
Glynn S. (2011) - Self-determination 
5 I put enough effort into learning computer programming. 8 1 

6 
I use strategies (online courses, forums, books) to learn 
computer programming well. 8 1 

11 I spend a lot of time learning computer programming. 8 1 
16 I prepare well for computer programming tests and labs. 8 1 
22 I study hard to learn computer programming. 8 1 
 Questions proposed by the focus group   

  
I spend a lot of time creating computer programs to improve my 
skills. 8 1 

  
I believe that is important to practice solving problems in order 
to learn to program. 8 1 
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  Score CVR 
Pintrich P. & Groot E (1990) - Self-Regulation & Effort Regulation   

32 
I ask myself questions to make sure I know the material I have 
been studying.  8 1 

34 
When work is hard I either give up or study only the easy parts. 
(*R)  8 1 

40 
I work on practice exercises and answer end of chapter 
questions even when I don't have to.  8 1 

41 
Even when study materials are dull and uninteresting, I keep 
working until I finish. 8 1 

43 
Before I begin studying, I think about the things I will need to do 
to learn.  8 1 

45 
I often find that I have been reading for class but don't know 
what it is all about. (*R) 8 1 

46 
I find that when the teacher is talking, I think of other things 
and don't really listen to what is being said. (*R) 8 1 

52 
When I'm reading, I stop once in a while and go over what I have 
read. 5 0.25 

55 I work hard to get a good grade even when I don't like a class. 8 1 
Pintrich et al. (1991) - Self-Regulation   

33 
During class time I often miss important points because I am 
thinking of other things 6 0.5 

36 
When study for this course, I make up questions to help me focus my 
studying 6 0.5 

41 
When I become confused about something I am trying, I go back 
and try to figure it out 8 1 

44 
If course materials are difficult to understand, I change the way 
study the material. 8 1 

54 
Before I study new course material thoroughly, I often skim it to see 
how it is organised. 5 0.25 

55 
I ask myself questions to make sure I understand the material I have 
been studying in this class 5 0.25 

56 
I try to change the way I study in order to fit the course requirements 
and instructor's teaching style. 5 0.25 

57 
I often find that I have been reading for class, but I do not know 
what it was all about 5 0.25 

61 
I try to think through a topic and decide what I am supposed to learn 
from it rather than just reading it over when studying 5 0.25 

76 
When studying for this course I try to determine which concepts I 
don’t understand well. 6 0.5 

78 
When I study for this class, I set goals for myself in order to 
direct my activities in each study period 7 

0.7
5 

79 
If I get confused taking notes in class, I make sure I sort it out 
afterwards. 5 0.25 
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Appendix Three – Qualitative Analysis  

Analysis of Interviews 

Interviews were coded using a deductive/inductive approach. Using the 

deductive approach, I created the two main themes (advantages and 

disadvantages) before starting the analysis.  

The next step was to break up each interview into paragraphs and classify 

related paragraphs into one of the two general themes.  

Grouping all quotes which were identified to clearly belong in each theme 

(refer to the extract below) and using a list of closed codes relative to the 

interests of study (useful, easy, enjoyable and interesting), I created the main 

codes. Similar codes which emerged from the text were merged into the main 

codes. Such an example is the code “like” which was merged with the code 

“enjoyable”. Sub-codes were then created from the text with open coding and 

using constant comparisons codes were grouped into similar concepts. Figure 

8.1 shows the final hierarchy chart of nodes, produced by NVivo software, in 

the Advantages Theme. 

 

Figure 8.1: Hierarchy chart of nodes in the advantages theme 

In the following extract, which was generated by grouping all student quotes 

which were identified as advantages in NVivo, I have highlighted in yellow the 

main codes and in green the sub-codes. For example, some students found 

Scratch useful because of code aminations and transferable knowledge into 

Java. 

Participant 1 - 8 references coded  

Yes, yes, I found it useful. A nice idea. Code animation made clear the 
execution of the program. 

