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Abstract -Results from earlier laboratory and field experiments are interrogated for the possibilities of 11 

sequestration, or long-term accumulation, of carbon from excess greenhouse gases in the atmosphere. In the 12 

laboratory study, samples of three (top) soils dominated by kaolinite and illite together, smectite and 13 

allophane were examined for the adsorption and desorption of dissolved organic carbon (DOC). Adsorption 14 

and desorption of DOC were carried out on clay fractions extracted physically and after first native organic 15 

matter and then iron oxides were removed chemically. Labelled organic material was added to the soils to 16 

assess the priming effect of organic carbon (OC). . In the field, changes in OC were measured in sandy soils that 17 

had been amended by additions of clay for between 3 and 17 years both through incorporation of exogenous 18 

clay and delving of in situ clay. The laboratory experiments demonstrated that a portion of DOC was held 19 

strongly in all soils. The amount of DOC adsorbed depended on clay mineral types, including Fe oxides. Much 20 

adsorbed DOC was lost by desorption in water and substantial native OC was lost on priming with new OC. 21 

Addition of clay to soils led to increased OC. Therefore, addition of clay to soil may enhance net sequestration 22 

of C. OC close to mineral surfaces or within microaggregates is held most strongly. C sequestration may occur 23 

in subsoils with unsaturated mineral surfaces. However, incorporation of carbon into macroaggregates from 24 

enhanced plant growth might be most effective to remove excess carbon from the atmosphere, albeit over the 25 

short-term. 26 
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INTRODUCTION 32 

The earth’s climate is undergoing change, and the consensus is that its principal cause is the 33 

rise in the atmosphere of so-called “greenhouse gases” from anthropogenic activities. In particular, 34 

carbon dioxide generated by the combustion of fossil forms of carbon (Le Quéré et al., 2009) and 35 

also methane, often generated by agriculture (Smith et al., 2008), are major sources of these gases 36 

in the atmosphere. These gaseous forms of carbon are also released into the atmosphere when 37 

formerly frozen sources such as permafrost Arctic regions are warmed (Schuur et al., 2011).  38 

Many authors in the scientific literature (see, e.g. Stockmann et al., 2013; Minasny et al. 39 

2017) have proposed that soil organic matter (SOM) can be used as a “managed” sink for 40 

atmospheric carbon gases and particularly carbon dioxide, through carbon sequestration. Politicians 41 

and others in public life have seen carbon sequestration as a solution to the problems that rising 42 

emissions of these gases cause to the climate. Hence there is a strong need to assess the viability of 43 

the apparently useful role for SOM in halting or at least diminishing the advance of climate change. 44 

The global stock of carbon in the soil as organic matter (SOM) has been estimated as ~ 700 45 

Pg to a depth of 30 cm and ~1500 Pg to a depth of 1 m (Batjes, 1996). The SOM to 30 cm depth 46 

represents about twice the amount of C in the atmosphere and 3 times that in above-ground 47 

vegetation (Powlson et al., 2011). Carbon as soil organic carbon (SOC) is particularly labile. 48 

Historically, the reservoir of C held in land has diminished drastically over decades, whereas that 49 

held in oceans, which is also labile and of a comparable size, has changed only a little (Lal, 2014). The 50 
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loss of C from land is attributable to agriculture. Many (e.g. Lal (2014) have concluded that, because 51 

C has been lost from their soils, managed agricultural soils have the capacity to replenish the losses 52 

and hence sequester C from the atmosphere.  53 

The clay fraction of soils, comprising clay minerals (including metal oxides, oxyhydroxides 54 

and hydroxides) is their most reactive fraction for forming associations with organic matter 55 

(Churchman, 2010, 2018; Sarkar et al., 2018; Singh et al., 2018).  56 

Several approaches have been used to investigate the importance of clay minerals in the 57 

uptake and retention, hence, potentially, the sequestration of carbon in soils (e.g. Churchman and 58 

Velde, 2019). These include correlations of the contents of SOC with properties of soil clays, 59 

including their contents and their cation exchange capacities (CECs). Where narrow ranges of soil 60 

types have been studied, some good correlations have been obtained, but where the ranges are 61 

wider, SOC contents and those of clays or their properties have been poorly correlated, if at all 62 

