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We investigate the response of a quantum particle in the Tietz-Hua quantum potential driven
by biharmonc fields – a low and a very high-frequency force. The response is characterized by
the occurrence of a maximum in the first-order transition probability amplitude, |s|2 , under the
influence of the applied fields. It is shown that in the absence of the high-frequency component of
the applied fields, |s|2 shows a distinct sequence of resonances; whereas an increase in the amplitude
of the high-frequency field induces minima in |s|2. However, the |s|2 maximum occurs in the low-
frequency regime where it may be considered otherwise weak in the presence of a single harmonic
force.
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I. INTRODUCTION

Periodically driven systems have attracted much atten-
tion over the years. They are ubiquitous in many differ-
ent scientific and engineering disciplines. Driving func-
tions can either be due to deterministic forces (i.e. single
or multiple harmonic function of time) [1] or stochas-
tic forces (i.e. forces in the form of noise) [2]. Periodic
driving can induce a plethora of dynamical phenomenon
that yield helpful insights into a wide range of processes
on both the macroscopic and microscopic scales. They
can give rise to more complex dynamics [3], to the sup-
pression of synchronization when acting as coupling func-
tion [4] or to enhanced synchronization in the case of
noise driving [5], to dissociation dynamics [6], and to
nonlinear resonances [3, 7, 8], to mention but a few ex-
amples.
Vibrational resonance (VR), a nonlinear resonance

phenomenon with potential applications to weak signal
enhancement and bearing fault detection, has recently
received considerable attention. The phenomenon oc-
curs in bi-harmonically driven nonlinear systems. It was
first identified and demonstrated numerically by Landa
and McClintock [9], confirmed theoretically by Gitter-
man [10] and by Blekhman and Landa [11, 12] and de-
tected experimentally in vertical cavity surface emitting
lasers and optical systems [13–17]. In VR, the response
of a nonlinear system to the effect of the low-frequency
(LF) component of the bi-harmonic signal can be ampli-
fied by the presence of the high-frequency (HF) compo-
nent when the difference between the frequencies is suffi-
ciently large ([7, 15, 18–28] and references therein). The
VR scenario is analogous to stochastic resonance (SR)
but with the high-frequency input force taking the place
of noise [29, 30]. Both SR and VR have been extensively
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investigated in the classical domain, and increasing ef-
fort is now being directed towards the study of quantum
SR in a variety of systems [31–36]. Quantum VR has
been much less studied [7, 18], however, and this is es-
pecially the case for systems with interatomic potentials
describing the molecular dynamics at moderate and high
rotation vibration quantum numbers [37].

Interatomic potentials arise in e.g. molecular physics,
molecular mechanics and material science, in various
forms – the most commonly used being the Morse [38]
and Tietz-Hua [39] potentials that have largely replaced
the more traditional Lennard-Jones potential. The Tietz-
Hua (TH) potential is a much more realistic model than
the Morse potential. It is known to provide an ade-
quate description of the vibrational and rotational energy
spectra, dissociation energies, and inter-molecular inter-
actions of diatomic molecules. It was introduced by Wei
Hua [39] as a four-parameter potential function for bond-
stretching vibrations of diatomic molecules, and for fit-
ting the experimental Rydberg-Klein-Rees (RKR) curve
function. Extensive research has been carried out to ob-
tain the eigenstates, intersubband optical transitions and
energy eigenvalues, among others, of the potential for di-
atomic molecules, with applications in diverse optical and
electronic systems [37, 40–46].

More importantly, the Tietz-Hua quantum well has
been studied under two-frequency applied external fields.
These included an intense laser field (ILF) plus lower fre-
quency electric and magnetic fields. In this direction, the
density matrix formalism and the perturbation expansion
method were recently employed to investigate the optical
transitions between any two subbands in the Tietz-Hua
quantum well [47]. In related theoretical work, Ungan
et al. [48] showed that changes in the Tietz-Hua poten-
tial quantum well refractive index and optical absorption
coefficient are sensitive to the effects of applied external
fields. The results [47, 48] demonstrate clearly that the
intensity of the ILF and the strengths of the electric and
magnetic fields may play significant roles in determining
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the nonlinear optical response of the Tietz-Hua quantum
system. Motivated by these earlier results, we now ex-
plore VR in a TH quantum well. We characterize the
response of the oscillator on the basis of the first-order
transition probability and examine VR for the cases of
positive, negative and zero potential constant. The rest
of the paper is organized as follows. In Sec. II, we de-
scribe the Tietz-Hua quantum well. In Sec. III, we dis-
cuss our numerical results. Section IV discusses the pa-
rameter space of QVR including, in particular, the tran-
sition between resonance and antiresonance. The paper
is summarized and concluded in Sec. V.

