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Abstract. Let B(X) denote the Banach algebra of bounded operators on X, where X is
either Tsirelson’s Banach space or the Schreier space of order n for some n ∈ N. We show
that the lattice of closed ideals of B(X) has a very rich structure; in particular B(X)
contains at least continuum many maximal ideals.

Our approach is to study the closed ideals generated by the basis projections. Indeed,
the unit vector basis is an unconditional basis for each of the above spaces, so there is
a basis projection PN ∈ B(X) corresponding to each non-empty subset N of N. A closed
ideal of B(X) is spatial if it is generated by PN for some N . We can now state our main
conclusions as follows:
• the family of spatial ideals lying strictly between the ideal of compact operators

and B(X) is non-empty and has no minimal or maximal elements;
• for each pair I $ J of spatial ideals, there is a family {ΓL : L ∈ ∆}, where the

index set ∆ has the cardinality of the continuum, such that ΓL is an uncountable
chain of spatial ideals,

⋃
ΓL is a closed ideal that is not spatial, and

I $ L $ J and L + M = J

whenever L,M ∈ ∆ are distinct and L ∈ ΓL, M ∈ ΓM .

1. Introduction and statement of main results

Let X be a Banach space with an unconditional basis (bj)j∈N. For a subset N of N, we
write PN for the basis projection corresponding to N ; that is, PNx =

∑
j∈N〈x, b∗j〉bj for

each x ∈ X, where b∗j ∈ X∗ denotes the jth coordinate functional. By a spatial ideal of the
Banach algebra B(X) of bounded operators on X, we understand the closed, two-sided
ideal generated by the basis projection PN for some non-empty subset N of N. A spatial
ideal I is non-trivial if

K (X) $ I $ B(X),

where K (X) denotes the ideal of compact operators. A chain of spatial ideals is a non-
empty set Γ of spatial ideals of B(X) such that Γ is totally ordered by inclusion.

We shall study two (classes of) Banach spaces, namely Tsirelson’s space on the one hand
and the Schreier spaces of finite order on the other. We refer to Section 4 for details of the
definition of the latter spaces, originally due to Alspach and Argyros [1]. These Banach
spaces have unconditional bases. Using spatial ideals, we shall show that their lattices of
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closed operator ideals have a very rich structure. The following theorem summarizes our
main findings.

Theorem 1.1. Let X denote either Tsirelson’s space T or the Schreier space X[Sn] of
order n for some n ∈ N.

(i) The family of non-trivial spatial ideals of B(X) is non-empty and has no minimal
or maximal elements.

(ii) Let I $ J be spatial ideals of B(X). Then there is a family {ΓL : L ∈ ∆} such
that:
• the index set ∆ has the cardinality of the continuum;
• for each L ∈ ∆, ΓL is an uncountable chain of spatial ideals of B(X) such that

I $ L $ J (L ∈ ΓL),

and
⋃

ΓL is a closed ideal that is not spatial;
• L + M = J whenever L ∈ ΓL and M ∈ ΓM for distinct L,M ∈ ∆.

(iii) The Banach algebra B(X) contains at least continuum many maximal ideals.

We shall also consider the “small” ideals of operators on the above spaces, where we
call an ideal “small” if it contains no projections with infinite-dimensional image. The
particular ideals that we are interested in are the compact, strictly singular and inessential
operators; we refer to Definition 2.2 for the precise definitions of the latter two operator
ideals, which we denote by S and E , respectively.

Theorem 1.2. (i) The ideals of compact, strictly singular and inessential operators on
Tsirelson’s space coincide, and they are equal to the intersection of the non-trivial
spatial ideals of B(T ) :

K (T ) = S (T ) = E (T ) =
⋂{

I : I is a non-trivial spatial ideal of B(T )
}
.

(ii) Let X = X[Sn] be the Schreier space of order n for some n ∈ N. Then

K (X) $ S (X) = E (X)

and ⋂{
I : I is a non-trivial spatial ideal of B(X)

}
* S (X). (1.1)

The paper is organized as follows: we conclude this introduction with a brief survey of
related results to provide some background for our work and put it in context. In Section 2,
we set up notation and establish some basic general results, as well as a common frame-
work for the proof of Theorem 1.1, before we complete the proofs for Tsirelson’s space in
Section 3 and for the Schreier spaces in Section 4. Finally, Section 5 contains some open
questions related to this work.

The seminal study of operator ideals is due to Calkin [5], who considered the situation
when the underlying Banach space is a separable Hilbert space. His most important con-
clusion (at least from our point of view) is that the ideal of compact operators is the only
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proper, non-zero closed ideal in this case. Gohberg, Markus and Feldman [15] genera-
lized Calkin’s result to the other classical sequence spaces c0 and `p for p ∈ [1,∞), while
Gramsch [17] and Luft [28] independently classified all the closed ideals of B(H) when H
is a non-separable Hilbert space. Their result implies that these ideals form a well-ordered
chain whose length is determined by the dimension of H.

Berkson and Porta [4, Section 5] initiated the study of the closed ideals of B(Lp[0, 1])
for p ∈ (1, 2) ∪ (2,∞), proving in particular that they are not totally ordered. Porta [35]
then went on to construct a Banach space X such that there is an injective map from
the set [N]<∞ of all finite subsets of the natural numbers into the lattice of closed ideals
of B(X), and this map preserves inclusions in both directions. Porta’s Banach space X is
the `2-sum of a family of the form {`p : p ∈ P} for a countably infinite subset P of [1,∞).
By ensuring that 1 /∈ P and that P contains the conjugate index of each of its elements,
Porta arranged that X is reflexive and isometric to its dual space X∗. As far as we know,
this was the first example of a separable Banach space which has infinitely many closed
operator ideals.

Porta [36] also initiated the study of the closed operator ideals on `p ⊕ `q for distinct
p, q ∈ (1,∞), notably showing that for p = 2, there are exactly two maximal ideals, which
correspond to the operators that factor through `2 and `q, respectively. Subsequently,
Volkmann [41] extended this result to arbitrary finite sums of the form `p1⊕ `p2⊕· · ·⊕ `pm
and `p1 ⊕ `p2 ⊕ · · · ⊕ `pm−1 ⊕ c0, where m ∈ {2, 3, . . .} and 1 6 p1 < p2 < · · · < pm <∞.

Pietsch surveyed these results in his monograph [34] and provided further progress in
some cases, observing in particular that there are infinitely many closed operator ideals
on Lp[0, 1] for p ∈ (1, 2)∪ (2,∞) and uncountably many on C[0, 1]. Moreover, he formally
asked whether there are infinitely many closed operator ideals on each of the spaces L1[0, 1],
`p ⊕ `q and `p ⊕ c0 for 1 6 p < q <∞. These questions have only recently been answered,
all in the affirmative; we shall give further details below.

After a relatively quiet period, the study of closed operator ideals has gained new mo-
mentum since the turn of the millenium. Among the early progress were the first new full
classifications of the closed operator ideals on a Banach space since Gramsch’s and Luft’s
work, beginning with the space

(⊕
k∈N `

k
2

)
c0

and its dual
(⊕

k∈N `
k
2

)
`1

(see [26] and [27],
respectively), and Daws’ generalization [9] of Gramsch’s and Luft’s result to the other non-
separable sequence spaces `p(Γ) and c0(Γ) for an arbitrary uncountable index set Γ and
p ∈ [1,∞).

Subsequently, as a bi-product of Argyros and Haydon’s spectacular solution [3] of the
scalar-plus-compact problem, several new Banach spaces whose closed operator ideals can
be classified have appeared, including [39], [30] and [21]. Another such classification is given
in [20, Theorem 5.5], namely for the Banach space C(K), where K is Koszmider’s Mrówka
space constructed in [23] under the Continuum Hypothesis; see [24] for the construction
of such a space within ZFC. We refer to [21, Remark 1.5] for a more detailed survey of the
above results.

An important common feature of the spaces listed in the previous paragraph is that they
are all “purpose-built”, which is in sharp contrast to those we described before. We consider
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it a very interesting — and probably very difficult — challenge to find new examples of
“classical” Banach spaces whose closed operator ideals can be classified (where “classical”
can perhaps best be understood as “having been known, or at least accessible to Banach”).
To substantiate this claim, we shall outline three further cases, where apparently “nice”
Banach spaces have been shown to have very intricate lattices of closed operator ideals.
Theorem 1.1 above in the case of the original Schreier space X[S1] could arguably also be
included in this list.