(Churchman and Velde, 2019). In tropical Australia (Spain, 1990), such correlations were poor when 63 

soils originated from basalt were included, and a set of 167 soils taken from throughout New 64 

Zealand showed no correlation between SOC and clay fraction contents (Percival et al., 2000). The 65 

lack of a relationship between SOC and clay contents or properties was explained by the important 66 

roles played by compounds of Fe (Spain, 1990; Percival et al., 2000) and Al (Percival et al., 2000), 67 

particularly when these were poorly crystalline (Percival et al., 2000).  68 

Another approach to the study of mineral-organic interactions in soils include the 69 

fractionation of soils, either by particle density, selective chemical dissolutions or physical 70 

disaggregation. These studies have confirmed the important roles played by Fe (Eusterhues et al., 71 

2003, 2005) in the stabilisation of SOC in many soils, and by Ca2+ in some (Oades, 1989). In particular, 72 

leached, hence, generally, acid soils involve Fe and Al in the stabilisation of C by bridging while Ca2+ is 73 

more involved in bridging with SOC in high base status soils (Oades, 1989; Rowley et al., 2018).  74 
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Studies of incubations of soils have revealed that clay minerals with the highest surface area, 75 

namely allophane and smectite in the soils they used, had the strongest effect on the suppression of 76 

the decomposition of SOC (Saggar et al., 1996), while Rasmussen et al. (2007) found that poorly 77 

crystalline Fe oxyhydroxides strongly suppressed SOC decomposition.  78 

These three types of approaches, together with others (e.g. Churchman and Velde, 2019), 79 

have shown that clay minerals, including metal oxides, oxyhydroxides and hydroxides, are important 80 

in the uptake and retention of SOC in soils. Even so, these studies do not provide an assessment of 81 

the strength and duration of the binding of SOM by soil minerals. Strong and long-term binding of 82 

SOM is required for the sequestration of carbon in soils. “Sequester” is defined as “to hold on to” or 83 

“to keep separate” (Powlson et al, 2011). In the chemical or environmental context, sequestration 84 

means “the trapping of a chemical in the atmosphere or environment and its isolation in a natural or 85 

artificial storage area” (Dictionary.com, 2019). The sequestration of organic C in soils is generally 86 

taken to mean the retention of SOC for a “stipulated duration timeframe (usually 100 years)” 87 

(Stockmann et al., 2013). The most useful meaning for carbon sequestration for a decrease in 88 

greenhouse gases in the atmosphere is given by a net gain of SOC. This represents “new” 89 

sequestration of carbon.  90 

Several recent experiments (Singh et al, 2016, 2017a; 2017b; 2019; Schapel et al., 2018) 91 

have been carried out to help assess or improve the effectiveness of soils for the uptake and 92 

retention of OC. Experiments were carried out in the laboratory and also in the field.  93 

The laboratory experiments included determinations of the stabilisation of OC by clay 94 

minerals as they occur in soils, in contrast to clay minerals from deposits, as determined by Saidy et 95 

al. (2012).  Clay minerals originating in soils can have quite different properties from “pure” clay 96 

minerals from deposits (Churchman, 2010; Churchman et al., 2012; Churchman and Lowe, 2012; 97 

Churchman and Velde, 2019).  98 
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The field experiments were based on a common agricultural practice in much of the States 99 

of South Australia and Western Australia where sandy soils often become hydrophobic in summer in 100 

the xeric moisture conditions prevailing in these areas. A practical solution to this problem has been 101 

to add clay to the soils (McKissock et al., 1998; Cann, 2000; Churchman et al., 2014; Churchman and 102 

Velde, 2019). Initially, clay-rich material was incorporated in the surface soils but, because most of 103 

the soils concerned are texture-contrast types having sandy topsoils over clay-rich subsoils, the 104 

common practice now is to obtain clay for incorporation in surface soils via mechanical deep ripping, 105 

a process known as “delving” (Betti et al., 2015). 106 

The results of these various experiments have enabled an assessment of the potential of 107 

soils to uptake and retain added OC, especially in relation to their clay mineral composition, 108 