II. MODEL

When driven by a dual-frequency external field,
namely, W (t) = g cos(ωt) + G cos(Ωt) with Ω ≫ ω, ω
and Ω being the frequencies of the low and very high-
frequency forces and g and G denoting their amplitudes,
respectively; the Hamiltonian of the Tietz-Hua quantum
mechanical oscillator under consideration is given by

H = H0 + λx(g cos(ωt) +G cos(Ωt)), (1)

where H0 =
p2

x

2m + VTH is the unperturbed Hamiltonian
of the system and VTH is the confinement potential. In
this study, VTH is the Tietz-Hua (TH) potential given
by [39],

VTH = V0

[

1− e−bh(r−re)

1− che−bh(r−re)

]2

, bh = β(1 − ch) (2)

where β stands for the Morse constant, V0 is the depth
of the potential, ch is the potential constant represent-
ing an optimization parameter derived from an ab-initio
or Rydberg-Klein-Rees (RKR) intra-molecular potential,
re is the molecular bond length and bh represents the
confinement parameter, respectively. The potential is
non-polynomial and, for positive values of V0, VTH has
a minimum value of zero at r = re. In the interval
ℜ+ : ch ∈] − 1, 1[, VTH is not a continous function, but
has a singularity. In this paper, and for ease of calcu-
lation, we define a dimensionless parameter x = r

re
, so

that the TH potential takes the form

VTH(x) = V0

[

1− e−γ(x−1)

1− che−γ(x−1)

]2

, (3)

where γ = bhre. Remarkably, the TH potential reduces
to the classical Morse potential [38] when the potential
constant, ch = 0, and becomes wider (narrower) for small
(large) values of γ i.e.,

VM (x) = V0[1− e−γ(x−1)]2. (4)

The essential features of the TH-potential are shown
in Fig. 1 for the parameters γ = 1, V0 = 6, and three
values of ch.
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FIG. 1. (Colour online) The shape of the Tietz-Hua potential
for the parameters γ = 1, V0 = 6 and different values of ch.

Our interest lies in calculating the probability of find-
ing the oscillator in any fth state at time t as the oscillator
undergoes transitions between energy eigenstates when
subjected to the external field. This probability is given

by Pfi(T ) = |δfi+λa
(1)
f (T )|2 and its detailed derivation is

presented in the Appendix. The term s in the expression

for a
(1)
f (T ) depends solely on the parameters g, ω,G and

Ω of the bi-harmonic forcing and T . Thus, the quantity
of interest is |s|2 and its variation with the parameters of
the bi-harmonic force. The unperturbed Hamiltonian for
the Tietz-Hua oscillator is exactly solvable for the s-wave
(l = 0) [42]. The energy eigenvalues were obtained and
given in closed form as [42],

(2n+ 1)

[

√

A+BC2 + ch

√

(V0 − En,0)
B

D

]

+BC

+2

√

[A+BC2]

[(

B

V0

)

(V0 − En,0)

]

+ c∗h = 0(5)

where c∗h = ch(n
2+3n+0.5) = 0, A = ch

4 , B = 2µ
(

V0

b2
h
h̄2

)

,

C = (ch − 1).
The Tietz-Hua quantum oscillator has a finite number

of bound states for diatomic molecules, all of which can
be controlled by the effective well depth parameter, V0.
For the purpose of our study we fix V0 = 100 and set the
quantities h̄2 = 2µ = b2h = 1 for convenience. The values
of ch are chosen to be [-0.2,0,0.2]. The closed form equa-
tion for the energy eigenvalue is then numerically evalu-
ated at the set values to yield five bound states (n = 0,
1, 2, 3 and 4) for the different cases of the potential con-
stant. All state transitions are referenced with respect to
the ground state. Table I gives the corresponding energy
levels and transition frequencies for the three values of
the potential constant used in this paper.
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TABLE I. Energy values and transition frequencies for Tietz
Hua potential

ch = −0.2 ch = 0 ch = 0.2
n En,0 ωfi En,0 ωfi En,0 ωfi

0 −20.6283 0 −20.25 0 −19.6949 0
1 −13.1625 7.465766 −12.25 8 −11.0152 8.679681
2 −7.28898 13.33933 −6.25 14 −4.96873 14.72615
3 −3.08509 17.54322 −2.25 18 −1.36033 18.33454
4 −0.63537 19.99295 −0.25 20 −0.01661 19.67826

FIG. 2. (Color Online) Resonance peaks in the low-frequency
force regime of Tietz-Hua quantum oscillator with positive
potential constant, ch = 0.2: (a) f = 0; (b) f = 1; (c) f = 2;
(d) f = 3; (e) f = 4.

