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Abstract

Airline maintenance scheduling (AMS) studies how plans or schedules are constructed

to ensure that a fleet is efficiently maintained and that airline operational demands

are met. Additionally, such schedules must take into consideration the different regu-

lations airlines are subject to, while minimising maintenance costs. In this thesis, we

study different formulations, solution methods, and modelling considerations, for the

AMS and related problems to propose two main contributions.

First, we present a new type of multi-objective mixed integer linear programming

formulation which challenges traditional time discretisation. Employing the concept

of time intervals, we efficiently model the airline maintenance scheduling problem

with tail assignment considerations. With a focus on workshop resource allocation

and individual aircraft flight operations, and the use of a custom iterative algorithm,

we solve large and long-term real-world instances (16000 flights, 529 aircraft, 8 main-

tenance workshops) in reasonable computational time. Moreover, we provide evidence

to suggest, that our framework provides near-optimal solutions, and that inter-airline

cooperation is beneficial for workshops.

Second, we propose a new hybrid solution procedure to solve the aircraft recovery
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problem. Here, we study how to re-schedule flights and re-assign aircraft to these, to

resume airline operations after an unforeseen disruption. We do so while taking op-

erational restrictions into account. Specifically, restrictions on aircraft, maintenance,

crew duty, and passenger delay are accounted for. The flexibility of the approach al-

lows for further operational restrictions to be easily introduced. The hybrid solution

procedure involves the combination of column generation with learning-based hyper-

heuristics. The latter, adaptively selects exact or metaheuristic algorithms to generate

columns. The five different algorithms implemented, two of which we developed, were

collected and released as a Python package (Torres Sanchez, 2019a). Findings suggest

that the framework produces good quality recovery solutions and is scalable to larger

networks.
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Chapter 1

Introduction

The industrial partner for this PhD project, Rolls-Royce Holdings plc (RR), is a

market leader in the civil aerospace business sector; powering more than 13,000 engines

around the world and 35 types of commercial aircraft (Rolls-Royce Holdings plc,

2015). Besides producing jet engines, RR provides several so-called digital service

solutions that range from the detection of operational deficiencies of the engines to

the suggestion of tentative maintenance schedules for the management of an airlines’

fleet. RR has to cater the appropriate support for all stages of an engines’ lifecycle to

meet with the service offering requested by the customer. In particular, the services

related to this research project are those linked to the scheduling of maintenance

for which current services have been found to yield suboptimal plans that induce

significant losses. The objectives of this thesis are, to develop optimisation-based

mathematical models and solution algorithms to optimise the aircraft maintenance

schedules, and, additionally, to provide innovative airline scheduling tools to broaden

the digital service solutions offering.

1
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Motivated by these objectives, research has been carried out around several areas

of the literature. One such stream is the airline maintenance scheduling (AMS)

literature. Due to the constant interaction between aircraft maintenance activities

and airline operations, a facet of particular interest lies in the interaction between the

currently disjoint AMS and tail assignment (TA) problems. The latter, refers to the

assignment of aircraft to different, already scheduled, flight legs. The two individual

components of the problem are of interest to researchers, as they each compose highly

complex optimisation problems. Additionally, sets of constraints and regulations have

to be included. Typically, these problems are treated separately and solved sequen-

tially (Cordeau et al., 2001). That is, the optimal solution from the TA problem

becomes input for the AMS problem. Clearly, the solution of one subproblem does

not take into consideration the restrictions of the subsequent subproblem, leading

to suboptimal overall solutions, often far from optimality. Nonetheless, considering

them in conjunction (keeping in mind tractability), captures the interactions between

the two problems, avoids the suboptimality issue, and, maximises aircraft availability

while minimising unnecessary maintenance costs and meeting minimum safety reg-

ulations as established by the regulatory agencies (civil aviation authority, federal

aviation administration or similar).

Another area of interest is the aircraft recovery (AR) literature. With main-

tenance and other operational restrictions in mind, the aim of the AR problem is to

recover airline operations from an unexpected disruption. This involves the generation

of new flight schedules such that the alterations to the initial plans are minimised.
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1.1 Problem Description

The increasing customer demand for care packages plus other services, which make

up for 53% of the total underlying revenue in RR’s civil aerospace business sector,

has driven to an exploration and revision of the current systems in place (Rolls-Royce

Holdings plc, 2015). The combination of AMS and TA will lead to optimal mainte-

nance decisions which RR believe can significantly increase their revenue aftermarket

growth. As for their customers, it is estimated that around 69% of the direct oper-

ating costs are engine influenced costs (Rolls-Royce Holdings plc, 2016). Hence, this

approach will have a great financial impact on customers as well, not only for the

aircraft availability but also in the long-term effect of efficient aircraft maintenance.

In an increasingly larger aviation intelligence market, a brand-new AR learning-

based service is bound to have an impact (IATA, 2019). Striving towards one of

RR’s aims to “Take Care for our customers to the next level” by strengthening their

aerospace digital service solutions offering.

In this thesis, we present two new scheduling tools that enable customers to access,

maintenance scheduling and workshop services, through our AMS tool; and, aircraft

recovery solutions, through our AR learning-based tool.

The individual characteristics of the problems were gathered across several meet-

ings with Dr Richard Standing and other experts from RR including: fuel consultants,

the principal business analyst, and past airline practitioners. They can be summarised

as two problems with different characteristics. The problems are discussed in the next

two sections.
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1.1.1 Airline Maintenance Scheduling Problem with Tail As-

signment Considerations

The first problem considered in this thesis, subject of Chapter 3, considers the AMS

problem with TA considerations and can be labelled as large-scale, medium-term,

time-dependent and prognostic.

The problem is large-scale due to the multiple aspects. Aside from the time

dimension, another factor of significant influence is the fleet size and characteristics.

Each aircraft belongs to a certain fleet type, hence, has different specifications and

passenger restrictions which limit the authorised flight legs. Additionally, each air-

craft has a corresponding set of operations history (e.g. the number of flying hours,

the number of operations, maintenance details) that need to be considered. Mainte-

nance workshop constraints also introduce further size considerations. Such workshop

constraints include, capacity, costs, demand, manpower, and inventory. Notably, man-

power or maintenance crew introduces several complications. Restrictions apply to

each technician as they can only perform operations on the levels they have been

certified for.

The planning horizon for the problem is a medium-term 1-3 months. The reason

for the planning horizon to have been modified from the usual operational level found

in the literature (1 to 7 days), is to capture the interactions between the components

of the model and to gain insights into which tactical decisions should be made. Such

tactical decisions will favour an overall profit in the long-term by guiding the decisions

towards the exploration of alternatives and co-operation options.
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The time-dependent element, sometimes referred to as dynamicity, comes natu-

rally from the scheduling setting. In optimisation problems, time-dependence can be

modelled using either a discrete or a continuous time representation. These choices

bring different benefits. As can be found in the reviews of scheduling approaches for

chemical processes, Floudas and Lin (2004, 2005) among others, it is apparent that

traditional continuous time representations provider higher quality solutions, however,

they are more computationally expensive (to the extent that they become intractable

for large instances). Since our problem is large, a time discretisation method is em-

ployed. In order to improve the quality of the solutions and avoid suboptimality

issues, an appropriate solution algorithm is developed that makes the discretisation

more granular.

The trade-off between performing different types of interventions at certain work-

shops and the outcome in terms of improved aircraft condition, cost and time required,

can be included using prognostic modelling. This allows the up-to-date “health”-

state of the aircraft and deterioration to be utilised when making scheduling deci-

sions. The updated legal remaining flying hours can be used to account for aircraft

“health”-state. Hence, aircraft have to monitored throughout the planning horizon

to determine whether they are suitable for operating a certain flight, or not; in which

case the aircraft can be exchanged for a suitable one.

Current Industrial Practice

Aircraft maintenance requirements are covered by civil aviation authorities. In short,

they provide a set of limitations on aircraft use between different types of maintenance
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interventions. Not considering short-term types, maintenance interventions consist

of four medium/long-term airframe checks (A, B, C and D) and three long-term

off-wing/major maintenance (engine, landing gear, and auxiliary power unit). The

limitations imposed by regulations are a certain number of flying hours, cycles, or

months between different maintenance interventions. These vary depending on the

aircraft type (Cook and Tanner, 2008). For more information see Section 3.1.

In practice, according to practitioners, maintenance operators constrain them-

selves by time, not by scope. That is, if an aircraft has been brought in for a non-

major check, type A, for example, they will perform as many operations as possible

to make the aircraft available by the end of the set downtime. If they are unable

to perform all the desirable tasks but the aircraft is safely functional, they will add

these to the list of deferred operations to avoid introducing any further delays into

the system. The operations in the list will be fixed at a later stage or workshop. For

our purposes, two maintenance intervention types will be used, on-wing, check types

A and C. Check type B is excluded as it is running out of practice (Qantas, 2016).

For the AMS problem, RR currently employ two pieces of software: SCAF and

StaggerLite, which can be described as a forecaster and a schedule planner, re-

spectively (Rolls-Royce Holdings plc, 2017). The SCAF model employs AnyLogic, a

customisable simulation tool, to predict engine failure rate evolution across time and

usage. To do this, SCAF uses relevant data about each aircraft. Some factors that have

been found to be influential include: the number of operations, the age of the aircraft,

the number of cycles (takeoffs and landings), and the number of flying hours. The
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output of the SCAF model is then fed into the StaggerLite model which, using the

OptiQuest optimisation tool, arranges a feasible maintenance schedule according to

several maintenance requirements, available time slots and objective function criteria.

The total computational time for an average size airline ranges from 40 minutes to

1 hour to produce a 2 to 4 week schedule. Unfortunately, this procedure leads to

suboptimal schedules which are then not presented in an interpretable way to the

maintenance operators and engineers. Moreover, it does not take into account the

effect that these interventions may have on TA.

1.1.2 Aircraft Recovery Problem with Multiple Operational

Restrictions

The second problem considered in this thesis, subject of Chapter 4, considers the

AR problem with operational considerations and can be labelled as combinatorial,

short-term, and learning-based.

The nature of the problem is combinatorial. Generating new flight schedules

around a given disruption, involves selecting from all the possible flight paths. We

use column generation to solve the problem efficiently. Moreover, considering multi-

ple operational restrictions reduces the number of feasible flight paths. Among the

most important operational restrictions are: aircraft type, maintenance, crew duty,

and passenger delay. Aircraft type restrictions ensure that aircraft operate suitable

flight ranges according to their specifications. Maintenance restrictions, as previously

discussed, involve limiting the number of flying hours between certified maintenance
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interventions. Crew duty restrictions involve several rules including enforced rest pe-

riods and maximum duty durations. Passenger delay restrictions set maximum delay

thresholds after which passengers have the right to reparations by the airline. For

more details on operational restrictions, see Section 4.1.

The problem is short-term or operational. The aim of the problem is to resume

airline operations in minimal time while also minimising the inconveniences for crew

and passengers. Hence, an operational planning horizon (1 to 10 days) is appropriate

and commonly used for this type of problem.

To provide an aviation intelligence solution, the problem is learning-based. For

this purpose, the exploration of an interaction between statistics and operational

research is required. To incorporate a learning-based mechanism into a column gen-

eration setting, selection hyper-heuristics can be employed. These choose different

algorithms to generate columns, which can then be evaluated and learning can be

done by comparing the performance and quality of the columns.

1.2 Thesis Contents and Contributions

In Chapter 2, we include an extended literature review, with topics of interest for

Chapters 3 and 4. Figure 1.1 summarises the links and overlaps between the different

sections in Chapter 2 and their use in the rest of the thesis. Hence, justifying the

areas visited by either a direct link or an important theoretical relation.

The extended literature review in Chapter 2, starts with an introduction to the

general scheduling problem, Section 2.1 (Traditional Scheduling Problems), which in-
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Figure 1.1: Connections between areas in Chapter 2 and the rest of the thesis.
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cludes a classification scheme for different types of machine and project scheduling

problems. Also, as a minor contribution, we present a new formulation for the preemp-

tive resource constrained project scheduling problem (preemptive RCPSP), a special

kind of project scheduling which generalises some of the machine scheduling problems.

The following sections review two streams of the literature, Maintenance Scheduling

and Prognostics (Section 2.2), and Airline Scheduling and Recovery (Section 2.3).

As can be seen in Figure 1.1, Maintenance Scheduling lies partly inside Scheduling

Problems, intersecting with Airline Scheduling, and, partly outside, where prognostic

considerations are. Airline Scheduling and Recovery, which contains Tail Assignment

and Aircraft Recovery (Section 2.3.1), is fully within Scheduling Problems. Integrated

and Semi-Integrated Airline Scheduling and Recovery (in Section 2.3.2) considers the

intersection between two or more components of the Airline Scheduling and Recovery

problems. This section also includes a discussion of more sophisticated approaches to

model the problem such as multi-objective robust optimisation, artificial neural net-

works, and multi-layered networks. Section 2.4, reviews several areas related to the

methodology employed in Chapter 4. Precisely, we study a common solution method

for combinatorial optimisation problems, Column Generation, and a related well-

known subproblem, the shortest path problem with resource constraints (SPPRC).

Also, a brief overview of Hyper-heuristic search methods is provided.

Chapter 3, as displayed with red dashed arrows in Figure 1.1, couples several

concepts for a considerable contribution: a concept from the Long Term RCPSP

literature, the intersection between Maintenance Scheduling and Tail Assignment,
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the use of Prognostics, and a problem-specific iterative algorithm. The abstract for

this chapter is given below.

Fierce competition between airlines has led to the need of minimising the operating

costs while also ensuring quality of service. Given the large proportion of operating

costs dedicated to aircraft maintenance, cooperation between airlines and their respec-

tive maintenance provider is paramount. In this research, we propose a framework to

develop commercially viable and maintenance feasible flight and maintenance sched-

ules. Such framework involves two multi-objective mixed integer linear programming

formulations and an iterative algorithm. The first formulation, the airline fleet main-

tenance scheduling with violations, minimises the number of maintenance regulation

violations and the number of not airworthy aircraft; subject to limited workshop

resources and current maintenance regulations on individual aircraft flying hours.

The second formulation, the airline fleet maintenance scheduling with tail assignment

allows aircraft to be assigned to different flights. In this case, subject to similar con-

straints as the first formulation, six lexicographically ordered objective functions are

minimised. Namely, the number of violations, maximum resource level, number of

tail re-assignments, number of maintenance interventions, overall resource usage, and

number of not airworthy aircraft. The iterative algorithm ensures fast computational

times while providing good quality solutions. Additionally, by tracking aircraft and

using precise flying hours between maintenance opportunities we ensure that the air-

craft are airworthy at all times. Computational tests on real flight schedules over a

30-day planning horizon show that even with multiple airlines and workshops (16000

flights, 529 aircraft, 8 maintenance workshops) our solution approach can construct
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near-optimal maintenance schedules within minutes.

On the other hand, Chapter 4, as shown with blue dashed arrows in Figure 1.1,

models the intersection between Aircraft Recovery and Maintenance Scheduling with

the use of Column Generation with the SPPRC and Hyper-heuristics. The abstract

for this chapter is given below.

The unforeseen disruption of airline services often leads to significant additional

costs. Aircraft recovery models enable the resumption of services in minimal time

while minimising the additional costs incurred. Therefore, solutions must provide an

efficient re-planning of scheduled services that mitigates the impact on passengers

and crew while respecting a set of regulations for operations. Such regulations impose

restrictions on aircraft, maintenance, crew, and passenger delay. The aircraft recov-

ery problem is a hard combinatorial optimisation problem, hence, these restrictions

cannot be modelled with ease. In this paper, we develop a hybrid solution proce-

dure, based on column generation and hyper-heuristics, that allows us to consider

such operational restrictions while providing solutions to real-world test instances in

reasonable computational time. Such solutions, minimise the number of flights that

are cancelled and the total operating costs. The operational restrictions are taken into

account in the subproblems, i.e. when generating columns. Specifically, this is done

by modelling the subproblems as shortest path problems with resource constraints,

with appropriately defined weights and resources, one for each operational restriction.

The hyper-heuristic algorithms learns from the selection of three different metaheuris-

tic algorithms to generate columns. The learning process allows the hyper-heuristic
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to adapt as the problem develops, selecting the most effective metaheuristic for each

subproblem. Furthermore, an exact bidirectional labelling algorithm with dynamic

halfway point is used to generate columns with non-negative reduced costs, thus,

guaranteeing optimal solutions for the LP relaxation of the aircraft recovery problem.

Lastly, Chapter 5 provides the concluding remarks for the thesis and potential

research directions. Additionally, Appendix A provides supplementary materials for

Chapter 3, an extension that accounts for flight re-scheduling, some additional proofs,

and the theoretical motivation behind the interval-based formulations. Appendix B

provides extra materials for Chapter 4, functions used in the pseudo-code for each

algorithm, parameters used in the computational tests, and the high-level paper about

the Python package developed.



Chapter 2

Extended Literature Review

This chapter contains a review of the literature necessary for Chapters 3 and 4. Par-

ticularly, we include an introduction to general scheduling problems (machine

scheduling and project planning), an overview of maintenance scheduling and

prognostics, an exploration of airline scheduling and recovery, and a break-

down of the areas employed in the methodology for Chapter 4.

2.1 General Scheduling Problems

Since the late ‘50s, scheduling problems have been researched thoroughly. There were

mainly developed and motivated around two applications: machine scheduling

and project planning. Machine scheduling deals with the combinatorial problem

that arises from considering a large number of scheduling situations in which one

or more machines are available for processing a particular number of jobs. Project

planning refers to the programming of different activities that need completion for

14
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a given project. Various types of projects are, for example, a school timetable, a

construction, a business expansion, or a software development process. These usually

are accompanied by some precedence and resource constraints. Such resources can be

broadly defined as “production units” and range from raw materials to machinery or

even manpower and are taken as inputs for the project planning problem. Brucker

and Knust (2012) gave a very comprehensive study to both of these problems.

2.1.1 Classification of Machine Scheduling Problems

Depending on the machine environment or on the characteristics of the jobs there are

several classes of machine scheduling problems. As it shall be discussed later, these

can be generalised under a special type of project scheduling problem.

The simplest machine scheduling model is for a single machine. That is, there are

n jobs J = {1, 2, . . . , n} (order of which is assumed to be given), with certain known

processing times pj, and which have to be processed on a single machine. Under the

assumption that only one job can be processed at a time, this case is known as the

single machine scheduling problem. The next simplest case is when a set of jobs

have to be processed on multiple independent and identical machines with the same

processing times. However, if the machines are not identical, then the processing time

for job j on machine Mk becomes pjk. If a machine is allowed to process more than

one different job, then any machine in the subset of machines µj ∈ {M1, . . . ,Mm} can

be used to process it, unless that machine is being used to process another job. All

of these cases (subject, again, to the single job per machine assumption) are grouped

under the parallel machine scheduling problem. More precisely, when jobs occupy
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all machines in their respective µj simultaneously, then the problem is classed as a

multi-processor task scheduling problem.

By studying the characteristics of different jobs, more classes of machine scheduling

problems arise; shop scheduling problems. In shop scheduling problems, jobs consist

of a sequence of operations that have to be processed on different machines. Formally,

job j consists of nj operations O1j, . . . , Onjj; that must be processed sequentially (in

some order) and in one machines from the subset, µOij
∈ {M1, . . . ,Mu} (for 1 ≤ u ≤ m

and 1 ≤ i ≤ nj). If there is a precedence relation between operations but jobs are

independent of each other, then the problem is classed as a job-shop problem. If

there is an order for both, the operations and the jobs, then the problem becomes

a flow-shop problem. Further, if there is an order for the jobs but not for the

operations, then the problem is classed as a open-shop problem.

2.1.2 Classification of Project Planning Problems and the

RCPSP

Project planning is heavily conditioned by the specifications on the resources and ac-

tivities. These are grouped under the more appropriate term, resource-constrained

project scheduling problem (RCPSP). For a recent and thorough review, we refer

the reader to Habibi et al. (2018). The generality of the RCPSP allows it to have a

wide range of applications where the aim is to schedule some activities or jobs, such

that precedence and resource constraints are satisfied, and a certain objective function

is optimised. As for the objective functions, for example, the project duration, the
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deviation from deadlines, or costs concerning resources, may be minimised.

To study the RCPSP, let us introduce some notation. Let T denote a time horizon

and t ∈ T = {0, 1, . . . , T} denote a discrete time unit. There are n activities belonging

to the set J (as previously defined), and a set of r resources R = {1, 2, . . . , R}. For

every activity j ∈ J , there is an associated cost cj, duration pj, deadline dj ∈ T , and

resource requirements rjk (for each k ∈ R). Also, the completion time of an activity

Cj, is directly related to the starting time Sj ∈ T , by the equation Cj = Sj + pj.

Let the set of precedence relations be denoted by E. Precedence constraints for

activities are defined as follows. If activity j cannot begin until activity i is fully

completed, then Si + pi = Ci ≤ Sj, and we write (i, j) ∈ E. This is called a finish-

to-start relation and it can be relaxed by allowing activity j to start before activity

i is fully completed (start-to-start relation). Using a minimum time-lag lij, the

constraint becomes Ci+ lij ≤ Sj, and it ensures that the time between the completion

time of activity i and the starting time of j is at least lij.

Resource constraints depend on the availability of resources. Resource availability

can be of different types: renewable, nonrenewable, partially renewable, or cumula-

tive; each of these requires different modelling. By setting the total resource demand

less than or equal to Rk for each resource k at any time point, the renewable avail-

ability constraint will be formulated. Perhaps a more realistic case is the one with

a cumulative availability or storage resources. This case allows the resource avail-

ability at a particular time to depend on the resource requirement of activities that

have already been performed. Cumulative availability can also be used to model a

resource that is available in storage and can be depleted or replenished conveniently,
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perhaps incurring additional costs. Let resource demands r−jk and r+jk, represent the

depleted and replenished amount, respectively, of resource k when activity j is per-

formed. By introducing a dummy starting activity 0 and dummy terminating activity

n + 1 the initial and final amount of resource k can be modelled by r+0k and r+n+1,k,

respectively. For each resource k, there is a lower bound (safety stock) Rk and upper

bound (maximum capacity) Rk. The constraints to ensure the accumulated inventory

for every resource stays within its bounds is given by,

Rk ≤
∑

{j| Sj+pj≤t}

r+jk −
∑

{j| Sj≤t}

r−jk ≤ Rk, ∀ t ∈ T , k ∈ R .

Furthermore, in the case when there are some processing alternatives for activity j

(e.g. using more than one machine to process it), the problem becomes multi-mode.

For this extension, processing alternatives may be grouped in the set Mj of modes

(conceptually the same as the µj seen in the machine scheduling problem) and the

processing time and resource usage of activity j will depend on the mode m ∈ Mj.

These can be denoted by pjm and rjkm, respectively.

Formulation of the RCPSP

After studying the necessary considerations and classifications of the problem, a basic

formulation can be presented. For the sake of illustration, a RCPSP model with

minimum time-lag, renewable resources, and a generic cost function is presented. Let

xjt be the binary decision variable for this problem; it is equal to 1 if activity j starts

at time period t, and it is 0 otherwise. The RCPSP can be formulated as follows,
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Model 2.1.1. A discrete-time formulation for the RCPSP (Brucker et al., 1999)

min
x

∑
t∈T

∑
j∈J

cj(t)xjt (2.1.1a)

Subject to∑
t∈T

xjt = 1, ∀ j ∈ J (2.1.1b)∑
t∈T

txit + pi︸ ︷︷ ︸
Ci

+lij ≤
∑
t∈T

txjt︸ ︷︷ ︸
Sj

∀ (i, j) ∈ E (2.1.1c)

∑
j∈J

t∑
u=t−pi+1

rjkxju ≤ Rk ∀ k ∈ R, t ∈ T (2.1.1d)

xjt ∈ {0, 1} ∀ j ∈ J , t ∈ T (2.1.1e)

The generic time-dependent cost function cj(t), used in the objective function

2.1.1a, can take any of the following forms,

(i) Makespan: to minimise the total project time, we can set cj(t) = 0 for all

activities j ∈ J \ {n+ 1}, and cn+1(t) = t;

(ii) Maximum lateness: to minimise the maximum difference between the com-

pletion time and the deadline, we can use the same cj(t) as for objective (i),

and additionally, set lj,n+1 = pj − dj for all activities j ∈ J ;

(iii) Earliness/tardiness costs: to minimise costs associated with early/late ac-

tivities, we can set cj(t) = αj max {0, dj − Cj}+βj max {0, Cj − dj}, where αj

and βj are the additional costs associated with earliness and tardiness for each

activity j;

(iv) Weighted number of late activities: to minimise the weighted number of

late activities, we can use the same cost function as for objective (iii) with
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αj = 0.

Constraints 2.1.1b specify that only one start time is allowed for every activity.

Precedence constraints 2.1.1c ensure that finish-to-start precedence relations with

minimum time-lag are enforced (recall Ci + lij ≤ Sj). More precisely, for any pair of

activities in the precedence set (i, j) ∈ E, the time between the completion time of

activity i (given by the first sum plus the processing time) and the starting time of its

successor j (given by the LHS), must be at least the minimum time-lag lij. Resource

constraints 2.1.1d guarantee that the capacity of the resources is not exceeded for the

duration of the activity. This integer program (IP) has nT variables, |E| precedence

constraints captured in constraints 2.1.1c, and RT resource constraints 2.1.1d.

A variant of this formulation, with stronger precedence constraints, is given by the

disaggregated discrete time formulation. To achieve this, we can replace constraints

2.1.1c with the following,

T∑
u=t

xiu +

t+pi+lij−1∑
u=0

xju ≤ 1 ∀ (i, j) ∈ E, t ∈ T \ {T − 1}. (2.1.2)

These constraints ensure that if activity i starts at time t, then activity j cannot start

until time t+ pi + lij, hence, enforcing the required finish-to-start precedence relation

with minimum time-lag.

As previously mentioned, machine scheduling problems are special cases of the

RCPSP. For example, the parallel machine scheduling problems with non-identical

machines can be modelled as a multi-mode RCPSP with R renewable resources and

Rk = 1 for k ∈ R. Similarly, the general-shop scheduling problem can be modelled
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as the RCPSP with m+ n renewable resources, Rk = 1 for all resources k. Of these,

the first m correspond to the machines and the remaining resources account for the

fact that different operations of job j cannot be processed at the same time. The

total number of activities will be
∑n

j=1 = nj and operation Oij requires one unit of

machine resource µij and one unit of job resource m+ j.

2.1.3 Long-term RCPSP formulations

Given the nature the problem considered in Chapter 3, the long-term RCPSP liter-

ature is worth considering. Particularly, Koné et al. (2011) introduced a formulation

that challenged the classical discretisation of time by indexing variables with some

pre-defined time intervals. They refer to this type of formulation as an “event-based

RCPSP”. More formally, these events correspond to start or end times of activi-

ties. Their formulation, for long-term planning horizons, involves considerably fewer

variables than the formulations indexed by time. It should be noted that they inde-

pendently developed the same idea as Sousa and Wolsey (1992). Koné et al. (2013)

later extended the event-based formulation to account for non-renewable resources.

More authors have used a similar indexation of time. Naber (2017) removed the as-

sumption regarding fixed resources per activity in the RCPSP by allowing flexible

resource usage. Kopanos et al. (2014) presented two new types of continuous time

formulations and provided a computational study comparing the performance of other

similar RCPSP formulations.
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On/Off Event-based Formulation (Koné et al., 2011)

To study the “event-based RCPSP” formulations by Koné et al. (2011), let us alter the

notation used in the previous section to match the one employed by the authors. Let

the RCPSP be defined by (A, p,E,R,B, b). Where A is a set of activities (including

dummy start and end activities, i.e. A = {0, 1, . . . , n, n+1}), p is a vector of durations,

E is the precedence relation, R is a set of renewable resources, B is a vector of resource

availabilities, and b is a matrix of demands. For the event-based formulation we require

a set of events E = {0, 1, . . . , n}, where n is the number of activities. Each of these

correspond to either the start or the end of an activity. Making use of this event set

Koné et al. (2011) introduced two event-indexed formulations for the RCPSP. The

first formulation, the Start/End event-based (SEE) formulation, is a simplification

of the formulation by Zapata et al. (2008) for the multi-mode multi-project RCPSP.

The SEE formulation requires two variables for each event, which allows tracking of

the start and end events for each activity. The formulation we are going to discuss

in more detail is the On/Off event-based (OOE) formulation as it only requires one

variable per event. It receives its name due to the definition of the variables used as

they either represent the start or the end of an activity. With this definition it is more

difficult to identify when an activity starts and ends; for this purpose, the authors

include some “contiguity” (transitivity) constraints and a continuous variable to track

event times. Apart from being able to deal with long-term planning horizons, another

advantage of these formulations is that they can deal with rational processing times

for activities.
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To study the OOE formulation in more detail, let the event indexed binary vari-

able zie, take the value 1 if an activity i starts at event e or if it is still being processed

immediately after event e; and it is 0 otherwise. The authors introduce a contin-

uous variable te in order to account for time/date of event e. In terms of project

completion time, the worst case would be if the processing times for all activities is

disjoint, meaning that all the te variables will be different. However, depending on

resource availability, the start/end of different activities may correspond to the same

events, which makes some of these times equal. Moreover, the authors work under

the following assumptions,

1. Fixed and renewable resources;

2. Non-preemptive schedule;

3. Activities make use of all the resources they require when being processed.

The problem can be formulated as follows,
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Model 2.1.2. OOE formulation Koné et al. (2011).

min Cmax (2.1.3a)

Subject to∑
e∈E

zie ≥ 1; ∀i (2.1.3b)

Cmax ≥ te + (zie − zi,e−1)pi; ∀ i, e; (2.1.3c)

t0 = 0; (2.1.3d)

te+1 ≥ te; ∀ e 6= n− 1 ∈ E (2.1.3e)

tf ≥ te + ((zie − zi,e−1)− (zif − zi,f−1)− 1) pi; ∀ (e, f, i) ∈ E2 × A, f > e
(2.1.3f)

e−1∑
e′=0

zie′ ≤ e(1− (zie − zi,e−1)); ∀ e ∈ E \ {0} (2.1.3g)

n−1∑
e′=e

zie′ ≤ (n− e)(1 + (zie − zi,e−1)); ∀ e ∈ E \ {0} (2.1.3h)

zie +
e−1∑
e′=0

zje′ ≤ 1 + (1− zie)e; ∀ e, ∀ (i, j) ∈ E (2.1.3i)

n−1∑
i=0

bikzie ≤ Bk; ∀ e, k (2.1.3j)

te ≥ 0; ∀ e; (2.1.3k)

zie ∈ {0, 1}; ∀ i, e; (2.1.3l)

The OOE formulation involves O(n2) binary variables, O(n) continuous variables,

and O(n3 + (|R|+ |E|)n) constraints.

The objective function 2.1.3a, employs a makespan criteria and a corresponding

continuous variable subject to constraints 2.1.3c. Constraints 2.1.3b ensure that ev-

ery activity is processed at least once. Constraints 2.1.3d initialise the time variable

for the first event while constraints 2.1.3e ensure that it remains nondecreasing. Con-

straints 2.1.3f link binary and continuous variables in a form that poses a lower bound

for the time of any later event. That is, if activity i starts immediately after event e

(zie = 1∧zi,e−1 = 0) and ends at event f (zi,f−1 = 1∧zi,f = 0), then the time of event f
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is at least equal to the time of event e plus the processing time of activity i. Any other

combination of values for the binary variables yields a redundant constraint. Con-

straints 2.1.3g and 2.1.3h are called contiguity constraints, more commonly referred

to as transitivity, and ensure that zie remains equal to 1 for the total processing time

of activity i. Constraints 2.1.3i ensure precedence relations are satisfied. Constraints

2.1.3j ensure that the resource limits are not violated. The last two constraints, 2.1.3k

and 2.1.3l define the variables.

If the earliest start (ESi) and latest start (LSi) times for activities are known, the

following constraints can be included,

ESizie ≤ te ≤ LSi(zie − zi,e−1) + LSn(1− (zie − zi,e−1)) ∀ i, e . (2.1.4)

These constraints are crucial for the performance of the model, hence, if the ear-

liest/latest start times are not known, preprocessing steps can be implemented in

order to compute them (Demassey et al., 2005).

Koné et al. (2011) included a computational comparison of the OOE formula-

tion against three other well-known formulations. The discrete time formulation, the

disaggregated discrete time formulation, and the flow-based continuous-time formula-

tion; as well as their own SEE. Testing on different data sets with different properties

clearly showed that the OOE outperforms the other formulations on instance sets

with a long time horizon and high processing rates of activities.



CHAPTER 2. EXTENDED LITERATURE REVIEW 26

RCPSP with consumption and production of resources (Koné et al., 2013)

Koné et al. (2013), extended the OOE formulation (Koné et al., 2011) for a more

complex problem; the RCPSP with consumption and production of resources (RCP-

SP/CPR). They showed that the revised event-based formulation still outperformed

all other types. The formulation borrows most of the constraints from Model 2.1.2

but also introduces several continuous variables to account for the stock level with

consumption/production of different resources for each activity. To avoid confusion

in the notation for the resources we change R to P , as the former previously denoted

renewable resources. The continuous variables required are,

sep : stock level of resource p ∈ P at event e;

uiep : amount of resource p ∈ P consumed by activity i at event e;

piep : amount of resource p ∈ P produced by activity i at event e.

The RCPSP/CPR formulation involves objective 2.1.3a and constraints 2.1.3b to

2.1.3l from Model 2.1.2, as well as some constraints regarding the consumption of

resources. The formulation is as follows,
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Model 2.1.3. RCPSP/CPR Koné et al. (2013)

Constraints2.1.3a to 2.1.3l

uiep ≥ c−ip(zie − zi,e−1); ∀ i, e, p; (2.1.5a)

uiep ≤ c−ipzie; ∀ i, e, p; (2.1.5b)

uiep ≤ c−ip(1− zi,e−1); ∀ i, e, p; (2.1.5c)

piep ≥ c+ip(zi,e−1 − zie); ∀ i, e, p; (2.1.5d)

piep ≤ c+ipzi,e−1; ∀ i, e, p; (2.1.5e)

piep ≤ c+ip(1− zi,e); ∀ i, e, p; (2.1.5f)

sep = se−1,p +
∑
i∈A

piep −
∑
i∈A

uiep; ∀ i, e, p; (2.1.5g)

n−1∑
i=0

bipzie ≤ sep; ∀ e, p; (2.1.5h)

sep, uiep, piep ≥ 0; ∀ i, e, p. (2.1.5i)

Here, c−ip and c−ip denote the minimum and maximum amount of resource p required

to perform activity i, respectively. The combination of constraints 2.1.5a, 2.1.5b, and

2.1.5c ensure that the value of variable uiep is equal to c−ip if activity i starts being

processed at event e for any resource p, and is 0 otherwise. So, the only combination

that leads to uiep = c−ip is zie = 1 ∧ zi,e−1 = 0. Similarly, constraints 2.1.5d, 2.1.5e,

and 2.1.5f ensure the production variable is equal to c+ip if activity i finishes being

processed at event e for any resource p, and is 0 otherwise. In this case, the only

combination that leads to piep = c+ip is zie = 0 ∧ zi,e−1 = 1. Constraints 2.1.5g ensure

the stock level se,p, for each event e and resource p is updated utilising the stock level

from the previous event se−1,p, plus the resource produced by each activity minus

the consumption by each activity. Constraints 2.1.5h limit the resources available at

each event with the corresponding stock level. Lastly, constraints 2.1.5i define the

variables.
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2.1.4 A Formulation for the Preemptive RCPSP

The literature for the preemptive RCPSP (PRCPSP) is very limited. Afshar-Nadjafi

(2014) studied different preemption penalty costs and a weighted earliness-tardiness

in the objective function of the PRCPSP. Afshar-Nadjafi and Arani (2014) published

similar results for the multi-mode case. Coffman et al. (2015) explored the smallest

time between events (shift) in an optimal schedule for parallel machine scheduling

problem with preemptions allowed at non-integer (rational) times. Additionally, in

this article, authors introduced an alternative definition for events to account for

preemptions, these are identified as an activity start, interruption, resumption, or

completion; let us adopt such definition. More recently, Creemers (2019) showed

the impact of allowing preemptions in a stochastic project scheduling setting. They

presented a computational study (using psplib instances Kolisch and Sprecher, 1997)

where they compared the benefit in preemption when compared to other well-known

RCPSP formulations.