Reference to the literature has also pointed to likely causes of limitations on carbon uptake and 109 

retention in soils. 110 

In this paper, some of the important results and conclusions of these various recent 111 

experiments, particularly from Singh (2016), Singh et al. (2016, 2017a) and Schapel et al. (2018) are 112 

highlighted and assessed together with results from earlier work, especially Churchman et al. (2014), 113 

as indicators of the prospects for (new) carbon sequestration in soils. 114 

It is hypothesized that clays, as the most reactive inorganic compounds in soils, ultimately 115 

govern the prospects for sequestration of organic carbon in soils. 116 

LABORATORY EXPERIMENTS AND RESULTS 117 

Three soils were studied: a Calcic Haplosteralf, a Pellustert and a Thaptic Haploxerand, 118 

according to Soil Taxonomy (Soil Survey Staff, 1992) (Singh et al., 2017b). Respectively, these were 119 

dominated by kaolinite and illite (together), smectite and allophane (Singh et al., 2016). 120 

 The OC added to soils in these experiments was in liquid form, as dissolved organic carbon 121 

(DOC), produced by dissolving ground wheat straw in water. Experiments carried out assessed the 122 
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capacities of three different soils to 1. adsorb DOC, 2. retain adsorbed DOC in the presence of water 123 

(or “desorb DOC”) (both Singh et al., 2016), and 3.  mineralize added carbon and limit the 124 

decomposition of adsorbed DOC to carbon dioxide by the "priming effect” (Singh et al., 2017a).  125 

Adsorption experiments 126 

Adsorption experiments were performed on clay (< 2 µm) fractions extracted from the soils 127 

(at 5-20 cm depth) following prolonged shaking in Milli-Q water then gravity sedimentation. Hence 128 

both minerals and organic matter in clay-sized material were preserved in the collected fractions. 129 

The soils, all from South Australia, were characterised by their dominant clay minerals: (a) kaolinite 130 

and illite together, (b) smectite, and (c) allophane (Singh et al., 2016; 2017b). Adsorption was carried 131 

out at pH 7 in solutions of calcium or sodium nitrate, either 0.1 or 0.01 M, for 24 h and DOC in 132 

solution analysed after filtering. See Singh et al. (2016) for details. 133 

The different clay minerals adsorbed DOC to various extents. All sorption isotherms, for 134 

natural clay fractions, clay fractions after OC removal and clay fractions after iron removal following 135 

OC removal followed the Langmuir model (Singh et al, 2016). Results of maximum OC adsorption by 136 

the clay fraction of each soil are summarized in Table 1 for the following conditions: untreated, after 137 

organic carbon removal, and after iron removal following organic carbon removal. These data are 138 

from adsorption in 0.01M Ca(NO3)2., a concentration likely to closely represent  typical soil solutions 139 

(Blakemore et al., 1987). Analyses of total C and specific surface areas, before and after chemical 140 

treatments, as well as Fe contents of the untreated clay fractions (from Singh, 2016) are also 141 

included in Table 1. There are similar trends for the nitrate solutions differing in calcium or sodium 142 

and with different concentrations (0.01 or 0.1M). The sorptive capacities of all clays were increased 143 

when native OC was removed and were reduced when Fe was removed. 144 

(Insert Table 1 about here) 145 

Desorption experiments 146 
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Clay fraction samples taken from the adsorption experiments at various levels of equilibrium 147 

concentrations of DOC were first washed with Milli-Q water to remove entrained DOC then 148 

equilibrated for 24 h and supernatants were analysed for DOC after filtering. See Singh et al. (2016) 149 

for details. 150 

The percentages of adsorbed C that was desorbed in water from each clay fraction without 151 

treatment, after OC removal and after iron removal following OC removal, in relation to the amounts 152 

of DOC added in the adsorption experiments, are shown in Table 2. These data are from adsorption 153 

in 0.01M Ca(NO3)2.  There were similar trends for desorption for clay fractions following adsorption 154 

from the nitrate solutions differing in calcium or sodium and with two different concentrations (0.01 155 

or 0.1M) (Singh et al., 2016). 156 

(Insert Table 2 about here) 157 

More than 30% of the C adsorbed in Ca nitrate and more than 50% of that adsorbed in Na 158 

nitrate was released on simple desorption in water (Singh et al., 2016). The proportion of adsorbed C 159 

that was desorbed was greatest for the kaolinite-illite clay, less for the smectite clay and least for the 160 

allophanic clay, but even in this latter case, ~ 20% of that adsorbed in Ca nitrate and ~30% of that 161 

