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Abstract

Nanofabricated devices, where the characteristic dimension is less than one micron
(10−6 m), have remarkable potential as highly sensitive tools to observe the quantum
world to which we belong. By operating such devices at extremely low temperatures we
can engineer physical scenarios never before seen in nature. Investigating the laws which
govern at such small energy and length scales has the potential to upend our current
understanding of the universe. This thesis introduces two main bodies of experimental
work, both of which utilise nanoscale devices as precise detectors for various unique
quantum phenomena.

In Part I, nanomechanical devices with extremely high mass sensitivity were used as
probes of quantum fluids, namely superfluid 4He. We present the first measurements of
nanomechanical devices in superfluid 4He, measuring the spectra of thermal excitations,
and use our devices to demonstrate a new quasiparticle driving mechanism, which we
call the ‘phonon wind’. Here, a nanobeam can be moved coherently under the influence
of a modulated flux of thermal excitations. We go on to use nanobeams as high-speed
detectors for the phenomenon of quantized vortices in 4He, ultimately concluding with
the systematic study of a single vortex trapped by a nanobeam. We also present the first
measurements of micromechanical torsional tuning forks in superfluid 4He, demonstrating
a unique multimode detection scheme where torsional oscillations are used to sense
quantised vortices generated by flexural oscillations.

In Part II, nanoelectronic devices with extremely high charge sensitivity were used as
probes of the superconducting field-effect. The superconducting field-effect, as previously
observed in nanoconstrictions, is a completely unexpected phenomenon and cannot
theoretically coexist with the well-established Bardeen, Cooper and Schrieffer theory
of superconductivity. Using a gated Dayem bridge coupled to a high-frequency circuit,
we characterise this effect with far greater time resolution than previously possible,
demonstrating that the observed effect is merely a result of electron tunnelling causing
localised heating in the constriction.
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Chapter 1

Introduction

Superfluid 3He and 4He are truly remarkable systems, due to the fact they are macroscopic
objects yet still exhibit quantum behaviour. Superfluids possess a plethora of quantum
phenomena and collective excitations unique to these systems, making them a topic of
scientific fascination since their discovery. Careful measurements of superfluid behaviour
could yield insight into some of the great unsolved problems in physics by linking the
field of condensed matter physics to that of high-energy physics and cosmology. From
the outset, mechanical oscillators, where properties of the fluid are inferred from the
motion of a vibrating object, have provided an invaluable tool for superfluid research.

This work presents several experiments involving micro and nano-scale mechanical
oscillators undertaken in superfluid 4He at ultra-low temperatures, embracing the recent
advances in nanofabrication techniques pushed forward by the microprocessor industry.
In doing so, we firmly establish the suitability of nanoscale mechanical devices for use in
future experiments.

Firstly, we will discuss experiments demonstrating the use of nano-electro-mechanical
systems (NEMS) in superfluid 4He across a broad temperature range showcasing their
remarkable versatility. Our work include the first measurements of NEMS in bulk
superfluid 4He, and at mK temperatures in 4He, exploring the full range of dissipation
mechanisms present. We go on to introduce a unique quasiparticle driving mechanisms
using a resonant ‘phonon wind’ in 4He, the first demonstration of such an effect.

Secondly, with our knowledge of nanoscale beam behaviour, we can create an ex-
periment for the detection of single quantum vortices in 4He. Here, a quartz tuning
fork (TF) is used as a source of vortex rings, suspended above a nanomechanical beam
which is used as a detector. We demonstrate the real-time detection of vortex-nanobeam
interactions on the time-scale of milliseconds, and go on to measure the properties of
trapped vortices under several configurations.

Lastly, we will discuss experiments probing superfluid 4He using micro-tuning forks
with a well defined torsional mode, where the tines twist inwards and outwards in anti-
phase. In typical experiments, quartz TFs with resonant frequencies in the kilohertz
range, operating in the flexural mode, have been used. For flexural oscillations the
legs flex inwards in antiphase normally comprising the lowest frequency mode. There
has been little study into the mechanics of higher-order harmonics or twisting modes
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operating in a superfluid. In addition, we demonstrate a novel measurement technique
where two oscillation modes on a single device are used to separate the excitation and
detection mechanisms. These comprise the first example of the ‘multimode’ technique
with potential application both inside and outside of low-temperature research.

Chapter 2 will outline the discovery and underlying physics of the superfluid state,
including the various successful models in different temperature regimes. Chapter 3 will
introduce the general theory of operation for mechanical oscillators, and specify to that
of doubly-clamped beams and TFs. This chapter will introduce the limited previous uses
of nanomechanical devices as low-temperatures probes, as well as their use in the wider
community. Three experimental chapters, Chapter 4, Chapter 5 and Chapter 6, will
discuss the experiments involving NEMS in 4He, quantum vortex detection in 4He and
multimode TFs in 4He, respectively.



Chapter 2

Superfluidity in 4He

Despite being the second most abundant element in the universe, helium was not
discovered on earth until 1895 when Sir William Ramsey first obtained the inert gas from
the mineral ore clevite [1]. 3He and 4He comprise the two stable isotopes of helium with
the heavier isotope constituting 99.999863% abundance. 4He was first liquefied in 1908
by Kamerlingh Onnes whilst working at Leiden by cooling a sample of gas below 4.2 K
[2]. Owing to the small Van-der-Waals force, due to the large zero point energy, 4He
does not undergo a liquid-solid transition at any temperature at atmospheric pressure
[3]. The absence of a solid state at low-temperatures allows the phenomena known
as superfluidity to manifest. Despite reaching a temperature of 1.7 K, well below the
superfluid transition, Onnes made no observations of any additional phase change below
the liquid transition. He achieved these record breaking temperatures using a liquid
nitrogen precooling stage combined with a Hampson-Linde cycle. It wasn’t for another
twenty-four years, in 1932, that the first signs of an additional phase transition were
observed, when Keesom and Clausius noticed a diverging specific heat capacity of 4He
close to 2.17 K, which they named the λ-point [4]. Six years later, in 1938, Allen and
Misener [5], and Kapitza [6] independently observed a vanishing viscosity of the helium
liquid below the λ-point. Kapitza termed this effect ‘superfluidity’ to describe the ability
of this substance to flow with seemingly no resistance. The superfluid state persists
down to the lowest temperatures at atmospheric pressure, and is suppressed by pressures
> 25 bar. The phase diagram for 4He is shown in Fig. 2.1.

In the superfluid state, helium enters a phase ordered state, such that the fluid can
be described by a single wavefunction in which all 4He atoms in the condensate occupy
the lowest energy level allowed by the uncertainty principle. This condensate requires
breaking the gauge symmetry with respect to the phase parameter, in stark contrast to
symmetric systems where the observables are invariant to changes in the wavefunction
phase. The Pauli exclusion principle states that no two fermions can occupy the same
quantum state. Condensation can occur because 4He atoms act as bosons owing to an
integer combined spin of the nucleus, allowing the atoms to occupy the same energy level
in the condensate. The wavefunction for superfluid 4He is given by

ψ(r) = ψ0e
iφ(r), (2.1)
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Fig. 2.1 Phase diagram for 4He in the vicinity of the superfluid transition. At atmospheric
pressure this transition occurs at T = 2.17 K. 4He only has a liquid-solid transition at
high pressure (> 25 atm). Importantly, 4He has no triple point as would be found in
most materials. Adapted from [7].

where φ(r) is the superfluid phase, a function of the position r, and the amplitude given
by

ψ∗ψ = |ψ0|2 = ρs

m4
, (2.2)

where m4 is the mass of a 4He atom, and ρs is the superfluid density. The momentum of
a 4He atom in the condensate can be represented by the momentum operator

p̂ψ = −iℏ∇ψ, (2.3)

and hence the superfluid velocity

vs = ℏ
m4

∇φ(r). (2.4)

It is clear that the superfluid velocity directly determines the phase of the wavefunction.
The particles in the condensate form a bound-state in momentum space, with the
superfluid phase rigidly defined at all points in space.

The most striking manifestation of superfluidity is the ability to flow through extremely
narrow capillaries without experiencing any friction [6, 5], however this is not the only
remarkable property of superfluid 4He. Superfluids have been shown to escape over the
walls of a beaker when suspended above the helium bath [8]. They also exhibit the
thermomechanical, or fountain, effect, whereby a heater immersed in a superfluid 4He
vessel containing a superleak causes fluid to ‘fountain’ out of the leak [9]. Superfluids also
demonstrate what is known as ‘second-sound’, in which waves of temperatures propagate
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coherently through the fluid, allowing the generation of standing waves of temperature
[10]. Such a process can only occur due to the incredible heat conductivity of 4He close
to Tλ, the highest of any known material [3]. This is achieved by submerging a heater
and thermometer in a cavity of variable length, L, in liquid 4He and driving the heater
with an AC current. By varying the frequency, f , of the current one finds longitudinal
resonant standing modes at frequencies f = nc1/2L, where c1 is the wave-speed and
n = 1, 2, 3 . . . .

2.1 Two-Fluid Model

To explain these remarkable behaviours, Landau [11] and Tisza [12] independently
proposed the phenomenological ‘two-fluid model’ which treats the superfluid state as
a mixture of two interpenetrating, non-interacting components. In reality, you cannot
distinguish between individual 4He atoms in the condensate and therefore the two-fluids
cannot actually be separated. Despite this, the two-fluid model has remarkable success
in explaining many of the observed phenomena of superfluid 4He. The total density, ρ, is
given by the sum of the densities of the two individual components

ρ = ρn + ρs, (2.5)

where ρn is the normal fluid density, and ρs is the superfluid density. In the two-fluid
model, at T = 0 the normal fluid component vanishes. Correspondingly, the superfluid
fraction goes to zero at the λ-point temperature, Tλ. Importantly, only the normal-fluid
component has non-zero entropy, S, and viscosity, ν. The first measurements of the
temperature dependence of the normal-fluid fraction were experimentally realised by
Andronikashvili in 1946 using an oscillating stack of torsional discs [13]. The relative
quantities of the two-fluid fractions in the liquid phase are shown in Fig. 2.2.

We want to understand how the motion of the two components gives rise to observed
phenomena, in particular sound emission. In the two-fluid model, the momentum density
of mass flow can we written as

j = ρnvn + ρsvs, (2.6)

where vn and vs are the velocity of the normal and superfluid component respectively.
In this formulation

∂ρ

∂t
= −∇ · j (2.7)

represents the continuity equation. Since the viscosity of the normal-fluid is very low, its
influence can be neglected to a first-order approximation, and can be treated as an ideal
fluid, described by the Euler equation [3]

∂j
∂t

+ ρnvn · ∇vn = −∇p, (2.8)

where p is the fluid pressure. The Euler equation is the equivalent of Newtons second
law for systems with non-discretised mass. If the velocity remains low, as is the case
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Fig. 2.2 Dependence of the normal and superfluid fractions of liquid 4He on temperature.

in superfluid flow, the second term can be neglected. Since no dissipative process is
occurring in this flow, entropy is conserved.

The equations of motion for the two components are therefore given by [3]

∂(ρS)
∂t

= ∇ · (ρSvn), (2.9)

S∇T − 1
ρ

∇p = ∂vs

∂t
, (2.10)

where p is the pressure acting on the system. Equation (2.9) and Eq. (2.10) represent
the central equations of motion for the two-fluid model, which we will utilise to explain
the process of sound propagation in the next section.

2.1.1 Sound Propagation in Superfluids

From a macroscopic perspective, a sound wave is a small oscillation in a thermodynamic
quantity, typically density for classical sound. Superfluids have the ability to support
multiple sound modes stemming from the behaviour of the two separate, yet interpen-
etrating fluids. Emission of sound has significant implications for the use of probes to
measure fundamental helium physics, since it often dominates the damping at the lowest
temperatures. The time differential of the continuity equation, Eq. (2.7), is given by

∂2ρ

∂t2
= ∇ · ∂j

∂t
, (2.11)
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since ∂/∂t(∇ · A) = ∇ · (∂A/∂t) for all A. By substituting this into into Eq. (2.8) we
obtain that [3]

∂2ρ

∂t2
= ∇2p. (2.12)

Assuming a stationary fluid on average i.e. vn = vs = 0, and disregarding the terms
of higher order (since we are only interested in small perturbations) in Eq. (2.9) and
Eq. (2.10) gives the corresponding relation for temperature and entropy as

∂2S

∂t2
= ρsS

2

ρn
∇2T. (2.13)

To rewrite these two equations to be independent of the pressure terms, we substitute
the total derivatives

dp =
(
∂p

∂ρ

)
S

dρ+
(
∂p

∂S

)
ρ
dS, (2.14)

dT =
(
∂T

∂ρ

)
S

dρ+
(
∂T

∂S

)
ρ
dS. (2.15)

Substituting these into the previous expression yields two wave equations, one for
oscillations in the density (first-sound), and one for oscillations in the entropy (second-
sound):

∂2ρ

∂t2
=
(
∂p

∂ρ

)
S

∇2p+
(
∂p

∂S

)
ρ

∇2S, (2.16)

∂2S

∂t2
= ρs

ρn

[(
∂T

∂ρ

)
S

∇2ρ+
(
∂T

∂S

)
ρ

∇2S

]
. (2.17)

To solve these differential wave equations two plane-wave solutions are used; one solution
for oscillating density, and one solution for oscillating entropy. The two general solutions
are given by

ρ(t) = ρ0 +Aρ exp (iω(t− x)/v), (2.18)

S(t) = S0 +AS exp (iω(t− x)/v), (2.19)

where ρ0 and S0 are the unperturbed density and entropy values, Aρ and AS are the
amplitudes of the perturbations, and v is the wave propagation velocity. Substituting
these solutions into the previous expressions and differentiating yields two linear equations[(

v

u1

)2
− 1

]
Aρ +

(
∂p

∂S

)
ρ

(
∂ρ

∂p

)
S

AS = 0, (2.20)

[(
v

u2

)2
− 1

]
AS +

(
∂T

∂ρ

)
S

(
∂S

∂T

)
ρ
Aρ = 0, (2.21)

where the substitutions u1 =
(

∂p
∂ρ

)
S

and u2 = ρs/ρnS
2
(

∂T
∂S

)
ρ
. First sound occurs for

oscillations in the density i.e. Aρ ̸= 0 and AS = 0. We arrive at the conclusion that

ρn
∂

∂t
(vn − vs) = ρS∇T = 0, (2.22)
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Fig. 2.3 Velocity of first sound in the temperature range 1 K < T < 4 K with the λ-point
indicated. At the lowest temperatures, the first-sounds velocity is ∼ 238 m s−1. Adapted
from [3].

and hence
∂vn

∂t
= ∂vs

∂t
. (2.23)

Importantly, since the two fluids are moving in phase first sound can be treated classically
since there is no distinction between the two components. Such a result implies that the
two types of sound are completely decoupled, which is typically only true far below Tλ.
We go on to discuss the damping due first-sound emission in Sec. 3.5.3. The speed of
first sound varies significantly over the temperature range 1 K < T < 4 K, as shown in
Fig. 2.3.

2.2 Superfluid Excitations

The two-fluid model provides an excellent description of superfluid 4He and helps us
to explain many of the observed phenomena. However, it is not a microscopic model
explaining the origin of these phenomena. The first microscopic model was provided by
Landau [14], when he realised that the presence of dissipationless flow must imply some
kind of ground state, with a finite energy, ∆, required to create collective excitations. In
this way, momentum transfer is not allowed for arbitrarily low velocities. Because of this
energy gap, there must exist a finite critical velocity, vL, above which superfluid flow will
destroy the condensate. In 1941 Landau proposed two collective excitations in superfluid
4He: longitudinal phonons with a linear dispersion, and rotons with a characteristic
energy gap. The phonon is often referred to as the Goldstone mode of the system, since
it is a gapless excitation corresponding to the spontaneous breaking of a global symmetry
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Fig. 2.4 Dispersion curve for excitation in superfluid 4He. Two collective excitations are
shown: longitudinal phonons, with a linear dispersion, and rotons, with a characteristic
energy gap.

of the Lagrangian, i.e. the superfluid phase [15]. The exact microscopic origin of the
roton mode in terms of gauge symmetry breaking is not well established.

In Landau’s picture, superfluid helium is treated as a gas of these weakly interacting
excitations. Rigorously, the thermodynamic properties are determined by the fluctuations
in this quasiparticle field, where the excitations are treated as single-particle Green’s
functions [16]. For mathematical simplicity, the excitations will be discussed in terms
of a kinematic picture rather than the exact quantum field description. The dispersion
relation for phonons is given by

E = pcph, (2.24)

where p is the momentum, E is the energy and cph is the velocity of phonons. Importantly,
since phonons are the origin of sound emission in the condensate, the velocity of first
sound is determined by the phonon velocity (u1 = cph), and we shall use this notation
from now on. In the vicinity of the p0, the dispersion relation is approximated to be

E ≈ ∆ + (p− p0)2

2m∗ , (2.25)

where p0 is the roton momentum at the gap, and m∗ is the effective mass of the excitation.
The dispersion curve for superfluid 4He is shown in Fig. 2.4 with these excitations
highlighted. The Landau critical velocity is given by vL = ∆/p0 = 60 m s−1, indicated by
the dashed-black line. Landau proposed that these two excitations are what comprise
the normal fluid, such that

ρn = ρph + ρro, (2.26)
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where ρph and ρph are the phonon and roton densities respectively.
The number density of phonons can be calculated directly from Bose-Einstein statistics.

From the dispersion relation given in Eq. (2.24), the phonon density of states per unit
volume, g(E) is given by

gph(E)dE = E2

2π2(cphℏ)3dE. (2.27)

The number of phonons per unit volume can now be expressed as

Nph =
∫ ∞

0

g(E)dE
exp(E/kBT ) − 1 = 1

2π2(cphℏ)3

∫ ∞

0

E2dE

exp(E/kBT ) − 1 . (2.28)

By performing a substitution x = E/kBT , and hence dx = dE/kBT , the number density
can be calculated as

Nph = 8πζ(3)
(
kBT

cphh

)3

, (2.29)

where ζ(3) = 1.20 is the Riemann zeta function. Similarly, the mass density can be
calculated by substituting an effective mass m∗ ∼ E/c2

ph

ρph = 1
2π2c5

phℏ3

∫ ∞

0

E3dE

exp(E/kBT ) − 1 = 2π2(kBT )4

45c5
phℏ3 . (2.30)

Using Eq. (2.25) the density of states of rotons is given by

gro(E)dE = (E − ∆)1/2m∗3/2
√

2π2ℏ3 dE. (2.31)

Rotons can be described by Boltzmann statistics, since they always contain a component
of their energy, ∆, which is large compared to kBT at low temperatures. The number
density of rotons is hence given by

Nro =
∫ ∞

0

g(E)dE
exp(E/kBT ) = m∗3/2

√
2π2ℏ3

∫ ∞

0

(E − ∆)1/2dE

exp(E/kBT ) . (2.32)

Again, performing a substitution x = (E − ∆)/kBT and correspondingly dx = dE/kBT ,
the number density for rotons is given by

Nro =
(
m∗kBT

2πℏ2

)3/2
exp(−∆/kBT ). (2.33)

Finally, by applying same the logic as used to calculate the phonon density, the roton
density is given by

ρro = 2m∗1/2p4
0

3(2π)3/2(kBT )1/2ℏ3 exp(−∆/kBT ). (2.34)

The expressions calculated here will allows us to calculate the damping on an oscillator
at a given temperature, giving us an effective means of thermometry in 4He. Since we
began from a microscopic picture of the superfluid excitations, the derived expressions
are theoretically valid to arbitrarily low temperatures.
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2.3 Quantum Turbulence in Superfluid 4He

Similarly to classical turbulence, which describes the tendency for fluids to exhibit chaotic
motion at high flow rates, quantum turbulence describes the chaotic motion of quantum
fluids at high flow rates. At large length scales, quantum and classical turbulence have
the tendency to mimic each other, however, at the scale of a single vortex the two are
governed by different physics due to the quantized nature of vortices in quantum fluids
[17]. Here we will introduce the physics of single vortices, and introduce systems of
multiple vortices. In Sec. 3.5.6, we will go on to see how quantum turbulence affects
objects at large length scales. How to reconcile these two regimes remains a major
challenge, and is one of the major goals of quantum turbulence [18].

Initially, it was assumed that superfluids would not support internal circulation, i.e.
∇ × vs = ∇ × ∇φ = 0, however in 1955 Feynman questioned this assumption [19]. He
suggested that the circulation in a superfluid must be quantized, with the core of the
vortex corresponding to a topological defect in the quantum fluid [18]. He went on to
proposed experiments on how to verify this. This effect was first observed by Vinen in
1961 and dubbed ‘quantum turbulence’ using a vibrating wire in a rotating 4He vessel
[20]. Upon rotation, vortices would become trapped along the length of the wire, such
that the rotation split otherwise degenerate oscillation modes. If we consider a simply
connected region of superfluid of length L, enclosing an area A the circulation in the
region can be described by Stokes’ theorem [7]

κ =
∫∫

A
(∇ × vs) · dA =

∮
L

vs · dl, (2.35)

where vs = ℏ∇φ(r)/m4, and m4 is the mass of a 4He atom. Hence,

κ = ℏ∆φL/m4, (2.36)

where ∆φL is the phase difference along the line integral. Since the superfluid is described
by a single wavefunction, the phase difference along a closed loop must be integer multiples
of 2π. The circulation then becomes

κ = h

m4
n, where n ∈ Z. (2.37)

Clearly, this result implies that vortices in superfluid 4He can only take certain quantized
values of κ = (9.9×10−8 m s−1)n. As in classical turbulence, the velocity of the superfluid
component increases as you get closer to the centre of the vortex such that

vs = κ

2πr = ℏ
m4r

n. (2.38)

The superfluid velocity rises until the Landau critical velocity is exceeded, and a normal
fluid-like core is formed. The diameter of the normal fluid core is give by d0 = κ/2πvc ≈
26 nm. The diameter of this normal fluid core can be thought of as the distance over which
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Fig. 2.5 Schematic illustration of superfluid velocity, and superfluid fraction as a function
from a vortex core in 4He. The grey region indicates where the superfluid velocity is
greater than the Landau critical velocity, suggesting that the condensate is destroyed in
the region.

the superfluid fraction can fall to zero from its bulk value. This is shown schematically
in Fig. 2.5.

If we consider a container with multiple quantized vortices, the energy per unit
length of each vortex, EL, is calculated by integrating the kinetic energy per unit volume
between the vortex-core, at distance d0, to the nearest vortex, at distance b, and is given
by [3]

EL = ρsκ
2

4π ln
(2b
d0

)
, (2.39)

Since κ ∝ n, EL ∝ n2. Although the angular velocity, L ∝ v/r, increases linearly
with n [3], the kinetic energy increases quadratically. For this reason, it is energetically
favourable to create two vortices with n = 1, than one vortex with n = 2. Therefore
remarkably, not only is the circulation quantized, it is identical for all vortices and has
value h/m4. For this reason, quantum turbulence is often described as an ‘ideal system’
for the study of classical turbulence; it is the simplest possible turbulent system.

Vortices in 4He can form so-called ‘vortex rings’ where a vortex line of length 2πrv,
where rv is the ring radius, wraps to form a loop. The energy of a vortex ring is given by
Er = 2πrvEL, with the propagation velocity given by [3]

vr = κ

4πrr

[
ln
(2rv

d0

)
− 1

4

]
. (2.40)
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Increasing Kelvin-wave amplitude

Fig. 2.6 Schematic representation of helical Kelvin wave excitations on a vortex line,
shown in blue, for four different amplitudes. The scale of the displacement has been
exaggerated for representation.

Quantum turbulence can be nucleated in 4He either intrinsically or extrinsically.
Intrinsic nucleation typically requires a high critical velocity (vc ∼ 10 m s−1), whereas
extrinsic (where existing vortex lines are manipulated under the influence of a superflow)
can have much lower critical velocities (vc ∼ 10−3 m s−1) [18, 21]. The initial vortex lines
in a system are typically created by the Kibble-Zurek mechanism, where the system is
cooled quickly through the superfluid phase transition [22]. The phase cannot adjust
everywhere at the same time, leading to topological defects in the condensate which
manifest as quantum vortices.

Quantum turbulence is then dissipated by two processes. At high temperatures
(> 1 K), mutual friction creates coupling between the normal-fluid and the superfluid
producing dissipation. At lower temperatures, no significant normal-fluid fraction exists
to introduce mutual friction, and dissipation is thought to come from Kelvin waves.
Kelvin waves are helical displacements of vortex core, and allow energy to be transferred
from large length-scales towards smaller length scales by a non-linear interaction between
different wavenumbers. Helical Kelvin wave excitations are shown schematically in
Fig. 2.6, for varying amplitude of the excitation. The dispersion relationship for Kelvin
waves is given by [24]

ω ≈ κk2

4π , (2.41)

where k is the wavenumber, meaning that shorter waves rotate faster.
In a classical fluid, energy transfers from large vortexes to smaller vortexes by the

process of reconnection, following the Richardson cascade. The Richardson cascade is
caused by reconnection of larger loops creating more smaller loops, allowing energy to
’cascade’ to smaller length scales. The energy density relationship E ∝ k−5/3 for the
Richardson cascade is an experimentally derived result. The process of vortex reconnection
will be introduced in Sec. 3.6. In quantum turbulence, the Kelvin-wave cascade extends
the Richardson cascade when the wavenumber scale reaches the mean inter-vortex spacing
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Fig. 2.7 Energy cascade spectra for quantum turbulence at zero temperature. For
small wavenumbers (k < 2π/b) a Richardson cascade creates a Kolmogorov spectra
(E(k) = Cϵ2/3k−5/3), similar to that observed in classical turbulence. Above this, the
wavenumber becomes comparable to the mean-inter-vortex distance, and the Kelvin-
cascade dominates. The functional dependence of the Kelvin-wave energy spectra is not
known, represented by the dashed lines. Adapted from [23].

in a quantum fluid. As such, the Richardson cascade is still measurable in quantum
fluids at higher temperatures. The energy density spectra for Kelvin waves is not yet
known, however using simulations it has been proposed that the exponent, ν, may be the
same as that of the Richardson cascade [25], although since the microscopic origin of this
result is completely different this is merely coincidence. The Kelvin-wave cascade excites
higher wavenumber (and therefore smaller wavelength) modes, such that energy can be
dissipated as fundamental excitations on the scale of the superfluid coherence length,
typically by phonons in the form of sound. A schematic diagram of this process is shown
in Fig. 2.7, where the arrows indicate the flow of energy. The dashed line indicates the
region where the wavelength becomes smaller than the superfluid coherence length, in
which energy is contained in the form of low energy phonons.

