
1

A Self-Training Hierarchical Prototype-Based Approach for Semi-

Supervised Classification

Xiaowei Gu

School of Computing and Communications, Lancaster University, Lancaster, UK

Email: x.gu3@lancaster.ac.uk; xw.gu@hotmail.com

Abstract: This paper introduces a novel self-training hierarchical prototype-based approach for semi-supervised

classification. The proposed approach firstly identifies meaningful prototypes from labelled samples at multiple

levels of granularity and, then, self-organizes a highly transparent, multi-layered recognition model by arranging

them in a form of pyramidal hierarchies. After this, the learning model continues to self-evolve its structure and

self-expand its knowledge base to incorporate new patterns recognized from unlabelled samples by exploiting the

pseudo-label technique. Thanks to its prototype-based nature, the overall computational process of the proposed

approach is highly explainable and traceable. Experimental studies with various benchmark image recognition

problems demonstrate the state-of-the-art performance of the proposed approach, showing its strong capability to

mine key information from unlabelled data for classification.

Keywords: self-training, prototype-based, hierarchical structure, semi-supervised learning, classification

1. Introduction

Classification is often considered as a supervised machine learning technique for predicting class labels of new

observations. Traditional classification approaches use only labelled data to build recognition models. In reality,

however, labelled samples are scarce and expensive to obtain [15], which usually requires slow human annotation

and expensive laboratory experiments. Although unlabelled samples are plentiful and relatively easier to collect,

supervised learning approaches are unable to utilize them [44],[48]. Semi-supervised learning approaches, on the

other hand, go beyond traditional supervised learning and overcome the labelling bottleneck by involving a great

amount of unlabelled data together with labelled ones to build stronger recognition models [37]. As semi-

supervised learning approaches require less human labour and can exhibit better classification performance, they

have been increasingly explored both in theory and in practice [4],[48].

Self-training is a simple and effective semi-supervised learning methodology following the idea of “pseudo label”

[18],[23]. A standard self-training algorithm usually employs a mainstream classifier, such as neural network

(NN) [18],[41], k-nearest neighbour (KNN) [14],[35], support vector machine (SVM) [19],[23],[24] or decision

tree (DT) [23],[33], etc., as the base learner and iteratively enlarges the labelled training set with high-confidence

predictions by its base learner, namely, pseudo-labelled samples [33]. However, standard self-training approaches

require the base classifier to be fully retrained with both labelled and pseudo-labelled data in each iteration [40],

which is computationally complex. Moreover, misclassifying a number of unlabelled samples is always inevitable

during the self-training process because of insufficient labelled samples. Error detection and label modification

usually are unable to correct all mistakes due to the lack of information [40]. Pseudo-labelling errors can easily

propagate within the base classifier due to the iterative computational process, which, in turn, may significantly

deteriorate classification performance. Another problem worthy of attention is that the generic classifiers

employed by standard self-training approaches lack transparency and human-interpretability. Although

complexity measures [12] can be applied to data for disclosing the geometrical characteristics of the class

distributions in the original data space (as well as in the kernel space for SVM), NN and SVM are widely

recognized as typical “black box” models. KNN and DT are also extremely hard to interpret when dealing with

high-dimensional, large-scale, and complex problems. This makes the overall self-training process opaque. In

addition, there is no easy way to fix the classifier when error occurs. To overcome these issues, one feasible

solution is to replace the mainstream classifiers with a more advanced one, which has a transparent system

structure and is capable of learning from data in a non-iterative, “one pass” manner.

mailto:x.gu3@lancaster.ac.uk
mailto:xw.gu@hotmail.com

2

In this paper, a novel self-training hierarchal prototype-based (STHP) approach is proposed for semi-supervised

classification. The proposed approach employs the recently introduced hierarchical prototype-based (HP)

classifier [9] as its base learner. Primed with a small amount of labelled training samples, the STHP classifier is

able to pseudo-label unlabelled samples in a nature way by following the “nearest prototype” principle. It can

continuously self-develop its prototype-based system structure without human supervision by identifying new

prototypes from pseudo-labelled samples and aggregating them into the pyramidal hierarchies in a non-iterative

manner. Thanks to its prototype-based nature and multi-layered system structure, the STHP classifier can offer

higher transparency and human-interpretability than the state-of-the-art alternatives. Numerical examples on

benchmark image datasets demonstrate the effectiveness and validity of the proposed approach as a powerful

semi-supervised learning tool.

