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Multi-Layer Ensemble Evolving Fuzzy Inference
System

Xiaowei Gu

Abstract—In order to tackle high-dimensional, complex prob-
lems, learning models have to go deeper. In this paper, a novel
multi-layer ensemble learning model with first-order evolving
fuzzy systems as its building blocks is introduced. The proposed
approach can effectively learn from streaming data on a sample-
by-sample basis and self-organizes its multi-layered system struc-
ture and meta-parameters in a feed-forward, non-iterative man-
ner. Benefiting from its multi-layered distributed representation
learning ability, the ensemble system not only demonstrates the
state-of-the-art performance on various problems, but also offers
high level of system transparency and explainability. Theoretical
justifications and experimental investigation show the validity
and effectiveness of the proposed concept and general principles.

Index Terms—ensemble model, evolving fuzzy system, multi-
layered structure, transparency

I. INTRODUCTION

DEEP neural networks (DNNs, or artificial neural net-
works, ANNs) are the best-known computational intelli-

gence approaches with a multi-layered architecture. DNNs are
powerful representation-learning methods and can automati-
cally learn multiple levels of representations from raw data
through a general-purpose learning procedure. In recent years,
DNNs have gained enormous popularity among the academic
circles and general public thanks to the breakthroughs they
have brought in processing images, videos, texts and speeches
[1]. A number of publications have reported very promising
results using DNNs in various practical applications [2], [3],
and some even suggest that DNNs can match the human
performance on image recognition tasks [4].

Despite of the great success they have achieved, DNNs
are still typical “black-box” systems, computationally cum-
bersome and data-hungry, and they lack theoretical proof
of convergence to the optimal solution [5], [6]. In addition,
DNNs are fragile to new patterns and they fail easily due
to uncertainties. As DNNs are extremely complicated models
with too many hyper-parameters, their reasoning processes
are unexplainable to human, concerns on their trustability
and reliability also have been raised frequently by research
communities and industries [7].

Realizing that the power of DNNs comes from the multi-
layered distributed representations, there have been few works
[5], [8] published recently attempting to build alternative
multi-layer ensemble learning models that can achieve high-
level performance competitive to DNNs but with less afore-
mentioned deficiencies. Nonetheless, the transparency and
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explainability of these models are still limited, and they lack
the ability to handle streaming data.

Evolving fuzzy systems (EFSs), as another key branch of
computational intelligence, are viewed as a powerful tool
for handling complex problems with both measurement and
motion uncertainties [9]. EFSs have demonstrated success in
a wide variety of real-world applications [10]–[14] and is now
an intensively studied area [15]–[19]. Compared with DNNs
[1] and alternative mainstream approaches, e.g., support vector
machine [20], random forest [21], EFSs perform human-like
reasoning and decision-making [6], and their inner system
structure is simpler and more transparent. In addition, the
majority of EFSs are designed for processing streaming data
in a “one pass” manner so that they can efficiently transform
data into knowledge presented in a human-interpretable form.
Currently, there have been a number of successful EFSs
introduced, which include, but are not limited to, DENFIS
[22], eTS [23], SAFIS [24], eClass [25], FLEXFIS [26],
SOFMLS [15], PANFIS [27], GENEFIS [28], McIT2FIS [29],
eT2Class [30] and CNFS [17]. Interested readers may refer to
the recent survey [31] for more details regarding EFSs.

On the other hand, one might notice that EFSs usually could
not reach the same level performance as DNNs for very com-
plex, high-dimensional problems such as image recognition,
due to the simpler system structure and operating mechanism.
They also suffer from system obesity and lose transparency
on these problems [6]. An effective solution to tackle these
issues is to create an ensemble of EFSs to learn from data
[32]. Current ensemble EFS models are composed of a number
of zero-order EFSs [33]–[36] or first-order EFSs [37], [38]
organized in parallel and a fusion module to fuse the processed
information. The vast majority of ensemble EFS models are
designed for classification purpose. The flat ensemble architec-
ture effectively improves the overall computational efficiency
by distributing computations between component learners.
However, such architecture could not significantly enhance
the system performance in terms of classification accuracy
because only the system width is increased. To improve the
representation learning ability, an ensemble model should also
go deeper.

Inspiring by the multi-layered structure of DNNs, in this
paper, a multi-layer ensemble evolving fuzzy inference system
(MEEFIS) is introduced. The proposed approach is based on
an ensemble of multiple-input multiple-output (MIMO) first-
order evolving fuzzy inference systems (EFISs) organized in a
multi-layered architecture. Each layer is based on a number of
EFISs implemented in parallel, which simultaneously process
feature information received from the preceding layer. Each
EFIS only handles a selected subset of input features to
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guarantee the diversity. Outputs from all EFISs at the same
layer are cascaded together to form the inputs of the next
layer. Unlike DNNs, MEEFIS is capable of self-developing
and self-evolving its system structure and meta-parameters
on the fly from streaming data to follow the possible shifts
and/or drifts in the data patterns. More importantly, MEEFIS
maintains the advantages of high transparency and human-
interpretability that are typical for EFSs and, at the same time,
it can achieve very high performance on various problems
thanks to the multi-layered distributed representation learning
ability.