We begin with Figiel’s reflexive Banach spaces which are not isomorphic to their carte-
sian squares [10]. These Banach spaces are manifestly “nice”, being defined by entirely
elementary means. Indeed, what Figiel showed is that for each strictly decreasing sequence
(pk) in (2,∞) and each number q ∈ (1, inf pk], there is a sequence (nk) in N such that the
Banach space

F =
(⊕
k∈N

`nk
pk

)
`q

satisfies: for each m ∈ N, Fm+1 does not embed isomorphically into Fm. Now consider the
Boolean algebra P(N)/[N]<∞ which is the quotient of the power set of N modulo the ideal
of finite subsets. Loy and the third-named author [25, Theorem 4.12] constructed an injec-
tive map from the ideal lattice of P(N)/[N]<∞ into the closed ideal lattice of B(F ) such
that this map preserves the order in both directions. This implies in particular that B(F )
has continuum many closed ideals. (The result stated in [25, Corollary 4.13] says “uncount-
ably many”, but the argument actually gives continuum many by using the existence of
an almost disjoint family of subsets of N having the cardinality of the continuum.)

More recently, Schlumprecht and Zsák [37] launched the first successful attack on the
above-mentioned questions of Pietsch by constructing a chain of continuum many closed
operator ideals on `p ⊕ `q for 1 < p < q < ∞. The other cases of this question have
subsequently also been resolved in [42], [38] and [12], so we now know that B(`p⊕ `q) and
B(`p ⊕ c0) contain uncountable chains of closed ideals whenever 1 6 p < q <∞. (In fact,
in all cases except B(`1 ⊕ c0), the chains have the cardinality of the continuum.)

Finally, in 2018 Johnson, Pisier and Schechtman [18] answered the remaining question
of Pietsch by constructing a chain of continuum many closed operator ideals on L1[0, 1].
They also obtained similar conclusions for C[0, 1] (where previously only uncountably many
closed operator ideals were known) and L∞[0, 1] (and therefore also for `∞ because `∞
and L∞[0, 1] are isomorphic as Banach spaces by a theorem of Pełczyński [32]), using
a variant of their argument and duality, respectively.

Note: after the initial version of this paper was submitted, Johnson and Schechtman [19]
have shown that B(Lp[0, 1]) contains 2c closed ideals for each p ∈ (1,∞) \ {2}.

To conclude this survey, let us remark that the Tsirelson and Schreier spaces are not
the first examples of separable Banach spaces having at least continuum many maximal
operator ideals. Indeed, Mankiewicz [29] and Dales–Loy–Willis [8] have independently
constructed separable Banach spaces X such that B(X) admits a bounded, surjective
algebra homomorphism ϕ onto `∞, and therefore {ϕ−1(M ) : M is a maximal ideal of `∞}
is a family of cardinality 2c of maximal ideals of B(X).
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2. Preliminaries, including the framework of the proof of Theorem 1.1

For a set N , P(N) denotes its power set, while [N ] and [N ]<∞ are the sets of infinite and
finite subsets of N , respectively. We write |N | for the cardinality of N ; the letter c denotes
the cardinality of the continuum.

For two non-empty subsets M and N of N, we use the notation M < N to indicate
that M is finite and maxM < minN . By an interval in a subset N of R, we understand
a set of form J∩N , where J is an interval of R in the usual sense. (Note that the interval J
may be open, closed or half-open.)

All normed spaces are over the same scalar field K, which may be either the real or the
complex numbers. The term “operator” means a bounded, linear map between normed
spaces. We write B(X) for the Banach algebra of operators on a Banach space X. For
S ∈ B(X), 〈S〉 denotes the (algebraic, two-sided) ideal of B(X) generated by S, that is,

〈S〉 =

{ k∑
j=1

UjSVj : k ∈ N, U1, . . . , Uk, V1, . . . , Vk ∈ B(X)

}
.

Since B(X) is a unital Banach algebra, the ideal 〈S〉 is proper if and only if its norm-closure
〈S〉 is. The following related result [25, Lemma 4.9] is fundamental to our investigations.

Lemma 2.1. Let I be an ideal of a Banach algebra A , and let P ∈ A be idempotent.
Then P ∈ I if (and only if) P ∈ I .

Definition 2.2. Let X and Y be Banach spaces. An operator S : X → Y is:
• strictly singular if, for each ε > 0, each infinite-dimensional subspace of X contains
a unit vector x such that ‖Sx‖ < ε; in other words, the restriction of S to W is not
an isomorphic embedding for any infinite-dimensional subspace W of X;
• inessential if IX +RS is a Fredholm operator (that is, has finite-dimensional kernel
and cofinite-dimensional image) for each operator R : Y → X, where IX denotes
the identity operator on X.

We write S (X, Y ) and E (X, Y ) for the sets of strictly singular and inessential operators
from X to Y , respectively.

With these definitions, S and E define closed operator ideals in the sense of Pitsch,
and S (X, Y ) ⊆ E (X, Y ) for any Banach spaces X and Y . As usual, we write S (X) and
E (X) instead of S (X,X) and E (X,X). A projection P ∈ B(X) is inessential if and only
if it has finite-dimensional image. Although we shall not require this result, let us mention
that E (X) is equal to the pre-image under the quotient map of the Jacobson radical of
the Calkin algebra B(X)/K (X). This was indeed Kleinecke’s original definition of the
inessential operators on a single Banach space [22]; the definition given above, where the
domain and codomain may differ, is due to Pietsch [34].

Pfaffenberger [33] has shown that S (X) = E (X) whenever the Banach space X is
subprojective in the sense that each closed, infinite-dimensional subspace of X contains
a closed, infinite-dimensional subspace which is complemented in X.
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Let X and Y be Banach spaces. A basic sequence (xj)j∈N in X dominates a basic
sequence (yj)j∈N in Y if there is a constant C > 0 such that∥∥∥∥ k∑

j=1

αjyj

∥∥∥∥ 6 C

∥∥∥∥ k∑
j=1

αjxj

∥∥∥∥ (k ∈ N, α1, . . . , αk ∈ K).

If we wish to record the value of the constant C, we say that (xj)j∈N C-dominates (yj)j∈N.
Let X be a Banach space with an unconditional basis (bj)j∈N. It is easy to see that the

basis projections satisfy the identity

PM∪N = PM + PN − PM∩N (M,N ⊆ N). (2.1)

For a subset M of N, we write XM for the image of the basis projection PM ; that is,

XM = span{bj : j ∈M}. (2.2)

In the notation introduced above, the ideals of the form 〈PM〉 for some non-empty subsetM
of N are precisely the spatial ideals of B(X). The ideal K (X) of compact operators is
always spatial. More precisely, forM ⊆ N, we have 〈PM〉 = K (X) if and only ifM is non-
empty and finite. The following lemma characterizes when one spatial ideal is contained
in another.

Lemma 2.3. Let X be a Banach space with an unconditional basis, and let M and N be
subsets of N. Then the following four conditions are equivalent:

(a) PM ∈ 〈PN〉;
(b) 〈PM〉 ⊆ 〈PN〉;
(c) 〈PN〉 = 〈PM∪N〉;
(d) XM is isomorphic to a complemented subspace of Xk

N for some k ∈ N.

Proof. Lemma 2.1 shows that (a) implies (b), which in turn implies (c) by (2.1). Clearly (c)
implies (a), and finally the equivalence of (a) and (d) is a special case of [26, Lemma 4.7]
(or the much earlier [35, Lemma 1] if we know that XM

∼= XM ⊕ XM , which will be the
case in our applications of this result.) �

Corollary 2.4. Let X be a Banach space with an unconditional basis, and let N be a non-
empty subset of N. Then 〈PN〉 = 〈PN∪F 〉 for each F ∈ [N]<∞.

Proof. We have PF ∈ F (X) ⊆ 〈PN〉 because the set F is finite and the ideal F (X) of
finite-rank operators is the smallest non-zero ideal of B(X). Hence the conclusion follows
from Lemma 2.3. �

Combining Lemma 2.3 with Pełczyński’s Decomposition Method, we obtain the following
conclusion.

Corollary 2.5. Let X be a Banach space with an unconditional basis, and let M and N be
subsets of N such that XM is isomorphic to XM ⊕XM and XN is isomorphic to XN ⊕XN .
Then 〈PM〉 = 〈PN〉 if and only if XM and XN are isomorphic.
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Proposition 2.6. (Dichotomy for chains of spatial ideals) Let X be a Banach space with
an unconditional basis, and let Γ be a chain of spatial ideals. Then either Γ stabilizes, so
that

⋃
Γ ∈ Γ, or the ideal

⋃
Γ is not spatial.

