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Abstract 26 

Several studies have explored the potential of electrical resistivity tomography to monitor 27 

changes in soil moisture associated with the root water uptake of different crops. Such 28 

studies usually use a set of limited below-ground measurements throughout the growth 29 

season but are often unable to get a complete picture of the dynamics of the processes. With 30 

the development of high-throughput phenotyping platforms, we now have the capability to 31 

collect more frequent above-ground measurements, such as canopy cover, enabling the 32 

comparison with below-ground data. In this study hourly DC resistivity data were collected 33 
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under the Field Scanalyzer platform at Rothamsted Research with different winter wheat 34 

varieties and nitrogen treatments in 2018 and 2019. Results from both years demonstrate 35 

the importance of applying the temperature correction to interpret hourly electrical 36 

conductivity (EC) data. Crops which received larger amounts of nitrogen showed larger 37 

canopy cover and more rapid changes in EC, especially during large rainfall events. The 38 

varieties showed contrasted heights although this does not appear to have influenced EC 39 

dynamics. The daily cyclic component of the EC signal was extracted by decomposing the 40 

time series. A shift in this daily component was observed during the growth season. For 41 

crops with appreciable difference in canopy cover, high frequency DC resistivity 42 

monitoring was able to distinguish the different below-ground behaviors. The results also 43 

highlight how coarse temporal sampling may affect interpretation of resistivity data from 44 

crop monitoring studies. 45 

Highlights 46 

- Hourly ERT data were collected under a high-throughput field phenotyping platform 47 

- The dynamics of the EC varied mainly with N treatments and canopy cover 48 

- We identified a shift in the EC diurnal cycle probably due to the root water uptake 49 

- Little EC difference between the wheat varieties was observed 50 

Keywords 51 

electrical resistivity tomography, ERT, near-surface, hydrogeophysics 52 
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Introduction 53 

Field phenotyping 54 

Senapati and Semenov (2020) show that European wheat varieties still have genetic 55 

potential to be exploited through breeding programs. Traits such as optimal root water 56 

uptake are present in the genetic population but still need to be selected and transferred into 57 

commercial varieties via crop breeding. To create new varieties with desirable traits (e.g. 58 

high yield, short stem, deep rooting, etc.), crop breeders cross other varieties which exhibit 59 

one or several of the desired traits. This process generates large number of different 60 

genotypes (or lines). To select which genotype possesses which traits, all lines are grown 61 

and their respective phenotype (i.e. the combination of all traits) is assessed. The lines 62 

which show desired traits are selected and can potentially become new varieties. Although 63 

this is a simplistic description of crop breeding techniques, it provides a context for this 64 

study. 65 

One of the usual step to assess crop phenotype is to grow the different lines in large field 66 

fields. This step can be labor-intensive due the large number of lines to screen, leading to a 67 

“phenotyping bottleneck” (Furbank and Tester 2011). To relieve it, new tools are being 68 

developed (Araus and Cairns 2014; Atkinson et al. 2019). Among them, automated high 69 

throughput phenotyping platforms (HTPPs) permit the collection of many above-ground 70 

traits automatically (Prasanna et al. 2013). An example of such infrastructure is the Field 71 

Scanalyzer facility at Rothamsted Research (Virlet et al. 2017). Despite this progress, there 72 

has been less advance in the development of below-ground methods (Atkinson et al. 2019). 73 

Geophysical methods, such as ERT, electromagnetic induction and ground penetrating 74 
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radar, have been identified as promising candidates to fill this gap (Araus and Cairns 2014; 75 

Atkinson et al. 2019). 76 

Geoelectrical monitoring in agriculture 77 

Geophysical methods can image near-surface processes at multiple-scales (Binley et al. 78 

2015) and hence have a great potential for agricultural applications, e.g. for assessing the 79 

spatial and temporal distribution of soil water. Geoelectrical methods, and more specifically 80 

electrical resistivity tomography (ERT), has proven useful in imaging variation in soil 81 

moisture in several field applications (Michot et al. 2003; Srayeddin and Doussan 2009; 82 

Whalley et al. 2017). ERT data are usually collected at regular time intervals enabling to 83 

separate the static and dynamic components of the soil electrical conductivity. The dynamic 84 

component is usually dominated by the change in soil moisture caused by various 85 

processes, in particular plant water uptake and evaporation. The static component is usually 86 

linked to soil textural properties such as clay content. Such time-lapse studies have been 87 

used to investigate the root zone moisture interaction for different ecosystems 88 

(Jayawickreme, Van Dam, and Hyndman 2008). At smaller scales, ERT monitoring has 89 

been applied in orchards to investigate, in 2D and 3D, the soil moisture dynamics 90 

influenced by the root water uptake and irrigation strategies (Cassiani et al. 2015; Consoli 91 

et al. 2017; Vanella et al. 2018). In herbaceous plants, time-lapse ERT was used to 92 

determine the spatial pattern of root water uptake of corn and sorghum in irrigated 93 

conditions (Srayeddin and Doussan 2009) as well as corn with cover crops (Michot et al. 94 