Key features of the proposed approach include: (1) a self-
evolving multi-layered parallel computation structure; (2) bet-
ter representation learning ability benefited from its deeper
structure, and; (3) stronger capability to handle large-scale,
nonstationary, complex problems. Comparing with existing
ensemble EFS models [33]–[38], the proposed approach has
a deeper structure composed of multiple layers of intercon-
nected EFISs, thus, it is capable of learning multiple levels
of representations from data and has stronger approximation
ability to nonlinear problems. In addition, it is more generic
and applicable to both regression and classification tasks.

The remainder of this paper is organized as follows. Section
II presents the technical details of the proposed ensemble
approach. To be more specific, the ensemble structure is
described by equations (1)-(4) in Section II.A, and the self-
evolving process of each individual EFIS within the ensemble
is described by equations (5)-(19) in Section II.B. Numerical
experiments are presented in Section III as a proof of concept.
This paper is concluded by Section IV.

II. PROPOSED APPROACH

In this section, the general architecture and learning process
of MEEFIS are described in detail. Computational complexity
analysis is provided in Supplementary Material.

A. General architecture

The general architecture of MEEFIS is depicted in Fig. 1.
The proposed system is an ensemble of many EFISs that
are connected and arranged in layers. Inputs are processed
layer-by-layer within the ensemble system until the final layer
generates outputs and, the structure and meta-parameters of
each EFIS are dynamically self-updating on a sample-by-
sample basis during the learning process from streaming data.

For each new input sample, a number of sub-samples are
firstly created by sliding window scanning. Then, these sub-
samples are fed to the respective EFISs in the input layer
(the first layer) to perform system updating in parallel. The
number of EFISs needed for a particular layer is determined
by the sliding window scanning. This means that if the sliding
window splits input features into M subsets, M EFISs will
be implemented in this layer to process input information
simultaneously. The outputs (namely, processed feature infor-
mation) of these EFISs are integrated together and used as
the input of the second layer. The same procedure repeats at
the second layer and layers after. The final EFIS at the last
layer plays as the decision-maker of the ensemble model and

produces the final outcome based on the input features from
the previous layer. Note that the ensemble architecture of the
proposed approach needs to be determined at the beginning,
which includes the number of layers and parameter settings
of the sliding window used for each layer (window size and
step size) .

Fig. 1: General architecture of MEEFIS.

The inner structure of EFIS is given by Fig. 2. The system
is composed of L linear models identified through its inher-
ent learning process. These linear models are described by
prototype-based fuzzy rules in the following form [16], [39]:

Ri : IF (x ∼ pi) THEN (yi = x̄Tai); (1)

where i = 1, 2, ..., L; L is the number of linear models
(fuzzy rules) within the system; x = [x1, x2, ...xK ]T is the
K dimensional input; x̄ = [1,xT ]T ; pi is the antecedent part
(prototype) of Ri; ai = [ai,1,ai,2, ...,ai,W ] is the consequent
parameter matrix and there is ai,j = [ai,j,0, ai,j,1, ..., ai,j,K ]T

(j = 1, 2, ...,W ); yi = [y1, y2, ...yW ] is the 1×W dimensional
output of Ri.

The general mathematical model of EFIS is given by [16]:

y = f(x) =

L∑
i=1

λiyi, (2)

where λi is the firing strength of the ith fuzzy rule, Ri.
Based on equation (2), the input-output relation of a partic-

ular layer (assuming the nth layer) of MEEFIE is formulated
as follows.

Y n = Fn(Xn) = [fn1 (xn
1 ), ..., fnM (xn

M )]T , (3)

where Xn and Y n are the respective input and output vectors
of the nth layer; M is the number of EFISs implemented in
this layer; the dimensionality of Y n is MW × 1; xn

1 , ...,x
n
M

are the M sub-samples split from Xn by sliding window,
and; fnj (·) represents the jth EFIS model at this layer (j =
1, 2, ...,M ).

Consider that the output of the nth layer serves as the
input of the (n + 1)th layer (namely, Xn+1 ← Y n), the
overall ensemble system can be mathematically modeled by
the following composite function:

Y = (FN ◦ FN−1 ◦ ... ◦ F 1)(X), (4)

where X is the Q×1 dimensional raw input of MEEFIS, and;
Y is the W × 1 dimensional final output (see Fig. 1).
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Fig. 2: Inner structure of EFIS [16].