We wish to extend the OOE formulation from Koné et al. (2011) (discussed in

Section 2.1.3) to allow preemptions. For this purpose, we require to introduce some

notation. Let p−i be a value that represents the minimum time allowed to be spent on

activity i, with p−i < pi (see Figure 2.1). This can also be thought of as the amount of

time after starting/resuming an activity in which we cannot complete/interrupt said

activity. From this, the fraction ni =
⌊
pi/p

−
i

⌋
determines the maximum number of

subactivities activity i can be broken into. Hence,

∑
i∈A

⌊
pi
p−i

⌋
=
∑
i∈A

ni = N ,
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determines the new number of events. That is, E = {0, 1, . . . , N}. Furthermore, we

impose the assumption, that two subactivities can only be processed in parallel if they

do not divide the same activity.

p−i p−i

pi1 pi2

Figure 2.1: An activity broken down into two subactivities.

With these definitions, we can change constraints 2.1.3f to,

p−i ((zie − zi,e−1)− (zif − zi,f−1)− 1) ≤ tf− te ≤ pi ∀ (e, f) ∈ E2 (f > e), ∀ i ∈ A .

(2.1.6)

These constraints bound elapsed times between events. The upper bound is the total

processing time pi. While the lower bound is set to be the minimum time allowed,

p−i .

To monitor the progress of individual subactivities throughout the project, let

us introduce a new continuous time variable, aie, which represents the amount of

processing time that has been dedicated to activity i by event e. In terms of the

variables introduced for Model 2.1.2, for a single process of each activity, we may

write the processing variable as follows,

aie =


ai,e−1 + te − te−1, if zie = 1 ∨ zi,e−1 = 1

ai,e−1, otherwise

∀ i, e.

With 0 ≤ aie ≤ pi ∀ e ∈ E ; ai0 = ai,−1 = 0 ∀ i ∈ A; and aiN = pi ∀ i ∈ A. By

using some big-M constraints, this definition is equivalent to the following activity
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processing constraints,

ai0 = ai,−1 = 0 ∀ i; (2.1.7a)

ai,e−1 ≤ ai,e ∀ i, e; (2.1.7b)

aie ≤ ai,e−1 +M (zie + zi,e−1) ∀ i, e; (2.1.7c)

aie ≥ ai,e−1 + (te − te−1)−M(1− zie) ∀ i, e; (2.1.7d)

aie ≥ ai,e−1 + (te − te−1)−M(1− zi,e−1) ∀ i, e; (2.1.7e)

aiN = pi ∀ i; (2.1.7f)

0 ≤ aie ≤ pi ∀ e ∈ E ∀ i, e. (2.1.7g)

Constraints 2.1.7a initialise the dummy activity processing variable ai,−1, and the one

corresponding first event ai0. Constraints 2.1.7b ensure that the processing variable in

nondecreasing. Constraints 2.1.7c to 2.1.7e ensure that if either zie = 1 or zi,e−1 = 1

the processing variable is recursively updated, otherwise, due to M , they become

redundant. That is, if zie = 1 ∨ zi,e−1 = 1, aie is updated with ai,e−1, the already

processed time for activity i, plus the time elapsed, te − te−1, between events e − 1

and e. In fact, since constraints 2.1.6 bound te − te−1 with pi, for the same effect

we can replace M with pi. Constraints 2.1.7f ensure that every activity is processed

to completion and least by the last event N . Constraints 2.1.7g bound the activity

processing variable.

As for the objective function for the event-based PRCPSP we have similar options

to those for the simpler version of the problem. In our notation, we have

(i) Makespan: minCmax = tN .
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(ii) Maximum lateness: min maxi∈A te(i)−di, where di is the deadline for activity

i and e(i) = min{e : aie = pi}, i.e. the event where the processing for activity

is completed.

(iii) Preemption costs: min
∑

i

∑
e c

P
i (zi,e−1pi− (aie− ai,e−1)) where cPi is the cost

of preemption for activity i.

Choosing one of these objective functions, (i) for instance, and including the con-

straints from Model 2.1.2, we can present a formulation for the event-based preemptive

RCPSP,

Model 2.1.4. Event-based formulation for the preemptive RCPSP.

min Cmax

Subject to

Constraints from Model 2.1.2

2.1.3b to 2.1.3e

2.1.6

2.1.3g to 2.1.3l

Earliest/Latest start times constraint

2.1.4

Activity Processing Constraints

2.1.7a to 2.1.7f

Activity Processing Variable Definition

2.1.7g

Example 2.1.1. Consider a preemptive RCPSP with the following properties,

i 1 2 3 4
pi 4 3 5 8
p−i 1 2 2 2
ni 4 1 2 4
bi1 3 1 2 2
bi2 3 4 2 3

Where resources R1 and R2 have capacities 5 and 7 respectively. Also, we have
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the following two precedence relations E = {(2, 3), (3, 4)} of types finish-to-start and

start-to-start, respectively. Meaning that activity 3 cannot start before the end of

activity 2, and that activity 4 cannot start before the start of activity 3.

In this case, from the values above, we see that activity 2, for example, has to be

processed in a single go (n2 = 1). The others have at most 4 subactivities. Thus,

N = n1 +n2 +n3 +n4 = 11. A feasible solution for the scheduling of this project can

be seen in Figure 2.2, with the corresponding values for the variables,

e = 0: t0 = 0, z20 = 1 a20 = 0
e = 1: t1 = 0, z21 = z11 = 1 a21 = a11 = 0
e = 2: t2 = 3, z32 = 1 a22 = a12 = 3, a32 = 0
e = 3: t3 = 3, z33 = z43 = 1 a33 = a43 = 0
e = 4: t4 = 8, z44 = 1 a34 = a44 = 5
e = 5: t5 = 8, z45 = z15 = 1 a45 = 5, a15 = 3
e = 6: t6 = 9, z46 = 1 a45 = 6, a16 = 4
e = 7: t7 = 11, a47 = 8.

With Cmax = 11. The remaining variables are equal to 0. The Gantt chart of the

two resources considered R1 and R2 is presented in Figure 2.2. It is worth noting that,

in comparison with the non-preemptive case, solution in Figure 2.3, the makespan is

reduced by 1.

3 8 9 11

1
2
3
4
5

2
4

1a
3 1b

3 8 9 11

1
2
3
4
5
6
7

1a

2 4

3 1b

Figure 2.2: Example of a feasible preemptive schedule showing the processing of
activities for two resources R1 (left) and R2 (right).
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1
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4

1

1 3 8 12

1
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4
5
6
7

4

1
3

2

Figure 2.3: Example of a feasible non-preemptive schedule showing the processing of
activities for two resources R1 (left) and R2 (right).

Implementation and Computational Tests

To solve Model 2.1.4 efficiently, one has to implement some preprocessing steps. We

apply the well-known local constraint programming (CP) algorithm for the estimation

of earliest/latest start times, ESi/LSi, from Demassey et al. (2005). After implement-

ing the preprocessing algorithm, we tested Model 2.1.4, allowing a single preemption,

using the well-known psplib library instances (Kolisch and Sprecher, 1997). Partic-

ularly, we used the j30 data set with 30 activities (parameter 1 instances 1-10, i.e.

j301 1 to j301 10).1 Since we are only allowing one preemption, for each activity i,

we set,

p−i =
⌊pi

2

⌋
.

Hence,

N =
∑
i∈A

⌊
pi
p−i

⌋
=
∑
i∈A

⌊
pi
bpi/2c

⌋
≤ 2|A| ,

that is, as one would expect, the number of events is at most twice the number of

activities.

A computational comparison between three different formulations is given in Table

1Companion code avilable at https://github.com/torressa/prcpsp.

https://github.com/torressa/prcpsp
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2.1. We include the results for Model 2.1.4, the psplib benchmark results, and the

results for the OOE formulation (Model 2.1.2). We compare the makespan (MS) and

the computational times (T) for the ten instances (Inst.) studied. Additionally, the

local constraint programming algorithm is efficient, as shown by the low computational

times for the preprocessing stage. As expected, the makespan for our preemptive

formulation, Model 2.1.4, is on average 11.6% lower than the benchmark results with

a slight increment in the solution times. When compared with solutions obtained with

Model 2.1.2, our formulation shows an average decrease of 0.8% for the makespan,

with a lower average computational time.

Table 2.1: Computational results including makespan (MS) and computational times
(T) for Model 2.1.4, psplib benchmark results, Model 2.1.2, and the preprocessing
stage.

Model
2.1.4

Benchmark
Model
2.1.2

Preprocessing
Stage

Inst. MS T (s) MS T (s) MS T (s) T (s)

1 38 6.21 43 0.3 38 5.32 0.17
2 42 4.35 47 0.11 42 0.87 0.14
3 43 2.49 47 0.12 44 300 0.12
4 55 5.48 62 0.64 55 0.91 0.09
5 31 6.97 39 0.48 33 300 0.14
6 38 3.1 48 0.04 38 1.96 0.15
7 60 5.99 60 0.01 60 0.67 0.12
8 53 3.97 53 0.03 53 0.91 0.1
9 42 4.37 49 0.1 42 0.76 0.2
10 37 5.99 45 0.04 37 1.07 0.2

2.2 Maintenance Scheduling

Traditionally, machine maintenance was performed on a run-to-failure basis. In the

late ‘50s and early ‘60s, with the recent developments in operational research, preven-
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tive maintenance (PM) was introduced and maintenance planning was formulated

as any other ordinary scheduling optimisation problem. Tasks are to be performed

(inspections and perhaps unexpected repairs), with a certain frequency and some ca-

pacity and workforce constraints. While these models do reduce system failure and

dangerous accidents; they are labour intensive, do not account for the uncertainty of

failure, and induce several unnecessary costs. The next step was towards prognos-

tic models as they mitigate these issues by using the current “health”-state of the

machine as an impetus factor to predict when failures are likely to occur and how to

best avoid them. Conditioning the modelling on the current state of the system is

where a relatively recent and active research area comes into play: condition-based

maintenance (CBM).

In the airline framework, around “80% of the inspection and access activities do

not lead to a repair”– Papakostas et al. (2010). This highlights the need to challenge

and consider current maintenance scheduling models to reduce unnecessary inspec-

tions. Although some airlines are shifting to a more effective scheme through the use

of sensors and more sophisticated analysis of the data, many still schedule mainte-

nance periodically according to the opinion of their experts. This leads to suboptimal

schedules vulnerable to the very likely introduction of delays and additional costs

when demanding an unscheduled repair.

The techniques and approaches concerning the scheduling of different maintenance

interventions, focussing mainly on the aircraft related, will be summarised in this sec-

tion. As already mentioned in Section 1.1, there are considerable savings to be made

from more efficient maintenance programmes. Furthermore, the improvements made
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can then be applied to other industries and areas that require such efficiency analysis

like nuclear plants, automotive and other machinery operated in high-performance

environments (e.g. hydraulic structures, brake linings, pipelines or cutting tools).

2.2.1 Prognostic-Based Models

Being able to replace optimally, at the most appropriate moment in time, the neces-

sary components of the machine is essential to plan the maintenance workload and

inventory reducing losses and general inefficiencies. By introducing the remaining

useful life (RUL) of a system, prognostics can be defined to be the capability of

predicting the changes in RUL. The RUL is, as its name suggests, the time until

the system cannot perform its usual operations. Specifically, taking into account the

current RUL of a system for every decision point is modelled under CBM.

Heng et al. (2009) and Jardine et al. (2006) presented very useful summaries on

some of the current prognostic-based approaches and their corresponding benefits and

drawbacks. Especially relevant to jet engines, in the former, the authors reviewed the

methods for predicting rotating machinery failures. Besides, they both agreed that

the most efficient and accurate models are CBM models. In this context, maintenance

tasks are usually classified into three categories, proactive maintenance (inspections),

PM or corrective maintenance (CM). CBM models recommend maintenance deci-

sions based on the information collected through non-intrusive monitoring or updated

historical data. CBM models also attempt to keep unnecessary operations (inspec-

tions and PM) to a minimum by performing an intervention exclusively when there is

significant evidence of abnormal behaviour. A CBM program, thus, can help to reduce
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maintenance associated costs by reducing the number of unnecessary operations.

Jayabalan and Chaudhuri (1992) developed one of the first prognostic-based mod-

els. The authors introduced two types of maintenance interventions, which correspond

to PM and CM. For each of these operations performed, a constant improvement fac-

tor γ, regarding the failure rate of the system is used. That is, every time a PM

intervention is performed at a particular time ti, the measure that quantifies the fail-

ure rate (e.g. the age of the system), is reduced by ti − ti/γ. As time increases, the

cost of performing a corrective replacement also increases. Interventions of this type

are assumed to restore the system to as-good-as-new state. Therefore, the authors

employed a threshold such that if the failure rate reaches a certain level λmax, either

a PM or CM operation will be performed. Based on the objective of minimising the

total maintenance costs, one operation is chosen every time this occurs. Using this

method and resting on several assumptions (intervention durations can be assumed to

be negligible), the authors formulated a cost model and presented a recursive equation

to calculate the time for the n-th intervention tn. It is given by the following equation,

tn = tn−1 +

(
1− 1

γ

)n−1
t1 =

n∑
i=1

(
1− 1

γ

)i−1
t1 ,

where t1 is the time when the system reaches the maximum failure rate λmax, for the

first time. For the case when γ ≥ 1, depicted in Figure 2.4, the successive maintenance

intervals are of decreasing length. The times between the interventions decreases as

the system deteriorates faster after every intervention. At each of these points ti, a

cost problem is solved to determine whether a PM or a CM should be performed. In

the case a CM is required to minimise the total cost, the failure rate will drop to 0
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(not shown).

λmax

t

r

t1 t3t2 t4

Figure 2.4: Failure rate (r) evolving through time (t) after performing PM interven-
tions at times ti for i = 1, 2, 3, 4 (assuming λ ≥ 1).

Grall, Bérenguer and Dieulle (2002) introduced the use of N thresholds. These

thresholds are used to generate aperiodic inspection schedules for maintenance in a

similar fashion as above; however, the type of intervention performed depends on the

system state. The system state is defined as a stochastic deterioration process follow-

ing a gamma distribution. Authors argued that the number of thresholds should be

allowed to vary depending on how fast a system deteriorates; and suggested that if a

system degrades quickly, the model benefits from having a large number of thresholds,

and if a system deteriorates slowly, then fewer thresholds should be used. Sets of in-

tervals for the thresholds are studied depending on the characteristics of the problem.

These are then varied according to the objective function value and corresponding

optimality criteria. The assumption that CM interventions restate the machine to a

condition as-good-as-new is also accepted in other prognostic models, Grall, Dieulle,

Bérenguer and Roussignol (2002) for instance. Marseguerra et al. (2002) highlighted

the inefficiencies of this malpractice, including them being a financial burden, and

presented a non-analytical model to deal with partial recovery using Monte Carlo
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simulations.

CBM-based Formulation for Fighter Aircraft Maintenance (Li et al., 2016)

One of the current CBM model formulations for fighter aircraft is the one given by Li

et al. (2016). This formulation combined the “health”-state monitoring and several

uncertainty measures in a single model. It is standard practice in the aircraft-related

literature to take such “health”-state to be the legal remaining flying hours (Sarac

et al., 2006). By updating the estimated remaining available flying hours for an in-

dividual aircraft, i.e. the RUL, according to certain historical information about the

aircraft, the authors proposed a way to model the problem. The uncertainties included

in this model account for the maintenance and flight durations drawn from uniform

and normal distributions, respectively. The assumption that flight duration, mainte-

nance task durations, and even the departure delay come from normal distributions

(with different parameters) is a conventional assumption in the literature. Based on

the work by Mueller and Chatterji (2002)who, additionally, showed that departure

delay can be modelled using a Poisson distribution.

Since Li et al. (2016) focused on scheduling maintenance for fighter aircraft, they

use different types of flight operations, encapsulated by grouping the flights by “sor-

ties”. This is due to various sorties or missions (e.g. transport, reconnaissance,

bomber, fighter, or special operations) require different engine functions and ma-

noeuvres.

To study the formulation in Li et al. (2016), the introduction of their notation is

required. Let us define some sets and parameters,



CHAPTER 2. EXTENDED LITERATURE REVIEW 40

F : Set of all aircraft i ∈ F , |F| = n represents the number of aircraft;

J : Set of all sortie types j ∈ J , |J | represents the number of unique sortie types;

lj : Duration of sortie type j ∈ J ;

hmax : Maximum number of flying hours between maintenance interventions;

htj : Life of aircraft i ∈ F remaining at period t;

k : Average number of time period required to complete maintenance;

bi : Flying hours remaining on aircraft i ∈ F at the beginning of the time horizon;

M : Maximum number of aircraft that can be in maintenance at any given period t

without penalty.

The decision binary variables are xtij and mt
i for the aircraft and maintenance

respectively and are defined as follows,

xtij : 1, if aircraft i ∈ F flies sorties type j ∈ J in period t ∈ T ; 0, otherwise;

mt
i : 1 if aircraft i ∈ F enters maintenance in period t ∈ T ; 0, otherwise.

Time is taken be discrete, with a time horizon denoted by T , thus t ∈ T =

{1, . . . , T}. The discrete-time unit for this model is half-days, that is, when t goes up

by a single unit this corresponds to an increase in 12 hours. The problem can now be

formulated as follows,
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Model 2.2.1. Time-discrete MIP with CBM considerations (Li et al., 2016)

min
m

max
∑
i

∑
τ=t−k

(mτ
i −M), ∀ t ∈ [k + 1, T ] (2.2.1a)

Subject to

h1i = bi , ∀ i ∈ F (2.2.1b)∑
j

xtijlj + ht+1
i ≤ hti + hmaxm

t
i , ∀ t ∈ T , i ∈ F (2.2.1c)∑

j

xtijlj + ht+1
i ≤ hti , ∀ t ∈ T , i ∈ F (2.2.1d)

hmaxm
t
i ≤ ht+1

i ≤ hmax , ∀ t ∈ T , i ∈ F (2.2.1e)

hmaxm
t
i ≤ hmax − hti , ∀ t ∈ T , i ∈ F (2.2.1f)∑

j

xtij ≤ 1, ∀ t ∈ T , i ∈ F (2.2.1g)∑
i

xtij ≤ 1, ∀ t ∈ T , j ∈ J (2.2.1h)∑
j

xt+yij +mt
i ≤ 1, ∀ t ∈ [1, T − k + 1], y ∈ [0, k − 1], i ∈ F

(2.2.1i)

mt
i +mt+y

i ≤ 1, ∀ t ∈ [1, T − k], y ∈ [1, k], i ∈ F , t ∈ T (2.2.1j)

hti ≥ 0; xti, m
t
i ∈ {0, 1}, ∀ t ∈ T , i ∈ F (2.2.1k)

The objective function 2.2.1a, minimises the maximum number of aircraft in ser-

vice during any average maintenance duration period and ensures this does not exceed

the maintenance capacity M . Constraints 2.2.1b initialise the remaining flying hours

for each aircraft. This initialisation is critical, otherwise, the formulation leads to a

contradiction. To include stochasticity, the model draws each initial number of flying

hours bi, from a uniform distribution with certain parameters. The authors draw from

a U(0, 200). Constraints 2.2.1c, 2.2.1d, and 2.2.1e update the remaining flying hours

for aircraft i for the next time period t + 1, depending on sorties flown and whether

maintenance is currently being performed or has been performed. Constraints 2.2.1f

guarantee that maintenance has to be performed when the remaining flying hours for
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an aircraft reaches the fixed level hmax. Constraints 2.2.1g enforce that at most one

sortie per aircraft. Constraints 2.2.1h ensure that no sortie is assigned to more than

one aircraft. Both constraints 2.2.1i and 2.2.1j force the downtime of an aircraft to

be sufficient to allow the completion of maintenance, this involves the maintenance

duration uncertainty captured by k. That is, if maintenance is to be performed for

aircraft i at time period t, so mt
i = 1, then maintenance cannot be performed again

until after a period greater than the average duration of said maintenance operation,

mt+y
i = 0 for y ∈ [1, k]. Similarly, if mt

i = 1, then aircraft i cannot be allocated

to operate any sortie j until after a period greater that the average duration of a

maintenance task and therefore
∑

j x
t+y
ij = 0. The authors assumed that maintenance

duration k, follows a N (3, 1). Lastly, constraints 2.2.1k define the domains of the

decision variables.

In the case study presented, with time horizon T = 50 (or 25 days), n = 200 air-

craft, two types of sorties (|J | = 2), and M = 0, the model minimises the maximum

number of aircraft undergoing maintenance at any given period. Although the com-

putational times were quite promising, the model presented several limitations. The

remaining flying hours were disregarded for the end of the time horizon. Nonethe-

less, one would not expect most of the aircraft to become non-operational for the

next planning period. Moreover, the “health”-state or condition of the aircraft was

included by constraints which do not account for the possible relationship between

the different factors in operations history. Finally, letting M = 0 with the objective

function as formulated, leads to aircraft with low remaining flying hours being held

at the base without operating any sorties.
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Alternative Generation for Aircraft Maintenance Planning (Papakostas

et al., 2010)

A different modelling approach, which removes the issues previously discussed for the

formulation by Li et al. (2016), was given by Papakostas et al. (2010). By combining

the decision-making and alternative generation approach from Chryssolouris et al.

(1992), and the set-partitioning based IP formulation from Sarac et al. (2006); the

authors presented a CBM methodology for the scheduling of aircraft maintenance

tasks at an operational level or short-term planning horizon.

Chryssolouris et al. (1992) introduced a generic decision-making framework for

the allocation of different resources, in a manufacturing system, to production tasks.

Such framework involved the application of a simulation approach at every “decision

point”. Here, decision points are defined as points in time when tasks are completed.

Notably, they develop an algorithm for the generation of alternatives for every decision

point.

In the airline operator setting, as proposed by Papakostas et al. (2010), the

decision-making steps at every decision point are as follows,

Step 1. Identify required maintenance tasks.

Step 2. Determine decision criteria and weights for evaluating alternative.

Step 3. Generate alternatives.

Step 4. Determine the consequences of the different alternatives and their utility.

In this case, a decision point is defined as a point in time when an aircraft has landed
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and there are several components to be scheduled for maintenance. In step 1, for the

identification of the required maintenance tasks involved with a certain alternative,

a set of constraints for maintenance and time requirements have to be imposed and

updated to form the decision-making criteria in step 2. Such constraints include, a

number of suitable airports for each task, manpower available to perform each task,

and flight arrival and departure times. The authors borrowed parts of the formulation

by Sarac et al. (2006) to achieve this. In step 3, alternatives are defined as allocations

of maintenance interventions to suitable resources either at the current or successive

workshops. For the alternative generation, it is important to establish a maximum

number of alternatives (MNA) to be considered and a sampling rate (the number of

times a single alternative is considered). The methodology proposed generates MNA

alternatives for every decision point (using the algorithm by Chryssolouris et al.,

1992), and each one of these alternatives is simulated SR times.

To present a schedule from these feasible alternatives, the authors introduced an

utility measure for every alternative in step 4. Several factors influence such utility

measure. These include the cost, operational risk, flight delay and RUL; each of

which has an individual weight (step 2). Once this has been calculated for the MNA

alternatives (each simulated SR times), the tasks can be ordered by the utility. Thus,

it can effectively be seen which tasks should be performed first. Each of these factors

can be calculated as outlined below.

Cost criterion. The cost criterion depends on several independent costs for each

workshop. The cost of performing task Ty (out of the total number of tasks Y ) at
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workshop i of airport j, is summarised in the following formula

Cost = (E + L + OH)×O + C

where E = equipment rate, L = labour rate, OH = overhead rate, O = time required

for the completion of a task, and C = procurement cost associated with the same task

(parts and additional materials). All of these are dependant on the type of task Ty

and on the workshop i of airport j, denoted with Rij.

The cost of an alternative k, Alk, is given by

Cost(Alk) = c1,k =

∑SR
s=1

∑Y
y=1 Cost(Ty, Rij)s

SR

where the cost function Cost(Ty, Rij)s, dependent on task type and airport workshop,

is evaluated for each s-th sample of the alternative.

Operational risk criterion. The operational risk accounts for the stochasticity

of events: desirable and undesirable. Desirable events are taken as the scheduled

events. Unwanted or undesirable events include additional hiring or equipment failure

and can be regarded as considering the worst case scenario. The overall uncertainty

can be included by taking the expected value of the gain of a certain maintenance

task allocation. The formula, therefore, sums the desirable costs (as calculated from

the cost criterion) times its corresponding success probability, plus the undesirable
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costs times the probability of these events happening. The formula is given by,

Risk(Ty, Rij) = Cost(Ty, Rij) · SP(Ty, Rij) + UnDV(Ty, Rij) · UnDP(Ty, Rij) .

The cost of an unscheduled or undesirable event UnDV is taken to be twice as much as

the desirable scheduled event cost. Both the success probability (SP) and undesirable

probability (UnDP) can be taken from two separate Weibull distributions according

to the updated failure state of the aircraft. Using Weibull analysis is common practice

when estimating lifetimes and failures for different types of machinery.

The total operational risk for an alternative k is the average over all the samples,

hence,

Risk(Alk) = c2,k =

∑SR
s=1

∑Y
y=1 Risk(Ty, Rij)s

SR
.

Flight delay criterion. The possible future flight delay depends on three inde-

pendent stochastic events. The duration of flights, the duration of a maintenance task

and departure delay. With this in mind, the authors draw the probabilities for each of

these events from different normal distributed random variables with different mean

and variance. Delay in a certain flight leg l will be introduced by unsuccessful delivery

of a maintenance intervention (usually because of lack of resource availability) or by

weather conditions or extreme events. Delays will then be propagated throughout the

day, influencing future departure and arrival times.

The flight delay for a certain alternative is given by

FD(Alk) = c3,k =

∑SR
s=1

∑Y
y=1

{
max[ATl,s − AT due

l , 0] + max[DTl,s −DT due
l , 0]

}
SR
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where ATl,s−AT due
l is the difference between the actual arrival time and the planned

arrival time and the second term is the equivalent for departure times. Note the

similarity between this criterion and the earliness/tardiness cost, objective function

(iii), discussed in Section 2.1.2.

RUL criterion. The remaining useful life criterion simply corresponds to a health

assessment prediction for an aircraft quantified by the remaining flying hours. This

figure can be calculated from a stochastic model that takes into account the inter-

dependence of the components which are monitored through different sensors. This

quantity is taken as initially known and consequently updated. By considering the

change in RUL when different tasks are performed, the RUL for an alternative k can

be calculated as,

RUL(Alk) = c4,k =

∑SR
s=1

∑Y
y=1wry|RUL(Ty, Rij)s|

SR
,

where RUL(Ty, Rij) is the remaining useful life of task Ty when it is allocated to

resource Rij. A weight wry, is associated to each task y, such that the relative

importance (with respect to the other tasks) of performing a certain task is captured.

These weights can be reassigned at step 2 after a historical data set has been gathered

and examined.

Utility measure. Once all the criteria have been calculated, they can be nor-

malised and according to a fixed set of criteria weights, wc, attributed to the utility

gain for each criterion (c = 1, 2, 3, 4), the total utility can be quantified. These cri-

teria weights, assigned in step 2 of the decision-making process, can be initialised
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according to some given priorities and then be updated according to how the sys-

tem responds. For the case study in the paper, these were taken as 30% for the

cost, 20% for the operational risk, 10% for the flight delay and 40% for the RUL

(w1 = 0.3, w2 = 0.2, w3 = 0.1 and w4 = 0.4). The utility for alternative k is given by

Ut(Alk) =
4∑
c=1

wc
cmax
c − cc,k
cmax
c − cmin

c

.

Where, cmax
c and cmin

c correspond to the maximum and minimum values of criterion c

over all the alternatives. This provides the normalisation,

Ut(Alk) ∈ [0, 1] ∀ k ∈ {1, . . . ,MNA}.

The alternative with the best utility will, ultimately, provide the best possible allo-

cation of all tasks at current or successive airport workshops for all aircraft under

examination. Given how the utility function is defined, a greater utility implies the

weighted minimisation over all criteria.

The computational analysis for the case study included a MNA of 49 alternatives

and a sampling rate, a simulation rate (SR) of 10, and provided a solution within 20

minutes. If the alternative with the highest utility is chosen, the solution is guaranteed

to provide an optimal, feasible and robust schedule. The repeated sampling from the

different distributions for each of the sampling stages, provides a robust solution.
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2.2.2 Modelling Scheduling Problems in Other Industries

This section outlines some of the strategies several authors have adopted for other

problems in the literature. Initially, problems where resource allocation plays a cru-

cial role are reviewed, specifically, applied to cloud computing and virtualised data

centres. As briefly mentioned, prognostic models can also be applied in the context

of electronics, production plants, gas turbines, cars, and general systems subject to

vibrations.

Urgaonkar et al. (2010) addressed the power management issues for the so-called

virtualised data centres by employing Lyapunov optimisation to ensure optimal alloca-

tion of resources. The dynamic resource allocation is an appropriate way of modelling

for this problem, as at any point in time there are a different number of applications

that compete for the available processing servers. Furthermore, these applications are

heterogeneous, that is, they have individual processing requirements (time and mem-

ory). In the context seen for the RCPSP, what was referred to as jobs or requests, can

now be taken as the processing of applications, and the resources are servers. The aim

of the authors was to develop an algorithm that provided a robust resource allocation

solution while coping with time-varying workloads. The algorithm exploited queuing

data from the arrivals of processing requests to infer about future arrival processes.

The arrival of processes were taken from a random stochastic process with a certain

time average rate; however, no assumption was made for the distribution of these. The

authors employed queuing dynamics and backlog information to estimate the arrival

process. For the inclusion of the power management element, the model was designed
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to adapt to electricity consumption variations from different CPU speeds and usages.

The power-frequency relationship that derivates from dynamic voltage and frequency

scaling for the CPU’s is non-linear. By using Lyapunov optimisation, the authors not

only dealt with the complexity and non-linearity of the problem effectively, but also

derived analytical performance guarantees of the algorithm.

Christer et al. (1998) employed a statistical approach to model the prediction of

faults for an extrusion press. Assuming some distributional properties for the faults,

the authors implemented a planned PM approach. The aim was to reduce the costs

and interruptions to the production process. The fault origination process was mod-

elled by a homogeneous Poisson process. This makes expected number of failures easy

to calculate. To make the model more realistic, the authors used available historical

data to make the expected number of failures increase over time as the extrusion

press deteriorates. The delay time concept plays a crucial role in the modelling of

PM planning in this model. It is defined as the time between when a fault is detected

and the time that the machine fails. Combining the updated proportion of failures

(after some inference from the data), an explicit distribution function for the delay

time was given. More specifically, the cumulative distribution function for the delay

time was shown to be a weighted sum of uniform and exponential distributions.

Some authors have applied artificial intelligence techniques for finding prognostic

predictions. Neural networks for example, have been implemented on prognostic pre-

dictions for gas turbines by DePold and Gass (1998) and for cars by Jhwei et al. (2008).

A brief discussion on the use of artificial neural networks for airline crew scheduling

is given further on, in Section 2.3.2. Also, wavelet theory has been employed for
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condition monitoring and fault diagnostics (Peng and Chu, 2004).

2.3 Airline Scheduling and Recovery

The airline scheduling problem consists of several steps with different planning hori-

zons corresponding to airlines’ planning stages. These are, flight scheduling, fleet

assignment, tail assignment, and, crew scheduling. These stages are traditionally

modelled is by solving them sequentially, the output of one stage is input for the

next. This scheme is summarised in Figure 2.5. Firstly, a flight schedule needs to be

provided, usually 12 months in advance, according to demand and other restrictions

an airline wishes to apply. Different fleet types are then assigned to certain routes or

flight legs in a way that maximises the revenue, and that does not violate safety or

maintenance regulations. This stage is referred to as the fleet assignment problem,

and is usually solved for a 12-week horizon. Given the allocation of fleet types to

flights, the next stage determines a 1-4 week sequence of flights to be flown by each

aircraft. The solution must ensure that each flight is flown exactly once, each aircraft

is maintained as per regulations, and capacity constraints for fleet types are satisfied

(Cadarso et al., 2016). Some authors refer to this stage as the tail assignment (TA)

problem or aircraft routing/rotation. At the final stage, crew scheduling uses the

solution from the fleet assignment to provide a 1-4 week schedule for the airline crew;

allocating flight legs, working hours, and satisfying duty regulations.

In contrast, the airline recovery problem considers the same steps but in an op-

erational setting. In this scenario it is assumed that pre-operational plans have been
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Flight Scheduling

Fleet Assignment

Aircraft Routing

Crew Scheduling

12 months in
advance

12 weeks in
advance

1-4 weeks in
advance

1-4 weeks in
advance

Figure 2.5: Sequential modelling of the airline scheduling problem (Bae, 2010).

unpredictably disrupted, therefore, the aim is to propose alternative plans that al-

low a fast resumption of airline operations while reducing the impact caused by the

deviation from the original pre-operational schedule. Such impact can be quanti-

fied by introduced passenger delay, or additional recovery costs (e.g. crew costs and

regulation fines). Given the nature of the problem, the time horizon for these prob-

lems is significantly reduced to an operational horizon, between 1-10 days. The steps

in airline recovery are, flight recovery (sometimes schedule recovery), fleet recovery,

aircraft recovery (AR), crew recovery, and, additionally, passenger recovery. The

latter, not present in the airline planning stages, consists on the rerouting of pas-

sengers, by using different means of transportation if necessary, to deliver them to

their destination. The characteristics of the remaining problems is the same as their
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pre-operational counterpart, but with disruption considerations. Moreover, the order,

when solving them sequentially, is also the same.

In the coming sections, we describe, in detail, the literature for some components

of the airline scheduling and recovery problems. Specifically, in Section 2.3.1, we

focus on the TA and AR problems, and, in Section 2.3.2, we provide a review of the

integrated airline scheduling and recovery literature.

2.3.1 Tail Assignment and Aircraft Recovery

TA, sometimes also referred to as aircraft rotation, is a combinatorial optimisation

problem that deals with the assignment of individual aircraft to different flight legs.

AR, considers the same problem but with flight cancellation and delay considerations.