Superfluids clearly have a plethora of fascinating phenomena to be studied. In the
next chapter, we will detail the operation of various mechanical oscillators, and how they
can be used to probe various superfluid effects.



Chapter 3

Mechanical Oscillators

Mechanical oscillators have long provided a highly versatile tool for probing the properties
of quantum fluids. In previous experiments involving superfluids, mechanical oscillators
have been used as probes of temperature [26], superfluid density [13] and viscosity [27].
They have been used to create [28–31] and detect [32] quantum turbulence, study acoustic
emission [33–35], cavitation [36, 37], Andreev scattering [38–40], second sound attenuation
[41], NMR excitation [42], study pairing configurations in differing 3He phases[43, 44]
and even as pixels in a 3He quasiparticle camera [45, 46]. Outside of helium physics,
mechanical oscillators are routinely used as sensors of viscosity in a wide variety of
applications such as the automotive [47], and oil industry [48].

The most utilised mechanical oscillator for superfluid research is the vibrating wire,
consisting of a superconductor a few millimeters of length in a ‘goalpost’ configuration
[49]. Experiments have also demonstrated the use of large floppy wires [50], grids [51],
and spheres [52]. Recently, experiments have pushed towards smaller and more sensitive
probes, involving devices such as micro-TFs [33] and comb-drive electrostatic micro-
electro-mechanical systems (MEMS) [53–55]. Quartz TFs are extremely sensitive probes,
with particularly widespread use in scanning probe microscopy [56–58]. (NEMS), a class
of mechanical objects with dimensions below the 1µm length scale, present the next
logical step in the quest towards increasingly more sensitive probes [59–62].

The development of NEMS is driven by advancement in fabrication technology
allowing mechanical devices to push towards sub-micron scales. Nanomechanical devices
typically require the use of electron-beam lithography, which presents a limitation to the
scalability of device fabrication. NEMS have already found use in a range of applications,
such as such as atomic force microscopy [63] and nanofluidics [64], due to their extremely
high mass and force sensitivity [65–67] however their scientific potential remains relatively
unexplored. Several recent experiments are beginning to implement such devices into
experiments involving superfluids [68–72]. This body of work aims to demonstrate the
use of NEMS as precise, versatile probes for current and future low-temperature work.

NEMS have two unique motivations aside from increase in sensitivity. Firstly, they
offer a chance to explore regimes where the device dimensions are comparable to the
coherence length of a quantum fluid, approximately 80 nm in 3He. Such regimes have
never been investigated before with a mechanical device and the physics of such a system



18 | Mechanical Oscillators

are as yet unknown. Secondly, there is the possibility of cooling high frequency NEMS into
their quantum ground state due to the very low temperatures achievable by cooling 3He
with nuclear demagnetisation of copper. The superfluid 3He would be well thermalised
with the nanobeams allowing ‘brute force’ cooling [73–75]. This would allow a bulk
system can be studied in the limit where it is governed by quantum mechanics.

Low frequency torsional oscillators have also had significant importance for super-
fluid research historically, with a system of torsional discs providing the first accurate
measurements of the normal-fluid fraction below the λ-point, as previously discussed
[13]. Torsional TFs, in which the prongs rotate in opposing directions, have yet to find
significant implementation in scientific research despite their novel mechanical properties.
Torsional TFs provide an opportunity to extend torsional oscillator research towards the
high-kilohertz range, unlocking a new frequency regime for superfluid research.

Here we will cover the theory of operation for oscillator probes, starting from the
theory of resonance for simple harmonic oscillators. We will describe the expected motion
and the various oscillatory modes with particular focus on the impacts of damping on
the system. This will be derived for both nanomechanical beams, and TFs. In addition,
we will discuss the impact of the surrounding media and measurement circuit on the
operation of the probe. We will introduce the effects of high drives on operation, and the
non-linear effects that result. In this way we can introduce the theory of nanobeam, and
TF operation as a measurement probe for superfluid 4He. Through measurement of the
electrical response of the system, we can infer the damping within the system. Through
careful treatment of the various dissipation mechanisms we can use this information to
measure the properties of the surrounding media.

3.1 Damped, Driven Oscillators

In general, the motion of a damped, driven oscillator with displacement, x, can be
described using the differential equation

m
d2x

dt2
+ δ

dx

dt
+ kx = F (t), (3.1)

where m is the mass, δ is a constant related to the damping, k is the spring constant
and F (t) = F0e

iωt is the periodic driving force. The stated equation remains valid in
the case that the amplitude of displacement remains small comparable the geometry of
the system, such that k can be considered approximately constant. To solve this, we
introduce the trial solution ẋ = ẋmaxe

iωt where ẋmax is the maximum amplitude of the
velocity. In this way we obtain the familiar Lorentzian solution for the velocity,

ẋ = F0iω

−ω2m+ iωδ + k
. (3.2)

This expression can be split into its real and imaginary components which can be resolved
in experiments

Re(ẋ) = F0ω
2δ

ω2δ2 + (ω2m− k)2 , (3.3)
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Fig. 3.1 Lorentzian function for a resonator, showing the magnitude of the real and
imaginary components of the signal, given by Eq. (3.3) and Eq. (3.4). The full-width
half maximum (FWHM) is indicated by ∆ω, along with the method of determining this.

Im(ẋ) = F0ω(k − ω2m)
ω2δ2 + (ω2m− k)2 , (3.4)

in which we denote the central frequency by ω0, otherwise known as the resonant or
natural frequency of the oscillator, where ω0 is given by

ω0 =
√
k

m
, (3.5)

The frequency dependence of the two components, given by Eq. (3.3) and Eq. (3.4), are
shown in Fig. 3.1. Since our experiments typically rely on electrical measurements, we
plot the velocity, ẋ, as this is proportional to the measured signal, which we will show in
Sec. 3.2.

Importantly, the quantity ∆ω can now be defined in terms of the damping constant δ
as

∆ω = δ

2πm. (3.6)

The various origins of the damping term for both nanomechanical devices, and TFs will
be discussed in Sec. 3.4.

3.1.1 Duffing Oscillators

When the amplitude of oscillation becomes large it becomes important to consider the
effects of non-linear terms in the differential equation. As is typically the case for nanoscale
resonators, this additional term takes a cubic form and such devices are described as
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Fig. 3.2 Numerical solutions for the frequency response of three resonators with varying
non-linear term, z. Resonators with z > 0 are known as hardeners, whereas those with
z < 0 are known as softeners.

Duffing oscillators. A quadratic non-linearity would result in a force parallel to the
displacement, which is considered non-physical and therefore neglected. The onset of
these non-linear effects tends to decrease with the device dimensions, posing a limit on
the dynamic range of such nanoscale oscillators [76]. The Duffing equation is given by
[77]

m
d2x

dt2
+ δ

dx

dt
+ kx+ zx3 = F, (3.7)

where z gives the magnitude of the Duffing term. Systems where z is positive and
negative are known as hardeners and softeners respectively due to the influence this
term has on the effective spring constant of the system. The damped, driven Duffing
equation is not exactly solvable analytically however it has some simplified numerical
solutions. Importantly, frequency-space solutions to the Duffing equation enter a period
of bi-stability close to the resonance frequency, in which there are multiple solutions for
a single value of ω. For real systems this is resolved by sharp jumps between the stable
solutions at different points in the frequency sweep, as well as hysteresis with respect
to sweep-direction, behaviours that are difficult to mathematically model. Numerical
solutions to the Duffing equation for different values of z are shown in Fig. 3.2.

Given the difficulty in exactly characterising this behaviour, we try to operate probes
in a regime were the Duffing term is negligible. This is known as the ‘linear’ regime and
measurements are typically performed here.
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Fig. 3.3 Schematic diagram of the magnetomotive actuation scheme for a nanomechanical
beam. An oscillating current in a constant magnetic field creates a force which is mutually
perpendicular to both. The beam motion in the field generates a back-emf which is
detectable by the circuit.

3.2 Nanomechanical Beams

The presented equations hold true for any oscillating structure where the restoring force
is proportional to the displacement, modelling the objects as a point mass. The real
geometry of the devices presented in this section are that of doubly-clamped beams, in
which a suspended structure is held between two electrodes and allowed to oscillate freely.
The devices were driven using a magnetomotive driving scheme [78], in which an external
magnetic field and oscillating current of the form I = I0e

iωt are used to induce a Lorentz
force within the wire. The resultant force is mutually perpendicular to both the magnetic
field and the driving current, and given by F = I × B. This type of geometry and driving
method is shown schematically in Fig. 3.3.

When the nanobeam moves inside the magnetic field, a voltage is induced between
the electrodes according to Faraday’s law. This is known as the ‘back-emf’ and forms
the key principle of our detection scheme. The magnitude of this emf is given by

V = d(B ·A)
dt

, (3.8)

where A is the area traversed by the conductor in the magnetic field, approximated to
be Lx where L is the length of the nanobeam. In this way, the voltage drop across the
nanobeam can be written as

V = BLẋ. (3.9)

The magnetomotive actuation scheme has significant implications for the sensitivity of
the system, which will be discussed further in Sec. 3.4.3.

3.2.1 Euler-Bernoulli Beam Theory

The previous section described beam mechanics in the framework of a simple harmonic
oscillator with resonant frequency ω0, which depends only on a spring constant, k, and
the mass, m. In reality, the spring constant, k, is not known for a given oscillator,
and therefore the resonant frequency cannot be predicted using such a model. We will
now discuss the dynamics of real beam motion in the framework of Euler-Bernoulli
beam theory, and arrive at an expression for the resonance frequency in terms of known
dimensions. In the absence of an external drive, the differential equation describing the
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motion for the flexural mode on such a beam is given by [79]

EI
∂4x

∂l4
− T0

∂2x

∂l2
+ ρA

∂2x

∂t2
= 0, (3.10)

where E is the Young modulus, I is the moment of inertia, T0 is the internal tension, ρ
is the beam density and A is the cross sectional area. As previously, x is the deflection
from the rest position, and l is the position along the beam. The devices described here,
being clamped at both ends, impose the following boundary condition on the system:

x(0, t) = x(L, t) = ∂x

∂l
(0, t) = ∂x

∂l
(L, t) = 0. (3.11)

The general solution to the differential equation is given by

x(l, t) =
∑

n

u0gn(l)ei(ω0t+ϕn) =
∑

n

un(t)gn(l), (3.12)

where n is the mode number, and gn(l) us the spatial function of the nth mode. The
differential equation can now be solved for two limits: where EI > T0, known as the
string limit, and where EI < T0, known as the bending limit. For the string limit, the
resonant frequency is determined by the tension, and the rigidity can be neglected. The
displacement profile is given by

gn(l) = un sin
(√

ρA

T0
ωnl

)
, (3.13)

yielding the resonance frequency of the nth harmonic to be

ωn = nπ

L

√
T0
ρA

. (3.14)

Importantly, we note that in this limit the harmonics are integer multiples of the
fundamental frequency.

The bending limit, in which the rigidity dominates and we can neglect the tensile
term, we arrive at a fourth-order differential equation. The general solution to this
equation has the form

gn(l) = C1 sin(βnl) + C2 cos(βnl) + C3 sinh(βnl) + C4 cosh(βnl), (3.15)

where C1, C2, C3, C4 are constants, and

βn =
(
ρA

EI

)1/4 √
ωn. (3.16)
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Fig. 3.4 Schematic showing a nanobeam undergoing constant thermal flux, Q̇, coupled to
two thermal baths at temperature, T0, in the electrodes. This scheme can be used to
calculated the temperature distribution across the beam.

Again, using the previously discussed boundary condition, and solving numerically the
expression for the nth harmonic to be

ωn =
(
γn

L

)2
√
EI

ρA
, (3.17)

where γn = 4.73, 7.85, 10.99, 14.14 for n = 1, 2, 3, 4. In reality, beam dynamics lie
somewhere between these two limits. The situation here becomes rather complicated
due to the tension dependence of the spring constant. The general solution to the full
equation has the form

gn(l) = C1 sinh(k1
l

L
) + C2 cosh(k1

l

L
) + C3 sin(k2

l

L
) + C4 cos(k2

l

L
), (3.18)

where

k1,2 =

√√√√√±T0L2

2EI +

√√√√(T0L2

2EI

)2
+ ω2L2

√
ρA

EI
. (3.19)

Substituting the boundary condition yields an excellent approximation to the mode
frequencies observed experimentally:

fn = π

8 (2n+ 1)2 1
L2

√
EI

ρA

√
1 + 0.97T0L2

(n+ 1)2π2EI
. (3.20)

We will use this expression to obtain estimates for the frequency of real nanomechanical
devices, as well as to estimate the tension for a measured device.

3.2.2 Thermalisation of Nanomechanical Beams

When the nanobeam is driven using an oscillating current of magnitude, I, we expect
the temperature of the sample to increase above that of the thermal bath.

Here we will estimate the magnitude of this rise by solving the heat equation under
the boundary conditions of electrodes held at a fixed temperature. Here, we equate
the uniform heat input with the heat flowing to the electrodes in the steady state (i.e
∂T/∂t = 0), as shown schematically in Fig. 3.4. Beginning from the heat equation [80]

∇ · J = Q̇, (3.21)
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where J = κ∇T is the heat flux, in which κ is the thermal conductivity and Q̇ = I2R is
the heat input to the system. Using the Wiedermann Franz law (κ = σL0T ) the thermal
conductivity can be written in terms of the conductivity, σ. Hence, in 1D:

∂

∂x
(L0σT

∂T

∂x
) = Q̇, (3.22)

where L0 = 2.45 × 10−8 W Ω K−2. Integrating twice yields the expression for the temper-
ature, given by

T =
√

1
L0σ

(Q̇x2 + αx) + β, (3.23)

in which α and β are constant of integration. Using the boundary condition (T (x = 0) =
T0 and T (x = l) = T0) we find that

T =

√
Q̇x

L0σ
(l − x) + T 2

0 . (3.24)

From this, the maximum temperature, at x = l/2 is given by

Tmax =

√
Q̇l2

4L0σ
+ T 2

0 . (3.25)

We see that for large values of Q̇, the peak nanobeam temperature can be raised far
above the electrode temperature. In Sec. 3.4, we will see that device temperature can
significantly affect the device damping.

3.3 Tuning Forks

Here, we will discuss the equations which relate to the specific geometry of tuning forks
(TFs). TFs are mechanical oscillators formed by two prongs (tines) formed into a U-shape
such that the tines can oscillate freely. The use of quartz in TFs provides the ability of
electrical driving and readout, due to its piezoelectric properties. Quartz TFs are driven
by providing an alternating voltage, V = V0e

iωt, to metal electrodes on the surface of
the quartz. This provides an alternating force, F , capable of driving the electrodes into
motion. TFs are capable of supporting multiple oscillation modes: flexural, where the
tines move inwards and outwards in antiphase, torsional, where the tines twist about their
centre-of-mass, and shear, where the legs move inwards and outwards in phase with each
other. Oscillatory modes on TFs generally consist of the fundamental, higher harmonics,
or mixed states of the stated modes. Quartz TFs are used as frequency standards in
watches, as well as force sensors in scanning optical microscopes. Quartz TFs are relatively
cheap, easy to implement, do not require a magnetic field and operate in a wide frequency
range. They also have very low intrinsic damping, discussed further in Sec. 3.4, making
them very sensitive probes. For this reason, they have become a frequently used tool in
low-temperature research. A schematic with a typical measurement scheme for a quartz
TF is shown in Fig. 3.5.
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Considering first the flexural oscillatory mode, the force on the TF can be calculated
from purely geometrical considerations as

F = aFV

2 , (3.26)

where we define aF as the ‘fork constant’. The fork constant is a TF specific transduction
factor since it allows the conversion between electrical signals and mechanical motion.
For this reason aF is an essential parameter to be calculated for a TF acting as a probe.
By equating the work done per unit time, (Fẋ), with the power supplied per unit time
IV , it is clear that the fork constant also allows us to determine the velocity from the
current flowing

I = aF ẋ. (3.27)

Geometrically, the fork constant for the flexural mode is given by [81]

aF = d11E
TW

L
, (3.28)

where d11 is the piezoelectric modulus of quartz in the appropriate plane, T , W and L

are the thickness, width and length of the fork tines respectively. Experimentally, the
fork constant can be determined in terms of the Lorentzian parameters, provided the
drive voltage is known, and is given by [26]

aF =

√
4πmeff∆fI

V
, (3.29)

where meff is the effective mass for the fork and ∆f is the width of the Lorentzian
curve. The effective mass accounts for the fact that the entire tine does not move
when undergoing oscillation. I and V are the current and voltage at the maxima of the
Lorentzian curve.

The motion of the torsional TF can be described by the equation of motion for a
torsional oscillator [26]. From the differential equation for a driven torsional oscillator

d2ϕ

dt2
+ γ

dϕ

dt
+ G

I0
= τ

I0
, (3.30)

where ϕ is the angle of rotation, γ is the drag torque, G is the shear modulus, I0 is the
moment of inertia and τ is the torque. Through use of the trial solution ϕ = ϕ0e

iωt one
arrives at the expression for the resonant frequency, ω, in terms of the moment of inertia

ω =
√
µ

I0
=
√
GJ

LI0
, (3.31)

where µ is the spring constant, J is the torsional constant and L is the length of the
prong. J can be determined from geometrical considerations and is calculated using [81]

J = WT 3β, (3.32)
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Flexural Oscillations

Torsional Oscillations

Electrodes

Fig. 3.5 Schematic of a typical TF package with the tines and base indicated. A typical
measurement scheme is shown, where an AC voltage is applied to one electrode, and the
response measured at the same frequency using demodulation - typically in the form of a
lock-in amplifier.

where β = 0.2 is a constant yielding the first oscillation mode.
The torsional fork constant, aT , can be equivalently defined for torsional motion such

that the torque, τ is given by
τ = aTV

2 , (3.33)

The work done per unit time is now ∼ τωT , where ωT is now the angular velocity, with
the power applied to the fork (∼ IV ). The measured current, I, is hence

I = aTωT . (3.34)

No equivalent analytical expression to Eq. (3.28) is known for torsional oscillatory modes,
hence it must be extracted by experimental means.

3.4 Dissipation in Oscillating Structures

Here we will outline the various mechanisms which contribute to the dissipation experi-
enced by oscillating structures. By this, we mean any process which results in energy loss
from the oscillator. Careful study of these mechanisms allows us to isolate dissipation
due to the environment being studied, from dissipation inherent to the measurement
system. In this way, oscillators can act as probes for the surrounding media. We can
quantify dissipation via the quality factor Q = ω0/∆ω where ω0 is the resonant frequency
and ∆ω is the FWHM. Hence, we can quantify the overall energy loss as a sum of the
various dissipation mechanisms:

Q−1
tot = Q−1

1 +Q−1
2 +Q−1

3 · · · , (3.35)
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where Q−1
1 , Q−1

2 , Q−1
3 refer to the various loss mechanisms to be outlined in the relevant

sections. Damping mechanisms can be divided into two categories: intrinsic and extrinsic.
As the name suggests, intrinsic damping mechanisms are internal to the device and
not caused by any surrounding media or measurement. This may involve interactions
between electrons, phonons and other impurities leading to dissipation. Here we will
describe thermoelastic and clamping losses, as well as the role of material tunnelling
two-level systems (TLS) in dissipation. For our purposes, intrinsic losses are regarded as
unavoidable and present an absolute limit to the sensitivity of a given mechanical probe.
Extrinsic damping mechanisms are losses that originate externally to the device itself,
and may be a result of the measurement circuit, or that of the surround media. We will
discuss magnetomotive damping losses in Sec. 3.4.3, and damping due the surrounding
media, namely superfluid 4He, in Sec. 3.5.

3.4.1 Clamping Losses

For most oscillating devices, the performance is ultimately limited by the clamping losses.
Clamping losses occur due to acoustic energy propagating into the device substrate.
Typically, clamping losses occurs through the device electrodes, as a result of internal
acoustic waves being reflected back at the oscillator boundary. Previous work has shown
that for an oscillating beam, the dissipation follows [82]

Q−1
cl = Ah4

L5 , (3.36)

where h and L are the height and length of the beam respectively, and A is a geometrical
constant. In this way, for nanoscale devices with an extremely high aspect ratio we expect
this term to become important at low temperatures. Clamping losses are expected to
have no significant temperature dependence, and therefore provide an ultimate limitation
on the Q-Factor of high frequency devices operating at low temperatures.

3.4.2 Thermoelastic Effect

Thermoelastic effects constitute a large part of the damping while operating at higher
temperatures. Here, mechanical vibrations induce local temperature gradients requiring
heat flow, resulting to energy dissipation, to equalise the temperature. Given the
temperature dependence of this process we do not observe significant damping due to
this effect in low-temperature work. Quantitatively, the damping due to thermoelastic
effects for a nanobeam is given by [83]

Q−1
Th = AEα2T

Cp
, (3.37)

where E is the Young’s modulus, α is the thermal expansion coefficient, Cp is the heat
capacity and A is a constant of the order unity.
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3.4.3 Magnetomotive Damping

Magnetomotive damping affects structures which are driven using an external magnetic
field, such as a nanobeam. In the low-temperature limit, the damping within the
nanobeams is highly dependent on the magnitude of the magnetic field. Magnetomotive
damping is a result of coherent motion of the beam leading to a back-emf. An emf will
generate a corresponding current, which results in a force which always opposes the
motion of the nanobeam. Such an effect can also be thought of in terms of magnetisation
of the conducting material in an external magnetic field, which again generates an
opposing force. For a wire moving with velocity, v, in an external circuit, the magnitude
of the back-emf is given by ϵ = vBl. Importantly, the size of the back-current generated
by this emf depends on the impedance of the external circuit, Z0. The ‘back-current’
generated is given by

I = ϵ

Z0
= vBl

Z0
. (3.38)

In reality, the total current will be a sum of the driving current and the back-current. By
Lenz’s law, the back-current will generate a force, F , which opposes that of the driving
force:

F = IlB = vB2l2

Z0
. (3.39)

Hence, the losses can be written in terms of the energy lost per cycle as a result of this
opposing force as

Q−1
mm = 1

2πmf0

dF

dv
= B2l2

2πmf0

1
|Z0|

, (3.40)

demonstrating the characteristic B2 dependence. Our result implies that the damping in
the circuit can be tuned by the external magnetic field. As discussed in Sec. 3.2, larger
magnetic fields increase the size of our received signal, increasing the signal-to-noise
ratio. Magnetic field can therefore be used as a tuning parameter, high when the system
damping is high and low when the system damping is low, in order to maintain a regime
where system damping is always larger than the magnetomotive damping.

3.5 Dissipation for Oscillating Structures in Superfluid 4He

This section aims to quantify the various damping mechanisms present in 4He for
oscillators at low temperatures, such that they can be used as probes. Submerged
in liquid 4He, there are two key temperature regimes, over which the damping varies
significantly. In the hydrodynamic regime the mean free path of the excitations is much
less than that of the beam dimensions (lm ≪ a) such that collisions occur often and
the helium exhibits macroscopic fluid dynamics. At lower temperatures, 4He enters a
ballistic regime whereby the mean free path is much greater than that of the beam radius
(lm ≫ a). Here, we neglect the effects of inter-particle collisions since these events are
rare, and the superfluid behaves like a weakly interacting gas of thermal excitations. The
mean free path for both phonons and rotons is shown in Fig. 3.6, compared with typical
nanobeam dimensions shown as the dashed black line. Acoustics also play a role in the
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Phonons
Rotons

Nanobeam Diameter

Fig. 3.6 Mean free path of phonons and rotons in liquid 4He from 4.2 K to 100 mK. A
typical nanobeam dimension is shown by the dashed black line. The mean free path of
both quasiparticles exceeds the nanobeam dimension at ∼ 0.7 K. By 100 mK the roton
mean free path is comparable the observable universe. Adapted from [84].

damping, often limiting the performance of probes at the lowest temperatures. We will
treat the effects of these regimes in the following sections, demonstrating the impact of
different superfluid regimes on the damping experienced in nanobeams.