B. Learning process

As stated in Section II.A, all EFISs within the ensemble
system work collaboratively to process input feature informa-
tion and generate the final output. Since every EFIS follows
the exact same algorithmic procedure for system identification,
only the learning process of a single EFIS is described below.
The same principles can be applied to all EFISs within the
ensemble system. Note that EFIS differs from its predecessors,
eTS [23] and ALMMo [16] (which itself is a more advanced
version of eTS) from the following aspects:

1) The structure updating mechanism is simplified to better
preserve the learned knowledge, new fuzzy rules will not
replace the previously identified ones;

2) The consequent parameter updating mechanism is opti-
mized to reduce the computational complexity, only the
more activated fuzzy rules are updated at each learning
cycle.

Stage 1. System initialization
The system is initialized by the first input vector, xk (k = 1)

with its global meta-parameters set as:

µ← xk; χ← ||xk||2; (5)

where ||xk|| denotes the Euclidean norm of xk; µ and χ are
the global means of input vectors and their squared Euclidean
norms, respectively.

The first fuzzy rule, RL (L = 1) is initialized in the form
of equation (1) with its premise and consequent parameters
defined as:

pL ← xL; aL ← 0(K+1)×W ; ΘL ← ΩoI(K+1)×(K+1);
(6)

where ΘL is the covarience matrix of RL; I(K+1)×(K+1) is
the (K+ 1)× (K+ 1) dimensional identity matrix. Note that,
Ωo is an externally controlled parameter for initializing ΘL,
which is standard for recursive least squares algorithms [40].
In this paper, Ωo = 100.

Meta-parameters of the cluster, CL formed around pL
resembling Voronoi tessellation are initialized as:

CL ← {xk}; XL ← ||xk||2; SL ← 1. (7)

where SL is the cardinality (number of members) of CL.
Stage 2. Output generation
Each time the system receives a new input vector, xk (k ←

k + 1), the local density, Di(xk) of xk at each cluster is
evaluated firstly using equation (8) (i = 1, 2, ..., L):

Di(xk) = e
− ||xk−p̂i||

2

X̂i−||p̂i||2 . (8)

where p̂i and X̂i are calculated by equation (9), respectively
[16]:

p̂i =
Sipi + xk

Si + 1
; X̂i =

SiXi + ||xk||2

Si + 1
. (9)

The firing strength of each fuzzy rule, defined as the
normalized local density, is calculated by equation (10) (i =
1, 2, ..., L) [16]:

λi,k =
Di(xk)∑L
j=1Dj(xk)

. (10)

Then, the system output, ŷk is produced by equation (2).
Stage 3. Structure updating
In this stage, the global meta-parameters, µ and χ are

updated as [16]:

µ← (k − 1)µ+ xk

k
; χ← (k − 1)χ+ ||xk||2

k
. (11)

To testify the potential of xk to initialize a new fuzzy rule,
the global density values at xk and pi (i = 1, 2, ..., L) are
calculated firstly by equation (12):

D(z) = e
− ||z−µ||

2

χ−||µ||2 ; z ∈ {xk,p1,p2, ...,pL}. (12)

Then, Condition 1 is checked [16], [41]:

Cond. 1 : If (D(xk) < min
i=1,2,...,L

(D(pi)))

Or (D(xk) > max
i=1,2,...,L

(D(pi)))

And (Di(xk) ≤ D0)

Then (xk becomes a new prototype)

(13)

where D0 = e−
1
4 . If Condition 1 is satisfied, a new fuzzy

rule RL (L← L+ 1) is added to the rule base with xk as its
antecedent part, namely, pL ← xk. Its consequent parameters
are initialized by equation (14) [16]:

aL ←
1

L− 1

L−1∑
i=1

ai; ΘL ← ΩoI(W+1)×(W+1). (14)

The meta-parameter of the new cluster, CL, which is associ-
ated with pL, are set by equation (7).

Otherwise, xk is used for updating the antecedent part of
Rn∗ and meta-parameters of Cn∗ [16]:

Cn∗ ← Cn∗ ∪ {xk}; pn∗ ←
Sn∗pn∗ + xk

Sn∗ + 1
;

Xn∗ ←
Sn∗Xn∗ + ||xk||2

Sn∗ + 1
; Sn∗ ← Sn∗ + 1;

(15)

where n∗ = argmin
j=1,2,...,L

(||pj − xk||2).

For the fuzzy rules and the associated clusters that are not
updated, their meta-parameters stay the same for the next
processing cycle.

Stage 4. Fuzzy rule quality monitoring
To improve computational efficiency and reduce system

complexity, the fuzzy rules and associated clusters that rep-
resent less dominant data patterns and contribute less to
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the overall system outputs are removed from the rule base.
Condition 2 is utilized to identify such fuzzy rules [16], [41]:

Cond. 2 : If (ηi,k < η0) Then (Ri and Ci are removed)
(16)

where ηi,k (i = 1, 2, ..., L) is the utility of Ri (i = 1, 2, ..., L)
at the kth time instance defined by equation (17); η0 is another
externally controlled parameter for quality monitoring, here
η0 = 0.1 following the setting of [16], [41].

ηi,k =
1

k − Ii

k∑
j=Ii

λi,j ; (17)

where Ii denotes the time instance at whichRi was initialized;
λi,j is the firing strength of Ri calculated by equation (10) at
the jth time instance.

