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ABSTRACT 

This study examined the effects of a 4-week ankle-mobility intervention on landing 

mechanics. Twenty participants with restricted ankle dorsiflexion range of motion (DF ROM) 

were allocated to either a strength training only (n = 9) or a strength training and ankle 

mobility program (n = 11). Participants performed a weight-bearing lunge test and bilateral 

drop-landings before and following the intervention. Normalized peak vertical ground 

reaction force (vGRF), time to peak vGRF and loading rate were calculated, alongside 

sagittal-plane initial contact angles, peak angles and sagittal-plane joint displacement for the 

ankle, knee and hip. Frontal-plane projection angles were also calculated. Following the 

intervention, only the strength and mobility group improved ankle DF ROM (mean difference 

= 4.1°, effect size (ES) = 1.00, P = 0.002). A one-way analysis of covariance found group 

effects for ankle joint angle at initial contact (P = 0.045), ankle (P < 0.001) and hip joint 

angle at peak flexion (P = 0.041), and sagittal-plane ankle (P < 0.001) and hip joint 

displacement (P = 0.024) during bilateral drop-landings. Post-hoc analysis revealed that the 

strength and mobility group landed with greater ankle plantar flexion at initial contact (mean 

difference = 1.4 ± 2.0˚, ES = 0.46) and ankle dorsiflexion at peak flexion (mean difference = 

6.3 ± 2.9˚, ES = 0.74) following the intervention, resulting in greater ankle joint displacement 

(mean difference = 7.7 ± 4.0˚, ES = 1.00). However, the strength training only group landed 

with increased peak hip flexion (mean difference = 14.4 ± 11.0˚, ES = 0.70) and hip joint 

displacement (mean difference = 8.0 ± 6.6˚, ES = 0.44) during post-testing. The findings 

suggest that changes in landing strategies following the performance of a strength training 

program are specific to whether restrictions in ankle mobility are considered as part of the 

intervention. 
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INTRODUCTION 

During landings, ankle dorsiflexion aids in attenuating vertical ground reaction forces 

(vGRF) (34), whilst facilitating knee and hip flexion via sagittal-plane coupling mechanisms 

to reduce the impact of landing (31). Restrictions in ankle dorsiflexion range of motion (DF 

ROM) is recognized as a modifiable injury risk factor for athletes who perform a high 

volume of landing activities (2). This is likely due to compensations caused by ankle DF 

ROM restriction during landing tasks, resulting in less effective strategies being used. For 

example, reduced ankle DF ROM has been shown to limit peak ankle, knee and hip flexion 

angles (10, 14), whilst increasing peak knee abduction angles during landings (14, 22). 

Additionally, during landings where individuals with restricted ankle DF ROM demonstrate 

reduced knee flexion joint displacement, a negative relationship between ankle DF ROM and 

peak vGRF during bilateral landings has been reported (11). These findings suggest that 

individuals with ankle DF ROM restrictions land using a stiffer strategy with greater peak 

knee abduction angles that may result in elevated landing forces.  

 

Increased ankle mobility may improve landing mechanics by increasing sagittal-plane joint 

displacement at the ankle, knee and hip (10, 11, 14), resulting in reduced peak vGRF (34) 

and, consequently, diminished injury risk (13). Interestingly, ankle DF ROM can be 

improved in relatively short time periods as significant gains in ankle DF ROM have been 

shown in ≤ 4-weeks when adhering to interventions designed to increase flexibility of the 

ankle plantar flexors (1, 19, 24). Little is known regarding the functional consequences of 

developing ankle mobility as currently, no studies have investigated the effect of increasing 

ankle DF ROM on landing mechanics in individuals identified with a mobility restriction at 

the ankle joint. 
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In practice, individuals with restrictions in ankle DF ROM will likely be identified during a 

pre-exercise screening session prior to initiating a strength and conditioning program (18). 

When deficits in ankle DF ROM are found, a corrective program to restore ankle mobility 

would be prescribed. This would likely be performed as a supplementary intervention 

alongside a strength training program designed to develop relevant physical qualities that will 

improve athletic performance. However, whether a corrective program aimed at restoring 

ankle mobility results in greater sagittal plane ankle, knee and hip joint displacement, which 

in turn results in reduced peak vGRF during landing tasks is currently unknown. Therefore, 

the primary aim of this investigation was to determine the effects of a 4-week ankle mobility 

program combined with a strength training program on landing mechanics, among 

participants with pre-established ankle restrictions. We hypothesized that increased ankle 

mobility would transfer to improved landing mechanics relative to exclusively performing a 

general strength training program. This would occur as a result of the mobility restriction 

being reduced, allowing for greater sagittal-plane joint displacement at the ankle, knee and 

hip, enhancing shock absorption capacity and rendering compensatory strategies obsolete. 