Proof. The two statements are clearly mutually exclusive. Suppose that the second state-
ment fails, so that

⋃
Γ = 〈PM〉 for some non-empty subsetM of N. We must show that the

first statement is satisfied, that is, 〈PM〉 ∈ Γ. Since a projection belongs to the closure of
an ideal if and only if it belongs to the ideal itself by Lemma 2.1, we can find a non-empty
subset N of N such that PM ∈ 〈PN〉 and 〈PN〉 ∈ Γ. Then

〈PM〉 ⊆ 〈PN〉 ⊆
⋃

Γ = 〈PM〉,

so we conclude that 〈PM〉 = 〈PN〉 ∈ Γ, as required. �

We shall next state two technical lemmas which will form the core of the proof of The-
orem 1.1. The set-up is as follows. Let X be a Banach space with an unconditional basis,
and suppose that M ⊆ N are non-empty subsets of N such that PN /∈ 〈PM〉. We note
that N is infinite because otherwise PN ∈ F (X) ⊆ 〈PM〉. Further, we see that the set

ΩM,N =
{
〈PL〉 : M ⊆ L ⊆ N, PN /∈ 〈PL〉

}
of spatial ideals of B(X) is partially ordered by inclusion, and also non-empty with a small-
est element, namely 〈PM〉. We say that a chain Γ in ΩM,N is set-induced if there is an in-
creasing sequence (Lj)j∈N of subsets of N such that M ⊆ L1 and Γ =

{
〈PLj
〉 : j ∈ N

}
.

Lemma 2.7. Let X be a Banach space with an unconditional basis, and let M ⊆ N be
non-empty subsets of N such that PN /∈ 〈PM〉.

I. A chain Γ in ΩM,N is set-induced if and only if either Γ stabilizes and has order
type n for some n ∈ N, or Γ has order type ω.

II. Suppose that the following two conditions are satisfied:
(II.i) each set-induced chain in ΩM,N has an upper bound in ΩM,N ;
(II.ii) ΩM,N has no maximal elements.
Then each countable chain in ΩM,N has an upper bound in ΩM,N , and there is
a (necessarily uncountable) chain Γ in ΩM,N such that:
• Γ has no upper bound in ΩM,N ;
• each countable subchain of Γ has an upper bound in Γ;
• the ideal

⋃
Γ is closed, and it is not spatial.

III. Suppose that there is a map ϕ : P(N) → [N ] which satisfies the following three
conditions for each pair D,E ∈P(N) :

(III.i) M ⊆ ϕ(D);
(III.ii) ϕ(D) ∪ ϕ(E) = ϕ(D ∩ E);
(III.iii) PN ∈ 〈Pϕ(D)〉 if and only if D ∈ [N]<∞.

Then there is a family ∆ ⊆ [N ] of cardinality c such that

M ⊆ L and 〈PM〉 $ 〈PL〉 $ 〈PN〉 = 〈PL∪L′〉 (L,L′ ∈ ∆, L 6= L′). (2.3)
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Proof. I. The forward implication is clear.
Conversely, let Γ be a chain in ΩM,N of order type n ∈ N ∪ {ω}. In both cases we can

express Γ as Γ =
{
〈PKj
〉 : j ∈ N

}
, where M ⊆ Kj ⊆ N and PN /∈ 〈PKj

〉 ⊆ 〈PKj+1
〉

for each j ∈ N. Then, defining Lj =
⋃j
i=1Ki, we obtain an increasing sequence (Lj)j∈N

of subsets of N such that M ⊆ L1 and 〈PKj
〉 = 〈PLj

〉 for each j ∈ N by Lemma 2.3.
Consequently Γ = {〈PLj

〉 : j ∈ N} is set-induced.
II. Let Γ be a countable chain in ΩM,N . If Γ is finite, then it has a maximal element and

thus an upper bound in ΩM,N . Otherwise we can choose a subset Υ of Γ such that Υ has
order type ω and every element of Γ is contained in an element of Υ. Then Υ is set-induced
by I. Hence condition (II.i) implies that Υ has an upper bound in ΩM,N , and that upper
bound is clearly also an upper bound for Γ.

If each chain in ΩM,N had an upper bound in ΩM,N , then the Kuratowski–Zorn Lemma
would imply that ΩM,N contains a maximal element, contrary to condition (II.ii). There-
fore ΩM,N contains a chain Γ without any upper bound in ΩM,N , and this chain Γ must be
uncountable by the result proved in the previous paragraph.

To establish the second bullet point, assume towards a contradiction that Γ contains
a countable subchain Υ which has no upper bound in Γ. As shown above, Υ has an upper
bound M ∈ ΩM,N . The assumption means that, for each J ∈ Γ, we can find L ∈ Υ such
that L * J . Hence J ⊆ L because Γ is a chain, and therefore also J ⊆ M . This
shows that M is an upper bound for Γ, which contradicts that M ∈ ΩM,N .

To see that
⋃

Γ is closed, suppose that S ∈
⋃

Γ. We can then recursively construct
a sequence (Sj) of operators and an increasing sequence (Jj) of spatial ideals belonging
to Γ such that Sj ∈Jj and ‖S − Sj‖ < 1/j for each j ∈ N. As we showed in the previous
paragraph, the countable subchain {Jj : j ∈ N} of Γ has an upper bound M ∈ Γ. Since M
is closed and contains Sj for each j ∈ N, we conclude that S ∈ M ⊆

⋃
Γ, as required.

Finally, since Γ has no upper bound in ΩM,N , it cannot stabilize, so Proposition 2.6 implies
that the ideal

⋃
Γ is not spatial.

III. We begin by showing that 〈PM〉 $ 〈Pϕ(D)〉 whenever D ⊆ N is co-infinite. The
inclusion follows from (III.i). To see that it is proper when D is co-infinite, suppose that
the two ideals are equal, so that Pϕ(D) ∈ 〈PM〉 by Lemma 2.1, and set Dc = N \ D.
Condition (III.i) implies that PM ∈ 〈Pϕ(Dc)〉, and hence also Pϕ(D) ∈ 〈Pϕ(Dc)〉. Combining
this with Lemma 2.3 and (III.ii)–(III.iii), we deduce that

〈Pϕ(Dc)〉 = 〈Pϕ(D)∪ϕ(Dc)〉 = 〈Pϕ(∅)〉 3 PN .

This shows that Dc is finite by condition (III.iii), and the conclusion follows.
Now take a family D ⊆ [N] of cardinality c such that D is almost disjoint in the sense

that D∩E is finite whenever D,E ∈ D are distinct, and set ∆ = ϕ(D). Then each D ∈ D
is infinite and co-infinite, so 〈PM〉 $ 〈Pϕ(D)〉 $ 〈PN〉 by the result proved in the previous
paragraph and (III.iii). Suppose that D,E ∈ D are distinct. Then D ∩ E ∈ [N]<∞, so
PN ∈ 〈Pϕ(D∩E)〉 = 〈Pϕ(D)∪ϕ(E)〉 by (III.iii) and (III.ii). This establishes the final equality
in (2.3), and it also implies that ϕ(D) 6= ϕ(E), so ϕ is injective, and thus |∆| = |D | = c. �
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Lemma 2.8. Let X denote either Tsirelson’s space T or the Schreier space X[Sn] of order n
for some n ∈ N.

(i) For each N ∈ [N], there is M ∈ [N ] such that PN /∈ 〈PM〉, and consequently

〈PM〉 $ 〈PN〉.

(ii) Suppose that M ⊆ N are infinite subsets of N such that PN /∈ 〈PM〉. Then:
• there is a map ϕ : P(N) → [N ] which satisfies conditions (III.i)–(III.iii) in
Lemma 2.7, and hence there is a family ∆ ⊆ [N ] of cardinality c such that (2.3)
is satisfied;
• each set-induced chain in ΩM,N has an upper bound in ΩM,N .

The proof of Lemma 2.8 is non-trivial both for Tsirelson’s space and for the Schreier
spaces of finite order; we shall give these proofs in Sections 3 and 4, respectively. However,
once the lemma is established, Theorem 1.1 follows fairly easily, as we shall now show.

Proof of Theorem 1.1, assuming Lemma 2.8. Applying Lemma 2.8(i)–(ii) in the particular
case N = N, we see that B(X) contains a non-trivial spatial ideal and that each proper
spatial ideal has at least continuum many successors, so no such ideal is maximal. An-
other application of Lemma 2.8(i) shows that no non-trivial spatial ideal is minimal. This
establishes Theorem 1.1(i).

To verify Theorem 1.1(ii), let I $ J be spatial ideals of B(X), and take non-empty
subsets K,N of N such that I = 〈PK〉 and J = 〈PN〉. By Lemma 2.3, we may replace N
with N ∪K to ensure that K ⊆ N . Moreover, we may suppose that K is infinite. Indeed,
Lemma 2.8(i) implies that N contains an infinite subset K ′ such that 〈PK′〉 $ J , and
if K is finite, then 〈PK〉 = K (X) ⊆ 〈PK′〉, so we may replace K with K ′.