III. RESULTS AND DISCUSSIONS

A. FIRST-ORDER PROBABILITY AMPLITUDE

FOR LOW-FREQUENCY FORCE

Here, we examine the system in the absence of high-
frequency force. Thus, we present numerical results for
the first-order probability amplitude |s|2 under the action
of low-frequency excitation by assuming a finite time of
application of external harmonic force, i.e. T = 2π

ω
and

that the system is initially in the ground state (i = 0).
The amplitude of the low-frequency force is fixed as
g = 0.05 throughout the paper. The low-frequency ω
is varied from 0 to 30 to capture essential features of
the resonances with their corresponding peaks. Results
obtained for three cases, namely, positive, negative and
zero potential constant are presented in Figures 2–4. The
maximum transition probability amplitude for each of the
three cases considered occurs when the frequency of the
low-frequency driving force is equal to the transition fre-
quency of that state. This follows directly from Eq. (18):
when ωfi ≈ ω the denominator in r1− → 0. Thus, the
quantity r1+ can be neglected and the quantity |s|2 at-
tains its maximum value.

With positive potential constant, ch = 0.2, we show
in Fig. 2 a sequence of resonance peaks obtained for the

FIG. 3. (Color Online) Resonance peaks in the low-frequency
force regime of Tietz-Hua quantum oscillator with negative
potential constant, ch = −0.2: (a) f = 0; (b) f = 1; (c)
f = 2; (d) f = 3; (e) f = 4.

FIG. 4. (Color Online) Resonance peaks in the low-frequency
force regime of Tietz-Hua quantum oscillator with zero po-
tential constant, ch = 0 : (a) f = 0; (b) f = 1; (c) f = 2; (d)
f = 3; (e) f = 4.

stationary states f = 0, 1, 2, 3 and 4, respectively. The
transition frequencies are given in Table I. At ω = 0,
the quantity |s|2 is maximum for state f = 0, while for
the states f = 1, 2, 3 and 4 the quantity |s|2 has the
values 0.000407, 0.000152, 2.99 ×10−5 and 2.42 × 10−5,
respectively. The maximum peaks are obtained for each
state at ωfi = ω as can be seen from Fig. 2.
Shown in Fig. 3 is a sequence of resonance peaks ob-

tained for the states f = 0, 1, 2, 3 and 4, respectively,
using a negative potential constant, ch = −0.2. The
transition frequencies are given in Table I. Similar to
the results for ch = 0.2, at ω = 0, the quantity |s|2 is
maximum for state f = 0, while for the states f = 1, 2, 3
and 4 the quantity |s|2 has the values 0.000397,0.000167,
5.62×10−5 and 1.23×10−8. Furthermore, the sequence
of resonance peaks obtained for the states f = 0, 1, 2, 3
and 4, respectively are depicted in Fig. 4 for ch = 0. The
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transition frequencies are tabulated in Table I. |s|2 takes
on its maximum value at ω = 0 for state f = 0 while for
all other states, |s|2 attain the same value, 1.5× 10−34.

B. EFFECTS OF THE AMPLITUDE OF THE

HIGH-FREQUENCY FORCE

Here, the high-frequency field excitation is activated
and its amplitude G varied between 0 and 0.5 while keep-
ing its frequency Ω fixed at Ω = nω, where n = 5 is a
positive integer. The range of values of the low-frequency
ω was appropriately chosen to ensure the existence of res-
onances as discussed in Sec. III A. For all values of the
positive, negative and zero potential constant considered,
we observed a decrease in |s|2 to a minimum value as
G increases, and then an increase with further increase
in G as well as a monotonic increase in the first-order
probability amplitude |s|2 with both the low-frequency
and high-frequency driving forces. Henceforth, we refer
to the former behavior as quantum vibrational antireso-
nance (QVAR). We note that the results for ch = −0.2
are similar to those for ch = 0.2. Thus, we focus only on
two cases: ch = 0 and ch = 0.2. The first-order transition
probability exhibits QVAR at certain values of ω as G is
varied for fixed Ω = nω. For fixed Ω, QVAR was realized
for all bound states of the TH quantum well for appro-
priate choices of ω. In what follows, specific occurrences
of QVAR states are discussed for ω = 1, 1.7, 2, 3, 4, 5.