 

METHODS 

Experimental Approach to the Problem 

For this investigation, a randomized control trial with an independent groups design was used 

to investigate the efficacy of a 4-week intervention aimed at improving ankle DF ROM and 

its associated effects on landing mechanics. The independent variable distinguishing groups 

was the ankle mobility intervention, with participants either performing a strength training 

and ankle mobility program, or a strength training program exclusively. During an initial 
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screening session, participants were required to perform the overhead squat test and forward 

arm squat test and were graded in real-time against the criteria rating outlined by Rabin and 

Kozol (27). Participants with a positive finding for both the overhead squat test and forward 

arm squat test were identified as those demonstrating restricted ankle DF ROM and invited to 

participate in the study.  

 

Participants that met the inclusion criteria were tested, both before and following the 

completion of a 4-week intervention, for their performance on the weight-bearing lunge test 

(WBLT), maximal countermovement jumps (CMJ) and bilateral drop-landings. Participants 

were randomly assigned to one of two groups: strength and mobility training; or strength 

training only. Group allocation was performed following the initial screening session via an 

online randomization system (www.sealedenvelope.com), using stratified randomization, 

matched for gender, WBLT scores on the right limb and maximal CMJ height. Both groups 

performed the same strength training program for the lower extremity and trunk musculature, 

while the strength and mobility group concurrently completed a program using exercises 

known to improve ankle DF ROM. Post-testing was performed within seven days of 

completing the intervention for all participants. All test sessions were conducted between 

10:00 am and 1:00 pm to control for circadian variation. All participants were informed of the 

risks associated with the testing and training intervention prior to completing a pre-exercise 

questionnaire and providing informed written consent. The Institutional Research Ethics 

Committee provided ethical approval.  

 

Subjects 
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Using the data from Jeon et al. (19) who examined differences in ankle DF ROM during the 

WBLT following self-mobilization, we performed a representative analysis using G*power to 

determine the appropriate sample size. With an alpha of 0.05, calculations indicated that to 

achieve 80% statistical power, a minimum of eight participants per group were required. All 

participants were required to meet the following inclusion criteria: (1) between the ages of 

18-40; (2) no lower-extremity injury six-months prior to testing; (3) no history of lower-

extremity surgery; (4) regularly compete 1-3 times per week in sport events involving 

landings activities, such as court, racquet or team sports; (5) no previous experience adhering 

to a structured strength training program (6) present with a positive overhead squat and 

forward arm squat test during the initial screening session, as outlined by Rabin and Kozol 

(27). We employed this screen as the overhead squat test forward arm squat test possesses 

perfect sensitivity (1.00) and fairly high specificity (ranging between 0.84 and 0.88) for 

detecting individuals with functional limitations in ankle DF ROM (27). Fifty-three 

participants volunteered for the investigation, with 23 matching the inclusion criteria. To 

prevent sport training and competition from influencing outcome measures, data collection 

and the intervention were completed in the competitive off-season for each participant. 

Eleven participants were randomly assigned to the strength and mobility group (6 males, 5 

females; age = 21 ± 1 years, height = 1.74 ± 0.10 m, body mass 75.7 ± 15.4 kg) and 12 

participants assigned to the strength training only group (6 males, 6 females; age = 20 ± 1 

years, height = 1.72 ± 0.10 m, body mass 71.4 ± 6.8 kg). 

 

Measurements 

Testing sessions were structured so that following the recording of height and body mass, 

ankle DF ROM was measured bilaterally using the WBLT. Participants began the test by 
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facing a bare wall, with the greater toe of the test leg positioned against the wall. The greater 

toe and the center of the heel were aligned using the marked line on the ground, 

perpendicular to the wall. Participants were instructed to place the non-test foot behind them, 

with the heel raised and at a distance that they felt allowed them to maximise their 

performance on the test. In order to maintain balance, participants were asked to keep both 

hands firmly against the wall throughout. The participants were then instructed to slowly 

lunge forward by simultaneously flexing at the ankle, knee and hip on the test leg in an 

attempt to make contact between the center of the patella and a vertical marked line on the 

wall, perpendicular to the line on the ground. Subtalar joint position was maintained by 

keeping the test foot in the standardized position and ensuring the patella accurately 

contacted the vertical line. Any elevation of the heel during the test was regarded as a failed 

attempt and feedback was provided to the participants regarding their inability to prevent the 

heel from rising. Upon successful completion of an attempt, where contact between the 

patella and the wall was made with no change in heel position relative to the ground, 

participants were instructed to move the test foot further away from the wall by 

approximately 0.5 cm. No more than three attempts were allowed at any given distance. At 

the last successful attempt, the distance between the heel and the wall, and the distance 

between the base of the patella and the ground were recorded to the nearest 0.1 cm. To 

determine ankle DF ROM, the trigonometric calculation method (DF ROM = 90- arctan 

[ground-ground/heel-wall]) was employed for each attempt using the heel-wall and ground-

knee distances (17). This procedure was repeated three times for each limb, with the mean 

value for the right limb across the three attempts used for data analysis. The greatest inter-

limb difference during the WBLT across all participants was 1.1˚, with a mean inter-limb 

difference of 0.3 ± 0.5° and 0.1 ± 0.4° for the strength and mobility and strength training only 

group, respectively. Intra-rater reliability for this procedure, using a similar population, has 
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previously been reported as excellent (intraclass coefficients (ICC) = 0.98), with a standard 

error of measurement (SEM) of 0.6° (17). Figure 1 provides an illustration of testing 

procedures and measurements used for the trigonometric calculation. 