This enables us to apply Lemma 2.8(ii) with M = K to obtain a family ∆ ⊆ [N ] of
cardinality c such that

K ⊆ L and I $ 〈PL〉 $ J = 〈PL∪L′〉 (L,L′ ∈ ∆, L 6= L′), (2.4)

and each set-induced chain in ΩK,N has an upper bound in ΩK,N . Take L ∈ ∆. Then
PN /∈ 〈PL〉, and Lemma 2.8(ii) (this time applied with M = L) shows that the pair L ⊆ N
satisfies conditions (II.i)–(II.ii) in Lemma 2.7. Consequently ΩL,N contains an uncountable
chain ΓL such that

⋃
ΓL is a closed ideal that is not spatial. It follows that the first two

bullet points in Theorem 1.1(ii) are satisfied. To verify the third, suppose that L ∈ ΓL and
M ∈ ΓL′ , where L,L′ ∈ ∆ are distinct. Then PL ∈ L and PL′ ∈M , and therefore (2.1)
shows that PL∪L′ ∈ L +M . Hence the conclusion follows from the fact that 〈PL∪L′〉 = J
by (2.4).

(iii). Applying clause (ii) in the case where J = B(X) and I is any proper spatial
ideal, we deduce that there is a family Ξ of proper spatial ideals of B(X) such that Ξ has
cardinality c and

L + M = B(X) (L ,M ∈ Ξ, L 6= M ). (2.5)
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Each of the ideals in Ξ is contained in a maximal ideal of B(X), and (2.5) implies that
these maximal ideals are all distinct, so B(X) contains at least continuum many maximal
ideals. �

3. Tsirelson’s space

Following Figiel and Johnson [11], we use the term Tsirelson’s space for the dual of the
reflexive Banach space that Tsirelson [40] originally constructed with the property that it
does not contain any of the classical sequence spaces c0 and `p for 1 6 p < ∞, and we
denote it by T . This convention makes no difference from the point of view of ideal lattices
because T is reflexive, so the adjoint map S 7→ S∗, B(T )→ B(T ∗), is an isometric, linear
bijection which is anti-multiplicative in the sense that (RS)∗ = S∗R∗ for R, S ∈ B(T ),
and therefore it induces a lattice isomorphism between the closed ideal lattices of B(T )
and B(T ∗).

We refer to Casazza and Shura’s monograph [7] for details about Tsirelson’s space,
including its formal definition. In line with their notation, we write (tj)j∈N for the unit
vector basis, which is a normalized, 1-unconditional basis for T . Recall from (2.2) that TM
denotes the closed linear span of {tj : j ∈ M} in T for a subset M of N. Using this
notation, we have the following fundamental result [7, Corollary VII.b.3].

Theorem 3.1. Let M,N ∈ [N]. Then TM is isomorphic to TN if and only if (tj)j∈M is
equivalent to (tj)j∈N .

The usefulness of this result relies on being able to determine when two subsequences of
the basis (tj) are equivalent. Fortunately, Casazza, Johnson and Tzafriri [6] have identified
an index which does exactly that. To define it, we require some notation. First, for
M = {m1 < m2 < · · · } ∈ [N] and J ∈ [N]<∞, let σ(M,J) denote the norm of the formal
identity operator from the linear span of (tmj

)j∈J to `1(J), that is,

σ(M,J) = sup

{∑
j∈J

αj : αj ∈ [0, 1],
∥∥∥∑
j∈J

αjtmj

∥∥∥
T
6 1

}
,

with the convention that σ(M, ∅) = 0. Second, suppose that N = {n1 < n2 < · · · } ∈ [N],
and set m0 = n0 = 0. Then Casazza, Johnson and Tzafriri have shown that (tj)j∈M is
equivalent to (tj)j∈N if and only if

sup
{
σ
(
M,M ∩ (nj−1, nj]

)
, σ
(
N,N ∩ (mj−1,mj]

)
: j ∈ N

}
<∞ (3.1)

(see [6, the remark following Theorem 10]). This result simplifies considerably in the special
case where M ⊆ N , which will suffice for our purposes. We incorporate it in the following
omnibus characterization of equality of spatial ideals of B(T ), which will be our key tool
in the proof of Lemma 2.8 for Tsirelson’s space.

Corollary 3.2. The following conditions are equivalent for each pair M ⊆ N of infinite
subsets of N :

(a) PN ∈ 〈PM〉;
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(b) 〈PM〉 = 〈PN〉;
(c) TN is isomorphic to a complemented subspace of TM ;
(d) TN is isomorphic to TM ;
(e) (tj)j∈M is equivalent to (tj)j∈N ;
(f) there is a constant C > 1 such that σ(N, J) 6 C for each interval J in N with

J ∩M = ∅.

As it will be used repeatedly in the remainder of this section, let us spell out that the
conditions on the set J in clause (f) above mean that J = N ∩ [a, b] for some numbers a, b
satisfying mj−1 < a 6 b < mj for some j ∈ N, where m0 = 0 and M = {m1 < m2 < · · · }
is the increasing enumeration of M , as above.

Proof. The assumption that M ⊆ N means that PM = PMPN ∈ 〈PN〉, and hence condi-
tions (a)–(d) are equivalent by Lemma 2.3 and Corollary 2.5 because TL ∼= TL ⊕ TL for
each L ∈ [N], as explained in [7, the paragraph following Proposition I.12]. Theorem 3.1
shows that conditions (d) and (e) are equivalent.

Finally, conditions (e) and (f) are equivalent by the result of Casazza, Johnson and
Tzafriri stated above. Indeed, suppose that (e) is satisfied, and let C ∈ [1,∞) be the
supremum given by (3.1). Since each interval J in N with J ∩ M = ∅ is contained in
N ∩ (mj−1,mj) for some j ∈ N, we have σ(N, J) 6 σ

(
N,N ∩ (mj−1,mj]

)
6 C.

Conversely, suppose that C is a constant such that (f) is satisfied, and take j ∈ N. Since
M ⊆ N , the set M ∩ (nj−1, nj] is either empty or a singleton, so σ

(
M,M ∩ (nj−1, nj]

)
6 1.

Moreover, the subadditivity of the operator norm implies that

σ
(
N,N ∩ (mj−1,mj]

)
6 σ

(
N,N ∩ (mj−1,mj)

)
+ 1 6 C + 1,

and hence the supremum in (3.1) is at most C + 1. �

Proof of Lemma 2.8 for X = T . (i). Let N = {n1 < n2 < · · · } ∈ [N]. For each k ∈ N,
we can find m > k such that σ

(
N,N ∩ (k,m)

)
> k because otherwise the basic sequence

(tnj
)j∈N∩(k,∞) would k-dominate, and hence be equivalent to, the unit vector basis of `1

for some k ∈ N. Using this observation, we can recursively construct a strictly increasing
sequence (mj) in N such that σ

(
N,N ∩ (mj−1,mj)

)
> mj−1 for each j ∈ N, where m0 = 0.

Now Corollary 3.2 shows that the subset M = {m1 < m2 < · · · } of N has the desired
property.

(ii). Let M ⊆ N be infinite subsets of N such that PN /∈ 〈PM〉. By Corollary 3.2, we can
recursively choose intervals J1 < J2 < · · · in N such that Jk ∩M = ∅ and σ(N, Jk) > k
for each k ∈ N. We shall show that the map ϕ : P(N)→ [N ] defined by

ϕ(D) = N \
⋃
j∈D

Jj

satisfies conditions (III.i)–(III.iii) in Lemma 2.7. The first two of these conditions are
immediate. To verify the third, suppose that D ⊆ N is finite. Then the set

⋃
j∈D Jj is also

finite, and therefore PN ∈ 〈Pϕ(D)〉 by Corollary 2.4. Conversely, suppose that D ⊆ N is
infinite. For each k ∈ D, Jk is an interval in N such that Jk ∩ϕ(D) = ∅ and σ(N, Jk) > k,
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so as D is unbounded, Corollary 3.2 implies that PN /∈ 〈Pϕ(D)〉. This establishes (III.iii)
and hence completes the proof of the first bullet point.