adsorbed in Na nitrate was lost on desorption in water. In each case, the proportion of adsorbed C 162 

that was lost on desorption increased when DOC adsorption had been performed on clays from 163 

which Fe-oxide was removed, and diminished when adsorption had occurred on clays from which 164 

native C was removed. 165 

Effects of priming 166 

Samples of the whole soils that had been sieved to < 2 mm to remove coarse particles were 167 

equilibrated with 14C – labelled malic acid and also unamended in sterile Milli-Q water. CO2 from 168 

respiration was collected at different time periods in a solution of NaOH and the unconsumed alkali 169 
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was determined by titration with HCl. See Singh et al. (2017a) for details of the experiments and 170 

calculations. 171 

Results showed that more C was lost (as CO2) from all soils after priming with malic acid 172 

(Singh et al, 2017a). However, the extent of loss on priming depended upon the mineralogy of the 173 

soils, with more C lost from the smectite soil than from the soil dominated by illite-kaolinite and the 174 

allophanic soil. These two latter soils had similar losses on priming. Decomposition of native C 175 

increased by 108% in the smectitic soil upon priming and by 37% in the kaolinitic-illitic soil and 42% 176 

in the allophanic soil (Singh et al., 2017a). 177 

FIELD EXPERIMENTS AND RESULTS 178 

Soils in South Australia that were classified as Luvisols in the World Reference Base (Michéli 179 

and Spaargaren, 2012) were studied at four sites where clay amendments had been carried out. All 180 

soils were texture contrast. Farming systems in all sites were rotations of cereal and grazed pasture, 181 

using minimum or no tillage and stubble retention. At each site, the soil had been amended by both 182 

incorporation of clay-rich soils from subsoils within pits dug nearby and also by deep incorporation 183 

from in situ using mechanical means. Trials were sampled at depth intervals to 50 cm after at least 3 184 

years following treatments. See Schapel et al. (2018) for detailed descriptions of the sites and 185 

processes used for clay amendment. 186 

Soils were sampled during the non-growing phase as cores from various depths. They did not 187 

contain gravel so were ground to pass a <2 mm sieve. Homogenised samples were analysed for OC 188 

by the Walkley-Black wet digestion and bulk densities were also determined gravimetrically for 189 

known volumes of soil. See Schapel et al. (2018) for details of methods.  190 

Schapel et al. (2018) found that the stock (or reservoir) of OC was significantly and positively 191 

correlated (R2 = 0.47) with the stock (or reservoir) of clay when these values were adjusted to an 192 

equivalent soil mass (ESM) from bulk density determinations. 193 
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Results showed that OC stock (or reservoir) in the surface (0-30 cm) of 14 clay-amended soils 194 

increased on average by 5.5 Mg C ha-1 (range -1.6 to 14.2 Mg C ha-1) from unamended sands, with 195 

the increases largely brought about by increases in clay content. Clay and OC were concentrated at 196 

the surface in clay-spread treatments and at depth in delved treatments (Schapel et al., 2018). 197 

DISCUSSION 198 

Organic carbon in solution is adsorbed by soils, and especially by their most reactive clay 199 

fractions, to various extents, depending upon their clay mineral composition.  The uptake of OC 200 

correlates with the specific surface area of the soil clay fractions (Table 1). Uptake of OC was 201 

increased by the presence of iron oxides, as also demonstrated by Kahle et al. (2003, 2004). Some 202 

organic matter in natural soils is held particularly strongly, and, notwithstanding that a small fraction 203 

was even resistant to peroxidation, the oxidation of OC enables further uptake. Others, e.g., Kaiser 204 

and Guggenberger (2003), and Mikutta et al. (2005), have also found that some OC is held 205 

particularly strongly in soils. The strongly-held portion may be located within small pores (McCarthy 206 

et al., 2008). 207 

Desorption shows that considerable organic matter was easily lost in water (Table 2). OC was 208 

held more strongly, i.e., less was released on desorption, after removal of native OC had occurred 209 

prior to its uptake. OC was held less strongly when Fe oxides were removed prior to its uptake. 210 

Nonetheless, much adsorbed OC was quite labile. Kahle et al. (2004), Mikutta et al. (2007), and Saidy 211 

et al. (2013) found that OC adsorbed on pure clay minerals included a substantial portion that was 212 

lost easily on desorption. 213 

The results of the priming experiments showed that, for all the soils, addition of extra OC led 214 

to an enhanced release of CO2 due to stimulation of microbial activity, hence respiration. Singh et al. 215 