 

*INSERT FIGURE 1 HERE* 

 

To establish bilateral drop-height for each participant, three maximal CMJ were performed. 

Following a standardized warm-up, participants were familiarized with performing a CMJ. 

For the CMJ, participants stood bare foot with a hip-width stance with their hands placed on 

their hips. Participants were then asked to rapidly descend prior to explosively jumping as 

high as possible, with no control being placed on the depth or duration of the 

countermovement. Jump height was measured using photoelectric cells (Optojump System, 

Microgate, Bolzano, Italy). Three maximal effort CMJs were performed, with 60 s recovery 

between attempts. The maximum value of the three attempts was used for data analysis and 

the maximum value from the first test session used to calculate drop height for the bilateral 

drop-landings for both testing sessions. 

 

Reflective markers were then placed directly onto the participants’ skin by the same 

investigator using the anatomical locations for sagittal plane lower-extremity joint 

movements and frontal-plane projection angle (FPPA), as outlined by Dingenen et al. (9) and 

Munro et al. (23), respectively. For sagittal-plane views, reflective markers were placed on 

the right acromioclavicular joint, greater trochanter, lateral femoral condyle, lateral malleolus 

and 5th metatarsal head (9). To establish FPPA for the knee joints, reflective markers were 

placed at the center of the right knee joint (midpoint between the femoral condyles), center of 
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the right ankle joint (midpoint between the malleoli) and on the proximal thigh (midpoint 

between the anterior superior iliac spine and the knee marker). Midpoints for the knee and 

ankle were measured with a standard tape measure (Seca 201, Seca, United Kingdom), as 

described by Munro et al. (23). 

 

Participants were then familiarized with the bilateral drop-landings from a drop height of 

150% of maximum CMJ height as the use of this height showed increased reliability and 

sensitivity in assessing landing kinetics (15) and kinematics (15). For familiarization, 

participants performed bilateral drop-landings from their individualized drop height and 

ceased once the participant indicated they were comfortable with the technique and 

procedure. Bilateral drop-landings were performed with participants standing bare foot with 

their arms folded across their chest on a height-adjustable platform (to the nearest 0.01 m). 

All landings were performed barefoot so as to prevent any heel elevation associated with 

footwear from altering landing mechanics and weakening internal validity (21). Participants 

were then instructed to step off the platform, leading with the right leg, before immediately 

bringing the left leg off and alongside the right leg prior to impact with the ground. During 

this manoeuvre, participants were instructed to ensure that they did not modify the height of 

the center of mass prior to dropping from the platform (34). For a landing to be deemed 

successful, participants were required to ensure they landed with each foot simultaneously 

and in complete contact with the respective portable force platform, which was positioned 

0.15 m away from the elevated platform. Each foot landed on a separate portable force 

platform recording at 1000 Hz (Pasco, Roseville, CA, USA), positioned side-by-side, 0.05 m 

apart and embedded in custom-built wooden mounts that were level with the force platforms 

and did not allow any extraneous movement. Full contact with the force platform was 

visually monitored during landings throughout by the lead investigator, with landings being 
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disregarded where participants failed to either make full contact with the platform or maintain 

balance (e.g. either taking a step or placing a hand on the ground to prevent falling) upon 

landing. To ensure participants displayed their natural landing strategy, no instructions were 

provided regarding heel contact with the ground during the landing phase of the movement 

and no feedback on landing performance was provided at any point during testing. 

Participants performed five bilateral-drop landings for data collection, with 60 s recovery 

between landings.  

 

For 2D video analysis, sagittal and frontal plane joint movements were recorded using three 

standard digital video cameras sampling at 60 Hz (Panasonic HX-WA30) using the 

procedures outlined by Payton (26). For sagittal plane joint movements, a camera was 

positioned 3.5 m from the center of either force platform (15). To record frontal plane 

kinematics, a camera was placed 3.5 m in front of the center of the force platforms (15). All 

cameras were placed on a tripod at a height of 0.6 m from the ground. 

 

Intervention 

All participants were required to attend three separate training sessions per week for a 

duration of 4-weeks. Sessions involved performing a strength training program supplemented 

with either an intervention to increase ankle DF ROM (strength and mobility group) or the 

strength training program exclusively (strength training only group).  The strength training 

program was designed to develop lower limb and trunk force development capacities (Table 

1). For all strengthening exercises, loading was progressed on a session-by-session basis 

depending on participants’ individual responses. This was achieved by maintaining the sets 
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and reps structure for each exercise, while increasing load so that each set was performed 2-3 

repetitions from failure whilst maintaining desirable exercise form (36). 