Stage 5. Consequent parameter updating
After the structure updating, the consequent parameters of

the system are going to be updated in this stage. The system
only updates the fuzzy rules that satisfy Condition 3:

Cond. 3 : If (Di(xk) ≥ D1) Then (Ri is updated) (18)

where i = 1, 2, ..., L; D1 = e−4. If Ri satisfies Condition 3,
its prototype is closer to xk and its corresponding consequent
parameters (ai and Θi) are updated by the fuzzily weighted
recursive least square algorithm [23]:

Θi ← Θi −
λiΘix̄kx̄

T
k Θi

1 + λi,kx̄T
k Θix̄k

;

ai ← ai + λiΘix̄k(yk − x̄T
k ai).

(19)

Instead of updating the whole rule base [16], which is
computationally expensive and does not necessarily guarantee
the optimal solution [41], updating the fuzzy rules that are
more activated by the current input can significantly reduce the
computational burden, especially, when the system identifies
a large number of fuzzy rules from data. This effectively
strengthens the capability of EFIS to handle large-scale, com-
plex problems.

Once the system structure and meta-parameters are updated
to the latest, the system goes back to Stage 2 and processes
the next input vector. To summarize, the main algorithmic
procedure of the system identification process is presented in
the form of pseudo-code given by Algorithm 1.

III. EXPERIMENTAL INVESTIGATION

A. Configuration
In this section, experimental studies are conducted for

validating the proposed concept and general principles. The
performance of MEEFIS is evaluated on a wide range of
benchmark problems and compared with the state-of-the-art
approaches. Details of comparative algorithms are tabulated in
Supplementary Table. I. The algorithms were developed using
MATLAB2018a, and numerical experiments were performed
on a desktop with dual core i7 processor 3.60GHz×2 and
16.0GB RAM.

Since the goal is to demonstrate that a multi-layered
ensemble of EFISs can outperform the state-of-the-art ap-
proaches with a general experimental setting across a va-
riety of tasks, MEEFIS is using the same three-layered

Algorithm 1 EFIS identification.

while (new input, xk is available) do
if (k = 1) then
L← 1;
initialize µ, χ, RL and CL by (5)-(7);

else
generate ŷk by (2);
update µ and χ by (11);
n∗ = argmin

j=1,2,...,L
(||pj − xk||2);

if (xk satisfies Condition 1) then
L← L+ 1;
initialize RL and CL by (14) and (7);

else
update Rn∗ and Cn∗ by (15);

end if
for i = 1 to L do

if (Ri satisfies Condition 2) then
remove Ri and Ci;
L← L− 1;

end if
end for
for i = 1 to L do

if (Ri satisfies Condition 3) then
update ai and Θi by (19);

end if
end for

end if
end while

architecture in all numerical examples. A sliding window
with window size of dQ2 e and step size of bQ4 c is em-
ployed by the first layer to split each input data sample,
X = [x1, x2, ..., xQ]T into four sub-samples, namely, x1

1 =
[x1, x2, ..., xdQ2 e

]T , x1
2 = [x1+bQ4 c

, x2+bQ4 c
, ..., xdQ2 e+b

Q
4 c

]T ,
x1
3 = [x1+2bQ4 c

, x2+2bQ4 c
, ..., xdQ2 e+2bQ4 c

]T and x1
4 =

[x1+3bQ4 c
, ..., xQ, x1, ..., xQ−3bQ4 c

]T . The second layer uses a
sliding window with window size of 3W and step size of
W to divide the input features received from the previous
layer, Y 1 = [y1

1 ,y
1
2 ,y

1
3 ,y

1
4 ]T into four subsets, namely, x2

1 =
[y1

1 ,y
1
2 ,y

1
3 ]T , x2

2 = [y1
2 ,y

1
3 ,y

1
4 ]T , x2

3 = [y1
3 ,y

1
4 ,y

1
1 ]T and

x2
4 = [y1

4 ,y
1
1 ,y

1
2 ]T , where Q and W are the dimensionality

of system inputs and outputs, respectively. Thus, the three-
layer ensemble model is composed of nine EFISs in total,
namely, four in the first layer, another four in the second
layer and one in the last layer. The structure of MEEFIS for
numerical studies is also given in Supplementary Fig. 1 for
better illustration. Note that the model used in experiments is
only for conceptual demonstration, the architecture of MEEFIS
is, in fact, very flexible. In practice, one may explore different
ensemble architectures to find the best-performing models, but
this is out of the scope of this paper.