There are three main types of formulation for these problems, string-based mod-

els, time-space network (TSN) models, and multi-commodity network flow

(MCNF) models.

String-based models are a type of formulation that formulates the TA problem

using strings, i.e. sequences of connected flights that begin and end at a maintenance

workshop, and, that satisfy flow balance and maintenance regulations (Barnhart et al.,

1998).

TSN models were introduced by Jarrah et al. (1993) for AR problem and then

used by Clarke et al. (1997) for the TA problem. As its name suggests, in a TSN, each

airport is represented by a time line where nodes show every departure/arrival at the

corresponding point in the airport time line, and arcs show flights and connections.

MCNF models, introduced by Feo and Bard (1989) for the TA problem, and first
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used by Argüello (1997) for the AR problem, are based on a fleet-flow time-space

network (layered TSN models). Here, each aircraft represents separate commodities

and flow has to be preserved. The formulation, typically, includes capacity constraints

(passengers and fleet) and conservation of aircraft, flight, and airport flow.

For convenience and brevity, let us study each of the three different formulations

for the TA problem.

String-based Formulation (Barnhart et al., 1998)

The first string-based formulation was presented by Barnhart et al. (1998) for the TA

problem. To study this formulation, let us introduce their notation,

F : Set of flights indexed by i;

K : Set of fleet indexed by k;

Gk : Set of ground connections for fleet k indexed by j;

S : Set of strings indexed by s;

S−i : Set of augmented strings ending with flight i;

S+
i : Set of augmented strings starting with flight i;

ais : Parameter which is equal to 1 if flight i is contained in string s, 0 otherwise;

cks : Parameter representing the cost of assigning string s to fleet k.

Two variables are necessary, xks is a binary variable which is equal to 1 if string s is

flown by fleet k; or, 0 otherwise. The continuous variable, yk(·) is equal to the number of
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aircraft of fleet k on the ground at the station between certain events in the subscript.

For instance, the number of aircraft of fleet k on the ground at the station between

the predecessor event of i and the arrival (departure) of i are denoted by yk
(e−,k

i,a ,eki,a)(
yk
(e−,k

i,d ,eki,d)

)
; and, between the arrival (departure) of i and its successor, by yk

(eki,a,e
+,k
i,a )(

yk
(eki,d,e

+,k
i,d )

)
.

Model 2.3.1. String-based formulation for the TA problem (Barnhart et al., 1998).

min
∑
k

∑
s

cksx
k
s (2.3.1a)

Subject to∑
k

∑
s

aisx
k
s = 1 ∀ i (2.3.1b)∑

s∈S+
i

xks − yk(e−,k
i,d ,e

k
i,d)

+ yk
(eki,d,e

+,k
i,d )

= 0 ∀ i, k (2.3.1c)

−
∑
s∈S−i

xks − yk(e−,k
i,a ,e

k
i,a)

+ yk
(eki,a,e

+,k
i,a )

= 0 ∀ i, k (2.3.1d)

∑
s

rksx
k
s +

∑
j∈Gk

rkj y
k
j ≤ Nk ∀ k (2.3.1e)

ykj ≥ 0 ∀ k, j ∈ Gk (2.3.1f)

xks ∈ {0, 1} ∀ s, k (2.3.1g)

The objective function 2.3.1a minimises the cost of the strings assigned. Con-

straints 2.3.1b ensure that each flight is in exactly one string. Constraints 2.3.1c

and 2.3.1d assure that the flow of aircraft of arriving and departing from a certain

location is conserved. Constraints 2.3.1e enforce that the total number of fleet k, the

sum of the aircraft flying (first term) plus the ones on the ground (second term), does

not exceed the size of the fleet k, Nk. This employs two additional parameters, rks

and pkj , which represent the number of aircraft in fleet k flying and on the ground,

respectively, at a certain point in time. The point in time when these parameters
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are measured, authors argued, does not make a difference due to the flow constraints.

Lastly, constraints 2.3.1f and 2.3.1g define the variables.

Some influential works employ the string-based formulation for the TA problem,

Cohn and Barnhart (2003); Sarac et al. (2006); Papadakos (2009), among others. Ma-

her (2015) has used this type of formulation to solve the integrated airline recovery

problem (discussed in more detail in Section 2.3.2). However, string-based formula-

tions have a major disadvantage, generating all possible strings becomes intractable

even for small instances.

Time-Space Network Formulation (Clarke et al., 1997)

The time-space network formulation was offered for the TA problem by Clarke et al.

(1997). To discuss the formulation in more detail, let G = (N,A) be a graph with

a set of nodes N and arcs A. For each arc i ∈ A let us denote the head and tail

functions as h(i) and t(i), respectively. Let vij denote the through value of flight j

following i; if, either i or j is a ground arc, then it takes the value 0. We require

a binary variable, xij, which is equal to 1 if flight i is connected to flight j, and 0

otherwise.



CHAPTER 2. EXTENDED LITERATURE REVIEW 57

Model 2.3.2. TSN formulation for the TA problem (Clarke et al., 1997).

max
∑

{i,j∈A: h(i)=t(j), i6=j}

vijxij (2.3.2a)

Subject to∑
{j: h(j)=t(i), i 6=j}

xij = 1 ∀ i ∈ A (2.3.2b)

∑
{i: h(i)=t(j), i 6=j}

xij = 1 ∀ j ∈ A (2.3.2c)

∑
{i∈S, j∈A\S: h(i)=t(j)}

xij ≥ 1 ∀ S ⊂ A with 2 ≤ |S| ≤ |A| − 2 (2.3.2d)

∑
{i∈P ′, j∈A\f(i): h(i)=t(j)}

xij ≥ 1 ∀ P ⊂ P k, k ∈ K (2.3.2e)

xij ∈ {0, 1} ∀(i, j) ∈ A× A (2.3.2f)

The objective function 2.3.2a, maximises the through value for all connecting

flights. Constraints 2.3.2b ensure that exactly one connection is chosen between each

flight i and its corresponding neighbours j, i.e. h(j) = t(i). Conversely, constraints

2.3.2c ensure that for every flight j there is exactly one connection to its corresponding

neighbours i, i.e. h(i) = t(j). Constraints 2.3.2d (subtour elimination constraints)

ensure that no cycles are present in the solution. Constraints 2.3.2e ensure that no

path, P , out the set of paths with maintenance violations for maintenance of type k,

Pk, is allowed. Constraints 2.3.2f define the domains of the variables.

TSN models have been widely applied to the TA and AR problems (Thengvall

et al., 2000, 2001; Løve et al., 2001; Hicks et al., 2005; Bratu and Barnhart, 2006;

Orhan et al., 2012; Haouari et al., 2013; Liang and Chaovalitwongse, 2013; Safaei and

Jardine, 2018; Khaled et al., 2018).
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Multi-Commodity Network Flow Formulation (Feo and Bard, 1989)

The multi-commodity network flow formulation was proposed for the TA problem

by Feo and Bard (1989). In order to study it in more detail, let us introduce their

notation,

D : Set of days with D = {1, . . . , nD}, indexed by d;

A : Set of airports with A = {1, . . . , nA}, indexed by j or k. Let j(d) represent the

airport j on the evening of day d;

K : Set of aircraft with K = {1, . . . , nK}, indexed by i;

cj : Unit cost for performing maintenance at airport j;

pj : Maintenance capacity for airport j (in number of aircraft).

The variable xij(d)k(d+1) is equal to 1 if aircraft i is in city j on the evening of

day d, and in city k on the evening of day d + 1; 0 otherwise. The variable wij(d) is

equal to 1 if aircraft i receives maintenance at city j at the end of day d. The MCNF

formulation is as follows,



CHAPTER 2. EXTENDED LITERATURE REVIEW 59

Model 2.3.3. MCNF formulation for the TA problem (simplified) (Feo and Bard,
1989).

min

nA∑
j=1

nK∑
i=1

nD∑
d=1

cjwij(d) (2.3.3a)

Subject to∑
j(d−1)

xij(d−1)k(d) −
∑
j(d+1)

xij(d)k(d+1) = 0 ∀ i, k(d) (2.3.3b)

nK∑
i=1

xij(d)k(d+1) = 1 ∀ d, (j(d), k(d+ 1)) ∈ F (2.3.3c)

np∑
i=1

wij(d) ≤ pj ∀ d, j(d) (2.3.3d)

wij(d) −
∑
k(d−1)

xij(d−1)k(d) ≤ 0 ∀ i, k(d) (2.3.3e)

xij ∈ {0, 1} ∀(i, j) ∈ A× A (2.3.3f)

The objective function 2.3.3a minimises the total maintenance cost. Constraints

2.3.3b ensure the conservation of flow for each aircraft (commodity) and airport-day

pair. Constraints 2.3.3c ensure that the number of aircraft assigned to a flight is

exactly one. Constraints 2.3.3d restrict the number of aircraft that can have mainte-

nance at an airport i on day d. Constraints 2.3.3e represent the conservation of flow

for maintenance. Constraints 2.3.3f define the domains of the variable. Authors in-

cluded some additional constraints for maintenance which we have omitted to simplify

the formulation.

The MCNF formulation has been chosen by multiple authors to solve the TA and

AR problems (Bard et al., 2001; Yan and Tseng, 2002; Sriram and Haghani, 2003;

Mercier et al., 2005; Eggenberg et al., 2010).
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2.3.2 Integrated and Semi-Integrated Airline Scheduling and

Recovery

The airline scheduling problem involves solving an array of problems that facilitate

airlines’ daily operation. Similarly, the airline recovery problem solves a closely re-

lated sequence of problems that consider the mitigation of the effects caused by an

unforeseen disruption. As discussed in section 2.3, the common problems are, flight

scheduling/recovery, fleet assignment/recovery, tail assignment or aircraft recovery,

and crew scheduling/recovery. Airline recovery additionally considers passenger re-

covery. Clearly, when solved sequentially, the solution to one problem does not take

into consideration the restrictions of the subsequent problems. Even though this se-

quential approach reduces the computational complexity, due to the interdependence

of each stage, the solution provided is suboptimal, often far from optimality. Models

have been developed to breach this gap and provide better quality results, which con-

sider the combination of two or more stages into a single problem. Despite initially

being considered computationally intractable (Hane et al., 1993), many fruitful and

tractable models have emerged. Models are grouped under the labels integrated or

semi-integrated, depending on whether all stages are integrated or not.

Integrated Airline Scheduling

The first semi-integrated model, integrating fleet assignment and aircraft routing, was

presented by Desaulniers et al. (1997). In this paper, assuming the flight origin/des-

tination information is given, authors introduced the use of time-windows on flight
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departures for the fleet assignment problem. The problem is modelled using two

equivalent formulations: a set partitioning type formulation (Model 1) and a time

constrained MCNF formulation (Model 2). Distinct solution approaches were used

for the two different formulations. Column generation, benefiting from the equiva-

lence of the formulations, is used to solve both the first and second models to achieve

lower and upper bounds respectively. With these bounds the optimal solution is ob-

tained via branch-and-bound on Model 2. Apart from providing a solution within a

reasonable time, for the largest number of aircraft considered the total CPU time was

at most 1 hour, these solutions provided a significant improvement in the profit.

The semi-integrated model by Yan and Tseng (2002) integrated flight scheduling,

fleet assignment and aircraft routing. Similarly, as the previous authors, they used an

integer MCNF formulation. In this model, all the flight legs are considered as optional

legs and are selected as required. An algorithm is developed to solve the problem. It

is based on Lagrangian relaxation, the network simplex method, the least cost flow

augmenting algorithm, and the flow decomposition algorithm. Given the computer

processors used at the time of the study, the solution times for this algorithm are very

high rounding 160 hours for moderately sized problems.

Sriram and Haghani (2003) presented a semi-integrated model for fleet assignment

and aircraft routing. The optimisation formulation presented, extended from the pi-

oneering work by Feo and Bard (1989), included heterogeneity of the fleet and two

types of maintenance checks. The result was an integer MCNF formulation which

accounted for maintenance checks A and B. The objective of the model is the min-

imisation of the costs associated with maintenance and invalid fleet assignment. The
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heuristic solution procedure provided, constructs schedules using a search technique

based on depth-search first and random search. Establishing a maximum number

of iterations terminates the heuristic solution procedure and provides a near-optimal

solution. This solution method provided good quality solutions for a problem with 58

flights and 75 airports in 5 minutes of computational time.

Yan et al. (2004) addressed the issues that arise when general airline crew schedul-

ing models are applied to maintenance crew. The authors presented a MIP formulation

that solved the short-term maintenance manpower scheduling problem. The objective

of the model is to minimise the total manpower required. The constraints ensure that

the demand for maintenance intervention types for each type of aircraft is met at

every time period, taking into account the certificates that technicians possess. The

certification system increases the complexity of the problem. Furthermore, authors

included several models to allow for different flexible strategies, these include shifts,

squad size, and working hours. The solution method developed includes splitting

the initial problem into two subproblems, which are dealt with individually using a

custom algorithm that efficiently selects “certificate combinations”. Given an initial

feasible schedule, the algorithm (which is based on implicate enumeration) generates

different certificate combinations which are selected by the minimum man-hour re-

quirement. The procedure is repeated until a certain level of precision has been met.

The algorithm was tested on a data set for 6 days, 6 types of aircraft (51 in total) with

481 maintenance items. The most complex model, taking all the flexible strategies

criteria, provided a solution only 5% off optimality in under 11 minutes CPU time.

For the combination of aircraft routing and crew scheduling Mercier and Soumis
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(2005) provided a compact semi-integrated MIP formulation. The primary focus of

this MIP is in crew scheduling, under the assumption that the fleet assignment prob-

lem has been solved. The three-phase algorithm presented to compute solutions,

combined Benders’ decomposition method with a dynamic constraint generation pro-

cedure. The optimal solutions were shown to allow some degree of flexibility on the

departure times. This induced considerable cost reductions and with no flight re-

timing, the CPU time for a single processor, on 510 flight legs, is just over 8 minutes.

The effect of flight re-timing is also considered in the study and significantly increased

the solution times to up to 36 hours. Flight re-timing is a way of balancing the fact

that flight schedules are used as an input and allowed for flights to be rescheduled

within certain time limits (for instance, ± 5 minutes).

A model that puts more emphasis on maintenance scheduling is given by Pa-

padakos (2009). The formulation, based on the string-based MIP by Cohn and Barn-

hart (2003) integrated fleet assignment, aircraft routing, and crew scheduling. Two

solution approaches were proposed one that just used Benders’ decomposition and

a novel “three-phase algorithm”. The latter used a Benders’ decomposition method

(accelerated by the Magnanti-Wong method) combined with accelerated column gen-

eration. A case study examined data sets from an European airline (372 legs per day)

and a North American airline (over 2100 legs per day), both composed of 6 types

of aircraft and either central hub or hub-and-spoke network structure. These

simply relate to the different connection types that airlines may have, for instance, a

small airline is likely to have a central hub type network structure if the aircraft can

only be serviced in one workshop. Low-cost airlines, on the other hand, typically have
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a hub-and-spoke network. Using these data sets, authors compared their two algo-

rithms to the best-known method in the semi-integrated literature, which is given by

Mercier et al. (2005). Out of the two heuristic algorithms, the more computationally

expensive one, the three-phase algorithm provided the best solutions. However, both

algorithms outperformed the best-known method. The largest instance considered,

required a CPU time of 16.5 hours and did not reach optimality.

Cacchiani and Salazar-González (2016) concentrated on providing an exact solu-

tion for the problem of a particular real-world regional carrier. The MIP formulation

proposed integrated fleet assignment, aircraft routing, and crew scheduling. This for-

mulation takes maintenance into account but in a simple single machine scheduling

type framework with some restrictive assumptions. Conditioned by the case study,

the assumptions are that maintenance is only performed: at night, every 3 days, and

in a single workshop. Similarly, as in the previous model, the authors developed a

three-phase solution algorithm. Phase I obtains a lower bound on the solution by im-

plementing column generation. Phase II derives an upper bound by heuristic methods

(either a combination of Lagrangian relaxation and column generation or Benders’ de-

composition). Finally, Phase III uses a branch-and-price algorithm, similar to the one

by Sarac et al. (2006), to achieve optimality. To speed up the algorithm, the authors

employed an efficient way of completing the first stage of the algorithm with a new

type of bounding cut. The case study visited was for the regional carrier provider

Binter Canarias. Flying around the Canary Islands and as far as Marrakech-Menara,

with up to 172 flights, the aircraft used are powered by turboprop engines. Although

the meteorological conditions they are subjected to are sometimes extreme (the Ca-
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nary Islands are known for their strong winds) the flights are short, between 30 and 70

minutes. The solution times for the largest case took approximately 2 hours. More-

over, the authors compared their algorithm with the heuristic algorithm currently in

use by the airline company. The heuristic algorithm (previously developed by one of

the authors, Salazar-González, 2014), was found to provide faster computational times

in most instances; however, the exact method was found to improve the optimality

of the solution significantly. Regarding the objective function, between a 4.37% and

23.56% improvement were observed.

Cadarso et al. (2016) addressed the influence of competition to flight schedules,

airline revenues, and destinations. It is usually assumed that demand is deterministic

and invariant to airline changes and competition. However, this assumption leads to

overestimates in the number of passengers served. In particular, the paper studied the

effect of competition with high-speed rail services. The authors developed two mod-

els: one exclusively for market demand (Model 1) and another for scheduling (Model

2). Model 1 uses a nested logit model with a range of parameters suitably defined

to estimate the influence of competitors. The estimation takes place using maxi-

mum likelihood estimation and a historic data set from a Spanish airline, IBERIA,

and high-speed rail services. Model 2 is an integrated model for frequency planning,

approximate timetable development, and fleet assignment. It uses a nonlinear MIP

formulation with dynamic time discrete intervals (number of time periods considered

are lower for uncongested airports). The formulation takes the results from the mar-

ket demand, Model 1, as input parameters. Model 2, therefore, takes airport slots

availabilities, fleet size, average fares, demand, and competitors schedules as inputs.
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The authors referred to Model 2 as the integrated airline scheduling under competi-

tion model. The case study considered data from IBERIA (hub-and-spoke network)

with 23 airports and 104 routes. Using a standard computer, optimal solutions were

found (with at most 1% optimality gap) in under 2 seconds. Authors also included

an assessment using standard statistics (F-tests, t-tests, and hypothesis testing) that

assessed the fit of Model 1. The schedules produced by Model 2 were found to be

reasonably close to the original decisions made by the airline.

The fact that fuel costs are a driving factor in airlines’ expenditure motivated the

authors in Gürkan et al. (2016). In this paper, the authors proposed an operational

and robust mixed integer nonlinear formulation that integrated flight scheduling, fleet

assignment, and aircraft routing with special attention on cruise speed control for

the fuel consumption element. The type of aircraft used and duration of trips were

considered. To remove the non-linearity introduced by the fuel consumption formula,

authors presented a conic reformulation. Authors developed a discrete approximation

and cruise speed control algorithm (Heuristic 1), and a multi-stage triplet search

algorithm (Heuristic 2). A computational study revealed that, on average, Heuristic

1 provided better solutions while Heuristic 2 was faster.

Integrated Airline Recovery

When compared to its pre-operational equivalent, the integrated airline recovery lit-

erature is more limited. The first approach that integrated all stages of the airline

recovery problem was proposed by Lettovsky (1997). In practice, however, the author

only applied the framework to the crew recovery problem (Lettovsky et al., 2000).
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Abdelghany et al. (2008) published a decision support tool for airlines schedule

recovery that allowed the integration of aircraft and crew recovery. The approach,

which consists of several interacting components including preprocessing, simulation,

and a “greedy optimisation strategy” was run on a rolling horizon basis. The simula-

tion component accounted for delay propagation of a given disruption across a flight

network, hence, predicted the disrupted flights. The greedy optimisation strategy,

based on an efficient MIP, provided solutions for the semi-integrated airline recovery

problem. The test instances considered, 1100 flights and 552 aircraft, were solved in

reasonable computational times.

Petersen et al. (2012) were the first to implement a framework that integrated all

components for an integrated airline recovery. Closely related to the work by Let-

tovsky (1997), authors introduced a model that integrated all problems. A solution

procedure was implemented that provided a balance between solving the fully inte-

grated model and tractability. Their procedure, which revolved around some custom

preprocessing and an efficient solution algorithm, provided globally optimal solution

to the flight and passenger recovery problems. To limit the scope of the problem,

in an attempt to make it tractable, authors proposed two main preprocessing steps.

First, the identification of what authors referred to as disruptable flights. These are,

given a disruption (e.g. airport closure), flights that are either directly affected or are

candidates for disruption. The latter, are identified as flights that are not directly

affected by the disruption, but their delay/cancellation is likely to be beneficial for

the whole recovery process. Second, to create flight delay copies authors introduced

event-driven delays. Given a maximum delay window and some airport constraints
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(e.g. gate or slot restrictions), flight delay copies are generated to avoid these re-

strictions. Hence, significantly limiting the number of copies for a given flight. The

solution algorithm, an iterative Benders’ decomposition algorithm, solved the passen-

ger and flight recovery problems to optimality. For the other components, aircraft

and crew, LP-relaxations were solved, on which branching is performed to achieve

integrality. The computational tests presented, for a US-based carrier, daily recov-

ery solutions for 800 flights in under 30 minutes. Moreover, the authors introduced a

combined Benders’ decomposition and column generation algorithm (column-and-row

generation) for the crew recovery problem.

Maher (2016) presented a solution algorithm that solved the semi-integrated air-

line recovery problem (flight, aircraft, and crew). The solution algorithm extended

the generic column-and-row generation, by Muter et al. (2013), which enabled its

efficient application on the semi-integrated airline recovery formulation. For the com-

putational tests, different disruption scenarios were generated using two test instances

with different network structures. A central hub instance (262 flights, 48 aircraft),

and hub-and-spoke instance (441 flights, 123 aircraft). Using the proposed solution

approach, computational times shown were an average of 427 seconds for the central

hub instances and 400 seconds for the hub-and-spoke instances. Moreover, tests report

the computational benefit of the column-and-row generation algorithm over a column

generation algorithm. This framework was extended by the same author to account

for passenger recovery in Maher (2015). Hence, providing a solution procedure for

the fully integrated airline recovery problem.



CHAPTER 2. EXTENDED LITERATURE REVIEW 69

Marla et al. (2016) proposed a semi-integrated (aircraft and crew recovery) TSN-

based model that, additionally, considered a new step: flight planning. This additional

step, which involved the calculation flight trajectories, allowed the consideration of

several supplementary factors in the decision making process; the most influential one

being fuel burn. Authors included flight planning by generating flight copies at each

departure time for each alternative cruise speed. The evaluation of these flight copies

is then outsourced to a separate tool, which provides information about the resulting

fuel burn and other flight specific details. The results are combined in the scenario

generation with a passenger delay simulator, as an input to the formulation of the

approximate semi-integrated formulation. The computational tests, for an EU-based

airline with 250 daily flights were solved with a time limit of 2 minutes, hence, the

problem was not solved to optimality.

Arıkan et al. (2017), extending previous work by Arıkan et al. (2016), presented

a semi-integrated (aircraft, crew and passenger recovery) modelling approach which

also included some flight planning considerations. Particularly, authors accounted

for the effect of cruise speed by modelling its effects on the fuel costs. Due to the

fuels costs constraints being nonlinear, the authors formulated the problem using

a conic quadratic mixed integer programming formulation. Preprocessing routines

are included to ensure problem sizes are manageable. These ensure that the proposed

flight network representations (similar to those introduced by Desaulniers et al., 1997)

remain manageable and the scope of the recovery is limited. Computational tests

revealed that reasonable test instances (288 flights) can be solved within 10 minutes.
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Alternative Approaches for Airline Scheduling and Recovery

Some more infrequent models for the different stages of airline scheduling throughout

the literature can be found in this section. Specifically, discussed here is the mod-

elling of passenger recovery through a multiplex network (Cardillo et al., 2013); semi-

integration of flight scheduling and fleet assignment through robust multi-objective

optimisation (Burke et al., 2010); and crew scheduling through Potts mean field tech-

niques (Lagerholm et al., 2000).

By modelling a network from European Air Transport Network using a multi-

plex graph and an algorithm for re-scheduling under random failures (disturbances),

Cardillo et al. (2013) developed a robust passenger recovery model. The idea of a mul-

tiplex graph in this context represents the operations of different airlines as a network

on multiple layers (where each layer represents one airline). Superposition of networks

gives an accurate visualisation of the air traffic busiest airports as a whole and also

in the individual layers. The multiplex network is constructed by the summation of a

layer-measure for the number of edges incident to a vertex, providing a global degree

for each vertex. The layer-measure allows for the calculation of the probability that

a given terminal will be selected as origin or destination. This is set to be the ratio of

the global degree of the vertex over the sum of the global degree over all the vertices

in the multiplex graph. For the inclusion of a random failure, the authors introduced

a hopping distance which is simply the minimum distance between two airports across

all the layers (disregarding the airline). To model disturbances, a random set of edges

is removed. Authors outlined an algorithm for re-scheduling by using current active
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paths and re-routing passengers to different flights and if necessary, airlines (satisfying

a load constraint), until all passengers complete their initial journey.

There are two central methods in the optimisation framework to address uncer-

tainty: stochastic programming and robust optimisation. Stochastic program-

ming requires alternating scenarios for uncertain data by drawing from appropriate

distributions. However, if the distributions are unknown then there is a challenge to

estimate and assess the fit on the data. Robust optimisation, on the other hand, only

requires the uncertain quantity of interest to lay between some known intervals. By

such a deterministic management of uncertainty, this approach focuses on providing

a robust schedule. In the airline scheduling context, models of this type consider-

ably reduce the number of build-up delays by making the schedule stable against

disturbances.

Burke et al. (2010) applied robust optimisation with multiple objectives to solve

a semi-integrated model for the flight scheduling and fleet assignment problems. Au-

thors argued that the simultaneous consideration of these, within a robust optimisa-

tion setting, provides schedules that lead to a better operational performance, also

accounting for an optimal trade-off between the multiple objectives according to the

priority attributed to these. For the solution algorithm, authors applied a multi-meme

memetic algorithm, a hybridisation of the genetic algorithm with local search. It is

initialised, either randomly or by a biased set of criteria, and then produces an approx-

imate Pareto front which is improved upon in consequent iterations. Authors revealed

that, the flexibility provided by the robust objectives at the operational level ensures
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good quality solutions for longer term schedules. The computational tests used a

relatively small data set from the KLM Royal Dutch Airlines and the University of

Nottingham’s high-performance computing facility to run the experiments.

Lee et al. (2006) modelled the flight scheduling problem as a multi-objective pro-

gramming problem, which was solved using a multi-objective genetic algorithm. To

make the solution robust, airlines selected the initial values for the parameters rep-

resenting the measures of robustness (e.g. perturbation allowed for flight departure

times), these were then optimised according to the objectives. The computational

times for the algorithm were around 90 hours on an outdated computer.

Several artificial intelligence approaches can also be applied to the airline schedul-

ing problem and other resource allocation problems. Lagerholm et al. (2000) proposed

the use of artificial neural networks for the modelling of the crew scheduling problem.

Specifically, authors developed an approach based on the so-called mean field Potts

approach. Utilising the fact that feedback artificial neural network methods can be

applied to solve set partitioning problems, and since the crew scheduling problem

may be transformed into a set partitioning problem, an algorithm is presented for

this problem. The algorithm is based on first, narrowing down the solution space by

using an advanced reduction technique that removes a large part of the suboptimal

solutions, and then, using a mean field approach based on a Potts neuron encoding.

They highlighted the benefits and applications to other complex combinatorial prob-

lems. A computational case study was presented showing that the crew scheduling

problem can be solved on a large flight network (1000 flights and 50 airports) in just

over 10 minutes.
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2.4 Methodology for Chapter 4

This section contains the background required for the methodology used in Chapter

4. Explicitly, we include, a well-known mathematical optimisation solution algorithm,

column generation; a useful type of subproblem in the column generation frame-

work, the shortest path problem with resource constraints (SPPRC); and a

search method that links statistics and operational research, hyper-heuristics.

2.4.1 Column Generation

Introduced by Dantzig and Wolfe (1960), Dantzig-Wolfe decomposition or column

generation tackles large problems by iteratively generating variables until the optimal

solution is reached. This is done by breaking down the original problem into a simple

master problem and K subproblems. Hence, when a problem has a large number

of variables, making it intractable to solve using standard methods, one can employ

column generation. Nevertheless, the applicability and efficacy of the method relies on

two assumptions, the constraint matrix can be transformed to possess a specific form

and the primal simplex method can be applied to re-optimise the master problem in

every iteration.

Consider the following standard LP formulation,

Model 2.4.1. Standard LP formulation.

min
x

cTx (2.4.1a)

s.t. Ax = b (2.4.1b)

x ≥ 0 (2.4.1c)

where x = (x1, . . . , xK)T and b = (b1, . . . , bK)T. In order to apply Dantzig-Wolfe
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decomposition, the constraint matrix, A, has to retain a specific form. Let Bk and Ak

for k = 1, . . . , K be submatrices with appropriate dimensions, then, A has a special

structure as depicted below,



B0 B1 B2 . . . BK

A1

A2

. . .

AK


.

This structure, called the block angular structure, provides the necessary submatrices

to reformulate the problem into a master problem and K subproblems. The top row,

which corresponds to the constraints of the master problem, i.e.
∑K

k=1Bkxk = b0, are

referred to as the coupling constraints. The subproblems, with constraints of the form

Akxk = bk for k = 1, . . . , K; do not all have to be solved.

To reformulate the master problem, Minkowski’s representation theorem can be

employed. The theorem states that extreme points or rays are represented by a set

of points which lay on the boundary of a convex region.

Theorem 2.4.1 (Minkowski’s representation theorem, Minkowski, 1953). If P =

{x : Ax = b, x ≥ 0} is a feasible (bounded or unbounded) region, then we can

represent any point x ∈ P as a linear combination of its extreme points or rays, x(j),

x =
∑
j

λjx
(j) as long as

∑
j

δjλj = 1 and λj ≥ 0
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where

δj =


1, if x(j) is an extreme point (case that P is bounded)

0, if x(j) is an extreme ray (case that P is unbounded).

Hereby, each column of the master problem can be made to represent a solution,

as a linear combination of extreme points and rays, of each of the subproblems. The

model can be reformulated as follows,

Model 2.4.2. Standard LP Reformulation using Theorem 2.4.1.

min
x0,λkj

cT0 x0 +
K∑
k=1

pk∑
j=1

(
cTk x

(j)
k

)
λkj (2.4.2a)

s.t. B0x0 +
K∑
k=1

pk∑
j=1

(
Bkx

(j)
k

)
λkj = b0 (2.4.2b)

pk∑
j=1

δkjλkj = 1 k = 1, . . . , K (2.4.2c)

x0, λkj ≥ 0 (2.4.2d)

In practice, this reformulation can not be applied directly, as the number of λ–

variables becomes very large because the number of extreme points and rays for every

subproblem is also large. However, the fact that many of these variable will end

up being non-basic may be exploited by the column generation algorithm. So that,

only the variables with a negative reduced cost, therefore likely to become basic, are

explored. With this consideration, the restricted master problem (RMP) may be

reformulated as,
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Model 2.4.3. Restricted Master Problem.

min
x0,λ′

cT0 x0 + cTλ′ (2.4.3a)

s.t. B0x0 +Bλ′ = b0 (2.4.3b)

∆λ′ = 1 (2.4.3c)

x0, λ
′ ≥ 0. (2.4.3d)

The dimensions of this problem evolve as variables are added when the subprob-

lems are solved. If a subproblem k has been solved, the variable λk,j can be included

if its reduced cost is negative. The master problem is extended by introducing the

column and its corresponding cost coefficient. This procedure is repeated until the

objective function of the original LP is improved or no more variables with negative

reduced costs are found.

Let the dual variables for constraints 2.4.3b and 2.4.3c be denoted by π1 and π
(k)
2

respectively. To determine which new column should be introduced to the master

problem, a reduced cost LP needs to be solved for each subproblem under consid-

eration. Assuming the subproblem k is bounded, the reduced cost LP gives the K

formulations for the subproblems as,

Model 2.4.4. Reduced cost LP.

min
xk

σk =
(
cTk − πT

1 Bk

)
xk − π(k)

2 (2.4.4a)

s.t. Bkxk = bk (2.4.4b)

xk ≥ 0. (2.4.4c)

Now, the most significant xk to enter the master problem are those found to

maximise the reduced cost LP. So, if σ∗k < 0 then the new column, λk,j, can be

introduced to the master problem with its corresponding cost coefficient, cTk x
∗
k.

The pseudo-code for the column generation algorithm is given in Algorithm 1. It



CHAPTER 2. EXTENDED LITERATURE REVIEW 77

consists on iteratively solving the RMP, and one of the K subproblems at a time. The

subproblem is solved by solving the corresponding reduced cost LP. Hence, if, after

solving the k-th subproblem, we see that objective is negative, then, the corresponding

variable has a negative reduced cost, and we generate and add the column to the RMP.

We repeat the process, moving on to the next subproblem until no negative reduced

cost is obtained. Moreover, the initialisation involves checking the subproblems and

generating the first columns. If any of the subproblems happens to be infeasible, then

the master problem is also infeasible. Otherwise, an initial feasible solution can be

easily constructed from the optimal solutions to these.

Algorithm 1 Column Generation Algorithm.

1: INPUTS: RPM (Model 2.4.3), K subproblems (Model 2.4.4)
2: Initialisations: stop = False.
3: while stop is False do
4: Solve RPM;
5: for k = 1, . . . , K do
6: Solve subproblem k
7: if σ∗k < 0 then
8: Update the restricted master problem by adding proposal x∗k.

9: Introduce column

(
cTk x

∗
k

Bkx
∗
k

)
.

10: end if
11: end for
12: if No proposal generated then
13: stop = True. . Optimality has been reached.
14: end if
15: end while

This algorithm is extremely versatile and has been used to solve multiple types

of problems. However, if the original problem is a MIP and optimal solutions are

sought, column generation has to be embedded in a branching algorithm to form the

so-called branch-and-price algorithm.
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2.4.2 Shortest Path Problem with Resource Constraints

In the applied column generation framework, particularly in scheduling related lit-

erature, the shortest path problem with resource constraints (SPPRC) is commonly

employed to generate variables as a subproblem. It consists, as its name suggests, in

finding, among all paths, the shortest path from source to sink nodes, that satisfies a

set of constraints for a defined set of resources.

The SPPRC was first introduced by Desrochers (1986) as a subproblem for the bus

driver scheduling problem. It has been widely applied in a variety of different settings

including: the vehicle routing problem with time windows, the technician routing and

scheduling problem, the capacitated arc-routing problem, on-demand transportation

systems, and airport ground movement (Desrochers and Soumis, 1988; Feillet et al.,

2004; Irnich and Villeneuve, 2006; Righini and Salani, 2008; Bode and Irnich, 2014;

Chen et al., 2016; Garaix et al., 2010; Tilk et al., 2017; Zamorano and Stolletz, 2017).

To discuss the SPPRC in more detail, let us define some notation. Let G = (N,A)

denote a directed graph with set of nodes N and arcs A. Let R = {1, . . . , R} denote

the set of resources, and L = (L1, . . . , LR) and L = (L
1
, . . . , L

R
) denote vectors

for minimum and maximum resources, respectively. For each arc i, we denote the

associated weight by wi, and the vector of resource consumption by fi = (f 1
i , . . . , f

R
i ).