2003). More recently, Coussement et al. (2018) used 2D ERT monitoring to measure the 95 

effects of a tree border on the soil moisture of a corn field. At the plot scale, Whalley et al. 96 

(2017) used time-lapse ERT to differentiate root water uptake of different wheat varieties. 97 
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All the studies above used time-lapse monitoring which usually involves collecting a few 98 

sets of ERT measurements during the growth season of the crop or around specific 99 

irrigation events. As such, they provide a few snapshots of the soil electrical conductivity, 100 

showing the effects of the seasonal processes. Hourly monitoring over long periods are rare 101 

but it has the potential to offer more insight into the dynamics of plant-soil-water 102 

interactions. For example, Vanella et al. (2018) use hourly 3D ERT monitoring to image the 103 

effects of full irrigation and partial root zone drying on an orange tree. They highlight that 104 

access to time-intensive monitoring provides more information on the soil moisture 105 

dynamics than less frequent measurements under specific transient conditions. Mares et al. 106 

(2016) linked the diurnal pattern of soil electrical conductivity with the sap flow movement 107 

in pine trees. At the laboratory scale, Werban et al. (2008) monitored at hourly intervals the 108 

soil moisture beneath a lupin plant using 2D ERT and estimated the root water uptake of the 109 

plant. In addition to being able to follow the dynamics of specific events, hourly 110 

measurements have the potential to look at daily dynamics. Finally, another advantage of 111 

hourly scale sampling is that it is closer to the scale at which physiological processes of the 112 

plant take place. Given the wide availability of automated monitoring ERT instrumentation, 113 

high frequency below-ground geophysical measurements may offer more information for 114 

crop breeding studies. 115 

To analyze the value of geoelectrical monitoring under HTPP in a phenotyping context, this 116 

paper focuses on the following research questions. (i) What is the potential of geophysical 117 

tools for monitoring below-ground dynamics? (ii) How can geophysically-derived below-118 

ground information be linked to above-ground traits dynamics? (iii) What are the 119 

capabilities and limitations of geoelectrical monitoring for phenotyping applications? 120 
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Material and methods 121 

Experimental setup 122 

The experiments were carried out at Rothamsted Research, UK (51°48′34.56′′N, 123 

0°21′22.68′′W) in Great Field, under the Field Scanalyzer platform area (Virlet et al. 2017). 124 

The platform covers a flat area of 0.12 ha. The soil is described as a Luvisol (WRB) and is 125 

composed of a loamy top layer (0.3 m) over a more clayey layer with flints (Batcombe). 126 

The soil drainage can be impeded by this second layer especially in the areas around the 127 

platform due to heavy traffic during the construction. Two experiments were conducted 128 

during the growing season in 2017–2018 (hereafter referred to as 2018) and 2018–2019 129 

(hereafter referred to as 2019) under rainfed conditions. 130 

In 2018, three different varieties of winter wheat (Triticum aestivum var. Mercia Rht3, 131 

Mercia RhtC and Shamrock) were sown on 2017-10-30 (all dates are expressed in ISO 132 

8601 format) in “sowing plots” of 0.6 m length by 1 m width with a planting density of 350 133 

seeds/m2 and were grown under normal UK rate nitrogen (~200kgN/ha). Each “sowing 134 

plot”, made up of two subplots, 0.6 m by 0.5 m, was sown with the same variety. Two 135 

continuous “sowing plots” of the same variety, were grouped to form a plot unit for this 136 

experimentation. This design was inherited from a larger experiment taking place in the 137 

same field. Each plot was equipped with 10 stainless steel electrodes of 0.1 m length with 138 

0.15 m inter-electrode spacing. The electrodes were entirely buried (end of the electrode at 139 

0.1 m below the surface) between the rows of wheat, hence not in contact with the plants. 140 

The pins of two nearby plots were attached to an array of 24 pins (4 pins were discarded). 141 

The two ERT arrays were connected to an ERT monitoring system. The aim of this 142 
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experiment was to identify any differences in soil electrical conductivity between the 143 

varieties. 144 

In 2019, four plots of a nitrogen/variety trial sown on 2018-10-25 where equipped with an 145 

ERT array. Two varieties, Crusoe and Istabraq, were grown in plot of 3 m by 1 m under low 146 

and high nitrogen fertilization (50 kgN/ha and 350 kgN/ha as dry pellets, respectively). The 147 

first application of nitrogen 50 kgN/ha was made on 2019-03-08 and the second application 148 

was made on 2019-04-10. Figure 1 shows the four plots being monitored. Each plot was 149 

equipped of 12 stainless steel electrodes of 0.1 m length with 0.3 m inter-electrode spacing. 150 

