Bioavailability of polycyclic aromatic compounds

Idowu, Oluyoye and Kim Anh Tran, Thi and Baker, Phil and Farell, Hazel and Zammit, Anthony and Semple, Kirk and O'Connor, Wayne and Thavamani, Palanisami (2020) Bioavailability of polycyclic aromatic compounds. Science of the Total Environment, 736. ISSN 0048-9697

[img]
Text (Binder1)
Binder1.pdf - Accepted Version
Restricted to Repository staff only until 21 May 2021.
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.

Download (1MB)

Abstract

Improving risk assessment and remediation rests on better understanding of contaminant bioavailability. Despite their strong toxicological attributes, little is known about the partitioning behaviour and bioavailability of polar polycyclic aromatic hydrocarbons (PAHs) in aquatic environments. The present study provides an insight into the bioavailable fractions of polar PAHs and their parent analogues in the tissues of the Sydney rock oyster, Saccostrea glomerata, a model aquatic bio-indicator organism. The concentration and distribution patterns of parent and polar PAHs including oxygenated PAHs (oxyPAHs), nitrated PAHs (NPAHs) and heterocyclic PAHs (HPAHs) were determined in water, sediment and oysters from an ecologically and economically important estuary of New South Wales, Australia. Total concentrations of PAHs, oxyPAHs, NPAHs and HPAHs were higher in sediments compared to oyster tissue and water. For most polar PAHs, total concentrations for water, sediment and oyster samples were <1 μg/g (μg/l for water) while parent PAH concentrations were several orders of magnitude higher. Computed biota-sediment accumulation factors (BSAFs) on lipid-normalized oyster concentrations revealed that while ∑oxyPAHs and ∑HPAHs exhibited low accumulation from sediment to oyster tissues (BSAF <1), ∑PAHs and ∑NPAH were found to be accumulated at high levels (BSAF >1). BSAF individual computation showed that bioaccumulation of nine investigated HPAHs in oyster tissues were relatively low and only 2-EAQ (oxyPAH) and 1N-NAP (NPAH) showed high levels of accumulation in oyster tissues, similar to parent PAHs. To the best of our knowledge, this is the first known study on the bioavailability of polar and non-polar PAHs in an Australian aquatic environment. The outcome of this study might be a useful indicator of the potential risks of polar PAHs to humans and other living organisms.

Item Type:
Journal Article
Journal or Publication Title:
Science of the Total Environment
Additional Information:
This is the author’s version of a work that was accepted for publication in Science of the Total Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Science of the Total Environment, 736, 2020 DOI: 10.1016/j.scitotenv.2020.139574
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2300/2311
Subjects:
ID Code:
144448
Deposited By:
Deposited On:
01 Jun 2020 15:50
Refereed?:
Yes
Published?:
Published
Last Modified:
01 Dec 2020 08:07