Each component in the vector is called a resource extension function (REF) (Irnich

and Desaulniers, 2005). For an example of how these can be applied see Section 4.3.3.

For a given path, p, between a given pair of nodes, we denote the set of connections

by A(p), the total weight of the path by w(p), and the resource consumed along the
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path by f(p) = (f 1(p), . . . , fR(p)). Where,

w(p) =
∑
i∈A(p)

wi ; f r(p) =
∑
i∈A(p)

f ri .

The path is said to be resource feasible if L ≤ f(p) ≤ L, i.e. Lr ≤ f r(p) ≤ L
r

for

every resource r.

Solution Algorithms

There are a number of algorithms for the standard shortest path problems. Among

some of the most historically relevant algorithms are greedy algorithms, Dijkstra’s al-

gorithm (which is restricted to graphs with non-negative edge weights) and Bellman-

Ford algorithm, and best-first search, A* search algorithm (which uses a heuristic

function to provide faster solutions). Nevertheless, these algorithms cannot be used

directly to solve the SPPRC. The reason for this is the need to compare the resources

consumed when obtaining the different paths. This is done through the use of la-

belling algorithms. Simply put, labels carry information about the different resources

under consideration, allowing comparisons between different potential paths. Alter-

natively, as introduced in Chapter 4, standard algorithms can be employed to provide

approximate but fast solutions for the SPPRC. This is done by iteratively solving

a standard shortest path problem and modifying the graph so as to force resource

feasibility.

Many exact algorithms to solve the SPPRC are dynamic programming (DP)

labelling algorithms. These build paths in a systematic fashion by starting at a
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source node and traversing the graph considering all feasible directions. Labels are

created in order to efficiently compare different paths and discard the dominated or

“suboptimal” ones.

Irnich and Desaulniers (2005) presented an exact DP algorithm, the monodirec-

tional forward labelling algorithm (sometimes called unidirectional), based on the

pioneering work by Desrochers and Soumis (1988). Boland et al. (2006) published a

state augmenting algorithm that used a monodirectional labelling algorithm to find an

elementary path (one without repeating nodes). Righini and Salani (2006) introduced

a bidirectional labelling algorithm for the SPPRC. The bidirectional algorithm is

an extension of the monodirectional algorithm that supports search from both ends of

the graph, hence reducing the computational efforts. Moreover, they used bounding

in order to mitigate label explosion. This typical phenomenon occurs simply due to

the nature of the algorithm and the need to store the non-dominated labels of all

partial paths. More recently, Tilk et al. (2017) released a bidirectional labelling al-

gorithm with dynamic halfway point. Based on previous works (Righini and Salani,

2006; Pecin et al., 2017), the bidirectional search is bounded for both directions and

these bounds are dynamically updated as the search in either direction advances.

Some heuristic algorithms to solve the SPPRC are also based on DP. Additionally,

metaheuristic algorithms have been developed to find fast and promising solutions

to the SPPRC. DP heuristics have been developed by several authors (Feillet et al.,

2004; Lozano et al., 2015). Local search or metaheuristics, in this setting, start with a

given path and perform a series of moves (node/arc: deletion, insertion, or exchange)

to obtain another feasible path with lower cost. Metaheuristics implemented for
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the SPPRC include trajectory-based, Tabu search (Desaulniers et al., 2008) and

greedy randomised adaptive search procedure (GRASP) (Ferone et al., 2019),

and nature-inspired, hybrid particle swarm algorithm (Marinakis et al., 2017).

For more information on metaheuristic algorithms for the SPPRC, including two new

algorithms, see Section 4.4.2.

We now proceed with a discussion of two exact labelling algorithms.

Monodirectional Forward Labelling Algorithm

Algorithm 2 shows a generic version of the monodirectional forward labelling algo-

rithm (Irnich and Desaulniers, 2005). It uses a set of unprocessed paths U and a set

of processed paths P, which change dynamically with every iteration. After an appro-

priate initialisation, in line 3, an unprocessed path is selected, say Q and subsequently

removed from the set of unprocessed paths, line 4. In lines 5 to 10, all the feasible one

node extensions are computed and checked for resource feasibility. In lines 7 and 8,

if the extension is resource feasible, then it is added to the set of unprocessed paths

U, and the original path is added to the set of processed paths P. After this, if we

wish to eliminate some suboptimal paths, dominance relations can be applied to both

unprocessed and processed paths.
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Algorithm 2 Generic monodirectional labelling algorithm for the SPPRC.

1: INPUTS: G = (V,A)
2: U = {(s)} and P = ∅; . Initialisation
3: while U 6= ∅ do
4: Choose a path Q ∈ U, with h(Q) = i; remove Q from U;
5: for (i, j) ∈ A do
6: Extend path Q along (i, j), denoted by (Q, j);
7: if (Q, j) is feasible then
8: Add (Q, j) to U; add Q to P;
9: end if

10: end for
11: Apply dominance rules to U ∪ P;
12: end while

Bidirectional Labelling Algorithm (Tilk et al., 2017)

Algorithm 3 shows a bidirectional labelling algorithm with dynamic halfway point

(Tilk et al., 2017). It is an extension of the monodirectional algorithm that supports

search from both ends of the graph, hence, reducing the computational efforts. The

algorithm relies on two assumptions. First, that one of the resources is a monotone

resource, which means that it is a common resource for both forward and backward

searches. Let us denote such a resource by mono. This assumption is easily met,

as it is naturally present in most problems that can be solved using SPPRC; if not,

an artificial monotone resource can be created, like the number of arcs visited, for

instance. Second, we must have that REFs are invertible. Typically, inverse REFs

can be easily constructed (Irnich, 2008).

To explain the algorithm in more detail, let us build on the notation for Algorithm

2. Table 2.2 outlines the necessary notation. Apart from the equivalent variables, to

account for the extra direction, we also define halfway points for the monotone re-

source, and an additional REF, bmonoi , which is the inverse of f monoi . Here, bri denotes
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the backward REF for any arc i and resource r. Arc extensions, along arc (i, j), for

partial paths Q (from s to i) and Q’ (from t to j) are {s, . . . , i, j} denoted with (Q, j),

and {t, . . . , j, i} denoted with (Q’, i), respectively. Where s and t denote source and

sink nodes respectively. If the the forward REF is assumed to be non-decreasing, then

its inverse, the backward REF, has to be non-increasing (and vice-versa). Further-

more, let Qmono and Q’mono stand for the cumulative monotone resource consumption

for the forward and backward partial paths.

Table 2.2: Forward and backward labelling notation.

Forward Backward

Unprocessed paths F B

Halfway point for
mono

HF HB

Partial Path Q = {s, . . . , i} Q’ = {t, . . . , j}
REF f monoi bmonoi

Extended path along
arc (i, j)

(Q, j) (Q’, i)

REF arc extension f monoi ≤ f monoj bmonoi ≤ bmonoj

(non-decreasing) (non-increasing)
Cumulative REF f mono(Q) = Qmono bmono(Q’) = Q’mono

The algorithm requires some inputs, a directed graph G = (V,A), and the halfway

point for the forward and backward search HF and HB, respectively. For the monotone

resource mono, recall the lower and upper bounds are denoted by Lmono and L
mono

.

Depending on the values for the halfway points, the algorithm behaves in different

ways,

HF = HB > L
mono

: Monodirectional forward labelling algorithm;

HF = HB < Lmono: Monodirectional backward labelling algorithm;

Lmono < HF = HB < L
mono

: Bidirectional labelling algorithm with static halfway point;
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Lmono = HB < HF = L
mono

: Bidirectional labelling algorithm with dynamic halfway point.

Once Algorithm 3 is initialised, in line 2, and direction settled, in line 4, we proceed

either a forward or backward search in a very similar fashion as Algorithm 2. After

choosing a path from the unprocessed set of paths, lines 6 or 16, we check if the

halfway point has been reached, lines 7 or 17, if not, then we proceed to extend the

selected path in the traditional way, lines 8-12 or 18-22. After this, we update the

value of the halfway point to reduce the size of the search in the opposite direction.

That is, in the forward search, in line 13, we update HB to a higher value if we have

searched past it. Conversely, in the backward search, in line 23, we update HF to

a lower value if we have searched past it. The algorithm carries on in this fashion,

updating the direction of search in every iteration. It terminates when no more paths

remain to be processed in any direction.
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Algorithm 3 Bidirectional labelling algorithm with dynamic halfway point for the
SPPRC (Tilk et al., 2017).

1: INPUTS: G = (V,A), L, L;
2: Initialisations: HF= L

mono
, HB= Lmono, F = {(s)}, B = {(t)}, and P = ∅;

3: . See Appendix B.1.1 for functions employed
4: while F 6= ∅ or B 6= ∅ do
5: direction = getDirection(F, B)
6: if direction = forward then . Forward labelling
7: Choose a path Q ∈ F, with h(Q) = i; remove Q from F;
8: if Qres ≤ HF then
9: for (i, j) ∈ A do

10: Extend path Q along (i, j), denoted by (Q, j); . Path extension step
11: if (Q, j) is feasible then Add (Q, j) to F; add Q to P;
12: end if
13: end for
14: HB = max{HB,min{Qres, HF}}
15: end if
16: else if direction = backward then . Backward labelling
17: Choose a path Q’ ∈ B, with t(Q’) = j; remove Q’ from B;
18: if Q’res > HB then
19: for (i, j) ∈ A do
20: Extend path Q’ along (i, j), denoted by (Q’, i);
21: if (Q’, i) is feasible then Add (Q’, i) to B; add Q to P;
22: end if
23: end for
24: HF = min{HF,max{Q’res, HB}}
25: end if
26: else . If no direction
27: break
28: end if
29: Apply dominance rules to F ∪ B ∪ P;
30: end while
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2.4.3 Hyper-heuristics

Hyper-heuristic search methods incorporate different machine learning techniques to

automate the solution of an evolving set of optimisation problems, hence, being able

to adapt to the challenges in a suitable fashion to produce promising solutions. With

a set of low-level heuristics or metaheuristics, hyper-heuristic methods exploit the

combination or selection of these to generate improved solutions.

Combination or generation hyper-heuristics combine basic components of dif-

ferent heuristic methods to construct new heuristics. Heuristic methods frequently

consist of problem-dependent simple local search operations. For example, in a generic

scheduling setting, some simple local search operations, that add activities to a sched-

ule under construction, could be: add the activity with longest/shortest processing

time, add a random activity, try all the possible candidate activities (not already

present in the current schedule) and add the one that best suites the current schedule

(e.g. minimises a certain cost function, or satisfies a certain constraint).

Figure 2.6 shows a scheme for a selection hyper-heuristic. Given a problem

specific input and three different heuristics(or metaheuristics) H1, H2, H3, in each

iteration the hyper-heuristic algorithm selects one heuristic (based on the ranking),

applies it on the problem under consideration, evaluates its performance, and updates

the ranks of all heuristics based on the performance.

Hyper-heuristic methods model an interaction between statistics and operational

research, and have received attention from researchers from both communities. This

has led to a wide array of applications including (and not limited to) scheduling prob-
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lems, e.g. educational timetabling (Burke et al., 2007), nurse rostering (Burke et al.,

2003); the travelling salesman problem (Keller and Poli, 2007; Runka, 2009); vehi-

cle routing problems (Ochoa et al., 2012); and knapsack problems, mutidimensional

(Allen et al., 2009), and 0/1 (Kumar et al., 2008). Furthermore, there are recent

theoretical publications that study computational complexity of different methods,

Doerr et al. (2018), for instance. Given the scope of the area, we refer the reader to

the recent and thorough review by Burke et al. (2013), and Burke et al. (2019). In

Chapter 4 we employ a learning-based hyper-heuristic to adaptively select different

metaheuristic algorithms in a column generation framework.

INPUT

Heuristic selection

H2H1 H3

Update

EvaluateApply Rank

Figure 2.6: Hyper-heuristic algorithm.



Chapter 3

An Optimisation Framework for
Airline Fleet Maintenance
Scheduling with Tail Assignment
Considerations

3.1 Introduction

There are a number of operational decisions associated with airlines, from ticket prices

to flight times, crew rosters, and aircraft maintenance. When making these decisions,

airlines have to take into account their own economic interests influenced by demand,

costs, and sometimes even the actions of their competitors. In such a competitive en-

vironment, airlines aim to minimise their operating costs while providing competitive

services. Significant proportion of operating costs are dedicated to maintenance. For

instance, 20.5% of the average direct operating cost per medium-haul trip are ded-

icated to maintenance on an Airbus A330-200 (Aircraft Analysis & Fleet Planning,

2005). Therefore, it is of paramount importance to develop decision making tools that

will allow airlines to optimise their aircraft maintenance decisions.

Maintenance types are classified according to: short, medium and long-term in-

88
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terventions. Short-term or line maintenance does not require modelling or advanced

planning as they are carried out as standard procedures at airport gates. Medium

and long-term maintenance interventions include:

1. Airframe checks (A, B, C and D);

2. Engine performance restoration (EPR) and life limited parts replacement (ELR);

3. Landing gear overhaul (LG), and;

4. Auxiliary power unit (APU) performance restoration.

Civil Aviation Authorities Regulations impose that maintenance has to be per-

formed after a certain number of months (MO), flying hours (FH), or flight cycles

(FC), at certified maintenance workshops. In the medium-term, A checks have to be

performed every 80-100 FH (every 7 to 9 days), requiring 10-20 man-hours, while B

checks typically occur every 500-600 FH (every two months), requiring 100-300 man-

hours (Department for BIS, 2016). However, in practice, Type B checks are included

as part of a longer A check, or a bundle of A checks (Qantas, 2016). Long-term

maintenance, including C and D checks, LG, EPR, ELR, and APU are performed

once every 1–6 years and can last over 10 days (Ackert, 2011). It is worth noting that

there is a large variability in the duration of maintenance checks due to the fact that

different aircraft types have different maintenance requirements.

Table 3.1 shows the frequency of the four airframe checks for various aircraft types.

As one would expect, the time between checks increases for more modern aircraft and

B checks disappear, being contained in longer A checks. Maintenance is performed
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before any of the three criteria (MO, FH or FC) is met. For instance, for the B737-

200, a C check is performed after 18 MO, 6000 FH, or 3000 FC, whichever occurs first.

The justification for this practice is to ensure coverage of overused aircraft operating

short-haul flights. In these cases, FC are accumulated faster than FH (Cook and

Tanner, 2008). Moreover, usual frequencies of long-term maintenance, for the A320,

for instance, are 13500 FC for both the EPR and the ELR, 120 MO/20000 FC for the

LG, and 75000 FH for the APU (Ackert, 2011).

Table 3.1: Typical maintenance frequencies in calendar months (MO), flying hours
(FH), or flight cycles (FC) (Cook and Tanner, 2008; Martins, 2016).

Aircraft A check B check C check D check

B737-300 275 FH 825 FH 18 MO 48 MO
B737-400 275 FH 825 FH 18 MO 48 MO
B737-500 275 FH 825 FH 18 MO 48 MO
B737-800 500 FH n/a 4000-6000 FH 96-144 MO
B757-200 500-600 FH n/a 18 MO/6000 FH/3000 FC 72 MO

F100 500 FH n/a 5000 FH 12000 FH
B767-300ER 600 FH n/a 18 MO/6000 FH 72 MO

B747-400 600 FH n/a 18 MO/7500 FH 72 MO
A319 600 FH n/a 18-20 MO/6000 FH/3000 FC 72 MO
A320 600 FH n/a 18-20 MO/6000 FH/3000 FC 72 MO

For maintenance to be performed effectively, there is an essential underlying pro-

cess, airline fleet maintenance scheduling (AMS). The AMS problem deals with the

construction of a schedule that minimises maintenance costs, resource usage, and the

disruption to airline operations, while satisfying current safety regulations by differ-

ent civil aviation authorities (Sriram and Haghani, 2003). Given the frequency of the

maintenance checks, the decision horizon for medium-term maintenance should be a

month, and, at least, six months for long-term maintenance.

A challenge for the AMS problem is to allocate maintenance-related resources
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in a cost-effective fashion. These resources are geographically dispersed throughout

distant and distinct maintenance workshops. Some examples of resources include

limited specialised tools, spare parts, and certified technicians. Additionally, regulated

checks depend on the state of the aircraft and employ different resources.

The major contribution of this paper is the framework that deals with the re-

quirements introduced by 30-day planning horizon instances, with multiple airlines

and workshops, and tight resource availabilities. Such framework can be broken down

into three steps. Firstly, the preprocessing step identifies maintenance opportunities

(MOPs). These opportunities arise when flights have large turnaround times dur-

ing which aircraft can be maintained. This preprocessing allows us to formulate and

solve the problem efficiently. Next, in the case when not enough MOPs are found,

we identify when these occur and we reassign aircraft to different flights to generate

more MOPs. In other words, we re-solve the tail assignment (TA) problem. Lastly,

to preserve tractability and improve the quality of solutions, we provide a two-stage

iterative algorithm. The first stage adjusts the size of the TA problem appropriately.

The second stage makes the timeline more granular to improve resource allocation.

Further contributions introduced by this work are: the presentation of a new type

of multi-objective optimisation formulation for the AMS which copes with single and

multi-workshop cases, the focus on workshop resource allocation, the consideration

of different fleet types and their respective maintenance requirements, and, the intro-

duction of a solution framework that solves problems of realistic size in short time.

Showing the potential of this framework which promotes cooperation between airlines.
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The remainder of this paper is organised as follows: Section 3.2, discusses the

relevant literature. Section 3.3 presents the proposed modelling approaches and the

corresponding underlying concepts. The first model, minimises the number of mainte-

nance regulation violations, adhering to the criteria presented in Table 3.1. The second

model solves a reduced TA problem within the AMS considering violations. Section

3.4 presents the solution methodology and the model application. Computational ex-

periments are given in Section 3.5, while Section 3.6 summarises the conclusions and

provides recommendations for future research.

3.2 Literature Review

The airline planning process or airline scheduling problem involves several stages:

flight scheduling, sometimes referred to as schedule design; fleet assignment, which

assigns fleet types to flights (Hane et al., 1993); tail assignment (TA), sometimes called

aircraft routing or aircraft rotation and involves assigning individual aircraft to flights

(Clarke et al., 1997); maintenance scheduling (MS); and, finally, crew scheduling.

These were traditionally modelled by formulating each stage separately and solving

them sequentially, i.e. the output of one stage is the input for the next. Figure 3.1

presents the order of solving the different types of problems identified above (solid

lines), along with some common feedback loops (dashed lines) and the associated

typical planning horizons.

The sequential modelling and solution of the airline scheduling problem does not

take into consideration the restrictions of the subsequent problems. The benefit of the
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sequential approach is the reduction in computational complexity. Even though the

sequential feedback system is a close approximation, the solution can be improved

by modelling the interdependence of each stage in an integrated model (Cordeau

et al., 2001). Integrated models have been developed to provide better quality results

and consider the combination of two or more stages into a single problem (Desaulniers

et al., 1997; Clarke et al., 1997; Barnhart et al., 1998; Cohn and Barnhart, 2003; Sriram

and Haghani, 2003; Mercier et al., 2005; Sarac et al., 2006; Liang and Chaovalitwongse,

2013; Safaei and Jardine, 2018). In particular, MS is frequently contained within the

TA, in which case it is called aircraft maintenance routing (AMR) problem (Gopalan

and Talluri, 1998).

Flight
Scheduling

Fleet As-
signment

Tail Assign-
ment (TA)

Crew
Scheduling

Maintenance
Schedul-
ing (MS)

1-4 weeks
in advance

1-7 days
in advance

12 months
in advance

12 months
in advance

Figure 3.1: Stages of the airline scheduling problem.

The most common types of mixed integer programming formulations for the inte-

grated airline scheduling problem can be classified into three groups,

String-based models: a type of formulation that models the problem using strings,

i.e. sequences of connected flights that begin and end at a maintenance work-

shop, and, that satisfy flow balance and maintenance regulations (Desaulniers
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et al., 1997).

Time-Space Network (TSN) models: in a TSN network, each airport is repre-

sented by a time line showing the planning horizon. Nodes show every depar-

ture/arrival at the corresponding airport time line and arcs show flights and

connections (Hane et al., 1993). For example, in Figure 3.2, there are two air-

ports, A and B. Solid arcs represent scheduled flights, while grey dashed arcs

represent deadhead flights. A flight path between the two timelines, shown in

blue, starts at airport A at time period 1 (node A1), flies to airport B arriving

at time period 2 (node B2), then is grounded at airport B until time period 3

(node B3), and so on;

Multi-Commodity Network Flow (MCNF) models: based on a fleet-flow time-

space network (layered TSN models), each aircraft represents separate commodi-

ties and flow has to be preserved. Formulations of this type typically include

constraints regarding capacities (passengers and fleet) and flow conservation

(aircraft, flight, and airport) (Levin, 1971).

Timeline for Airport B

Timeline for Airport A A1 A4 A5

B2 B3 B6

Figure 3.2: Time-Space Network (TSN) example.

The first string-based formulations were introduced by Desaulniers et al. (1997),

for the FA problem, and Barnhart et al. (1998), for the TA problem. They both im-



CHAPTER 3. AIRLINE FLEET MAINTENANCE SCHEDULING 95

plemented a branch and bound scheme as their solution method. Even though they

included maintenance regulations, workshop resources or flying hours (FH) were not

considered. Sarac et al. (2006); Cohn and Barnhart (2003); Papadakos (2009) used

the same type of formulation for the AMR problem. Papadakos (2009) produced

a computational case study for a medium-sized data set (700 flights, 167 aircraft).

The heuristic algorithm used required 16 hours to solve the problem under consider-

ation. Sarac et al. (2006) implemented a branch-and-price algorithm and used legal

remaining FH to influence decisions. Aside from the excessive solution times, string-

based formulations are not capable of generating all strings even for small instances.

Furthermore, these models do not include resource usage for maintenance activities.

The TSN formulation, introduced by Hane et al. (1993), has been used widely

within the integrated airline scheduling framework, (Clarke et al., 1997; Hicks et al.,

2005; Orhan et al., 2012; Haouari et al., 2013; Liang and Chaovalitwongse, 2013).

However, given that TSNs do not allow individual aircraft to be tracked, aggregated

maintenance constraints are implemented. This means that models are forced to, for

instance, minimise total weekly maintenance operations. More recently, Safaei and

Jardine (2018) examined the AMR problem with generalised maintenance constraints

and legal remaining FH considerations. They used test instances for a single air-

line. The computational study, for a relatively large data set (7 days, 772 flights, 18

aircraft), solutions show financial impact but computational times are not provided.

Using the MCNF formulation, introduced by Levin (1971), the problem can be

solved using column generation (Yan and Tseng, 2002; Sriram and Haghani, 2003;

Mercier et al., 2005). Particularly, Sriram and Haghani (2003), presented some influ-
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ential work, based on the TA formulation by Feo and Bard (1989), which solved the

AMR incorporating A and B checks. They used a heuristic algorithm that solved a

small test instance (58 flights, 75 airports) in 5 minutes.

All the publications mentioned thus far are limited to daily or weekly schedules and

assume cyclical repetitions of the flights and hence maintenance operations. Khaled

et al. (2018), however, considered individual maintenance requirements for a 30-day

plan. They used an improved TSN formulation for the AMR problem, which allowed

them to effectively schedule A checks, constrained by individual aircraft legal remain-

ing FH. They assumed that maintenance is generally performed at night. Due to the

type of formulation, solution times increased noticeably for a large number of flights

(timed out at 3 hours for 1494 flights and a single airline). Li et al. (2016), dealt

with the AMR problem for fighter jets. This formulation, which relied on a single

workshop assumption, also employed legal remaining FH to determine the frequency

of maintenance. Further assumptions included: no resource considerations, only one

type of maintenance, and the disregard of aircraft “health” at the end of the planning

horizon. The test set considered is of 25 days and 200 aircraft but no solution times

are provided. In addition, the timeline is discretised by splitting each day into two 12

hour intervals, clearly, this incurs a huge loss in accuracy.

In different context, we find formulations that account for long-term planning

horizons; specifically, in the resource constrained project scheduling problem (RCPSP)

literature. The RCPSP is a generalisation of machine scheduling problem where jobs

are scheduled according to some predefined order, or precedence, subject to different
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resource demands and capacity constraints. Usually, the objective is to minimise

the duration of the project (collection of ordered jobs), commonly, under a non-

preemption assumption (jobs have to processed fully) (Koné et al., 2011; Brucker and

Knust, 2012; Kopanos et al., 2014; Naber, 2017). The reader may refer to a recent

and thorough review article by Habibi et al. (2018). On the long-term RCPSP, Koné

et al. (2011) proposed two formulations which they named “event-based RCPSP”

formulations. Events correspond to start and/or end times of activities. Since their

formulations involve fewer variables than the formulations indexed by time, they have

the capacity to deal with longer planning horizons.

As can be seen in the summary of the literature in Table 3.2, no publications

have addressed the long-term AMS problem with multiple airlines, workshops and

resource considerations, while providing fast solution times. Additionally, we take

into account individual aircraft maintenance requirements and their respective flight

operations. The key contributions of the present paper are,

Reassignment. We include the option of reassigning some flights to obtain longer

maintenance opportunities.

Efficient resource allocation. Maintenance models do not always consider the dif-

ferent resources available throughout maintenance workshops. Therefore, we

incorporate workshop resource restrictions.

Individual aircraft considerations. Different aircraft may have different mainte-

nance duration and requirements, and different accumulation of FH. Hence, we

include this in our model.
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Long-term planning horizon. Short-term, or operational planning, is not suitable

for most aircraft maintenance. Further, personnel and equipment hire are sig-

nificantly expensive. Thus, it is extremely useful for maintenance operators to

plan longer in advance.

Two-stage iterative algorithm. We employ a two-stage algorithm that provides

good solutions for large instances in reasonable computational time.

Single and multi-workshop tests cases. Our generic framework, allows us to model

both single and multi-workshop cases.
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Table 3.2: Summary of selected literature. MS = inclusion of maintenance scheduling, FH = use of legal remaining flying hours,
RC = workshop resource considerations, H = time horizon (days), Sched. Type = scheduling type, Airlines = number of airlines
considered, W = number of workshops considered, F = number of flights (in largest test instance), A = number of aircraft (in
largest test instance), T = computational time (of largest test instance).

Article MS FH RC Sched. Type Airlines W H F A T

Desaulniers et al. (1997) × × × cyclical single 1 1 383 91 1 h
Barnhart et al. (1998) X × × cyclical single 1 7 1124 89 10 h

Sriram and Haghani (2003) X × × cyclical single 20 7 rand. 13 4.5 h
Mercier et al. (2005) X × × cyclical two NS 1 707 143 13 h
Sarac et al. (2006) X X X cyclical single 5 1 175 32 2 h
Papadakos (2009) X × × cyclical single 6 7 705 167 16 h

Haouari et al. (2013) X × × cyclical single 16 1 344 138 10 s
Liang and Chaovalitwongse (2013) X × × cyclical single 6 7 1780 110 4 h

Khaled et al. (2018) X X × adaptive single 9 30 1494 40 3 h
Present paper X X X adaptive single 1 30 3869 49 1.2 h
Present paper X X X adaptive multiple 8 30 16000 529 1.8 h
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3.3 The Proposed Modelling Approach

In order to be able to adequately model the problem, we first state the necessary

assumptions, highlight the concepts used and define the appropriate notation. After

this, we propose two multi-objective mixed integer linear programming (MMILP)

formulations that schedule different types of maintenance for a medium/long-term

planning horizon e.g. airframe checks A and C. To check if regulation requirements

are being fulfilled, we employ different maintenance requirement (MR) variables for

each type of maintenance and aircraft type, which vary with flying hours (FH).

In the first formulation, given an input flight schedule, we aim to determine

whether a feasible maintenance schedule exists. We call this the airline fleet main-

tenance scheduling (AMS) formulation. If a feasible maintenance schedule does not

exist, we seek to minimise the number of infeasibilities, or violations. Such violations

represent the cases when the limit imposed by the regulations on the FH are exceeded.

To minimise the violations, we introduce the second formulation which extends the

AMS formulation to account for an appropriate tail assignment (TA) problem.

3.3.1 Assumptions

To ease the formulation of the problem, we make some modelling assumptions.

1. Maintenance can only be performed in the pre-identified maintenance opportu-

nities (MOPs);

2. Maintenance can be done at any workshop, if the aircraft has a MOP there;

unless otherwise specified by an airline;
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3. Maintenance cannot be preempted;

4. To extend MOPs, we may reassign flights to different aircraft, i.e. we may modify

the airlines’ preferred TA;

5. Resources can be shared amongst different airlines at the maintenance work-

shops.

3.3.2 Concepts

The integrated airline scheduling literature reveals that the models used for short-

term planning are not easily scalable for our 30-day planning horizon. Additionally,

not much attention is paid to either resource usage for maintenance activities or air-

craft health-state monitoring. However, as mentioned in the literature review section,

Koné et al. (2011) presented a formulation for the long-term resource constrained

project scheduling problem (RCPSP) that challenged the classical discretisation of

time. Instead, they index the variables using some pre-defined “events”.

Koné et al. (2011), independently formalised the same idea as Sousa and Wolsey

(1992), and refer to this type of formulation as an “event-based RCPSP”. Events

represent either the start or the end of an activity. Compared to traditional time

indexation, their formulations involve considerably fewer variables, therefore, being

ideal for problems with long planning horizons. Koné et al. (2013) extended the

formulation to account for non-renewable resources. More authors have used a similar

indexation of continuous time. Naber (2017) focused on removing the assumption

regarding fixed resources per activity in the RCPSP by allowing flexibility of resource

usage.
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In the present paper, events represent turnaround times, the time between arrival

and departure, at a certain maintenance workshop where the total time is sufficient to

perform at least one type of maintenance. We regard these as MOPs. Thus, provided

with a flight schedule, MOPs are easily identified and pose no restrictive assumption

on the aircraft or airlines considered. For more information on how these are created,

see Section 3.4.1.

3.3.3 Airline Fleet Maintenance Scheduling with Violations

The AMS with violations model, checks, subject to regulations, whether a feasible

maintenance schedule exists given a flight schedule. Violations of regulations, contrary

to most other works, are not included as constraints but as an objective which we

try to minimise. Hence, the impasse that infeasibilities bring is avoided and more

conclusions can be inferred about the process. First, the necessary sets, parameters

and variables are defined, then, we introduce the MMILP formulation.

Notation

To formulate the problem, we introduce the following notation. The set of all aircraft is

denoted by K and indexed with k. In order to distinguish aircraft by type and airline,

we introduce the set T with function t : K → T ; t(k) maps a specific aircraft k ∈ K

to its corresponding fleet type and airline. Each aircraft has its own corresponding

MOPs contained in the set MOPk which we can index with j. Moreover, we can

subdivide each MOP into time intervals. These provide an alternative discretisation

of time and represent either the start or end time of some MOP. All time intervals

are contained in the set I, indexed by i. Each element, i, has a start and end time,
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denoted with sti and eti respectively, and a maintenance workshop W i. Some common

maintenance checks are collected in the set C, indexed by c. Resources are contained

in the set R. The demand for resource r ∈ R varies per check c ∈ C, this is denoted

by brc. Moreover, the duration of maintenance may vary within aircraft types. Hence,

for an aircraft k, of type t(k), we define the duration of a single check c ∈ C to take

∆t(k),c time units to complete.

For convenience, we can identify the following subsets. Let Ik be the subset of

intervals where aircraft k is available for maintenance. Similarly, let Ki be the subset

of aircraft available for maintenance at interval i. The resources available at the

maintenance workshop of interval i, W i, are contained in the set RW i ⊆ R.

Each MOP can be represented by a set of consecutive intervals. For j ∈ MOPk,

we can identify the corresponding intervals as i ∈MOP j
k ⊆ Ik. This idea is illustrated

in Figure 3.3, where an example for an aircraft k with three MOPs is shown. The

numbering indicates the interval number. Each of MOP is labelled with a different

j = 1, 2, 3. It is worth noting that every interval is assigned to exactly one MOP. We

can identify the interval sets Ik = {1, 2, 3, 7, 8, 11, 12} ⊂ I = {1, . . . , 12}. Thus, given

the definition of MOPs, intervals in I \ Ik = {4, 5, 6, 9, 10} must belong to another

aircraft (not pictured). Moreover, if i is part of a MOP for aircraft k, i ∈ Ik, we

can say that aircraft k is not flying at interval i, hence, is available for maintenance.

Conversely, if i is not part of any MOP for aircraft k, i /∈ Ik, we can say that aircraft

k is flying at interval i.

In order to employ FH accurately in the model, we introduce two additional pa-
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1 2 3 4 5 6 7 8 9 10 11 12
time
I
Ik

MOP 1
k MOP 2

k MOP 3
k

Intervals
Flights

Figure 3.3: Timeline showing the deconstruction of three MOPs into sets of consecu-
tive intervals.

rameters. Let FH i
k be the FH for aircraft k at interval i, and, Rt(k),c be the limit on

FH imposed by regulations for aircraft of type t(k) and check c. In order to update

the FH parameter, we consider the flights between consecutive MOPs. For a given

interval i and aircraft k, interval i is bounded by

sup{MOP j−1
k } < i ≤ sup{MOP j

k} , (3.3.1)

for some MOP j
k provided that j 6= 1, i > sup{MOP 1

k } and i ≤ sup{MOP J
k }

(J = |MOPk|) (proof provided in A.2). That is, provided that the interval under

consideration starts after the end of the first MOP and before the end of the last

MOP. If this is the case, we define FH i
k to consider only the flights that aircraft k op-

erates between MOP j−1
k and MOP j

k . Otherwise, if i starts before the end of the first

MOP, i.e. i ≤ sup{MOP 1
k }, we define FH i

k to consider only the flights that aircraft

k operates between the beginning of the planning horizon and MOP 1
k . Conversely,

if i starts after the end of the last MOP, i.e. i > sup{MOP J
k }, we define FH i

k to

consider only the flights that aircraft k operates between MOP J
k and the end of the

planning horizon. In Figure 3.3, if i ∈ {7, 8} = MOP 2
k ⊂ Ik, or i ∈ {4, 5, 6} /∈ Ik,

we have sup{MOP 1
k } < i ≤ sup{MOP 2

k }, then, FH i
k considers the flights between

MOP 1
k and MOP 2

k . If i ∈ {9, 10} /∈ Ik, we have sup{MOP 2
k } < i ≤ sup{MOP 3

k },
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then, FH i
k considers the flights between MOP 2

k and MOP 3
k .

Using the previous two parameters, we can define the deterioration that a certain

number of FH incurs on an aircraft for a specific check type. For an interval i, check

c and aircraft k, the deterioration parameter is defined as,

DRi
kc =

FH i
k

Rt(k),c

. (3.3.2)

In the next subsection, we provide the notation needed to describe the proposed

mathematical model. However, it is useful to discuss two of the variables in detail. To

account for the legal remaining FH, we define a variable, wikc ∈ [0, 1], that tracks the

MR at the beginning of interval i, for check type c and aircraft k. Where a value close

to 0 represents that no maintenance is required, and a value close to 1 represents that

maintenance is urgently required. This variable is updated by using the deterioration

parameter DRi
kc. We define a binary variable to identify regulation violations, vikc

gets the value 1 if the regulation for check c is violated at interval i by aircraft k,

while it is 0 otherwise.