As in the 2018 setup, the electrodes were entirely buried between the rows of wheat, 151 

avoiding contact with the plants. The pins of two nearby plots were attached to a 24 pins 152 

array that was connected to the ERT monitoring system. 153 

 
Figure 1: Photographs of the experiment under the Field Scanalyzer facility at 
Rothamsted Research in (a) April, (b) June and (c) July 2019. (c) Shows the box 
containing the different sensors (marked (1) and black box marked (2) contains the ERT 
monitoring system connected to arrays in the four plots. The variety and nitrogen 
treatment of the plots are identified by colored rectangles: (blue) Crusoe 50 kgN/ha, 
(orange) Istabraq 350 kgN/ha, (green) Crusoe 350 kgN/ha, (red) Istabraq 50 kgN/ha.(d) 
shows the plan of the installation for 2019. 

 154 

Above-ground variables 155 

The above ground data were collected by the Field Scanalyzer platform (Virlet et al. 2017). 156 

The growth parameters were collected from RGB camera (Prosilica GT3300, Allied Vision, 157 
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3296 x 2472 pixels) for the canopy cover and from the 3D laser scanner (Fraunhofer 158 

Institute) for height. 159 

Canopy cover values were derived from the RGB images and expressed as a percentage of 160 

the image covered by green pixels belonging to the plot canopy (Sadeghi-Tehran et al. 161 

2017). The height of the crop was obtained from the 3D cloud points using the 98th 162 

percentile of the vertical coordinates of the cloud points (adapting from Lyra et al., 163 

unpublished). The height and canopy cover of the crops were available for both 2018 and 164 

2019. 165 

Geophysical data processing 166 

Electrical resistivity tomography (ERT) 167 

ERT measurements were collected using a remotely controlled Syscal Pro 48 (Iris 168 

Instruments, Orléans, France) at hourly intervals. In both years, the measurement sequence 169 

used was a dipole-dipole configuration (using one and two electrode spacing between the 170 

current/potential dipole and, respectively, eight and six levels between the current and 171 

potential dipoles) with electrode spacing of 0.15 m (2018) and 0.3 m (2018). Reciprocal 172 

measurements were included in the sequence after each normal set. Additional dummy 173 

quadrupoles (40 for the entire sequence) were also added to optimize the sequence (specific 174 

to the Syscal instrument); in total, the sequence for both years was composed of 496 175 

quadrupoles (124 per plot). 176 

In 2018, the system was operational between the end of May to July to capture rainfall 177 

events when the wheat was fully mature (between flowering and harvest). In 2019, the ERT 178 

monitoring system ran successfully from February to the end of August (flowering around 179 



9 

14th June) with a few data gaps. At the end of May, current injection errors were noted and 180 

so the instrument was replaced with another Syscal Pro 48 to allow monitoring until 181 

September. We noticed that the data from this second device had higher reciprocal errors 182 

than the original one, in particular for larger dipoles. Despite this, the datasets from both 183 

instruments show consistency in dynamics by reacting to rainfall events and showing 184 

similar daily fluctuations. 185 

The ERT data collected were processed using the ResIPy software (Blanchy et al. 2020) 186 

that makes use of the Occam’s based R2 inversion code (Binley, 2015). Because of the 187 

short electrode spacing compared to the length of the electrode, the nodes of the mesh 188 

corresponding to the electrode were positioned at 60% of the electrode length (Rücker and 189 

Günther 2011). Given the relatively small number of quadrupoles per plot, surveys were 190 

combined in batches of 24 (a day) and a power-law error model was fitted for each batch 191 

using the binned reciprocal errors. This approach ensures a sufficient number of data points 192 

to obtain a robust error model, while allowing the error model to vary throughout the 193 

season.. Each dataset was then inverted independently in a batch mode. The difference 194 

inversion method of LaBrecque and Yang (2001) did not work well for our dataset when 195 

applied over the entire season either using a single background survey or applied over 196 

consecutive surveys. For 2019, it produced satisfactory results until May, before large 197 

changes in electrical conductivity occurred. After May 2019, the difference approach was 198 

not able to reproduce the small variations in electrical conductivity observed at hourly 199 

intervals in the apparent data. This was partly due to the higher reciprocal errors observed 200 

after May that forces the inversion towards a smooth solution. Inverting independent 201 

surveys and constraining them to the background survey produced better results for the 202 
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earlier dates. However, after May 2019, this approach produced inverted sections that were 203 

too biased towards the background image. For this reason we decided to invert each survey 204 

independently with its own error model. Although this approach does not take advantage of 205 

difference or background regularization option that could potentially reduce time-lapse 206 

artifacts, it still produces inversions that shows clear temporal dynamics. Each inverted 207 

section was then averaged into a 1D profiles per plot used in the rest of the study. The 1D 208 

profiles were computed for ease of comparison between plots. 209 

EC temperature correction 210 

It is essential that the temperature correction is applied to be able to distinguish between 211 

soil moisture and temperature effects on electrical conductivity. The variation in bulk 212 

electrical conductivity with temperature is due primarily to two factors: the change in the 213 

ion mobility and the change and on the viscosity of the pore water (Hayley et al. 2007). To 214 

account for the effect of temperature, different models have been developed. Ma et al. 215 