 

*INSERT TABLE 1 HERE* 

 

The intervention to increase ankle DF ROM was performed by the strength and mobility 

group on the same days as the strength training program, with exercises completed prior to 

the dynamic warm-up or following the strength training programme (Table 2). The ankle 

mobility interventions exercises have previously been shown to increase ankle DF ROM and 

included self-mobilization (19), self-massage (12), eccentric strength training (1), and static 

stretching (32). A brief description is provided for each exercise in Table 2. Prescription of 

all acute variables for the self-mobilization exercise, self-massage and static stretching 

exercise remained the same throughout the 4-week intervention. The loading for the eccentric 

strength training exercise was progressed using the same format as described for all other 

strength exercises. 

 

*INSERT TABLE 2 AND FIGURE 2 HERE* 

 

Each training session was separated by at least 48-hours and supervised by a UK Strength 

and Conditioning Association accredited coach. All participants were consistently provided 

with coaching to improving movement quality for each exercise. Participants were asked to 

refrain from performing any other strength exercises for the duration of the intervention. 
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Data Analyses 

Raw vGRF data were low-pass filtered using a fourth-order Butterworth filter with a cut-off 

frequency of 50 Hz (16). Peak vGRF data were calculated for each leg and normalized to 

body mass (N·kg-1). An independent t-test was performed between mean values of peak 

vGRF for the right and left leg for each participant, with no difference found (t(38) = -0.847, P 

= 0.402). Based on these findings, we chose to use force-time data from the right leg to 

represent kinetic measures of bilateral drop-landing performance. As such, peak vGRF, time 

to peak vGRF and loading rate were independently calculated for the right leg and used for 

data collection. For time to peak vGRF to be determined, initial contact was identified as the 

point that vGRF exceeded 10 N (15). Time to peak vGRF was then calculated as the time 

difference between initial contact and the time point where peak vGRF occurred. Loading 

rate was calculated as peak vGRF normalized to body mass divided by time to peak vGRF. 

Reliability for kinetic measures associated with bilateral drop-landing performance from a 

drop height equating 150% of CMJ height has previously been reported as nearly perfect 

(ICC ranging between 0.91 to 0.94), with normalized peak vGRF, time to peak vGRF and 

loading rate possessing SEM values of 0.23 N·kg−1, 0.004 s and 6.7 N·s−1, respectively (15). 

 

All video recordings were analyzed with free downloadable software (Kinovea for Windows, 

Version 0.8.15). For sagittal-plane joint movements, hip flexion, knee flexion and ankle 

dorsiflexion angles were calculated at initial contact and the point of peak knee flexion for 

the right limb. These angles were then used to calculate joint displacement for each joint by 

subtracting the initial contact angle from the peak flexion angle. Initial contact was defined as 

the frame prior to visual impact between the foot and the ground that led to visual 

deformation of the foot complex. Peak flexion was identified visually and defined as the 
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frame where no more downward motion occurred at the hip, knee or ankle joints (9). Hip 

flexion angle was calculated as the angle between a line formed between the acromioclavular 

joint and the greater trochanter and a line between the greater trochanter and the lateral 

femoral condyle. Knee flexion angle was calculated as the angle between a line formed 

between the greater trochanter and the lateral femoral condyle and a line between the lateral 

femoral condyle and the lateral malleolus. Ankle dorsiflexion angle was calculated as the 

angle between a line formed between the lateral femoral condyle and the lateral malleolus 

and a line between the lateral malleolus and the 5th metatarsal head. FPPA was calculated for 

both sides at the deepest landing position, defined as the frame corresponding to peak knee 

flexion (23). This angle was calculated as the angle between the line formed between the 

proximal thigh marker and the knee joint marker and a line between the knee joint marker 

and the ankle joint marker (23). For hip flexion, knee flexion and ankle dorsiflexion, smaller 

values represented greater hip flexion, knee flexion and ankle dorsiflexion respectively. For 

FPPA, values < 180° represented knee valgus and values > 180° representing knee varus.  

 

Reliability for kinematic measures of bilateral-drop landings from a drop height equating to 

150% of CMJ height have been previously reported as very large to nearly perfect (ICC 

ranging between 0.87 to 0.94). SEM for lower extremity joint angles at initial contact and at 

peak flexion have been reported as ranging between 1.1° to 1.3° and 2.3° to 6.6°, respectively 

(15). Intra-rater reliability for kinematic measures have been previously reported as nearly 

perfect for bilateral-drop landings from a drop height equating to 150% of CMJ height (ICC 

ranging between 0.95 to 0.99), with SEM for joint angles at initial contact and at peak flexion 

being < 1.5˚ (14).  
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Statistical Analyses 

Descriptive statistics (mean ± standard deviation) were calculated for each kinetic and 

kinematic variable. The assumption of normality was checked for all dependent variables 

using the Shapiro-Wilk test. Independent t-tests were employed to determine between-group 

differences for WBLT scores and maximum CMJ height at baseline. A one-way analysis of 

covariance (ANCOVA) was used to evaluate difference in WLBT and CMJ performance and 

between-group differences for landing performance following the training intervention. A 

one-way ANCOVA was chosen as a statistical tool so as to increase power, reduce variability 

and account for between-group differences at baseline caused by the procedures for group 

allocation (6, 35). Values for kinetic and kinematic variables associated with landing 

performance following the training intervention were used as the dependent variable, with 

baseline values used as the covariate to control for group differences. The α-priori level of 

significance was set at P < 0.05, with a Bonferroni correction applied post-hoc in order to 

reduce the likelihood of Type I errors. Effect sizes (ES) were calculated for each comparison, 

with 0.2 being considered small, 0.5 moderate and 0.8 or greater large (5). All statistical tests 

were performed using SPSS® statistical software package (v.24; SPSS Inc., Chicago, IL, 

USA). 