 

Advantages

Easy

Algorithm	into	S...

Co...

Integr...

Enjoyable

Engaging

Fun

Nice...

Interes=ng

More	thing...

Useful

Code	Anima=on

Transferable	knowledge	...
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It introduced to me complex concepts in an easy way, like implementing code 
which could execute concurrently and across sprites, I guess. I had not 
encountered that before. 

I also liked the interface...…all the commands required to develop a program 
were easily available and grouped 
 

Participant 2 - 4 references coded  

I found useful how it grouped the commands... For example, the all the 
commands that had to be executed if a condition was true were grouped 
together... 

I think is just so satisfying to fix a program and see that it can actually do it...   
à VISUALIZE 

Participant 3 - 4 references coded  

The first project in SCRATCH motivated me to spend more time and put effort 
to make a more complete program, rather than a simple game. à ENGAGING  

Yes, it was fun. 

Participant 4 - 4 references coded  

Yes, it was enjoyable...I worked a lot for the assignment... to make it better… 
 
It got more interesting as I had to develop my game.  
 
There were more things to explore, It helped me compartmentalise my 
thinking in order to achieve certain things. Make it a mechanical process... I 
think it helped very much with the organisation of thoughts. You knew that 
you wanted your project to do these things and it helped you visualise the end 
result... 

I also did several other games... it was fun. 

Participant 5 - 5 references coded  

I liked SCRATCH. It makes thing more simple and easier to understand. Shows 
you how things work. 
 
For the basic constructs, loops etc. I found it useful. 

Participant 6 -  5 references coded  

I think I enjoyed the SCRATCH process more...especially the game concept.  
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And aside from the programming, we could access the sprites themselves and 
change the colour and the backgrounds and make it more interactive...  

I did enjoy it more... it was more engaging than JAVA. 

Participant 7 - 9 references coded  

I found it interesting...  
I think it helps because it demonstrates how thinks work.  
It is similar to JAVA. I found many similarities. 
Yes, is was useful because it taught me the logic... how to approach a problem, 
find the inputs, the processing and produce results... 
 
Yes, I understood that we used it in order to enhance our understanding of the 
steps required to create a program.  
 

Participant 8 - 7 references coded  

I found SCRATCH enjoyable. In my SCRATCH project I had more freedom to 
improvise... I had the opportunity to make it as easy or as difficult as I 
wanted...  
 
It helped in understanding loops as well but more it helped me in algorithmic 
thinking... visualize the program structure. 
 

Sample Interview Transcript – Participant 1 

 
Transcript Speaker 
Hello, participant 1! Before we start, I would like to know what your 
pathway is? 

Interviewer 

Software Development Participant 1 
Let's begin from your past experience with computers. Did you have any 
prior programming experience?  

Interviewer 

I did not have any prior experience with programming... 
Maybe flowcharts in high school... very basic concepts... no pseudocode.  

Participant 1 

When did you decide that you wanted to study Information Technology? Interviewer 

Before coming to college, I was for 5 years in Medical School. I did not 
finish it, I got bored... and I decided to study Information Technology  

Participant 1 

What is your opinion about programming? Interviewer 

In general, I like computers, now that I have seen programming, I really like 
it, but I also like computer games! 

Participant 1 

Do you play games? Interviewer 
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Yes, I do... but I was not involved with programming a game in the past. Participant 1 

Did you enjoy SCRATCH? Interviewer 

Yes, I did. Participant 1 

What did you like about SCRATCH? Interviewer 

I liked the interface...…all the commands required to develop a program 
were easily available and grouped. 

Participant 1 

Did you find SCRATCH easy to use? Interviewer 

Yes, I found SCRATCH pretty easy to use. Participant 1 

Was there something about SCRATCH that struct to you as important? Interviewer 

Yes, now that I know the basics, I find it easy to convert an algorithm into a 
SCRATCH program... SCRATCH code looks like pseudocode… but I general 
I find programming easy...I think I have programming thinking...  