To verify the second, let Γ be a set-induced chain in ΩM,N , say Γ =
{
〈PLj
〉 : j ∈ N

}
,

where M ⊆ Lj ⊆ Lj+1 ⊆ N and PN /∈ 〈PLj
〉 for each j ∈ N. By Corollary 3.2, we may

recursively construct intervals J1 < J2 < · · · in N such that σ(N, Jj) > j and Jj ∩ Lj = ∅
for each j ∈ N. Set K = N \

⋃
j∈N Jj. Then M ⊆ K ⊆ N , and PN /∈ 〈PK〉 by Corollary 3.2

because Jj is an interval in N with K ∩ Jj = ∅ and σ(N, Jj) > j for each j ∈ N. Hence
〈PK〉 belongs to ΩM,N . Moreover, for each k ∈ N and j > k, we have Jj ∩Lk ⊆ Jj ∩Lj = ∅,
so Lk ⊆ K ∪

⋃
j<k Jj. Since

⋃
j<k Jj is finite, Corollary 2.4 implies that PLk

∈ 〈PK〉, and
therefore 〈PK〉 is an upper bound for Γ. �

We require the following result, which is [7, Proposition II.7], to prove Theorem 1.2(i).
Theorem 3.3. Every closed, infinite-dimensional subspace of T contains a closed subspace
which is complemented in T and isomorphic to TN for some N ∈ [N].
Proof of Theorem 1.2(i). A standard perturbation argument shows that K (T ) = S (T ),
as remarked in [2, p. 1173], for instance. As observed in [16, Proposition 2.4(5)], Theo-
rem 3.3 implies that T is subprojective, and therefore S (T ) = E (T ) by the result [33] of
Pfaffenberger mentioned on page 5.

The inclusion
K (T ) ⊆

⋂{
I : I is a non-trivial spatial ideal of B(T )

}
(3.2)

is clear. Conversely, suppose that S ∈ B(T ) \ K (T ). Then, as explained in the first
paragraph, S is not strictly singular. Take a closed, infinite-dimensional subspace W of T
such that the restriction of S to W is an isomorphism onto its image S(W ). Then S(W )
is a closed, infinite-dimensional subspace of T , so Theorem 3.3 implies that S(W ) contains
a closed subspace Z which is complemented in T and isomorphic to TN for some N ∈ [N].
Let Q : T → Z be a projection, and let U : Z → TN be an isomorphism. We observe that
the restriction of S to the subspace Y = S−1(Z) ∩W is an isomorphism onto Z; denote it
by S̃. Then we have a commutative diagram

T
PN //

��

S̃−1U−1PN

''

T

Y
S̃
∼=

//
J j

ww

Z
U
∼=

// TN
. �

==

T
S // T ,

OO

Q

hh

where the two unlabelled solid arrows are the set-theoretic inclusions. This diagram shows
that PN factors through S, and therefore PN ∈ 〈S〉. By Lemma 2.8(i), we can findM ∈ [N ]

such that PN /∈ 〈PM〉. Consequently S /∈ 〈PM〉, so S does not belong to the right-hand
side of (3.2). �
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4. The Schreier spaces of finite order

The aim of this section is to establish Lemma 2.8 and Theorem 1.2(ii) for the Schreier
space X[Sn] of order n ∈ N associated with the Schreier family Sn, originally defined by
Alspach and Argyros [1]. Their precise definition is as follows.

Definition 4.1. Let
S0 =

{
{k} : k ∈ N

}
∪ {∅},

and for n ∈ N0, recursively define

Sn+1 =

{ k⋃
i=1

Ei : k ∈ N, E1, . . . , Ek ∈ Sn \ {∅}, k 6 minE1, E1 < E2 < · · · < Ek

}
∪ {∅}.

For n ∈ N0, the Schreier space of order n is the completion of c00 with respect to the norm

‖x‖ = sup

{∑
j∈E

|αj| : E ∈ Sn \ {∅}
} (

x = (αj)j∈N ∈ c00
)
.

We denote this Banach space by X[Sn].

Of course, the Schreier space of order 0 is simply c0. For a fixed order n ∈ N0, we write
(ej)j∈N for the unit vector basis for X[Sn]. Alspach and Argyros [1] have shown that this
basis is 1-unconditional and shrinking.

Note: the original definition of Alspach and Argyros of the Schreier family Sn has an
extension to the case where n is a countably infinite ordinal. We have stated it for finite n
only because we have been unable to extend our results beyond that case.

Each subset of a set in Sn is clearly also in Sn. Another elementary and often useful
property of the Schreier family Sn is that it is spreading in the following sense. Let
J = {j1 < j2 < · · · < jm} and K = {k1 < k2 < · · · < km} be finite subsets of N, and
suppose that K is a spread of J ; that is, ji 6 ki for each i ∈ {1, . . . ,m}. Then J ∈ Sn
implies that K ∈ Sn.

We shall require several results and definitions from the paper [14] of Gasparis and Leung
that we shall now review. However, the starting point is a result of Gasparis alone [13,
Corollary 3.2], which states that, for each n ∈ N0 and M ∈ [N], there is a unique sequence(
F n
j (M)

)
j∈N of finite subsets of M such that:

(1) M =
⋃
j∈N F

n
j (M);

(2) F n
j (M) is a maximal Sn-set for each j ∈ N in the sense that E = F n

j (M) is the
only set E ∈ Sn such that F n

j (M) ⊆ E;
(3) the sets F n

j (M) are successive in the sense that F n
j (M) < F n

j+1(M) for each j ∈ N.
Gasparis and Leung [14, Definition 3.1] used this result to define the following numerical
index for a set J ∈ [N]<∞:

τn(J) = max{k ∈ N : J ∩ F n
k (Jtail) 6= ∅},

where we have introduced the notation Jtail = J ∪ {j ∈ N : j > max J} in an attempt to
make the expression a little easier to comprehend. Roughly speaking, τn(J) counts how
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many successive maximal Sn-sets (almost) fit inside J . The following remark collects three
easy observations concerning this index.

Remark 4.2. Let n ∈ N0 and J ∈ [N]<∞. Then:
(i) τn(J) > 1 if and only if J 6= ∅.
(ii) For k ∈ N, τn(J) = k if and only if there are successive Sn-sets E1 < E2 < · · · < Ek

such that J =
⋃k
i=1Ei and E1, . . . , Ek−1 are maximal Sn-sets. (Note that the final

Sn-set Ek need not be maximal.)
(iii) Suppose that J is non-empty. Then

τn(J) = min
{
k ∈ N : J ⊆

k⋃
i=1

Ei, where E1, . . . , Ek ∈ Sn and E1 < E2 < · · · < Ek

}
.

As Gasparis and Leung observed [14, Lemma 3.2(2)], the latter formula implies that τn
is subadditive in the sense that

τn(J ∪K) 6 τn(J) + τn(K) (4.1)

whenever J,K ∈ [N]<∞ are successive.
Gasparis and Leung used the index τn to define another index dn, which can be viewed as

a (not necessarily symmetric) way of measuring the distance from one infinite subset of N
to another in terms of the Schreier family Sn. To help state the definition of dn clearly and
compactly, we introduce the following piece of notation, which was not used by Gasparis
and Leung: let J and K be (finite or infinite) subsets of N such that sup J 6 |K| (so that
in particular K is infinite whenever J is infinite), and enumerate K in increasing order:
K = {k1 < k2 < · · · }. Then we set

K(J) = {kj : j ∈ J}. (4.2)

Definition 4.3 (Gasparis and Leung [14, Definition 3.3]). Let n ∈ N0 and M,N ∈ [N].
The nth Gasparis–Leung index of M with respect to N is given by

dn(M,N) = sup
{
τn
(
M(J)

)
: J ∈ [N]<∞, N(J) ∈ Sn

}
.

We note that dn(M,N) = 1 whenever M ⊆ N because in this case M(J) is a spread
of N(J) for each J ∈ [N]<∞.

The significance of the Gasparis–Leung index dn is due to the following result (see [14,
Corollary 1.2(1) and Lemma 3.4, including its proof]), which together with the immediate
consequence that we record in Corollary 4.5 will be a key tool for us. Recall that the
notation XN was introduced in (2.2).

Theorem 4.4 (Gasparis and Leung). Let X = X[Sn] for some n ∈ N, and let M,N ∈ [N].
(i) Suppose that XM is isomorphic to a subspace of XN . Then the basic sequence

(ej)j∈M dominates (ej)j∈N .
(ii) The basic sequence (ej)j∈M dominates (ej)j∈N if and only if dn(M,N) is finite.

Moreover, when dn(M,N) is finite, (ej)j∈M dn(M,N)-dominates (ej)j∈N .
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Corollary 4.5. Let X = X[Sn] for some n ∈ N, and let M,N ∈ [N]. Then the following
three conditions are equivalent:

(a) the subspaces XM and XN are isomorphic;
(b) XM is isomorphic to a subspace of XN , and XN is isomorphic to a subspace of XM ;
(c) dn(M,N) and dn(N,M) are both finite.

Our first application of these results is to establish the following proposition.

Proposition 4.6. Let X = X[Sn] for some n ∈ N. Then XM is isomorphic to XM ⊕XM

for each M ∈ [N].

For clarity of presentation, we have split the proof into a series of lemmas.