Key contributions of this paper include: (1) a new approach that can self-organize and self-develop its prototype-

based hierarchical system structure from both labelled and unlabelled samples; (2) a fully explainable self-training

paradigm for semi-supervised classification based on the pseudo-label technique; (3) the capability to visualize

the learned knowledge base in a prototype-based hierarchal form.

The remainder of this paper is organized as follows. Section 2 provides a review of related works. The architecture,

learning and decision-making processes of the recently introduced HP approach are summarized in Section 3.

Section 4 presents technique details of the proposed approach followed by the computational complexity analysis

given in Section 5. Experimental investigation is provided in Section 6 as the proof of concept. Section 7 concludes

this paper and gives directions for future work.

2. Related Works

Semi-supervised learning is a hybrid machine learning technique combining elements of both supervised and

unsupervised learning [14]. Thanks to its appealing capability to enhance classification models with unlabelled

samples, semi-supervised learning is a hotly researched topic and has attracted extensive attentions in the recent

decades [36],[39].

To effectively utilize unlabelled data, semi-supervised learning algorithms commonly exploit two semi-

supervised assumptions, namely, the cluster assumption and the manifold assumption. Based on the underlying

assumptions, existing algorithms in the literature may be categorized into three categories, which include cluster-

based, manifold-based and ensemble learning [23]. A brief summary of mainstream semi-supervised approaches

of the three categories is provided in Table 1.

Cluster-based approaches [20],[25] aim to make the decision boundaries between different classes pass through

low-density regions and simultaneously maximize the margins between clusters. Well-known approaches of this

category include: transductive support vector machine (TSVM) [34], semi-supervised support vector machine

(S3VM) [2],[21], semi-supervised support vector machine using label mean (MeanS3VM) [20] and cluster-based

regularization (ClusterReg) [31], etc. Manifold-based approaches [13],[16],[22],[45],[49] attempt to learn a low-

dimensional manifold structure from the original input space to build a maximum-margin classifier. Mainstream

manifold-based approaches include, but are not limited to, graph mincut [3], Gaussian field and harmonic function

(GHF) [49], local and global consistency (LGC) [46], Laplacian support vector machine (LapSVM) [1] and

anchor graph regularization (AnchorGraphReg) [22],[37]. Compared with cluster-based approaches, manifold-

based approaches demonstrate stronger performance and are easier to implement [45], thus, they have gained

more popularity. On the other hand, manifold-based approaches, in general, are highly computational complex

and limited to small scale problems.

The third category is the ensemble learning methods [18],[23],[35],[47], which are developed from two semi-

supervised assumptions. The most widely used ensemble learning methodologies include co-training and self-

training. Co-training [28],[47] assumes that the feature space can be split into multiple conditionally independent

and sufficient views (namely, sub-feature sets). In a standard co-training framework, multiple classifiers are firstly

trained with labelled samples on the respective views and, then, each classifier uses its predictions on unlabelled

samples to augment the training sets of others. However, traditional co-training relies on the strict requirement of

different, conditionally independent views, which is rarely satisfied in real problems [28],[48]. Self-training [18],

3

as its name suggests, attempts to iteratively enlarge its labelled training set using unlabelled samples. During a

standard self-training process, a base classifier is firstly trained with a small number of labelled samples. Then,

the trained model is used for classifying the unlabelled samples [42]. The unlabelled samples with the highest

classification confidence are selected out and assigned with class labels predicted by the base classifier. These

class labels are so-called “pseudo labels”. After this, the classifier is retrained with both the labelled and pseudo-

labelled sets, and the procedure is repeated. In short, the classifier uses its own prediction to improve its

classification effectiveness. Compared with other semi-supervised learning strategies, self-training [18] is simpler

and does not impose any assumptions on the data generation model with user- and problem-specific parameters.

Therefore, it has been successfully applied in many real-world scenarios [14],[19],[24]. However, as mentioned

in Section 1, standard self-training approaches suffer from the problems of high computational complexity and

error propagation caused by the iterative computational process. In addition, the transparency and explainability

of mainstream classifiers employed by self-training approaches are also limited, especially for high-dimensional,

large-scale and complex problems.