Participant 1 

So, you say that you find it easy to write a computer program with or 
without SCRATCH... 

Interviewer 

Yes, in general I am good in Math and Physics. I think I have the required 
structured thinking and logic which is required for programming as well... 
programming is easy for me... 

Participant 1 

So, did you find SCRATCH useful for this introductory module? Interviewer 

Yes, yes, I found it useful. A nice idea overall. Code animation made clear 
the execution of the program. 
 

Participant 1 

Did you find it interesting? Interviewer 

In the beginning I found it easy. Interesting became when the requirements 
and problems got more challenging. It was interesting to explore how to 
solve a problem, focus on the details and produce a near perfect result 

Participant 1 

Which where the main advantages that you saw in the use of SCRATCH? Interviewer 

It’s easy to learn and I liked the interface... The programmer has all the 
commands available required to develop a program. He/she can insert 
images... can integrate sounds and animation, which would not be easy in 
other development environments. 

Participant 1 

Did you find any disadvantages? Interviewer 

I am not sure... I think it has some limitations... and it looks somewhat 
childish. 

Participant 1 

In SCRATCH you were introduced to basic programming concepts like 
variables, loops, conditions etc. Do you think that the knowledge you gained 
transferred or helped you understand better the concepts using JAVA?  

Interviewer 
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Yes, I think it did. It also introduced to me more complex concepts in an 
easy way, like implementing code which could execute concurrently and 
across sprites, I guess. I had not encountered that before. 
 

Participant 1 

Do you think you were more motivated to create your SCRATCH game or 
your JAVA program? 

Interviewer 

Although SCRATCH was fun, I was more motivated to develop my JAVA 
program because it was more advanced…  

Participant 1 

At CS50 in Harvard university, they also use SCRATCH for the introduction 
to programming… Any comments on that? 

Interviewer 

Really? I had no idea… Maybe they know better… Participant 1 

If there was one thing you would recommend, in respect to technology used 
in this course, what would this be? 

Interviewer 

I found the course too easy. I need to be challenged more...But I also 
observed that some students were challenged. 

Participant 1 

Are other comments about the course? Interviewer 

No, no other comments... Participant 1 
Thank you very much for your time! Interviewer 

Sample Interview Transcript – Participant 4 

Transcript Speaker 
Hello, P4. Before we start, I would like to know what your pathway is? Interviewer 
It's between software development and digital media... Participant 4 
When did you decide that we wanted to study Information Technology? Interviewer 

Hm... from a very young age... Maybe junior high... My mom introduced me 
to CodeAcademy, and I found it very interesting... I started with basic 
HTML... and I like that way of thinking. Algorithmic structure.  

Participant 4 

What is your opinion about programming? Interviewer 

My general opinion is that it is interesting and can be easy at certain aspects 
and difficult as well like learning a new language... 
So far, I like programming and the logic behind it. I also like the different 
ways which you can solve a problem...I guess 

Participant 4 

Did you enjoy SCRATCH? Interviewer 

In the beginning I thought it was a bit tedious, I guess because it was so 
simple, but I understand why it was necessary...for people who may not 
have done programming... 

Participant 4 

Did you find SCRATCH easy to use? Interviewer 
Yes. Participant 4 

Was there something about SCRATCH that struct to you as important? Interviewer 

Yes, implementing code which could execute concurrently and across 
sprites, I guess. I had not encountered that before... 

Participant 4 



 
 
 
 

231 
 
 
 

 

Did you find it useful for this introductory module? Interviewer 

I found it useful. I did know SCRATCH before this course, but I did not 
know it that well, at that level. 

Participant 4 

Interesting? Interviewer 

It got more interesting as I had to develop my game. Required me to explore 
it more because I had it and then it became more interesting. 
 
It looks pretty easy in the beginning, but it becomes increasingly difficult... 
It did come to me to search for other people’s project to see how they did 
some tasks... 