1. |s|2 for Zero Potential constant

We begin our discussion by exploring the QVAR phe-
nomenon with the potential constant set to zero (ch = 0).
Note that the system under consideration then reduces
to the Morse oscillator given by Eqn (4) [7]. Figure 5(a)
shows the transition amplitude, |s|2 for ω = 1.0 and for
all the states. For the bound states f = 1, 2, 3, and 4
the transition amplitude increases monotonically with G.
Here, no QVAR is observed for any of the states. More-
over for the state f = 0 the quantity |s|2 is identically
zero. In Figure 5(b), for ω = 1.7, QVAR is evidently well
pronounced for only one state, f = 0 at g = 0.202 and
with the quantity |s|2 = 3.58×10−9 whereas |s|2 increases
monotonically with increasing G for all other states. In
Figure 5(c) for ω = 2.0, the transition probability am-
plitudes within the interval of interest for all the states
are identically zero. In Figure 5(d), QVAR takes place
in two bound states when ω = 3.0. QVAR is marked for
the states f = 1 and 2 at g = [0.146, 0.008] with quantity
|s|2 = [1.37 × 10−32, 3.24 × 10−34] respectively, whereas
|s|2 for the states f = 3 and 4 increases monotonically
while it takes on zero values in state f = 0. Again, for
ω = 4.0, |s|2 takes on zero values for all the states as
shown in Figure 5(e). However, when the value of ω
increases appreciably, QVAR re-appears. For instance,
when ω = 5.0, shown in Figure 5(f) marked manifes-
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FIG. 5. (Colour online) Quantum vibrational antiresonance
(QVAR) in the low-frequency force regime of Tietz-Hua quan-
tum oscillator with zero potential constant, ch = 0. (a)
ω = 1.0, (b) ω = 1.7, (c) ω = 2.0, (d) ω = 3.0, (e) ω = 4.0,
(f) ω = 5.0
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FIG. 6. (Colour online) Quantum vibrational antiresonance
(QVAR) in the low-frequency force regime of Tietz-Hua quan-
tum oscillator with positive potential constant, ch = 0.2. (a)
ω = 1.0, (b) ω = 1.7, (c) ω = 2.0, (d) ω = 3.0, (e) ω = 4.0,
(f) ω = 5.0

tations of QVAR are observed for three states, namely
f = 2, 3 and 4 at g = [0.125, 0.05, 0.03] with the quantity
|s|2 = [5.38×10−35, 1.06×10−3, 1.22×1034] respectively.
The transition probability amplitude within the interval
of interest for the state f = 1 is nearly constant while
that of f = 0 varnishes.

2. |s|2 for Positive Potential constant

Now we turn to the case when ch 6= 0 and, in particu-
lar, the case when it takes on positive values (ch = 0.2)
with. We then find QVAR occurring more frequently
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in nearly all the bound states, including bound states
where QVAR does not occur when ch = 0 as shown in
Figure 5(c,e). For the purpose of comparison with the
Morse case (i.e. ch = 0) shown in Figure 5, Figure 6(a) il-
lustrates the transition probability amplitude for ω = 1.0
under the same conditions as in Figure 5(a). For the
states f = 1, 2, 3, and 4, the transition probability ampli-
tude increases monotonically with G, with no occurrence
QVAR in any of the bound states and, similarly to the
ch = 0 case, the quantity |s|2 vanishes for the bound state
f = 0. However, a dramatic change from the zero values
obtained for ch = 0, to non-zero values, takes place and
the occurrence of |s|2 minima is evident in Figure 6(b)
for ω = 1.7. It indicates the QVAR state for f = 0 at
G = 0.202, with the quantity |s|2 = 3.58×10−9 at |s|2min.
For the other bound states, f = 1, 2, 3, and 4 the transi-
tion probability amplitude monotonically increases with
varying G . Further increase in ω to ω = 2.0 induces
QVAR in the bound state f = 1 only at G = 0.017 as
shown Figure 6(c) while |s|2 is identically zero for f = 0,
and increases monotonically for all other bound states.
We emphasize here that the non-varnishing feature of |s|2