 

RESULTS 

Three participants from the strength training only group withdrew from the study (for reasons 

unrelated to the study), resulting in 20 participants completing both testing sessions (strength 

and mobility, n = 11; strength training only, n = 9). Attendance for the training sessions was 

100% for participants included in the data analysis.  
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At baseline, there was no difference between groups for CMJ height (t(18) = -0.25, P = 0.282) 

or WBLT scores (t(18) = 0.26, P  = 0.153). However, there was a main effect of group on 

WBLT at the post intervention time point (F(1,17) = 13.94, P = 0.002) (Figure 3), with the 

strength and mobility group (mean difference = 4.1 ± 1.4˚, ES = 1.00) demonstrating greater 

ankle DF ROM than the strength training only group (mean difference = 1.0 ± 2.1˚, ES = 

0.18). There was no difference in CMJ height between the groups following the training 

intervention (F(1,17) = 3.95, P = 0.063) (Figure 4). 

 

*INSERT FIGURE 3 AND 4 HERE* 

 

Differences for kinematic and kinetic measures of bilateral drop-landing performance before 

and after the training intervention are presented in Table 3. At initial ground contact a main 

effect of group was found following the training intervention (F(1,17) = 4.68, P = 0.045), with 

the strength and mobility group (mean difference = 1.4 ± 2.0˚, ES = 0.46) having less ankle 

dorsiflexion than the strength training only group (mean difference = 1.0 ± 2.7˚, ES = 0.22). 

At peak flexion, there was a main effect of group on ankle dorsiflexion (F(1,17) = 19.14, P < 

0.001) and hip flexion (F(1,17) = 4.87, P = 0.041). The strength and mobility group (mean 

difference = 6.3 ± 2.9˚, ES = 0.74) displayed greater ankle dorsiflexion at peak flexion 

compared to the strength training only group (mean difference = -0.4 ± 3.7˚, ES = 0.06), 

while the strength training only group showed greater hip flexion at peak flexion (mean 

difference = 14.4 ± 11.0˚, ES = 0.70) in comparison to the strength and mobility group (mean 

difference = 4.3 ± 9.0˚, ES = 0.16). Joint displacement for the ankle was significantly greater 

for the strength and mobility group (mean difference = 7.7 ± 4.0˚, ES = 1.00) than for the 

strength training only group (mean difference = -1.4˚ ± 3.3˚, ES = 0.23) following the training 
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intervention (F(1,17) = 25.33, P < 0.001). Significant between group-differences were 

identified post-intervention for hip joint displacement (F(1,17) = 6.13, P = 0.024), with the 

strength training only group showing greater hip joint displacement (mean difference = 8.0 ± 

6.6˚, ES = 0.44) than the strength and mobility group (mean difference = 0.7 ± 6.6˚, ES = 

0.03). No other between-group differences were found for kinematic measures associated 

with bilateral drop-landing performance. No significant between-group differences were 

found for any kinetic measure following the interventions. 

 

*INSERT TABLE 3 HERE* 

 

DISCUSSION 

The primary aim of this investigation was to identify the effects of a corrective training 

program on landing mechanics among participants with limited ankle DF ROM. We 

hypothesized that increasing ankle DF ROM alongside a strength training program would 

transfer to the execution of a landing task when compared to performing a strength training 

program alone. Specifically we hypothesised that those receiving an intervention to increase 

ankle DF ROM and a strength training programme would demonstrate greater sagittal-plane 

joint displacement at the ankle, knee and hip following the removal of the ankle restriction. 

The findings, however, failed to support this hypothesis, with changes in landing movement 

strategies during bilateral drop-landings identified for both groups. Specifically, relative to 

the strength training only group, increases in ankle DF ROM in the strength and mobility 

group also resulted in greater ankle plantar flexion at initial ground contact, ankle 

dorsiflexion at peak flexion, and ankle joint displacement. In contrast, between-group 

comparisons following the completion of the 4-week program revealed that the strength 
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training only group adapted their coordination strategy by increasing hip flexion angle at the 

moment of peak flexion, resulting in increased sagittal-plane hip joint displacement (Table 3). 

As such, it appears that changes in landing strategies following the performance of a strength 

training program are specific to whether restrictions in ankle mobility are considered as part 

of the design of the intervention. 

 

To our best knowledge, this is the first investigation to demonstrate that landing mechanics 

can be altered among individuals who initially present with ankle DF ROM restrictions. 