(2011) compared the different corrections found in the literature and concluded that a ratio 216 

model performs well in the range 3 to 47 °C. Beyond this range, the empirical model 217 

proposed by Sheets and Hendrickx (1995), which appears in the corrected form in Corwin 218 

and Lesch (2005), is more appropriate. Hayashi (2004) explored the range of applicability 219 

of the ratio model and concluded that this model is applicable within the 0-30°C 220 

temperature range, which is similar to the conclusion of Ma et al. (2011).  221 

Given that our soil temperature lies within the 0-30°C range, we applied the ratio model to 222 

our data with a 2% increase per degree: 223 

   𝜎ଶହ ൌ
ఙ೅

ଵା଴.଴ଶ∗ሺ்ିଶହሻ
     (1) 224 
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where σ25 is the equivalent electrical conductivity at 25 °C, σT is the bulk electrical 225 

conductivity measured at the temperature T in °C. Note that this model makes the 226 

correction factor dependent on σ25. For our study we used the hourly soil temperature 227 

values measured at five depths (0.1, 0.2, 0.3, 0.5, 1 m) under grass from the Rothamsted 228 

weather station (e-RA Rothamsted electronic archive) located about 100 m from the 229 

experimental plots. The temperatures were linearly interpolated with depth to match the 230 

depths of the inverted electrical conductivities. The effect of the temperature correction can 231 

be seen in Figure 2. All inverted conductivity values presented hereafter have been 232 

temperature corrected using this relationship. 233 

Time series analysis 234 

The decomposition of the time series of electrical conductivities was applied to the 2019 235 

dataset because it is longer and allows analysis of seasonal change (not possible with the 236 

shorter 2018 dataset). For a selected depth, the series of interest is composed of temperature 237 

corrected inverted electrical conductivities from February to September 2019. The signal is 238 

broken down into three components using an additive model: 239 

    𝑌ሺ𝑡ሻ ൌ 𝑇ሺ𝑡ሻ ൅ 𝑆ሺ𝑡ሻ ൅ 𝑒ሺ𝑡ሻ,    240 

 (2) 241 

where Y(t) represent the raw signal, T(t) represent the trend, S(t) is the daily component, e(t) 242 

is the residual. All components are dependent on time t. Note that the daily component is 243 

sometimes referred as the seasonality of the time series and represents repeating short-term 244 

cycles in the series. This decomposition is simple but enables the identification of different 245 

aspects of the signal. To decompose the signal, the algorithm proceeds as follows: 246 
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1. The period of the short-term cycles of the signal is identified. In this case, the signal 247 

shows a short-term cycle every 24h (daily). 248 

2. A moving average is applied on the series with a window size corresponding to this 249 

period, this produces the trend.  250 

3. The trend is subtracted from the raw signal and the resulting values are averaged for 251 

each period to form the daily component. 252 

4. The residuals are obtained by subtracting the trend and the daily components from 253 

the raw data. 254 

The algorithm was implemented using the ‘seasonal_decompose()’ function of the 255 

statsmodels Python package (Seabold and Perktold 2010). 256 

Results 257 

Effect of the soil temperature variations 258 

Figure 2 shows the impact of the temperature correction by analyzing the cross-correlation 259 

between the soil temperature at 0.15 m depth and the corresponding averaged inverted 260 

conductivity from the plot of Crusoe 50 kgN/ha. The temperature correction has two main 261 

effects. First it increases the overall electrical conductivity to bring it to an equivalent 262 

electrical conductivity at 25°C. That allows us to compare different dates throughout the 263 

season. Second it decreases the cross-correlation between the two variables. 264 
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Figure 2: (a) Example inverted conductivities values with and without the temperature correction. (b) 
Cross-correlation between the inverted electrical conductivity (corrected or not) and the soil 
temperature at 0.15 m depth. The inverted conductivities are extracted from the Crusoe 50 kgN/ha plot 
of the 2019 experiment. Similar graphs can be observed on the other plots. 

 265 

Inverted profiles 266 

Figure 3 shows examples of the inverted resistivity section and their corresponding 267 

averaged inverted conductivity profiles for 2018 and 2019 experiments. For a given year, 268 

all profiles show similar values and pattern due to the proximity of the plots. 269 

 270 
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Figure 3: Inverted resistivity sections and their corresponding temperature corrected averaged 1D 
profile for the three plots in 2018 (a,c,e) and the four plots in 2019 (b,d,f,g). Both taken on 15th June. 
Note that the resistivity and conductivity scales are different between 2018 and 2019. 