B. Results

1) Real-world regression problems: In the first example,
five real-world benchmark problems, namely, (1) Autos, (2)
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Autompg, (3) Triazines, (4) Delta Ailerons and (5) California
Housing, are used for performance evaluation. Details of the
five datasets are given by Supplementary Table II. All the input
and output features are normalized in advance to the range
of [0, 1] as the common practice. During each experiment,
MEEFIS learns from the training set on a sample-by-sample
basis and then is tested on the validation set. Experimental
results in terms of root mean square error (RMSE) of the
predictions and the total number of fuzzy rules within the
ensemble system (#rules) obtained by MEEFIS are reported
in Table I. The average number of fuzzy rules per component
learner (EFIS) is presented in the bracket. The results obtained
by its single-model version, namely, EFIS are also reported in
the same table as baseline. It can be seen from Table I that
the prediction error of EFIS is generally lower than MEFIS on
the smaller-scale problems, namely, Autompg, Triazines and
Delta Ailerons. This is because MEEFIS has more trainable
parameters compared with EFIS and, thus, more training
samples are needed for MEEFIS in order to fully exploit its
strength.

To verify this, in the following experiments, MEEFIS is
trained on the same training set for 5 and 10 epochs, respec-
tively, before testing, and the obtained results are reported in
Table I as well. Note that during the experiments, the structure
of MEEFIS is fixed after the first training epoch and only
the premise and consequent parameters are updated in the
later training epochs to avoid overfitting. For comparison, the
results obtained by EFIS following the same experimental
protocols are also reported in the same table. It is shown
by Table I that the prediction errors by MEEFIS on the
five datasets reduced by 14.8%, 32.2%, 89.0%, 3.1% and
17.6%, respectively, after 5 epochs. In contrast, the prediction
errors on the five datasets by EFIS only reduced by 4.7%,
16.7%, 14.3%, 2.5% and 13.3%, respectively. Moreover, the
prediction performance of MEEFIS is much higher than EFIS
on Autos, Autompg, Triazines and California Housing datasets
after 10 training epochs, which shows the stronger learning
ability of the ensemble system.

In the next numerical example, performances of the pro-
posed approach with different ensemble architectures are in-
vestigated on the five benchmark problems. For clarity, the
architecture for experiments as described in Section III.A
is re-denoted as Arch. 1. Arch. 2 and Arch. 3 follow the
same framework as Arch. 1. However, the window size of
the sliding window used by the second layer of Arch. 2 and
Arch. 3 is modified to 2W and W , respectively. Additionally,
a two-layer ensemble architecture, denoted by Arch. 4 and a
four-layer ensemble architecture, denoted by Arch. 5 are also
involved for experimental investigation. Both Arch. 4 and Arch.
5 are given in Supplementary Figs. 2(a) and 2(b) for better
demonstration. Specifically, the window size of both sliding
windows employed by the second and third layers of Arch.
5 is set as 3W . The obtained numerical results by the five
different architectures are reported in Supplementary Table
III. It can be observed from this table that given the same
ensemble architecture, in general, a larger sliding window
size can lead to better prediction performance because each
EFIS at the second layer is able to receive and utilize more

information from the previous layer. Another interesting phe-
nomenon worth to be noticed is that despite of higher system
complexity, a deeper ensemble architecture generally performs
better comparing with shallow ensemble architectures. This
also validates the proposed concept and general principles.

The performance of MEEFIS is further compared with pop-
ular EFSs such as OS-Fuzzy-ELM [42], CEFNS [17], ESAFIS
[43], eTS [23], ALMMo [16] and its optimized version, SB-
ALMMo [41] on the five benchmark datasets. Performance
comparison based on RMSE, training time (texe, in seconds)
and #rules is presented in Table II. In addition, the proposed
approach is tested on the widely-used chaotic Mackey–Glass
time series problem (details of this problem are given in Sup-
plementary Material). Numerical results obtained by MEEFIS
as well as other comparative algorithms are reported in Table
III in terms of non-dimensional error index (NDEI), texe
and #rules. The definition of NDEI is given by equation (20).
Note that MEEFIS is trained for 10 epochs in the experiments.
The average number of fuzzy rules and training time per
component learner is presented in the bracket. It is clearly
shown in Tables II and III that MEEFIS outperforms all the
comparative EFSs in terms of prediction accuracy. Moreover,
it is worth to be noticed that the computational efficiency and
system complexity of each component learner is, in fact, on
the same level with other comparative EFSs.

NDEI =

√∑k
j=1(ŷj − yj)2

kσ2
(20)

where ŷj and yj are the system output and the corresponding
true value at the jth time instance (j = 1, 2, ..., k), respec-
tively; σ is the standard deviation of the true value.

2) Nonstationary regression problems: Nonstationary re-
gression problems usually have much more frequent and
intensive changes in data patterns and are very useful for
evaluating the performance of EFSs in complex real-world
application scenarios. In this paper, the following two real-
world financial data prediction problems are considered for
performance evaluation: (1) QuantQuote second resolution
market dataset, and; (2) S&P 500 closing price prediction
dataset. Details of the two datasets and experimental protocols
are given in Supplementary Material. The step-by-step online
perdition results by MEEFIS and alternative EFSs in terms
of NDEI and #rules are reported in Table IV and V. The
average number of fuzzy rules per component learner (EFIS)
of MEEFIS is presented in the bracket. Both tables clearly
show that MEEFIS can efficiently and effectively react to the
changing data patterns in the data stream and make accurate
prediction surpassing the alternatives.