3.5.1 Hydrodynamic Regime

Here we consider the effect of a nanobeam operating in a viscous fluid where damping in
dominated by Stokes’ drag. Modelling the behavior of a beam moving in the hydrodynamic
regime we utilise a theory adapted by Blaauwgeers et. al. [26]. We substitute the beam
mass with an effective mass, mH , which includes two additional terms: one term for the
clamped fluid mass and one related to the backflow of the fluid due to displacement. An
altered effective mass leads to a change in the oscillator frequency. The frequencies in
vacuum and helium, f0 and fH , of a simple-harmonic oscillator with spring constant k
are given by

f0 = 1
2π

√
k

m0
, fH = 1

2π

√
k

mH
, (3.41)

where the effective mass of the oscillator in 4He is given by

mH = m0 + AρHV︸ ︷︷ ︸
Backflow

+ BρnSδ︸ ︷︷ ︸
Clamped fluid

, (3.42)

where ρH is the density of the fluid, V and S are the beam volume and surface area. A
and B are fitting parameters typically close to unity and δ is the viscous penetration
depth of the fluid given by

δ =
√

η

πρnfH
. (3.43)
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where η is the viscosity of the normal-fluid. Combining Eq. (3.41) and Eq. (3.42) yields
the frequency shift as a function of the normal-fluid fraction,

(
f0
fH

)2
= 1 + AV ρH

m0
+ BS

m0

√
ηρn

πfH
. (3.44)

The temperature dependence arises from the rapidly changing normal-fluid fraction in
the vicinity of Tλ. Below ∼ 1 K no significant frequency change is observed due to the
vanishingly small value of ρn.

To model the damping on a nanobeam in helium we consider the hydrodynamic
effects of the normal fluid fraction. The superfluid component does not contribute to
the device damping. The Stokes’ drag force for an infinitely long cylinder in the high
frequency limit is given by [85]

F = CS
√
πρnηfHv, (3.45)

where C is a geometrical constant, fH , is the oscillation frequency and v is the oscillation
velocity. Although our structures have finite size, the velocity at the boundaries is zero
and we can therefore ignore edge effects [86]. Hence, the damping due to the fluid is
given by

Q−1
hy = 1

2πm0f

dF

dv
= CS

2m0

√
ρηfH

π

(
f0
fH

)2
. (3.46)

The model has had success in describing the damping of large vibrating structures
in the temperature range 4.2 K to 1 K [26, 33]. Below 1 K the mean free path of
the quasiparticles becomes large, meaning interactions between quasiparticles become
infrequent. In this limit, the viscosity and viscous penetration depth are not well defined.
It does however have its limitations when describing the behaviour of systems where the
viscous penetration depth, δ, becomes much larger than the device dimensions. In this
case, the volume of displaced fluid becomes dependent on the volume of clamped fluid,
typically above Tλ where the ρn/ρ = 1. For this reason, this model struggles to accurately
describe the damping experienced by nanobeams in 4He above Tλ due to the large volume
of clamped fluid relative to the oscillator size. The model is shown schematically in
Fig. 3.7(a) with the limiting case shown in Fig. 3.7(b). Although our focus has been
on quantum fluids, the described model is equally valid in classical fluids such as 4He-I,
when ρn is replaced with the total density, as has been previously demonstrated [26].

3.5.2 Ballistic Regime

Here we discuss damping in superfluid 4He where the mean free path of the quasiparticles
exceeds that of the beam dimensions. This mechanism of damping typically dominates
below 1 K, until a temperature independence mechanism takes over. Phonons and rotons
are the thermal excitations of superfluid 4He, introduced in Sec. 2.2.

We treat the contribution of individual quasiparticle collisions with the nanobeam
to the overall damping. We will derive the general form for a distribution of particles
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BeamDisplaced Fluid

Fig. 3.7 (a) Diagram of hydrodynamic clamping to a nanomechanical beam at relatively
low temperature (< 2 K). The clamped component is small compared to the size of the
beam. (b) Hydrodynamic clamping close to Tλ. The clamped component is theoretically
very large compared to the beam, and will therefore have an influence on the volume
of displaced fluid. In this regime the proposed model does not fit the experiments well,
since we originally assume the two components are separate.

colliding with the beam, and then finally specify the exact forms for phonons and rotons.
The total momentum of quasiparticles colliding with a beam moving at velocity, v, per
unit time, is given by [84]

F = dp

dt
= AaLp0n((vF − v) − (vF + v)) = −Anp0vaL, (3.47)

where a is the radius of the cylinder, L is the length and vF is the velocity of the fluid. p0

is the momentum of each quasiparticle and n is the number density. Here, the geometrical
constant A = 2.67 for a cylindrical geometry [84]. For phonons, this can be rewritten in
terms of the mass density of phonons such that ρ = nm∗. In addition, we can substitute
momentum in terms of p0 = m∗cph where cph is quasiparticle velocity. This yields the
expression for the drag force

F = −AcphρphvaL. (3.48)

Should the cylinder move with oscillatory motion, the magnitude of the phonon damping
is given by

Q−1
ph = 1

2πmf
dF

dv
= −Acph

2π2aρω
ρph, (3.49)

where the cylinder mass is given by m = πρωa
2L. Substituting Eq. (2.30) yields the

damping due to phonons given by

Q−1
ph = Ak4

B
45f0ℏ3c4

pha(ρω + ρs)T
4. (3.50)

The damping due to rotons is given by equating Eq. (3.47) with the definition for the Q
factor as

Q−1
ro = 1

2πmf
dF

dv
= −Ap0

2π2aρω
nro. (3.51)
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By substituting Eq. (2.33), the roton contribution to damping is given by

Q−1
ro = Ap0

2π2af0ρw

(
m∗kBT

2πℏ2

)3/2
exp

(
− ∆
kBT

)
. (3.52)

Since the above is a microscopic theory, derived directly using Bose-Einstein statistics,
these equations remain valid to arbitrarily low temperatures. In practice, measurements
become limited by some additional form of damping, commonly due to acoustic emission
for high-frequency devices [33].

3.5.3 Acoustic Dipole Emission

In devices with high oscillation frequencies, the effects of acoustic emission become
prevalent, often dominating the damping at the lowest temperatures. Nanobeam act
as dipole acoustic emitters when oscillating in a compressible media. The emission of
pressure waves in superfluid 4He (also known as first sound) obeys largely the same
physics as classical media provided the oscillation amplitude remains small, and the
temperature is low enough such that second sound corrections can be ignored, as discussed
in Sec. 2.1.1.

By taking a far-field approximation, and assuming the wavelength is larger than the
dipole spacing, the energy emitted per unit time for an infinitely long cylinder is given
by [85]

P = π2

4c2
ph
ρHω

3a4L|v|2, (3.53)

where cph is the velocity of sound in the fluid and v is the oscillation velocity, a and L

are the radius and length of the beam respectively. From the definition of the Q-factor as
the average energy dissipated per cycle we can interpret this emission in terms of device
damping

Q−1
ac = ∆ω

ω
= P

2πm|v|2
1
ω

= π2ρHa
4Lω2

2c2
phm

. (3.54)

This can be rewritten in terms of the beam density by taking m = ρωπa
2L giving an

expression that does not depend on the beam length. Substituting f = ω/2π gives

Q−1
ac = π3ρHa

2f2

2c2
phρω

. (3.55)

The implications of this result is significant for the sensitivity of nanoscale devices for
fluid measurements. When the acoustic term, Q−1

ac , begins to dominate this presents an
ultimate limit for the sensitivity of a detector. It is therefore important when considering
device design, to maintain the ratio a2f2 as low as reasonably possible.

3.5.4 Acoustic Quadrupole Emission

Due to the geometry of quartz TFs, the flexural mode acts as a quadrupole acoustic
source. A TF can be modelled as an arrangement of four monopoles on either side of the
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TF tine, with velocity field for a monopole acoustic source is given by

Φ(r, t) = Bei(kr−ωt)

4πr , (3.56)

where r is the distance from the monopole and B is the source strength and ω is the
oscillation frequency. The total velocity field, incorporating spherical harmonic identities,
is given by [35]

Φ(r, θ, t) = iBke−iωt

2π

∞∑
m=0
even

(2m+ 1)Pm(cos θ)hm(kr)[jm(kd2) − jm(kd1)], (3.57)

where Pm(cos θ) are Legendre polynomials, hm(kr) and jm(kd) are the Hankel and Bessel
functions. d1 is the distance from the origin to the inner tine edge, and d2 is the distance
from the origin to the outer tine edge. The power emitted per unit time is given by

P = ρsW
2L2|v|2

2
√

2πd1d2

∞∑
m=0
even

(2m+ 1)[jm(kd2) − jm(kd1)]2, (3.58)

where W , T and L are the width, thickness and length of the fork, and |v|2 is the fork
velocity. The contribution to the damping in helium is [33]

Q−1
ac = ∆f

f
= P

2πm|v|2
1
f

= 1.961π4 (T + d1)2

ρ2
q

ρS

c5
ph

(fH

f0
)2mefff

5
H , (3.59)

where f0 and fH are the vacuum and helium frequencies, ρq is the density of quartz, meff is
the effective mass, and the outer tine distance has been substituted as d2 = d1 +T . There
is clearly a strong power law for the damping as a function of the TF frequency. High
frequency oscillation modes experience very high damping as a result of acoustic emission,
and therefore care must be taken for quadrupole device to maintain low-frequencies.

3.5.5 Cavitation

Cavitation is the nucleation of gas bubbles inside a sample of bulk-liquid, as a result of
a change of pressure inside the liquid, typically occurring far from the thermodynamic
equilibrium [87]. Here, the liquid is said to be in a metastable state. Since cavitation is a
non-equilibrium process it cannot be clearly represented as an additional damping term,
however its effects become important when studying oscillating devices at high velocities.
Cavitation can be understood by calculating the free energy of a spherical bubble with
radius R inside the metastable liquid:

F (R) = 4πRγ − 4
4R

3∆G, (3.60)

where γ is the surface tension of the liquid-gas interface, and ∆G is the difference in
Gibbs free energy between the two phases [88]. By minimising the free energy we can
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obtain both the critical radius for cavitation

Rc = 2γ
∆G, (3.61)

and the energy barrier against nucleation

Ec = 16πγ3

3(∆G)2 . (3.62)

TFs typically cause cavitation in superfluid 4He at velocities exceeding ∼ 1 m s−1, as
interpreted from sharp discontinuities electrical measurements [36, 37]. Cavitation in
quantum fluids has never been explicitly observed using optical methods. Cavitation
manifests itself as a breakdown of the resonance response at a critical velocity, vcav, when
measuring the resonance curve slowly. It is typically observed at finite overpressures on
the liquid, with vcav ∝

√
∆p, where ∆p is the pressure difference applied to the liquid

sample. Cavitation has so far only been demonstrated using devices with relatively low
resonance frequency (f0 < 32 kHz), using only macroscopic objects. The behaviour of
high-frequency, nanoscale objects under high drive in superfluid 4He is unknown.

3.5.6 Quantum Turbulence

When excited to sufficient velocity, mechanical oscillators can dissipate energy in the form
of quantised vortices. Quantum turbulence, as introduced in Sec. 2.3, is a particularly
important dissipation mechanism for TFs due to their relatively low frequency and large
size. In a quantum fluid, much like a classical fluid, there are two flow regimes defined
by the Reynolds number [85]

Re = ρNvL

µ
, (3.63)

where ρN is the normal fluid density, v is the tip velocity of the fork relative to the fluid,
and µ is the dynamic viscosity. For low Reynolds numbers (Re ≪ 1) we expect laminar
flow and for high Reynolds numbers (Re ≫ 1) we have turbulent flow. Turbulent flow is
not exactly solvable within the framework of the Navier-Stokes’ model, however can be
empirically represented by a drag coefficient, CD, such that the drag force

FT = −1
2CDAρHv

2, (3.64)

where A is the cross-sectional area of the plane perpendicular to the flow. From this,
the turbulent regime is characterized by a v ∝

√
FT relationship in the force-velocity

characteristics of a device. Due to the extremely low viscosity of superfluid 4He at
low temperatures, the Reynolds number can be extremely high. Using Eq. (3.63) at a
temperature of 1 K, and length scale 10−2 m the Reynolds number is ∼ 106, a regime
that is difficult to access in classical fluids on small length scales. For this reason, small
mechanical oscillators are not generally used for turbulence experiments involving viscous
classical fluids.
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Fig. 3.8 Sketch of how the critical velocity of the onset of turbulence should behave
for an object of radius R and frequency ω. κ = h

m4
is the quanta of circulation. The

frequency dependence is important since nanomechanical devices have high operation
frequencies. Adapted from [92].

The crossover between the two flow regimes regimes occurs at a critical velocity given
by [89]

vc = √
γωκ, (3.65)

where γ ∼ 1.7 is a geometrical constant and κ = h/m is the constant of circulation. This
relationship, with the low frequency behaviour is shown in Fig. 3.8. The typical onset
velocity is of the order of several mm s−1 [89–91] for vibrating wires, increasing to tens
of cm s−1 for TFs. The additional damping in this regime is hence given by

Q−1
T = 1

4πmf0
CDAρHv, (3.66)

where m is the TF mass. Due to the velocity dependence of this damping term, as
measured on a plot of driving-force against velocity, this term corresponds to a decrease
in the slope. The similarities in the behaviour of quantum and classic turbulence suggest
that studies of quantum vortices may contribute to improving our understanding of
classical turbulence.

Due to the high frequency of oscillation and nanoscale dimension, we expect the
dynamics of nanobeams nucleating quantized vortices to be highly unusual. From Fig. 3.8,
we see that both the oscillation frequency and length scale play a role in determining
the critical velocity for quantum turbulence production. For this reason, we might not
expect to observe vortex production until velocities of the order of ∼ 1 m s−1, towards the
limit in velocities attained by such devices. In addition, the prevalent non-linearities in
nanomechanical devices make it difficult to distinguish additional damping mechanisms
when the velocity is high.

However, due to their extremely high mass sensitivity it is thought that they would
provide excellent detectors for vortices generated by nearby devices. It may be possible
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to trap a quantum vortex in several configurations with respect to a nanobeam, allowing
vortices to be studied with more precision than ever before. We will discuss the effects of
two such configurations in the next section.

3.6 Quantum Vortices Trapped by a Nanoscale Beam

A quantum vortex can couple to a nanobeam in multiple ways, forming several different
configurations with different observed effects. The most energetically favourable result,
is a single quanta of circulation trapped along the length of the nanobeam, such that the
vortex-core becomes replaced with the nanobeam material. In such a configuration, the
interaction of the vortex with the substrate results in an attractive force. The attractive
effect can be understood in the framework of an image-vortex with opposite circulation
which represents the boundary conditions imposed by the zero circulation condition at
the substrate. The image-vortex will be a distance 2d from the real vortex, where d is the
beam-substrate distance. The interaction force between two such vortices is given by [93]

F = ρHvs × κ, (3.67)

where κ is the constant of circulation. The magnitude of the force on a nanobeam of
length L is therefore given by

|F | = 1
4π

L

d
κ2ρH . (3.68)

This force will act between the beam and the substrate and therefore add an additional
tensile strain on the nanobeam. The magnitude of the tension at the clamped ends can
be calculated by approximating a parabolic displacement of the structure given by

z(x) = 1
2
F

E

(
x

t

)2 (L− x)2

twL
, (3.69)

where t and w are the thickness and length of the nanobeam, and E is the Young’s
modulus. The maxima of the displacement is at the centre, and given by

zmax = 1
32

|F |
E

L3

wt3
. (3.70)

The effective additional tension at the clamped ends is hence given by

Tv = 1
2 |F |L

t
. (3.71)

Additional tension acting on the nanobeam will act to increase the spring constant, and
therefore the resonance frequency. In this case, we would not expect a significant increase
in the damping, since no additional loss mechanism arises from a vortex becoming trapped
in this way.

Alternatively, a vortex may become trapped perpendicular to the nanobeam such that
part of the vortex is pinned to the nanobeam, with the other ends connected or bounded
to the walls. Under such a configuration, nanobeam motion could create excitations along
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t < t0 t = t0 t > t0

Fig. 3.9 Schematic diagram showing the process of vortex reconnection. Two anti-parallel
vortices interact at t = t0, resulting in two new vortices with a new orientation. Such
a process may allow a trapped vortex to escape when it interacts with another nearby
vortex.

the vortex, known as Kelvin waves (introduced in Sec. 2.3), which would constitute an
additional damping mechanism. It is not precisely known how nanobeam kinetic energy
would transfer into Kelvin waves, and what the efficiency of such a process would be. A
vortex trapped in this way would not contribute significantly to the tension experienced
and therefore the effect on the nanobeam frequency is expected to be minimal.

A vortex can escape a given configuration by the process of vortex reconnection. Here,
a vortex with the opposite circulation interacts with the trapped vortex such to create two
new vortices with a rotated orientated. This process is shown schematically in Fig. 3.9,
where t0 refers to the moment of interaction. The timescale over which reconnection
occurs is related to the distance to the nearest vortex, due to the attractive force between
the two vortices. The minimum distance, δ, between reconnecting vortices is related to
the reconnection time, t, by δ ∝ t1/2 [94]. Importantly, the minimum distance between
vortices can be much smaller than the average inter-vortex spacing meaning reconnection
can occur quickly, despite a low global vortex density.

3.7 Driving Nanoscale Beams using a Phonon Flux

We have established that a nanomechanical device should be highly sensitive to the
momentum of thermal quasiparticles in 4He. Sensitivity to quasiparticles in superfluid
4He allows us to propose a novel driving technique for nanomechanical resonators. In this
scheme temperature is transferred to the fluid via a nearby heater, creating quasiparticle
excitations with some momentum. By periodically modulating the heating we can create
bursts of phonons in the condensate which propagate ballistically, transferring their
momentum to the detector beam. When the modulation of the phonon flux matches the
resonant frequency of the detector, the nanobeam is excited into motion. The concept is
similar to previous experiments where the momentum of heat flux has been measured
using a suspended heater [95]. We imagine an experiment where a heater and detector
nanobeam are mounted in plane, separated by some distance which is large compared
to the phonon wavelength, with the temperature low-enough such that quasiparticles
propagate ballistically. This section aims to present the mathematics of such a scheme,
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estimating the magnitude of the motion on the receiver. In addition, the effects of a
number of spurious mechanisms will also be discussed.

3.7.1 Detected Power from a Phonon Flux.

To model the process by which the generated phonon flux is translated into force on the
detector, we begin with the dispersion relation for the momentum carriers. This tells us
the amount of quasiparticle momentum we can generate for a given input power. From
Eq. (2.24), the phonon dispersion follows a linear relationship with the sound velocity in
the superfluid approximately constant up to a phonon temperature approaching 10 K [3].
We therefore approximate that the temperature is low enough such that the momentum
of a phonon is linearly proportional to the energy.

If we assume that all the energy dissipated in the heater generates ballistic phonons
in the superfluid, the number of phonons leaving the heater per unit time, ṅ1, is linearly
proportional to the applied power, PH, i.e., ṅ1 = PH/E, where E is the phonon energy.
In theory, this will not be the case, due to the high thermal-boundary resistance between
the heater and the helium. However, the thermal boundary resistance for structures
approaching the phonon wavelength have yet to be studied in detail, and it is thought
that the boundary resistance could be much smaller than that of the bulk.

Assuming isotropic phonon emission from the heater into a sphere, the fraction of
generated phonons that can excite the detector beam, n2/n1 = αtl/(4πr2). Here, α, is a
constant accounting for reflections from the substrate. Since the typical distance from
the nanobeam to the substrate is much smaller than the phonon wavelength, it is thought
that these reflections would remain coherent. The extent to which the phonons reflect off
the substrate is governed by the specularity of the interaction, varying from fully diffuse
(α = 1), to fully specular (α = 2). The distance between the heater and detector is given
by r, while t and l are the thickness and length of the detector, respectively.

The force on the detector, F , can therefore be written as the rate of momentum
exchange of phonons with the nanobeam

F = αṅ2pph = α2tl

2πr2cph
PH, (3.72)

where the parameter α now also accounts for the phonon scattering mechanism with
the beam, again varying from 1 in the diffuse case, to 2 for the specular case. Given
the simplicity of the model, we approximate the specularity of the phonon-substrate
interaction to be equal to that of the phonon-nanobeam interaction.

Provided that the detector nanobeam motion is described as a harmonic oscillator
to first order, the velocity amplitude is given by v = ω0x = FQ/mω0, where ω0 is
the angular resonance frequency, m is the effective mass of the beam, and x is the
displacement amplitude. The power generated by a conductor moving in a perpendicular
magnetic field, B, is given by PE = E2/Z = (vBl)2/Z, where Z is the effective circuit
impedance and E is the induced emf. For a nanobeam enclosed by a power amplifier,
this value is given by Z = 50,Ω. We conclude that the expected power generated by the
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nanobeam motion is proportional to the square of the power applied to the heater for
phononic driving:

PE = 1
Z

(
FQBl

mω0

)2
= 1
Z

(
α2QBtl2

2πr2cphmω0

)2

P 2
H. (3.73)

In addition, estimates based on typical geometries for such an experiment suggest that one
in ∼ 107 phonons emitted by the heater would exchange momentum with the detector.

3.7.2 Noise Power from Thermal Fluctuations

When considering the process of phonon flux detection, it is important to contrast this
with the power one would detect if we were simply detecting motion caused by thermal
fluctuations. Here we estimate the power generated by thermal fluctuations creating
Brownian motion in the beam. The power measured at the receiver beam for each mode
can be written as

pE = (vBL)2

Z0
= (ωa)2B

2L2

Z0
, (3.74)

where v, a and ω are the velocity, amplitude and frequency of each mode. L is the
resonator length, B is the magnetic field and Z0 is the circuit impedance. To obtain the
total power measured at the detector we must integrate over the full frequency range:

PE =
∫ ∞

0
SPEdω = B2L2

Z0

∫ ∞

0
(ωSan)2dω, (3.75)

the amplitude spectral density, San for a generic force spectral density SFn is [96]

San = 1
(Ω2 − ω)2 + (Ω2/Q)2

SFn

m2 , (3.76)

where Ω is the frequency of the first mode, Q is the quality factor and m is the mass.
The expected SFn for a 1D harmonic oscillator undergoing Brownian motion is given by
[96]

San = Ω
(Ω2 − ω)2 + (Ω2/Q)2

2kBT

πmLQ
, (3.77)

where kB is the Boltzmann constant and T is the temperature. We obtain the integral:

PE =
(2kBT

πmQ

)2B2

Z0

∫ ∞

0

(
ωΩ

(Ω2 − ω)2 + (Ω2/Q)2

)2

dω. (3.78)

This result must be solved numerically, and will be used to rule out thermal excitation of
a nanomechanical device.





Chapter 4

Experiments on Nanoscale Beams
in 4He

This chapter will present the results of experiments using doubly-clamped nanomechanical
devices to probe bulk superfluid 4He at low temperatures. Sec. 4.3.1 presents vacuum
measurements in which fundamental nanomechanical behaviour can be observed, Sec. 4.3.2
shows measurements made from 4.2 K to 1 K in the hydrodynamic regime of 4He, and
Sec. 4.3.3 shows those made below 1 K in the ballistic regime of 4He. These experiments
will be discussed separately with comparisons made between overlapping temperature
regimes. Two cryostat setups were used over the course of these experiments: a 1 K
immersion cryostat for measurements above 1 K and a cryogen-free dilution cryostat for
measurements down to 7 mK. We will demonstrate the effects of the different dissipation
mechanisms in each temperature regime, as well as the mechanisms governing the losses
at the lowest temperatures.

In Sec. 4.3.4 we will describe our pioneering experiment demonstrating a unique
nanobeam driving mechanism using phonons in 4He. Since several sample designs have
been utilised for these investigations, comparisons will be made with the advantages of
each fabrication technology discussed.

4.1 Samples

Here we will outline the details of the measured devices and discuss the advantages of
each design. Two types of nanomechanical devices have been measured with different
manufacturing processes: Al-on-Si beams fabricated at Lancaster University and Al-
on-Si3N4 composite beams fabricated at Grenoble-Alpes University. The key difference
between the two substrates is the internal tension in the Si3N4 which pulls the nanobeam
taught, whereas samples fabricated on Si rely on thermal contraction for tension.

The two fabrication processes are largely similar, differing on the choice of substrate
and etching procedures. The details of the two fabrication methodologies are discussed
in App. B1 and App. B2. For the Al-on-Si samples, the devices have nominal thickness,
t = 100 nm, and width w = 100 nm. The Al-on-Si3N4 are larger with nominal thickness
t = 130 nm and width w = 200 nm. Pre-stressing is performed on the Si3N4 by baking
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Fig. 4.1 SEM of two types of nanomechanical beam investigated in 4He. Left: 50µm
Al-on-Si nanobeam fabricated at Lancaster University. Right: 150µm Al-on-Si3N4
nanobeam fabricated at Grenoble Alpes University.

the substrate to a high temperature, introducing T0 = σwt = 4 × 10−5 N of tension on
the nanobeams, where σ = 0.9 GPa is the substrate strain. The mechanical properties of
the sample are defined by the Si3N4, with Young’s modulus E = 211 GPa [97].

Scanning electron microscope images of the two nanobeam types are shown in Fig. 4.1.
An immediate difference between these two images is the tension visible in the Si3N4

samples. Since these images are taken at 300 K this is not indicative of the structure
at low-temperature. The Lancaster samples will stretch when cooled due to thermal
mismatching and become more taught at low-temperatures, with the contraction given
by ∆L/L = 4 × 10−4 allowing us to estimate the tension T0 = wlE(∆L/L) = 3 × 10−7 N,
where E = 70 GPa is the Young’s modulus for Si. The densities of the nanobeam
materials are given by ρAl = 2600 kg m−3, ρSi = 2300 kg m−3, ρSi3N4 = 3200 kg m−3 [97].
Conversely, in the Si3N4 sample, contraction due to thermal mismatching is a small
contribution when compared to the pre-stressing procedure.