 271 

Seasonal variations 272 

Figure 4 and 5 illustrate the time course of the different variables during the 2018 and 2019 273 

experiments. In 2018, the ERT monitoring system successfully captured a large rainfall 274 

event that took place at the end of May. All varieties reached full canopy cover at the end of 275 

May and maximal height around mid-June. Figure 4d shows clearly the large increase in 276 

electrical conductivity due to the rainfall and the progressive soil drying afterwards. This 277 

effect is strongly attenuated at the depth of 0.44 m (Figure 4e). The daily averaged rates of 278 

decrease in electrical conductivity at 0.22 m between 2018-06-05 and 2018-07-01 are -0.12 279 
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m.S-1.d-1(Mercia Rht3), -0.10 m.S-1.d-1(Shamrock) and -0.15 m.S-1.d-1 (Mercia RhtC). 280 

Figure 4c shows clearly the different heights of the varieties with Mercia Rht3 being a 281 

dwarf variety while Mercia RhtC is a tall variety. 282 

 

Figure 4: Time course of different variables on the 2018 experiment with three different winter wheat 
lines (Rht3 Mercia, RhtC Mercia, Shamrock). (a) Daily precipitation and potential soil moisture 
deficit (PSMD). (b) Canopy cover development derived from RGB picture. Maximum canopy cover is 
reached from end of May and senescence start in the beginning of July. Canopy cover does not reach 
value higher than 80% because of the gaps between the subplots. (c) Increasing height of the crops. 
(d,e) Inverted temperature corrected electrical conductivity for each variety at 0.22 m and 0.44m 
depths, respectively. 

 283 

Figure 5 shows the time course of the different variables collected in 2019. Figure 5a 284 

shows daily precipitation and potential soil moisture deficit (PSMD). The PSMD was 285 

obtained from meteorological variables measured at the Harpenden weather station (full 286 
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methodology at: http://www.era.rothamsted.ac.uk/Met/derived_variables#PSMD). From the 287 

end of April, the canopy cover of the two high N plots exceeded the canopy cover of the 288 

low N plots and reached a maximum by mid-June, irrespectively of the variety (Figure 5b). 289 

The canopy cover started to decrease in the beginning of July as an effect of the 290 

senescence. In contrast, the height of the crops appears to be related to the variety and less 291 

influenced by the nitrogen treatments (Figure 5c). Note however, that Istabraq 50 kgN/ha is 292 

slightly smaller than Istabraq 350 kgN/ha at the end of the season.  293 

Figure 5d and Figure 5e show the temperature corrected inverted conductivity at depths of 294 

0.15 m and 0.45 m, respectively. The shallower depth (Figure 5d) shows a peak around 295 

2019-03-20 after the first application of fertilizer and then the electrical conductivity of all 296 

four plots starts to decrease coinciding with the measured increase in canopy cover. Two 297 

other peaks can be observed around 2019-05-10 and 2019-06-25 after significant rainfall 298 

events (Figure 5a). During these two events, Istabraq 350 kgN/ha and Crusoe 350 kgN/ha 299 

show larger increases in conductivity but also a more rapid decrease over the following 300 

days. A later rainfall event occurred at the end of August but no dramatic decrease in 301 

conductivity is seen following this as the crop has been harvested mid-August. The slight 302 

decrease observed could be attributed to the usual drying of the soil. The deeper depth 303 

presented in Figure 5e shows a more attenuated response to that in Figure 5d: no clear 304 

difference between the nitrogen treatments or the varieties can be seen. However, the two 305 

major rainfall events of 2019-05-10 and 2019-06-25 appear to drive a slight increase in 306 

electrical conductivity at depth, albeit much weaker than that seen at the shallow depth. 307 

Note also the increase in electrical conductivity for Crusoe 350 kgN/ha around 2019-03-20 308 

at -0.45 m. 309 
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Figure 5: Time course of different variables on the 2019 experiments with two winter wheat varieties 
(Istabraq and Crusoe) and two different nitrogen treatment (50 and 350 kgN/ha). (a) Daily 
precipitation and potential soil moisture deficit (PSMD). (b) Developing canopy cover determined 
from RGB picture. (c) Increase in crop heights over time. (d,e) Time course of the temperature 
corrected inverted electrical conductivity under the four crops. Note that a moving average of window 
3 has been applied on the (d) and (e) to reduce the noise and remove outliers. The shaded area in (d) 
can be viewed enlarged in Figure 8. The two vertical black lines show when the nitrogen fertilizer was 
applied (2019-03-08 and 2019-04-10). 