(2017a) attributed the greater effect of priming in the smectitic soil than in the allophanic soil or the 216 

soil dominated by kaolinite and illite to the higher microbial activity which they measured for the 217 

smectitic soil. Even so, priming, showing breakdown of SOC, occurred even in the allophanic soil, 218 
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where OC was held more strongly against desorption than in the other two soils studied. This 219 

confirms the results of Finley et al. (2018), who found a high rate of decomposition of native OC in 220 

soils comprising the short-range order minerals, allophane and ferrihydrite. 221 

Field experiments (Schapel et al., 2018) demonstrated that both direct incorporation of 222 

exogenous clay addition and ‘delving’ of in-situ clay addition resulted in an increase in SOC content.  223 

Increases in SOC were also observed 8 years after additions of subsoil kaolinitic clay to sandy topsoils 224 

by delving in Western Australia (Hall et al., 2010). The top 10 cm of soil contained only 1% clay, 225 

which increased to 6% clay on delving. There was a resulting increase of 0.2% in SOC. In South 226 

Australia, Bailey and Hughes (2012) found that delving soils in 11 sites increased the mean SOC 227 

contents of their A2 horizons from 0.3% to 0.7%, Other clayey material can also enable increases in 228 

SOC, and wastes from bauxite processing (85% silt, 11% clay and 4% sand) were added to sandy soils 229 

in Western Australia (Harper et al., 2012; Churchman et al., 2014). Over a 19-20 year period, 230 

addition of this waste led to increases in SOC in the top 30 cm of soil of between 0.1 to 0.65%, 231 

resulting in a significant (P<0.01) increase of 11.6 Mg C ha-1 across the sites with a strong (r2 = 0.93, 232 

P<0.001) curvilinear correlation between clay content and SOC for the 0-5 cm layer (Churchman et 233 

al., 2014). This amounts to an annual uptake of 1.9 Mg CO2-eq. ha-1 year. 234 

Implications for carbon sequestration in soils 235 

Carbon is turned over - and lost from the soil system- through the biological processes 236 

needed for soil functioning in agriculture (e.g. Janzen, 2006). Sequestration of C through long-term 237 

storage and the use of soil for growing plants appear to be conflicting aims. For example, Bolan et al. 238 

(2012) concluded that amending soils with biochar, which is more stable than composts, could 239 

enhance soil carbon sequestration (long term carbon storage) but this carbon might not be useful for 240 

an immediate improvement of soil health, such as for supplying food to soil microorganisms for 241 

keeping the nutrient cycling operational. Following Jensen (2006), the most efficient way of 242 
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extracting extra carbon as CO2 from the atmosphere may be by using it more rapidly for increasing 243 

plant production, hence flow-through of SOM. 244 

Increased adsorption which occurred when native C was first removed from all soils (Singh et 245 

al., 2016) shows that some C had occupied the most reactive mineral sites. The results from 246 

desorption (Singh et al., 2016) show that further C occupied less reactive sites in all soils and was 247 

easily removed. The effect of priming (Singh et al., 2017a) shows that simple addition of new C to 248 

soils may result in the loss of C that is already present. Overall, these results show that simply adding 249 

new C to soils that already contain C does not result in additional C that is held strongly, i.e. 250 

sequestered. 251 

However, the addition of clays to soils can enable the net uptake of C. Furthermore, the rate 252 

of incubation of wheat residues added to a sandy soil was retarded by the addition of the clay 253 

fractions used in the studies of sorption of DOC (Singh et al., 2019). The addition of clay produces 254 

new surfaces for holding C.  255 

According to Churchman and Velde (2019, p. 152) “SOC can be associated with almost any 256 

secondary (and also altered primary) minerals, but shows a preference for poorly crystalline oxides 257 

and also silicates of Fe and Al”.  If these are rare, SOC binds to phyllosilicates according to their 258 

relative surface reactivities, with smectites the most reactive of these. pH also plays a role in 259 

governing reactivities of minerals for SOC. Low pHs favor Fe and Al compounds and higher pHs favor 260 

phyllosilicates. The type, hence strength, of these associations also vary with pH. Associations 261 