Definitions

Sets

C: Set of checks indexed by c;

I: Set of intervals indexed by i;

Ik: Set of intervals where aircraft k is available for maintenance, Ik ⊆ I;

K: Set of all aircraft indexed by k;
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Ki: Set of aircraft available for maintenance at interval i, Ki ⊆ K;

MOPk: Set of MOPs for aircraft k, indexed by j;

MOP j
k : Set of intervals that constitute the j-th MOP for aircraft k, MOP j

k ⊆ Ik;

R: Set of resources indexed by r;

RW i: Set of resources available at the workshop of interval i, W i, RW i ⊆ R;

T : Set of aircraft types with t : K → T .

Parameters

brc: Demand of resource r to process check c;

DRi
kc: Deterioration (per flying hour) at interval i for check c and aircraft k;

∆t(k),c: Duration of check c for an aircraft of type t(k);

sti/eti: Start/end time of interval i ∈ I.

Variables

Bi
r: The capacity for resource r at interval i.

wikc: A continuous variable with values between 0 and 1 to represent the MR for

aircraft k for check c at the beginning of interval i. 0 means that the aircraft re-

quires no maintenance, 1 means that the aircraft requires maintenance urgently.

mi
kc: 1, if a maintenance check c for aircraft k starts/continues at the beginning of

interval i; 0, otherwise.
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vikc: 1, if regulation for check c is being violated at interval i for aircraft k; 0, otherwise.

zikc: 1, if there is a change between the consecutive variables, mi
kc and mi−1

kc ; 0, other-

wise.

Formulation

Model 3.3.1. Interval MMILP formulation for AMS with violations.

min
∑
k

∑
c

∑
i

vikc (3.3.3)

min
∑
k

∑
c

w
sup{Ik}
kc (3.3.4)

Subject to

Maintenance Requirement

vikc = 0 ∀k, c, i /∈ Ik; (3.3.5)

mi
kc = 0 ∀k, c, i /∈ Ik; (3.3.6)

wikc ≥ wi−1kc +DRi
kc

(
1−mi

kc

)
−mi

kc − vikc ∀k, c, i 6= inf{I}; (3.3.7)

w
sup{MOP j

k}
kc ≤ DR

inf{MOP j+1
k }

kc ∀k, c, j 6= |MOPk|; (3.3.8)

Maintenance∑
c

mi
kc ≤ 1 ∀k, i ∈ Ik; (3.3.9)∑

i′∈MOP j
k

(eti
′ − sti′)mi′

kc ≥ ∆t(k),cm
i
kc ∀k, c, j, i ∈MOP j

k ; (3.3.10)

Transitivity Constraints

z
inf{MOP j

k}
kc ≥ m

inf{MOP j
k}

kc ∀k, c, j; (3.3.11)

zikc ≥ mi
kc −mi−1

kc ∀k, c, j; i, i− 1 ∈MOP j
k ; (3.3.12)∑

i∈MOP j
k

zikc ≤ 1 ∀k, c, j; (3.3.13)

Resources∑
k∈Ki

∑
c

brcm
i
kc ≤ Bi

r ∀i, r ∈ RW i ; (3.3.14)

Variables

wikc ∈ [0, 1] ∀k, c, i; (3.3.15)

Bi
r ∈ R+ ∀k, i, r ∈ RW i ; (3.3.16)

mi
kc, z

i
kc, v

i
kc ∈ {0, 1} ∀k, c, i. (3.3.17)



CHAPTER 3. AIRLINE FLEET MAINTENANCE SCHEDULING 108

The proposed formulation is a MMILP with two lexicographically ordered objec-

tive functions. The functions involved minimise the following objectives (in order of

importance), the number of violations, and the total MR at the last interval. Objec-

tive 3.3.3 minimises the number of regulation violations. Objective 3.3.4 minimises

the total MR at the end of the planning horizon. Recall that a value close to 0 for

the wikc variable indicates that the aircraft requires no maintenance; hence, minimis-

ing w
sup{Ik}
kc corresponds to minimising the amount of maintenance required by each

individual aircraft at the end of the planning horizon.

The first two MR constraints 3.3.5 and 3.3.6 ensure that neither a violation nor

maintenance occur when an aircraft is operating flights. Precisely, constraints 3.3.5

and 3.3.6 ensure that if aircraft k is flying at interval i, i.e. i /∈ Ik, then, for any check

c, neither a violation nor maintenance intervention may occur.

Constraints 3.3.7 enforce a recurrence relation for the MR variable. For time

interval i, aircraft k, and check type c, we update the MR variable depending on

whether or not aircraft k is flying at interval i. If aircraft k is not flying at interval

i, i.e. i ∈ Ik and i ∈ MOP j
k for some j; the current MR, wikc, is updated using

the previous MR, wi−1kc , plus the appropriate deterioration, DRi
kc (the deterioration

incurred by the flights between MOP j−1
k and MOP j

k , as defined in equation 3.3.2),

or drops to 0 if either a violation or maintenance occur. Please recall that the first

priority objective minimises the number of violations. On the other hand, if aircraft

k is flying at interval i, i.e. i /∈ Ik, then, by constraints 3.3.5 and 3.3.6, mi
kc = 0 and

vikc = 0, hence, the recurrence relation is enforced.

Constraints 3.3.8 ensure that the MR variable at the end of a MOP stays within
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the regulation limits (captured within the deterioration parameter) at least until the

next MOP. That is, for a given aircraft k, check type c and MOP j (with j 6= |MOPk|),

the MR at the end of the MOP, w
sup{MOP j

k}
kc , should remain feasible to operate the

upcoming flights between MOP j
k and MOP j+1

k . Using the definition of the deteri-

oration parameter, this is encapsulated in DR
inf{MOP j+1

k }
kc , since, by equation 3.3.1,

sup{MOP j
k} < inf{MOP j+1

k } ≤ sup{MOP j+1
k }.

Constraints 3.3.9 and 3.3.10 enforce the maintenance restrictions. Constraints

3.3.9 assure that no more than one maintenance type is scheduled for the same in-

terval. Constraints 3.3.10 guarantee that the aircraft is available for the minimum

time required for each maintenance type. More precisely, the sum of the duration of

consecutive intervals has to be greater than the minimum prespecified duration of the

check.

Transitivity constraints, 3.3.11, 3.3.12, and 3.3.13, ensure that if we decide to

maintain in MOP j
k , preemptions are not allowed (proof provided in A.2). Constraints

3.3.11 initialise the auxiliary variable using the first interval in the MOP. Constraints

3.3.12 establish that when a maintenance starts, i.e. the difference between consecutive

maintenance variables is 1, the auxiliary variable is 1. Constraints 3.3.13 ensure that

at most one auxiliary variable is 1, or, equivalently we cannot start a maintenance

more than once. Hence, wherever we terminate maintenance, all auxiliary variables

thereafter must be 0.

Constraints 3.3.14 ensure that a maintenance intervention of some type is only

scheduled if there are sufficient resources available at the workshop. The total number

of checks over all aircraft present at a given interval cannot exceed the capacity for
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each resource. The last four constraints 3.3.15 – 3.3.17 define the domains of the

variables.

3.3.4 Airline Fleet Maintenance Scheduling with Tail Assign-
ment

In this section we extend the AMS formulation previously discussed, to include reas-

signment variables for the periods where regulations are being violated. In order to

determine where this occurs, we solve Model 3.3.1, and identify which violation vari-

ables, vikc, have the value 1. Using this information we efficiently select reassignable

and preassigned flights which allow us to solve the joint AMS and TA problem.

Notation

To formulate the AMS with TA, we first expand the notation introduced for Model

3.3.1. All flights are contained in the set F , which we can index with f . More

precisely, it contains flight legs (sequence of multiple flights) between MOPs. Also,

let If be the subset of intervals at which flight f ∈ F occurs, and Kf be the subset

of aircraft free to operate flight f .

Additionally, for a given interval i, we can identify the set of flights that either,

depart at the end of interval i, or, arrive at the start of interval i. Let us denote the

departure set with

F idep = {f : f ∈ F , inf{If} = i} ,

and, the arrival set with

F iarr = {f : f ∈ F , sup{If} = i} .
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In order to control the number of reassignment variables, we can identify the

subsets of flights which are reassignable and those which are fixed or preassigned.

Such that, if a flight is reassignable, then we can reassign it to another aircraft; in

contrast, if a flight is preassigned, then it is operated by the preassigned aircraft. Let

FR ⊂ F and FR ⊂ F be two (disjoint) subsets (with FR ∪ FR = F), that contain

those flights which are reassignable and preassigned, respectively. Also, let Of for

flight f ∈ FR, with Of ⊆ Kf , contain the aircraft preassigned to flight f . To preserve

efficiency and minimise the changes in the airlines’ preferred TA, instead of setting

all flights to be reassignable, we select an appropriate subset of flights. More details

on the selection process can be found in Section 3.4.2.

We can redefine the deterioration parameter in terms of flights, DRf
kc, which repre-

sents the deterioration for the operation of flight f for check c and aircraft k. Similarly,

as for the previous model,

DRf
kc =

FHf

Rt(k),c

,

where FHf are the FH that correspond to flight f . Lastly, the violation variable

can also be expressed in terms of flights, vfkc gets the value 1 if a regulation is being

violated before flight f for aircraft k and check c, while it is 0 otherwise.

Definitions

Sets

F : Set of all flights indexed by f ;

FR: Set of reassignable flights, FR ⊂ F ;

FR: Set of preassigned flights, FR ⊂ F ;
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F idep: Set of flights which are scheduled to depart at the end of interval i;

F iarr: Set of flights which are scheduled to arrive at the start of interval i;

If : Set of intervals occupied by flight f , If ⊆ I;

Kf : Set of aircraft available to operate flight f , Kf ⊆ K;

Of : Set of aircraft preassigned to operate flight f ∈ FR, Of ⊆ Kf .

Parameters

DRf
kc: Deterioration for the operation of flight f for check c and aircraft k.

Variables

afk: 1, if the flight f is (re)assigned to aircraft k; 0, otherwise.

Br: The maximum capacity for resource r.

vfkc: 1, if the regulation for check c is being violated before flight f for aircraft k; 0,

otherwise.
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Formulation

Model 3.3.2. Interval MMILP formulation for AMS with TA.

min
∑
f

∑
k∈Kf

∑
c

vfkc (3.3.18)

min
∑
r

Br (3.3.19)

min
∑
f

∑
k∈Kf\Of

afk (3.3.20)

min
∑
k

∑
c

∑
i

(
eti − sti

)
mi
kc (3.3.21)

min
∑
i

∑
r

(
eti − sti

)
Bi
r (3.3.22)

min
∑
k

∑
c

w
sup{Ik}
kc (3.3.23)

Subject to

Preassigned Flights

afk = 1 ∀f ∈ FR, k ∈ Of ; (3.3.24)∑
c

vfkc = 0 ∀f ∈ FR, k ∈ Of ; (3.3.25)

Maintenance Requirement

wikc ≥ wi−1kc +
∑

f∈Fi
arr

(
DRf

kca
f
k − v

f
kc

)
−mi

kc ∀k, c, i 6= inf{I}; (3.3.26)

w
sup{MOP j

k}
kc ≤

∑
f∈F

sup{MOP
j
k
}

dep

DRf
kca

f
k ∀k, c, j; (3.3.27)

Reassignment

mi+1
kc ≤ 1−

∑
f∈Fi

dep

afk ∀k, c, i 6= sup{I}; (3.3.28)

∑
k

afk = 1 ∀f ; (3.3.29)

Maintenance

Constraints 3.3.6, 3.3.9 and 3.3.10

Transitivity Constraints

Constraints 3.3.11− 3.3.13

Resources

Constraints 3.3.14

Bi
r ≤ Br ∀i, r ∈ RW i ; (3.3.30)

(3.3.31)
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Variables

afk ∈ {0, 1} ∀k, f ; (3.3.32)

vfkc ∈ {0, 1} ∀k, c, f ; (3.3.33)

Br ∈ R+ ∀r (3.3.34)

Constraints 3.3.15− 3.3.17

The proposed formulation is a MMILP with six lexicographically ordered objective

functions. The functions involved minimise the following objectives (in the order of

importance), the number of violations, maximum resource level, number of reassigned

flights, number of maintenance interventions, overall resource usage, and total MR.

Objective 3.3.18, with largest priority, minimises the number of regulation violations.

Objective 3.3.19 minimises the sum of maximum level for each resource. Objective

3.3.20 minimises the number of strictly reassigned flights (i.e. assigned to an aircraft

different from the one in the input TA), thus minimising the number of changes in

the airlines’ preferred TA. Objective 3.3.21 minimises the number of maintenance

interventions weighted with the duration of intervals. Objective 3.3.22 minimises the

resource level per interval, again, weighted with the duration of intervals. Finally, as

in the previous model, with least priority, objective 3.3.23, minimises the total MR

at the last interval.

Constraints 3.3.24 ensure that if flight f is preassigned to aircraft k ∈ Of , then

afk = 1. Similarly, constraints 3.3.25 ensure that if flight f is preassigned to aircraft

k ∈ Of , then a violation cannot occur vfkc = 0 for any check c.

The MR constraints are a simple extension of those in Model 3.3.1. Constraints

3.3.26 enforce a recurrence relation where the current MR, wikc, is updated using the
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previous MR, wi−1kc , plus a deterioration term if the aircraft has been assigned the

flights prior to the interval under consideration, or drops to 0 if either a violation or

maintenance occurs. In the case when flight f is reassignable, i.e. f ∈ FR, and if

flight f is not reassigned to aircraft k, afk = 0, then, the MR is only updated if a

violation or maintenance occurs. On the other hand, in the case of either, flight f

being reassigned to aircraft k, or, flight f being preassigned to aircraft k (f ∈ FR

and k ∈ Of ), we have, afk = 1. Thus, by constraints 3.3.25 and 3.3.28, vfkc = 0 and

mi
kc = 0, thus, the MR is deteriorated according to the appropriate deterioration,

DRf
kc. Therefore, the recurrence relation is enforced.

Constraints 3.3.27 ensure that the MR remains feasible for the operation of any of

the flights that depart the end of interval i. That is, for a given aircraft k, check type

c and MOP j, the MR at the end of the MOP, w
sup{MOP j

k}
kc , should remain feasible to

operate whichever flights are assigned to aircraft k departing at the end of the MOP.

Such flights are contained in F sup{MOP j
k}

dep .

As for the reassignment, constraints 3.3.28 ensures that maintenance is not per-

formed if an aircraft departs. More specifically, if an aircraft k is reassigned and due

to depart on a flight after interval i 6= sup{I}, then, at interval i+1 (after the aircraft

has departed) maintenance cannot be performed, hence, mi+1
kc = 0. Constraints 3.3.29

ensure that all flights have exactly one aircraft assigned to them.

Constraints 3.3.30 establish the value for the maximum resource level for each

resource. The remaining constraints, (maintenance, transitivity and resource con-

straints) as well as variable definitions, can be borrowed from Model 3.3.1. The last

constraints 3.3.32–3.3.34, define the domains of the extra variables.
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3.4 Solution Methodology

The solution approach chosen only requires flight schedules, and resource capacities

and demands for maintenance services. To improve the efficiency of the solutions,

after a preprocessing routine, we implement an iterative algorithm. The algorithm is

displayed in Figure 3.4 and pseudocode presented in Algorithm 4. The algorithm con-

sists of two stages, conflicting period selection and interval splitting. The conflicting

period selection stage involves selecting the sets of reassignable and preassigned flights

and resolving. This stage terminates when all the violations are removed or when the

size of the conflicting periods cannot be increased any further. During subsequent

iterations, the interval splitting stage identifies intervals where maintenance occurs,

splits them and resolves the problem. Splitting time intervals allows the model to

assign more maintenance to the existing schedule since it makes time intervals more

granular.

3.4.1 Preprocessing Routine

Flight schedules are crucial for the model as they give the initial tail assignment (TA)

and accurate flying hours (FH) in order to update the maintenance requirement (MR)

throughout the planning horizon. We obtained flight schedules from Flightradar24 AB

(2018) using pyflightdata, the Python module (Allamraju, 2014). We gathered data

globally for an extended period. Following the data gathering stage, we preprocess

the flight schedule data. Preprocessing involves filtering schedules through the nearest

airport to the maintenance workshops under consideration. After this, we identify

airlines and aircraft types of interest so we can track and update the aircraft’s FH
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appropriately. This gives a reduced network with accurate FH for each aircraft. For

eight maintenance workshops over a 30-day planning horizon (between dates 14/11/16

and 15/12/16), prior to preprocessing, we have 23927 flights and 1643 aircraft of two

types (Airbus A320 and Fokker 100). Then, we proceed to identify maintenance

opportunities (MOPs) i.e. turnaround times sufficient to perform at least the shortest

maintenance type. We choose a turnaround time of at least 5 hours to allow for at

least a short maintenance intervention. Using aircraft MOPs, we generate intervals

by identifying all start and end times of the MOPs and storing them in an ordered

set.

Preprocessing
Routine

INPUT
DATA

Solve
Model 3.3.1

Feasible
Maintenance

Schedule?

Solve
Model 3.3.2

Conflicting
Period Selection

Good
Resource

Allocation?

Interval
Splitting

STOP
Proposed
Schedule

NOYES

YES

NO

Figure 3.4: Flow chart outlining the process of the iterative algorithm.

As part of this stage, we pre-determine which variables are not required in the
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model, hence, for efficiency, they are not created. Specifically, all the variables involved

in constraints 3.3.5 and 3.3.6 in Model 3.3.1, and constraints 3.3.24, 3.3.25, and 3.3.28

in Model 3.3.2, have known values and it is unnecessary to create them. Therefore,

in practice, since the reassignment variables that involve preassigned flights are not

present in Model 3.3.2, when MR constraints involve preassigned flights, we simply

use MR constraints from Model 3.3.1. For this reason, the number of reassignment

variables is determined by selecting the sets of reassignable and preassigned flights.

3.4.2 Solution Procedure

To ensure efficiency and solution accuracy, we propose an iterative solution procedure

which has two stages, conflicting period selection, and interval splitting. The aim of

the conflicting period selection stage is to, by using the identification of regulation

violations, select the number of reassignment variables. In each iteration, if the regula-

tion violations involved have not been removed, we increase the size of the conflicting

period (which determines the number of reassignment variables) and resolve Model

3.3.2. In the interval splitting stage, once all infeasibilites have been removed or all

reassignment variables have been introduced, we split intervals where maintenance

takes place and resolve Model 3.3.2. This ensures flexibility as it allows the additional

generated intervals to be allocated to different aircraft.

Conflicting Period Selection

An illustration of the conflicting period selection stage is given in Figure 3.5. For

a certain violation, say at interval i, with {k1, k2, k3, . . . , kK} ∈ Ki, we select the
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initial conflicting period as shown in red with j i
(1) as the upper bound, as the next

interval where Ki ⊆ Kj
i

(1) . We classify flights either in the reassignable subset (FR),

if they are involved in the conflict, or in the preassigned subset (FR), otherwise. This

regulates the number of reassignment variables, and keeps the solution process of

Model 3.3.2 efficient. If in the new solution, interval i still has a violation, we increase

the size of the conflicting period to reach j i
(2), the next interval where Ki ⊆ Kj

i
(2) .

Again, we update the sets of reassignable and preassigned flights and resolve the

problem. If the violation has not been removed, we move on to the next interval

with matching aircraft. We continue this process until the violation is removed or the

end of the planning horizon is reached, in which case, all the reassignment variables,

corresponding to violation i, would have been introduced.

i

k1
k2
k3
...

kK

violation j i
(1) j i

(2)

conflicting period 2

co
nfl
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tin
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. . .
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o
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Figure 3.5: Conflicting period selection.

In order to identify the conflicting period, we have to identify where violations

occur. For the first iteration, the set V that contain all intervals for which at least

one violation occurs is given by,

V =

{
i : i ∈ I,

∑
k

∑
c

vikc ≥ 1

}
,
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thereafter, it is given by,

V =
{
i : i ∈ If , f ∈ F

}
,

where,

F =

{
f : f ∈ F ,

∑
k

∑
c

vfkc ≥ 1

}
.

For every interval with a violation, i ∈ V , we can identify the set of aircraft

involved, Ki. Then, we can find the interval where the aircraft in Ki will meet again,

say Kj, with Ki ⊆ Kj, where j > i. Hence, the reassignable flights, FR, are those

that occur between intervals i and j, the conflicting period, and for k ∈ Ki. All the

flights, outside of the conflicting period are preassigned, thus, FR = F \ FR. More

generally, the set of intervals J i, which contain the set of aircraft Ki, can be written

as,

J i = {j : j ∈ I, j > i, Ki ⊆ Kj} . (3.4.1)

With this, we can write the first conflicting period as

CP (1, i) = {i′ : i′ ∈ I, i ≤ i′ ≤ j i
(1), ∃k ∈ Ki

′ ∧ k ∈ Ki} , (3.4.2)

where j i
(1) is the first element in J i. We use this to update the sets of reassignable

and preassigned flights appropriately. The set of reassignable flights is given by,

FR = {f : inf{If} ≥ i, sup{If} ≤ j i
(1)} ,

and Kf = Ki for f ∈ FR. The set of preassigned flights can be found using the

updated set of reassignable flights, while Of , the set of aircraft preassigned to operate

flight f ∈ FR is given by the initial TA. Additionally, we need to update the aircraft
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present at the intervals in the conflicting period. Thus, we set

Ki′ = Ki′ ∪ Ki for i′ ∈ CP (1, i) .

By solving Model 3.3.2 after these updates, we can reassign the flights to any of the

aircraft involved in the conflict. In the next iterations, if the violation is removed, then

without loss of generality, we may assume that the remaining schedule can remain

unchanged. However, if solving Model 3.3.2 has not led to the elimination of the

violation, we expand the conflicting period and resolve. For this, we use CP (m, i),

for m = 2, . . . , |J i|, which uses the m-th element of J i, j i
(m). Similarly, to update the

set of reassignable flights, we set,

FR = {f : inf{If} ≥ i, sup{If} ≤ j i
(m)} ,

with, Kf = Ki for f ∈ FR, and,

Ki′ = Ki′ ∪ Ki for i′ ∈ CP (m, i) .

With the set of preassigned flights and aircraft being updated as previously, using the

new set of reassignable flights. We do this for every interval with a violation i ∈ V ,

until either the violation is eliminated or the end of the planning horizon is reached.

Interval Splitting

The interval splitting stage favours the redistribution of resources by using a more

granular timeline with each iteration. Resources are occupied for the duration of the

interval if maintenance is being performed. When long intervals occur, given the non-

preemption assumption, resources can be held even after the maintenance has been
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finalised (exceeding the minimum maintenance duration). Therefore, we consider the

effect of splitting intervals, using different criteria, and resolving the problem. For

example, in Figure 3.6, given the intervals, in the first iteration we have a MOP of 9

hours. Suppose that the maintenance scheduled for this MOP only takes 8 hours. So,

in the first iteration, the last hour of the last interval is being wastefully allocated.

Splitting, therefore, allows for the resources to be allocated to different aircraft. By

splitting in half, in iteration 3, we see that the last hour is no longer being held.

3h 2h 4h

iteration

1

2

3

MOP

Figure 3.6: Interval splitting stage for a 9 hour MOP using binary segmentation for
three iterations.

Let us define three simple splitting methods. Suppose, after solving the problem,

we have mi
kc = 1, so we split interval i using the following,

1. Binary segmentation (split in half);

2. Golden ratio (split by Golden ratio);

3. Minimum cut (split that allows at least the shortest type of maintenance).

Methods 1 and 2 are well-known and are regularly employed in search algorithms

(Nocedal and Wright, 2006). Method 3 splits intervals that allows the shortest type

of maintenance. Going back to the example in Figure 3.6, recall that the duration of

the maintenance is 8 hours, splitting using Method 3 would produce a single split at

the 8th hour in the second iteration.



CHAPTER 3. AIRLINE FLEET MAINTENANCE SCHEDULING 123

To compare the splitting methods and identify good solutions, we compute an

accuracy measure representing the usage of MOPs. The accuracy measure can be

expressed as the ratio of the minimum time required for a check over the actual time

scheduled for the check. That is,

A =

∑
c

∑
k

∑
j ∆t(k),c∑

c

∑
k

∑
j

∑
i∈MOP j

k
(eti − sti)mi

kc

. (3.4.3)

Given constraints 3.3.10, which specify that maintenance scheduled should be at least

of the minimum required duration; we have that A ≤ 1. Therefore, a schedule that

has an accuracy value close to 1, is one that does not schedule more maintenance than

strictly required, and is, thus, efficient.

Algorithm

As outlined in Figure 3.4 and in the pseudocode of Algorithm 4, the algorithm requires

some inputs. Specifically, a set of intervals, set of aircraft, FH for each aircraft,

maintenance regulations and durations, and, resource capacities and demands. Once

these are provided, in the first iteration, Model 3.3.1 is solved. If there are violations;

i.e. there is no feasible maintenance schedule or, equivalently, V 6= ∅; we implement

the conflicting period selection stage and resolve Model 3.3.2 until the violations have

been removed. After this, we iterate the interval splitting stage and resolve Model

3.3.2 until either, the resource allocation is good enough, equivalently, A ≥ 1 − ε

(where ε is the tolerance), or, no more intervals are added.
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Algorithm 4 Solution procedure with conflicting period selection and interval split-
ting.

1: Initialisations iter, A = 0 . Iteration counter and accuracy measure
2: ε = 0.01 . Set Tolerance
3: maxiter = 50 . Maximum number of iterations
4: Intervals = I . Interval set
5: V, CP, oldIntervals = [ ]
6: while iter < maxiter and A < 1− ε do
7: if iter = 0 then
8: Solve Model 3.3.1 . For the first iteration
9: else

10: Solve Model 3.3.2 . For iterations ≥ 1
11: end if
12: Update V and A
13: if V is not empty then . If violations have not been removed
14: SelectCP(V ) . Call function to update conflicting periods
15: else
16: which = {i : i ∈ I,

∑
k

∑
cm

i
kc ≥ 1}

17: oldIntervals = Intervals

18: SplitIntervals(which, Intervals) . Call function to split intervals
19: if |Intervals| = |oldIntervals| then . No intervals have been added
20: Break . Stop the algorithm
21: end if
22: end if
23: Increment iter
24: end while
25: function SelectCP(V ) . Updates the conflicting periods for all violations
26: for i in V do
27: Compute J i

28: if i not in CP then . If the violation is new
29: CP = CP ∪ CP(1,i) . Update CP with first conflicting period
30: else . If violation has occurred at a previous iteration
31: for m in 2→ |J i| do . Iterate through elements in Ji
32: if CP(m-1,i) in CP then . Find already used CP

33: CP = CP \ CP(m-1,i) . Remove it from conflicting periods
34: CP = CP ∪ CP(m,i)

35: Break
36: end if
37: end for
38: end if
39: end for
40: Intervals = Intervals ∪ CP . Update intervals
41: end function
42: function SplitIntervals(which, Intervals) . Splits intervals in which

43: for i in which do
44: Using Method 1, 2, or 3; split i into i1 and i2
45: Intervals= Intervals\{i} ∪ {i1, i2} . Update Intervals

46: end for
47: end function
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3.5 Model Application and Computational Tests

We tested the iterative algorithm using flight schedules obtained for the maintenance

workshops under consideration over the 30-day period selected. The results shown in

this section use preprocessed flight data between dates 14/11/16 and 15/12/16 (see

Section 3.4.1 for more information on the data gathering and preprocessing). The

iterative algorithm was written in Python, using Gurobi Optimization version 8.1

(2019) to solve the models. Two computational studies are presented, one for the

single workshop case (five workshops treated independently) and one for the multi-

workshop case (up to eight workshops treated simultaneously).

As for the experimental set-up, we restrict the interval splitting stage of the al-

gorithm such that the resulting intervals are at least 5 seconds long. Solution times

for each iteration are limited to 500 seconds for each objective. The parameters used

for the computational tests include the standard duration and frequencies for the reg-

ulated medium-term maintenance checks, as mentioned in Section 3.1. Specifically,

according to Table 3.1, for the two types of aircraft under consideration, the values of

regulation parameter, Rt(k),c, is given in Table 3.3. Here, we see the type of aircraft

(Airbus A320 and Fokker 100), check type (c = 1 or 2) and the corresponding main-

tenance regulation parameter values, Rt(k),c. Using these values, c = 1 corresponds

to an A check and c = 2 corresponds to a C check. Resource demand and capacities,

shown in Table 3.4, vary for four different types of renewable resources. A realistic

interpretation of resources is as follows, r1 – number of hangar bays, r2 – certified

technicians, r3, r4 – different types of specialised tools. The value for the tolerance, ε,
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which determines the required accuracy level as A ≥ 1−ε, is set to be 0.01. The initial

maintenance requirement (MR) variable is sampled from a Uniform distribution as

follows,

w
inf{Ik}
kc ∼ Unif(0, 0.3) ∀k, c.

Sensitivity analysis around the chosen value produces distinct maintenance schedules

and resource profiles but does not affect the computational performance of the algo-

rithm. For instance, higher values lead to more maintenance being scheduled towards

the start of the planning horizon; conversely, lower values lead to more maintenance

being scheduled towards the end of the planning horizon.

Table 3.3: Maintenance regulation parameter values for two check types (1 and 2)
and two aircraft types (A320 and F100).

t(k) c = 1 c = 2

Airbus A320 Rt(k),c =600FH Rt(k),c =6000FH

Fokker 100 Rt(k),c =500FH Rt(k),c =5000FH

Table 3.4: Sample resource demands and limit capacities for four types of resources
(ri for i = 1, 2, 3, 4) and two maintenance types (1 and 2).

r br1 br2 Bi
r

r1 1 1 25
r2 3 5 25
r3 2 3 25
r4 1 2 25

In addition, the formulations are solved using lexicographic ordered objectives

with priorities as suggested by airline practitioners. In the order of importance, the

objectives which are minimised, namely,

1. the number of violations (objective 3.3.18),
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2. the maximum resource level (objective 3.3.19),

3. the number of strictly reassigned flights (objective 3.3.20),

4. the weighted number of maintenance interventions (objective 3.3.21),

5. the weighted overall resource usage (objective 3.3.22),

6. the total MR at the end of the planning horizon (objective 3.3.23).

Given that we are seeking for a maintenance feasible schedule, assigning the number

of violations, in any but the highest priority level leads to infeasible maintenance

schedules. Apart from this, as tests revealed, the order of the other objectives does

not affect the integrity of the solutions or the computational times.

3.5.1 Single Workshop Case

In the case when maintenance workshops can be treated independently, we can solve

the problem for each workshop individually. This situation can occur, for example,

due to the geographical location of the workshops or upon a particular airlines’ request

or restrictions. In this case, we implement the algorithm in parallel for each mainte-

nance workshop under consideration. It is worth noting that due to the preprocessing

routine, which leads to considering only flights with large turnaround times and just

two specific aircraft types, the number of flights and aircraft are significantly reduced

compared those seen in ordinary operations; for more information see Section 3.4.1.

The details for the five workshops, are as follows,
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Atlanta Hartsfield-Jackson International Airport: with 1048 flights and 115

aircraft, produces 389 intervals;

Bangkok Suvarnabhumi Airport: with 3869 flights and 49 aircraft, produces 843

intervals;

Cairo International Airport: with 781 flights and 34 aircraft, produces 279 inter-

vals;

Dubai International Airport: with 223 flights and 11 aircraft, produces 63 inter-

vals;

Tokyo Haneda International Airport: with 978 flights and 10 aircraft, produces

162 intervals.

In all cases under consideration, after a single iteration of the conflicting period

selection stage, violations are removed and the interval splitting stage begins. In order

to compare the three splitting methods, we study four different aspects, namely, the

final number of intervals, total run times, accuracy measure, and objective function

value. Table 3.5 breaks down the objective function for the largest workshop, while

the results for the workshops under consideration are shown in Table 3.6. Specifically,

Table 3.6 shows the accuracy measure plots per iteration, final number of intervals,

and total run times. In the accuracy measure plots, as shown in the legend, Method

1 is represented with solid lines, Method 2 with dashed lines, and Method 3 with

dot-dashed lines.

The trend with the number of intervals per iteration is increasing for all methods,
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which is expected. The final number of intervals, as shown in Table 3.6 , is the number

of intervals at the last iteration. Method 3 offers the least final number of intervals

throughout, which is reflected in its solution times. Method 1 reveals a higher number

of intervals than Method 2.

The run times for the largest workshop, Bangkok, using Method 3 takes 72 minutes

to terminate the algorithm. For the remaining, small to medium-sized workshops, it

takes between 0.36 seconds to 4 minutes to reach a good solution. Computational

times for Method 1 and Method 2 (both significantly larger than Method 3) with the

latter showing lower solution times.

The accuracy measure per iteration appears as a plot in the second column in

Table 3.6. As can be seen, the accuracy measure evolves differently depending on the

workshop. It takes a varying number of iterations across workshops for the algorithm

to terminate. In all cases, more clear for Atlanta and Dubai, the required level of

accuracy (0.99) is not reached; the algorithm terminates due to no more intervals

being created. For the cases of Tokyo and Dubai, using Method 3, terminates the

algorithm in very few iterations; whereas the rest take slightly more. Between Methods

1 and 2, both provide very similar quality solutions.

A breakdown of the different components of the objective function value for the

Bangkok workshop is given in Table 3.5. The table shows the different values for each

objective per iteration and for the corresponding splitting method. In each iteration,

the best method is shown in green. This is determined by comparing objectives

in decreasing order of priority until differing objectives are found, and one method

presents an objective value lower than the rest. Note that objectives 3.3.18 (number
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of violations) and 3.3.20 (number of reassigned flights) remain constant. Objectives

3.3.21 (weighted number of maintenance interventions) and 3.3.22 (weighted overall

resource usage) decrease, while objectives 3.3.19 (maximum resource level) and 3.3.23

(total MR at the end of the planning horizon) show some fluctuation. The decrease

in the fourth and fifth priority objectives is due to them being the only ones weighted

with the duration of the intervals, and, therefore, are the only ones that are decreasing

as the duration of maintenance interventions also decrease. The first iteration is the

starting point where no splitting has occurred, hence, objectives have the same values

throughout the three splitting methods. In the second iteration, Method 2 is better

than Method 3 as it presents the same first three priority objectives (Obj. 3.3.18 -

3.3.20) and a lower value in the fourth priority objective (Obj. 3.3.21). Iterations

thereafter show that Method 3 dominates with a lower second priority objective (Obj.

3.3.19). Additionally, Method 3 provides healthier fleet overall, as suggested by the

consistently lower value of objective 3.3.23.

Due to its good solution times, lowest objective values, and overall higher accuracy

measure we can claim that, for the single workshop case, the interval splitting stage

performs better using Method 3. Furthermore, it is worth noting that the aircraft

are, also, kept in a healthier state at the end of the planning horizon. For this reason,

we present more detailed results using Method 3 for the largest workshop (Bangkok).