Following the intervention, the strength and mobility training group increased peak ankle 

dorsiflexion and ankle joint displacement during bilateral drop-landings by 6.3 and 7.7˚, 

respectively. These values were significantly greater than those observed for the strength 

training only group (-0.4 and 1.4˚, respectively) and exceed the SEM for both of these 

kinematic variables previously reported using the same procedures (15). Along with 

contributing to shock absorption at initial ground contact (28), the ankle joint contributes 

significantly to angular displacement of the knee joint in the sagittal-plane during landings 

(10, 14). Knee flexion is vital for absorbing shock (34), with reduced knee flexion 

diminishing knee extensor power output during landings (7). As a result, reduced sagittal-

plane knee joint displacement may lead to suboptimal landing strategies (34). Given that the 

ankle restriction was reduced (i.e. ankle DF ROM increased) following the 4-week 

intervention, improvements in ankle mobility may facilitate the knee joint’s capacity to 

dissipate vertical forces. In partial support of this suggestion, the strength and mobility group 

increased their knee flexion at peak flexion by 3.4˚ (Table 3). However, this value is less than 

the SEM of 3.9˚ previously reported for this variable during bilateral drop-landings using 2D 

video analysis (15) and should not be interpreted as real change following the intervention. 
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Furthermore, as peak vGRF did not change for the strength and mobility group beyond the 

error associated with this measure (16), the modest increase in peak knee flexion angle is 

unlikely to have provided any functional benefit, as landing forces remained unaffected 

(Table 3). 

 

Our findings demonstrate that the strength and mobility training group landed with greater 

ankle plantar flexion at initial ground contact during post-intervention testing. This strategy 

may be desirable when individuals are attempting to reduce loading associated with a landing 

task, as 10˚ increases in plantar flexion at initial contact have been shown to decrease peak 

vGRF and loading rate (28). The same investigation also showed greater plantar flexion at 

initial contact increased ankle joint contribution to peak support moments. Although we did 

not measure changes in plantar flexion strength following the intervention, it may be that 

elevated strength levels following the performance of the single-leg heel drops allowed the 

ankle to contribute further to energy dissipation. Although this is possible, the mean 

difference from baseline for ankle joint angle at initial contact for the strength and mobility 

group following the intervention was 1.4˚ (Table 3). This value is far less than the conscious 

adjustments in ankle joint alignment used by Rowley and Richards (28), explaining the lack 

of difference in kinetic measurements following the intervention. This value is also less than 

the SEM of 1.8˚ previously reported for the testing procedures used (15). Therefore, the 

between-group difference for ankle alignment at initial contact could be explained by 

systematic error and should be interpreted with caution. 

 

Another unexpected finding was the changes at the hip joint for the strength training only 

group. Our findings show that peak hip flexion angle and hip joint displacement increased by 
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14.4˚ and 8.0˚, respectively. These values were significantly greater than the 4.3˚ increase in 

peak hip flexion angle and 0.7˚ for sagittal-plane hip joint displacement observed for the 

strength and mobility group. This finding was surprising, as individuals with functional 

limitations in ankle DF ROM have been shown to land with reduced peak hip flexion angles 

and less hip joint displacement when compared to individuals with greater ankle DF ROM 

(10). However, this may be beneficial for individuals with limited ankle DF ROM to offset 

the stiffer landing strategy associated with the presence of an ankle restriction. Increasing hip 

flexion during bilateral landings has been shown to reduce peak vGRF and quadriceps muscle 

activity, while increasing peak knee flexion angle (4). Previously, recreational athletes with 

restrictions in ankle DF ROM have been shown to increase peak hip flexion angle during 

bilateral drop-jumps following the performance of a hip strengthening program (20). As the 

strength training only group in the current study did not increase ankle DF ROM beyond the 

error associated with the test (17), it seems that an increased involvement of the hip occurred 

to the support the knee in attenuating loading during the bilateral drop-landings. This is likely 

to have occurred because the strength training only group were unable to rely on greater 

ankle contribution during landings due to the remaining ankle restriction. Thus, the landing 

strategy of both groups was altered but in different ways. This finding could be of practical 

significance to individuals with conditions resulting in chronic (less modifiable) restrictions 

in ankle DF ROM, such as anterior ankle impingement (25). Increased hip flexion during 

landings is associated with increased hip extensor activity, which acts to resist the elevated 

external flexion moment (29). As a result, practitioners working with individuals with a non-

modifiable ankle restriction should consider that hip-dominant strategies will be adopted and 

that training interventions placing greater emphasis on development of the hip musculature 

could help to tolerate the additional loading that is likely to occur. 
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In this investigation, no between-group differences were found for any kinetic measure of 

bilateral-drop landing performance following the 4-week training interventions. Furthermore, 

neither group demonstrated changes outside of the error previously associated with these 

measures (16). Although a number of reasons may exist for these findings, the most likely 

explanation is the limited evidence for ankle DF ROM influencing landing forces. At present, 

only Fong et al. (11) has found a significant correlation between ankle DF ROM and peak 

vGRF (r = -0.41) in healthy participants. Alternatively, numerous studies have shown no 

significant association between ankle DF ROM and peak vGRF during landing tasks (14, 22, 

30). As such, it is likely that other factors influence peak vGRF, such as angular velocity for 

the knee and hip joints at initial ground contact (33) and the eccentric work performed by the 

knee and hip extensor musculature (34). Therefore, the findings presented in this study 

provides further support for the lack of association between ankle DF ROM and peak vGRF. 