Table 1 Summary of mainstream semi-supervised classification algorithms

Category Algorithm Summary

Cluster-based

(cluster

assumption)

TSVM [34], S3VM [2],[21] Regularize the decision boundaries and maximize the

margins using unlabelled data.

MeanS3VM [20] Estimate label means of unlabelled samples and, then,

maximize the margins between the label means.

ClusterReg [31] Regularize the base learner, e.g., a NN, with the

posterior probability obtained by a clustering

algorithm.

Manifold-based

(manifold

assumption)

Graph mincut [3] Construct a graph from training samples and find the

minimum cut on the graph by minimizing a quadratic

loss function for classifying unlabelled samples.

GHF [49], LGC [46] Propagate label information from labelled samples to

unlabelled samples over the graph Laplacian

constructed from all training samples.

LapSVM [1] Regularize a standard SVM with the graph Laplacian

constructed from all training samples.

AnchorGraphReg [22],[37] Select a small number of anchor points to

approximately cover all training samples and construct

an anchor graph with the training samples and anchor

points.

Ensemble

learning

(cluster and

manifold

assumptions)

Co-training [28],[47] Train multiple classifiers from different conditionally

independent views of labelled samples and then let the

trained classifiers to teach each other through

classifying unlabelled samples.

Self-training

[14],[18],[19],[23],[24],[33],[38],

[40]-[42] (and the proposed)

Train a base classifier from lablled samples and then,

retrain the classifier with the enlarged labelled training

set by its own most confident preductions.

The semi-supervised deep rule-based (SSDRB) approach presented in [7] attempts to tackle the aforementioned

issues by using a deep rule-based (DRB) classifier [8] as its base learner for self-training. DRB is a zero-order

evolving intelligent system (EIS) with a multi-layered architecture designed specifically for image classification.

As a typical type of prototype-based models, zero-order EISs have been widely used for multi-class classification

tasks. Compared with other mainstream classifiers (e.g., NN and SVM), zero-order EISs offer much higher

transparency and human-interpretability, and can learn from streaming data on a sample-by-sample basis [30].

Nonetheless, it is frequently observed that zero-order EISs can be unfavourably obese and uninterpretable for

4

large-scale complex problems [11]. Under such circumstances, the transparency and explainability of zero-order

EISs are also very limited.

The recently introduced HP classifier [9] is a generic approach for classification. It naturally simplifies complex

problems by decomposing them into a series of local models, which are represented by meaningful prototypes.

These prototypes are identified directly from data based on their mutual distances and ensemble properties; they

represent the local peaks of multimodal distributions observed at multiple levels of granularity/specificity. The

identified prototypes are naturally aggregated in the form of pyramidal hierarchies with meaningful links between

successive layers. The HP classifier is capable of continuously self-evolving to capture new patterns in streaming

data in a “one pass”, computationally lean manner. More importantly, the rationales behind any decisions it makes

can be explained clearly because its learning and decision-making processes strictly follows the “nearest

prototype” principle.

This paper further extends the HP classifier with a self-training mechanism resulting in the STHP approach. The

proposed approach is able to recursively self-update its system structure and meta-parameters using the pseudo-

labelled samples without a full retraining or any iterative computation. Thus, error propagation can be effectively

prevented, and the computational complexity is kept in a low level. A comparison between different base learners

(the HP classifier and the mainstream ones) used by self-training approaches is summarized in Table 2.

Table 2. Comparison between different base classifiers

Base

learners

Generic Prototype-

based

Online

learning

Recursive

updating

System transparency

SVM Yes Yes No No Low

KNN Yes Yes Depending on the problem

NN Yes No No No Low

DT Yes No No No Depending on the problem

DRB No (for image

classification only)

Yes Yes Yes Depending on the problem

HP Yes Yes Yes Yes High

In the next two sections, a summarization of technical details of the HP classifier will be provided, followed by

the detailed description of the algorithmic procedure of the proposed STHP approach.

3. The HP Classifier

In this section, the general architecture, supervised learning and decision-making processes of the HP classifier

[9] are briefly recalled to make this paper self-contained.