Lemma 4.7. Let n ∈ N0, and let σ : N → N be a strictly increasing map. Then the left
shift

Lσ :
∑
j

αjej 7→
∑
j

ασ(j)ej, c00 → c00,

extends to an operator of norm one on X[Sn].

Proof. For x = (αj)j∈N ∈ c00, choose E ∈ Sn \ {∅} such that ‖Lσx‖ =
∑

j∈E |ασ(j)|. The
set σ(E) is a spread of E because σ is strictly increasing. Hence σ(E) ∈ Sn, and therefore

‖x‖ >
∑

k∈σ(E)

|αk| =
∑
j∈E

|ασ(j)| = ‖Lσx‖. �

Lemma 4.8. Let n ∈ N, and let E < F be successive maximal Sn-sets. Then:
(i) |E ∪ F | > 3 minE.
(ii) Suppose that minE > 2. Then 2(E ∪ F ) /∈ Sn.

Proof. (i). The maximality of E and F means that |E| > minE and

|F | > minF > maxE + 1 > minE + |E| > 2 minE,

and hence we have |E ∪ F | = |E|+ |F | > 3 minE.
(ii). We proceed by induction on n.
The result follows easily from (i) for n = 1 because in this case we have

|2(E ∪ F )| = |E ∪ F | > 3 minE > 2 minE = min 2(E ∪ F ),

so that 2(E ∪ F ) /∈ S1.
Now assume inductively that the result holds for some n ∈ N. To prove it for n + 1,

let E < F be maximal Sn+1-sets with k := minE > 2, and set ` = minF . Then we can
find maximal Sn-sets E1 < · · · < Ek < Ek+1 < · · · < Ek+` such that E =

⋃k
i=1Ei and

F =
⋃`
i=1Ek+i. Applying (i) to the maximal Sn-sets E1 < E2, both of which are contained

in E, we obtain |E| > |E1 ∪ E2| > 3 minE1 = 3k, and therefore

4k 6 minE + |E| 6 maxE + 1 6 `.
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In particular 4k 6 k + `, so that
2k⋃
i=1

2(E2i−1 ∪ E2i) ⊆ 2(E ∪ F ),

where 2(E1 ∪ E2), 2(E3 ∪ E4), . . . , 2(E4k−1 ∪ E4k) are successive sets which do not belong
to Sn by the induction hypothesis. Hence, if 2(E∪F ) is written as the union ofm successive
Sn-sets for some m ∈ N, then we must have m > 2k = min 2(E ∪ F ). This shows that
2(E ∪ F ) /∈ Sn+1, and hence the induction continues. �

Corollary 4.9. For each n ∈ N, dn(N, 2N) 6 3, and hence the right shift given by

R :
∑
j

αjej 7→
∑
j

αje2j, c00 → c00, (4.3)

extends to an operator of norm at most 3 on X[Sn].

Proof. Using (4.2) and Definition 4.3, we see that dn(N, 2N) 6 3 if and only if τn(J) 6 3 for
each J ∈ [N]<∞ with 2J ∈ Sn. By contraposition, the latter statement is equivalent to the
statement that 2J /∈ Sn for each J ∈ [N]<∞ with τn(J) > 4. To verify this, suppose that
J ∈ [N]<∞ with τn(J) > 4. Since {1} is a maximal Sn-set, we have τn(J \ {1}) > 3, so by
Remark 4.2(ii), there are maximal Sn-sets E < F such that E∪F ⊆ J \{1}. Lemma 4.8(ii)
then implies that 2(E ∪ F ) does not belong to Sn, and the same is therefore true for its
superset 2J , as desired.

To establish that the right shift R given by (4.3) is bounded by 3, we simply combine
the inequality dn(N, 2N) 6 3 with Theorem 4.4(ii) to deduce that∥∥∥∥ k∑

j=1

αje2j

∥∥∥∥ 6 3

∥∥∥∥ k∑
j=1

αjej

∥∥∥∥ (k ∈ N, α1, . . . , αk ∈ K). �

The following example shows that we cannot in general lower the upper bound 3 on the
quantity dn(N, 2N) in the above proof. It also shows that it is possible to have ‖R‖ > 2.

Example 4.10. Let n = 2, and consider the set J = {1, 2, . . . , 8}. We see that τ2(J) = 3
because J = {1} ∪ {2, 3, 4, 5, 6, 7} ∪ {8}, where the first two sets on the right-hand side
are maximal S2-sets. However, 2J belongs to S2 because it is the union of the two S1-sets
{2, 4} and {6, 8, 10, 12, 14, 16}. Hence d2(N, 2N) > 3.

Set x = e1 + 1
6
(e2 + e3 + · · ·+ e8) ∈ X[S2]. Then the above reasoning shows that ‖x‖ = 1

(attained at {1} and at any 6-element subset of {2, 3, . . . , 8}), but ‖Rx‖ = 1 + 7
6
> 2

because its support belongs to S2.

Lemma 4.11. Let n ∈ N and M ∈ [N], and set M ′ = (2M − 1) ∪ (2M) ∈ [N]. Then

dn(M,M ′) 6 3 and dn(M ′,M) 6 2, (4.4)

and hence XM
∼= XM ′, where X = X[Sn].
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Proof. Write M = {m1 < m2 < · · · } and M ′ = {m′1 < m′2 < · · · }, where m′2j−1 = 2mj − 1
and m′2j = 2mj for each j ∈ N.

To prove the first inequality in (4.4), suppose that J ∈ [N]<∞ with M ′(J) ∈ Sn. The
definitions above imply that m′j 6 2mj for each j ∈ N, so that 2M(J) is a spread of M ′(J)
and therefore 2M(J) ∈ Sn. Hence τn(M(J)) 6 3 by Corollary 4.9, and the conclusion
follows from Definition 4.3.

Interchanging the roles ofM andM ′, we see that the second inequality in (4.4) amounts
to showing that τn(M ′(J)) 6 2 for each non-empty set J ∈ [N]<∞ with M(J) ∈ Sn. We
shall establish this estimate by induction on n ∈ N0.

Note that we start the induction at n = 0 for convenience. Indeed, the estimate is
clear in this case because the non-empty S0-sets are precisely the singletons, so in fact
M(J) ∈ S0 implies that M ′(J) ∈ S0.

Now assume inductively that we have established the estimate for some n ∈ N0, and let
J ∈ [N]<∞ be a non-empty set with M(J) ∈ Sn+1. Set j = min J . Then, by the definition
of Sn+1, we can find h ∈ N and J1 < J2 < · · · < Jh such that h 6 mj, J =

⋃h
i=1 Ji and

M(Ji) ∈ Sn for each i ∈ {1, . . . , h}.
Take k ∈ N and L1 < L2 < · · · < Lk such that J =

⋃k
i=1 Li, M

′(Li) is a maximal Sn-set
for each i ∈ {1, . . . , k−1} andM ′(Lk) ∈ Sn. The induction hypothesis implies that k 6 2h
because, by Remark 4.2(ii), each of the sets Ji can be split into at most two successive
pieces J ′i < J ′′i with M ′(J ′i),M

′(J ′′i ) ∈ Sn. If k 6 m′j = minM ′(J), then M ′(J) ∈ Sn+1,
and the conclusion follows, so we may suppose that k > m′j. We observe that m′j > j

because m′j is the jth element of a strictly increasing sequence of natural numbers, and
hence E :=

⋃j
i=1M

′(Li) ∈ Sn+1. Since the sets L1, . . . , Lj+1 are successive and non-empty,
we see that minLj+1 > minL1 + j = 2j, so that minM ′(Lj+1) > m′2j = 2mj > 2h > k,
which implies that F :=

⋃k
i=j+1M

′(Li) ∈ Sn+1. This shows that τn+1(M
′(J)) 6 2 because

M ′(J) = E ∪ F , and hence the induction continues.
The final clause is immediate from Corollary 4.5. �

Proof of Proposition 4.6. Let M ∈ [N], and set M ′ = (2M − 1) ∪ (2M) ∈ [N]. Then
XM
∼= XM ′ by Lemma 4.11, and XM ′

∼= X2M−1 ⊕ X2M because M ′ is the disjoint union
of the sets 2M − 1 and 2M . Hence the result will follow provided that we can show that
X2M−1 and X2M are both isomorphic to XM .

The map σ : j 7→ 2j, N → N, is strictly increasing, and the corresponding left shift Lσ
is a left inverse of the right shift R, using the notation of Lemma 4.7 and Corollary 4.9.
Hence the restriction of R to XM is an isomorphism onto its image, which is X2M , with
the inverse being the appropriate restriction of Lσ.