 

Ankle DF ROM is related to FPPA during landing tasks, indicating that reduced ankle DF 

ROM increases knee abduction angle (14, 22). This is suggested to occur as a compensation 

mechanism for limited ankle DF ROM, whereby increased pronation of the foot complex 

allows for the continued forward rotation of the proximal tibia (8). However, this finding is 

not consistently reported, with some studies showing no relationship between ankle DF ROM 

and knee valgus displacement (11). Here, we found no between-group differences for FPPA 

following the 4-week intervention, with the strength and mobility group and the strength 

group increasing FPPA angle (reducing knee valgus) by 5.6˚ and 2.8˚, respectively (Table 3). 

Both of these values are below the 12.0˚ minimum detectable change value previously 

reported for this testing procedure (15) and consequently, should not be interpreted as a 

genuine change in frontal-plane knee alignment. A possible explanation for why ankle DF 

ROM did not result in significant reductions in knee valgus (increases in FPPA angle) may be 



 21 

that meaningful medial knee displacement was not found for either group at baseline 

(strength and mobility group = 199.3 ± 22.7˚; strength group = 195.5 ± 13.2˚). Therefore, 

supplementing a strength training program with an intervention to improve ankle DF ROM, 

does not appear to reduce peak knee abduction angles during bilateral drop-landings relative 

to exclusively performing the strength training program in individuals who present with no 

apparent medial knee displacement. 

 

PRACTICAL APPLICATIONS 

This study demonstrated that individuals with a functional restriction in ankle DF ROM were 

able to change their DF ROM and landing mechanics following a 4-week ankle mobility and 

strength training program. Specifically, those individuals exposed to a strength and mobility 

training program significantly improved their ankle mobility, resulting in greater ankle 

dorsiflexion at peak flexion and increased ankle joint displacement when landing relative to 

those who received a strength training intervention exclusively. Furthermore, these changes 

in joint alignment exceeded the error associated with the testing procedures. Conversely, the 

strength training only group compensated for their restriction in ankle DF ROM by 

employing more hip flexion during landings following the strength training only program. 

Therefore, Strength and Conditioning professionals working with an individual 

demonstrating landing mechanics considered to be suboptimal and caused by restricted ankle 

DF ROM, should consider supplementing the strength training program with exercises to 

improve ankle mobility. However, in instances where the ankle restriction is non-modifiable, 

hip extensor strengthening may be appropriate to ensure the individual possesses the 

necessary strength to cope with the hip-dominant landing strategy. 
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FIGURE LEGEND 

 

Figure 1. Participant performing the weight-bearing lunge test with example calculation. 

GK= ground-knee distance; HW= heel-wall distance; TA= trigonometric angle. 

    

 

Figure 2. Exercises used to increase ankle DF ROM for the strength and mobility group. A) 

Ankle stretch using a strap; B) Ankle plantar flexors self-massage; C) Single-leg heel drop; 

D) Bent knee ankle plantar flexor stretch.  
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Figure 3. Weight-bearing lunge test values for both groups (error bars indicate the SD). † 

indicates a significant between-group difference for post-intervention values (P = 0.002). 

 

Figure 4. Countermovement jump (CMJ) test values for both groups (error bars indicate the 

SD).  
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TABLES 

Table 1. Strength-training programme performed by both groups.  

 

 Exercise Sets Reps Rest (s) 

Dynamic warm-up 

 Pole squats 2 6 30 

 Squats with arms forward 2 10 30 

 Split squats 2 6 30 

 Single leg box squats 2 6 30 

 Countermovement jumps  3 6 120 

Session 1 

 Pause front squat 3 8-10 120 

 Single-leg box squat 3 10-12 120 

 Nordic leg curls 3 6-9 120 

Session 2 

 Romanian deadlifts 3 10-12 120 

 Reverse lunges 3 8-10 120 

 Prone bridge 3 30-60 s  60 

Session 3 

 Pause front squats 3 8-10 120 

 Step ups 3 10-12 120 

 Side bridge 3 30-60 s  60 
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Table 2. Ankle mobility exercises completed by participants in the strength and mobility training group 
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 Exercise Sets Reps/Duration Performance 

Pre-training session  

 Ankle stretch using 

a strap 

3 each 

leg 

20 s  Participant positions their front foot on a 10˚ incline board (length = 0.30 m, width = 0.10 m) and their rear 

foot behind the front foot in a short lunge position. A non-elastic looped strap (approximately 0.30 m in 

length) is positioned so the front of the strap is on the anterior aspect of the talus on the front leg and the back 

of the strap loops over the medial arch of the rear leg. Participants lunge forward until end ankle DF ROM is 

achieved for the front leg, whilst both feet remain flat on their respective surfaces. This position is held for 

the prescribed time, with strap tension modulated by manipulating the distance between the feet (19). 