3) Benchmark classification problems: This example stud-
ies the performance of MEEFIS for classification tasks. The
following popular benchmark datasets are involved for ex-
periments, namely, (1) Letter Recognition (LR), (2) Multiple
Features (MF), (3) Optical Recognition of Handwritten Digits
(ORHD), (4) Pen-based Recognition of Handwritten Digits
(PRHD) and (5) Wilt (WI). Details of the five classification
problems are summarized in Supplementary Table IV. For
ORHD, PRHD and WI datasets, the order of training samples

Authorized licensed use limited to: Lancaster University. Downloaded on May 12,2020 at 12:15:58 UTC from IEEE Xplore.  Restrictions apply. 



1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2020.2988846, IEEE
Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 6

TABLE I: PERFORMANCE DEMONSTRATION ON BENCHMARK REGRESSION PROBLEMS

Algorithm Epoch Autos Autompg Triazines Delta Ailerons California Housing
RMSE #rules RMSE #rules RMSE #rules RMSE #rules RMSE #rules

MEEFIS
1 0.0405

57 (6.3)
0.0932

60 (6.7)
0.0263

67 (7.4)
0.0516

58 (6.4)
0.0743

78 (8.7)5 0.0345 0.0632 0.0029 0.0500 0.0612
10 0.0334 0.0609 0.0018 0.0499 0.0607

EFIS
1 0.0445

7
0.0831

6
0.0035

7
0.0513

8
0.0805

105 0.0424 0.0692 0.0030 0.0500 0.0698
10 0.0430 0.0686 0.0026 0.0499 0.0696

TABLE II: PERFORMANCE COMPARISON ON BENCH-
MARK REGRESSION PROBLEMS

Dataset Algorithm RMSE texe #rules
Autos MEEFIS 0.0334 1.24 (0.14) 57 (6.3)

OS-Fuzzy-ELM 0.0595 0.03 2
CEFNS 0.0666 0.02 2
ESAFIS 0.0604 0.22 3

eTS 0.0535 0.22 3
ALMMo 0.0565 0.10 8

SB-ALMMo 0.0456 0.28 4
Autompg MEEFIS 0.0609 2.29 (0.26) 60 (6.7)

OS-Fuzzy-ELM 0.0765 0.05 3
CEFNS 0.0750 / 2
ESAFIS 0.0731 0.05 33

eTS 0.0864 2.01 6
ALMMo 0.0842 0.22 9

SB-ALMMo 0.0934 0.40 3
Triazines MEEFIS 0.0018 1.56 (0.17) 67 (7.4)

OS-Fuzzy-ELM 0.0100 2.46 6
CEFNS 0.0452 0.02 6
ESAFIS 0.0331 24.44 19

eTS 0.0179 3.52 9
ALMMo 0.0078 0.19 7

SB-ALMMo 0.0022 2.34 3
Delta MEEFIS 0.0499 28.41 (3.16) 58 (6.4)

Ailerons OS-Fuzzy-ELM 0.0507 0.46 3
CEFNS 0.0502 0.34 3
ESAFIS 0.0506 12.39 13

eTS 0.0513 2.14 4
ALMMo 0.0513 0.58 10

SB-ALMMo 0.0512 1.22 4
California MEEFIS 0.0607 97.22 (10.80) 78 (8.7)
Housing OS-Fuzzy-ELM 0.1302 6.73 5

CEFNS 0.0878 1.54 2
ESAFIS 0.0892 30.23 6

eTS 0.0772 7.61 3
ALMMo 0.0782 1.24 10

SB-ALMMo 0.0771 4.70 5

TABLE III: PERFORMANCE COMPARISON ON
MACKEY-GLASS TIME SERIES PROBLEM

Algorithm NDEI texe #rules
MEEFIS 0.1392 2.92 74 (8.2)

OS-Fuzzy-ELM 0.2991 0.93 5
CEFNS 0.2635 0.44 5

SAFIS [24] 0.38 / 6
ESAFIS 0.2955 5.83 6

eTS 0.3805 / 9
ALMMo 0.4437 0.46 7

SB-ALMMo 0.4402 0.86 4
GENEFIS (C) [28] 0.280 4.46 19
GENEFIS (B) [28] 0.339 3.02 9

LEOA [44] 0.2480 144.78 42

TABLE IV: PERFORMANCE COMPARISON ON QUAN-
TQUOTE DATASET

Algorithm y = xk+8,2 y = xk+24,2

NDEI #rules NDEI #rules
MEEFIS 0.129 67 (7.4) 0.165 79 (8.8)

EFIS 0.140 6 0.198 6
DENFIS [22] 1.598 12 1.582 12

eTS 0.183 6 0.271 7
SAFIS 0.554 20 0.779 14

ESAFIS 0.235 3 0.292 3
ALMMo 0.146 6 0.204 6

TABLE V: PERFORMANCE COMPARISON ON S&P 500
DATASET

Algorithm NDEI #rules
MEEFIS 0.0124 85 (9.4)