The samples were scribed and mounted onto a copper PCB, using vacuum grease in
order to provide electrical isolation and a strong thermal connection, before aluminium
wedge wire bonding is used to connect the chip to the PCB pads. The conductive pads
are electrically connected to the central pin of a coaxial PCB connector. The connector
ground pins are connected to the ground plane of the PCB. One PCB design used in these
experiments is shown schematically in Fig. 4.2, with the first design featuring four RF
(Radio Frequency) lines allowing two samples to be measured, and the second featuring
six RF lines allowing three samples to be measured. The PCB was mounted inside a
brass experimental cell via SMP high-frequency connectors, and to the outside of the cell
by SMP feed-throughs. Further details of the cell designs is given in App. A2.

4.2 Measurement Scheme

As outlined in Sec. 3.2, the devices discussed in this work were driven magnetomotively
using a perpendicular magnetic field. This was achieved by mounting the devices in a
superconducting solenoid, such that the magnetic field was orientated vertically, whilst
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Bond Wires

Copper Ground Plane

Sample

Copper Traces

SMP Connector

Fig. 4.2 Left: Schematic of PCB used in the investigation of nanomechanical beams
in 4He. Photograph of PCB design, with four SMP lines and the ability to mount two
samples.

the samples were mounted horizontally. The magnets used in these experiments were
able to supply a magnetic field of up to 5 T. From here, a vector network analyser (VNA)
was used to supply an oscillating current of the form I = I0e

iωt. The signal was typically
attenuated by 80 dB before reaching the sample, with the resultant signal amplified by
a further 80 dB to improve the signal to noise ratio. The amplification is supplied by
two 40 dB low-noise commercial amplifiers supplied by Femto. The high attenuation was
used to protect the samples from high currents, known to be a common failure mode for
nanomechanical beams. The electrical signals were then interpreted using the methods
outlined in Sec. 4.2.1.

Measurements of these devices were performed from the helium condensation point
using a 1 K-pot style cryostat from Oxford Instruments, with an insert developed in-house.
This immersion system allows control of the temperature over the range 4.2 K to 1.5 K
by reducing the vapour pressure of 4He. Full experimental details of this cryostat can be
found in App. A3.1, with the electrical schematic shown in Fig. A.4.

For measurements below 1 K a commercial Bluefors LD250 dilution cryostat was
utilised with base temperature 7 mK. This system had been modified such that a helium
cell could be mounted. Further detail of this setup is presented in App. A3.3, with the
electrical setup shown in Fig. A.9.

4.2.1 2 Port Scattering Parameters

Measurements on nanobeams were often performed using a VNA, which measures
the complex scattering parameters between port 1 and port 2. A schematic diagram
representing the scattering matrix is shown in Fig. 4.3. A VNA directly probes this matrix
by connecting the sample between port 1 and port 2. A voltage can then be applied across
port 1 and the reflection, S11, or transmission, S21, measured. Alternatively, a voltage
can be applied across port 2 and the reflection, S22, and transmission, S12 measured. The
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Fig. 4.3 Generic two-port scattering diagram, with a two port matrix representing the
scattering of the black-box.

relationship between these parameters and the voltages defined in Fig. 4.3 is given by
V −

1

V −
2

 =

S11 S12

S21 S22

V +
1

V +
2

 . (4.1)

In order to probe devices, we typically probed the parameter S21 to measure the complex
transmission through the sample. This is given by

S21 = V −
2
V +

1
. (4.2)

Both ports of the network analyser are terminated over 50 Ω, meaning this quantity can
be converted using P = V 2/R giving

|S21|2 = P2
P1
, (4.3)

where P1 and P2 are the powers arriving at ports 1 and 2 respectively. Importantly, this
quantity can be used to directly probe the power passing through a sample.

In the case of the nanomechanical beam, this allows us to estimate the peak velocity
of the sample. From the definition of the quality factor as the ratio of the energy lost to
the energy stored:

Q = P1|S21|2

2πmv2f0
, (4.4)

where S21 is the value of the peak transmission, m is the mass and f0 is the resonance
frequency. Hence, the peak velocity can be written as

v =
√
P1|S21|2
2πQmf0

. (4.5)

In addition, since the work done per second is given by dW/dt = Fv, the force acting on
the beam is

F =
√

2πQmf0P1
|S21|2

= P1
v
. (4.6)

From these simple kinematic considerations, the key mechanical properties of the beam
can be estimated from experimental data. It is, however, difficult to obtain exact
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values of P1 under real experimental conditions, due to impedance mismatching in the
experimental circuit and other unknown dissipation mechanisms. The real P1 at the
resonator is typically higher than measured once amplifiers are accounted for. Velocities
obtained using this method are therefore considered to be approximate. The agreement
between the estimated velocity and the actual velocity will be highest for lower frequency
devices due to less reflected power at interfaces.

4.3 Results

In this section we will outline the main results from experiments involving nanomechanical
beams in the bulk phase of 4He. The data discussed here is the result of three main
experimental efforts. First, measurements of Lancaster made Al-on-Si nanobeams of
varying length using an immersion cryostat, down to 1.5 K. Second, measurements of
Lancaster Al-on-Si nanobeams were made in vacuum at 7 mK using our dilution cryostat.
Finally, Grenoble Al-on-Si3N4 nanobeams were measured in the dilution cryostat, both
in vacuum and 4He from 4 K to 10 mK highlighting all key damping regimes. Al-on-Si3N4

nanobeam were further utilised to make the first measurements of the ‘phonon wind’ in
bulk 4He.

4.3.1 Vacuum

Initially all nanobeams were characterised in vacuum at 4 K. From these measurements
the intrinsic properties of the beams can be extracted. We initially drove the beams in
the linear regime, where the induced e.m.f., and therefore velocity, is linearly proportional
to the force on the beam.

Figure 4.4 shows the fundamental resonance frequency for five Al-on-Si nanobeams,
and two Al-on-Si3N4, as measured at 5 T and 4 K. It is clear that, as expected, longer
nanobeams have lower frequencies for a given substrate. In addition, Al-on-Si3N4

nanobeams have a much higher frequency for a given length due to the inherent tension
in the system. The higher frequency of the Al-on-Si3N4 can negatively affect sensitivity
in 4He at the lowest temperatures due to increased acoustic emission. The two theoretical
curves are calculated using Eq. (3.20), using values from Sec. 4.1. The model gives
reasonably good agreement for the fundamental modes, typically within 20%, however
highlights the difficulty in accurately predicting the frequency of nanoscale oscillators.
Although lithographically defined, inhomogeneous etching and material impurities become
increasingly prevalent at these length scales. Even amongst samples which have undergone
simultaneous fabrication the fundamental mode frequency can vary by ∼ 30%. These
measurements were performed at low-drives, and hence in the linear regime, however at
high drives non-linear effects can shift the frequencies from the stated values.

Figure 4.5 shows the frequency response of the transmission for a 150µm Al-on-Si3N4

beam. At low driving powers, the sample shows the expected Lorentzian response. As the
driving power is increased, the non-linear terms in the spring constant become relevant
and the system behaves as a Duffing oscillator, as predicted in Sec. 3.1.1. Using 4.5, the
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Al-on-Si
Al-on-Si3N4

Fig. 4.4 Fundamental resonance mode for the two nanobeam design measured at 5 T and
4 K. The theoretical curves for the fundamental modes are calculated from Eq. (3.20),
using the values from Sec. 4.1, and a moment of inertia I = wt3/12.

transition to such the non-linear regime occurs at v ∼ 80 cm s−1. A Duffing-like response
is characterised by an asymmetrical frequency response, with a sharp step on one side,
owing to a bistable regime in the vicinity of the step. Due to the complexity of modelling
such a system, it is difficult to extract meaningful experimental results for a probe in
the Duffing regime; the FWHM does not accurately characterise the damping. For this
reason, Eq. (4.5) no longer provides a good estimate of the nanobeam velocity. To avoid
such difficulties, probes were typically operated below the point at which the Duffing-like
non-linearities significant.

In the linear regime, at constant magnetic field, we observed constant damping in
nanobeams. However, the damping is strongly dependent on the magnitude of the
applied magnetic field, as discussed in Sec. 3.4.3. Figure 4.6(a) shows the damping as
a function of magnetic field for two Al-on-Si samples in vacuum at 7 mK. It is clear
that magnetomotive damping dominates for measurements performed at 5 T, with the
characteristic B2 dependence shown by the dashed-black lines. The magnetomotive
damping is largest for longer samples, in agreement with the theory. At lower fields the
damping plateaus for both samples due to the presence of another, field-independent
damping mechanism.

The damping on the plateau region is likely governed by thermoelastic dissipation
with raised temperature due to Joule heating in the beam, described phenomenologically
in Sec. 3.4.2. The magnitude of this effect is larger for longer beams, due to the added
difficulty in thermalisation of the nanobeam. Since Joule heating cannot occur in the
superconducting state, a sharp change in nanobeam damping is observed at the transition
for both samples. Both nanobeams demonstrate a superconducting transition at ∼130 mT,
where the dissipation decreases. The superconducting transition is clear from looking at
the off-resonance transmission as a function of magnetic field, as shown in Fig. 4.6(b).
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Fig. 4.5 Frequency dependence of |S21| for six values of driving power for a 150µm
Al-on-Si3N4 beam, taken at 5 T in vacuum at 10 mK.

Here, as we decrease the field, the first step corresponds to the superconducting transition
in the nanobeam, Hc, with the second step corresponding to the transition in the wire-
bonds. Due to the finite size of the London-penetration depth, thinner samples of a given
material will have a larger critical field, consistent with our observations.

The mechanisms of damping in the superconducting regime is the source of much
theoretical discussion and experimental work [98]. The damping still appears to have a
strong power and field dependence, despite the fact that thermoelastic effects should be
greatly suppressed due to the absence of Joule-heating.

To further investigate this phenomena, measurements of the damping in the supercon-
ducting state have been performed in vacuum using Al-on-Si3N4 nanobeams. Figure 4.7(a)
shows the damping as a function of magnetic field for five different values of the excitation
power. Figure 4.7(b) shows the off-resonance transmission to demonstrate the onset of
superconductivity at ∼54 mT.

The presence of a strong power dependence for the damping in the superconducting
regime points towards variations in the occupation of two-level fluctuator systems. Similar
effects have been previously observed as a function of the device temperature, with the
damping demonstrating a Q−1 ∝ T at the lowest powers [98]. Temperature varies the
density of states for quasiparticles in the materials, which similarly occurs with changes
in magnetic field. It is therefore expected that we observe a decrease in losses at lower
fields. Importantly, the highest sensitivity of our probes is achieved at low field and low
driving power, however this also corresponds to the lowest signal-to-noise ratio. It is
therefore important to tune these parameters, such that the damping of the medium
under study remains higher than the intrinsic nanobeam damping, while simultaneously
maximising the signal-to-noise ratio.
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a)

b)

Fig. 4.6 Damping for two Al-on-Si nanobeams in vacuum as a function of the applied
magnetic field. The superconducting transition in the beam is shown clearly at B =
130 mT. This is accompanied with a reduction in the damping in both samples. A
second step is seen, most-likely corresponding to the superconducting transition in the
aluminium bond wires. The labels Hc,1 and Hc,2 refer to the superconducting transitions
in the nanobeam and wire-bonds respectively.

4.3.2 Hydrodynamic Regime of 4He

Now that we have characterised the nanobeams in vacuum, we can investigate nanobeam
sensitivity in liquid 4He for different resonators lengths. Three Al-on-Si nanobeams were
measured using the setup described in App. A3.1, in the bulk phase of 4He. We measured
the resonance properties of our devices as a function of the 4He temperature, to determine
which had the greatest sensitivity to the condensate.

Figure 4.8(a) presents the change in the fundamental resonant frequency of three
nanobeams from T = 4.2 K to T = 1.5 K, measured using a 5 T field. Above Tλ, the
frequency of all nanobeams remains relatively constant, changing only due to temperature
variations in the normal-fluid viscosity. Below Tλ however, when the helium transitions
to a superfluid, a corresponding increase in frequency is observed. Our model is given
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a)

b)

Fig. 4.7 (a) Damping for two Al-on-Si2N3 nanobeams as a function of the applied magnetic
field. The superconducting transition is clearly visible from the sudden change in damping.
The damping in the superconducting state appears to have a strong dependence on the
applied power. (b) Transmission off-resonance clearly indicating the superconducting
transition.

by Eq. (3.44) from Sec. 3.5.1, and incorporates the effects of the changing normal-fluid
fraction in this region. Using various values for the constants A and B, the model
produces an excellent fit to the data below Tλ. The fitting parameters A, B are stated
in Table 4.1. Above Tλ however, the frequency dependence for all nanobeams is much
flatter than the model predicts.

The large deviation from the model above Tλ can be explained by the viscous
penetration depth. When the helium is in its normal-state, the viscous penetration depth
is comparable to the nanobeam dimensions. For the 50µm nanobeam, the penetration
depth is ∼ w/4 in the normal-state. For the 50µm and 75µm the penetration depth
is approximately equal and for the 100µm δ ≈ 135 nm. The penetration depth rapidly
increases in the superfluid region as the normal fluid density decreases. This means the
volume of the fluid displaced and volume of the penetration depth in Eq. (3.44) are



50 | Experiments on Nanoscale Beams in 4He

a)

b)

Fig. 4.8 (a) Squared ratio of resonance frequency in liquid helium and vacuum, and (b)
inverse quality factor, for three nanomechanical devices of varying length from 4.2 K to
1.5 K. The black curves represent a theoretical model given by (a) Eq. (3.44) and (b)
Eq. (3.46), with fitting parameters stated in Table 4.1.

equal orders of magnitude. The model treats the clamped fluid and backflow as separate
terms which do not influence each other. When the volume of clamped fluid becomes
comparable to the size of the nanobeam, it will influence fluid backflow and the two
cannot be treated separately. Nanomechanical devices are therefore approaching the
limit of the current theoretical model, which relies on an assumption of small penetration
depth compared to the oscillator length scale.

Figure 4.8(b) presents the variation of the damping, Q−1
hy , with temperature for the

three nanobeams. By comparison with Fig. 4.6, we can see that the hydrodynamic
damping is far larger than the magnetomotive damping in this regime (Q−1

hy >> Q−1
mm).

Similarly to the frequency, the damping remains relatively constant above Tλ, and
decreases significantly as the normal-fluid fraction decreases. The theoretical model for
the hydrodynamic damping is provided by Eq. (3.46) with parameters given in Table 4.1,
providing a reasonable fit for all three nanobeams. The 75µm sample gives the best fit,
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Beam Length (µm) A B C
50 1.15 0.86 2.27
75 1.29 1.61 2.08
100 4.61 1.49 4.68

Table 4.1 Fitting parameters A, B and C for the hydrodynamic model plotted in
Fig. 4.8, from Eq. (3.44) and Eq. (3.46), for three different values of nanobeam length.
Theoretically, A and B are constants of the order 1, and C = 2 for cylindrical geometry.
[26].

with fitting parameter of C = 2.08, close to the theoretical values C = 2 for a beam-like
geometry. Below about 1.5 K all nanobeams appear to deviate from the Stokes’ drag
model, despite an excellent fit work at high temperatures. The variations in the fitting
parameter C among the other nanobeams is likely due to differences in surface-roughness
and shape. We do not expect a significant contribution from acoustic drag due to the
relatively low frequency, and very high hydrodynamic damping [33]. The deviation is
likely due to the increasingly ballistic nature of the condensate at low-temperature, which
will be discussed in more detail in Sec. 4.3.3.

Overall, the 50µm seems to demonstrate the best agreement with the theoretical
values of these parameters, and these values broadly agree with the expected values
for cylindrical oscillators used in the past. The 100µm geometrical values are quite far
away from agreement, likely a result of the previously discussed mechanism, with the
model operating outside of the assumptions as δ ∼ w. Despite this, the 100µm beam
demonstrated the best sensitivity to changes in the normal-fluid fraction, due to the very
high aspect ratio of the sample. A comparison to more traditional probes, such as a
NbTi vibrating wire, demonstrate that the nanobeams appear notably more sensitive
[71]. Due to the difficulties in modelling, nanobeams are not particularly well suited for
4He thermometry in the immediate vicinity of Tλ, however their real strengths lie in the
sensitivity at lower temperatures, as we will show in the next section.

4.3.3 Ballistic Regime of 4He

Two Al-on-Si3N4 nanobeams were measured in the bulk-phase of 4He using the setup
shown in App. A3.3. Figure 4.9(a) presents the temperature dependence of damping
measured using a 150µm beam in liquid 4He from 4.2 K down to the base temperature
for a range of magnetic field strengths. Larger magnetic fields produce a larger signal, at
the expense of a larger magnetomotive, Q−1

mm, contribution. For this reason, five different
values of magnetic field were used to fully map-out the damping over this temperature
range. In liquid 4He, we can highlight two distinct damping regimes: hydrodynamic and
ballistic. From 4.2 K to about 1.0 K, a hydrodynamic regime is again observed, where
damping is dominated by Stokes’ drag from the normal fluid surrounding the nanobeam.
The data in this regime is in reasonable agreement with the model discussed in Sec. 3.5.1
and Sec. 4.3.2. However, since these measurements were performed using a cryogen-free
fridge, temperature stability in this regime is fairly poor.
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a)
b)
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Below 1.0 K damping is described by phonons and rotons ballistically colliding with
the beam, as described in 3.5.2. The damping can be modelled using a sum of Eq. (3.50)
and Eq. (3.52) taking the geometric constant A = 2.67 which assumes a cylindrical
geometry. The model provides excellent agreement to the data in the temperature region
0.1 K < T < 0.8 K, as evidenced by the dashed black line. There exists a region of
temperatures 0.8 K < T < 1.1 K between the two regimes where the loss mechanisms
are not well described by either model; the roton density dominates in the normal-
fluid however interactions between rotons are infrequent but non-negligible. The lower
temperature deviation from the ballistic model in Fig. 4.9(a) indicates that another,
temperature independent, mechanism is present in addition to the phonon and roton
damping contributions. We believe this is caused by the beam emitting sound waves
in the superfluid. To demonstrate that the low temperature plateau is the results of
acoustics we directly contrast the magnetomotive damping in vacuum and superfluid
whilst exploring the effects of quantum turbulence on the nanobeams.

Figure 4.9(b) shows the magnetic field dependence of the damping for the two
nanobeams in vacuum and superfluid 4He as measured at the base temperature of the
cryostat. The two solid black lines suggest that in high fields the beam damping is
dominated by magnetomotive losses, which scale as B2 as discussed in Sec. 3.4.3. The
losses plateau at low magnetic field in both vacuum and 4He. The saturation value
for both beams in 4He are nearly an order of magnitude higher as compared to the
values in vacuum. The plateau of losses in vacuum indicates the presence of an intrinsic,
magnetic field independent damping mechanism in both nanobeams. This intrinsic
damping is presumably caused by thermoelastic effects, and is considerably reduced in
the superconducting state (See Fig. 4.7). The fact that the low field damping in 4He by
far exceeds the damping in vacuum points to an extra dissipation mechanism in superfluid
4He.

The inset of Fig. 4.9(b) demonstrates that the additional contribution to damping in
helium appears to depend strongly on the resonance frequency of the beam, indicating that
this effect is acoustical in nature. Strong acoustic emission has been previously observed
for quartz tuning forks immersed in superfluid 4He [33], due to their high operation
frequency. Acoustic damping for a beam can be described within the framework of a
dipole emission, as discussed in Sec. 3.5.3. The model captures the phenomenological
behaviour of the devices, but requires a fitting parameters A = 7.57. Such a disagreement
could be explained by a slightly larger effective radius, non-cylindrical geometry, or an
additional damping term related to remnant vortices pinned to the nanobeam. Damping
due to trapped vortices will be explored in detail in Chapter 5, where we will discuss if
the disagreement can be explained these effects. It is clear that systematic study with a
greater distribution of device frequencies is needed to draw further conclusions.

By adding a constant offset from the measured acoustic emission, the sum of acoustic,
phonon and roton contributions to damping produces an excellent agreement to the
data (the solid black line in Fig. 4.9(a)) at temperatures approaching ∼ 1 K, above which
the superfluid enters the hydrodynamic regime. The level of acoustic emission is the
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a)

b)

Fig. 4.10 (a) Force-velocity relation for a 30µm Al-on-Si3N4 beam both in vacuum
and superfluid 4He at 7 mK, taken at 1 T. A linear response up to ∼ 1 m s−1 is seen in
vacuum, where a transition to a Duffing regime is seen. No Duffing or turbulent transition
is seen in 4He since the velocities achieved were too low. (b) Force velocity relationship
for a 150µm long Al-on-Si3N4 nanobeam, in vacuum and liquid 4He, at a 1 T field. The
lines overlap due to magnetomotive damping being dominant in this sample. Duffing-like
behaviour is seen at high velocities in both vacuum and 4He, but no turbulent transition
is seen in 4He.

only required fitting parameters, demonstrating that the beam is an excellent probe of
superfluid excitations.

To explore the effects of quantum turbulence on the system, the effects of nanobeam
velocity were investigated. Figure 4.10 shows the dependence of the peak beam velocity on
the force applied for both the 30µm and 150µm in vacuum and 4He at 10 mK. The data
presented is taken at 1 T to preserve the signal-noise ratio and achieve large velocities.

For a system with a turbulent regime, with critical velocity vc, we would expect to
observe a transition from a linear dependence to a quadratic dependence at vc, as was
discussed in Sec. 2.3. Given our length scale and frequencies, we estimate the critical
velocity to be of the order of 0.5 − 1 m s−1. We measured the linear dependence of the
peak driving force as a function of peak velocity and saw no evidence for turbulence
creation up to velocities of tens of cm s−1 for either nanobeam. For the 150µm nanobeam,
the vacuum and 4He results look very similar, due to the large magnetomotive damping
at this field. For the 30µm nanobeam a clear distinction is seen between vacuum and 4He
measurements, however no deviation from a linear dependence is seen for any force. The
plateau seen in vacuum is caused by intrinsic, Duffing-like non-linearities in the system.
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a)

b)

Fig. 4.11 Histograms of the (a) resonance frequency, and (b) width, of 3500 frequency
sweeps taken for a 150µm nanobeam in superfluid 4He at 10 mK, taken at 1 T. The
majority of events occur at the expected frequency and width predicted by magnetomotive
damping, however ∼ 1% of events transition to a region of higher frequency and damping.
This is likely some manifestation of quantum turbulence. The resonance frequency is
given by f0 = 1.62211 MHZ.

Despite no obvious emission of vortices, time dependent measurements of the resonance
properties of the nanobeam over several hours produced an unexpected result. Figure 4.11
presents a histogram of the resonance properties for 3500 measurements of the 150µm
taken at 1 T. The majority of results fall close to the usual resonance frequency (f0 =
1.6221 MHz), however a small number of events are shifted upwards in frequency, at a rate
of ∼ 1%. These transient effects were not visible in previous measurements due to the
relatively low sampling rate. The increase in frequency is coupled with a corresponding
increase in damping experienced by nanobeam, with the frequency width, ∆f , increasing
from 70 Hz to around 380 Hz.

One possible mechanism for such an increase, is a quantized vortex becoming trapped
between the nanobeam and the substrate, such that Kelvin-wave excitations can cause
dissipation. In addition, the additional energy required to stretch the vortex contributes to
the spring constant, hence the frequency increase. In Chapter 5, we will demonstrate the
effects of quantized vortices on nanobeams using a separate generator. In this experiment
however, we do not have a separate vortex generator, therefore any vortices in the fluid
are likely remnant vortices in the fluid, produced by the Kibble-Zurek mechanisms when
cooling. Although speculative, these results are the first signs that nanobeams may be
used as detectors of single quantum vortices in the fluid, something we go on to explore
in detail in Chapter 5.
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4.3.4 Driving a Nanobeam with a Phonon Flux

Since nanobeams are such sensitive detectors of thermal excitations in superfluid 4He, we
were able to use them to demonstrate a new quasiparticle driving mechanism. Using the
setup shown in App. A3.3, two Al-on-Si3N4 were utilised in the bulk-phase of superfluid
4He at 10 mK to demonstrate the thermomechanical phenomena, coined the ‘phonon
wind’. To do this, the two nanobeams were mounted in-plane, on the same chip, separated
by a distance of ∼ 5 mm. The shorter, 30µm-long beam was utilised as a heater, whilst
the longer 150µm-long beam was utilised as a detector. The 30µm heater was driven off-
resonance using an AC-current, with frequency f0/2, where f0 is the resonance frequency
of the detector beam. Since the power dissipated in the heater goes as I2R, where R is
the heater resistance, this process generates modulated flux of phonons is generated at
the frequency of the detector beam.

The phonons emitted in the direction of the detector propagate ballistically towards
to the detector, due to an absence of scattering mechanisms in this temperature regime.
Due to a short heater-to-substrate distance of ∼ 3µm, phonons that are emitted towards
the substrate and reflected do not acquire any significant phase-delay. The scattering
mechanism occurring at the substrate will lie somewhere between complete reflection,
and complete absorption, as discussed in Sec. 3.7. Phonons that reflect off the walls
of the experimental cell are assumed to lose coherence, and simply contribute to the
thermal background. Upon reaching the detector, phonons scatter off the beam and
resonantly exchange momentum, a process capable of driving the detector beam into
motion. A perpendicular magnetic field of B = 1.3 T was used to convert this motion
into an electrical signal, which was then amplified through 80 dB at room temperature
and detected using an SA, as shown in Fig. 4.12.