 

 Ankle plantar 

flexors self-

massage 

3 each 

leg 

30 s Participant assumes a seated position, with one knee flexed to 90° and the ankle slightly plantar flexed 10˚ 

using a heel support. From this position, participants massage the plantar flexors using a roller massager. The 

cadence is 1 s to roll the length of the calf muscles, with intensity set at 7/10 using the rate of perceived pain 

(12). 

Post-training session  

 Single-leg heel 

drop 

3 each 

leg 

12-15 reps The participant places their hands on a wall to maintain balance, whilst standing with their heels hanging off 

a 0.3 m box. Participants plantar flex at both ankles to their end range, then remove one leg off the box before 

lowering their centre of mass by fully dorsiflexing the ankle on the weight-bearing limb until the point of 

maximal perceived stretch. The descent phase is performed at a cadence of 6 s and is self-timed (1). To load 

the movement, participants hold a load in one hand. Loading is progressed on a session-by-session basis and 

is achieved by maintaining the sets and reps structure, while increasing load so that each set is performed 2-3 

repetitions from failure. 

 

 Bent knee ankle 

plantar flexor 

stretch 

2 each 

leg 

1 min The participant places their hands on a wall to maintain balance, whilst standing with one heel (the limb 

being stretched) hanging off a 0.30 m box. The other foot is positioned so the whole of the foot is on the box. 

With the knee bent to approximately 30˚ on the back leg, the participant dorsiflexes the ankle on the stretched 
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Table 3. Pre- and post-intervention differences for both groups for kinematic and kinetic measures associated with landing performance.
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Variable Strength and mobility (n = 11) Strength only (n = 9)  

Pre-

intervention 

(Mean ± SD) 

Post-

intervention 

(Mean ± SD) 

Change in mean 

(CI) 

Effect 

size  

Pre-

intervention 

(Mean ± SD) 

Post-

intervention 

(Mean ± SD) 

Change in mean 

(CI) 

Effect 

size  

Kinetic variables         

Peak force (N·kg-1) 2.07 ± 0.69 2.01 ± 0.69 -0.06 (-0.19, 0.08) 0.08 1.86 ± 0.34 1.88 ± 0.48 0.02 (-0.19, 0.15) 0.05 

Time to peak force (s) 0.058 ± 0.018 0.058 ± 0.019 0.000 (-0.003, 0.003) 0.01 0.058 ± 0.010  0.064 ± 0.016 0.006 (-0.018, 0.007) 0.41 

Loading rate (N·s−1) 41.1 ± 22.9 40.5 ± 23.6 -0.6 (-4.4, 5.6) 0.03 34.6 ± 11.8 34.3 ± 14.5 -0.3 (-6.1, 6.8) 0.02 

Initial contact angles         

Ankle (°)* 152.2 ± 2.9 153.6 ± 3.1 1.4 (0.2, 2.5) 0.46 154.1 ± 4.0 153.1 ± 5.2 -1.0 (-2.6, 0.6) 0.22 

Knee (°) 169.5 ± 2.3 167.9 ± 2.9 -1.9 (-4.0, 0.2) 0.60 172.0 ± 3.8  168.0 ± 4.1 -3.3 (-6.0, -0.6) 1.00 

Hip (°) 161.7 ± 6.4 158.0 ± 6.5 -3.7 (-7.0, -0.4) 0.58 162.8 ± 4.5 156.4 ± 8.5 -6.4 (-11.0, -1.8) 0.94 

Peak flexion angles         

Ankle (°)* 108.4 ± 9.0 102.0 ± 8.2 -6.3 (-8.1, -4.6) 0.74 105.8 ± 6.8 106.2 ± 7.3 0.04 (-1.8, 2.6) 0.06 

Knee (°) 100.4 ± 16.0 97.0 ± 14.7 -3.4 (-0.1, -6.7) 0.22 99.4 ± 15.6  95.1 ± 15.8 -4.3 (-9.2, 0.7) 0.27 

Hip (°)* 96.1 ± 27.0 91.7 ± 28.1 -4.3 (-9.7, 1.0) 0.16 99.4 ± 23.3 85.0 ± 17.7 -14.4 (-7.0, -21.8) 0.70 

Frontal plane projection 

angles (°) 

199.3 ± 22.7 204.9 ± 22.3 5.6 (0.0, 11.2) 0.25 195.5 ± 13.2 198.4 ± 14.1 5.6 (-0.6, 11.8) 0.21 

Joint displacement         

Ankle dorsiflexion (°)* 43.9 ± 7.3 51.6 ± 8.1 7.7 (5.4, 10.1) 1.00 48.3 ± 5.6 46.9 ± 6.8 -1.4 (-3.2, 0.4) 0.23 

 