between SOC and minerals tend to be inner-sphere, hence stronger, at low pH and outer-sphere at 262 

high pH (Kleber et al., 2015). 263 

Various functional groups in organic matter can be bound to minerals in layers. Proteins and 264 

molecules containing carboxyl groups often occur adjacent to mineral surfaces while molecules 265 

containing hydrophobic groups tend to occur in outer layers (e.g., Kleber et al., 2007). The layering 266 

of organic molecules around the clay minerals is onion-like. Functional groups with a strong 267 
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attraction to minerals are likely to form associations with them early in soil development that are 268 

long-lasting. Examples are proteins, which are attracted to the negative charges that characterize 269 

many clay minerals, especially 2:1 (Si:Al) phyllosilicates via electrostatic bonds through -NR3
+groups 270 

(where R is H or CHx and x= 1-3), and also carboxyl and O/N alkyl groups, which form covalent bonds 271 

with Fe oxides that may be free or else associated with phyllosilicates (Schőning et al., 2005). 272 

Organic matter most intimately held on mineral surfaces would be held for longer times 273 

than that beyond the surfaces. Even so, associations of organic matter with minerals in soils often 274 

occur in 3-dimensional entities known as microaggregates. These are distinguished from 275 

macroaggregates by size, although the demarcation between the two may be arbitrary and 276 

pragmatic (Totsche et al., 2018). In the literature, microaggregates are defined as being variously in 277 

the < 250 µm (Totsche et al., 2018), 53-250 µm (Beare et al., 1994; Six et al., 1999; Denef et al., 278 

2004) and/or 2-50 µm size ranges (Tisdall and Oades, 1982; Paradelo et al., 2016) while Liefeld and 279 

Kőgel-Knabner (2003) measured their mean weight diameters in a range of soils as from 11.8 – 15.6 280 

µm. Using transmission electron microscopy of thin slices of soil, Chenu and Plante (2006) and 281 

Churchman et al. (2010) have found many microaggregates involving mineral and organic 282 

associations in the size range of 1-5 µm.  283 

In any case, microaggregates provide the basis of the structure of soils, stabilising them 284 

against disruption by agricultural practices and erosion. In particular, SOC is stabilised in 285 

microaggregates. In microaggregates, organic matter, often occurs within “shells” of the minerals 286 

(Chenu and Plante, 2006; McCarthy et al., 2008; Churchman et al., 2010). 287 

Organic matter turnover in microaggregates has been estimated variously in at least four 288 

different studies as from ~100 – 1000 years (Churchman and Velde, 2019). Studies of 289 

chronosequences (Totsche et al., 2018) have shown that the accretion of newly formed soil 290 

components such as microbial residues or hydrous Fe oxides into microaggregates appears to take 291 

place within ~ 200 years. Turnover time is slow even in larger, silt-size aggregates (Virto et al., 2010).  292 
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In truth, gases such as carbon dioxide are not removed directly from the atmosphere by soils 293 

or SOM. Generally, they are taken up by plants for photosynthesis leading to their growth and 294 

release into the soils. This occurs during the growth of plants, e.g., through root exudates or after 295 

their death, by their decomposition. The extra OC added to soils when clay was added to overcome 296 

non-wetting (Churchman et al., 2014; Schapel et al., 2018) came about because addition of clays 297 

encouraged plant growth, mainly by holding water on their large hydrophilic surfaces for later 298 

release to plant roots. In other experiments, additions of clays to light-textured (sandy) soils have 299 

been shown to increase plant production. In the laboratory, Churchman and co-workers (unpub. 300 

results, 2001) found that addition of 12.5% by weight of foundry waste containing 35% bentonite to 301 

a non-wetting sandy soil from South Australia not only overcame its hydrophobicity but trebled dry 302 

matter production. In the field, addition of similar foundry waste to a sandy soil in Thailand (without 303 

non-wetting problems) also led to increases of up to three times in the dry matter yield of maize 304 

(Soda et al., 2006). Pot trials adding 40 t ha-1 to a degraded Oxisol and a sandy Ultisol from northern 305 