The power spectral density (PSD) of the measured emf signal from the detector is
shown in Fig. 4.13(a) for three values of the applied heater power. A peak is observed at
f0 = 1.62211 MHz, in clear agreement with resonant driving of the detector. The width
to the observed PSD implies there is some additional off-resonance driving occurring, an
effect we attribute to any decoherence of the phonon flux. Additionally, the observed
linewidth in this case would be limited by the quality factor of the resonance. Given the
large magnetomotive damping expected at an ambient field of B = 1.3 T, the measured
Q = 9300 is in good agreement the measurements presented in Fig. 4.9.

It is remarkable that the thermal time-constants in the system allow for such a
process to occur. In order to generate a modulated phonon at a frequency of 1.6 MHz,
the thermalisation time between the nanobeam phonons and the helium phonons must
be ∼ 1µs. Passing a current through the heater generates thermal phonons in the
heater, however in order to generate a phonon flux in helium these phonons must pass
through the Al-He boundary. For bulk-structures this effect should be slow, due to the
large difference in the speed of sound in the two materials, resulting in a large acoustic
mismatch and therefore inefficient energy exchange [99] [100]. In the heater however, the
phonon wavelength is comparable to the size of the nanobeam, effectively increasing the
probability of energy transfer by increasing the rate of interactions at the boundary, as



4.3 Results | 57

Phonon Wind

Fig. 4.12 Schematic of the experimental setup for detecting a phonon flux in liquid 4He
at 7 mK. A 30µm and 150µm nanobeam are separated by roughly 5 mm; the shorter
beam is heated using an AC current creating periodic waves of phonons. The response
from the second beam was monitored by a spectrum analyser.

has been observed in previous pulsed measurements performed in 4He [101]. This result
open a new avenue for high frequency transport and detection measurements in 4He
using nanoscale heaters.

The total detected power, PE , was calculated by integrating the experimentally
measured PSD curves presented in Fig. 4.13(a). The dependence of the measured PE as a
function of the applied PH is shown in Fig. 4.13(b), with the experimental uncertainties
represented by the orange colour band. Our data qualitatively confirms that at low powers
the detected signal is indeed proportional to the heater power squared within the accuracy
of the measurement, as was expected from Sec. 3.7. Above an applied heater power of
PH ∼ 1µW the detector response deviates considerably from the predicted quadratic
dependence and tends to saturate at higher powers. We attribute the observed deviation
to the substantial overheating of the surrounding liquid, measured as a temperature
increase at the mixing chamber. The dashed line inside the blue colour band shows the
dependence predicted by Eq. (3.73) in the diffuse case, when (α = 1), and assuming ideal
impedance matching. The upper bound of the band corresponds to the specular case,
whilst the lower bound accounts for possible impedance mismatching, as discussed in
Sec. 3.7.

The agreement with the theory is remarkable given the simplicity of the model, and
provides strong evidence that the described mechanism is actually exciting the beam.
The weakness of the model lies largely in the efficiency of the phonon flux generation. We
have no reliable method for accurately calculating the amount of power which directly
generates phonons in the condensate. We can rule out direct excitation of the detector via
electromagnetic cross-talk by the fact we excite at half the detector frequency. Separate
characterisation of the signal-generator used to excite the heater confirms that there are
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a) b)

Fig. 4.13 (a) Power spectral density of the detector beam measured using a spectrum
analyser at 1.3 T for three different values of the heater power, PH. The total received
power corresponds to the area under these curves. (b) The total integrated power
measured at the spectrum analyser from the detector as a function of emitter nanobeam
power at 1.3 T. The black-dashed line shows a model given by Eq. (3.73), with the blue
band accounting for uncertainty in the scattering mechanism 1 < α < 2, and impedance
mismatching.

no significant overtones generated, and therefore the detector cannot be directly excited
in this way.

We can also confidently rule out incoherent thermal excitation of the beam using the
theory introduced in Sec. 3.7.2. The integral part of Eq. (3.78) can be solved numerically
giving = 1.84013 × 10−7 Hz. With Q = 104, M = 1.58 × 10−14 kg and Ω = 1.62211 MHz,
the total expected power is given by

PE ∼ 10−39 W, (4.7)

which is far less than the measured power, PE . It seems that despite the high sensitivity
of the nanomechanical devices, they cannot directly probe thermal motion.

4.4 Conclusions and Outlook

The work presented in this chapter demonstrates the remarkable versatility of nanome-
chanical devices as probes for quantum fluid systems. We have presented measurements
over a large temperature range in liquid 4He, both in the hydrodynamic regime from
4.2 K to 1.2 K, and in the ballistic regime from 1 K to 10 mK. In the hydrodynamic
regime, the temperature dependence of three nanobeams of varying length were measured.
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Below Tλ, all three beams demonstrated excellent agreement with a theoretical model
based upon normal-fluid clamping to the nanobeam, as discussed in Sec. 3.5.1. Above
Tλ, the model was less successful, likely due to the volume of clamped fluid becoming
comparable to the beam size. In this limit, the additional mass is dominant, rather than
a small correction to the initial mass. Therefore in the direct vicinity of Tλ nanobeams
are not as well suited for such measurements as conventional probes. As expected, the
highest sensitivity to changes in the mass came from the 100µm nanobeam, which was
the longest tested.

Two nanobeams have been successfully measured in the ballistic regime of 4He,
demonstrating a striking ability to continuously operate despite environmental damping
varying over six orders of magnitude. From 0.8 K to 300 mK the damping closely follows
the damping model discussed in Sec. 3.5.2, a sum of the contribution of the the thermal
quasiparticles, phonons and rotons, colliding the nanobeam. Below this, damping
saturates due to the contribution of acoustic emission, as outlined in Sec. 3.5.3, limiting
the ultimate sensitivity of the probes. In the future, designing longer nanobeams and
therefore lower frequency nanobeams, would result in reduced acoustic emission thereby
increasing the sensitivity. Fabricating extremely long doubly-clamped nanobeams without
sacrificing structural rigidity remains a technical challenge. One solution is to fabricate
cantilever-paddle style resonators, which have lower frequencies for a given dimension.
Alternatively, embedding the nanobeams inside a cavity could suppress the number of
acoustic modes available for energy transfer, reducing the losses by this mechanism. The
results of this work are presented in publication I.

The nanobeams measured at the lowest temperatures in superfluid 4He were utilised to
demonstrate a unique thermomechanical phenomena, called the ‘phonon wind’. Here, two
nanobeams are used, one operated as a heater and one as a detector. The heater is used
to generate a modulated phonon flux in 4He, and when the modulation frequency matches
the resonance frequency of the detector beam it is able to excite motion. The signal from
the phonon wind has been measured for the first time, demonstrating a phenomena that
has never before been conceived. In doing so, nanobeams have demonstrated extremely
fast thermal time constants, much faster than that seen in bulk materials, opening the
door to new experiments involving high-frequency thermomechanics in quantum fluids.
The results of this work are presented in publication II.

Overall, the experiments presented here have firmly pushed nanomechanical beams
from a novel experimental device, to an integral element of several current, planned, and
future experiments. Whilst the initial sections did not introduce any new physics, but
demonstrated excellent agreement between the data and known theory, the final section
utilised nanobeams to demonstrate an entirely new physical phenomena. Nanomechanical
devices are now being utilised for the next generation of low-temperature experiments
including, but not limited to, single-vortex detection, 3He quasiparticle probing and
integration with quantum circuits. The first results of single-vortex detection using a
nanomechanical device are presented in the next chapter.





Chapter 5

Experiments on Vortex Dynamics
probed by Nanoscale Beams

In this chapter we describe experiments utilising nanobeams as real-time detectors, and
traps of quantised vortices in 4He, using a submerged TF as a source of turbulence in the
condensate. Our work draws inspiration from the pioneering experiments of Joe Vinen
[20], who made the first observations of a quanta of circulation in 4He, as introduced in
Sec. 2.3, however utilising a modern methodology.

We will introduce two sets of experimental results. First, we will present experiments
probing the dynamics of propagating vortex rings interacting with a nanobeam using a
novel multi-frequency lock-in amplifier technique to track the resonance properties on the
order of milliseconds. Such real-time vortex detection has never before been demonstrated,
and has potential to greatly improve our current understanding of vortex emission and
detection in fluids. Second, we show experiments using nanobeams to engineer trapped
vortex configurations which can persist indefinitely, allowing the fundamental study of
4He vortexes. These experiments may shed light on the microscopic processes by which
energy is dissipated from quantized vortices in a superfluid, a topic of much interest in
the physics community [102, 103].

5.1 Samples

The detectors used in the subsequent experiments consist of Al-on-Si3N4 nanobeams
fabricated at Moscow-State University, using nominally similar fabrication procedures
as those discussed in App. B2. The devices have lithographically defined thickness,
t = 130 nm and length L = 70µm. Each chip consists of four devices of varying
width, w = 100, 200, 400, 800 nm, as shown in Fig. 5.1. For the discussed experiments, a
nanobeam with width w = 200 nm was used (labelled ‘A’ Fig. 5.1). The device had a
fundamental mode frequency f0 = 2.146 MHz. Using Eq. (3.20) the strain is estimated to
be σ = 0.2 GPa, lower than the devices discussed in Chapter 4. The resultant tension is
therefore T0 = σwt = 5.6µN. For further details about the mechanical properties of such
devices, see Sec. 4.1. In addition to the nanomechanical device, a flexural TF was also
mounted in the cell, suspended ∼ 2 mm above the nanobeam. The TF has tine length
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A

Fig. 5.1 An SEM of a chip containing four 70µm Al-on-Si3N4 nanobeams of varying
width. ‘A’ labels the w = 200 nm wide nanobeam used for the discussed experiments. The
thinner 100 nm wide nanobeam was bonded however was not functional upon cool-down.

lF = 3.5 mm, thickness tF = 250µm and width wf = 650µm, yielding a fundamental
mode frequency of ff = 32.7 kHz. TFs of this type are known emitters of quantized
vortices in superfluids, making them an ideal source for studying the interaction of a
nanomechanical device with quantum turbulence.

The nanobeams were bonded onto a copper PCB with the TF suspended in-plane
above, as shown in Fig. 5.2. Two nanobeams were bonded, however only the 200 nm
appeared to be properly suspended once measured. This was most likely due to over-
etching leading to nanobeam collapse.

5.2 Measurement Scheme

All measurements were performed in bulk superfluid 4He at mK temperatures using
the setup described in App. A3.3. In order to study such a system several electrical
measurement schemes were utilised. Firstly, the resonance properties of the nanobeam
were resolved on slower time-scales using the spectroscopic approach of a VNA to supply
an AC current in a perpendicular magnetic field. The back-emf was then measured as a
drop in the transmission as a Lorentzian curve, similar to the methods used in Chapter 4.

In order to resolve faster changes in the resonance properties, continuous downconver-
sion at a single frequency was performed, using a separate signal generator and IQ-mixer.
This method allows changes of the order 100µs to be resolved, limited by the transience
of the resonator.

To implement the advantages of both previous methods, we went on to demonstrate
a novel readout technique using a multi-frequency lock-in amplifier (MLA). Using a
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Fig. 5.2 PCB showing the setup for studying vortex dynamics using a nanobeam. A TF is
soldered such that it is suspended ∼ 2 mm above a nanobeam chip. Two nanomechanical
devices were bonded however only one was functional.

combined multi-frequency drive and multi-frequency demodulation, we were able to
extract 41 frequencies signals simultaneously whilst maintaining a time resolution of 1 ms.
The time resolution is ultimately limited by fourier mixing of nearby tones, meaning
frequency spacing must be sacrificed for improved time resolution. Electrical schematics
of the setup are shown in App. A3.3. MLA measurements have been used previously to
measure TF turbulence in 4He at lower sample rates [104].

When resolving fast changes in the resonance properties, it was necessary to use trig-
gering functionality to distinguish between interesting events and the normal background.
To do this, a feedback loop output the magnitude of the downconverted signal at the
resonance frequency to an oscilloscope. When the signal fell below the trigger value, a
trigger pulse was sent to the MLA to record data for a specified length before resetting.
The properties of the TF were measured using a VNA to extract the Lorentzian curve,
before fitting to extract the force-velocity characteristics using the method proposed in
Sec. 3.3.

5.3 Results

The main results will be split into three sections. Firstly, the characterisation of both
the nanobeam and TF in both vacuum and 4He, similar to those discussed in Chapter 4.
Secondly, the time-domain response of the nanobeam under bombardment with vortex-
rings emitted by the TF. Lastly, the carefully measured properties of the nanobeam
coupled to a trapped vortex under several configurations.

5.3.1 Characterisation

Figure 5.3(a) shows the force-velocity relationship for the nanobeam, taken at 5 T both in
vacuum and in superfluid 4He at 10 mK. The data was taken using a VNA to measure the
Lorentzian, and analysed using the method introduced in Sec. 4.2.1. In superfluid 4He at
10 mK the nanobeam frequency is given by fH = 2.116 MHz, meaning an effective mass
increase of 3%. For the nanobeam, force and velocity remain linear to each other which
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a)

b)

Fig. 5.3 Force-velocity relationship, in both vacuum and superfluid 4He at 10 mK, for
a: (a) 70µm nanobeam at 5 T, showing no transition to a turbulent regime, (b) quartz
TF, with the transition to a turbulent regime shown clearly by a characteristic ‘kink’
at F = 4 × 10−9 N. The orange fit line corresponds to the function v = AFB, with
A = 1.08 kg−1 s and B = 0.125.

implies constant damping. Since measurements are performed at 5 T magnetomotive
damping is dominant, so the damping in vacuum and 4He are equal.

The TF, however, demonstrates a transition in gradient at vc = 11 cm s−1, correspond-
ing to the onset of quantum turbulence, as shown in Figure 5.3(b). The red line represents
a fit to the turbulent data, using a function of the form v = AFB, yielding fit parameters
A = 1.08 kg−1 s and B = 0.125. Although turbulence is typically characterised by a
F ∝ v2 (B = 0.5) relationship (see Sec. 2.3), at the lowest temperatures steeper gradients
have been seen for TFs in previous experiments. Such an observation is evidence that
the majority of the additional energy above vc goes to creation of vortices. Since the
nanobeam velocity has a linear relationship with the driving force, it can be used as a
detector for quantized vortices created by the TF operating above the critical velocity.
By running the TF above the critical velocity we can create propagating vortex rings in
the condensate which can be detected by the nanobeam.

5.3.2 Real-Time Vortex Dynamics

No significant difference in the nanobeam response was detected as measured with
a VNA when the TF was above vc, to when it was below vc. On short time-scales
(∼ 0.01 s), sudden events corresponding to short increases in the nanobeam frequency
were observed, only seen when the TF was operating with vF > vc in superfluid 4He.
Figure 5.4 shows a colour-map representing two consecutive events, as measured using
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i) ii) iii) iv)

Fig. 5.4 Time dependence of MLA nanobeam response at a lock-in amplifier time
constant of 2 ms. Two nanobeam events are shown, with the main features labelled.
The 40 measurement frequencies were separated by 500 Hz with one frequency driving
the NEMS. This event was recorded in a 5 T magnetic field, with nanobeam velocity
v = 3.5 mm s−1. Time is recorded relative to the trigger signal. The diagrams show our
interpretation of the vortex state in each region.

an MLA simultaneously driving the nanobeam at 40 frequencies with 500 Hz spacing, at
5 T magnetic field, with nanobeam velocity v = 3.5 mm s−1. The lock-in time constant
for these measurements was tc = 2 ms. Here, t = 0 corresponds to the trigger time,
and the length of one event, β1γ1 = 0.06 s. The TF was being continuously driven with
an AC force of magnitude force F = 4 × 10−8 N. Strikingly, there is a clear transience
observed on the rise-side (α1β1) whereas the fall-side transition is much faster (γ1δ1).
The frequency of the plateau region is at fv = 2.119 kHz = f0 + 3 kHz. The described
features are repeated across a very large number of similar events, with variations only
occurring in the length of the transience and the plateau regions.

The measured frequency shift of 3 kHz is extraordinarily robust to changes in experi-
mental parameters. Over a range of nanobeam velocities (1 < v < 4) mm s−1, cryostat
temperatures (10 < T < 700) mK, magnetic fields (2 < B < 5) T, and TF driving forces
(10 < F < 100) nN, the measured frequency shift varied just ∼ 1%. This is significant,
since it implies that the observed state is strongly defined by the geometry of the system,
and not by the oscillator mechanics.

Another clear feature is that the damping does not appear to change significantly
in the higher-frequency state. The damping between the higher-frequency and normal
state agree within 2 % of each other. However, since the majority of measurements were
performed at 5 T significant magnetomotive damping may make it difficult to resolve small
changes. Similar measurements performed at 2 T, where the magnetomotive damping
should be six times smaller, reported similar agreement two states.

We believe that the measured behaviour can be explained by a single quanta of
circulation becoming trapped along the length of the nanobeam, as is described in
Sec. 3.6. The initial interaction gives us the rise time (α1β1), shown in Fig. 5.4(ii), with
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the fully trapped state given by (β1γ1), shown in Fig. 5.4(iii). The boundary condition
due to the substrate will create an attractive force on the trapped vortex, increasing the
effective tension felt by the nanobeam. Using Eq. (3.71), with a nanobeam-substrate
gap of 1µm, we estimate the additional tension at the clamps to be Tv = 2.2 nN. If we
consider the total beam tension to be T = T0 +Tv, using Eq. (3.20) we find the nanobeam
frequency in liquid to be fv = 2.117 MHz, an increase of ∼ 1 kHz. A vortex trapped
along the nanobeam would also not contribute significantly to the damping, consistent
with our observations. Considering the simplicity of the model it provides reasonable
agreement, suggesting that our picture is at least partially correct. The model depends
strongly on the nanobeam-substrate distance, a quantity that varies significantly across
the substrate and across samples, due to anisotropic etch performed of the substrate.
The mechanism by which the vortex initially becomes trapped is not yet well understood.

The relaxation of the nanobeam back to the non-trapped state is then explained by
vortex-reconnection, as described in Sec. 3.6, shown in Fig. 5.4(iv). A vortex trapped
along the nanobeam can escape when bombarded with another vortex ring, with the two
meeting and then separating into a different configuration. Such a process may allow a
trapped vortex to detach itself on a time-scale related to the inter-vortex spacing.

To clarify our picture, we aimed to investigate how the vortex-line density affected
the rate of measured frequency-shift events. Normalised histograms of the ‘wait time’ as
a function of the applied drive to the TF is shown in Fig. 5.5(a). The data is collected
using a single-frequency drive and demodulation on the resonance frequency, with a time
constant tc = 300µs, and nanobeam velocity v = 3.5 mm s−1. The wait time is calculated
as the time between subsequent triggers, minus the time taken to save the data. At
low TF drives the wait time can be very long, approaching infinity at the lowest drives,
implying that the vortex line density in the cell can be very low. At higher drives the
events are much more rapid, implying high vortex line density, however the difference is
diminishing with higher drive. Such an effect points towards potential saturation of the
vortex line density in the experimental volume.

The inset of Fig. 5.5(a) shows the fit constant τ as a function of the TF velocity,
when the previous histograms are fitted ∝ e−τt. The orange line indicates the force value
equivalent to the turbulent transition, vc. It is clear that the event rate is closely tied
to the TF drive, with higher drives meaning more energy going towards increasing the
vortex line density, and therefore a greater interaction rate. Interestingly, the event rate
falls to zero at a slightly higher value than vc, which implies an additional energy cost
associated with the emission of a vortex ring from the TF surface to the bulk. Two
critical velocities have been previously observed in low temperature experiments involving
TFs [105].

If reconnection from nearby vortexes allows the trapped vortex to escape, we might
expect to observe some dependence of the event length on the vortex line density.
Figure 5.5(b) shows probability histograms of the plateau length for several values of the
TF drive. Clearly longer events are less likely for all powers, evidenced by a decreased
probability for longer plateau lengths, however, longer plateaus appear to be equally
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Fig. 5.5 (a) Normalised histograms for the wait time (δ0α1) frequency-shift events for
several TF drives. The fit lines correspond to the function ∝ e−τt, where t is the wait
time. Inset: Fitted τ as a function of the TF velocity. The orange line corresponds
to the turbulent transition shown in Fig. 5.3. The event rate is clearly dependent on
the TF drive, however does not intercept the x-axis at exactly the TF critical velocity.
This implies that the TF experiences damping due to vortices before vortex emission
is observed. (b) Normalised histogram of event length (β1γ1) for five values of the TF
drive. There appears to be no significant difference in the event length distribution, with
longer events less likely for all drives. The solid black line indicates a Density ∝ L−1/2,
consistent with the idea that reconnection time depends on the distance to the nearest
vortex, as discussed in Sec. 3.6.
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likely for all TF powers. Since vortex reconnection by another vortex collision ends the
event, it is logical to think that a lower vortex-line density would reduce the probability
of this occurring. There appears to be a significant asymmetry between the time between
events, and the length of events, i.e. despite the event rate decreasing to nearly zero, we
do not have long-term stable vortex configurations whilst the TF is above vc.

One interpretation of this inconsistency is that it is relatively unlikely for a passing
vortex ring to become pinned, whereas the annihilation process can occurs more easily,
possibly due to relative orientations of the vortex rings. Since we expect there to be
an attractive force between nearby vortices (see Eq. (3.67)), this provides a potential
mechanism for the asymmetry. An incoming vortex has to overcome a potential barrier to
become pinned, however a pinned vortex will attract nearby vortexes for reconnection. In
that case, event length is determined by the distance to the nearest vortex, rather than the
global vortex line density. The solid black line indicates the model Density ∝ L−1/2, as
discussed in Sec. 3.6, indicating that the distance to the nearest vortex remains relatively
independent of TF drive. Such a result points towards significant inhomogeneity of the
vortex tangle in the cell.

Using the fit presented in Fig. 5.3, we can estimate the power going to create vortex
rings as Q̇ = (dF/dv)(v2/ff ), with the energy per unit length of a vortex is given in
Eq. (2.39). The expected rate of vortex rings reaching the beam is therefore given by

Ṅ =
(
dF

dv

)
rrρsκ

2v2

8πff
ln
(2b
ξ

)
wt

d2 , (5.1)

where d is the distance from the TF to the nanobeam, and rr is the vortex ring radius.
At the lowest TF power, given a ring radius rr = 50µm, we would expect to see an
event rate of ∼ 10−3 s−1, comparable to what is seen. However, at high TF power we
would expect to see a rate ∼ 10−2 s−1 however the observed rate is much higher. Such
an observation implies that other processes contribute significantly to the event rate, not
simply TF power. Since there is significant remnant vortices in the cell, the injected
energy simply acts to destabilise existing pinned vortices, allowing the propagating vortex
energy-density to significantly exceed that of the injected power. The picture is therefore
complex and difficult to model precisely. Additional theoretical work in the area of vortex
emission and propagation would prove invaluable in understanding our system.

5.3.3 Properties of Trapped Vortices

Since subsequent vortex ring collisions allow a trapped vortex to escape, in order to
achieve a stable trapped vortex the TF must be off, however there must initially be
significant vortex ring density in the fluid. After cooling the cryostat and running the TF
above vc, the TF was then switched off. A small mechanical disturbance to the cryostat
then allowed a vortex to become trapped, and since the TF was off it could not escape.
The mechanical disturbance pulses the system, destabilising existing vortices and creating
a burst of vortex rings, but no continuous supply. The described method does not allow
100% reproducibility but appeared to allow the creation of novel vortex states which
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Fig. 5.6 Inverse Q-factor as a function of magnetic field for a 70µm nanobeam, both in
vacuum and under several vortex configurations. The key shows our interpretation of the
vortex state, along with the fundamental mode frequency in such a configuration.

could exist indefinitely. The trapped vortex could then reliably be removed by further
excitation of the TF, likely causing a vortex ring with opposite circulation to annihilate
with the trapped vortex.

The measurements presented here were taken after a further thermal cycle from the
previous data. Thermal contractions mean the fundamental frequency was shifted to
f0 = 2.189 MHz in vacuum, and 2.139 MHz in 4He. The frequency in the parallel trapped
vortex state was found to be 2.139 MHz + 3 kHz = 2.142 MHz.

To observe the fundamental dissipation in a given vortex configuration, we need to
operate in a regime where the magnetomotive losses are low (Q−1

tot > Q−1
mm). Figure 5.6

shows the magnetic field dependence of the damping for the nanobeam operating in
vacuum, and under several vortex configurations. The fundamental mode frequency in
each state is shown in the legend. At high magnetic fields, all configurations converge
to the same B2 dependence, as expected from dominating magnetomotive damping,
previously introduced in Sec. 3.4.3. The damping in vacuum is shown by the dark blue
circles, reaching the level Q−1

int = 8 × 10−6 at the lowest fields, characterising the internal
damping. The damping in vacuum is likely due to the thermoelastic effect, or possibly
due to clamping losses.

The orange circles show the damping on the nanobeam in 4He immediately after
condensing, before the TF has been switched on. The damping in 4He plateaus at a
higher level than in vacuum, Q−1

cond = 10−5, an effect we would typically attribute to
simple dipole acoustical emission, as seen previously in Chapter 4, and initially introduced
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Fig. 5.7 Damping as a function of the resonance frequency for the 1st, 3rd and 5th

harmonics in 4He for a 70µm nanobeam. The presented data was taken after annihilation
of remnant vortices after the initial condensation. The dashed black line shows the
theoretical fit using the dipole acoustic emission model presented in Eq. (3.55).

in Sec. 3.5.3. At this stage in the experiment, the only vortices in the cell should be
remnant vortices produced by the Kibble-Zurek mechanism.