First of all, let 𝒙𝑘 = [𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑁]
𝑇
 be a particular sample in the 𝑁-dimensional data space, 𝐑𝑁 and 𝑦𝑘 be

the corresponding class label, 𝑦𝑘 ∈ {1,2, … , 𝐶}, where 𝐶 is the number of classes. The labelled set, 𝐗𝐿 is composed

of 𝐿 samples, namely, 𝐗𝐿 = {𝒙1, 𝒙2, … , 𝒙𝐿} with known class labels, 𝐘𝐿 = {𝑦1, 𝑦2, … , 𝑦𝐿}, and the unlabelled set,

𝐗𝑈 is composed of 𝑈 samples with unknown class labels, namely, 𝐗𝑈 = {𝒙𝐿+1, 𝒙𝐿+2, … , 𝒙𝐿+𝑈}. The labelled set

can be further divided into 𝐶 subsets according to their class labels, namely, 𝐗𝐿
𝑖 = {𝒙1

𝑖 , 𝒙2
𝑖 , … , 𝒙

𝐿𝑖
𝑖 } and 𝐘𝐿

𝑖 =

{𝑖, 𝑖, … , 𝑖⏞
𝐿𝑖

} (𝑖 = 1,2… , 𝐶), and there is ∑ 𝐿𝑖𝐶
𝑖=1 = 𝐿. In particular, the number of unlabelled samples is assumed to

be much larger than the number of labelled samples, namely, 𝑈 ≫ 𝐿.

3.1. General architecture

The general architecture of the HP classifier is given in Fig. 1 [9]. The HP classifier consists of 𝐶 prototype-based

pyramidal hierarchies. Each hierarchy is self-organized from labelled samples of a particular class (one hierarchy

per class). The zoom-in structure of the ith (𝑖 = 1,2, … , 𝐶) hierarchy is given in Fig. 1 as well, where 𝒑ℎ,𝑗
𝑖 denotes

5

the jth prototype at the hth layer of the hierarchy; ℎ = 1,2, … , 𝐻; 𝐻 is the layer number; 𝑗 = 1,2, … ,𝑀ℎ
𝑖 ; 𝑀ℎ

𝑖 is

the number of prototypes at the hth layer and there are 𝑀1
𝑖 ≤ ⋯ ≤ 𝑀ℎ

𝑖 ≤ ⋯ ≤ 𝑀𝐻
𝑖 ; 1 ≤ 𝑚1 ≤ 𝑚2 ≤ 𝑀2

𝑖 ; and 1 ≤

𝑚3 ≤ 𝑚4 ≤ 𝑚5 ≤ 𝑀𝐻
𝑖 . Without loss of generality, in this paper, the 𝐶 hierarchies of the HP classifier have the

same number of layers, namely, 𝐻 [9].

Fig. 1. General architecture of the HP classifier.

3.2. Supervised learning process

This subsection briefly recalls the supervised learning procedure of the HP classifier [9]. Since the prototype-

based hierarchies are identified from labelled samples of each class separately, the learning process of the ith

hierarchy is presented to avoid repetition (𝑖 = 1,2,… , 𝐶). The same principles can be applied to all other

hierarchies within the classifier. Each observed sample, 𝒙 is normalized by its Euclidean norm by default:

𝒙 ←
𝒙

‖𝒙‖
 (1)

where ‖𝒙‖ = √∑ 𝑥𝑘
2𝑁

𝑘=1 . Following the mode of [9], the radii of area of influence, 𝑟ℎ around prototypes at different

layers of the hierarchies are determined by the following expression (ℎ = 1,2, … , 𝐻):

𝑟ℎ = 2(1 − 𝑐𝑜𝑠 (
𝜃𝑜

2ℎ−1
)) (2)

In this paper, 𝜃𝑜 =
𝜋

2
 as a default setting. Note that the radii 𝑟ℎ (ℎ = 1,2, … , 𝐻) are not problem- or user- specific

parameters and can be decided without prior knowledge. One may specify the radius value setting based on

preferences and specific requirements of the problems with the following constraint: 𝑟1 > 𝑟2 > ⋯ > 𝑟𝐻. The

supervised learning process is summarized as follows [9].