Figure 3.7 shows two resource profiles (first and last iteration) for resource r1 at the

Bangkok workshop. From Figure 3.7a to Figure 3.7b, we see that the resource profiles

become considerably less populated and thinner. This means that the resource usage
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is more efficient. Particularly, by the last iteration, the solution tends to have slightly

higher resource levels to avoid performing maintenance during busy flight periods.

This leads to most maintenance occurring during night and early morning shifts, as

one would expect.

Since terminating the algorithm when A ≥ 1 − ε, or when no more intervals can

be added, does not guarantee an optimal solution we conducted some further testing.

For the Atlanta workshop, we compare our solution (using Method 3) to one obtained

with a traditional discretisation method. We discretised time intervals using a varying

time step, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 minutes, and solved the problem once with

a 5 hour time restriction per objective. Figure 3.8 shows, on the left-hand y-axis,

the percentage error when comparing the optimal objectives 3.3.21 (weighted number

of maintenance interventions) and 3.3.22 (weighted overall resource usage) obtained

using our method with the traditional discretisation for different time steps. The

right-hand y-axis, with a grey dashed line, shows the computational times when using

the traditional discretisation for different step sizes.

The percentage error for objectives 3.3.21, and 3.3.22, are shown using a solid red,

and blue lines respectively. The corresponding error for the lower bounds are shown in

the same colours but with dot-dashed lines. As with previous cases, objectives 3.3.18–

3.3.20 remain constant, so they have not been included in the figure. It can be observed

that the percentage error increases as the time step decreases. This means that the

solution obtained with the traditional discretisation is improving, with respect to our

optimal solution, as the step size is reduced. Our solution provides better solutions
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for step sizes of 8 minutes and above (hence the negative percentage error values).

The optimal solution for a time step of 4 minutes (the smallest available as 2 and

3 minutes timed-out) shows only 0.6% improvement for both objectives. While for

the lower bounds for the smallest time step (2 minutes) show 6.6% improvement in

objective 3.3.21, and 8% in objective 3.3.22. Nevertheless, our solution gives a value

20% lower over all step sizes for the second priority objective (objective 3.3.19). Thus,

given the priority of the objectives, Method 3 dominates all the solutions studied

produced using traditional discretisation, thus, producing near optimal solutions.

The dashed line in Figure 3.8, plotted against the right-hand y-axis, reveals that

implementing a traditional time discretisation comes at a huge computational cost.

Specifically, the discretisation with the smallest time step (2 minutes) is around 188

times slower than our solution. The reason why our method is significantly more

efficient is because it only makes time intervals more granular when it is required and

where the solution is more sensitive.

Table 3.5: Objective function breakdown for the Bangkok workshop. The best method
in each iteration is highlighted in green.

Iteration Method / Obj.
Obj.

3.3.18
Obj.

3.3.19
Obj.

3.3.20
Obj.

3.3.21
Obj.

3.3.22
Obj.

3.3.23
1 Method 1 0 70 3 305 2184 54

Method 2 0 70 3 305 2184 54
Method 3 0 70 3 305 2184 54

2 Method 1 0 70 3 216 1559 62
Method 2 0 70 3 209 1509 52
Method 3 0 70 3 210 1523 60

3 Method 1 0 77 3 179 1304 66
Method 2 0 77 3 179 1303 60
Method 3 0 70 3 173 1258 60

4 Method 1 0 77 3 169 1231 71
Method 2 0 77 3 169 1234 101
Method 3 0 70 3 169 1233 55
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Table 3.6: Comparison across 5 workshops during the interval splitting stage for the
three different splitting methods.

Table 6: Comparison across 5 workshops during the interval splitting stage for the three different splitting methods.

Station Accuracy Measure (per iteration) Features Splitting Methods

Atlanta

� � � �

����

����

����

����

����

�������� �������� ��������

Method 1 Method 2 Method 3

Final #
intervals

3343 3187 551

Total CPU
time (min)

60 52 4

Bangkok

� � � �

����

����

����

���� Final #
intervals 2713 2653 919

Total CPU
time (min) 105 95 72

Cairo

� � � � � � �

���

���

���

���

��� Final #
intervals 3431 3117 349

Total CPU
time (min) 68 47 5.5

Dubai

� � � � �

���

���

���

���

��� Final #
intervals 473 457 85

Total CPU
time (s) 6.6 4.4 0.36

Tokyo

� � � � � �

���

���

���

���

Final #
intervals 845 771 189

Total CPU
time (min) 234 72 3.3

23
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(a) Resource profile for the first iteration.
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(b) Resource profile for the last iteration.

Figure 3.7: Resource profiles for the Bangkok workshop for the first and last (4th)
iterations of the interval splitting stage using Method 3.
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Figure 3.8: Result comparison (objectives 3.3.21, 3.3.22) for Method 3 vs traditional
discretisation for different time steps.
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3.5.2 Multi-workshop Case

To allow for interdependence between airlines and workshops, we consider several

multi-workshop cases. Here, the algorithm solves the problem for all the workshops

simultaneously. The first multi-workshop case considers four of the workshops used

in the single workshop case. Using Atlanta, Cairo, Dubai and Tokyo, we produce

a multi-workshop test set with 3002 flights and 167 aircraft, which produces 900

intervals. The interdependence for this case, due to their close proximity, is between

Cairo and Dubai.

After a single iteration of the conflicting period selection, all violations are re-

moved. Hence, the interval splitting stage begins. Table 3.7 shows, the intervals,

computational time and accuracy measure value for each of the splitting methods. In

each iteration, the best method is shown in green. As with the single workshop, this

is determined by comparing objectives in decreasing order of priority until differing

objectives are found, and one method presents an objective value lower than the rest.

To avoid repetition, these have not been included due to their resemblance with the

results in the single workshop case. The computational times reveal that Method 3

is the fastest (with a total of 1158 intervals and 9 minutes), followed by Method 2

(with a total of 4812 intervals and 58 minutes) and then Method 1 (with a total of

5020 intervals and 62 minutes). The highest accuracy measure, however, is no longer

associated with Method 3, but with Method 1.

Given that it shows lowest solution times and objective values, provides a health-

ier fleet, and exhibits an acceptable accuracy measure we suggest that, for the multi-
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Table 3.7: Method comparison for the 4-workshop case.

Iteration Method Intervals CPU time
(s)

Accuracy
Measure

1 Method 1 900 59 0.72
Method 2 900 57 0.72
Method 3 900 61 0.72

2 Method 1 1384 610 0.86
Method 2 1390 414 0.83
Method 3 1076 123 0.84

3 Method 1 2556 1252 0.93
Method 2 2586 1258 0.92
Method 3 1134 148 0.90

4 Method 1 5020 1777 0.99
Method 2 4812 1739 0.98
Method 3 1158 200 0.94

workshop case, the interval splitting stage should be implemented using Method 3.

However, if more accuracy is sought, one can resort to Method 1 at the expense of

higher computational times. When compared with the average accuracy measure

obtained individually for the four workshops, Method 1 shows a 6% increase. This

suggests that modelling interdependence between workshops, or, inter-airline cooper-

ation, leads to more efficient allocation of resources.

Figure 3.10 shows the maintenance schedules produced using Method 3 for the four

workshops involved in the multi-workshop test set. The x-axis represents the date and

the y-axis shows each individual aircraft tail number. Hence, the plot shows when in

the planning horizon a specific aircraft is being served, which type of maintenance it

is receiving, and where the maintenance is taking place. Note that only one check 2

(c = 2 which corresponds to a C check) is scheduled in the busiest workshop, Atlanta,

on the first day (14/12). The rest of the maintenance shown are checks c = 1 which

correspond to A checks.
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Figure 3.9: Computational comparison for Method 3 applied to different multi-
workshop cases.

To study the scalability of the framework, four additional multi-workshop cases

were created. They include, a 5 workshop case with 6871 flights and 216 aircraft,

a 6 workshop case with 9681 flights and 260 aircraft, a 7 workshop case with 12402

flights and 429 aircraft, and, the largest, an 8 workshop case with 16000 flights and

529 aircraft. Additional to the five workshops considered in the single workshop case,

the 8 workshop case considers workshops based in Abu Dhabi International Airport,

Beijing Capital International Airport, and, Madrid Barajas Airport. These cases were

solved using Method 3 and until the algorithm was terminated; the least accuracy

level achieved was of 0.97. The resulting computational comparison, in Figure 3.9,

shows the computational times (red line on the left-hand y-axis) and final number of

intervals (grey dashed line on the right-hand y-axis) for the different multi-workshop

cases. The evolution of the CPU time and number of intervals seems to increase
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linearly with the number of workshops; the 8 multi-workshop case finalises with 5292

intervals and in 108 minutes. Therefore, it is possible that the framework is scalable

for larger data sets. Clearly, this depends on the size and number of flights introduced

each new workshop. Nonetheless, given the size of the largest instance considered, we

have managed to demonstrate the computational efficiency and the potential of this

framework.
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N635NK
N903NK
N208FR
N665AW
N653AW
N214FR
N678AW
N315US
N647AW
N462UA
N657AW
N109UW
N374NW
N127UW
N369NW
N485UA
N318US
N601AW
N624NK
N361NW
N672AW
N357NW
N366NW
N355NW
N112US
N454UA
N359NW
N464UA
N358NW
N333NW
N117UW
N627NK
N345NW
N620NK
N490UA
N622NK
N341NW
N639NK
N650AW
N628NK

Check 2

Atlanta

D-AIUL
D-AIUK
D-AIUH
D-AIUD
D-AIUB
D-AIUA
SU-GBF
SU-BPV
SU-BPU
SU-GBG
JY-AYR

SU-NMC
SU-GBZ
D-AIZC
D-AIZB
D-AIZF
D-AIZE
D-AIZJ

SU-GCA
D-AIZM
D-AIPC
D-AIZZ
SU-BSN
SU-GCB
SU-BQJ
SU-BQK
SU-BQM
SU-GCD
SU-TCF
SU-BQC
SU-NMA
SU-NMB
JY-AYS
JY-AYX

Cairo

A7-AHU
A7-AHW
AP-BLI
EP-IEB
VT-IFW
JY-AYQ
JY-AYR
JY-AYS
JY-AYU
JY-AYX
AP-BLY

Dubai

13-1
1

15-1
1

17-1
1

19-1
1

21-1
1

23-1
1

25-1
1

27-1
1

29-1
1

01-1
2

03-1
2

05-1
2

07-1
2

09-1
2

11-1
2

13-1
2

15-1
2

Date

JA8997
JA8654
JA8609
JA8946
JA8947
JA8400
JA8396
JA8300
JA8313
JA8304

Tokyo

Figure 3.10: Maintenance schedules produced by using Method 3 for each aircraft and
workshop in the first multi-workshop case.
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3.6 Conclusions

We have solved the airline fleet maintenance scheduling problem considering tail as-

signment. Previous studies that tackle a similar problem have modelled a short-term

planning horizon and tend to be computationally expensive even for moderately sized

data sets. By using aircraft individual legal remaining flying hours and our interval

based formulations, we tackle the problem while providing solutions in reasonable

time. We present two multi-objective mixed integer linear programming formulations

for this purpose. The first acts as a feasibility check for an input flight schedule and

provides an initial set of variables for the tail assignment. If a feasible maintenance

schedule was not found, the second formulation employs the location of the regulation

violations to formulate a combined maintenance and tail assignment problem. This

explores the different options across an aircraft journey and decides on the optimal

allocation of flights, maintenance and resources. Additionally, our approach accounts

for multiple resources and for generic types of maintenance.

In order to improve solutions, we implement a heuristic algorithm that consists of

two stages: conflicting period selection and interval splitting. The conflicting period

selection stage increases the size of the tail assignment problem gradually until we

are able to produce a feasible maintenance schedule. After this, the interval splitting

stage improves resource allocation.

Test results show that the algorithm is efficient, since it can solve large instances

in reasonable computational time, for a 30-day planning horizon and provides good

quality solutions. We solved a multi-workshop test case with 8 workshops, 16000
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flights and 429 aircraft in under 2h. Highlighting the importance of developing new

efficient formulations. Solutions present airlines with alternatives to their initial tail

assignment during the planning stage. These solutions focus on satisfying maintenance

regulations and keeping the aircraft healthy, while remaining commercially viable for

the airlines. Results promote inter-airline cooperation, which allows for workshop

resource sharing between airlines, since it provides a more efficient resource allocation

per workshop.

Some limitations are worth noting. Stopping the iterative algorithm when the

accuracy measure is maximal does not guarantee an optimal solution. Clearly, if con-

tinued indefinitely, the algorithm would reach the optimal solution, however, applying

the stopping criterion gives a good quality solution in reasonable time. We compared

the solution obtained using our method to the one obtained using a traditional dis-

cretisation with a small time step. This revealed that our solution is better and around

188 times faster, however, the theoretical proof remains to be done. Additionally, we

have not considered the complications that may arise from some of the long-term

maintenance types. In some cases, for example with life limited replacements, the

inclusion of inventory control for spares and those being fixed would be paramount.

Further work includes the implementation of a rolling horizon and the application of

clustering for maintenance workshops with intersecting flights.



Chapter 4

A Hybrid Solution Procedure for

the Aircraft Recovery Problem

with Operational Restrictions

4.1 Introduction

To encourage smooth running of airline operations, at the planning stage, airlines

aim to create a schedule that suits them while respecting operational constraints.

Even though, good pre-operational planning models exist, unplanned events often

occur, affecting these plans. Hence, re-planning around the disruptions is paramount

to resume ordinary operations (IATA, 2019). The airline recovery problem studies

this problem and provides strategies to solve it. One the components of the airline

recovery problem, at the operational stage, is the aircraft recovery (AR) problem.

Other stages include, schedule, crew and passenger recovery (Clausen et al., 2010).

142
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Table 4.1: Flight range according to flight length (Eurocontrol, 2011).

Flight Range Aircraft Type Distance Time

Short-haul flight Turboprop/narrow-body ≤ 1500 km Under 3 hours
Medium-haul flight Narrow/wide-body ≥ 1500 and ≤ 4000 km 3 to 6 hours

Long-haul flight Wide-body ≥ 4000 km 6 to 12 hours

The AR problem deals with the re-assignment of aircraft to flights, or flight legs,

subject to operational restrictions, such that the cancelled and/or delayed flights are

minimised. Operational restrictions may include, aircraft, maintenance, crew, and

passenger disruption.

Aircraft types restrict the flights that certain aircraft are allowed to operate. There

are three main types of aircraft: turboprop, narrow-body, and wide-body. The main

difference among these is the passenger capacity and the flight range they operate.

For instance, a turboprop aircraft, used for regional flights, is unsuitable to oper-

ate medium-haul flights. Convention for the classification of flights is given by the

flight distance, or equivalently, the flight time. Flight range, and the link to aircraft

types, is summarised in Table 4.1 which specifies the restriction for each aircraft type.

Moreover, there are aircraft that operate mixed ranges, including: short/medium-

haul, medium/long-haul, short/long-haul, and short/medium/long-haul; the last two

are the rarest with a 0.2% and 0.9% of an international fleet (the sample included a

mixed fleet from 67 airlines between 2008 and 2009, Eurocontrol, 2011).

Maintenance requirements are covered by several civil aviation authorities which

provide a set of guidelines on how much an aircraft can be used between maintenance

operations. Typically, regulations impose four medium/long-term airframe checks

(A, B, C and D) and three long-term off-wing maintenance (engine, landing gear, and
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auxiliary power unit). These have to be performed after a certain number of flying

hours, cycles, or months depending on the aircraft type (Cook and Tanner, 2008).

Crew restrictions are dominated by duty rules. Duty rules, as outlined by Barnhart

et al. (2003), rely on regulations that balance working and resting hours for crew.

Firstly, crew duty periods (shifts) must end at the respective crew-base airport. The

most important rules that crew duties must adhere to are, (1) the maximum duty

length (i.e. time away from the crew-base), and (2) the maximum consecutive duty

hours without breaks Barnhart et al. (2003); Maher (2015).

Passenger disruption restrictions are different for cancellations and delays. Under

EU law, passengers have the right to some reparation (care, re-routing, or compen-

sation) from airlines if certain thresholds are exceeded. As established by European

Parliament and Council of the European Union (2004), for delays, passengers have

the right to reparation if (i) their short-haul flight is delayed by two hours or more, (ii)

their medium/long-haul-haul flight within the EU, or their medium-haul flight outside

the EU, is delayed by three hours or more, or (iii) their flight, not falling under (i)

or (ii), i.e. other long-haul flights, is delayed by four hours or more. For cancellations

due to “extraordinary” circumstances, airlines are exempt from providing passengers

with reparation. Given that the disruptions considered for the AR problem are of this

type, passenger restrictions for cancellations are not considered.

In this paper, we develop a generic framework that solves the AR problem by

generating flight schedules that minimise flight cancellations and operational costs,

subject to a number of operational constraints. This is done by using a new hybrid
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solution procedure with several components. We solve the AR problem using col-

umn generation. To generate columns, we model the subproblems using the shortest

path problem with resource constraints (SPPRC). Such resource constraints allow

us to model the different restrictions outlined above, namely, aircraft, maintenance,

crew and passenger delay, while keeping the algorithm computationally efficient. To

solve each SPPRC we use a reinforced learning hyper-heuristic which selects, out of

a set of metaheuristic algorithms, the most appropriate one to apply based on past

performance. In addition, once the metaheuristics stop generating columns with neg-

ative reduced cost, we employ an exact bidirectional labelling algorithm with dynamic

halfway point (Tilk et al., 2017) to guarantee optimal solutions for the LP relaxation

of the AR problem.

The remainder of this paper is organised as follows: Section 4.2, discusses the

relevant literature. Section 4.3 presents the proposed modelling approaches and the

corresponding underlying concepts. Section 4.4 presents the solution methodology

which includes preprocessing steps and a detailed breakdown of our hybrid solution

procedure. Computational experiments are given in Section 4.5, while Section 4.6

summarises the conclusions and provides recommendations for future research direc-

tions.

4.2 Literature Review

The aircraft recovery (AR) problem deals with the operational assignment of aircraft

to flights to recover from a so-called disruption. A disruption can be a series of unfore-

seen factors (e.g. air traffic controller strike, drone sighting) that leads to significantly
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reduced airline operations. Such assignment must, therefore, quickly propose a so-

lution that minimises cancellations while respecting ordinary regulations and restric-

tions. Intrinsically linked to the AR problem, is the pre-operational planning stage

equivalent, the tail assignment (TA) problem (sometimes called aircraft rotation). It

is a well-known combinatorial optimisation problem that deals with the assignment

of individual aircraft to different flight legs without delay or cancellation consider-

ations. Traditionally, there are three main types of formulation for these problems,

string-based models, time-space network (TSN) models, and multi-commodity

network flow (MCNF) models.

String-based models are a type of formulation that formulates the AR or TA

problems using strings, i.e. sequences of connected flights that begin and end at a

maintenance workshop, and that satisfy flow balance and maintenance regulations.

Barnhart et al. (1998) introduced the use of string-based formulations for the TA

problem. Some influential works employ the string-based formulation for the TA

problem (Cohn and Barnhart, 2003; Sarac et al., 2006; Papadakos, 2009). Maher

(2015) modelled the integrated airline recovery problem (including the AR problem)

using a string-based formulation and solved it using a column-and-row generation

algorithm.

Figure 4.1 shows a simple TSN, the blue arcs represent a flight path through the

network: starting at airport A at time period 1, then flying to airport B at time

period 2, then grounded at airport B until time period 3, and so on. The dashed

arcs, represent non-scheduled connections. In TSNs, each airport is represented
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by a time line where nodes represent every departure/arrival at the corresponding

airport time line. Arcs represent flights and connections between the different time

lines. TSNs were first introduced by Jarrah et al. (1993) for the AR problem, and

were made known by Clarke et al. (1997) for the TA problem. TSN models have

been widely applied (Thengvall et al., 2000, 2001; Løve et al., 2001; Hicks et al.,

2005; Bratu and Barnhart, 2006; Orhan et al., 2012; Haouari et al., 2013; Liang and

Chaovalitwongse, 2013; Marla et al., 2016; Safaei and Jardine, 2018; Khaled et al.,

2018).

Timeline for Airport B

Timeline for Airport A A1 A4 A5

B2 B3 B6

Figure 4.1: Time-Space Network (TSN) example (Torres Sanchez et al., n.d.).

MCNF models are based on a fleet-flow time-space network (layered TSN models),

where each aircraft represents separate commodities and flow has to be preserved.

The formulation, typically, includes capacity constraints (passengers and fleet) and

conservation of aircraft, flight, and airport flow (Feo and Bard, 1989). The MCNF

formulation, first employed for the AR problem by Argüello (1997), has been chosen

by multiple authors (Bard et al., 2001; Yan and Tseng, 2002; Sriram and Haghani,

2003; Mercier et al., 2005; Eggenberg et al., 2010).

Varied solution approaches have been applied to solve the different formulations for

the AR and TA problems. Column generation or branch-and-price, for instance, has

been used by Barnhart et al. (1998); Grönkvist (2005); Sarac et al. (2006); Eggenberg
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et al. (2010); Maher et al. (2014, 2018); Liang et al. (2018), among others. Par-

ticularly, Liang et al. (2018) combined column generation with a basic multi-label

algorithm (which solved each subproblem as a shortest path problem in a connection

network) and applied it to solve the AR problem with airport capacity constraints

and maintenance considerations. Even though, this framework is computationally

efficient, it is restrictive for further operational considerations. Several metaheuris-

tic algorithms have also been used for the AR problem, greedy randomised adaptive

search procedure (GRASP) (Argüello et al., 1997), local search (Løve et al., 2001),

multi-objective genetic algorithm (Liu et al., 2008), and large neighbourhood search

(Bisaillon et al., 2011). The latter, algorithm that earned the authors first prize at

the ROADEF challenge 2009 (Palpant et al., 2009), was applied to the aircraft and

passenger recovery problem.

In the applied column generation framework, particularly in the scheduling related

literature, the shortest path problem with resource constraints (SPPRC) is commonly

employed to generate columns. It consists, as its name suggests, in finding, among all

paths, the shortest path (from source to sink nodes) that satisfies a set of constraints

for a defined set of resources. The SPPRC was first introduced by Desrochers (1986)

as a subproblem for the bus driver scheduling problem and has, since then, been widely

studied and applied in a variety of settings including (but not limited to): the vehicle

routing problem with time windows, the technician routing and scheduling problem,

the capacitated arc-routing problem, on-demand transportation systems, and airport

ground movement (Desrochers and Soumis, 1988; Feillet et al., 2004; Irnich and Vil-
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leneuve, 2006; Righini and Salani, 2008; Bode and Irnich, 2014; Chen et al., 2016;

Garaix et al., 2010; Tilk et al., 2017; Zamorano and Stolletz, 2017). Its ability to

model complex cost functions as simple resource constraints and the variety of algo-

rithms to solve it, make it a versatile and flexible method (Irnich and Desaulniers,

2005). For the AR problem, the idea of applying the SPPRC was previously sketched

by Eggenberg et al. (2010). They solved the problem using column generation, where

the subproblems were solved using the SPPRC. However, a single resource was in-

cluded (to account for maintenance) and computational experiments appear to be

incomplete (no computational times given).

Several algorithms have been developed to solve the SPPRC exactly. The most

common exact algorithms are dynamic programming (DP) labelling algorithms. These

methods build paths in a systematic fashion by starting at a source node and traversing

the graph considering all feasible directions. Labels are created in order to efficiently

compare different paths and discard the suboptimal ones. Irnich and Desaulniers

(2005) presented an exact algorithm based on DP, the monodirectional forward la-

belling algorithm, based on the pioneering work by Desrochers and Soumis (1988).

Boland et al. (2006) published a state augmenting algorithm that uses a monodirec-

tional labelling algorithm to find an elementary path (one without repeating nodes).

Righini and Salani (2006) introduced a bidirectional labelling algorithm for the SP-

PRC. The bidirectional algorithm is an extension of the monodirectional algorithm

that supports search from both ends of the graph, hence, reducing the computa-

tional efforts. Moreover, they use bounding to mitigate label explosion. This typical

phenomenon occurs due to the nature of the algorithm and the need to store the
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non-dominated labels of all partial paths. More recently, Tilk et al. (2017) released

a bidirectional labelling algorithm with dynamic halfway point. Based on previous

works (Righini and Salani, 2006; Pecin et al., 2017), the bidirectional search is bounded

for both directions and these bounds are dynamically updated as the search in either

direction advances. The algorithm has been shown to be significantly more efficient

that monodirectional ones (Gschwind et al., 2018).

Even with some of the most recent algorithms, solving an instance of the SP-

PRC exactly can be slow, thus, heuristic algorithms have been developed to find fast

and promising shortest paths. These are mostly based on either DP or local search

methods (metaheuristics). DP heuristics have been implemented by several authors.

Feillet et al. (2004) presented a label correcting algorithm. Lozano et al. (2015) de-

veloped a pulse algorithm. Local search or metaheuristics start with a given path and

perform a series of moves (node/arc: deletion, insertion, or exchange) to obtain an-

other feasible path with lower cost. Metaheuristics implemented include Tabu search

(Desaulniers et al., 2008), GRASP (Ferone et al., 2019), and hybrid particle swarm

algorithm (Marinakis et al., 2017). Ferone et al. (2019) used GRASP in conjunction

with a branch and bound scheme to solve the related: constrained shortest path tour

problem.

When several low-level heuristics or metaheuristics are available to solve a certain

problem, hyper-heuristic algorithms exploit the combination or selection of these to

generate improved solutions. Figure 2.6 shows a scheme for a selective hyper-heuristic.

Given some problem specific input and three different heuristics, in each iteration, the

hyper-heuristic algorithm selects one heuristic (based on the ranking), applies it on the
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problem under consideration, evaluates its performance, and updates the ranks of all

heuristics based on the performance. Given the scope of the area, we refer the reader

to the recent and thorough review by Burke et al. (2013), and Burke et al. (2019).

Specifically related to column generation, Li et al. (2015) combined a selection hyper-

heuristic algorithm with column generation for the bus driver scheduling problem. To

the extent of our knowledge, no other authors have combined hyper-heuristics with

column generation.

The contributions of the present paper are (also outlined in Table 4.2),

• Hybrid Solution Procedure. We combine a reinforcement learning selection

hyper-heuristic with column generation.

• Generic Modelling. The SPPRC allows for complex and generic operational

constraints. We cater for aircraft, maintenance, crew duty, and passenger de-

lay restrictions, but scope for more considerations is possible e.g. crew budget

constraints, strategic delay costs, or airport capacity.

• SPPRC Algorithms. We implement four metaheuristic algorithms (two pre-

sented in this paper and two recent ones) and an exact algorithm (bidirectional

labelling algorithm with dynamic halfway point) to efficiently solve instances of

the SPPRC. These have been released as a Python package (Torres Sanchez,

2019a).

• Computational Efficiency. Our hybrid solution procedure was tested on six

different real-world tests instances with different sizes, producing solutions in

minutes.
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Table 4.2: Summary of selected AR literature. Air. = aircraft type flight range considerations, Maint. = maintenance regulations
considerations, Pass. = passenger delay restrictions considerations, SPPRC = use of shortest path problem with resource
constraints, HH = use of hyper-heuristics, Opt. = optimal integer solution obtained, F = number of flights in largest test
instance, A = number of aircraft in largest test instance, T = computational time of largest test instance.

Article Air. Maint. Crew Pass. SPPRC HH Opt. F A T

Argüello (1997) × × × × × × × 42 16 10 s
Thengvall et al. (2000) X × × X × × × 42 16 10 s
Thengvall et al. (2001) X × × X × × × 1434 332 3.5 h

Løve et al. (2001) X × × × × × × 340 80 6 s
Bard et al. (2001) × × × × × × × 162 27 3 min

Bratu and Barnhart (2006) X × X X × × × 1063 302 1.4 h
Liu et al. (2008) × × × × × × × 140 19 n/a

Eggenberg et al. (2010) × × × X X × × 608 85 50 min
Bisaillon et al. (2011) × X × X × × × 1423 256 n/a

Maher (2015) × X X X × × X 262 48 20 min
Liang et al. (2018) × X × × × × × 638 4 6 min

Present paper X X X X X X × 658 28 69 min
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4.3 Modelling

To formulate the aircraft recovery (AR) problem, we introduce the following notation.

Let J be the set of all flights, indexed by j. Let K be the set of aircraft, indexed by

k. Let S be the set of schedules, indexed by s, with each schedule having a certain

cost, cs, associated with it. Each schedule is composed of a series of flights, which can

be denoted with J s, hence, j ∈ J s means that flight j is present in schedule s. We

can define the cost of a schedule as the sum of the costs of the flights that compose it.

Flight costs take into account operational and delay costs; see Section 4.3.3 for more

information.

Let the parameter dsjk, be equal to 1 if flight j is assigned to aircraft k in schedule

s, and it is 0 otherwise. Finally, we define an assignment variable, xsk gets the value

1 if schedule s is assigned to aircraft k, while it is 0 otherwise.

4.3.1 Definitions

Sets

J : Set of flights indexed by j, with J = {1, . . . , J};

K : Set of all aircraft indexed by k, with K = {1, . . . , K};

S : Set of schedules indexed by s.

J s : Set of flights in schedule s, with J s ⊆ J ;

Parameters

cs : Cost of schedule s;

dsjk : Parameter equal to 1 if flight j is assigned to aircraft k in schedule s, 0 otherwise.
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Variables

xsk : 1, if aircraft k is assigned to schedule s, 0 otherwise.

4.3.2 Aircraft Recovery Problem Formulation

Using the notation defined, let us formulate the AR problem as follows,

Model 4.3.1. AR using a set covering formulation.

min
∑
s

∑
k

csxsk (4.3.1)

Subject to∑
s

∑
k

dsjkx
s
k ≥ 1 ∀ j; (4.3.2)∑

s

xsk ≤ 1 ∀ k; (4.3.3)

xsk ∈ {0, 1} ∀ k, s; (4.3.4)

Objective 4.3.1 minimises the total cost of assigning aircraft to schedules. Con-

straints 4.3.2 ensure that each flight is assigned to at least one aircraft. Constraints

4.3.3 ensure that each aircraft is assigned to at most one schedule. Constraints 4.3.4

define the domain of the binary assignment variable.

To efficiently solve this problem, we can employ column generation. On the average

case, column generation prevents from having to enumerate all schedules (2J − 1).

4.3.3 Column Generation

To apply column generation, let us formulate a restricted and relaxed version of Model

4.3.1. For this purpose, we solve the problem on a reduced number of schedules. In

every iteration, i, of the column generation scheme, we introduce a new schedule s,

i.e. a column. The set of schedules S i is then updated as S i = S i−1 ∪ {s} (for i ≥ 1).
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The corresponding schedule costs, cs, are set appropriately (as discussed in Section

4.3.3). For the first iteration, we employ schedules S0, where each schedule contains

a single and distinct flight. That is, for s ∈ S0,
⊔
s J s = J . Additionally, to avoid

these single flight schedules to appear in the solutions, we set each schedule cost, cs,

to a large flight cancellation cost. For a given iteration i of the column generation

scheme, we can use schedules s ∈ S i, to formulate the restricted and relaxed version

of Model 4.3.1 as follows,

Model 4.3.2. Restricted and relaxed AR problem.

min
∑
s

∑
k

csxsk (4.3.5)

Subject to∑
s

∑
k

dsjkx
s
k ≥ 1 ∀ j; (4.3.6)∑

s

xsk ≤ 1 ∀ k; (4.3.7)

xsk ≥ 0 ∀ k, s; (4.3.8)

Aside from using a subset of schedules, the only other change with respect to

Model 4.3.1, is the linear relaxation of the binary variable with constraints 4.3.8. Let

πj and µk be the dual variables for constraints 4.3.6 and 4.3.7, respectively. Hence,

the reduced cost, for a given aircraft k, schedule s, is given as,

csk = cs −
∑
j

dsjkπj + µk . (4.3.9)

Column generation involves solving a subproblem that will provide the column

with the most negative reduced cost, or equivalently, finding a schedule s such that,

c∗k = min
s
{csk} = min

s

{
cs −

∑
j

dsjkπj

}
+ µk . (4.3.10)
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Hence, generating a column for aircraft k corresponds to solving a subproblem and

creating a schedule s with its corresponding flights. Specifically, each subproblem is

modelled by employing the shortest path problem with resource constraints (SPPRC).

Given that airlines’ operational factors can be taken on an individual aircraft basis,

we can model them in the subproblems as independent resource constraints.

Subproblems: Shortest Path Problem with Resource Constraints

To solve the subproblems for each aircraft k, given in Equation 4.3.10, we make use of

the SPPRC. To model the subproblems accurately, let us define a network with some

specific properties. Let G = (N,A) be directed activity-on-arc or a TSN where the

set of nodes N represents the airports under consideration at different time points,

and the arcs, A, correspond to connections. Let G have a single source and sink nodes

with no incoming or outgoing connections respectively. For two nodes i, j ∈ N there

is an arc, i.e connection, g = (i, j) ∈ A, if and only if it corresponds to a scheduled

connection (flight or ground with g ∈ J ), or a non-scheduled connection (g /∈ J ). We

distinguish two types of non-scheduled connections: a flight delay copy, a delayed

copy of a scheduled flight; and a non-scheduled ground connection. See Section

4.4.1 for more details.

For any connection g, let wg denote the weight, hg and tg denote the head and tail

nodes (respectively), ag and dg denote the arrival and departure times (respectively),

rg denote the flight range, and lastly, let Tg denote the type of connection (scheduled:

flight or ground connection, non-scheduled: flight delay copy or ground connection).

Additionally, every connection has a corresponding operational cost. For a sub-
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problem k and any scheduled connection, the operating cost is defined to be propor-

tional to a standard operating cost cstk . Where cstk is either, the standard total oper-

ating cost (per unit time) for aircraft k, if the connection corresponds to a flight, or 0

otherwise. The costs associated with non-scheduled connections (per unit time) are,

codk for flight delay copies (operating costs under delay), and cgwk for ground connections

(ground waiting costs). See Appendix B.2 for the values used in the computational

tests.

To define resource consumption and constraints, let R = {1, . . . , R} be a set of

resources. Let L = (L1, . . . , LR) and L = (L
1
, . . . , L

R
) be vectors for minimum and

maximum resources, respectively. For each connection g, we denote the associated

weight by wg, and the resource consumption vector by fg = (f 1
g , . . . , f

R
g ). Each com-

ponent in this vector is referred to as a resource extension function (REF) (Irnich

and Desaulniers, 2005). For a given path, p, we denote the set of connections by

A(p), the weight of the path by w(p), and the resource consumed along the path by

f(p) = (f 1(p), . . . , fR(p)), where,

w(p) =
∑
g∈A(p)

wg ; f r(p) =
∑
g∈A(p)

f rg . (4.3.11)

To define the weight wg, for an arc g and subproblem k, we use,

wg =



cstk (ag − dg)− πg if g ∈ J

cstk (ag − dg) + codk (dg − dj)− πj if g /∈ J ∧ COND0

cgwk (ag − dg) if g /∈ J ∧ COND′0

; (4.3.12)

where πg is the dual variable for constraints 4.3.7. Here, condition COND0 is true
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only if Tg corresponds to a flight delay copy of a scheduled flight j, where,

j = sup {j ∈ J : hj = hg, tj = tg, and dj < dg} . (4.3.13)

Condition COND′0 is true only if Tg corresponds to a non-scheduled ground con-

nection. Hence, Equation 4.3.12 defines the weights of scheduled and non-scheduled

connections separately. For a given subproblem k and any scheduled connection g,

the weight is proportional to the standard operating cost for aircraft k (cstk ) times the

duration of the connection, minus the corresponding dual value. Note that this may

lead to negative weights. For a given subproblem k and any non-scheduled connection

g, if the connection corresponds to a flight delay copy, then the weight is equal to the

standard operating cost (cstk ) times the duration of the connection, plus the operating

cost under delay (codk ) times the delay with respect to the original flight, minus the

dual value of the original flight. If the non-scheduled connection corresponds to a

non-scheduled ground connection, then the weight is equal to the ground waiting cost

(cgwk ) times the duration of the connection.