Participant 4 

Which where the main advantages that you saw in the use of SCRATCH? Interviewer 

It helped me compartmentalise my thinking in order to achieve certain 
things. Make it a mechanical process... I think it helped very much with the 
organisation of thoughts. You knew that you wanted your project to do 
these things and it helped you visualise the end result... 

Participant 4 

Any disadvantages? Interviewer 

Maybe... the fact that if you did not know that something was possible in 
SCRATCH you might not be able to do it at all... 

Participant 4 

In SCRATCH you were introduced to basic programming concepts like 
variables, loops, conditions etc. Do you think that the knowledge you gained 
transferred or helped you understand better the concepts using JAVA? 

Interviewer 

I think I had the thinking already, but it helped me solidify it more. 
I can see how it would help someone that does not have it already... can 
help them develop their thinking. 

Participant 4 

Do you think you were more motivated to create your SCRATCH game than 
your JAVA program? 

Interviewer 

I think I enjoyed the SCRATCH process more...the game concept. And we 
had aside from the programming, we could access the sprites themselves 
and change the colour and the backgrounds and make it more interactive... 
I did enjoy it more... it was more engaging... 

Participant 4 

Did you create any other SCRATCH games for entertainment purposes? Interviewer 

Yes, I enhanced sometimes games we did in class... 
I also did several other games... it was fun. 

Participant 4 

Did you find some transferable skills to your JAVA programming? Interviewer 

I think that the concept of methods... I was able to understand it better after 
we did SCRATCH. 

Participant 4 

Comment on HARVARD using SCRATCH in CS50 Interviewer 

ha! (surprise) Participant 4 

Where there any concepts which you found more challenging? Interviewer 

In general, the entire section of arrays... it did not just click for me 
immediately I guess... It took me more time to adapt to it...  
 

Participant 4 
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Where there any concepts which you found easy? Interviewer 

No, no… Participant 4 

Are there any aspects of the course, that motivated you to learn... Interviewer 

I guess the whole structure. The handwritten algorithm on the board and 
the use of SCRATCH demonstrated the proper structure of how it should go, 
because it helps people that may not know.  
Help me also understand and get a more well-rounded idea of how we 
should structure our code... 

Participant 4 

Any aspects of the course that discouraged you from learning? Interviewer 

No, I liked following along with the live programming. It was very helpful 
that you demonstrated the code and then we had to do an exercise from the 
very beginning... 

Participant 4 

Do you have anything to recommend as far as the teaching methodology is 
concerned?  Or Are there any recommendations for the course in general? 

Interviewer 

Yes, towards the end of the course in the last few lessons, we were able to 
look at more advanced IDEs like Oracle's JDeveloper, maybe if we had seen 
a little bit more of it... it would be easier for students to move on and we 
were explaining object oriented programming and ready-made code... and 
all these things that seemed impossibly complex... 

Participant 4 

Are other comments about the course? Interviewer 
I liked the video tutorials you posted. Especially in programming. when you 
do not understand something the first time, you can repeat it until you get 
it. Also, the video with the demonstration of the completed coursework was 
very useful... 

Participant 4 

Thank you very much for your time! Interviewer 

Summary from Class Observation Notes 

• Session 1 – assignment: solve the maze (level of difficulty: easy) 

Emotional expressions: mostly smiles.  

Attention to the task: student demonstrated great attention, they wanted to 

solve it… competition (I did it!!!).  

Perseverance: the ones who could not complete the code they used a search 

engine to search on the internet for solutions, they implemented the solutions 

and tested them out.  

Performance: all students solved the problem. 

• Session 2 – assignment: create a birthday cake (level of difficulty: easy) 

Emotional expressions: Playful mood; laughs and smiles. 
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Attention to the task: initially bored with birthday cake childishness, but later 

intrigued by the fact that the candles could be blown out using input from the 

computer microphone.  