 310 

Time series analysis 311 

Figure 6 shows the decomposition of a selected portion of the temperature-corrected and  312 

inverted conductivity curves during the first rainfall event, May 2019. The observed signal 313 

(Figure 6a) comprised a general trend (Figure 6b), a daily component (Figure 6c) and a 314 

residual component (Figure 6d) using the additive model described earlier. The diurnal 315 
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characteristic of the signal is clearly shown by this analysis (Figure 6c) decreasing during 316 

the day and increasing during the night (shaded areas). This cycle is common to all four 317 

plots in May 2019. 318 

 
Figure 6: (a) Portion of the temperature corrected inverted conductivity signal at 0.15 m depth after 
the main rainfall event of mid-May. Shaded areas represent the night. The signal is decomposed in 
three additive components: the trend (b), the daily component (also called seasonality) (c) and the 
residuals (d). 

 319 
The same additive decomposition can be applied to different moving time windows of 7 320 

days with two-day offsets between the windows. The daily component extracted is shown 321 

for each window in Figure 7 for the 0.15 m depth. The advantage of applying the 322 

decomposition on smaller time windows compared to the whole signal is that it allows us to 323 

see the evolution of the daily component through the season. In Figure 7, it can be seen that 324 

the lower part of the daily component (strong blue), initially around 6h00 in February 325 

progressively shifts down to 17h00 by the end of April, when the crops start to grow a 326 

mature canopy and extract more water from the soil. This shift is subtle but consistent 327 
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among consecutive weeks. Note as well that in February and March (Figures 7b and c), the 328 

decrease in electrical conductivity occurs mainly during the night which is the opposite of 329 

what is observed later in the season, in May for instance (Figure 6c). 330 

 
 

Figure 7: Evolution of the daily component of the additive model fitted on a several moving windows 
of a week (7 days) with a two-day offset between consecutive windows. (a) Observed data (here the 
temperature corrected inverted conductivity at 0.15 m depth) and two windows. The first window of a 
week is extracted, and the additive decomposition is applied. The cyclic component is displayed in (b). 
A second window is chosen two days later, and the same process is repeated (c). The shaded area 
represents night. (d) Evolution of the daily components for each moving window over the whole 
growing season during night (19h – 7h) and day (7h - 19h). Moving windows spanning no data 
intervals have been removed. 

 331 
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Reaction to rainfall event 332 

Figure 8 shows an enlarged graph during a major rainfall event at the end of May 2019. It 333 

illustrates how the shallow electrical conductivity of the two crops which, received larger 334 

amounts of nitrogen fertilizer, increase immediately after the large rainfall and then 335 

decrease at a greater rate over the following days. The average decrease rates in electrical 336 

conductivity are computed between 2019-05-11 and 2019-05-29 for each plot. When 337 

grouped by N treatments, high N plots decrease faster (-0.47 mS.m-1.d-1) than low N plots (-338 

0.15 mS.m-1.d-1). This behavior was mainly observed at depths shallower than 0.2 m. The 339 

rates of decrease in electrical conductivity of the four plots correlated well (R2=0.57) with 340 

their respective maximum canopy covers (Figure 5b) but not with their heights (R2<0.01). 341 

Subsequent (albeit smaller) rainfalls do not have any visible impact on the electrical 342 

conductivity. 343 

 
Figure 8: Enlargement of the grey shaded area of Figure 5d showing the evolution of the inverted 
conductivity of the four crops under the Scanalyzer in 2019 during and after the major rainfall event 
at the end of May 2019. Note the faster decrease in electrical conductivity of the crops which received 
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more nitrogen. 

 344 

Yield 345 

For each year, the grain and straw dry weights were measured and converted to yield in t/ha 346 

at 85% dry matter (Table 1). The yield in 2018 was much smaller compared to 2019. This 347 

can be explained by the lack of rain in 2018 and several bird damages. In 2018, Mercia 348 

RhtC (tall variety) had the largest grain and straw yield while Mercia Rht3 (dwarf variety) 349 

had the lowest. In 2019, the two plots which received more nitrogen fertilizer had a higher 350 

grain and straw yield compared to those which only received one application of fertilizer. 351 

For the same rate of nitrogen fertilizer, Istabraq had higher yield than Cruose. In 2018, 352 

there was no clear relationship between the grain yield and the daily rate of decrease in 353 

shallow electrical conductivity after the large rainfall event (R2=0.08). In contrast, in 2019, 354 

larger grain yield was associated with larger daily rate of decrease in shallow electrical 355 

conductivity after the major rainfall event at the end of May (R2=0.52). 356 

Table 1. Summary of the yield of the different varieties in both years. 357 

Variety Winter 
Wheat 

N fertilizer Year Grain yield 
@ 85% [t/ha] 

Straw yield 
@ 85% [t/ha] 

Total biomass @ 85% 
[t/ha] 