Using these definitions, generating a column for each aircraft k corresponds to a

schedule t produced by the connections of a path produced by solving an appropriate

SPPRC. Such path is one that minimises delay while satisfying operational restric-

tions. That is, finding a path in G, p, which minimises w(p) subject to resource

constraints L ≤ f(p) ≤ L, i.e. Lr ≤ f r(p) ≤ L
r

for every resource r. To evaluate

the column, the reduced cost can be calculated by updating the parameters dtjk, and

using Equation 4.3.9. If the reduced cost is negative, the column is added with a cost

ct. To minimise operational costs, ct is set to be equal to the total operating costs of
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the schedule.

Resource Extension Functions

To take airline operational factors into account, we define appropriate resource ex-

tension functions (REFs) employed in the SPPRC. For this purpose, it is convenient

to define some attributes for connections and aircraft. Each connection g, in a TSN,

G, has attributes regarding the arrival and departure airports (hg, tg), departure and

arrival times (dg, ag), and flight range (rg). Each aircraft k has an attribute rk that

represents the range that a certain aircraft type can operate. Let us define a set of

seven resources,

R = {mono, air, maint, crew-d1, crew-d2, pass, non-s} ,

corresponding to: an artificial monotone resource (required for the exact algorithm,

see Section 4.4.2); operational restrictions: aircraft, maintenance, crew (duty restric-

tions 1 and 2 from Section 4.1), and passenger delay; and an additional restriction for

non-scheduled connections.

We can define REFs for each resource. For extending partial path pi (a path from

source to node i) along arc g = (i, j), resulting in partial path pj (a path from source

to node j passing through node i), we can set the resource consumption vector, f(pj),

according to the following REFs.

For the artificial monotone resource,

f mono(pj) = f mono(pi) + 1 (4.3.14)
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For aircraft restrictions,

f air(pj) =


1 if not COND1

0 otherwise

; (4.3.15)

where condition COND1 depends on the range of the aircraft under consideration,

rk. If rk is short-haul or long-haul, then COND1 is true only if rg corresponds to the

same range. If rk is short/medium-haul, then COND1 is true only if rg is at most a

medium-haul flight.

For maintenance restrictions,

f maint(pj) =



f maint(pi) if hg = tg

0 if COND2

f maint(pi) + (ag − dg) otherwise

; (4.3.16)

where condition COND2 is true only if the origin and destination airports, hg = tg,

corresponds to a hub airport and the turnaround time, ag−dg, is at least long enough

for the shortest type of maintenance allowed. We denote this quantity with maintMin.

For crew duty restrictions 1 and 2,

f crew-d1(pj) =



f crew-d1(pi) + (ag − dg) if hg 6= tg

f crew-d1(pi) if not COND′2

0 if COND′2

; (4.3.17)
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and

f crew-d2(pj) =



f crew-d2(pj) + (ag − dg) if hg 6= tg

f crew-d2(pi) if not COND3

0 if COND3

. (4.3.18)

Where condition COND′2 is true only if the arrival and departure airport, hg =

tg, corresponds to a hub airport. Condition COND3 is true only if the origin and

destination airports, hg = tg, corresponds to a hub airport and the turnaround time,

ag − dg, is at least long enough for the shortest crew duty break. We denote this

quantity with breakMin.

For the passenger delay restrictions,

f pass(pj) =


1 if COND4

0 otherwise

; (4.3.19)

where condition COND4 is true only if g /∈ J , corresponding to a flight delay copy

of flight j (defined by Equation 4.3.13), and either of the following hold: if rg is

short-haul, dg − dj ≥ 2; if rg is medium-haul, dg − dj ≥ 3; or if rg is long-haul,

dg − dj ≥ 4.

Lastly, for non-scheduled connection restrictions,

f non-s(pj) =


1 if g ∈ J

f non-s(pi)− 1 otherwise

. (4.3.20)

With these definitions, we can set the minimum and maximum resource levels for
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each resource as,

L = (0, 0, 0, 0, 0, 0, 0), L = (|A|, 0,FH,CD1,CD2, 0, 1) , (4.3.21)

Recall that the entries are in the same order as the resources, R. This enforces the

following restrictions, for each resource r,

r = mono: the artificial monotone resource increases by 1 every time an arc is tra-

versed, with an upper bound equal to the number of arcs in the network;

r = air: aircraft can only perform flights that match with their type. Clearly, this

can be included as part of the preprocessing stage, however, we incorporate it

as this allows the modelling of more complex aircraft type constraints;

r = maint: maintenance increases with flying hours unless either the path extension

corresponds to a ground connection or a maintenance stop is done, in which

case it is set to 0. A maintenance stop is one done at a hub airport with enough

time to perform at least the shortest maintenance. The upper bound, FH,

corresponds to the maximum flying hours allowed by regulations (see Section

4.1);

r = crew-d1: crew duty rule 1, the maximum shift duration, must not exceed CD1

(see Section 4.1);

r = crew-d2: crew duty rule 2, the maximum flying hours without rest, must not

exceed CD2 (see Section 4.1);

r = pass: passenger delay cannot exceed the limits imposed by regulations (see Sec-
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tion 4.1);

r = non-s: enforces that no two consecutive non-scheduled connections are in a path.

A scheduled flight sets the resource to 1, otherwise, it is set to its previous

value minus 1. Since the minimum for this resource is 0, and two consecutive

non-scheduled connections will produce a value of -1, the required relation is

enforced.

See Appendix B.2 for the values of FH, CD1, and CD2 used in the computational

tests.

4.4 Solution Methodology

The hybrid solution procedure relies on several interacting components. Namely, the

generation and update of a specific type of network and the combination of column

generation with hyper-heuristics. In this section, we examine the different compo-

nents of the hybrid solution procedure in detail. Particularly, we study the different

algorithms employed in the column generation scheme, exact and metaheuristic, and

adapt a reinforcement learning–great-deluge hyper-heuristic to create two column

generation-specific hyper-heuristics.

4.4.1 Network Generation

Flight schedules allow us to construct the necessary TSN network for the subprob-

lems. The TSN network, G, as defined in Section 4.3.3, is constructed as follows. A

node is included for every airport under consideration at each different time point.

We include two artificial nodes that represent the source and sink nodes, with no in-
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coming or outgoing arcs respectively. Arcs are split by scheduled flights/ground arcs

(those present in the initial flight schedule), and non-scheduled connections which we

generate. Non-scheduled connections are generated between all airports with a prior

existing flight (flight delay copies) and all ground arcs. Another type on non-scheduled

connection are ferry or empty flights (sometimes positioning). However, ferrying is

not always considered in the AR problem (Clausen et al., 2010), alternatively, some

authors that account for crew recovery considered crew deadhead flights (where crew

travel along with passengers), Maher (2015), for instance. Kenan et al. (2018) solved

an extension to the TA problem (with maintenance) allowing ferry flights. They re-

ported that the appearance of these types of connections in the solutions occurred

only upon the decrease of the allocated ferrying costs (provided by an airline) and

resulted in a small increase in profit. Thengvall et al. (2001) solved the AR problem

using a TSN and also including ferry flights. Results showed that the number of ferry

flights in the solution decrease as the recovery horizon increases. Additionally, the

recovery horizons in this work were under 24 hours. Given that the recovery hori-

zons considered in this research are at least 2 days, we do not account for ferrying;

nonetheless, flight delays and cancellations are included.

Figure 4.2 shows a two airport example of a TSN with two different routes. Given

the routes in the pre-operational flight schedules (blue and red arcs), non-scheduled

connections are generated (dashed arcs) for flight delay copies and ground arcs. More-

over, due to airline restrictions, flight delay copies are not generated prior to the orig-

inal flight. For instance, a copy for the blue flight B3 to A4 is only generated after,

creating the flight delay copy B4 to A5, but not B2 to A3. This creates a cross-hatched
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pattern between connected airports. Generating delay copies in this fashion, avoids

creating additional arcs (as with most of the traditional methods), but fits more nat-

urally into the original pre-operational plans. Clearly, larger networks benefit from

more flight delay copies and therefore, more options when creating routes; hence,

leading to better quality solutions. On the other hand, small networks provide less

flight delay copies and typically correlate with worse quality solutions. See Section

4.5 for more information.

Timeline for Airport B

Timeline for Airport A A1 A2 A3 A4 A5 A6

B2 B3 B4 B5 B6

Figure 4.2: Generation of Time-Space Networks.

4.4.2 Hybrid Solution Procedure

There are several components in our hybrid solution procedure. Figure 4.3 outlines the

three main parts. The TSN component (in yellow), as previously discussed in Section

4.4.1, generates the initial TSN based on an input flight schedule, then, once the duals

have been obtained from the solution of Model 4.3.2, we update the connection weights

as discussed in Section 4.3.3. The column generation component (in purple), has three

processes that involve, solving Model 4.3.2, generating a column and checking whether

a proposed column has negative reduced cost. To solve the subproblems, we make

use of the hyper-heuristic component of the solution procedure (in grey). Here, we

select, out of a set of heuristics H, an algorithm H to solve the subproblem for aircraft
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k, hence, generating a column. Then, we evaluate the performance of the heuristic

based on past performance and the cost of the column provided. If the column for

aircraft k has negative reduced cost, then we add it to Model 4.3.2 and resolve the

problem. Otherwise, we check whether all subproblems have been solved using an

exact algorithm, A. If not, then we update the hyper-heuristic accordingly depending

on which hyper-heuristic we are using. Broadly, this involves using the exact algorithm

if all heuristics have produced a non-negative reduced cost for k, and updating the set

of heuristics H in different ways (see Section 4.4.2 for a more detailed explanation).

If all subproblems have been solved using the exact algorithm and produced columns

with non-negative reduced costs, we exit the loop.

We now proceed to describe the different components of the hybrid solution proce-

dure. Particularly, we focus on the exact and metaheuristic algorithms implemented

for solving the subproblems and on the hyper-heuristics used to select and evaluate

the metaheuristic algorithms.

Exact Algorithm

To solve the SPPRC exactly, we implement a bidirectional labelling algorithm with

dynamic halfway point (Tilk et al., 2017). It is an extension of the monodirectional

algorithm that supports search from both ends of the graph, hence, reducing the

computational efforts. The algorithm relies on two assumptions. Firstly, one of the

resources must be a monotone resource. Such a resource is common for forward and

backward searches. Let us denote such a resource by mono. The assumption is easily

met, as a monotone resource typically present in most applications e.g. time; if not, an
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Figure 4.3: Hybrid Solution Procedure.

artificial monotone resource can be created, e.g. the number of arcs visited. Second,

that the REFs are invertible. These can be easily constructed for typical REFs (Irnich,

2008). Let, the inverse of the REF for a particular resource r, as introduced in Section

4.3.3, f rg , be denoted with brg. We refer to these as the forward and backward REFs

respectively. Practically, the backward REFs can be defined using the REFs as per

Section 4.3.3. Consider the extension of a backward partial path pj (from the sink to

node j) along arc g = (i, j), resulting in backward partial path pi (from the sink to

node i passing through node j), we can set the resource consumption vector, b(pi),

according to the following criteria. Resources air, pass and non-s can employ the
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correspond same REFs, the remaining resources use an inversion of the corresponding

forward REF.

To apply the bidirectional algorithm, each node i has a series of forward and

backward labels associated to it F l
i and Bl

i, respectively. Each forward label takes the

form,

F l
i =

(
w(pli), f(pli)

)
where pli is the corresponding partial path from the source to node i. The first ele-

ment, w(pli), is the weight of the partial path, and the second, f(pli), is the resource

consumption vector of the partial path.

Similarly, each backward label takes the form,

Bl
i =

(
w(pli),b(pli)

)

where pli is the corresponding backward partial path from the sink to node i. The

elements of the label are the same as for the forward labelling, the weight of the

backward partial path and the resource consumption vector (using the backward REF)

of the backward partial path.

Using these labels, dominance relations can be defined. Let F l
i and Fm

i be two

different forward labels for node i, with corresponding partial paths pli and pmi . We say

that label F l
i dominates label Fm

i if w(pli) ≤ w(pmi ), f(pli) ≤ f(pmi ), and at least one the

inequalities is strict. The vector inequality is satisfied if and only if f r(pli) ≤ f r(pmi )

for every resource r. Backward dominance relations are defined in a similar fashion,
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but using backward labels and REFs.

The pseudo-code for the bidirectional labelling algorithm with dynamic halfway

point (Tilk et al., 2017) is shown in Algorithm 3. The inputs required are, a graph

(G), and lower and upper bounds for resources (L, L). The forward and backward

halfway points (HF, HB) are set to Lmono = HB < HF = L
mono

, line 2, as required for

the search to have a dynamic halfway point. Further initialisations are, two sets of

forward and backward unprocessed paths (F, B) and a set of processed paths P. Once

the direction is settled, in line 5, we proceed either a forward or backward search in

a very similar manner as the monodirectional labelling algorithm. After choosing a

path from the unprocessed set of paths, lines 7 (forward) or 17 (backward), we check

if the halfway point has been reached, lines 8 or 18, if not, then we proceed to extend

the selected path in the traditional way, lines 9-13 or 19-23. After this, we update the

value of the halfway point to reduce the size of the search in the opposite direction.

That is, in the forward search, in line 14, we update HB to a higher value if we have

searched past it. Conversely, in the backward search, in line 24, we update HF to a

lower value if we have searched past it. The algorithm carries on like this, updating

the direction of search in every iteration, and terminating when no more paths remain

to be processed in any direction. Moreover, in line 30, at the end of every iteration,

we can apply some dominance rules to remove unnecessary paths. To do so, labels

are generated for each forward or backward partial path.
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Metaheuristic Algorithms

We present three metaheuristic algorithms to use in the hyper-heuristic framework.

These include: two tailor made algorithms developed by us, a Tabu search algorithm

(inspired by Desaulniers et al., 2008) and a greedy elimination algorithm; and one

recent algorithm from the literature, a greedy randomised adaptive search proce-

dure (GRASP), adapted from Ferone et al. (2019). Our algorithms exploit the speed

provided by a standard shortest path algorithm. The underlying reasoning is that ob-

taining the shortest path using a standard algorithm on a modified network that forces

a resource feasible path, is computationally cheaper than using an SPPRC specific

algorithm. All algorithms have the following common inputs: a TSN, G (as defined

in Section 4.3.3), and lower and upper bounds for resources L and L (as defined in

Section 4.3.3).

The first metaheuristic algorithm we have developed, is a Tabu search algorithm.

The pseudo-code is provided in Algorithm 5. In addition to the common inputs, it

requires a user defined large number, M . After some appropriate initialisations, we

proceed with the algorithm until a resource feasible path is found. First, in line 6,

we find a partial shortest path, p, between the node neighbour and the sink, using a

standard shortest path algorithm (e.g. A* search algorithm). Given the initialisations,

the first path obtained is one from source to sink. If the partial path is valid, then

we update the full path (from source to sink), path. This is done by merging the full

path with the partial path after the branching point (the node neighbour). If the

resulting full path is resource feasible, we stop the algorithm; otherwise, we find the
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edge that makes the full path resource infeasible, line 12, and place a tabu there, line

13. This is done by setting the weight of the edge to be M , hence, is avoided by the

shortest path algorithm. Using the new tabu edge, we update the neighbour node as

the head of the tabu edge, line 18. The function in line 13, GetNeighbour, ensures

that the tabu is not placed on the same edge twice. Instead, it backtracks from the

current tabu edge, returning the backward neighbouring edge (one incident to the

tabu edge) with the largest weight. Please see Appendix B.1.2 for more details on the

functions used. If the operations performed results in a non-valid partial path, then,

in line 16, we place the tabu edge on a backward neighbouring edge of the current

tabu edge.

Algorithm 5 Tabu Search for the SPPRC.

1: INPUTS: G = (V,A), L, L, M .
2: Initialisations:
3: stop = False, edgesToCheck = A, neighbour = Source, tabu = None, path =

[ ], neighbourhood = [ ].
4: . See Appendix B.1.2 for functions employed
5: while stop is False do
6: p = ShortestPath(neighbour, Sink, G)
7: if p is valid then
8: path =UpdatePath(neighbour, neighbourhood, p)
9: if path is resource feasible then

10: stop =True . Terminate the algorithm
11: else
12: Find edge g that makes the path resource infeasible
13: tabu, edgesToCheck, neighbourhood =GetNeighbour(edgesToCheck,

neighbourhood, g) . Update tabu edge, array of edges to check and
neighbourhood

14: end if
15: else
16: tabu, edgesToCheck, neighbourhood = GetNeighbour(edgesToCheck,

tabu) . Update tabu edge, array of edges to check and neighbourhood
17: end if
18: neighbour = h(tabu) . Update neighbour as head node of current tabu edge
19: end while
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The second metaheuristic algorithm we have developed, the Greedy Elimination

algorithm, is shown in Algorithm 6. Using the common inputs, and after the appro-

priate initialisations, in line 5, a standard algorithm is applied to obtain a full path,

p, from source to sink. Please see Appendix B.1.2 for more details on this function.

If the full path is valid, then we check if it is resource feasible. If this is true, then

we terminate the algorithm, line 8; otherwise, we remove the problematic edge (the

edge that makes the path resource infeasible) and resolve the shortest path problem.

If the resulting path turns out to be non-valid, we add back the edge we previously

removed, and instead, remove a backward neighbouring edge of the edge we previously

removed. We continue in this fashion until a resource feasible path is obtained.

Algorithm 6 Greedy Elimination Algorithm for the SPPRC.

1: INPUTS: G = (V,A), L, L.
2: Initialisations: stop = False, neighbourhood = [ ].
3: . See Appendix B.1.2 for functions employed
4: while stop is False do
5: p = ShortestPath(Source, Sink, G);
6: if p is valid then . If a path exists
7: if path is resource feasible then
8: stop =True . Terminate the algorithm
9: else

10: Find edge g that makes the path resource infeasible
11: Remove g from G
12: end if
13: else . If no path exists
14: Add g back to G
15: . Get new neighbouring edge to remove and update neighbourhood array
16: edge, neighbourhood = GetNextNeigh-

bouringEdge(neighbourhood, g)
17: Remove edge from G
18: end if
19: end while

We implemented an adapted version of the GRASP presented by Ferone et al.
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(2019). The inputs required, apart from the common inputs, include: maxiter, the

maximum number of iterations to terminate the algorithm; maxiterLocal, the max-

imum number of iterations to terminate the local search algorithm; α, the greediness

factor (a value close to 1 represents a greedy selection, and a value close to 0 rep-

resents to a random selection); c, a cost function to evaluate solutions given by the

algorithm; and M a large number to use as a penalty. Solutions are defined as ordered

sets of nodes in the network, connected or not. The cost associated with each solution

reflects on the connectivity and total weight of the path provided by the sequence of

nodes. That is, for a potential path (any set of two or more nodes in the graph) in a

given solution, the associated cost is equal to the sum of the weights of the edges in

the potential path. However, if the potential path is not valid, then the cost function

returns the penalty value, M .

After the appropriate initialisation, until the number of iterations exceeds maxiter,

the algorithm generates a solution, line 5, improves it using local search, line 6, eval-

uates and updates the best solution according to whether there is an improvement,

lines 7 and 8. The functions in lines 5 and 6, defined in Appendix B.1.3, perform

various operations.

The ConstructSolution function, line 5, after sampling a random starting

node, constructs a new solution by iteratively appending nodes based on their cost.

To select a node to append to the solution, we compute a restricted candidates list,

with all the nodes such that their cost, with respect to the last node in the solution,

satisfies a simple equation involving the greediness factor α. By the definition of the

cost function, if no edge exists between a candidate node and the last node in the



CHAPTER 4. AIRCRAFT RECOVERY PROBLEM 174

solution, then the corresponding cost will be the penalty M . The node to append to

the solution is randomly sampled from the restricted candidates list. This process is

iterated until the solution contains all the nodes in the graph.

The LocalSearch function, line 6, improves the current solution constructed

in line 5, solution, by identifying paths using the nodes in it. Precisely, we try to

identify a valid path using a random sized sample of the permutations of the nodes

in the solution. The new path is a candidate solution. As previously, if the candidate

solution is a non-valid path, then this is reflected in the cost. If the candidate solution

has a lower cost than the current solution and is a resource feasible path, we replace

the current solution with the candidate solution. This process is repeated until the

number of local iterations exceeds maxiterLocal, returning the updated (or not)

solution.

Algorithm 7 Adapted GRASP for the SPPRC (Ferone et al., 2019).

1: INPUTS: G = (V,A), L, L, maxiter (# of iterations), maxiterLocal (# of
local search iterations), α (Greediness factor), c (cost function), M (penalty).

2: Initialisations: stop = False, iter = 0, solution = [ ], best = [ ]
3: . See Appendix B.1.3 for functions employed
4: while iter < maxiter do
5: solution = ConstructSolution(.)
6: solution = LocalSearch(solution)
7: if c(solution) < c(best) then
8: best = solution

9: end if
10: iter = iter + 1 . Increment iteration counter
11: end while

Hyper-heuristic Algorithm

We employ the reinforcement learning – great-geluge hyper-heuristic proposed by

Özcan et al. (2010). Algorithm 8 outlines the approach. It relies on the use of
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utilities to select heuristics from a set of heuristics H. In every iteration, we select the

heuristic with highest utility, apply it, and evaluate it using a function f(·), which we

are trying to minimise. Hence, the solution is compared to the previous one, fp, to

identify an improvement. If the heuristic has led to an improvement, i.e. a lower value

with respect to the previous solution, we improve the utility for that heuristic, if not,

then we worsen it. The authors define three different functions that can be employed

to update the utilities: addition, division or square root. That is, for a heuristic

Hi ∈ H the corresponding utility, ui, is worsened by either ui = ui−1 (U1), ui = ui/2

(U2), or ui =
√
ui (U3), and improved only for the additive case, by ui = ui + 1. The

improvement rate of U1 causes it to be provide less exploration of the heuristics than

the other utilities, favouring better performing heuristics Özcan et al. (2010).

Algorithm 8 Reinforcement Learning – Great-Deluge Hyper-heuristic (Özcan et al.,
2010)

1: INPUTS: H (set of heuristics), utilities (array with initial utilities),
f(·) (function to evaluate heuristic).

2: Initialisations: Apply a random heuristic H and set fp = f(H)
3: while Stopping criteria not satisfied do
4: Choose heuristic H ∈ H with maximum utility
5: Apply heuristic H
6: if f(H) < fp then
7: Update utilities by improving the utility of heuristic H
8: else
9: Update utilities by worsening the utility of heuristic H

10: end if
11: fp = f(H)
12: end while

To adapt the great-deluge hyper-heuristic for our hybrid solution procedure, we

consider some column generation specific criteria. One hyper-heuristic is created per

subproblem which selects a heuristic and uses it to solve the subproblem, hence,
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generating a column. The evaluation function f is defined to be the reduced cost

produced by the column. In order to update the utilities, we compare the reduced

cost with the previous reduced cost for the same subproblem. The utilities are then

updated as outlined above, being shared across all subproblems. Moreover, we can

update the set of heuristics and apply the exact algorithm in different ways. We outline

two hyper-heuristic algorithms that use this column generation specific criteria, HH1

and HH2.

In HH1, for a particular subproblem, we apply all heuristics, selecting them based

on their utility, until either, a column with negative reduced cost is generated, or all

heuristics fail to generate a column with negative reduced cost. If all heuristics fail,

we apply the exact algorithm to generate a column. If the column has a negative

reduced cost, we repeat the process until the exact algorithm generates columns with

non-negative reduced cost for all subproblems.

In HH2, for a particular subproblem, k, we define a subset of heuristics Hk ⊆ H.

A heuristic is selected from Hk, based on the utilities, and applied to the subproblem.

If the selected heuristic produces a column with non-negative reduced cost for a sub-

problem k, we remove it from Hk. Thus, it cannot be selected for future subproblems

k. Once all heuristics have been removed from Hk (i.e. all heuristics have gener-

ated columns with non-negative reduced cost) we use employ the exact algorithm to

generate columns for k thereafter.
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4.5 Computational Experiments

To test the hybrid solution procedure which involves a hyper-heuristic algorithm for

column generation, as outlined in Section 4.4.2, we generated six different test in-

stances. For this purpose, we obtained flight schedules from Flightradar24 AB (2018)

using the package pyflighdata (Allamraju, 2014). After an extended data gathering

stage, we can easily filter data per airline. The six test instances were constructed

with flights in operation during varying time horizons in February 2017. Table 4.3

specifies the following information about the instances: the number of flights, the

number of aircraft, the number of aircraft types, the planning horizon, the dates of

the instance, and the size of the TSN generated (as outlined in 4.4.1). Table 4.4

summarises the algorithms used with their respective parameters, these are as sug-

gested by the authors (Ferone et al., 2019). We have released the implementation of

these algorithms (metaheuristic and exact) as a freely available Python package, cspy

(Torres Sanchez, Under review). Additionally, we include the implementation of the

hybrid particle swarm algorithm for the SPPRC by Marinakis et al. (2017); however,

this algorithm could not cope with our test instances. Please refer to Appendix B.2

for more information on the composition of the fleet and specific parameters employed

in the computational tests.

Table 4.5 shows the counts for the different metaheuristic algorithms as chosen by

each of the hyper-heuristics (HH1 and HH2) with the three different utility functions

U1 (additive), U2 (division), and U3 (square root). The average time per column,

i.e. per subproblem, is also included. The counts shown by HH1 are higher given
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Table 4.3: Test instances.1 F = # of flights, A = # of aircraft, T = # of aircraft
types, H = length of planning horizon in days, TSN= size of time-space network (#
of nodes, # of arcs).

Name F A T H Dates TSN

I1 212 6 2 10 16/02/2017 - 26/02/2017 (220, 822)
I2 273 6 1 10 17/02/2017 - 27/02/2017 (168,569)
I3 230 8 1 2 17/02/2017 - 19/02/2017 (240, 910)
I4 151 2 2 8 17/02/2017 - 25/02/2017 (168, 727)
I5 314 5 1 4 17/02/2017 - 21/02/2017 (322, 1168)
I6 187 8 3 7 14/02/2017 - 21/02/2017 (217, 743)

1 The data was obtained from real-world airline with their
respective hub airport(s). For data protection, we have re-
moved the real names.

Table 4.4: Algorithms used in solution procedure.

Abbrv. Algorithm Parameters

A1 Bidirectional labelling (Algorithm 3) n/a
H1 Tabu Search (Algorithm 5) M = 1010

H2 Greedy Elimination (Algorithm 6) n/a
H3 GRASP (Algorithm 7) maxiter = 100,

maxiterLocal =
10, α = 0.2, M =
1010

that it provides a fairer exploration of the metaheuristics, even more so using utilities

U2 and U3 (Özcan et al., 2010). Algorithm H1 (Tabu Search) dominates in both of

the hyper-heuristics and the three utility functions. Even for the largest instance,

I2, the average computational time per iteration is under 1 second. Algorithm H2

(Greedy Elimination) also shows small computational times, regardless of the size

of the instance. Even though it takes significantly longer to process, H3 (GRASP)

is consistently worst and therefore last in the rankings for both hyper-heuristics.

Such rankings are consistent throughout the two hyper-heuristics and the three utility

functions.

Tables 4.6 and 4.7 show the computational results for all instances using hyper-

heuristics HH1 and HH2, respectively, with the three different utilities. Included
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Table 4.5: Usage count of metaheuristics for the two hyperheuristics (HH1, HH2)
using different utility functions.

HH1 HH2

Instance Heuristic Count per Utility
Mean CPU

time per
column (s)

U1 U2 U3 U1 U2 U3

I1 H1 44 49 42 36 100 58 0.09
H2 15 19 20 9 10 11 0.01
H3 14 19 19 8 10 8 102.55

I2 H1 19 17 28 21 17 20 0.05
H2 14 11 20 15 13 12 0.01
H3 10 11 16 14 10 12 193.96

I3 H1 40 38 36 30 44 41 0.11
H2 16 18 15 11 11 12 0.01
H3 13 18 15 9 10 12 127.10

I4 H1 5 5 10 10 5 10 0.06
H2 3 3 4 3 3 3 0.01
H3 2 2 4 3 2 2 51.58

I5 H1 17 15 16 19 14 19 0.15
H2 8 7 8 7 8 8 0.01
H3 7 7 7 6 7 7 200.01

I6 H1 29 29 22 28 31 29 0.04
H2 15 21 17 11 14 13 0.01
H3 12 16 15 11 12 12 102.16

in the tables are, the number of iterations, the number of columns generated with

negative reduced cost, the percentage of flights cancelled in the final solution, and

the total computational time. For every instance, the best utility is highlighted in

green. That is, the utility that provides the solution with smallest percentage of flight

cancellations or total operating costs if two solutions have the same percentage of

flight cancellations. Using HH1, all utilities U1, U2, and U3 are selected for 2 (out

of 6) instances. Using HH2, U2 is selected for 3 (out of 6) instances, while U1 and

U3 are selected for 2 and 1 instances, respectively. Moreover, HH1 shows significantly

higher computational times; for example, for the largest instance (I2), HH1 provides
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a solution in 67 minutes versus 40 minutes using HH2. Also, it appears that HH1

does not provide significant improvements in the solutions with respect to HH2.

Table 4.6: Computational results of the hybrid solution procedure using hyperheuris-
tic HH1.

Instance Utility Iterations Columns
% Cancelled

Flights

CPU
Time
(min)

I1 U1 11 43 8.49 25.10
U2 14 51 5.19 33.86
U3 15 43 11.79 33.75

I2 U1 7 23 3.30 45.97
U2 6 21 3.30 36.75
U3 10 33 3.30 66.72

I3 U1 9 42 9.57 35.66
U2 11 36 8.70 38.48
U3 8 32 7.83 33.48

I4 U1 4 4 35.76 1.89
U2 4 4 35.76 1.93
U3 7 9 35.76 3.60

I5 U1 6 16 2.55 26.48
U2 5 14 2.55 22.35
U3 6 16 2.55 26.25

I6 U1 6 27 27.81 26.20
U2 8 32 31.02 36.92
U3 7 24 33.16 30.02
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Table 4.7: Computational results of the hybrid solution procedure using hyperheuris-
tic HH2.

Instance Utility Iterations Columns
% Cancelled

Flights

CPU
Time
(min)

I1 U1 9 35 10.85 16.43
U2 33 102 5.19 18.89
U3 23 59 5.66 20.28

I2 U1 10 33 3.30 46.84
U2 8 23 3.30 43.33
U3 7 26 3.30 40.38

I3 U1 6 26 6.96 24.73
U2 10 41 8.70 22.62
U3 10 41 6.96 27.18

I4 U1 8 10 37.75 2.75
U2 4 4 35.76 1.91
U3 7 9 35.76 1.93

I5 U1 6 17 2.55 28.16
U2 6 15 2.55 22.92
U3 8 19 2.55 26.25

I6 U1 6 26 24.06 19.60
U2 7 33 32.09 24.78
U3 8 30 25.13 22.82
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Figure 4.4 shows a detailed comparison between the best performing utility func-

tion for HH1 (results in red) and HH2 (results in blue) for each instance. The x-axis

shows the instances in increasing order proportional to their TSN size (I4, I1, I6, I3,

I5, and I2). As previously mentioned, HH2 dominates in computational time (blue

dashed line on the right-hand y-axis) when compared to HH1 (red dashed line), being

on average 22% faster than HH1. The bar chart, plotted against the left-hand y-axis,

shows the comparison in the percentage of cancelled flights for both hyper-heuristics.

It can be seen that HH2 (blue bars) has equal or lower cancellations than HH1 (red

bars) across all instances.
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Figure 4.4: Comparison between hyper-heuristics HH1 and HH2.

Given the clear dominance by hyper-heuristic HH2, we perform a more detailed

study and some further experiments. Figure 4.5 displays the relationship between the

TSN size, for each test instance, with the percentage of flights cancelled in the best

solution obtained using HH2 (green rows in Table 4.7). As in Figure 4.4, the x-axis

shows the instances in increasing order proportional to their TSN size (I4, I1, I6, I3,
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I5, and I2). As indicated by the fitted least squares polynomial of degree two (in

blue), the percentage of cancelled flights decreases with the increase in the size of the

TSN. The trend supports the claim that the quality of the solution increases with the

size of the network. Unsurprisingly, a larger network, with higher number of nodes

and connections, allows for more flexibility when generating schedules and therefore,

leads to better solutions. Hence, our hybrid solution procedure performs increasingly

better with larger networks and seems to be computationally scalable.

Figure 4.6 shows the comparison between using three methods, the exact algo-

rithm (A1) to generate columns in every iteration, a random non-learning-based

hyper-heuristic, and the hybrid solution procedure. For the random non-learning-

based hyper-heuristic, we simply use HH1 with a random utility and a reduced set of

heuristics for performance, H ={H1, H2}; we refer to this method as RAND. Simi-

larly, for the hybrid solution procedure, HH2 is used with utility U2 and a reduced

set of heuristics for performance, Hk ={H1, H2} for all k subproblems; we refer to

this method as mHH2. The bar chart, plotted against the left-hand y-axis, shows the

percentage of flights cancelled in the optimal solution for the three methods. Red

bars show A1, blue bars show RAND, and purple bars show mHH2. Both RAND and

mHH2 dominate A1 in solution quality. The increase in the quality of the solution

is due to the use of different metaheuristics; this allows for a wider search of the

solution space. Against the right-hand y-axis, we have three points for each instance,

representing the computational times (in minutes) for A1 (crosses), RAND (circles)

and mHH2 (black diamonds). Please note that the computational time for method

A1 instance I5 is not included in the plot as its value (30 minutes) significantly skews
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the plot. Our hybrid solution procedure (mHH2) provides consistently faster (all in-

stances were solved in under 50 seconds) and better solutions. Therefore, if one aims

for computational efficiency we recommend mHH2.

Using mHH2 to test the scalability claim further, we performed an experiment

with a significantly larger TSN. Using an instance of 658 flights and 28 aircraft (which

produces a TSN, 93% larger than I2, with 1302 nodes and 4882 arcs) we produced

a solution with only 4.3% of cancelled flights in 69 minutes (after 21 iterations and

277 columns with negative reduced cost). This result, fits with the trend exhibited in

Figure 4.5, thus, further supporting the scalability claim.
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Figure 4.5: Trend between network size
(per instance) and percentage of flights
cancelled (using HH2).
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Figure 4.6: Performance comparison
for each instance using the exact algo-
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method (rHH1), and the hybrid solution
procedure (mHH2).
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4.6 Conclusions

We have solved the aircraft recovery problem considering operational restrictions.