Australia showed increases in the biomass production of forage sorghum of 3 and 8 times 306 

respectively (Noble et al. 2001). C contents were not measured in these various experiments, but the 307 

increased plant growth in each case would have led to substantial increase in SOC. Wherever excess 308 

clay is available locally, increased retention, if not new sequestration of C can occur in sandy soils 309 

where sparse plant growth is the norm. 310 

Limited sources of clays occur as industrial wastes, with, e.g. ~ one million tonnes of 311 

“bleaching earths”, which are acid-activated bentonites being released as wastes from cooking oil 312 

manufacture world-wide each year (Crossley, 2001), as well as some from foundries. However, huge 313 

areas of sandy soils are found world-wide (> 900 million hectares, according to FAO/UNESCO, 1995) 314 

and their augmentation by clays from these sources offers prospects for only limited overall 315 

sequestration of carbon.  316 
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The prospects for the (new) sequestration of C are constrained by 1) the availability of 317 

reactive surfaces, and 2) the possible formation of microaggregates. Most surfaces in soils are 318 

mineral rather than organic (Mayer and Xing, 2001), with microorganisms and organic matter 319 

occupying only a very small fraction (<1%, according to Kleber et al., 2015) of soil surfaces. Selective 320 

spots, variously described as “organo-mineral clusters with rough surfaces” (Vogel et. al., 2014, p. 5) 321 

appear to occur for the uptake of OC in soils.  Etch pits, micropores and cracks on mineral surfaces 322 

are likely to constitute such spots (Churchman and Velde, 2019), which are probably related to those 323 

for microorganisms, and include the rhizospheres of plants (Hinsinger et al., 2009). Hence the 324 

opportunities for uptake, and, especially, for strong uptake, i.e., sequestration, of C are quite limited. 325 

C sequestration takes place in microaggregates but takes a long time, so that their formation 326 

does not provide an immediate solution to the removal of newly released greenhouse gases from 327 

the atmosphere. Nonetheless, formation of microaggregates takes place within macroaggregates 328 

(Oades, 1984; Golchin et al., Six et al., 1999; Balesdent et al., 2000) and the formation of these is 329 

favoured by vigorous plant growth (Six, 2004). Although strong plant growth may not sequester C in 330 

the long term, its promotion could remove some C from the atmosphere. The removal of C by 331 

isolation in larger, macroaggregates is transitory (Balesdent, 1996; Puget et al., 2000; Six et al., 332 

2002), but continues as long as the strong plant growth is maintained. The process “buys time” while 333 

possible new technologies may become available, as Minasny et al. (2017) claimed for the “4 per 334 

mille” initiative for increasing soil C world-wide. The C isolated in macroaggregates may be 335 

transferred into microaggregates and hence truly sequestered, but only in the very long-term. 336 

Soil management has often been proposed as the key to increasing the sequestration of C 337 

(Lal, 2004, 2014; Minasny et al., 2017). West and Six (2007) suggest step-wise increases in the 338 

capacity of soils to sequester C with distinct changes in soil management. The introduction of no-till 339 

farming (NT) is a common management strategy, for example, but considerable evidence suggests 340 
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that NT may only change the distribution of C within the soil profile (Luo et al., 2010), generally 341 

towards the surface of profiles.  342 

Even so, the experiments reported here, as well as those cited in discussion, involve surface 343 

soils. Studies of organic matter in subsoils, e.g. Lorenz and Lal (2005), Chabbi et al. (2009) and 344 

Salomé et al. (2010) have found several characteristics of organic matter in subsoils that suggest that 345 

its functioning and stabilisation differs from that in topsoils. For example, (some) subsoil SOC may be 346 

very old (several thousands of years old) (Chabbi et al., 2009) and strongly bound to minerals 347 

(Chabbi et al. 2009), including in structural units (Salomé et al., 2010). Subsoil SOC appears to have 348 

high spatial heterogeneity (Chabbi et al., 2009; Salomé et al., 2010) and may not be subject to a 349 

priming effect (Salome et al., 2010). Sequestration of C in subsoils may be brought about by the use 350 

of plants/cultivars with deep and thick root systems (Lorenz and Lal, 2005). Nonetheless, new C 351 

sequestration in subsoils is also subject to considerations of the degree of saturation of mineral 352 

surfaces. If fully saturated, they are not good candidates for net sequestration. Certainly, the 353 

subsoils in the texture contrast soils studied by Schapel et al. (2018) and also others discussed by 354 