EFIS 0.0147 15
ALMMo 0.0149 7

PANFIS [27] 0.09 4
GENEFIS [28] 0.07 2

LEOA [44] 0.1229 52
SEFS [19] 0.0182 2

EFS-SLAT [45] 0.0156 23

is randomly scrambled. For LR and MF datasets, all the data
samples are firstly split into 10 folds evenly, and five of
the 10 folds are randomly selected to train the algorithms
and the remaining folds are used for testing. The statistical
performance of the proposed MEEFIS (classification accuracy,
Acc and texe) on MF, ORHD and PRHD datasets are tabulated
in Table VI after 10 Monte-Carlo experiments, and the results
on LR and WI datasets are given in Supplementary Table V.
Note that in this example, MEEFIS is trained for 10 epochs.
As for classification problems, fuzzy rules that represent
less dominant data patterns may play a significant role in
classification, the same experiments are repeated by setting
η0 = 0, which means that each EFIS within the ensemble
system will not forget any knowledge gained during training.
A wide variety of state-of-the-art classification algorithms
including EFSs, ANNs, popular ensemble approaches such as
AdaBoost (AdaBo) [46] and random forest (RanFor) [21] are
used for comparison under the same experimental protocol,
and their results are reported in the same tables.

As it is clearly shown in Table VI and Supplementary Table
V, MEEFIS outperforms alternative EFSs in terms of testing
accuracy, and is on par with the best-performing classification
algorithms on all five problems. Moreover, thanks to Con-
dition 3, the computational complexity of MEEFIS is not
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TABLE VI: PERFORMANCE COMPARISON ON BENCHMARK CLASSIFICATION PROBLEMS

Algorithm MF ORHD PRHD
Acc texe Acc texe Acc texe

MEEFIS (η0 = 0.1) 0.9817±0.0033 246.06±16.86 0.9462±0.0031 83.31±1.21 0.9176±0.0037 137.43±7.10
MEEFIS (η0 = 0) 0.9769±0.0041 287.77±32.91 0.9604±0.0019 108.34±5.34 0.9567±0.0044 159.72±9.52

AdaBo 0.9764±0.0064 7.46±0.45 0.9321±0.0000 1.49±0.12 0.9240±0.0007 2.54±0.82
RanFor 0.9690±0.0109 15.44±0.43 0.9331±0.0020 5.58±0.35 0.9495±0.0011 6.29±0.84
MLP 0.8648±0.0331 0.53±0.25 0.9243±0.0077 0.70±0.24 0.9177±0.0180 0.92±0.17

LSTM 0.6529±0.0116 64.46±2.90 0.7726±0.0544 5.61±0.91 0.8218±0.0280 34.29±7.82
ESAFIS 0.5938±0.1896 278.62±58.83 0.9538±0.0067 32.24±10.36 0.9197±0.0134 38.80±5.93
eClass0 0.7990±0.0113 2.22±0.27 0.8937±0.0000 0.75±0.07 0.7630±0.0001 0.73±0.08

ALMMo 0.9696±0.0076 108.74±13.92 0.9168±0.0089 4.67±0.23 0.8279±0.0073 2.26±0.29

TABLE VII: TESTING ACCURACY COMPARISON ON IMAGE RECOGNITION PROBLEMS

Algorithm MNIST (#Training Images) Fashion MNIST (#Training Images)
10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000

MEEFIS (η0 = 0.1) 0.9742 0.9745 0.9746 0.9748 0.9751 0.9754 0.8765 0.8786 0.8797 0.8801 0.8799 0.8810
MEEFIS (η0 = 0) 0.9756 0.9765 0.9773 0.9775 0.9778 0.9788 0.8834 0.8881 0.8896 0.8905 0.8913 0.8916

AdaBo 0.9446 0.9447 0.9446 0.9446 0.9454 0.9451 0.8178 0.8187 0.8190 0.8196 0.8199 0.8192
RanFor 0.9477 0.9559 0.9602 0.9606 0.9626 0.9631 0.8638 0.8733 0.8778 0.8816 0.8847 0.8872
MLP 0.4543 0.4717 0.6232 0.5848 0.6351 0.5650 0.6304 0.7451 0.8028 0.7739 0.8045 0.8318

eClass0 0.8470 0.8556 0.8512 0.8603 0.8551 0.8500 0.7289 0.7303 0.7147 0.7497 0.7233 0.7167
ALMMo 0.9676 0.9695 0.9707 0.9715 0.9722 0.9723 0.8666 0.8694 0.8696 0.8699 0.8702 0.8705

significantly increased without removing the fuzzy rules that
contribute less to the outputs during the training stage.