in the bound states f = 2, 3 and 4, and the occurrence of
QVAR, represent some remarkable and new effects of the
potential constant, ch; and are not found in the Morse
oscillator for which ch = 0 shown in Figure 5(c). The
effect of G shown in Figure 6(d) for ω = 3.0 is identical
to the observed features when ch = 0 where two QVAR
occur for the state f = 1 and 2 at G = [0.113, 0.002]
with quantity |s|2 = [8.73 × 10−33, 1.87 × 10−3] respec-
tively, while the transition probability amplitude for the
state f = 0 is identically zero and for the state f = 3
and 4 |s|2 increases monotonically, without the occur-
rence of QVAR. In Figure 6(e) for ω = 4.0, the QVAR
states are abundant for almost all the bound states, with
the exception of the ground state f = 0, where the
first-order transition probability amplitude within the
interval of interest is identically zero. For the state
f = 1, 2, 3 and 4 the QVAR phenomenon occurs at
G = [0.274, 0.046, 0.01, 0.002] with quantity |s|2 = [6.3×
10−33, 5.53 × 10−34, 2.16 × 10−34, 1.62 × 10−34] respec-
tively. Again, the resonance feature at ω = 4.0 is absent
for ch = 0 (See Figure 5(e)). In Figure 6(d) three QVAR
states are shown for ω = 5.0 of the five states, namely,
f = 2, 3 and 4 and occur at G = [0.106, 0.046, 0.033] with
|s|2 = [6.53×10−35, 1.09×10−34, 1.2×10−34] respectively.
However, there is gradual decrease in the first-order tran-
sition probability amplitude for the bound state f = 1
while that of f = 0 is identically zero.

At this juncture, we make two remarks: (i) the main
effect of the high-frequency signal on the Tietz-Hua oscil-
lator is the induction of new QVAR states when ch 6= 0;
and (ii) QVAR occurs in a single quantum oscillator in
the absence of coupling, unlike classical vibrational an-
tiresonance (VAR) which can only take place in coupled
nonlinear oscillators [49].
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FIG. 7. (Colour online) Effects of high-frequency on |s|2 in
the ground state f = 0, for different values of Ω = nω scaled
as n = 1, 5, 10, 20 and 50. The other parameters are: ch = 0.2,
F = 0.05 and G = 0.5
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FIG. 8. (Colour online) Effects of high-frequency on |s|2 in the
excited states f = 1, 2, 3 and 4 for different values of Ω = nω

scaled as n = 1, 5, 10, 20 and 50. The other parameters are:
ch = 0.2, F = 0.05 and G = 0.5.

C. EFFECT OF HIGH-FREQUENCY ON THE

TRANSITION PROBABILITY

In the presence of the second harmonic force we inves-
tigate the impact of its high-frequency component Ω on
the first-order transition probability for the states, and
henceforth we focus on the positive potential constant
(ch = 0.2). In Eq. (19) the high-frequency component
Ω appears in the arguments of r2+ and r2− which are
sinusoidal functions of the first-order transition proba-
bility. Thus, the first-order transition probabilities can
exhibit sequences of resonance peaks when Ω is varied
while the other parameters of the external field remain
fixed. The high-frequency Ω, is set as an integer multi-
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ple of the low-frequency (i.e. Ω = nω) with n denoting
the integer scaling factor so that Ω varies with the low-
frequency ω. The effect of Ω on |s|2 with n = 1, 5, 10, 20,
and 50, was first investigated for all the bound states and
ch = 0.2 of the TH quantum wells within three regions
of interest i.e.: Region I: ω < ωfi, Region II: ω ≈ ωfi

and Region III: ω > ωfi. In addition, we chose appropri-
ate values for n and examined extensively the behavior
of the transition probability as a function of ω under the
combined effects of the two harmonic fields. For all the
cases considered here, the effect of the high-frequency
component is observed numerically from the variation of
the quantity ln |s|2 with the low-frequency (ω); the am-
plitudes of the two forces each remain fixed at F=0.05
and G = 0.5.
We now examine the effect of the high-frequency com-

ponent on different states (i.e. for f ∈ [0 : 4]) starting
with the ground state, f = 0. Remarkably, it is imprac-
ticable to examine the effect of Ω = nω on the transition
probability for the state f = 0 in the Regions I (ω < ωfi)
and II (ω ≈ ωfi) since ωfi = 0 for all values of the poten-
tial constant. However, it is clear from Figure 7 that the
transition probability for the ground state for ch = 0.2 in
Region III is rapidly oscillating from its maximum value
at ω ≈ ωfi = 0 with multiple peaks occurring sequen-
tially for n ∈ [5, 10, 20, 50], with the number of peaks in-
creasing appreciably with increase in the values of n over
the entire region. This scenario was also found for all val-
ues of ch. However, when the systems does not vibrate,
i.e. for n = 1, the transition probability is characterized
by slowly varying peaks with its minimum occurring at
integer values of ω over the given interval.
Next, we examine extensively the excited states of the

oscillator. Illustrated in Figure 8 and in the 3-D plot
displayed in Figures 9 are sample results for the different
states (i.e. for f ∈ [1 : 4]). The behavior of the transi-
tion probability in each of the Regions I, II and III was
examined thoroughly and is summarized below.