Performance: all students solved the problem. 

• Session 3 – assignment: create a fruit ninja game (level of difficulty: 

medium) 

Emotional expressions: excitement to develop a “familiar” game, overall 

positive expressions. 

Attention to the task: curiosity: some of them were wondering how it could be 

played on the computer 

Performance: all students solved the basic problem.  50% of the students 

improved the code by adding extra elements like scores, timers, improved 

graphics. 

• Session 4 – assignment: create a hunting game (level of difficulty: 

medium-hard) 

Emotional expressions: most students demonstrated positive emotions such as 

enjoyment, interest and curiosity.  

Attention to the task: Most students were focused, but few were bored and 

appeared distracted (went online and started browsing other websites). 

Persistence in accomplishing the task: most students completed the task on 

time, while some others stayed even after the break to finish their game. The 

ones who were initially bored did not complete the task. 

Performance: Almost all students finished the game except the ones who 

appeared bored (but they mentioned that they found the task difficult to 

complete and did not know how to approach the solution. Not all 

implementations were excellent. 
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Appendix Four – Ethics Approval Forms 

Lancaster University 

From: Ethics (RSO) Enquiries <ethics@lancaster.ac.uk>  
Date: June 25, 2013 7:21 PM  
To: Kotsovoulou, Maria <m.kotsovoulou@lancaster.ac.uk>  
CC: Passey, Don <d.passey@lancaster.ac.uk>, Jesmont, Alice <a.jesmont@lancaster.ac.uk> 

 
Stage 1 self-assessment approval  

 
Dear Maira��
 Thank you for submitting your completed stage 1 self-assessment form and the additional 
information for Exploring student perceptions about the use of visual programming environments, 
their relation to student learning styles and their impact on student motivation in undergraduate 
introductory programming modules. I can confirm that approval has been granted for this project. As 
principal investigator your responsibilities include:  

• ensuring that (where applicable) all the necessary legal and regulatory requirements in order to 
conduct the research are met, and the necessary licenses and approvals have been obtained;  

• reporting any ethics-related issues that occur during the course of the research or arising from 
the research (e.g. unforeseen ethical issues, complaints about the conduct of the research, 
adverse reactions such as extreme distress) to the Research Ethics Officer;  

• submitting details of proposed substantive amendments to the protocol to the Research Ethics 
Officer for approval.  

Please contact the Research Ethics Officer, Debbie Knight (ethics@lancaster.ac.uk 01542 592605) if 
you have any queries or require further information.   

 
Kind regards,  

 
Debbie Knight  

Research Ethics Officer Research Support Office B58, B Floor,  

Bowland Main Lancaster University Lancaster, LA1 4YT  
Email: ethics@lancaster.ac.uk Tel: 01524 592605  

Web: Ethical Research at Lancaster: http://www.lancs.ac.uk/depts/research/lancaster/ethics.html  
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Appendix Five – Pilot Study’s Programming Activities 

Greenfoot – Guided Activity ("Creating Java Programs with Greenfoot") 

Consider the following scenario: you are the pilot of a plane that has been sent 

out to pick up barrels that have fallen off a cargo ship. By flying over a barrel, 

you will automatically collect it. The problem is that sea is rough, and the 

barrels keep going under the water, so you have to collect them when they are 

at the surface. To make matters worse the area is a rocket testing site for 

rockets from NASA and they are unable to stop these being fired into the same 

area that you are in! You are going to program the above game. 

The plane will always be moving but we can control its left and right turning. 

Flying over a barrel will mean you collect it and search for the next one. 

Collecting a barrel will give us a score point. The barrel will randomly appear 

on the screen, but only stay for a set amount of time and then go under and 

reappear randomly elsewhere on the screen. The rockets will appear at the top 

of the screen then randomly move down the screen until they disappear off the 

map. You must not hit the rocket. It is estimated that you will be able to 

survive 3 direct rocket hits and then the game will be over. 