4) Image recognition problems: In the final example, two
widely-used image recognition datasets, namely, MNIST and
Fashion MNIST, are used for performance evaluation. Details
of both datasets are given in Supplementary Material. During
the experiments, MEEFIS (with η0 = 0.1 and η0 = 0) and
other comparative algorithms are trained on the training sets
of different sizes (10000, 20000, 30000, 40000, 50000 and
60000 images), and then, tested on the validation sets. The
average testing accuracy rates by the involved algorithms are
reported in Table VII after 10 Monte-Carlo experiments. It
can be seen from Table VII that MEEFIS outperforms all
competitors in terms of average classification accuracy rates
on both benchmark image sets.

C. Discussion
Numerical examples presented in this section demonstrate

that MEEFIS outperforms the state-of-the-art learning ap-
proaches on various prediction and classification tasks. Thanks
to its multi-layered ensemble architecture, MEEFIS can learn
multi-layered distributed representations from data and achieve
much better results than alternative single-model EFSs on
large-scale, complex problems. In addition, it is also justified
by numerical results that the performance of MEEFIS can be
further improved by increasing the system depth.

However, as all the experiments were performed on a single
desktop, the computational complexity of MEEFIS appears to
be higher than its single-model counterparts. The proposed
ensemble model, in fact, is highly parallelizable since all the
component learners can be implemented in parallel on different
computing nodes. The computational efficiency of MEEFIS
can be significantly improved through parallelization.

On the other hand, it is also shown by numerical experi-
ments that MEEFIS requires more training samples because

of its deeper ensemble structure. In the future, the learning
efficiency of MEEFIS needs to be improved. Ideally, MEEFIS
should be able to learn a well-performing ensemble model
with a smaller amount of training samples.

IV. CONCLUSION

This paper explores the possibility to build alternative
multi-layered learning model using EFSs and introduces a
novel ensemble fuzzy system named MEEFIS. The proposed
system can learn multi-layered distributed representations from
streaming data and continuously self-develop itself to follow
the changing data patterns. Experimental investigation shows
that MEEFIS is able to achieve high-level performance on a
wide variety of benchmark problems, demonstrating the very
promising future of this work.

Nevertheless, it has to be admitted that this paper only
presents a seminal work and a few preliminary results on
prediction and classification problems. There is much to ex-
plore in this direction. There are several considerations for
future work. Firstly, the performance and learning efficiency
of the component learner, namely, EFIS need to be further
improved. One may also consider to replace it with more
advanced EFSs. Secondly, this paper only explores a few
types of ensemble architectures in numerical experiments, it
is worth to try alternative ensemble architectures and see
how they perform on different problems. Thirdly, it would be
very interesting to build an ensemble system with different
types of EFSs that utilize different algorithmic procedures
for system identification. Such an ensemble learning model
may demonstrate far better performance than the approach
presented in this paper.
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networks for image classification,” in International Conference on Com-
puter Vision and Pattern Recognition, 2012, pp. 3642–3649.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
surpassing human-level performance on imagenet classification,” in IEEE
international conference on computer vision, 2015, pp. 1026–1034.

[5] Z. H. Zhou and J. Feng, “Deep forest: towards an alternative to deep neu-
ral networks,” in International Joint Conference on Artificial Intelligence,
2017, pp. 3553–3559.

[6] H. Hagras, “Toward human-understandable, explainable AI,” Computer
(Long. Beach. Calif)., vol. 51, no. 9, pp. 28–36, 2018.

[7] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,”IEEE Transactions on Evolutionary Computation, vol.
23, no. 5, pp. 1–1, 2019.

[8] J. Feng, Y. Yu, and Z. H. Zhou, “Multi-layered gradient boosting decision
trees,” in Advances in neural information processing systems, 2018, pp.
3551-3561.

[9] E. Lughofer, Evolving fuzzy systems-methodologies, advanced concepts
and applications. Berlin: Springer, 2011.

[10] L. Maciel, R. Ballini, and F. Gomide, “Evolving possibilistic fuzzy mod-
eling for realized volatility forecasting with jumps,” IEEE Transactions
on Fuzzy Systems, vol. 25, no. 2, pp. 302–314, 2017.

[11] R. E. Precup, T. A. Teban, A. Albu, A. I. Szedlak-Stinean, and C. A.
Bojan-Dragos, “Experiments in incremental online identification of fuzzy
models of finger dynamics,” Romanian Journal of Information Science
and Technology, vol. 21, no. 4, pp. 358–376, 2018.

[12] I. S̆krjanc, G. Andonovski, A. Ledezma, O. Sipele, J. A. Iglesias, and
A. Sanchis, “Evolving cloud-based system for the recognition of drivers’
actions,” Expert Systems with Applications, vol. 99, pp. 231–238, 2018.

[13] J. De Jesús Rubio, D. R. Cruz, I. Elias, G. Ochoa, R. Balcazarand, and
A. Aguilar, “ANFIS system for classification of brain signals,” Journal
of Intelligent & Fuzzy Systems, vol. 37, no. 3, pp. 4033–4041, 2019.
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