Previous studies that tackle a similar problem pose restrictive assumptions on the op-

erational constraints. By using our hybrid solution procedure we are able to account

for generic and multiple operational restrictions. Such framework uses column gener-

ation with subproblems modelled as shortest path problems with resource constraints

(SPPRC). Furthermore, to improve computational efficiency and the quality of the

solutions, we implement different hyperheuristic algorithms. Such algorithms learn

and select varying metaheuristic or exact algorithms, depending on their past perfor-

mance, to employ for the generation of columns with negative reduced cost. Using

the exact bidirectional labelling algorithm with dynamic halfway point, we produce

optimal solutions for the LP relaxation of the aircraft recovery problem. Therefore,

this paper bridges between several disjoint areas in the literature and closes several

gaps in the aircraft recovery literature. The software that collects the implementa-

tions included in this paper is freely available as a Python package (Torres Sanchez,

Under review).

The hybrid solution procedure was tested using six real-world instances of different

sizes. Results show that our approach is not only efficient, solving all instances in

reasonable computational time, but it also produces better solutions than the exact

algorithm alone and than a random metaheuristic selection process. For the instances

studied, our Tabu search metaheuristic performed consistently better (i.e. providing

more negative reduced cost columns) than our Greedy Elimination metaheuristic and
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an adapted GRASP metaheuristic. Also, the quality of the recovery solution seems

to increase with the size of the network. The use of a fairer hyper-heuristic, one that

brings a fairer exploration of the metaheuristics, does not lead to a higher quality

of recovery solutions. Furthermore, we suggest a computational setup for the hybrid

solution procedure that produces faster solutions. Using this set up, we were able

to solve a large instance, 658 flights 28 aircraft, in under 70 minutes. The resulting

solution suggests that the framework is scalable and adds to the claim that the quality

of recovery solutions increases with the size of the network. Hence, this framework

equips decision makers with an efficient learning-based tool that can handle various

network sizes and present adaptable and good quality solutions to the aircraft recovery

problem.

Some limitations are worth noting. There seems to be potential for scaling this

framework for larger network sizes. Some tests have been performed, however, a more

thorough study is required. We have used a reinforcement learning selection hyper-

heuristic in this work, nevertheless, the implementation of some of the more advanced

forms of hyper-heuristics would be an interesting extension. Additionally, includ-

ing more SPPRC algorithms would also enrich the hyper-heuristic selection. Even

though not typically considered in the literature, the inclusion of ferrying (operating

empty flights) brings more flexibility when generating schedules and would, therefore,

be a valuable development. With the graph representation employed in this paper

time-space network (TSN), ferrying (flying empty aircraft) could be accounted for by

either considering each TSN as a multigraph with a new edge alongside every flight
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delay copy or in a similar fashion as Thengvall et al. (2001). Provided with ferrying

costs, one may use these to set an appropriate edge weight. Nonetheless, the multi-

graph modelling requires updating the solution algorithms to perform on these types

of graphs. Lastly, we did not implement a branch-and-price framework to preserve

computational performance, however, it is required if one aims to produce optimal

integer solutions for aircraft recovery problem.



Chapter 5

Thesis Conclusions, Limitations
and Further Work

This thesis has studied the recent developments in airline fleet maintenance scheduling

and other areas, such as aircraft recovery, and presented several contributions. Partic-

ularly, we have developed new models and efficient solution methods, and implemented

cutting-edge algorithms; providing practical solutions with their companion software.

The first contribution of this thesis focuses on the modelling of, among other

factors, the prognostic states of the aircraft and the resource allocation at different

workshops, while considering tail reassignments. This was the subject of Chapter

3. The second contribution solves the aircraft recovery problem, generating sched-

ules while taking airline operational restrictions into consideration and minimising

disruptions and operational costs. The operational restrictions include aircraft, main-

tenance, crew duty, and passenger delay. This work formed Chapter 4.

In Chapter 3, we resolve the pre-operational conflicts between a proposed flight

schedule and maintenance decisions. Although optimisation models that study air-

craft maintenance have been developed, certain aspects have not been fully addressed.

Such models mainly produce cyclic maintenance schedules for short-term mainte-

188
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nance; and albeit considering a single airline, no individual workshop restrictions

or legal remaining flying hours; they tend to be inefficient even for small-medium

data sets. In this paper we present a framework that addresses these gaps. The

proposed framework deals with the requirements introduced by a 30-day planning

horizon, multiple airlines and workshops, individual legal remaining flying hours, and

tight resource availabilities. Producing adaptive maintenance schedules for large data

sets while remaining computationally efficient. Such framework involves a series of

preprocessing steps, two multi-objective mixed integer linear programming (MMILP)

formulations, and an iterative algorithm. First, the preprocessing steps allow us to

extract maintenance opportunities (MOPs), long turnaround times at maintenance

workshops from flight schedules. These MOPs enable us to model the problem using

time intervals, as opposed to a traditional time discretisation, which significantly aids

the efficiency of our framework. Then the MMILP formulations model the airline fleet

maintenance scheduling problem with tail assignment considerations. We minimise

six lexicographically ordered objectives which include the number of regulations viola-

tions, maximum resource level, number of tail reassignments, number of maintenance

interventions, overall resource usage, and the amount of maintenance required by

each aircraft at the end of the planning horizon (maximise aircraft “health”). Lastly,

the iterative algorithm, ensures a balance between computational efficiency and good

quality solutions. Computational tests reveal that our solutions are near-optimal.

More importantly, tests highlight the importance of collaborations among airlines

and maintenance providers in order to attain a balance between the joint commercial

interests and regulations imposed by aviation authorities.
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Some limitations of this chapter are worth mentioning. The termination criteria

for the algorithm does not guarantee an optimal solution. When compared with a

traditional discretisation with a small time step, we see that our solution is better and

considerably faster. Thus, suggesting that our solution is near-optimal; however, the

proof is likely to be a non-trivial task. Additionally, the chapter does not consider the

complications that may arise from some of the long-term maintenance types. For in-

stance, the inclusion of inventory control. Further work includes the implementation

of a rolling horizon to lengthen the planning horizon and the exploration of clus-

tering methods to model larger instances with a higher frequency of multi-workshop

interaction.

In Chapter 4, we solve the aircraft recovery problem using a new hybrid solution

procedure. This approach combines the use of column generation with reinforcement

learning selection hyper-heuristics to solve the aircraft recovery problem with multiple

operational considerations. Specifically, we consider operational restrictions for air-

craft, maintenance, crew duty, and passenger delay. Moreover, our generic framework

can be easily extended for further considerations. This is due to the modelling of the

column generation subproblems as shortest path problems with resource constraints

(SPPRC). Hence, allowing each restriction to be modelled as a separate resource with

no restriction on the number of resources. Given that this can heavily condition the

solution times for the subproblems, we propose two new, and implement two recent

metaheuristic algorithms to solve the SPPRC. Additionally, we implement a bidirec-

tional labelling algorithm with a dynamic halfway point to solve the subproblems
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exactly. The implementation of these algorithms was released as a Python package

(Torres Sanchez, 2019a). Computational tests reveal that this approach is compu-

tationally efficient for reasonable real-world test instances, and has potential to be

scalable.

There are a number of limitations of this work. The hybrid solution procedure

finds optimal solutions for the LP relaxation of the aircraft recovery problem. How-

ever, the initial problem is an IP, therefore, to obtain optimal integer solutions the

implementation of a branch-and-price scheme is required. Some authors have man-

aged to implement a branch-and-price scheme with SPPRC subproblems, Feillet et al.

(2007), for example. As part of the solution procedure a reinforcement learning selec-

tion hyper-heuristic is employed, nonetheless, the exploration of other hyper-heuristics

would be an attractive research direction.

Final Remarks The two main chapters of this thesis have four common features.

The modelling of the problems was done using efficient mathematical formulations.

In Chapter 3, we introduced an interval-based formulation; while in Chapter 4, we

employed a traditional set covering formulation.

Varied solution algorithms were developed and implemented. In Chapter 3, we

developed a new problem-specific iterative algorithm that exploits the efficiency pro-

vided by the interval-based formulations; in Chapter 4, we developed a hybrid solution

procedure that consists on a combination of column generation with hyper-heuristics.

Real-world test instances were solved in reasonable computational time. In Chap-

ter 3, we solved multi-workshop multi-airline instances, the largest of which contained
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8 workshops, 16000 flights and 429 aircraft and was solved in under 2 hours. In Chap-

ter 4, we solved multiple test instances the largest of which contained 658 flights and

28 aircraft and was solved in under 70 minutes.

Solution algorithms produced near-optimal solutions. In Chapter 3, test results,

with a comparison against a solution obtained using a small traditional time discreti-

sation, suggest that our solution is close to the optimal. In Chapter 4, the imple-

mentation of an exact algorithm in the column generation framework ensure that the

optimal solution to the LP relaxation is found.



Appendix A

Appendix for Chapter 3

A.1 Extension: Airline Maintenance Scheduling with

Flight Re-Scheduling

An alternative for the resolution of violations not included in the paper, is one which,

instead of tail reassignments, allows flight delays. Recall that Model 3.3.1 identifies

maintenance regulation violations. To deal with these, we can allow for some flights

to be delayed. From the airlines’ perspective, if planning is far enough ahead (which

pre-operational planning is), they can notify their staff and customers at no extra

cost. This opens the possibility to extend a MOP by the precise amount of time that

allows a maintenance intervention to be performed. Our aim is, therefore, to delay

the smallest number of flights by the least amount of time so as to avoid knock-on

delays.

For Model 3.3.1 to allow flight delays, we simply require an extra variable and the

modification of constraints 3.3.10. Let pfk be a continuous variable that represents the

duration of a delay for flight f and aircraft k. We can limit the maximum single flight

delay to be ∆p. We assume that the delays introduced, if kept short, can be absorbed

by the (large enough) turnaround time (TAT) between two MOPs.

193
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The additional constraints to extend Model 3.3.1, are as follows,

Minimum Time∑
i′∈MOP j

k

(eti
′ − sti′)mi′

kc + pfk ≥ ∆t(k),cm
i
kc ∀k, c, j, i ∈MOP j

k , f ∈ F
i
dep; (A.1.1)

Variables

0 ≤ pfk ≤ ∆p ∀f, k ∈ Kf ; (A.1.2)

Constraints A.1.1 account for the additional time that can be allocated to mainte-

nance if the flight in question is delayed. Constraints A.1.2 bound the delay variable.

Additionally, to minimise delay in Model 3.3.1, we simply add a third objective, with

the total delay introduced.

A.2 Supplementary Proofs

Proposition A.2.1. For a given interval i and aircraft k, the following inequality

holds,

sup{MOP j−1
k } < i ≤ sup{MOP j

k} ,

for some MOP j
k provided that j 6= 1, i > sup{MOP 1

k } and i ≤ sup{MOP J
k } (J =

|MOPk|). In other words, provided that the interval under consideration starts after

the end of the first MOP and before the end of the last MOP.

Proof. For a given i and aircraft k, either i ∈ Ik or i /∈ Ik.

In the first case, by definition i ∈MOP j
k for some j, hence, clearly, i ≤ sup{MOP j

k}.

Also, by definition, intervals in MOPs are disjoint i /∈MOP j−1
k , thus i > sup{MOP j−1

k }.

Therefore, the inequality holds.
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Otherwise, we have,

i /∈ Ik ∧ i ≤ sup{MOP J
k } =⇒ ∃j : j ≤ J, i < inf{MOP j

k} =⇒ i ≤ sup{MOP j
k} ,

and, therefore, i > sup{MOP j−1
k }. This completes the proof.

Proposition A.2.2. Transitivity constraints 3.3.11 – 3.3.13 ensure non-preemption

for all MOPs.

Proof. We want to prove the following relationship,

Transitivity constraints =⇒ Non-preemption,

or, equivalently,

Preemption =⇒ Transitivity constraints do not hold.

Suppose that, maintenance begins at an interval i ∈MOP j
k , or,

mi−1
kc = 0 ∧mi

kc = 1 for some i, i− 1 ∈MOP j
k .

Using constraints 3.3.12, we have that zikc = 1. Now, assume there is a preemption,

that is,

mi′−1
kc = 0 ∧mi′

kc = 1 for some i′ ∈MOP j
k , i

′ > i .

By constraints 3.3.12, we have that zi
′

kc = 1. However, given constraints 3.3.13 and

zikc = 1, we have a contradiction. Therefore, we must have

mi′

kc −mi′−1
kc ≤ 0 ∀i′ ∈MOP j

k , i
′ > i .
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Hence, within an MOP, once maintenance has started, we can either continue, in

which case mi′

kc − mi′−1
kc = 0, or end it, where mi′

kc − mi′−1
kc = −1. We cannot start

another maintenance intervention within the same MOP.

For the boundary condition, if i is the first interval in the MOP, i = inf{MOP j
k},

then by constraints 3.3.11 and 3.3.13, the claim still holds. This completes the proof.

A.3 Interval Generation

The following framework allows us to generate the intervals used in the formulation.

Actually, aircraft intervals, Ik, used in the formulation are a specific case of interval as

defined here. Let us begin by visualising and using the flight routes and maintenance

locations; for this purpose we construct a multigraph. A multigraph differs from an

ordinary graph in that two vertices are allowed to have more than one edge between

them. Moreover, we consider a directed and weighted multigraph which has similar

properties to its counterpart. Let the flight schedule be represented such a multigraph

M = (V,E); |V | = n, |E| = m. The vertex set V = {s1, . . . , sn} contains both the

airports and the maintenance locations. The edge set E contains different flights.

The weight function w = (w1, w2) contains information about departure time w1 and

flight times w2, is attributed to each edge. (wk : E → R, k = 1, 2).

The weight function allows for an edge labelling procedure that orders the edges
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...
sp sq

e1

en

e2

Figure A.1: Example of edge labelling for flights between airports sp and sq.

by departure time,

w1(e1) ≤ w1(e2) ≤ · · · ≤ w1(eN) ≤ · · · ≤ w1(eM).

Clearly, this edge labelling, which we denote as LE, is unique.

ejei

t(ei) = s(ej) t(ej)s(ei)

u v y

Figure A.2: Incident edges with source and sink functions.

Since we do not need to now exactly where each aircraft is at every period of

time, but rather, how it’s engines are being used and when it’s next maintenance

opportunity might be. We can narrow down the network to remove all the unnecessary

airports and group the into a supersource and a supersink. Let S ⊆ V be a set of

locations which can perform at least one type of maintenance check, with

ES = {e : e ∈ E, t(e) = s ∨ s(e) = s for some s ∈ S},
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let |ES| = Q and LES
⊆ LE be the corresponding labelling alphabet. Where s(·) and

t(·) are the ordinary source and sink functions. For notation purposes, we map the

labelling alphabet LES
to a set of integers LQ = {1, . . . , Q} with ei ∈ LES

→ ĩ ∈ LQ.

We can construct a refined incidence matrix “edge-adjacency” (Zoethout, 2015),

Q, as follows

q(̃i,j̃) =


1, If i < j ∧ t(ei) = s(ej) ∧ w1(ei) + w2(ei) + TAT < w1(ej)

0, Otherwise

Therefore, Q is a Q×Q strictly upper triangular matrix containing nonzero elements

only if the turn-around-time (TAT) (time from arrival to the next departure) is large

enough. That is, if flight j’s departure is at a later time than i’s (i < j) and the

arrival of flight i plus some TAT is less than the departure time of flight j; then we

may consider employing this time window for maintenance. Hence, we have identified

a maintenance opportunity. The values of the TAT can make Q represent either

a more relaxed feasible flight connections or a more restrictive (and perhaps more

robust) feasible intervals for maintenance checks.

We now show that N is linear in Q, the number of flights strictly between main-

tenance sites. Since N determines the number of variables, as they are indexed by

intervals, this proposition shows that the model is tractable for a reasonable Q.

Proposition A.3.1. An upper bound for N , the number of intervals, is

0 < N ≤ min{∆+,∆−}Q�
⌊
Q2 −Q

2

⌋
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where ∆ denotes the maximum indegree (+) and outdegree (−) of the vertices in S.

Proof. For every edge in ei ∈ ES we can easily identify the outdegree of its sink vertex,

that is degout(t(ei)). Each row ĩ of matrix Q represents the possible connections for

flight ei. For each of these, the maximum number of possible connections is the

outdegree of the sink vertex. For clarity, we drop the tilde notation. By the edge

labelling, a connection between ei and ej is not possible if j ≤ i. Thus, we can reduce

the initial number of connections for each flight ei to

Q∑
j=i+1

q(i,j) ≤ degout(t(ei))− |Et(ei)|. (A.3.1)

Where Et(ei) = {ej : ej ∈ ES, j > i, t(ei) = s(ej)}. For completeness, we also need

to count the outdegree of the edges ingoing and outgoing to vertices in the set of

maintenance locations S we can define a super source S and a super sink T . For

every e ∈ ES if s(e) 6∈ S then s(e) = S, if t(e) 6∈ S then t(e) = T ; let S ′ = S ∪{S, T}.

The upper bound comes from considering the sum of all the nonzero elements in

the part of the upper triangular matrix Q, if every single element was 1, then the

total number of elements would be
⌊
Q2−Q

2

⌋
. However, this is not the case and we can

sum equation A.3.1 to represent the total number of all the nonzero elements in the

matrix Q i.e. the size of P . Thus,

Q∑
i=1

Q∑
j=i+1

q(i,j) = N ≤
Q∑
i=1

[
degout(t(ei))− |Et(ei)|

]
=

Q∑
i=1

degout(t(ei))−
Q∑
i=1

|Et(ei)|

(A.3.2)

Now, we can expand the first sum in equation A.3.2 of the RHS directly in terms of
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the vertices as opposed to the sink of the edges. That is,

Q∑
i=1

degout(t(ei)) =
∑
s∈S′

degout(s)degin(s)

now, by the first theorem of multigraph theory. equivalent to hand-shaking lemma

(Van Steen, 2010), and by Abel’s inequality (Dragomir et al., 1998), we get,

∑
s∈S′

degout(s)degin(s) ≤ min{∆+,∆−}Q

by commutativity in the product of the non-negative degree functions.

For the second term in equation A.3.2, we have max
{
|Et(ei)|

}
= degout(t(ei)) ≤ ∆+

and min
{
|Et(ei)|

}
= 0. The result follows.
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Appendix for Chapter 4

B.1 Functions Employed in Metaheuristic Algo-

rithms

B.1.1 Algorithm 3

The function employed in Algorithms 3 is defined as,

function getDirection(F, B)
if F 6= ∅ and B = ∅ then

direction = forward
else if F = ∅ and B 6= ∅ then

direction = backward
else if F 6= ∅ and B 6= ∅ then

Randomly set direction to be either forward or backward.
else

direction = None
end if

end function

201
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B.1.2 Algorithms 5 and 6

The shortest path function employed in Algorithms 5 and 6 is defined as,

function ShortestPath(i, j, G)
Apply A* search algorithm to find the shortest path between nodes i and j, in

G.
end function

The functions employed in Algorithm 5 are as follows,

function UpdatePath(neighbour, p)
if iter= 0 then

path= p
if neighbour in path then

Concatenate elements in path, up until neighbour, with p
else

Concatenate elements in path, up until an element node such that an
edge (node, neighbour) exists in G, with p

end if
end if

end function

function GetNeighbour(edgesToCheck, neighbourhood, g)
if edgesToCheck is not empty then . There still remains edges to try

if g in edgesToCheck then . If edge has not already been checked
currentEdge = g

else if h(g) = Source then . If the source has been reached
stop = True . Terminate the algorithm
return

else . Otherwise try an edge from the predecessor array of edges
currentEdge, neighbourhood = GetNextNeighbouringEdge(neighbourhood,

tabu)
end if

else
stop= True . Stop if all edges have been removed
return

end if
Remove currentEdge from edgesToCheck and set its weight to M (input large

number)
return currentEdge, edgesToCheck, neighbourhood

end function

function GetNextNeighbouringEdge(neighbourhood, l)
if neighbourhood is empty then
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Update neighbourhood with all edges e′ in A if t(e′) = h(l)
Sort neighbourhood in increasing order by edge cost

end if
Let edge be the last element in neighbourhood and remove it from neighbourhood

return edge, neighbourhood
end function

B.1.3 Algorithm 7

The functions employed in Algorithm 7 are as follows,

function ConstructSolution(.)
candidates, RCL = [ ] . Initialise local arrays
solution = Sample(V ) . Initialise solution array by sampling a random node
while |solution| < |V | do . While solution does not contain all nodes

Populate candidates array using all nodes not in solution

candidate = GetRCL(candidates, solution)
solution = solution ∪ candidate

end while
return solution

end function

function GetRCL(candidates, solution)
. Constructs a restricted candidate list (RCL) and returns one candidate
costs = [ ] . Initialise local arrays
Populate costs with the cost between each node in candidates and the last

node in solution

for node n in candidates do
if costs[n] ≤ min(costs) + α(max(costs)−min(costs)) then

Add node n to RCL

end if
end for
return random node in RCL

end function

function LocalSearch(solution)
. Conducts local search to return a valid path
localiter= 0 . Initialise local iteration counter
while localiter < maxiterLocal do

Find a path in G using random sized samples of permutations of the nodes
in solution.

Save the path as candidate

if c(candidate) < c(solution) and candidate is resource feasible then
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solution = candidate

end if
localiter = localiter + 1 . Increment local iteration counter

end while
return solution

end function

B.2 Parameters in the Computational Tests

Table B.1 reveals the precise aircraft makes and types for each test instance, their

respective range, standard total operational costs (as given by FAA, 2013) and oper-

ational costs under delay (as given by Cook and Tanner, 2015). For illustration and

recalling the notation from Section 4.3.3, for a given subproblem k, with the make of

aircraft k being DH8D, then, the standard total operating cost for a scheduled flight

is cstk = $922 (around e823 at the current exchange rate), the cost for non-scheduled

ground connections is cgwk = e540, and, the operating cost under delay for flight delay

copies is codk = e1630.

Table B.2 summarises the parameters employed in the computational tests. First,

the cancellation cost, captured in the costs of the initial schedules in the column

generation algorithm (in the notation of Section 4.3.3, cs where s ∈ S0), were given

by Palpant et al. (2009). The minimum duration of a crew duty break, breakMin,

is given by Federal Aviation Administration (2009). The minimum duration for a

maintenance intervention, maintMin, is given by Torres Sanchez et al. (n.d.). The

remaining parameters concern to the resource limits introduced in Section 4.3.3. These

ensure that the appropriate regulations are met. Please note that the values for

maintenance (FH) and crew duty rules (CD1, CD2) were given by Cook and Tanner
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(2008) and Maher (2015), respectively.

Table B.1: Different aircraft types in test instances with their respective operating
costs.

Operating Costs (per hour)

Aircraft Make Aircraft Type (Range) Inst.
Standard

(cstk )
Ground

(cgwk )

Delayed
Flight
(codk )

DH8D Turboprop (Short-haul) I1 $922 e540 e1630
JS32 Turboprop (Short-haul) I2 $2887 e540 e1630
A319 Narrow-body (Short/medium-haul) I1, I4 $9734 e810 e3420
A320 Narrow-body (Short/medium-haul) I5 $9734 e900 e3490
B738 Narrow-body (Short/medium-haul) I6 $10430 e1010 e3650
B752 Narrow-body (Short/medium-haul) I6 $10430 e720 e4210
A359 Wide-body (Long-haul) I3, I4 $13912 e1050 e4130
B77L Wide-body (Long-haul) I6 $13912 e1310 e6230

Table B.2: Parameters for computational tests.

Parameter Representation Value

cs (s ∈ S0) Flight cancellation cost (per hour) e20000
breakMin Minimum crew duty break 3 hours
maintMin Minimum maintenance time 5 hours

FH Maximum flying hours between
maintenance (A check)

600 flying
hours

CD1 Maximum crew shift duration
(Duty rule 1)

13 hours

CD2 Maximum crew flying hours with-
out rest (Duty rule 2)

8 hours
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B.3 cspy: A Python package with a collection of

algorithms for the (Resource) Constrained Short-

est Path problem

B.3.1 Introduction

When solving the shortest path problem and considering multiple operational restric-

tions, one may resort to the (resource) constrained shortest path (CSP) problem. It

consists, as its name suggests, in finding, among all paths, the shortest path from

source to sink nodes that satisfies a set of constraints for a defined set of resources.

Such set of resources and the way they evolve throughout the path are user defined

and controlled. This allows the modelling of a wide variety of problems including: the

vehicle routing problem with time windows, the technician routing and scheduling

problem, the capacitated arc-routing problem, on-demand transportation systems,

and, airport ground movement (Desrochers and Soumis, 1988; Feillet et al., 2004;

Irnich and Villeneuve, 2006; Righini and Salani, 2008; Bode and Irnich, 2014; Chen

et al., 2016; Garaix et al., 2010; Tilk et al., 2017; Zamorano and Stolletz, 2017).

cspy is a Python package that allows you to solve instances of the CSP problem

using up to eight different algorithms.

cspy is of interest to the operational research community and others that wish to

solve an instance of the CSP problem.
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B.3.2 Algorithms

Even though the CSP problem is NP-hard (Garey and Johnson, 1990), several algo-

rithms have been developed to solve it. The most common algorithms are dynamic

programming labelling algorithms. Irnich and Desaulniers (2005) presented an exact

algorithm based on DP, the monodirectional forward labelling algorithm, based on

the pioneering work by Desrochers and Soumis (1988).

Advanced and efficient algorithms have been developed since. Boland et al. (2006)

published a state augmenting algorithm that uses a monodirectional labelling algo-

rithm to find an elementary path (one without repeating nodes). Such algorithm has

been implemented by Weyens (2018).

Righini and Salani (2006) introduced a bidirectional labelling algorithm for the

SPPRC. The bidirectional algorithm is an extension of the monodirectional algorithm

that supports search from both ends of the graph, hence, reducing the computational

efforts. More recently, Tilk et al. (2017) developed a bidirectional labelling algorithm

with dynamic halfway point. The bidirectional search is bounded for both directions

and these bounds are dynamically updated as the search in either direction advances.

The algorithm has shown to be significantly more efficient that monodirectional ones

(Gschwind et al., 2018).

Even with some of the most recent algorithms, solving an instance of the SPPRC

can be slow, thus, heuristic algorithms have been developed. Local search or meta-

heuristics start with a given path and perform a series of moves (edge/node deletion,

insertion, or exchange) to obtain another feasible path with lower cost. Some meta-
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heuristics developed include, Tabu search (Desaulniers et al., 2008), hybrid particle

swarm algorithm (Marinakis et al., 2017), and, greedy randomised adaptive search

procedure (GRASP) (Ferone et al., 2019).

cspy implements several of these recent exact and metaheuristic algorithms in-

cluding:

• Bidirectional labeling algorithm with dynamic halfway point (Tilk et al., 2017);

which includes the bidirectional labeling algorithm with static halfway point,

and the monodirectional forward and backward labeling algorithms;

• Tabu search. Adapted from Desaulniers et al. (2008);

• Greedy elimination procedure;

• Greedy Randomised Adaptive Search Procedure (GRASP). Adapted from Fer-

one et al. (2019);

• Particle Swarm Optimization with combined Local and Global Expanding Neigh-

borhood Topology (PSOLGENT) (Marinakis et al., 2017).

B.4 Features

A key component of a CSP problem is to define a set of resources and a function to

apply for these to evolve through the graph. Such functions are typically referred to

as resource extension functions (REFs). The simplest REF is an additive one, where

every time an edge is traversed a constant unit of a certain resource is consumed.

However, custom and more generic REFs can be used.
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cspy allows for custom and generic REFs to be used. Hence, allowing for a custom

consumption of the resources through the graph.

B.5 Example

Consider the following problem.

Example. Jane is part-time postwoman working in Delft, Netherlands. However,

she is assigned a small area (the Indische Buurt neighbourhood) so when planning

her daily route she wants to make it as long and exciting as possible. That is, when

planning her routes she has to consider the total shift time, sights visited, travel time,

and delivery time. Her shift has to be at most 5 hours.

This problem can easily be modelled as a CSP problem. With the description

above, the set of resources can be defined as,

1 R = [’sights ’, ’shift’, ’travel -time’, ’delivery -time’]

2 # len(R) = 4

Let G denote a directed graph with edges to/from all streets of the Indische Buurt

neighbourhood. Each edge has an attribute weight proportional to the distance (in

km) between the two nodes and an attribute res cost which is an array (specifically, a

numpy.array) with length len(R). To maximise the distance of the path, as required

by Jane, we simple negate the distance, hence, solving a shortest path problem with

negative distance will be the equivalent to solving a longest path problem. The

entries of res cost have the same order as the entries in R. The first entry of this

array, corresponds to the ’sights’ resource, i.e. how many sights there are along

a specific edge. The last entry of this array, corresponds to the ’delivery-time’
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resource, i.e. time taken to deliver post along a specific edge. The remaining entries

can be initialised to be 0. Also, when defining G, one has to specify the number of

resources n res, which also has to be equal to len(R).

1 from networkx import DiGraph

2

3 G = DiGraph(directed=True , n_res =4) # init network

Now let’s assume we have a function generate district network that can create

the appropriate network.

1 from read_input import generate_district_network

2 # function to generate network from data

3

4 G = generate_district_network ()

5 n_edges = len(G.edges()) # number of edges in network

To define the custom REFs, jane REF, that controls how resources evolve throughout

the path, we require two inputs: an array of current cumulative resource values res,

and the edge that is being considered for an extension of a path edge (which consists

of two nodes and the edge data).

1 from numpy import array

2

3 def jane_REF(res , edge):

4 arr = array(res) # local array

5 i, j, edge_data = edge [:] # unpack edge

6 # i, j : string , edge_data : dict

7 # Update ’sights ’ resource

8 arr [0] += edge_data[’res_cost ’][0]

9 # Update ’travel -time’ resource (distance/speed)

10 arr [2] += - edge_data[’weight ’] / float(WALKING_SPEED)

11 # Update ’delivery -time’ resource

12 arr [3] += edge_data[’res_cost ’][3]

13 # Update ’shift ’ resource

14 arr [1] += (arr[2] + arr [3]) # travel -time + delivery -time

15 return arr

Using cspy, Jane can obtain a route path subject to her constraints as,

1 from cspy import Tabu , GRASP

2

3 SHIFT_DURATION = 5

4 # Maximum resources

5 max_res = [n_edges , SHIFT_DURATION , SHIFT_DURATION , SHIFT_DURATION]
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6 # Minimum resources

7 min_res = [0, 0, 0, 0]

8 # Use Tabu Algorithm

9 path = Tabu(G, max_res , min_res , REF=jane_REF).run()

10 # Use GRASP algorithm

11 path = GRASP(G, max_res , min_res , REF=jane_REF).run()

Hence, each resource is restricted and updated as follows:

’sights’ : the cumulative number of sights visited has a dummy upper bound equal

to the number of edges in the graph as there is no restriction to as how many

sights Jane visits. Additionally, the value of this resource in the final path, will

provide us with the accumulated number of sights in the path;

’shift’ : the cumulative shift time is updated as the travel time along the edge

plus the delivery time, the upper bound of SHIFT DURATION ensures that Jane

doesn’t exceed her part-time hours;

’travel-time’ : the cumulative travel time is updated using the positive distance

travelled (-edge data[’weight’]) over an average walking speed. Given the re-

lationship between this resource and ’shift’, a maximum of the shift duration

provides no restriction.

’delivery-time’ : the cumulative delivery time is simply updated using edge data.

Similarly as for the previous resource, a maximum of the shift duration provides

no restriction.

If we wish to implement the bidirectional labelling algorithm, we have to invert

jane REF. In this case, it can be easily done,

1 def jane_REF_backward(res , edge):

2 arr = array(res) # local array
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3 i, j, edge_data = edge [:] # unpack edge

4 # i, j : string , edge_data : dict

5 # Update ’sights ’ resource

6 arr [0] -= edge_data[’res_cost ’][0]

7 # Update ’travel -time’ resource (distance/speed)

8 arr [2] -= - edge_data[’weight ’] / float(WALKING_SPEED)

9 # Update ’delivery -time’ resource

10 arr [3] -= edge_data[’res_cost ’][3]

11 # Update ’shift ’ resource

12 arr [1] -= (arr[2] + arr [3]) # travel -time + delivery -time

13 return arr

Now we can run the bidirectional labelling algorithm for an exact solution

1 from cspy import BiDirectional

2

3 # Use BiDirectional algorithm

4 path = BiDirectional(G, max_res , min_res , REF_forward=jane_REF ,

5 REF_backward=jane_REF_backward).run()

To see a real implementation of this example, please see Torres Sanchez (2019b).
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Qu, R. (2013), ‘Hyper-heuristics: A survey of the state of the art’, Journal of the

Operational Research Society 64(12), 1695–1724.

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E. and Woodward, J. R.
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Desrochers, M. and Soumis, F. (1988), ‘A Generalized Permanent Labelling Algo-

rithm For The Shortest Path Problem With Time Windows’, INFOR: Information

Systems and Operational Research 26, 191–212.

Doerr, B., Lissovoi, A., Oliveto, P. S. and Warwicker, J. A. (2018), On the runtime

analysis of selection hyper-heuristics with adaptive learning periods, in ‘Proceedings

of the Genetic and Evolutionary Computation Conference’, ACM, pp. 1015–1022.

Dragomir, S. S., Pearce, C. E. M. and Sunde, J. (1998), ‘Abel–type inequalities,
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Muter, I., Birbil, Ş. İ. and Bülbül, K. (2013), ‘Simultaneous column-and-row gener-

ation for large-scale linear programs with column-dependent-rows’, Mathematical

Programming 142(1-2), 47–82.

Naber, A. (2017), ‘Resource-Constrained Project Scheduling with Flexible Resource

Profiles in Continuous Time’, Computers & Operations Research 84, 33–45.

https://doi.org/10.1016/S0951-8320(02)00043-1
https://doi.org/10.1016/S0951-8320(02)00043-1
https://doi.org/10.1016/S0951-8320(02)00043-1
https://fenix.tecnico.ulisboa.pt/downloadFile/3779578550788/PedroSena_ExtendedAbstract.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779578550788/PedroSena_ExtendedAbstract.pdf
https://doi.org/10.1016/j.cor.2003.11.013
https://doi.org/10.1016/j.cor.2003.11.013
https://doi.org/10.1016/j.cor.2005.09.001
https://doi.org/10.1016/j.cor.2005.09.001
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.9924
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.9924
https://doi.org/10.1007/s10107-012-0561-8
https://doi.org/10.1007/s10107-012-0561-8
https://doi.org/10.1016/j.cor.2017.02.018
https://doi.org/10.1016/j.cor.2017.02.018


BIBLIOGRAPHY 229

Nocedal, J. and Wright, S. (2006), Numerical Optimization: Springer Series in Op-

erations Research and Financial Engineering, Springer.

Ochoa, G., Walker, J., Hyde, M. and Curtois, T. (2012), Adaptive evolutionary al-

gorithms and extensions to the hyflex hyper-heuristic framework, in ‘International

Conference on Parallel Problem Solving from Nature’, Springer, pp. 418–427.

Orhan, I., Kapanoglu, M. and Karakoc, T. H. (2012), ‘Concurrent Aircraft Routing

and Maintenance Scheduling Using Goal Programming’, Journal of the Faculty of

Engineering and Architecture of Gazi University 27(1), 11–26.
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