Mercia Rht3 - 2018 2.0 5.4 7.4 

Shamrock - 2018 5.6 7.9 13.5 

Mercia RhtC - 2018 6.5 8.1 14.6 

Crusoe 50 kgN/ha 2019 10.0 10.7 20.7 

Istabraq 50 kgN/ha 2019 10.5 10.1 20.6 

Crusoe 350 kgN/ha 2019 12.0 11.8 23.8 

Istabraq 350 kgN/ha 2019 13.6 13.6 27.2 

 358 
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Discussion 359 

Implementation of geoelectrical monitoring 360 

The inversion of long-term time-lapse electrical resistivity data is challenging. In 2019, the 361 

procedure was made more difficult because of the higher reciprocal errors of the 362 

replacement instrument, used after May. Difference and background-constrained inversion 363 

were tested but both could not reproduce the diurnal dynamics observed in the apparent 364 

conductivity data during the entire season and most failed to converge at the end of the 365 

growing season. Difference inversion performed well when applied on the data collected 366 

before the first nitrogen application but failed to reproduce the variations observed in the 367 

apparent values afterwards. Difference inversion is usually effective when the surveys 368 

shared a high systematic error and a low random error but that might not be the case in this 369 

study. As a simpler approach, each survey was inverted individually with a power-law error 370 

model based on the binned reciprocal error of the batch of 24 consecutive surveys. We 371 

noticed that the inclusion of an error model greatly helps the inversion to converge and 372 

would recommend the addition of reciprocal measurements in automated sequence for this 373 

purpose. In applications of difference inversion type schemes, a different type of error 374 

model that reduces systematic errors can be considered (Lesparre et al. 2019). 375 

One important challenge that we met with the inversion of hourly geoelectrical data, was to 376 

be able to retain the day-night pattern observed in the apparent resistivity measurements 377 

following their inversion. In this study we successfully retrieved this pattern for shallower 378 

depths, but we noted that deeper depths do not show similar daily fluctuations (Figure 5e). 379 

Figure 9 compares the evolution of the apparent and inverted values for shallow and deeper 380 
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depths. Apparent values show a daily pattern for shallow and for deep depths while the 381 

daily pattern is only visible in the shallow depth for the inverted values.. The current study 382 

mainly focuses on shallower depths as they exhibit faster responses to meteorological 383 

events but also because most of the root system of winter wheat usually lies above 0.3 m 384 

depth (see, for example, Hodgkinson et al., 2017). Without detailed root data for our 385 

experiments we have to assume this to be the case here. Additionally, another reason for 386 

only observing the daily pattern at shallow depths is the structure of the soil texture. Indeed, 387 

the higher clay content of the soil below 0.3 m might have substantially slow down water 388 

fluxes and hence attenuated the fluctuations. This is a potential limitation of the current 389 

study site and the experiment would benefit from a repeat in a well-drained environment to 390 

see if these daily fluctuations can be observed deeper. 391 

 392 
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Figure 9: Comparison between two apparent conductivities (a) and (b) and two inverted temperature 
corrected conductivities (c) and (d) for the two plots of Istabraq in 2019. Both (c) and (d) were 
smoothed by a moving average (window=3). Note that the inverted conductivities at deeper depths do 
not show strong daily fluctuation compared to the apparent resistivity data (compare plot (d) with (b)) 
but rather an attenuated version of the seasonal dynamics. 

 393 
Finally, an important factor when measuring hourly electrical conductivity is the effect of 394 

soil temperature as shown by the cross-correlation plot of Figure 2b. The diurnal pattern of 395 

temperature strongly influences electrical conductivity, particularly at shallow depths. 396 

Applying the usual temperature correction using the ratio model (Equation 4) helps to 397 

reduce this effect and decreases the cross-correlation (Figure 2b). 398 

Coupling with other above-ground variables 399 

In 2018, the different wheat varieties did not show large difference in term of canopy cover 400 

which can be attributed to the lack of rain during the canopy expansion phase (Figure 3b). 401 

This might explain why no large difference in the dynamics of the inverted conductivities 402 

were observed between the varieties (Figure 3d and e). Figure 4d shows that the 403 

conductivity at -0.22 m under Mercia RhtC decreased slightly faster after a major rainfall 404 

event which might be linked to the larger canopy cover of the variety. In other field trials 405 

Hodgkinson et al. (2017) observed that the dwarf wheat variety (Mercia Rht3) has a deeper 406 

root system but that this does not lead to larger root water uptake. No links could be found 407 

between the yield and the dynamics of the electrical conductivity in 2018. 408 

In contrast, large differences in canopy cover were observed in 2019 between the plots. The 409 

dynamics of the electrical conductivity is clearly related to the development of the canopy 410 

cover when no major rainfall events occur (Figure 5b and c). 411 
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Figure 8 shows that the plots receiving more nitrogen show a larger increase in electrical 412 

conductivity during the rainfall event. One explanation could be that part of the nitrogen 413 

from the last application was still in the soil in granular form, and not yet in a form 414 

available to the crop. With the rainfall, it was dissolved again in the soil solution and caused 415 

a surge in the electrical conductivity. We did observe a small peak after the first application 416 

of fertilizer (Figure 5d). Once dissolved, the nitrogen is quickly taken up the roots resulting 417 

in a faster decrease of the soil electrical conductivity.Figure 6 This newly absorbed nitrogen 418 

can then be allocated to the growth of the crop, leading to an expansion of the canopy cover 419 