Upon performing the above procedure to trap a vortex along the nanobeam, by
exciting the TF and mechanically disturbing the system, the field dependence was again
measured, producing the green circles. Note, that the fundamental mode frequency in this
state is that of the vortex state (2.142 MHz). Bizarrely, the damping in this state mimics
that of the vacuum state suggesting that the acoustic emission is somehow reduced with
the trapped vortex when compared with the initial condensation. The picture becomes
even more curious upon annihilation of the trapped vortex state by excitation of the TF.
Once the trapped vortex has been removed, we return to the fundamental frequency in
4He (2.139 MHz), however the damping remains at the level seen in vacuum and in the
parallel trapped vortex state, as shown by the red circles. This is a fascinating result,
and implies a significant change to the nanobeam state from the initial condensation to
after vortex annihilation.

Through successive vortex trapping procedures, with some quite low probability, we
are able to recreate the conditions of the initial condensation as shown by the cyan circles.
In this state, we observe a significant change in the damping however no significant
change in the fundamental frequency. We therefore suggest that the additional damping
observed initially after condensation is influenced by the presence of remnant vortices in
the cell.

The reduced damping after annihilation is also seen in the nanobeam harmonics.
Figure 5.7 shows the low magnetic field damping for the 1 st, 3rd and 5th harmonics as
a function of their frequency, measured after trapping and removing a vortex from the
surface. The dashed-black line shows a theoretical fit using Eq. (3.55) with the relevant
parameters. The 3rd and 5th harmonic damping is now fairly well explained by the
theoretical model, agreeing within 30% of each other. For the 1 st harmonic, the predicted
damping from the mode is less than the intrinsic damping, and therefore not resolvable.
This data is in direct contrast with the results presented in Chapter 4, Fig. 4.9(b), where
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same acoustic model appeared to significantly underestimate the damping. The presence
of remnant vortices pinned to the nanobeam appears to significantly alter the damping
experienced by the nanobeam. Such an effect could be related to additional acoustic
emission due to the extra clamped mass, or potentially related to Kelvin-wave excitations
on pinned vortices, as discussed in Sec. 3.6.

In some rare cases, we are able to generate highly usual trapped vortex states where
the damping is much larger than due to the remnant vortices, as shown by the grey
circles in Fig. 5.6. The field dependence of this state does not converge to the typical B2

dependence at high field, suggesting that the additional damping due to the vortices is
very large. In addition, several interesting features are present, including an apparent
plateau at ∼ 1.5 T. It is possible to imagine that such a state could involve multiple
trapped vortices in a complex configuration. Further theoretical work is needed to fully
understand the plethora of possible vortex trapping configurations that could exist in
the condensate.

5.4 Conclusions and Outlook

We have demonstrated the use of a nanomechanical device as a high-speed detector for
quantum rings in 4He. Using a TF as a nearby source of turbulence we are able to
demonstrate short frequency shifting events, which only occur when the TF is operating
above its critical velocity for turbulence production. Using a novel MLA technique we
were able to track the shift in frequency space, whilst maintaining time resolution. Using
a theoretical model, we have shown that it is likely that such events correspond to the
short term trapping of a single quanta of circulation along the length of the beam. The
event ends when a vortex rings with opposite circulation interacts and annihilates. Our
advanced method for detecting vortices could allow careful study of different vortex
producers, or allow time-of-flight measurements to study propagation. By utilising a 2D
array of nanomechanical devices, real-time images of turbulent tangles could be produced,
a technique which could help bridge the theoretical gap between single vortices and large
scale tangles.

By generating a large vortex line density but not operating the TF continuously, we
were able to trap a single vortex to study its properties on longer timescales. We have
demonstrated a significant difference in the damping experienced by the nanobeam from
the initial condensation, to when a vortex is trapped along the beam, and after a vortex
is released. Curiously, the damping in the vortex state and after the vortex release mirror
that of the vacuum, whilst the initial condensation demonstrated higher damping. We
believe this is the result of remnant vortices formed by the Kibble-Zurek mechanism
contributing to the damping, a state we were able to recreate later in the experiment. As
well as this state, several other configurations with extremely unusual damping properties
were observed.

Our experiment demonstrates the ability to trap and study a single vortex in a
multitude of configurations, some of which do not have a clear physical picture. Further
work is needed to fully characterise all the different states which are observed, along with
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the probability of occurrence. Importantly, study is needed to fully understand how such
states are created, and determine a reproducible method for creation of a desired vortex
state. It is also clear that further theoretical study of the possible trapped vortex states
is needed, which, combined with experiment results, has the potential to revolutionise
our current understand of quantum turbulence.



Chapter 6

Experiments on Multimode
Torsional Tuning Forks in 4He

This chapter will discuss experiments probing superfluid 4He using TFs with two well
defined oscillation modes, demonstrating the potential advantages of these devices over
conventional 4He probes. Typical experiments involving oscillators utilise the same
oscillation mode for both the emission and detection of the phenomena under study;
the oscillator creates the excitation with the response measured by the same mode.
Traditional quantum turbulence measurements using wires provide an example of this,
where the velocity is increased until a characteristic increase in damping is observed. One
advantage of this scheme is a spatial one, where vortices created by the oscillator are
measured in the same location they are created, therefore maximising probe sensitivity.
The disadvantage lies in the use of a single mode for detection. The force-velocity must
first be characterised in vacuum to ensure signals are not a result of intrinsic effects.
Using two modes on the same TF this problem can be bypassed by driving one mode to
create vortices, while directly probing on the second mode. In this way, no calibration is
needed since one can measure the absolute value of the damping using the second mode,
while varying the velocity of the first mode.

This chapter describes experiments probing quantum turbulence, demonstrating the
sensitivity of the torsional mode to excitations created by the flexural mode. We also
investigate the unique acoustic properties of high frequency torsional TFs, accessing a
new regime of sound-mode study in 4He. Furthermore, we investigate torsional TFs and
their quantum vortex production properties, determining their future potential as vortex
ring emitters. Using two TFs mounted on the sample PCB we investigate whether the
torsional mode could be used as a detector for vortices generated by another TF.

6.1 Samples

The devices measured in this experiment are commercially available quartz TFs with
prong length l = 1.61 mm, width w = 0.22 mm and thickness t = 0.14 mm. The forks
have a tine mass of 1.37 × 10−7 kg. An SEM of one such device is shown in Fig. 6.1. The
devices have a well defined torsional oscillation mode at 393 kHz and a flexural mode
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Fig. 6.1 SEM of a 76 kHz, 393 kHz, multimode quartz TF showing the two tines in detail,
with corresponding scale bar shown.

at 73 kHz in vacuum. Quartz crystals are grown synthetically and then cut to yield the
required geometry. The TFs tested were specially cut to yield a well defined, high Q
torsional mode. Whilst typical 32 kHz TFs have a torsional mode, this is not well defined
by the geometry and can vary significantly between samples.

6.2 Measurement Scheme

Two identical multimode TFs were investigated, both mounted on the same PCB, in
order to investigate interactions between them. The TFs were mounted facing inwards
into a metal casing to maximise the interaction strength between them, as shown in
Fig. 6.2, with the distance between the opposing TF tines ∼ 5 mm. The devices are
driven piezoelectrically, using an AC voltage supplied by a VNA, the response is recorded
on the second port of the VNA as a function of frequency. The resultant Lorentzian
is fitted to give the frequency, width and amplitude. By extension, two VNAs can be
used to independently probe two modes on the same fork. Here, the velocity of one
mode can be increased while independently monitoring the velocity of the second mode,
allowing separation of the driving and probing data. A 5 dB summing amplifier was used
to combine the signals and increase the drive we could supply to the forks. A detailed
schematic is shown in Fig. A.6.

The experiments described in this chapter were performed in a custom-built glass
cryostat with a base temperature of 1.2 K. The temperature was controlled by pumping
on the helium bath, reducing the vapour pressure. In this way, the temperature was
inferred via the pressure in the bath, converted using 4He saturated vapour pressure
data [106]. Further details of the cryostat used for these measurements can be found in
App. A3.2.
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Fig. 6.2 Copper PCB with mounted TFs shown. Two forks were measured, mounted
inside a metal casing such that interactions between them can be investigated.

6.2.1 Calibration using using Doppler Vibrometry

The measurement system was first calibrated so that the velocity of each oscillation
mode could be independently calculated. This involves the measurement of the TF
fork constant for each mode, as was introduced in Sec. 3.3 along with the equations of
motion. Calibration was performed using a Laser-Doppler vibrometer (LDV) to optically
measure the velocity, v, of the tine for a range of drive voltages, V . At the same time,
the current, I, was measured as a function of drive voltage. The data is shown in
Fig. 6.3. The calibration data for current and velocity remained linear over a large range
of drive voltages allowing a linear fit to be performed, as indicated by the black-solid
lines. The two datasets allowed us to convert between measured current and velocity
by taking the product of the two fit gradients. This allowed the fork constant for the
flexural mode to be determined as af = 2.81 × 10−6 C m−1. For the torsional mode,
the linear velocity projections as recorded by the Doppler-vibrometer were converted to
an angular velocity using an effective radius, r =

√
t2 + w2/2, yielding a fork constant

at = 7.51 × 10−10 C rad−1. Electrical and optical measurements of the flexural fork
constant have been previously shown to agree within 10% of each other [107], however
such a comparison has never been performed for torsional modes. The peak velocity was
also measured at several distances from the tip to study the way the probe interacts with
the fluid. It was shown that the peak velocity for the flexural mode varies quadratically
with distance from the tip, whereas the torsional mode varies linearly. It is thought that
this may lead to a more uniform interaction with the fluid, as opposed to the flexural
mode where the interaction is dominated by the high velocity of the tip.

The VNA used was calibrated by first replacing the TF with a R = 38.2 kΩ resistor,
and the power output at the VNA set to −20 dBm, with this value of S21 set to 0 dB.
Since the current in this system is known, and 38.2 kΩ is comparable to the fork resistance,
this allows the current for any Lorentzian amplitude, A to be calculated as

I =
V[−20 dBm]

R
10

(Pout+20)
20 )A, (6.1)



76 | Experiments on Multimode Torsional Tuning Forks in 4He

a)

b)

Fig. 6.3 (a) Voltage-current characteristics measured electrically, and (b) voltage-velocity
response measured optically using a laser-Doppler vibrometer, for two modes of a quartz
TF. m refers to the gradient of the fit lines indicated. Using these fits, the fork constant
for each mode can be calculated.

where V[−20 dBm] is the voltage output from the VNA at −20 dBm and Pout is the power
output for this measurement in dBm. The velocity can then be calculated for any current
by comparison to optical measurements. The method described takes into account all
attenuators and amplifiers, as well as impedance mismatches in the measurement circuit,
making it a versatile method for current calculations.

6.3 Results

Here we outline the main results obtained using torsional TF as probes of superfluid 4He.
The results include the first measurements operating a torsional TFs in both normal
and superfluid 4He, with the drawbacks of the probe highlighted. We present a novel
detection scheme, using two modes on the same TF, one mode as an actuator and one
mode as a detector.

6.3.1 Vacuum

The TFs were first measured in vacuum at room temperature to characterise their intrinsic
damping. These measurements yielded the Q-factor of the flexural and torsional mode
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Vacuum f0 [kHz] Vacuum ∆f [Hz] 4He f0 [kHz] 4He ∆f [Hz]
Flexural 76.197 2 74.802 4
Torsional 393.063 7 388.26 70

Table 6.1 Table showing vacuum and 4He at 1.2 K values for the flexural and torsional
modes of a multimode TF. Vacuum values are taken at 300 K.

to be 3.7 × 104 and 5.5 × 104 respectively. In this regime, the damping is governed by
thermoelastic losses as described in Sec. 3.4.2. Measurements at low temperatures in
vacuum would likely reach the limit imposed by clamping losses, however this measurement
was not performed. Figure 6.4(a) shows the peak velocity as a function of the driving
force for the flexural mode, while Fig. 6.4(b) shows angular velocity as a function of
the torque for the torsional mode. Both modes demonstrate a linear response up to
several m s−1 in vacuum, with the torsional mode deviating slightly above this due to
inherent non-linearities. A table summarising the values in vacuum and in 4He is shown
in Table 6.1.

6.3.2 Response of Multimode Fork in 4He

Upon submerging the oscillators in 4He at 1.2 K the damping on the torsional mode
increased significantly with the Q-Factor decreasing to 103. High frequency oscillators
have been previously shown to emit acoustic waves in 4He. The acoustic emission for TFs
follows Q−1

ac ∝ f5
0 where f0 is the central frequency, described in detail in Sec. 3.5.4. Due

to the relatively high frequency of the torsional mode we should observe strong acoustic
emission leading to increased damping when submerged in 4He. In addition, due to the
unique geometry of the torsional mode it may act as an octupole acoustic emitter, with
an even steeper power law.

We therefore attribute the significant increase in the damping of the torsional mode
to this effect. In addition, sidebands are observed in the frequency response, as shown in
Fig. 6.5. The sidebands result from the presence of acoustical modes in the experimental
volume, leading to standing resonances of acoustic waves. The scale of these modes can
be calculated from the frequency and speed of sound in 4He using c = νλ. Estimations
put λ at the order of 0.4 mm which is comparable to the spacing between the fork legs.
For this reason, conventional confined geometries, such as an enclosed cylinder [108],
would not fully suppress these high frequency modes. Furthermore, with knowledge of the
inter-prong spacing d = 113.5µm, this allows the calculation of the first-sound velocity
to a precision of 0.1 m s−1.

The flexural mode also saw an increase in damping of a factor of ∼ 2, and otherwise
behaved as expected, demonstrating a transition to a turbulent regime at a velocity
of 70 cm s−1, characterized by a ‘kink’ on a force-velocity plot, as shown in the solid
orange points in Fig. 6.4(a). The behaviour of a TF in the turbulent regime is described
in Sec. 3.5.6, and the value of the critical velocity is consistent with that measured in
previous turbulence experiments involving TFs [89]. Despite moving at a velocity of
several tens of cm s−1 the torsional mode had no obvious transition to a turbulent regime,
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a)

b)

Fig. 6.4 (a) Peak prong velocity as a function of driving force for the flexural mode of
a TF in vacuum and 4He at 1.2 K. In vacuum the TF demonstrates linear behaviour
with the damping dominated by internal losses. In 4He at 1.2 K losses are higher due to
additional damping in the fluid. The transition to the turbulent regime is demonstrated
by the change in gradient occurring at 70 cm s−1. (b) Peak prong velocity as a function
of torque for the torsional mode of a TF in vacuum and 4He at 1.2 K. The high damping
in 4He is a result of strong acoustical (first-sound) emission in the liquid, due to the high
frequency of this mode. No turbulent transition is observed up to an angular velocity of
3 × 103 rads−1.

as shown in solid blue squares in Fig. 6.4(b). The lack of a turbulent transition could
be due to the higher damping reducing the attainable velocity, or alternatively the high
frequency of the torsional mode may be suppressing the critical velocity. Previous work
has shown the critical velocity for the onset of turbulence to scale with

√
f0, suggesting

that the critical velocity for turbulence production may be close to 1 ms−1. Given the
limits on the applied torque, these high velocities were not achieved in these measurements.
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a)

b)

Fig. 6.5 Frequency response at 1.5 K in bulk 4He for the torsional mode of a quartz TF.
The Q-factor is of the order 103 due to dominating acoustic emission in the condensate.
In addition are the presence of acoustical sidebands due to cavity resonances set up in
the experimental volume.

The inherent linearity present the torsional mode as an ideal detector for excitations
produced by the flexural mode. The results of this are discussed in the next section.

Due to the varying speed of sound in 4He, as discussed in Sec. 2.1.1, the previously
discussed acoustic sidebands have significant temperature dependence, shown in Fig. 6.6.
As the temperature is varied around the Tλ the sideband resonances shift from high
frequency to low frequency. The high number of acoustic modes is indicated by the
number of diagonal lines moving through the TF response. This is a result of the complex
geometry of the TF. A comparison is shown to the flexural mode where a single resonance
moves to higher frequency below the Tλ, accurately described by Sec. 3.5.1. The flexural
mode demonstrates the characteristic response of a resonator where the effective mass
is decreasing due to the reducing normal fluid fraction, as has been demonstrated in
numerous previous experiments. The sensitivity of the torsional mode to superfluid
excitations is limited due to high acoustic damping, however the presence of sidebands
pose a more significant technical challenge for using the torsional mode for detection.
By operating at the lowest temperatures 1.2 K we can tune the acoustic sidebands away
from the resonance frequency, opening the possibility for turbulence detection.

6.3.3 Multimode Detection of Quantum Turbulence

A TF with two well defined modes with a large frequency separation opens the possibility
for separating the driving and detection between the modes. This idea was implemented
as a detection mechanism for quantum turbulence produced in superfluid 4He at 1.2 K.
Experiments already presented with the flexural mode of the TF demonstrated a clear
transition to a turbulent regime at 70 cm s−1, shown again by the orange circles in Fig. 6.7.
Monitoring the torsional mode whilst performing the same measurements demonstrated
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Fig. 6.6 (a) Temperature dependence of the frequency response for the flexural mode
in the vicinity of Tλ. The colour axis represents |S21| transmission measurements. The
response follows the expectation for an oscillator with a decreasing effective mass due
to the decreasing normal-fluid fraction below the Tλ. (b) Temperature dependence of
the frequency response for the torsional mode. The peak is significantly broadened when
compared with vacuum and off-resonance sidebands are present. The additional damping
is evidence for acoustic emission as a result of high frequency oscillations. The sidebands
move with temperature due to the varying speed of sound in 4He, made apparent from
the presence of diagonal lines representing resonances moving from high to low frequency.

that the torsional mode was indeed sensitive to the fluid flow from vortices generated by
the flexural mode. The data from this experiment is shown in Fig. 6.7, where Ff refers
to the force being applied to the flexural mode.

The transition to turbulence is evidenced by the shift from constant velocity to a
decreasing velocity as the amount of drag on the TF increases. Importantly, the transition
occurs at the same force corresponding the onset of turbulence in Fig. 6.7. Measurement
of this type have the advantage that they do not rely on a previous calibration of
the detection mode. Our approach encounters difficulties at very high drives due to a
transition away the linear regime. Here, cross-talk between different resonant modes
become non-negligible, preventing this type of experiment.

6.3.4 Coupling two Tuning Forks with Quantum Turbulence

To investigate coupling between the two TFs, the velocity of the first TF was increased
and the response of the second TF was measured. Previous measurements showed that
the torsional mode did not appear to nucleate turbulence. Here we aimed to demonstrate
turbulence nucleation by the torsional mode by bombardment with vortex rings created
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Fig. 6.7 (Orange) Force response for the 76 kHz flexural mode in bulk 4He at 1.2 K. A
clear transition to a turbulent regime is observed where the slope decreases, corresponding
to increased damping. (Blue) The velocity of the torsional mode as a function of the force
on the flexural mode. At the same value of force corresponding to the critical velocity
on the flexural mode a transition to higher damping occurs on the torsional mode. It is
apparent that the torsional mode is sensitive to the flow from vortices generated by the
flexural mode.

by the flexural mode of another TF. It was thought that if the torsional mode was
operating in a metastable regime at high angular velocity that nearby vortices can
trigger production. Such effect have been previously observed in vibrating wires, which
were operated as a single-shot detector for vortices [32]. Our results demonstrated no
significant change in the torsional resonance even for very large drives on the other TF,
suggesting that even in the presence of significant vortex-line density, the torsional mode
does not nucleate turbulence. Alternatively, our results suggest damping on the torsional
mode was too large meaning subtle effects could not be resolved.

6.4 Conclusions and Outlook

Our work presents the first measurement of torsional TFs in bulk liquid 4He from 4.2 K
to 1.2 K. Notably, the torsional mode experienced high damping in liquid compared to
vacuum as a result of acoustic (first sound) emission. This is further evidenced by the
presence of sidebands in the frequency response, a product of internal acoustic resonances
in the sample space. High levels of acoustic emission could be addressed through the
development of lower frequency torsional modes, by using longer forks or more flexible
materials. It has been demonstrated that the high oscillation frequency leads to a high
critical velocity for the onset of turbulence; the turbulent transition was not observed in
the torsional mode up to an angular velocity of 3 × 103 rad s−1, corresponding to a linear
velocity of 70 cm s−1.
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The torsional mode has been operated as a detection mode for turbulence created
on the flexural mode, a useful technique since it allows uncalibrated probing without
the introduction of spatial separation. The torsional mode velocity was demonstrated to
decrease at the same point at which the flexural mode transitioned to a turbulent regime,
suggesting that the detection mode is sensitive to the flow from vortices created by the
generator mode. The method presented could be further improved by using a detection
mode with lower acoustic damping, whilst maintaining the large frequency separation.
Finally, using two TFs separated in space, we show that the torsional mode did not
appear to be sensitive to vortices created by a nearby fork. To a degree such a result is
not surprising since, until now, similar experiments have only been demonstrated where
the detector is operating in a metastable turbulent regime operating as a latching switch
[32].

The experiments shown here thrust high-frequency torsional oscillators from a novelty,
into the realm of useful low-temperature probes. However, our results further highlight
the limits imposed from using high-frequency devices in liquid 4He due to dominant
acoustic emission in the liquid, ultimately limiting the device sensitivity. The results
from this chapter are presented in publication IV.



Part II

Field-Effect in Superconducting
Nanoconstrictions





Chapter 7

Introduction

Superconductors are fascinating materials which exhibit zero electrical resistance, and
perfect diamagnetism, when cooled below a certain temperature. The microscopic
mechanism by which superconductivity can occur was first put forward by Bardeen,
Cooper and Schrieffer, and is known as BCS theory [109]. Conventional BCS theory
predicts the behaviour of a piece of superconducting metal to be independent of the
applied electrostatic field. This is due to the exponential suppression of the electric
field inside a superconductor over a length scale, known as the London Penetration
depth [110]. However, some very recent publications claim that an electric field can
penetrate into superconductors with clear, measurable effects [111–114], which we will
call the ‘superconducting field-effect’. The authors claim that, under certain conditions,
electrostatic fields can influence the pairing mechanism in a superconductor, in direct
contrast to BCS theory [114]. In this part, we will attempt to understand how the alleged
superconducting field-effect can be reconciled with conventional BCS theory.

The publications ([111–113]) have shown field-effect control of supercurrent, along
with full supercurrent suppression in all-metallic 1D channels. The studies have also
utilised this effect to realise an all-metallic Josephson field-effect transistor (JoFET)
consisting of a gated Dayem bridge, and to demonstrate a field-effect superconducting
quantum interference device (SQUID). Despite these developments, a mathematical
description pointing to the source of the field-effect remains elusive. It has not been
confirmed whether this effect is an intrinsic property of the superconductor, or some
known phenomena manifesting as a field-effect in specific geometries. The cited work has
demonstrated this effect in several different superconductors (Al, V, Ti) and multiple
substrates (Si, SiO2, Al2O3) [111–113].

The realisation of entirely metallic, tunable, Josephson junctions elements could have
significant implications for the field of quantum technology. Existing superconducting
qubit technology relies on shadow deposition of metal to form tunnel junctions, also
known as the Dolan-bridge technique. Typically, a layer of resist is used as a mask, with
two deposition layers at opposing angles to form the overlap, with an in-situ oxidisation
in-between. Tunable non-linear inductors in the form of gated-Dayem bridges could
greatly simplify fabrication procedures, since only a single lithography step would be
required. In addition, if modulation could be performed at GHz frequencies, one could
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realise all-metallic parametric amplification, attenuation and generation. Slower tunability
would be useful in the field of single-photon detection, for the ability to use a high quality,
narrow band detector over a larger frequency range.

We will present a new approach to investigate the origin of the apparent super-
conducting field-effect, by coupling a gated-Dayem bridge Josephson junction, to a
superconducting resonator operating at GHz frequency. Until now, measurements have
been performed in the quasi-DC limit, measuring the differential resistance across a single
sample. Fast readout at a single-frequency allows the investigation of the field-effect
phenomena at much shorter time-scales than previously possible. Furthermore, a single
feedline with multiplexed resonators allows the characterisation of multiple samples on a
single chip.

Chapter 8 will introduce the fundamental properties of superconductors, as well as
the Josephson effect, formalise transmission line theory and introduce our measurement
principles. Chapter 9 presents our investigations into gated-Dayem bridges, and conclude
by proposing a physical consistent theory to the origin of the superconducting field-effect,
without recourse to any new physics.



Chapter 8

Superconductivity

Superconductivity is the name given to the extraordinary phenomena in which a current
is able to flow through a material without any electrical resistance. Superconductivity
was first observed in 1911 by H.K. Onnes when he cooled mercury to liquid helium
temperatures and noticed a sharp drop in the DC electrical resistivity [115]. He called
the temperature at which this occurred the critical temperature, Tc. It quickly became
evident that the resistance does not just drop, it completely vanishes, something that
theoretical physics was unable to explain at the time. As cooling techniques improved,
superconductivity was observed in many other materials, including vanadium, niobium
and lead.

In 1933, the first observations of the Meissner effect were observed, where a material is
able to completely expel an external magnetic field from its interior, when cooled through
the superconducting transition [116]. In this state, the material is acting as a perfect
diamagnet, in which the magnetic susceptibility, χ = −1. At first, this was thought to
be an unrelated phenomena however, it was shown to be another manifestation of the
same process. The Meissner effect clearly distinguishes between a perfect conductor and
a superconductor, as shown in Fig. 8.1.