1. Region I: ω < ωfi

The scaling integer n plays a significant role in the vi-
brational dynamics. Clustered peaks dominate this low-
frequency regime of ω with the order of the onset of peaks
occurring with decreasing magnitudes of the integer n
(see Figure 8). Prominent multiple peaks with marked
intensities occur in the reversed order: n = 50, 20, 10 and
5. However, for n = 1 (i.e. Ω = ω), when the system
does not vibrate, the states show a sequence of slowly
varying peaks with increasing intensity. This reversal in
the peak intensity can be understood as follows. The
r2− component of the probability amplitude s, given by
Eq. (19) (See Appendix) increases appreciably with in-
creasing n, thus attaining its maximum rapidly at low
ω values. The transition probability does not exhibit a
monotonic behavior within this region in all the states;
rather, it oscillates rapidly with increasing n. The max-

imum peak points for Ω = nω, with n = 5, 10, 20 and
50 for the states f = 1, 2, 3 and 4 are attained when
the high-frequency component of the bi-harmonic force
equals the transition frequency of the given state (i.e.
Ω = nω = ωfi). The characteristics features of the tran-
sition probability in this region are analogous to the vi-
brational higher-order resonance observed in the classical
system [13].

2. Region II: ω ≈ ωfi

In this region, for states f = 1, 2, 3 and 4 with ch = 0.2,
the dominant peak is obtained when Ω = ω (i.e. n = 1).
This is to be expected judging from Eq. (19) where it
can be inferred directly that the r1− and r2− compo-
nents are equal, with their respective denominator at its
minimum value, with |s|2 attaining its maximum value
when Ω = ω = ωfi. The QVR in this case is analo-
gous to the traditional resonance observed with the low-
frequency force acting alone, but differs from it in that
the second harmonic force also has its frequency equal
to that of transition frequency of the given state. This
consequently gives rise to the increase in transition prob-
ability with the amplitude G and frequency component
Ω of the second harmonic force. The minimization of the
denominator of the r1− component of the transition am-
plitude increases the transition probability appreciably
in this region for n = 5, 10, 20 and 50 corresponding to
the pronounced QVR peaks exhibited by the transition
frequencies of the oscillator as shown in (See Figure 8).

3. Region III: ω > ωfi

In this region for all the states (f = 1, 2, 3 and 4) with
ch = 0.2 fixed, the transition probability exhibits multi-
ple peaks of varying amplitude for n = 5, 10, 20 and 50.
For n = 1, however, |s|2 oscillates slowly with sequential
peaks of decreasing amplitude, without any prominent
maximum peak, as ω increases.

IV. QVR REGIME IN PARAMETER-SPACE:

TRANSITION FROM QVAR TO QVR

In this section, we describe the results of numerical
experiments using several different values of the scaling
integer n. Shown in Figure 9(a,b) is the dependence of
|s|2 on the parameters ω and G for n = 1. Notice that
Figure 9 is a 3-D representative of Figure 5 in which the
occurrence of QVAR was demonstrated in section IV(B)
for selected values of the low-frequency, ω. The 3-D rep-
resentation provides further insight into the parameter
space of ω and G in which resonance is expected to oc-
cur. With Ω = nω and n = 1, we find in Figure 9 that all
the excited bound states exhibit QVAR. However, the lo-
cation and number of QVAR dips/wells is dependent on
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the bound state, f = i(i = 1, . . . , 4). Starting with the
state f = 1, and in the low amplitude regime of the high-
frequency component of the driving force, three distinct
and separated QVAR dips are clearly visible, all of which
occur within the interval 0 < G < 0.3. Moving further
from f = 1 to higher excited bound states f = 2, 3, 4, the
QVAR states become closely bunched in the neighbour-
hood of G < 0.05 with vanishing QVAR. This observed
QVAR resonance feature predominates when n < 50.
The existence of the dips in parameter space shown in
Figure 9(a,b) suggests the likelihood of particle trapping
in energy states low compared to the higher excited en-
ergy states. However, when the intensity of the high-
frequency component of the driving becomes stronger,
the trapping probability tends to zero during the transi-
tion.
When the scaling integer, n becomes large such that