A similar argument using the strictly increasing map σ : j 7→ 2j − 1, N → N, and
the right shift given by

∑
j αjej 7→

∑
j αje2j−1 (which is bounded because it equals the

composition Lρ ◦ R, where ρ : j 7→ j + 1, N→ N, and R is given by (4.3) as above) shows
that XM

∼= X2M−1. �
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Using these results, we obtain the following characterization of when two spatial ideals
of B(X[Sn]) are equal. It is the counterpart of Corollary 3.2 and will play a similar role
in our proof of Lemma 2.8 for the Schreier spaces of finite order.

Proposition 4.12. Let X = X[Sn] for some n ∈ N, and suppose that M,N ∈ [N] satisfy
PM ∈ 〈PN〉. Then the following conditions are equivalent:

(a) PN ∈ 〈PM〉;
(b) 〈PM〉 = 〈PN〉;
(c) XM is isomorphic to XN ;
(d) XN is isomorphic to a subspace of XM ;
(e) the nth Gasparis–Leung index dn(N,M) is finite;
(f) there is a constant k ∈ N such that τn(N(J)) 6 k for each set J ∈ [N ∩ (k,∞)]<∞

with M(J) ∈ Sn.

Proof. Conditions (a) and (b) are equivalent by Lemma 2.1, while Proposition 4.6 implies
that Corollary 2.5 applies, and therefore conditions (b) and (c) are also equivalent.

Condition (c) trivially implies (d), which in turn implies (e) by Theorem 4.4. Combining
the assumption that PM ∈ 〈PN〉 with Lemma 2.3 and Proposition 4.6, we deduce that XN

contains a complemented subspace which is isomorphic to XM , and therefore dn(M,N) is
finite by Theorem 4.4. Thus the implication (e)⇒(c) follows from Corollary 4.5.

Definition 4.3 shows that (e) implies (f). Conversely, suppose that k ∈ N is a constant
such that (f) is satisfied. Then, for each set J ∈ [N]<∞ with M(J) ∈ Sn, the subadditivity
of τn stated in (4.1) implies that

τn(N(J)) 6 τn
(
N(J ∩ [1, k])

)
+ τn

(
N(J ∩ (k,∞))

)
6 τn

(
N({1, . . . , k})

)
+ k,

and therefore dn(N,M) 6 τn
(
N({1, . . . , k})

)
+ k <∞. �

Lemma 4.13. Let M,N ∈ [N], and suppose that J ∈ [N]<∞ is a non-empty set such that
N ∩ [1,maxM(J)) ⊆M . Then N(J) is a spread of M(J).

Proof. Write M = {m1 < m2 < · · · } and N = {n1 < n2 < · · · }, and let j ∈ J . We
must show that mj 6 nj. This is clear if nj > maxM(J) because mj ∈ M(J). Otherwise
nj ∈ N ∩ [1,maxM(J)), which is contained in M by the assumption, so that nj = mk

for some k ∈ N. We have k > j because n1, . . . , nj−1 ∈ {m1, . . . ,mk−1}, and therefore
mj 6 mk = nj, as required. �

Proof of Lemma 2.8 for X = X[Sn], n ∈ N. (i). Let N ∈ [N], and let
(
F n
j (N)

)
j∈N be the

unique sequence of successive, maximal Sn-sets partitioning N described on page 13. The
fact that the sets F n

1 (N), F n
2 (N), . . . are successive and partition N means that we can

partition N into successive intervals J1 < J2 < · · · such that F n
j (N) = N(Jj) for each

j ∈ N, where N(Jj) (unlike F n
j (N)) is defined using the notation (4.2). Set k1 = 1 and

recursively define kj+1 = kj + j for j ∈ N. (In other words, kj+1 = j(j + 1)/2 + 1, but this
formula is not helpful for our purposes). Then, setting Kj =

⋃kj+1−1
i=kj

Ji ∈ [N]<∞ for each
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j ∈ N, we obtain a partition of N into successive intervals such that

N(Kj) =

kj+1−1⋃
i=kj

F n
i (N).

Thus N(Kj) is the union of kj+1 − kj = j successive, maximal Sn-sets, so τn(N(Kj)) = j.
Since n > 1, N contains arbitrarily long Sn-sets. This fact enables us to recursively

choose successive intervals L1 < L2 < · · · in N such that |Lj| = |Kj| and N(Lj) ∈ Sn
for each j ∈ N. Indeed, once the intervals L1 < · · · < Lj have been chosen for some
j ∈ N, we can take ` > maxLj so large that the interval Lj+1 = [`, `+ |Kj|) ∩ N satisfies
N(Lj+1) ∈ Sn, and hence the recursion continues.

Set L =
⋃
j∈N Lj ∈ [N], and observe that L(Kj) = Lj for each j ∈ N because (Kj) is a

partition of N into successive intervals with |Kj| = |Lj|. Consequently M := N(L) ∈ [N ]
satisfies

M(Kj) = (N(L))(Kj) = N(L(Kj)) = N(Lj) ∈ Sn,
so dn(N,M) > τn(N(Kj)) = j. Since this is true for every j ∈ N, Proposition 4.12 implies
that PN /∈ 〈PM〉.

(ii). Let M ⊆ N be infinite subsets of N with PN /∈ 〈PM〉. By Corollary 2.4, we may
suppose that minM = minN by adding the element minN to the set M if necessary.
In order to define a map ϕ : P(N) → [N ] which satisfies conditions (III.i)–(III.iii) in
Lemma 2.7, we shall construct a sequence (Ji)i∈N of finite, successive intervals of N such
that:

(i)
⋃
i∈N Ji = N;

(ii) for each j ∈ N, Jj contains a subset Kj such that τn(N(Kj)) > j and the set

Lj = M ∪
⋃
i<j

N(Ji) ∈ [N ] (4.5)

satisfies Lj(Kj) ∈ Sn and Lj(Kj) ⊆ N(Jj).
The construction is by recursion, where condition (i) is replaced with the appropriate finite
analogue, that is,

(i′)
⋃j
i=1 Ji = N ∩ [1,max Jj] for each j ∈ N.

To begin the recursion, we define J1 = K1 = {1}. Then (i′) is obvious, and (ii) follows
almost as easily because L1 = M by definition and M(K1) = {minM} = N(J1); being
a singleton, this set belongs to Sn.

Now assume recursively that, for some j ∈ N, we have chosen finite, successive intervals
J1 < · · · < Jj such that conditions (i′) and (ii) are satisfied. Following (4.5), we define
Lj+1 = M ∪

⋃
i6j N(Ji). Then Lj+1 \M is finite, so Corollary 2.4 implies that

〈PLj+1
〉 = 〈PM〉 /3 PN .

Hence, by Proposition 4.12, we can find a set Kj+1 ∈ [N ∩ (max Jj,∞)]<∞ such that
Lj+1(Kj+1) ∈ Sn and τn(N(Kj+1)) > max Jj. We see that max Jj > j because the sets
J1, . . . , Jj are non-empty and successive, and consequently τn(N(Kj+1)) > j + 1. Since
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Lj+1 ⊆ N , we can choose k ∈ N such that maxLj+1(Kj+1) is the kth element of N . Note
that k > maxKj+1, so that Jj+1 = N ∩ (max Jj, k] is a finite successor interval of Jj con-
taining Kj+1 and such that (i′) is satisfied for j + 1. Moreover, maxLj+1(Kj+1) ∈ N(Jj+1)
by the choice of k, while

Lj+1(Kj+1) > Lj+1

(⋃
i6j

Ji

)
= N

(⋃
i6j

Ji

)
,

so Lj+1(Kj+1) ⊆ N(Jj+1) becauseN(Jj+1) is the immediate successor interval ofN
(⋃

i6jJi
)

in N . This shows that (ii) is also satisfied for j + 1, and hence the recursion continues.
For D ⊆ N, set Dc = N \D, and define ϕ : P(N)→ [N ] by

ϕ(D) = M ∪
⋃
i∈Dc

N(Ji). (4.6)

This map clearly satisfies conditions (III.i)–(III.ii) in Lemma 2.7. To help us establish
condition (III.iii), we shall show that

ϕ(D) ∩ [1,maxLj(Kj)) ⊆ Lj (D ∈P(N), j ∈ D), (4.7)

where Lj is given by (4.5). Indeed, suppose that k ∈ ϕ(D) ∩ [1,maxLj(Kj)) for some
j ∈ D ⊆ N. Since M ⊆ Lj, it suffices to consider the case where k ∈ N(Ji) for some
i ∈ Dc. We must have i 6 j because

k < maxLj(Kj) 6 maxN(Jj).