Superconductivity can be destroyed by a large magnetic field, known as the critical
field, Hc, where the relationship between the critical quantities given by

Hc(T ) = Hc(0)
[
1 −

(
T

Tc

)2
]
, (8.1)

where, T , is the temperature, and Hc(0) is the critical field at zero temperature.
The first theory attempting to describe the process of superconductivity was put

forward by Ginzburg and Landau in 1950 [117]. Using a macroscopic approach, they
predicted the quantization of magnetic flux, and calculated the length scale over which a
magnetic field can penetrate into a superconductor - known as the London penetration
depth, λ, which will be discussed more in Sec. 8.1. The first microscopic theory of
superconductivity was not put forward until 1957, when Bardeen, Cooper, and Schrieffer
published what became known as BCS theory. In BCS theory, the charge carriers are not
individual electrons as in conventional materials, but pairs of electrons known as Cooper
pairs [109]. It was understood that superconductivity was likely related to Bose-Einstein
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Fig. 8.1 (a) In a perfect conductor, a magnetic field can penetrate into the material.
(b) When cooled through the superconducting transition, the applied magnetic field is
completely expelled due to the Meissner effect.

condensation – similar to what was observed in superfluid 4He – however due to the
Pauli exclusion principle, with electrons being fermions, it was known that they could
not simply condense.

To resolve this, a Cooper pair is formed consisting of two electrons which are attracted
as a result of the electron-phonon interaction. They then act as a composite boson with
integer quasi-spin allowing a condensate to form. When the Cooper pairs condense, they
form a single quantum state with wavefunction ψ =

√
neiφ, where n is the Cooper pair

density and φ is the superconducting phase. The observable of the system, the Cooper
pair density, is then given by n = ψψ∗. In this configuration, the density of states gives
rise to an energy gap, 2∆, between the condensate and single particle excitations, as
shown in Fig. 8.2. The superconducting energy gap is formed symmetrically in 3D k-space
around the Fermi energy, EF , and at T = 0 is related to the critical temperature by the
pre-factor ∆0 = 1.76kBTc. At higher temperature, the energy gap decreases becoming
zero at the critical temperature, qualitatively consistent with Eq. (8.1). At any finite
temperature, there exists a population of thermally excited quasiparticles which result in
AC impedance in the superconductor. The thermal quasiparticles in a superconductor
can be considered analogous to the normal-fluid fraction in a superfluid.

8.1 Surface Impedance

Here we will consider the behaviour of superconductors under the influence of electro-
magnetic fields, in order to understand their role in quantum circuits. In a normal metal,
the relationship between the current density, Jn, and an AC electric field, E, can be
expressed by the local Ohms law, where the conductivity for electrons is given by Drude’s
model [118]

Jn = σ(ω)E = σdc
1 + iωτ

E, (8.2)
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Fig. 8.2 Density of states (DOS) for a superconducting material, with the Fermi-energy
shown. The gap is given by E = 2∆.

where σdc is the DC conductivity, ω is the AC field frequency and τ is the scattering time.
The second term in the denominator arises from the phase lag between the current and
electric field due to the inertia of the charge carriers. In normal metals, the scattering
time is very small resulting in largely resistive behaviour. In this form, Ohm’s law can
only be used when the mean free path is short enough such that the electric field can
be considered approximately constant in this region. Expressions which require such an
approximation are known as ‘local’ relationships. The generalised non-local relationship
was proposed by Chambers [119]

Jn = 3σdc
4πl

∫
V

R [R · E] e−R/l

R4 dr, (8.3)

where l is the mean free path, and the V represents the entire volume of the sample.
Therefore R is a vector from the current location to the field-location, with differential
dr. Chambers used this to explain the anomalous skin depth in normal metals, the
observation of an increased skin-depth in metals with very long mean free paths.

Superconductors demonstrate zero DC resistance due to the ability for Cooper pairs
to move though the material without scattering (σdc = ∞), however demonstrate non-
zero AC impedance due to the Cooper pair inertia [120]. As previously introduced, an
electromagnetic field can penetrate into a superconductor over the London penetration
depth, λ. Using a superfluid analogy, the current in a superconductor can be thought
of as a sum of the surface normal currents, and the bulk supercurrent (J = Jn + Js).
The relationships between the electromagnetic fields and the supercurrent densities were
famously expressed by London [121] in his two local equations:

∂Js
∂t

= E
µ0λ2 , (8.4)

∇ × Js = − 1
λ2 H, (8.5)
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where E and H are the vectors representing the electric and magnetic fields respectively.
The mean free path can depend strongly on the purity of the superconductor, with
higher-purity samples having considerably longer mean free paths. A large mean-free
path reduces the accuracy of local relationships, such as the London equations. This led
Pippard [122], inspired by the work of Chambers, to propose the generalised non-local
relationship for the supercurrent density

Js = − 3
4πξ0λ2

∫
V

R [R · A] e−R/ξ

R4 dr, (8.6)

where A is the magnetic vector potential, (H = ∇ × A) and ξ is the superconducting
coherence length. The zero temperature coherence length is given by

ξ0 = ℏvF

π∆0
, (8.7)

where ∆0 is the superconducting gap at zero temperature and vF is the Fermi velocity.
The coherence length is often thought of as the minimum size of a Cooper pair as allowed
by the uncertainty principle, an important quantity in the construction of quantum
limited devices shown in the next section.

8.2 Josephson Effect

In 1962, 51 years after the discovery of superconductivity, Brian Josephson made the
theoretical prediction that two superconductors coupled by a ‘weak link’, would allow
a zero-voltage current of Cooper pairs to flow between them [123]. Such a structure is
known as a Josephson junction. He noted that the weak link in this system must be
such that the quantum mechanical wavefunctions of the two superconductors overlap
in their exponential decay. In reality, this requires the separation to be comparable to
the superconducting coherence length, ξ0, given in Eq. (8.7). The weak link forming
a Josephson junction can take several forms. The most commonly used configuration
is the superconductor-insulator-superconductor (SIS), however superconductor-normal
metal-superconductor (SNS), superconductor1-superconductor2-superconductor1 (SS’S),
and superconductor-constriction-superconductor (ScS) have also been demonstrated. A
Josephson junction consisting of a constriction less than the coherence length is also
known as a Dayem bridge.

The tunnelling phenomena in such a system gives rise to two effects, known as the DC
and AC Josephson effects. The DC Josephson effect states that the tunnelling current, I,
through the weak link depends on the phase difference between wavefunctions of the two
superconductors, φ, such that

I = Ic sinφ, (8.8)

where Ic is the maximum supercurrent that can flow through the junction, known as the
critical current. Above this current, the junction switches to the resistive branch where
no supercurrent flows. The AC Josephson effect relates the voltage across the junction
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Fig. 8.3 Current-Voltage characteristics of a typical Josephson Junction. There is a
zero voltage supercurrent branch, and a resistive branch above Ic. Decreasing from the
resistive branch requires a lower current of Ir before transitioning to the supercurrent
branch due to thermal effects.

to the time derivative of the phase by

V = ℏ
2e
dφ

dt
. (8.9)

Importantly, a Josephson junction accumulates energy from the tunnelling Cooper-pairs,
known as the Josephson energy, and is given by

EJ = Φ0Ic

2π (1 − cosφ), (8.10)

where Φ0 = h/(2e) is the flux quanta. This results in a non-linear Josephson inductance,
LJ, obtained by differentiating Eq. (8.8), given as

LJ = Φ0
2πIc cosφ. (8.11)

The current-voltage characteristics for a Josephson junction are shown in Fig. 8.3. A zero
voltage supercurrent branch is observed, extending to a maximum of the critical current,
Ic. Above Ic, the junction becomes normal, and exhibits resistive behaviour. Decreasing
the current from the resistive branch, one must reach a lower current, known as the
retrapping current, Ir, to return to the supercurrent branch. The disparity between Ic

and Ir is the result of thermal effects caused by driving a current in the normal-state
resistance.
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Due to changes in the superconducting gap with temperature, ∆(T ), the critical
current of a Josephson junction also depends on temperature as [110]

Ic(T ) = π

2
∆(T )
eRN

tanh
(∆(T )

2kBT

)
, (8.12)

where RN is the normal-state resistance of the Josephson junction. The strong dependence
of the critical current on temperature is important, since any measured field-effect must
be distinguished from simple changes in temperature.

Two Josephson junction can be combined into a loop geometry, such that an area
is enclosed by the superconductor. Such a device is known as a Superconducting
Quantum Interference Device (SQUID), and creates interference between the tunnelling
supercurrents through the two junctions. The total supercurrent through such a device
is then a function of the magnetic field in the area enclosed by the loop.

8.3 Superconducting Transmission Lines

To study the high-frequency behaviour of electrical elements, such as Josephson junctions,
distributed microwave transmission lines are typically used. Transmission lines can take
several geometries: microstrips, where the ground plane is below the structure, and
coplanar waveguides (CPW), where the ground plane and centre conductor are in the
same plane. A schematic of a CPW with the equivalent electrical representation for a
single unit, is shown is Fig. 8.4.

Similar to a coaxial cable, microwave frequency photons give rise to transverse
electromagnetic (TEM) waves and can be represented by infinitesimally short segments
(dz −→ 0), each with a distributed resistance (Rdz), inductance (Ldz) and capacitance
(Cdz). The voltage, V and current, I at a position, z, along the transmission line can be
written as

V (z) = V +e−γz + V −eγz, (8.13)

I(z) = I+e−γz + I−eγz, (8.14)

where V ± and I± represent the forward and backward components of the propagating
voltage and current components. Here, γ is the complex propagation constant

γ =
√

(R+ iωL)(iωC). (8.15)

The propagation constant tells us the rate at which phase changes occur along the
transmission line. The complex impedance of the transmission line, Z = V/I, is

Z =
√
L

C
, (8.16)
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'

Fig. 8.4 (a) Schematic of CPW geometry with conductors shown in orange, and substrate
shown in grey. (b) Equivalent electrical circuit of a single infinitesimal element of a CPW.

with the phase velocity of a propagating wave on a transmission line given by

v = 1√
LC

. (8.17)

Two terms contribute to the total inductance of the transmission line: a magnetic term
due to the co-propagating conductors, and a kinetic term due to the inertia of the moving
Cooper pairs. For a superconductor, due to the presence of the Meissner effect, the
contribution of the kinetic inductance term is much larger than is typical in normal-metals.

8.3.1 Quarter Wavelength Resonator

In order to investigate electrical elements such a Josephson junctions, we typically couple
them to electrical resonators, such that the resonance provides a probe of the inductance,
capacitance and losses. This work employs the use of shorted, transmission lines, of
length l, capacitively coupled to a main transmission line known as a feedline. A quarter
wavelength (λ/4) resonator is formed by shorting the far end of a capacitively coupled
resonator to ground. According to theory, the input impedance of a shorted transmission
line of length l is given by [120]

Zin = Z0 tanh(γ)l, (8.18)

where Z0 is the characteristic impedance of the transmission line. Shorted transmission
lines acts as resonators, with a fundamental mode given by

f0 = 1
2π

√
LC

= c

4l
√
ϵ
, (8.19)
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0
L

Fig. 8.5 Voltage and current distributions in a λ/4 resonator showing the fundamental
mode resonance.

where ϵ is the dielectric constant, and c is the speed of light in a vacuum. The current
and voltage distributions along the length of a shorted λ/4 resonator are shown in
Fig. 8.5. Where the resonator is capacitively coupled to the feedline is the voltage
maxima, shown in red at L = 0. By shorting the other end to ground, a current maxima
is achieved, shown in blue at L = l. When the driving voltage is equal to λ, resonance
is achieved, and the wavelength of the driving signal is four-times the resonator length,
shown by the π/2 change in phase along the length of the resonator. The presence of a
current maxima at the end of the resonator makes this the most sensitive place to couple
inductive components, for example Josephson junctions or SQUIDs. Capacitively coupled
components are typically coupled close to the feedline to maximise sensitivity. How the
losses in a resonator coupled to a feedline can be extracted is discussed in Sec. 9.2.1.



Chapter 9

Experiments on JoFETs Coupled
to Microwave Cavities

This chapter will describe our experiments investigating the origin of the previously
observed superconducting field-effect. Our aim was to measure the properties of a gated
Josephson junction (in the form of a Dayem Bridge) shorting a quarter wavelength
resonator to ground. Two main result sets will be introduced. First, low frequency
measurements of the full resonance such that the frequency and damping could be
extracted. We used the resonance frequency as a direct probe for changes of inductance in
the Josephson junction, using the theory introduced in Chapter 8. Second, high frequency
measurements at a single frequency allowed us to measure the noise properties of the
signal, and use this to characterise the likely origin of the superconducting field-effect.

9.1 Samples

1 mm

Feedline 

Resonator
Ground

Ground

Resonator

GateGate

Fig. 9.1 SEM of a chip for measuring JoFETs coupled to superconducting resonators.
The complete chip features a single feedline (centre), with four coupled resonators with
varying frequency.
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1 cm

Fig. 9.2 Left: Copper PCB with bonded sample showing 6 high frequency lines, and
24 DC lines allowing four samples to be measured simultaneously. Right: Electrically
shielded sample holder into which PCB is mounted. The sample holder is anchored to
the mixing chamber of a cryogen-free dilution refrigerator.

The measured devices consisted of a central, microwave feedline with four quarter
wavelength resonators capacitively coupled. At the shorted end of each resonator, a
Dayem bridge formed a constriction to ground. An SEM of the chip layout is shown
in Fig. 9.1. The Dayem bridge was gated on both sides, and an external electric field
could be applied to either, with the properties of the junction read-out by the resonator.
The samples were fabricated in a cleanroom environment, with details of the fabrication
procedure found in App. B3.

Four resonators were coupled to a single feedline on one chip. The length of the
quarter-wavelength resonator was continuously varied from 4.5 mm to 5.5 mm for effective
frequency-domain multiplexing. The width of the constriction was varied from 40 nm
to 120 nm for different coupled resonators. The coupling to the feedline was optimised
through simulation and experiment, such that the coupling losses were less than the
internal losses, resulting in maximum signal-to-noise ratio without a significant reduction
in the total Q. The samples were then wire-bonded and mounted to the PCB, which is
then housed inside a shielded sample holder mounted to the mixing chamber, as shown
in Fig. 9.2. The sample package contained six high-frequency SMP lines, and 24 DC
connectors, allowing all resonators to be measured simultaneously.

9.2 Measurement Scheme

It is proposed that an electric field can significantly modulate the critical current of
the Dayem bridge. A modulation of the critical current could cause changes in the
Josephson inductance, which would modify the resonance frequency by Eq. (8.19). In
addition, overall weakening of the superconductivity could cause an additional damping
mechanism.
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Fig. 9.3 Simplified three-port scattering diagram, showing a feedline capacatively coupled
to a quarter-wavelength resonator.

Several different schemes were utilised to characterise this. For measurements of the
resonator properties, a VNA was used to supply an RF signal to the transmission line
and measure the scattering parameters. By varying the RF frequency a Lorentzian curve
could be obtained, and fitted to obtain the frequency, f0, as well as the internal and
coupling losses, Q−1

i and Q−1
c . The details of this approach are described in Sec. 9.2.1.

Using a VNA, modulations in the inductance can only be read-out as fast as the frequency
can be varied through resonance - typically 1 s for a full frequency sweep. To perform
faster readout, continuous downconversion at a single frequency can be performed using
an IQ-mixer, allowing readout as fast as 10 kSa s−1, limited only by experimental noise.
In addition, the current-voltage characteristics of the gated structure were measured
using a current-source to determine the gate leakage. All measurements were performed
in a cryogen-free dilution cryostat at low temperatures. Further details of the cryogenic
setup can be found in App. A3.3.

9.2.1 3 Port Scattering Parameters

Measurements on JoFETs coupled to microwave cavities were performed using a VNA.
By utilising a generalised three-port scattering system, as shown in Fig. 9.3, with the
3rd port grounded, we will show how the internal, Qi, and coupling, Qc, quality factors
can be distinguished. Here we consider a feedline capacatively coupled to a quarter
wavelength resonator, shorted to ground at length L. The three ports are defined as the
input to the feedline, output of the feedline, and input to the resonator - with the nine
component scattering matrix defined as Sij ,

V −
1

V −
2

V −
3

 =


S11 S12 S13

S21 S22 S23

S31 S32 S33



V +

1

V +
2

V +
3

 . (9.1)

We assume that the coupling between the resonator and the feedline is small compared
with the total transmission (S21 ≈ 1). By symmetry, it is clear that the energy input to
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the resonator from the feedline must equal the energy leaking back from the resonator
to the feedline (S13 = S31). Importantly, this means a high Q system must have weak
coupling between the feedline and the resonator, and therefore a small measured signal
amplitude. When characterising the system, as previously discussed, the transmission
through the feedline, t21, is measured. Since one must account for energy reflected at
load resonator (Γ = −1 for a λ/4 resonator), the total transmission is given by

t21 = S21 − S2
31

e2γl + S33
, (9.2)

where γ is the attenuation coefficient in the line of length, l. From an understanding
of the power flow within the resonator, since energy is lost via S31 twice per cycle, the
losses due to the coupling is given by

Q−1
c = Energy leak from port 3 to port 1 and 2 per cycle

Energy stored in the resonator = 2|S31|2

π
. (9.3)

The reflectance from the coupling end of the resonator can be expressed as S31 =√
1 − 2|S21|2eiϕ, where ϕ is the phase acquired at the reflection. The total transmission

is hence given by

t21 = 1 − Q−1
c

(Q−1
c +Q−1

i ) + 2i(f−fr

fr
)
, (9.4)

where f is the measured frequency, and fr is the resonance frequency. Using this expres-
sion, with knowledge of the transmission background, Q−1

c and Q−1
i can be independently

extracted by fitting the circle formed by in-phase and out-of-phase components of t21.
The circle-fitting procedure utilised here was part of the Qkit software library [124].

9.3 Results

Here we introduce two main sets of experimental results. First, we consider how the full
transmission properties vary in spectroscopy measurements using a VNA, for different
values of the applied electric field. Due to the time taken to record a complete curve, these
measurements are comparatively slow, and demonstrate good agreement with previous
observations in the literature. Second, we perform continuous downconversion at a single
frequency and demonstrate the non-equilibrium nature of the field-effect phenomena.
We will focus on the results for a single gated structure, with resonator length 5.4 mm,
constriction size 80 nm and gate separation 100 nm, however other devices demonstrated
qualitatively similar results.

9.3.1 Spectroscopy Measurements

Upon applying large gate voltage, changes in the resonance properties were immediately
observed. Figure 9.4 shows the fundamental resonance curve of a shorted quarter-
wavelength resonator terminated with a gated-Dayem bridge at T = 10 mK, for four
different values of the gate voltage, VG, applied between a single gate and ground. Below
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Fig. 9.4 Resonance curves taken for an f0 = 3.31 GHz quarter wavelength resonator,
shorted to ground through a gated-Dayem bridge, for four different values of gate-voltage,
VG. Increasing VG causes a decrease in the resonance frequency, an increase in the
resonance width, and a decrease in the signal-to-noise. Results are taken at T = 10 mK.

VG = 20 V no change in the resonator properties are observed, however at higher values
of VG a shift to lower frequency, and increased damping is observed. In addition, we
note a decrease in the signal-to-noise ratio at higher gate voltages, an effect that will
be investigated in more detail in Sec. 9.3.2. All curves shown here were recorded with
the same lock-in time constant, and without averaging. It is important to note that the
gate voltages used here are extremely large compared to those typically discussed in
nanoelectronic experiments.

The ability to tune the resonance frequency using an external gate is useful in
applications such as single-photon detection. At VG = 50 V the frequency shift was
0.8 MHz, or 0.25% of the fundamental, which is quite poor compared to what is currently
achievable though the use of external magnetic fields. Tunability could be greatly
improved by decreasing the ratio of the kinetic inductance to Josephson inductance, given
by Eq. (8.11), since we are only able to tune the latter.

Figure 9.5(a) shows the extracted resonator frequency, f0, as extracted using the
method discussed in Sec. 9.2.1, for −50 < VG < 50 V, and a range of cryostat temperatures.
The curves at different temperatures have been manually offset by 0.2 MHz for clarity.
The shift to lower frequency at VG > 30 V is clear from these measurements, and appears
to persist up to temperatures up to 1.7 K. At higher temperatures, the shift in frequency
for a given VG is lower, decreasing to just 0.15 MHz at VG = 50 V at 1.7 K.

The results obtained in this way are seemingly consistent with the field-effect presented
in the literature, where some modulation of the pairing-mechanism changes the critical
current, Ic. It is clear that a decrease in the critical current would increase the inductance
(Eq. (8.11)), reducing the resonance frequency (Eq. (8.19)). The field-effect appears to
persist up to T = 1.7 K, however becomes less pronounced. In addition, since the kinetic
inductance increases at higher temperatures, we could expect the field-effect to reduce at
high temperatures due to the increased kinetic to Josephson inductance ratio.
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Fig. 9.5 (a) Frequency shift, ∆f0, offset by 0.2 MHz for each temperature, and (b) internal
quality factor, Qi, for an f0 = 3.308 GHz quarter wavelength resonator, shorted to ground
through a gated-Dayem bridge, at five different temperatures. As seen previously,
increasing VG leads to a decrease in the resonance frequency, and decrease in the quality
factor, above VG = 30 V. At higher temperature, the quality factor decreases due to
thermal effects, meaning the losses due to the field-effect are less pronounced.

The inconsistency between these measurements and the literature arises however,
when looking at the damping, Qi, as a function of VG as shown in Fig. 9.5(b). Increasing
VG > 30 V causes Qi to drop, associated with an increase in the losses in the sample,
an effect that wasn’t presented in the literature, due to the differing methodology used.
Previously presented measurements of the critical current dependence on electric field
were performed in the DC limit, and therefore could not resolve circuit losses in the
same way [113, 114]. It is not immediately clear how a simple modulation of the pairing-
mechanism would lead to an additional loss mechanism in the superconductor. It certainly
appears that the critical current suppression is associated with an overall weakening of
the superconductivity, leading to an additional dissipation channel.

9.3.2 Noise Measurements

Figure 9.4 presented an associated decrease in signal-to-noise ratio with increasing gate-
voltage, an unexpected effect to result from a simple change in critical current. An
increase in the signal noise points towards a non-equilibrium state on the time-scale of
our measurements. To further investigate this phenomena, time-series measurements
were performed at a single-frequency for improved time resolution.
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Fig. 9.6 Schematic showing the translation of a fluctuating time-series voltage signal
at a single frequency (orange) to a fluctuating time-series frequency signal (green).
Measurements were performed at the steepest point on the fitted Lorentzian (black) to
maximise the sensitivity to fluctuations.

All voltage noise measurements were converted to frequency noise for more meaningful
representations. Figure 9.6 shows schematically the conversion of a voltage-domain signal
(orange) to a frequency-domain signal (green) at a working point using the measured
Lorentzian (blue) as a transfer function. The frequency was chosen to maximise the
sensitivity, by using the steepest point of the Lorentzian curve. Since gate-voltage
caused a modulation of the resonance frequency and width, the steepest-point had to be
continuously adjusted with the gate-voltage.

Figure 9.7(a) presents the power-spectral-density (PSD) as calculated from the fast-
fourier-transform (FFT), of time-series data taken at a range of VG values at 10 mK. The
data at VG = 0 V was collected at a single-frequency f = 3.3084 MHz, with a sample
rate of 4096 Sa s−1, and a total trace time of 1024 s per voltage. Below VG = 20 V the
observable noise increase is very low, with a flat frequency dependence. The increase in
signal-noise with VG is shown clearly by the increasing amplitude of the signal spectra.
In addition to an increase in the noise amplitude, a clear change in the noise character
is observed through the change in gradient. To represent this changing gradient, the
spectral density curves were fitted according to the function PSD = Af−k, where A and
k were fitting parameters.

Figure 9.7(b) shows the fitted k values as a function of VG, at multiple temperatures,
offset by 0.2 for clarity. At low VG, the spectra is flat, corresponding to thermal-noise
(k = 0) at all temperatures [125]. With increasing VG, the change in k tends towards 1 for
low temperatures, with the transition voltage increasing with temperature. Because of
this, the magnitude of the change appears to decrease with temperature, with the highest
measured temperature T = 1.7 K only transitioning to k = 0.26. k = 1 corresponds
to so-called ‘flicker-noise’, typically related with a distribution of two-level fluctuators,
each with an associated time constant for relaxation. At high VG, the system therefore
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Fig. 9.7 (a) Power spectral density of the resonance signal for a gated-Dayem bridge
coupled to a quarter wavelength resonator, for four different values of the gate voltage,
VG. The data is taken with a sampling rate of 4096 Sa s−1, for a total time of 1024 s.
The spectra presented here is taken at 10 mK. The spectra are fitted with according to
the function PSD = Af−k. (b) Fitted k as a function of gate voltage for five different
temperatures. The curves are offset by k = 0.25 for clarity. For all temperatures, thermal
noise dominates at low VG. At high VG, low temperatures transition to k = 1, whereas
for high temperatures the transition is less clear.
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Fig. 9.8 Schematic showing the electrical potential across a dielectric gap of thickness
d, in (a) no applied electric field and (b) a strong perpendicular electric field. At large
values of the electric-field electrons can quantum-mechanically tunnel across the gap in a
process known as field-electron emission. ϕ is the work function of the barrier, and d is
the distance across the gap. The Fermi energy is denoted by ϵF.

appears to be switching between some excited state, and the relaxed state with a random
distribution of time constants.