A sample of a completed game is shown in Figure 8.2: . 

 

Figure 8.2: Eat the barel 
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Concepts demonstrated: 

• variables, arrays, methods, parameters; 

• conditions; 

• loops; 

• classes, subclasses and inheritance; 

• abstraction;  

• user-defined methods;  

• keyboard movement and event listeners; 

• sound, animation; 

• game mechanics (score, win/lose conditions); 

• code documentation. 

 

 

Alice – Guided Activity  

Lets’ create a racing game. The first step is to create the map and include the 

start and finish lines and include a number of barriers for collision, see Figure 

8.3. We will define game mechanics, such as a timer to complete the race and 

car health, and write custom procedures to implement it. The player will use 

the keyboard to drive the car. 

 
Figure 8.3: Race Game 
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Concepts demonstrated: 

• variables, methods, parameters; 

• conditions; 

• loops; 

• user-defined methods (procedures/functions)  

• math expressions and random numbers;  

• classes, subclasses and inheritance; 

• repositioning objects at runtime;  

• sound; 

• keyboard movement and event listeners; 

• camera views and markers; 

• game mechanics (score, win/lose conditions); 

• code documentation. 

 

 

APP Inventor – Workshop Activities 

Activity 1 - Magic 8 Ball (“Magic 8 Ball”) 
 

This introductory application demonstrates basic programming concepts and 

will help you learn how to navigate APP Inventor environment: Designer, 

Blocks editor and Emulator. 
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Concepts demonstrated:  

• image sprites 

• variables and lists (arrays) 

• conditions 

• events and basic event handling 

• Accelerometer 

 

 

Figure 8.4: Magic-8 Ball 
 
Activity 2 - Mole Mash (“Mole Mash”) 
 
In the game MoleMash, a mole pops up at random positions on a playing field, 

and the player scores points by hitting the mole before it jumps away. You'll 

design the game so that the mole moves once every half-second. If it is 

touched, the score increases by one, and the phone vibrates. When you miss 

the mole ten times the games should end. Pressing restart resets the score to 

zero. 

 

Concepts demonstrated:  

• variables; 

• buttons and text blocks; 

• math expressions and random numbers; 

• conditions 

• loops 

• procedures; 

• events and event handling; 

• repositioning objects at runtime;  

• timers and the clock component; 

• game mechanics (score, win/lose conditions) 

Figure 8.5: MoleMash 
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Scratch – Workshop Activities 

Activity 1 – Virtual Network and DNS 

In this activity, you are going to create a virtual network using Scratch. The 

idea is that you tell the packet (the yellow ball) to go to a certain computer 

(one of five) using an IP address. You type in a message (the data) and the 

packet should travel to the router and then to the destination computer with 

the correct IP address. The packet has to touch the computer in order to 

deliver the message. Extend your project by adding domain name server 

functionality. Instead of asking the user to go to a computer using its IP 

number, associate each IP with a domain name and ask the user to type a 

name. Your final project should look like figure. 

 
Figure 8.6: IP packet switch 

 

Concepts demonstrated: 

• user input; 

• variables; 

• arrays; 

• mouse interactions; 

• animation. 

Activity 2 – Match the Flag (Quiz) 
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In this activity, you are going to a create a Quiz Game. Game starts with a 

splash screen, see Error! Reference source not found. and the purpose of the g

ame is to display a random set of 6 flags from a collection of 24 flags. When 

game starts a sprite character calls out the name of a country. The player has 

to select the correct flag within 5 seconds. The quiz should end after 6 rounds 

and display as a score as correct answer percentage.  

Concepts demonstrated: 

• variables; 

• arrays; 

• random numbers; 

• conditions; 

• loops; 

• code modularity and custom blocks; 

• message broadcasting; 

• cloning; 

• timers;  

• game mechanics (score, win/lose conditions) 

 

 
 

Figure 8.7: "Guess the Flag" game splash screen 
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