Churchman et al. (2014) proved to be useful for net uptake of C, hence good candidates for C 355 

sequestration. 356 

Soils have a limited capacity for OC (Hassink, 1997; Stewart et al., 2008). The limits for C 357 

sequestration, rather than for overall, maybe partly transitory, uptake of C, should reflect the 358 

capacity of reactive mineral surfaces for carbon. Such limits are likely to be somewhat less that the 359 

total capacity of soil for C. Following analyses of several results from field trials of the addition of C 360 

to soils, Stewart et al. (2007) proposed an “effective stabilization capacity” which defines the 361 

“maximum sequestration possible with increasing C input level under a particular management 362 

scenario”. In this work, we confirm the validity of Stewart et al. (2007)’s “effective stabilization 363 

capacity” concept, but through the use of laboratory experiments and those of additions of clays to 364 
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soils in the field. If, or when, the adsorption capacity of its reactive mineral surfaces is reached, there 365 

is little – or no- prospect of new sequestration of C from the atmosphere into a soil. 366 

CONCLUSIONS 367 

The results of recent laboratory experiments on the interaction of DOC with various southern 368 

Australian soil clays and of field experiments on the effects on carbon of additions of clays to a 369 

Southern Australian soil, together with the literature, have been interpreted in the context of 370 

prospects for the sequestration of carbon in soils. . 371 

It has been found that the amount of organic carbon (OC) that can be adsorbed by soils depends on 372 

their clay minerals, including Fe oxides. However, much of the OC that can be adsorbed by soils can 373 

also be lost easily and substantial OC in soils can be lost when more is added (by priming). 374 

Nonetheless, some (native) OC is held strongly in soils. OC close to mineral surfaces or within 375 

microaggregates is held most strongly. Even so, only very limited areas of mineral surfaces allow the 376 

uptake of OC, and when reactive surfaces are occupied, new C will not be held strongly. 377 

It was found that addition of clay provides new surfaces for the uptake and retention of C. 378 

Overall, it can be concluded that net new sequestration of C in soils cannot be achieved by simply 379 

adding C to unamended (top) soils, although net C sequestration may occur in subsoils. On the other 380 

hand, increasing the isolation of OC within macroaggregates by enhancing plant growth, although 381 

transitory, may provide a more effective method of decreasing atmospheric C than by its 382 

sequestration. 383 
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Table 1. Maximum amounts (mg g-1) of DOC adsorbed in 0.01 Ca(NO3)2 by the clay fractions 608 

of soils with various dominant minerals in relation to their contents of C and Fe and their specific 609 

surface areas (SSAs) calculated using the BET equation for adsorption by N2 gas (data from Singh, 610 

2016) 611 

Dominant clay type Treatment  C (mg kg-1) Total Fe SSA (m2 g-1) Max. adsorbed (mg g-1) 

Kaolinite + Illite None 15 1.6 55 22.0 

“ Removal of C 4 -* 69 29.2 

“ 

 

 

Removal of C + Fe 

 

 

2 -* 39 16.9 

 

 

Smectite None 23 1.2 74 50.2 

 Removal of C 3 -* 93 77.5 

 Removal of C + Fe 

 

 

1.2 -* 60 36.9 

Allophane None 130 7.5 119 101 

 Removal of C 32 -* 140 123.5 

 Removal of C + Fe 

 

 

15 -* 90 71 

* Not determined 612 
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Table 2. Percent desorption of DOC in water after its adsorption in 0.01 Ca(NO3)2 at  614 

various loadings from the clay fractions of soils with different dominant minerals sequentially 615 

treated to remove native C and Fe (data from Singh, 2016) 616 

Dominant clay type Treatment Loading of DOC for adsorption (mg g-1) 

  25 50 75 100 150 200 

  Percentage of adsorbed C that was desorbed in water 

Kaolinite + Illite None 16 16 20 29 34 34 

“ Removal of C 12 14 17 23 28 28 

“ 

 

 

Removal of C + Fe 

 

 

18 17 23 32 40 40 

Smectite None 6 12 17 23 28 28 

 Removal of C 10 10 12 17 23 23 

 Removal of C + Fe 

 

 

12 12 15 22 31 31 

Allophane None 7 11 14 16 24 24 

 Removal of C 6 7 7 12 15 15 

 Removal of C + Fe 

 

 

12 12 15 20 27 27 

 617 