Ω ≫ ω, there is a dramatic reversal in the nature of the
resonance oscillation in which a transition from QVAR to
QVR occur. Here, QVR occurs when n = 50 as shown in
Figure 9(c,d). Two of the most striking features evident
in Figure 9(c,d) are the increase in peak densities and the
appearance of new peaks in the excited bound state, i.e.
fi(i = 1, . . . , 4) of the Tietz-Hua oscillator. The observed
features are characteristic of QVR induced by the high-
frequency component, Ω of the second harmonic field.
The phenomenon appears more pronounced in the low ω
regime (typically, ω = [0, 1]) for all states in which |s|2

exhibits multiple resonances as well as sharply defined
maximum transition probability as shown in Figure 10.
In the preceding discussions, we had set the potential

parameter ch = 0 corresponding to the Morse potential
and chosen an arbitrary value (ch = 0.2) for the TH po-
tential system. In diatomic molecules, ch can take on
a wide range of both negative and positive values (See
for instance Ref. [41, 42, 50, 51]) which determines the
rotation-vibration spectrum of a given molecular system
explicitly. We now consider the behaviour of |s|2 over
wide ranges range of the parameters ch and G, and its
impact on resonance. Illustrated in Figure 10 is the vari-
ation of |s|2 as functions of ch and G. Simulations were
carried out for all the bound states and for different val-
ues of the low-frequency ω[1.0, 1.7, 3.0, 5.0] while fixing
other system parameters. For the state f = 1, QVAR is
predominant for all values of ch with the QVAR depth
located in the neighbourhood of G = 0.1 when ω = 3.0.
In the state f = 2, however, QVAR occurs abundantly at
higher values of ω, namely, ω = 5.0 and as higher energy
states are approached (f = 4) the QVAR seems to disap-
pear, with QVR features (indicated by the red-coloured
regions) predominating.

V. SUMMARY AND CONCLUSIONS

In summary, the phenomenon of vibrational resonance
(VR) occurs when the response of a low-frequency driven
classical oscillator is enhanced by means of a second,

but high-frequency signal whose frequency is compara-
tively very strong relative to the low-frequency force. In
this paper, we have investigated the quantum counter-
part of this phenomenon in a quantum mechanical Tietz-
Hua oscillator driven by a dual-frequency field, consisting
of weak and strong contributions at different frequen-
cies. We explored, identified and classified the varieties
of resonances induced by the high-frequency vibration
characterized by the appearance of minima and max-
ima of the first-order transition probability amplitude,
|s|2 . With only the low-frequency ω component of the
driving force, |s|2 exhibited a sequence of resonances of
decreasing amplitude, with the dominant resonance oc-
curring at the low-frequency ω equal to the transition
frequency of the bound state under consideration. How-
ever, under the combined actions of the low-frequency
and the high-frequency excitations, we found some in-
teresting resonance phenomena, which we clasify as fol-
lows: quantum vibrational resonance (QVR) wherein a
maximum or peak in |s|2 occur, quantum vibrational an-
tiresonance (QVAR) wherein a minimum or dip in |s|2

occur and quantum vibrational multiresonance (QVMR)
wherein either or both QVR and QVAR occur in two or
more bound states, or in a given parameter space.
Conclusively, it was found that the high-frequency ex-

citation field significantly enhances the transition prob-
ability of the bound states when its frequency is very
large in comparison with ω - typically, Ω = 50ω in the
low-frequency ω regime where it may be considered oth-
erwise weak in the presence of a single harmonic force.
Notably, the amplitude G of the high-frequency external
field induces QVAR modes in all of the states considered,
depending on the values of ω. In addition, by setting the
high-frequency component Ω to be an integer multiple
of the low-frequency ω component, QVMR appeared, in
addition to pronounced maximum intensities, and were
found to characterize the excited energy states. The on-
set of maxima depended on the magnitude of n when the
ω < ωfi, ωfi being the transition frequencies. Finally,
in the two-parameter space of ω − G, a transition from
QVAR to QVR, wherein peaks in |s|2 predominates was
found when n ≈ 50. For n < 50 in the ω −G parameter
space, QVAR predominates in all the bound states.