These high-frequency noise measurements point toward a system that is far out of
equilibrium, defined a continuous spectra of fluctuations above a minima. In addition,
the relaxation rate for the fluctuator spectra increases with increasing temperature,
indicating a system that is out of thermal equilibrium at high values of VG, but well
thermalised at low VG. Weak electron-phonon coupling provides a clear mechanism for
this dependence with the coupling between the two ensembles becoming very weak at low
temperatures. A locally elevated quasiparticle temperature would be far slower to relax
at lower temperatures due to the strong coupling dependence. From these assertions,
we postulate that the source of the elevated local temperature is related to parasitic
quasiparticle transport from the gate to the constriction or vice-versa. We will show
that this hypothesis does not rely on any unknown physical mechanism, and is able to
unambiguously explain the origin of the superconducting field effect.

9.4 Field-Electron Emission

Field-electron emission is the spontaneous transmission of electrons in a strong electro-
static field, though a weak dielectric media. Considering a system of two conductors
separated by a dielectric, applying an electric field, E, perpendicular to the material-
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dielectric interface, the tunnelling current flowing between the conductors is given by

I = aE2 exp
(

−bϕ3/2

E

)
, (9.5)

where ϕ is the work-function of the conductor, and a and b are geometrical fitting
parameters. Equations of this form are known as Fowler-Nordheim type equations [126].
At low values of, E, the dielectric properties of the gap are restored due to a vanishingly
small value for I, however at very large values of E, the dielectric properties break down
resulting in a leakage current. The values of E at which this ‘breakdown’ occurs is often
referred to as the ‘dielectric strength’ of the material. For vacuum, the dielectric strength
is typically ∼ 108 V m−1. This process is shown schematically in Fig. 9.8.

Due to the presence of a constant thermal population of electron-like quasiparticles
in a superconductor at non-zero temperature, we can expect an analogous tunnelling
process to occur in superconducting gates. By modelling the gated construction as a
parallel plate capacitor, the electric field is given by E = VG/d. We therefore expect the
differential conductance across the gap to be

dI

dVG
= a

d2 (bdϕ3/2 + 2VG) exp
(

−bdϕ3/2

VG

)
= A(B + 2VG) exp

(−B
VG

)
, (9.6)

where A = a/d2 and B = bdϕ3/2 are our redefined fitting parameters. To understand
the effect of field-dependent leakage currents on the properties of the junction, we can
consider the heat-balance equation, assuming all power is dissipated in the constriction

Q̇ = ΣV (T 5
e − T 5

ph), (9.7)

where Σ ∼ 108 W K−5m−3 is the electron-phonon coupling constant and V is the con-
striction volume. Te and Tph are the temperatures of the quasiparticle and phonon baths
respectively. An electron tunnelling across the gate-constriction boundary can deposit an
energy up to eVG into the material which locally raises the temperature. According to
Eq. (8.12) this will cause a significant modulation of the critical current. It is clear from
Eq. (9.7) that a higher bath temperature will improve the relaxation rate at which the
junction thermalises, reducing the effects of the locally elevated temperature. Therefore,
higher temperatures will appear to suppress the field-effect mechanism.

9.4.1 Current-Voltage Measurements

To confirm the idea that the observed field-effect is related to an elevated temperature due
to tunnelling electrons from the gate, the leakage current was measured as a function of
the gate-voltage, using a DC current source with built-in digital voltmeter in a two-point
measurements scheme.

Figure 9.9 shows the differential conductance as a function of gate-voltage at a
cryostat temperature T = 10 mK. Consistent with the previous observations, an increase
in the leakage current is observed at VG ∼ 30 V, corresponding to a breakdown in the
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Fig. 9.9 Differential conductance measured from the gate to ground, for a gated-Dayem
bridge at 10 mK. A clear increase in the leakage current is seen for VG ∼ 30 V, indicating
electron tunnelling due to the strong electric field.

dielectric properties of the vacuum from the gate to the construction. To model the
breakdown, Eq. (9.6) was used with, A = 388 pA V−2, B = 75.6 V, as shown by the
solid-black line providing an excellent fit to the data. The correlation between the theory
and the experimental data is strong evidence that field-electron emission is occurring
at high values of VG. The stochastic nature of this process could then give rise to the
non-equilibrium nature of the frequency signal.

Using a heat leak Q̇ = 10−10 W, calculated from our leakage current at 50 V, and
constriction dimensions V = 900 nm×200 nm×30 nm, the effective temperature can easily
be T ∼ 1 K, high enough to significantly modulate the critical current. Using Eq. (8.12),
this temperature change would correspond to a decrease in Ic of ∼ 1%. Since the total
inductance in the system is a sum of the kinetic and Josephson terms, and we do not have
an independent measure of the kinetic inductance, it is difficult to exactly exactly predict
the frequency shift such a change would correspond to. An independent measurement of
an identical resonator, without the coupled Dayem bridge would be extremely useful in
characterising the unloaded inductance. A further systematic investigation where the
local temperature of the junction could be measured would provide the final piece of
evidence that electron-emission is the cause of the field-effect.

9.5 Conclusions and Outlook

In conclusion, a gated Dayem bridge coupled to a superconducting resonator has been
measured and characterised for the first time. Our novel scheme has allowed an inves-
tigation into the properties of the alleged superconducting field-effect on much shorter
time-scales than was previously possible. In the presence of a strong electric-field, spec-
troscopy measurements of the resonator are consistent with a field-effect modulated
critical current, due to a decreasing resonance frequency.

However, a simple reduction in the critical current cannot explain an observed increase
in the system damping, without an overall weakening of the superconductivity. Time-
series noise data recorded at single frequency clearly point towards a non-equilibrium
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thermal state modulating the properties of the junction, a conclusion strengthened by
repeated measurements at different temperatures. We observe a clear difference in the
noise-spectra at low gate voltages versus higher gate voltages. An increased temperature
allows the system temperature to relax faster, by improving the electron-phonon coupling.
By measuring the leakage current as a function of the applied gate-voltage, we can
clearly point to field-electron emission as the source of the non-equilibrium temperature,
and hence the source of the field effect. The very large electric fields are enough for
quasiparticles to overcome the dielectric, and deposit energy in the superconductor.
The leakage current results are in good agreement with a theoretical model for field-
electron emission. Our conclusion is in direct contrast with the previously claimed
mechanisms presented in the literature, where the authors propose an influence on the
pairing mechanism [114].

The non-equilibrium nature of the field-effect rules out several possible applications
previously discussed. Since the relaxation relies on the weak electron-phonon coupling,
it is not possible to perform modulation of the critical current at GHz frequencies. A
JoFET parametric amplifier, or generator is therefore impossible to realise. For the
application of single-photon detection, the field effect still presents the possibility to tune
the cavity frequency within a few %, without the need to resort to external magnetic
fields. However, the significant increase in damping observed at high gate-voltages would
severely impact detector performance. Whether a JoFET of this design could be used as
a logic element in a superconducting qubit is also questioned by our result. A significantly
elevated junction temperature would severely impact coherence times, offsetting any
practical benefits from the gate tunability.

To ultimately confirm this, one could locally probe the junction temperature at a
high frequency using an SNS, SNIS or SINIS thermometer coupled to an RF circuit.
Performing fast temperature readout of a Dayem bridge under changing gate-voltage
could unequivocally confirm that the perceived electrostatic field-effect is simply the
result of a locally elevated temperature. In addition, a separate measurement of an
identical resonator without the Dayem bridge would allow us to properly model the
system, since we would know the ratio of the kinetic to Josephson inductance terms.
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Experimental Details

A1 Scattering Parameters

A2 Experimental Cells

Two experimental cells were utilised for measurements in liquid helium. These were
required to be leak-tight, whilst having RF feedthroughs for electrical signals. The first
design used a conical cap, with vacuum grease creating the seal, whereas the second
design used an indium seal. An indium seal is created by crushing a thin strip of indium
wire between the two metal surfaces to fill any imperfections. This technique is used
commonly to form seals at low temperature interfaces. Indium vacuum seal proved to
be more reliable than seals formed with vacuum grease, with several experimental leaks
attributed to a poor seal using vacuum grease. However, to allows space for the indium
seal the cell had to be larger, and therefore heavier. Photographs of the two cell designs
are shown in Fig. A.1.

A3 Cryostats

A3.1 1 K Cryostat:I

Cryostat:I consisted of a custom insert built for an Oxford instruments dewar, capable of
reaching ∼ 1.2 K. Working from the inside out, this system featured an experimental cell
as shown in Fig. A.1(top), which housed the samples. This was thermally coupled to a
1 K pot, surrounded by a vacuum space called the IVC. Surrounding this was a large
4.2 K helium bath. A needle valve allowed the 1 K pot to be filled from the helium bath
without thermal contact when not filling. Outside the helium bath is another vacuum
space, followed by a nitrogen jacket at 77 K. A final vacuum space separates the nitrogen
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Fig. A.1 Photograph of two cell designs used in nanobeam measurements. Top: First
design with four SMP feedthroughs and sealed using vacuum grease. Bottom: Second
design with six SMP feedthroughs, closed with an indium seal.

Dewar

Nitogen Jacket

Outer Vacuum

Magnet Leads

DC Connector

Inner Vacuum

RF Connectors

Helium Fill

Fig. A.2 Photograph of 1 K cryostat setup, and associated gas handling system, used for
measuring nanomechanical beams in the temperature range 4.2 K to 1.2 K.
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jacket from room temperature. The temperature of the helium in the cell was controlled
by pumping on the 1 K pot, since these are in thermal contact. In this way, hot atoms are
removed and the overall bath temperature decreases. The process by which this occurs is
known as evaporative cooling, and the temperature is then inferred from measurements
of the saturated vapour pressure [106]. This technique is typically effective to ∼1 K for
4He, since the saturated vapour pressure is vanishingly small at these temperatures [106].

The use of a separate experimental cell inside the 1 K pot allowed vacuum measure-
ments to be performed, and reduced the amount of dust and oil, since the cell could be
removed and cleaned. The cell was typically filled directly from a 4He dewar boil-off,
using a separate capillary fill-line.

A wall-mounted gas handling system allowed the pumping and recovery of the helium,
as well as evacuation of the vacuum spaces using a rotary pump. Electrically, transmission
measurements were performed using a VNA, through SMA feed-throughs on the top of the
fridge, connected to SMP connectors on the experimental cell. A 24-pin Fisher connector
allowed the measurement of 8 level sensing resistors, 4 thermometry resistors, and a
vibrating wire resonator. The thermometry resistors were read out using a resistance
bridge which could be monitored remotely. A 5 T superconducting solenoid was mounted
in the helium bath, to control the applied magnetic field. Also in the 1 K pot was a
heater, such that the cryostat temperature could be varied independently. The base
temperature of this system was ∼ 1.5 K, with a hold-time of ∼ 8 hours on its best run.
Photographs and schematics of this setup are shown in Fig. A.2, Fig. A.3.

The electrical schematic is shown in Fig. A.4. The AC signal was typically passed
through 80 dB of room temperature attenuation. Two Femto HSA-X-2-40 room tem-
perature amplifiers were used to recover the signal. This setup did not utilise any cold
attenuation or amplification which could have improved our signal-noise ratio.

A3.2 1 K Cryostat:II

Cryostat:II comprised of a custom-built glass cryostat for superfluid 4He measurements
from 4.2 K to 1.2 K. A central helium bath was surrounded by a vacuum space, which
was surrounded by a liquid nitrogen jacket. The pressure in the vacuum space could
be varied to control the heat exchange between the nitrogen bath and helium bath.
Temperature was controlled by pumping on the main helium bath to reduce the vapour
pressure, similarly to that described is App. A3.1, with the temperature extracted using
saturated vapour pressure data [106]. A roots pump was used as the primary pump, with
a rotary pump as the backing pump. Since no 1 K pot was used it is more difficult to
ensure a clean sample environment. In addition, the experimental volume is very large
and complex when compared with cryostat:II. This system had a base temperature of
1.2 K, with a very fast cool-down time (∼ 1 hour), and decent hold-time (∼ 4 hours).

The samples were mounted onto a copper PCB with high-frequency SMP and SMA
connections to room temperature. This was attached to the end of a brass probe
submerged directly in the helium bath. A schematic of the system used for measurements
is shown in Fig. A.5.
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Fig. A.3 Cryostat insert used to measure nanomechanical beams down to 1.5 K. Both the
IVC and 1 K cans have a diameter reduction to accommodate the 5 T solenoid. The two
cans are sealed using indium. The cell is mounted to a filling line and attached to the
bottom of the insert. A vibrating wire resonator(VWR) and RuO2 provide thermometry
inside the system.

Sample

NA Port 1

NA Port 2

80 dB

Cryogenic Environment

Fig. A.4 The device is driven by a VNA through 80 dB of attenuation at room temperature.
At the output, two 40 dB low-noise amplifiers are used at room temperature to improve
the signal-to-noise ratio.
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Vacuum Space

Helium Bath

PCB

Nitrogen Jacket

Fig. A.5 Schematic showing glass-cryostat and gas handling scheme used for measurements
with multimode TFs, capable of reaching 1.2 K.

I/V

I/V

Fig. A.6 Diagram showing an electrical setup for simultaneous measurement of two modes
on the same tuning fork. Two VNAs supply two AC driving voltages at two frequencies
which are combined using a summing amplifier with 5 dB gain, used to increase the
dynamic range of the setup. The output current passes through an I-V converter with
103 V A−1 gain [127]. The two signals recovered using a splitter before being measured
at each frequency by the two VNAs.
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For measurements performed on quartz TFs with two well defined modes, two VNAs
were connected for simultaneous driving. The driving signals from the two VNAs were
combined using a 5 dB summing amplifier, in order to achieve a large dynamic range.
The signal was then recovered using a splitter and two I-V converters, with a gain
of 105 V A−1, before returning to their respective VNAs. No attenuation was used on
the drive signal. A calibration was performed on both VNAs to account for possible
impedence mismatches in the experimental circuit. The electrical schematic showing how
the two VNAs were used to probe two modes on the same TF is shown in Fig. A.6.
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A3.3 Cryogen-Free Dilution Cryostat

The cryogen-free system consists of a two-stage pulse tube with nominal stage tempera-
tures 50 K and 3 K. These stages are associated with the two top plates, with the 3 K
plate shown at the top of Fig. A.7. Further cooling is achieved by using a 3He-4He
dilution cycle. A 96% 4He mixture is condensed into the cryostat by narrow lines using a
compressor stage to raise the pressure to ∼2 bar. The high pressure allows the 3He and
4He to condense at the mixing chamber, where a phase transition occurs. The mixture
separates into a 3He rich phase and a 3He dilute phase, an endothermic process which
draws heat from the cryostat into the mixture. The heat required to sustain this process
produces the cooling power. Due to the phase separation, and the differing densities
between the two phases, the 3He rich phase can be selectively pumped away from the
mixing chamber towards the still. Outgoing 3He is used to cool incoming 3He via a series
of heat-exchangers. At the still, a heater is utilised to boil 3He so it can be pumped
back to room temperature, and the cycle restarted. The cooling power of a dilution
unit is greatly dependent on both the circulation rate, and the effectiveness of the heat
exchangers. The Bluefors LD250 cryostat is rated to have 250µW at 100 mK. For our
system, this allowed a base temperature of ∼ 7 K with an indefinite hold-time. However,
it takes ∼ 2 days to reach base temperature from closing the vacuum cans.

4 K

700 mK

100 mK

10 mK MXC

Still

Heat Exchangers

RF Lines

Fig. A.7 Photograph of cryogen-free dilution cryostat used for measurements down to
10 mK, with plates and dilution unit labelled.
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Nanobeam measurements in 4He cell

In order to perform liquid measurements at mK temperatures, a brass cell was mounted
inside the vacuum of the dilution cryostat. The helium cell was mounted by fitting two
0.25 mm capillary lines, running from feed-throughs at the top of the cryostat, to the
mixing chamber. To ensure adequate thermalisation, silver-sintered heat exchangers were
mounted at each temperature stage. The two lines combined at the mixing chamber,
and a 0.5 mm capillary connected this to the cell, which was mounted below the mixing
chamber on a Tufnol cold finger. The cell was filled from a room-temperature gas handling
system which allowed clean 4He to be condensed by the evaporating gas from a storage
dewar. Two lines to room temperature were utilised to allow a second return path for
the liquid in case of a blockage. The extremely narrow capillary lines further helped the
thermalisation of the condensing liquid by reducing the flow rate.

Fig. A.8 Photograph showing brass cell mounted to the cold-finger of a cryogen free
dilution cryostat, with key components labelled.

Electrically, 38 dB of cold attenuation was utilised to minimise the noise temperature
seen by the sample, as shown in Fig. A.9. Two 40 dB Femto HSA-X-2-40 room temperature
amplifiers were utilised to improve the signal-to-noise ratio. Thermometry was provided
by five calibrated resistance thermometers measured by a Lakeshore bridge. These are
anchored to the 50K, 4K, magnet, still and mixing chamber. Thermometry of the samples
was limited by the lack of a cell thermometer; the temperature at the mixing-chamber
may not be exactly that of the sample. The temperature of the system could be varied
using a heating resistor mounted to the mixing chamber. This allowed the temperature
to be stably varied in the region of 10 mK < T < 1.5 K.
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-1 dB

-1 dB

-20 dB -6 dB -6 dB

-1 dB

100 mK 7 mK700 mK

-6 dB

Fig. A.9 The device is driven by a network analyser through 79 dB of attenuation
distributed over several temperature stages of the cryostat. At the output, two 40 dB
low-noise amplifiers are used at room temperature to improve the signal-to-noise ratio.
A 3 dB attenuator was used to protect the devices from amplifier noise.

Vortex measurements using nanobeams in 4He cell

To perform measurements on vortex dynamics, a nanobeam and a TF were mounted
inside the 4He cell as described above. Electrically, the TF was driven using the schematic
shown in Fig. A.10, with 20 dB of cold attenuation, and an IV converter to recover the
signal. The nanobeam was measured using a multi-frequency lock-in technique (MLA)
to measure the signal on short timescales. The electrical setup was the same as Fig. A.9,
using an MLA instead of a VNA, and utilising an external oscilloscope as a triggering
mechanism. A single feedback output from the MLA went to an oscilloscope, which sent
a trigger pulse to the MLA when the signal dropped below a certain value, to begin
taking measurements.

IV Converter

50 dB

Fig. A.10 The TF is driven by a network analyser through 21 dB of attenuation distributed
over several temperature stages of the cryostat. At the output, in IV converter with gain
105 was utilised to improve the signal-to-noise ratio.

JoFET measurements

The samples were mounted onto the mixing chamber of the cryogen-free dilution cryostat.
The feedline was driven through by RF signals through 80 dB of attenuation distributed
between the various temperature stages of the cryostat, as shown in Fig. A.11. DC was
provided for the gates via a breakout-box connected to a 24-pin copper loom, which runs
down to the mixing chamber. On the output, two cryogenic circulators were used at the
10 mK to prevent amplifier noise from reaching damaging the sample. Two Low-Noise-



124 | Experimental Details

-1 dB

-1 dB

-40 dB -20 dB -12 dB
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LO
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Fig. A.11 The device is driven by a network analyser through 79 dB of attenuation
distributed over several temperature stages of the cryostat. At the output, one 40 dB
cryogenic amplifier was used at room temperature to improve the signal-to-noise ratio. A
3 dB attenuator was used to protect the devices from amplifier noise.

Factory cryogenic amplifiers were used to supply 80 dB of gain for the output signal.



Recipes

B1 Al-on-Si Nanomechanical Beams

The samples are prepared in a cleanroom environment using standard nanofabrication
techniques. A silicon substrate is used, with aluminium deposited on top, and then
undercut using a fluoride-based plasma to suspend the nanobeams. The full recipe is
included below.

Spin Resists:

• Copolymer 6 % in Ethyl Lactate - 2000RPM - 3 min at 200◦C

• 950 PMMA 2% in Anisole - 7000RPM - 3 min at 200◦C

Exposure:

• 4th Lens - 2nd Aperture - 10 nA @ 50 kV

Development:

• Develop - Isopropanol:Water (CH3)2CHOH:H2O 93:7 - 3 min

• Rinse - Isopropanol (CH3)2CHOH - 30 s

Plasma Ashing:

• Mixing - O2 (40 sccm) - p = 200 mTorr - 3 mins

• Ashing - O2 (40 sccm) - p = 200 mTorr - P = 50 W - 30 s

Deposition:

• Al - 2 Å s−1 - 1200 Å

Lift Off:

• Lift Off - Acetone (CH3)2CO - 30 min

• Rinse - Water H2O - 30 s

Silicon Etching:

• Mixing - O2 (4 sccm), SF6 (40 sccm) - p = 180 mTorr - 5 mins

• Etching - O2 (4 sccm), SF6 (40 sccm) - p = 180 mTorr - P = 100 W - 3 min
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B2 Al-on-Si3N4 Nanomechanical Beams

The samples fabricated in Grenoble follow the same basic steps however opt for a
different substrate, and a different etchant. Si3N4 is grown onto Si and baked to a
high temperature to pre-stress the substrate. This process helps to minimise the effect
of differential contraction. XeF2 is a highly selective etch at low pressures allowing a
deep undercut to be performed, minimising the damping. Samples prepared with these
techniques have typical Q-Factors around 105 at room temperature.

Spin Resists:

• PMMA 4% - 6000RPM - 5 min at 180◦C

Exposure:

• 4th Lens - 2nd Aperture - 10 nA @ 20 kV - 250µC cm−2

Development:

• Develop - Isopropanol:MIBK (CH3)2CHOH:(CH3)2CHCH2C(O)CH3 93:7 - 35 s

• Rinse - Isopropanol (CH3)2CHOH - 1 min

Deposition:

• Al - 1 Å s−1 - 300 Å

Lift Off:

• Lift Off - NMP C5H9NO - 80◦C 60 min

• Rinse - Water H2O - 30 s

Silicon Etching:

• Etching RIE - SF6 - 2 mins 30 s

• Etching Gas - XeF2 - 3 min
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B3 JoFETs Coupled to Superconducting Resonators

The JoFet samples were fabricated in a cleanroom environment, using a negative lithog-
raphy process. The length of the final etching step allowed control over the size of the
constriction.

Deposition:

• V - 2 Å s−1 - 1000 Å

Spin Resists:

• Copolymer 6 % in Ethyl Lactate - 2000RPM - 3 min at 200◦C

• 950 PMMA 2% in Anisole - 7000RPM - 3 min at 200◦C

Exposure:

• 4th Lens - 2nd Aperture - 1 nA @ 50 kV

• 4th Lens - 2nd Aperture - 10 pA @ 50 kV

Development:

• Develop - Isopropanol:Water (CH3)2CHOH:H2O 93:7 - 3 min

• Rinse - Isopropanol (CH3)2CHOH - 30 s

Plasma Ashing:

• Mixing - O2 (40 sccm) - p = 200 mTorr - 3 mins

• Ashing - O2 (40 sccm) - p = 200 mTorr - P = 50 W - 30 s

Vanadium Etching:

• Mixing - O2 (4 sccm), SF6 (40 sccm) - p = 180 mTorr - 5 mins

• Etching - O2 (4 sccm), SF6 (40 sccm) - p = 180 mTorr - P = 100 W - 3 min

Lift Off:

• Lift Off - Acetone (CH3)2CO - 30 min

• Rinse - Water H2O - 30 s





Software

A cornerstone in our ability to efficiently collect precision was the development of custom
data-collection software, and analysis software. Data collection software was developed
in Python, with the ability to perform spectroscopy measurements using a VNA, SA, or
MLA. Results were plotted live using PyQtGraph and saved in hdf5 format. Fig. C.1
shows a sample output from the collection software. Three dimensional data was collected
with the ability to vary arbitrary experimental parameters with many instrument drivers
implemented. Adding new instruments was made as simple as possible to implement for
rapidly changing experiments. For every frequency sweep measurement performed, each
parameters is remeasured in case of experimental drift. Due to the speed of plotting in
PyQtgraph, and saving in hdf5, the only limiting factor in the rate of data collection
is that of the instrument measurement speed. For the experiments discussed, some
measurements were performed with each frequency sweep taking just ∼ 0.1 s Additionally,
experimental parameters were automatically written to a LateX logbook to allow for
efficient analysis of collected data files. Included here was the path to the saved data,
instruments, all parameters start and finish values, various cryostat temperatures and
timestamps.

Lorentzian fitting was performed using custom python scripts capable of reading large
hdf5 datasets, subtracting polynomial backgrounds, estimating close initial parameters,
and then fitting to output the exact parameters for arbitrary phase. A least squares
fitting routine was utilised on the real and imaginary components of the signal by
default, however the user can choose fit individual components. The user can select
in real-time whether to accept or reject each individual fit, allowing for easy vetting
of misfits. The scripts were able to operate with a high degree of accuracy, fitting
thousands of individual curves without error. The Lorentzian amplitude, width, phase
offset, polynomial backgrounds and centre frequency are returned, allowing the calculation
of the resonance Q-factor. A sample fitting is shown in Fig. C.2. Analysed datasets
are saved back into hdf5 format in a new folder with the same timestamped named.
This workflow allowed rapid prototyping of experimental setups, and real-time updates
to experiments and analysis to allow for specific operations since all code was written
in-house.



130 | Software

Fig. C.1 Live-plotting GUI for the data-collection software.
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