(Figure 5d). The decrease in electrical conductivity could also be due the crop water uptake 420 

which depends on the canopy cover. However, the rate of uptake of the different crops is 421 

likely to be comparable given their similar canopy cover prior to the event. In this study, 422 

separating the two effects is difficult without independent measure of the soil moisture. 423 

There was no strong correlation between crop height and electrical conductivity. The crop 424 

height was more influenced by the variety and less by the nitrogen treatment. In contrast, 425 

the yield of the crops which received more nitrogen was much greater compared to those 426 

receiving less. However, for a given level of nitrogen (either 50 or 350 kgN/ha), Istabraq 427 

shows a slightly higher yield than Cruose. For example, Istabraq 350 kgN/ha has a higher 428 

grain yield (13.6 t/ha) than Crusoe 350 kgN/ha (12 t/ha). 429 

Diurnal cycles 430 

As previously stated, no direct measurements of soil moisture content were collected during 431 

these two experiments. However, the relationship between the electrical conductivity and 432 

the soil moisture content was known for the soil under the Scanalyzer (Figure S1). With it 433 
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we can relate the electrical conductivity data from the graphs above to soil moisture 434 

content. However, given the suspected contribution of the nitrogen fertilizer to the electrical 435 

conductivity (mainly around large rainfall events), the focus here has been on electrical 436 

conductivity variation. 437 

Diurnal patterns are present in the apparent conductivities measured (Figure 9a and b). 438 

Once inverted, and temperature corrected, those diurnal cycles are still visible mainly for 439 

shallower depths and attenuated for deeper depths (Figure 5d and e). In order to see if these 440 

patterns are related to crop activity, partitioning of the time series was performed. However, 441 

we acknowledge that univocally attributing the changes in electrical conductivity to root 442 

water uptake is not possible in this study. 443 

Figure 6c shows that the daily component for all the plots tends to decrease during day and 444 

increase during night in May. Note that earlier in the season the opposite trend was 445 

observed (Figure 6) when the crop had probably less effect on the dynamics of the soil 446 

moisture. The daily component is arguably noisy, and we explain this partly because of the 447 

noise in the original signal (Figure 6a) but also because this daily component is extracted as 448 

the mean of the periodic difference between the raw signal and the trend. One main 449 

limitation of the additive decomposition is that the daily component cannot vary in 450 

amplitude from one day to another. We hypothesize that this daily component is mainly 451 

influenced by the root water uptake of the crop - which follows a diurnal cycle as seen, for 452 

instance, in Verhoef et al. (2006) or Werban et al. (2008). The nightly increase observed 453 

from May could be due to soil moisture replenishment or hydraulic lift (Horton and Hart 454 

1998). 455 
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The same decomposition approach was applied on moving windows throughout the whole 456 

season (Figure 7) and revealed a shift from April onward in the daily component of the 457 

signal. This progressive shift appears at a time when the crops start to grow larger canopy 458 

cover and show large decrease in electrical conductivity (Figure 5d). Note also that the 459 

diurnal component of the signal was still strong in February when the crops were small and 460 

showed a decreasing electrical conductivity during night-time. Such a strong daily 461 

component in the signal for earlier dates is unexpected. It could be related to the fact that 462 

the temperature correction did not completely remove the cross-correlation between 463 

temperature and electrical conductivity (Figure 2). In this case there may be a residual 464 

effect of the temperature cycle that remains in the series. This effect is overcome later in the 465 

season by larger effects of the diurnal soil moisture dynamics. 466 

Conclusion 467 

This study shows hourly electrical resistivity monitoring applied to small scale agricultural 468 

plots with different wheat varieties and nitrogen treatments. A high cross-correlation with 469 

the soil temperature and the hourly electrical conductivity makes it essential for the 470 

application of a temperature correction. However, diurnal patterns in the electrical 471 

conductivity remains and our analysis suggest that this diurnal pattern is mainly influenced 472 

by plant activity particularly when the crops are fully grown. Distinguishing differences 473 

between varieties remains challenging, and we did not observe any large differences in 474 

electrical conductivity either in 2018 or 2019 experiments. However, the effect of nitrogen 475 

uptake could be clearly seen in the dynamics of the electrical conductivity during large 476 

rainfall events. We acknowledge the limitation of the approach to monitor a few 477 
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experimental plots, but we believe that higher time resolution has enabled us to gain deeper 478 

insight into soil-plant dynamics than the usual coarser time-lapse monitoring, in particular 479 

during large rainfall and subsequent drying events but also at the daily scale. Specifically, 480 

the ERT monitoring system provided non-invasive depth-specific information that can be 481 

related to some above-ground measurements. As such, it offers a unique perspective into 482 

the soil-water-plant interactions which is essential for breeding more resilient varieties. 483 

 484 
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