APPENDIX: QUANTUM THEORY OF

VIBRATIONAL RESONANCE

In principle, a quantum mechanical oscillator under-
goes transitions between the energy eigenstates when
subjected to an external field. It is therefore justifiable
to focus our attention on determining the probability
of finding the oscillator in any fth state at time t (See
Ref. [7] for details). The starting point is to consider the
time-dependent Schrödinger equation for any quantum
mechanical system given as

ih
∂ψ

∂t
= Hψ, (6)
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FIG. 9. (Colour online) Three-dimensional views of the transition probability |s|2 as function of ω and G showing the effects
of high-frequency for integer multiples of Ω(Ω = nω): (a),(b) n = 1; and (c),(d) n = 50; ch = 0.2 and g = 0.05.

where ψ(x, t) is the wave function of the perturbed sys-
tem, which may be written as

ψ(x, t) =
∑

n

an(t)φn(x)e
−

iEn
h̄

t. (7)

The probability of finding the system in the state n is

Pn(t) = |an(t)|
2; with

∑

n

|an(t)|
2 = 1. (8)

To determine the probability amplitude, an(t), we apply
standard time-dependent perturbation theory. Suppose
the external field is switched-on at t = 0 and switched-
off at t = T , i.e. after a finite time interval T . Suppose
also that the system was initially in the ith state with
the eigenfunction φi. Then, at t = 0 the probability of
finding the system in the ith state is 1 and the probability
of finding the system in any other state is 0, that is,
an(0) = δni. Under the influence of the applied fields,
the system can make a transition from the ith state to
another state after time T . Once the perturbation is
switched-off, the system settles into a stationary state
and this final state is denoted as f .
Substituting Eq. (7) into Eq. (6) yields

ih̄
∑

n

ȧne
−

iEn
h̄

tφn = λ
∑

H0
1e

−
iEn
h̄

t, (9)

where H0
1 = W (x)e−iωt. Multiplying Eq. (9) by φ∗f and

integrating over all space, we have

ih̄ȧf = λane
−i(ωfn−ω)tHfn (10)

where

ωfn = (Ef − Ei)/h̄ and (11)

Hfn =

∮ ∞

−∞

φ∗fW (x)φndx. (12)

Expanding af (t) = a
(0)
f +λa

(1)
f +λ(2)a

(2)
f + . . ., we obtain

the evolutions for a0f and a1f as

ih̄ȧ
(0)
f = 0 (13)

ih̄ȧ
(1)
f =

∑

a0ne
i(ωfn−ω)tHfn (14)

Thus, Eq. (13) gives a
(0)
f = atf .

Eq. (14) is a set of coupled integro-differential equa-
tions. For a system with n discrete eigenstates Eq. (14)
consists of n equations, each of which has n terms on
the right-side. To simplify the problem, we modify it
slightly by assuming that the perturbation is switched-on
at t = 0 and switched-off at t = T . At t = 0 the sys-
tem may be assumed to reside in the eigenstate φi such
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FIG. 10. (Colour online) Three-dimensional view of the transition probability |s|2 as functions of both ch and G showing the
effects of high-frequency for integer multiples of Ω(Ω = nω), where n = 5 is an integer and g = 0.05. Subplots labelled (a-d)
correspond to different values of the low-frequency ω fixed as [1, 1.7, 3, 5]. (a) f = 1, (b) f = 2, (c) f = 3 and (d) f = 4.

that a0ni = δni. Once the perturbation is switched-off the
system settles down to a stationary final state denoted
by f . We are interested in the probability of finding the
system in the state f after time T . This probability is
denoted as Pfi = a∗faf . Eq. (14) may be written as

ȧ
(1)
f =

1

ih̄
e
−i(ωffi

−ω)t
Hfi . (15)

Integrating Eq. (15) from 0 to T gives

a
(1)
f (T ) =

Hf1

ih̄

∫ T

0

e
−i(ωffi

−ω)t
dt,

=
Hf1

h̄(ωfi − ω)

(

1− e
−i(ωffi

−ω)T
)

. (16)

Then,

Pfi(T ) =
4|Hfi |

2

h̄2(ωfi − ω)2
sin2 [(ωfi − ω)]T/2. (17)

For H1 = x(g cos(ωt) +G cos(Ωt)),

af (T ) =
Hf1

2h̄
s, with s = g(r1+ + r1−) +G(r2+ + r2−),

(18)
and r1± and r2± given, respectively as

r1± =
1− ei(ωf1

±ω)T

(ωf1 ± ω)
, r2± =

1− ei(ωf1
±Ω)T

(ωf1 ± Ω)
(19)

Hfi =

∮ ∞

−∞

φ∗fxφidx. (20)

The transition probability from the ith state to the f th

state is therefore given by Pfi(T )|δfi +λa
(1)
f (T )|2, where

s depends solely on the parameters of the bi-harmonic
forcing and T .
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