Moreover, i 6= j because i ∈ Dc and j ∈ D. Hence i < j, so Lj ⊇ N(Ji) 3 k, as desired.
Now let D ⊆ N. Suppose first that PN ∈ 〈Pϕ(D)〉, and let j ∈ D. Combining Lemma 4.13

with (4.7), we see that (ϕ(D))(Kj) is a spread of Lj(Kj), so that (ϕ(D))(Kj) ∈ Sn, and
therefore dn(N,ϕ(D)) > τn(N(Kj)) > j. Thus the setD is bounded above by dn(N,ϕ(D)),
which is finite by Proposition 4.12. Hence D is finite. Conversely, suppose that D is finite.
Then N \ ϕ(D) ⊆

⋃
i∈DN(Ji) is also finite, and therefore PN ∈ 〈Pϕ(D)〉 by Corollary 2.4.

This completes the proof of (III.iii) and hence of the first bullet point in Lemma 2.8(ii).
To establish the second, let Γ =

{
〈PLj
〉 : j ∈ N

}
be a set-induced chain in ΩM,N , where

M ⊆ Lj ⊆ Lj+1 ⊆ N and PN /∈ 〈PLj
〉 for each j ∈ N. We shall recursively choose

non-empty, finite subsets J1, J2, . . . of N such that

τn(N(Jj)) > j, Lj(Jj) ∈ Sn and Lj+1(Jj+1) > Lj(Jj) (j ∈ N). (4.8)

We begin this recursion by taking J1 = {1}. Now assume that non-empty, finite subsets
J1, . . . , Jj of N have been chosen for some j ∈ N, and take k ∈ N such that maxLj(Jj) is
the kth element of Lj+1. Since PN /∈ 〈PLj+1

〉, Proposition 4.12 enables us to choose a set
Jj+1 ∈ [N∩ (k,∞)]<∞ such that τn(N(Jj+1)) > j and Lj+1(Jj+1) ∈ Sn. Then the first two
statements in (4.8) are satisfied for j + 1, while the last part follows from the fact that

Lj(Jj) ⊆ Lj+1(N ∩ [1, k]) < Lj+1(Jj+1).

Hence the recursion continues.
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Set `0 = 0 and `j = maxLj(Jj) for j ∈ N, and define L =
⋃
j∈N Lj ∩ (`j−1, `j]. We check

that 〈PL〉 ∈ ΩM,N :
• each m ∈M belongs to (`j−1, `j] for some j ∈ N, and also m ∈ Lj becauseM ⊆ Lj,
so m ∈ L;
• L ⊆ N because Lj ⊆ N for each j ∈ N;
• for each j ∈ N, we have

L ∩ [1, `j] =

j⋃
i=1

Li ∩ (`i−1, `i] ⊆ Lj,

so Lemma 4.13 implies that L(Jj) is a spread of Lj(Jj), and therefore L(Jj) ∈ Sn;
hence dn(N,L) > τn(N(Jj)) > j, so as j ∈ N was arbitrary, we conclude that
PN /∈ 〈PL〉 by Proposition 4.12.

We observe that Lj ∩ (`j−1,∞) ⊆ L for each j ∈ N because the sequence (Lj) is increasing.
This implies that PLj

∈ 〈PL〉 by Corollary 2.4, and thus 〈PL〉 is an upper bound for Γ, as
desired. �

Lemma 4.14. For each n ∈ N, the formal identity operator from X[Sn] to c0 is a strictly
singular, non-compact operator of norm one.

Proof. Set X = X[Sn], and let S : span{ej : j ∈ N} → c0 be the formal identity operator,
that is, the linear map determined by Sej = dj for each j ∈ N, where (dj) denotes the unit
vector basis for c0. Writing (e∗j) for the coordinate functionals in X∗ corresponding to the
basis (ej) for X, we observe that

‖Sx‖∞ = sup
{
|〈x, e∗j〉| : j ∈ N

}
(4.9)

for each x ∈ span{ej : j ∈ N}, and therefore S is bounded with norm 1, so it extends
uniquely to an operator defined on all of X, also denoted by S and still of norm 1; for
later reference, we note that (4.9) remains valid for each x ∈ X. This operator S cannot
be compact because (ej) is a bounded sequence in X such that no subsequence of (Sej)
converges in c0.

Assume towards a contradiction that S is not strictly singular. ThenX contains a closed,
infinite-dimensional subspaceW such that there exists an ε > 0 for which ‖Sw‖∞ > ε‖w‖X
for each w ∈ W . Choosem ∈ N∩

[
2(1+ε)/ε2,∞

)
, and set k1 = m. We can then recursively

choose numbers k2, . . . , km+1 with kj+1 > kj and unit vectors wj ∈ W ∩ span{ei : i > kj}
such that

∣∣〈wj, e∗i 〉∣∣ 6 ε/m for each i > kj+1 and j ∈ {1, . . . ,m}.
Set w =

∑m
j=1wj ∈ W . We claim that

∣∣〈w, e∗i 〉∣∣ 6 1 + ε for each i ∈ N. There are three
cases to examine:

• The estimate is obvious for i < k1 because 〈w, e∗i 〉 = 0 for such i.
• Suppose that i ∈ [kj, kj+1) for some j ∈ {1, . . . ,m}. Then 〈wh, e∗i 〉 = 0 for h > j,
so ∣∣〈w, e∗i 〉∣∣ 6 j−1∑

h=1

∣∣〈wh, e∗i 〉∣∣+
∣∣〈wj, e∗i 〉∣∣ 6 (j − 1)ε

m
+ ‖wj‖X 6 ε+ 1.
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• Finally, for i > km+1,
∣∣〈wj, e∗i 〉∣∣ 6 ε/m for each j ∈ {1, . . . ,m}, so

∣∣〈w, e∗i 〉∣∣ 6 ε.
This establishes the claim, and consequently ‖Sw‖∞ 6 1 + ε by (4.9).

For each j ∈ {1, . . . ,m}, we have ‖Swj‖∞ > ε, so another application of (4.9) enables
us to choose hj ∈ N such that

∣∣〈wj, e∗hj〉∣∣ > ε. We note that necessarily hj ∈ [kj, kj+1), and
therefore the set {h1, h2, . . . , hm} belongs to S1 and thus to Sn. This implies that

‖w‖X >
m∑
i=1

∣∣〈w, e∗hi〉∣∣ =
m∑
i=1

∣∣∣∣〈 i∑
j=1

wj, e
∗
hi

〉∣∣∣∣
>

m∑
i=1

(∣∣〈wi, e∗hi〉∣∣− i−1∑
j=1

∣∣〈wj, e∗hi〉∣∣) > m∑
i=1

(
ε− (i− 1)ε

m

)
=

(m+ 1)ε

2
.

Combining the above estimates, we conclude that

1 + ε > ‖Sw‖∞ > ε‖w‖X >
(m+ 1)ε2

2
,

which contradicts that we chose m > 2(1 + ε)/ε2. �

Proof of Theorem 1.2(ii). As Odell [31, p. 694] observed, the space X = X[Sn] is c0-satu-
rated (in the sense that each of its closed, infinite-dimensional subspaces contains an iso-
morphic copy of c0) because X embeds into C[0, ωω

n
], which is c0-saturated. Sobczyk’s

Theorem implies that every copy of c0 in X is automatically complemented, so that X is
subprojective, and therefore S (X) = E (X) by Pfaffenberger’s result [33].

Let S : X → c0 be the formal identity operator, as in the proof of Lemma 4.14 above.
Since X contains a complemented copy of c0, we can choose operators U : c0 → X and
V : X → c0 such that Ic0 = V U . Then US ∈ S (X) \K (X) because S ∈ S (X, c0) and
V (US) = S /∈ K (X, c0) by Lemma 4.14, and consequently S (X) 6= K (X).

Finally, letQ ∈ B(X) be a projection whose image is isomorphic to c0. ThenQ /∈ S (X).
However, for each non-trivial spatial ideal I , say I = 〈PN〉, where N ∈ [N], we can
factor Q through XN because X is c0-saturated, and therefore Q ∈ I . This shows that Q
belongs to the intersection on the left-hand side of (1.1), and the conclusion follows. �

5. Some open questions

Theorem 1.2(ii) and its proof raise some natural questions. To state them concisely, let
X = X[Sn] for some n ∈ N, and denote the closure of the ideal of operators on X which
factor through c0 by G c0(X); in the notation of the proof of Theorem 1.2(ii), G c0(X) = 〈Q〉,
and the argument given in its last paragraph shows that

G c0(X) ⊆
⋂{

I : I is a non-trivial spatial ideal of B(X)
}
.

However, we do not know whether this inclusion is proper. We also do not know whether
S (X) ⊆ G c0(X).

Another, somewhat less precise, question is as follows. It applies to both X = T and
X = X[Sn] for n ∈ N. Theorem 1.1(iii) states that B(X) contains at least continuum
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many maximal ideals, but we do not have an explicit description of a single such ideal.
We know that they cannot be spatial, but is it possible to describe at least some of these
maximal ideals explicitly?
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