Stage 0. System initialization

The first sample, 𝒙𝑘
𝑖 ∈ 𝐗𝐿

𝑖 (𝑘 = 1) of the ith class is used for initializing the hierarchy as the first prototype at each

layer (ℎ = 1,2, … , 𝐻):

𝑀ℎ
𝑖 ← 1; 𝒑

ℎ,𝑀ℎ
𝑖

𝑖 ← 𝒙𝑘
𝑖 ; 𝑆

ℎ,𝑀ℎ
𝑖

𝑖 ← 1 (3)

6

where 𝑀ℎ
𝑖 denotes the number of prototypes at the hth layer; 𝑆

ℎ,𝑀ℎ
𝑖

𝑖 is the support of the prototype, 𝒑
ℎ,𝑀ℎ

𝑖
𝑖 , namely,

the number of samples associated with 𝒑
ℎ,𝑀ℎ

𝑖
𝑖 .

The collection of apex prototypes, 𝓛0
𝑖 is defined as (ℎ = 1):

𝓛0
𝑖 ← {𝒑

ℎ,𝑀ℎ
𝑖

𝑖 } (4)

and, the hierarchy is established by building links between prototypes of successive layers (ℎ = 2,3, … , 𝐻):

𝓛
ℎ−1,𝑀ℎ−1

𝑖
𝑖 ← {𝒑

ℎ,𝑀ℎ
𝑖

𝑖 } (5)

where 𝓛
ℎ−1,𝑀ℎ−1

𝑖
𝑖 is the collection of immediate subordinates associated with 𝒑

ℎ−1,𝑀ℎ−1
𝑖

𝑖 at the hth layer. By

identifying 𝓛0
𝑖 and 𝓛

ℎ−1,𝑀ℎ−1
𝑖

𝑖 (ℎ = 2,3, … , 𝐻), the subordinate relationships between these prototypes are

established and the prototype-based hierarchy is initialized.

Stage 1. System dynamically evolving

With the next available sample, 𝒙𝑘
𝑖 ∈ 𝐗𝐿

𝑖 (𝑘 ← 𝑘 + 1), the system evolving process is performed in a top-down

manner starting from the top layer, ℎ = 1. Firstly, the nearest prototype to 𝒙𝑘
𝑖 at the hth layer, denoted by 𝒑ℎ,𝑛ℎ

∗
𝑖 ,

is identified by the following equation:

𝒑ℎ,𝑛ℎ
∗

𝑖 = {
argmin𝒑∈𝓛0𝑖

(‖𝒙𝑘
𝑖 − 𝒑‖), 𝑖𝑓 ℎ = 1

argmin
𝒑∈𝓛ℎ−1,

𝑖 𝑛ℎ−1
∗ (‖𝒙𝑘

𝑖 − 𝒑‖), 𝑖𝑓 ℎ = 2,3, … , 𝐻
 (6)

Equation (6) enables the algorithm to identify the nearest prototype at each layer from only the immediate

subordinates of the nearest prototype at the above layer. This allows the nearest neighbouring searching process

to be performed in an extremely efficient manner.

Then, Condition 1 is checked to see whether 𝒙𝑘
𝑖 is sufficiently distinctive to other prototypes at the hth layer and

has the potential to become a new prototype:

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟏:
𝐼𝑓 (‖𝒙𝑘

𝑖 − 𝒑ℎ,𝑛ℎ
∗

𝑖 ‖
2

> 𝑟ℎ)

𝑇ℎ𝑒𝑛 (𝒙𝑘
𝑖 𝑖𝑠 𝑎 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 𝑎𝑡 𝑡ℎ𝑒 ℎ𝑡ℎ 𝑙𝑎𝑦𝑒𝑟)

 (7)

If Condition 1 is satisfied, 𝒙𝑘
𝑖 becomes a new prototype at the hth layer as well as the successive lower layers

with meta-parameters initialized by equation (8) (𝑗 = ℎ, ℎ + 1,… , 𝐻):

𝑀𝑗
𝑖 ← 𝑀𝑗

𝑖 + 1; 𝒑
𝑗,𝑀𝑗

𝑖
𝑖 ← 𝒙𝑘

𝑖 ; 𝑆
𝑗,𝑀𝑗

𝑖
𝑖 ← 1 (8)

The structure of the hierarchy, then, is updated by adding a new branch formed by these newly added prototypes.

If 𝒙𝑘
𝑖 is recognized as a new apex prototype, namely (ℎ = 1),

 𝓛0
𝑖 ← 𝓛0

𝑖 ∪ {𝒑
ℎ,𝑀ℎ

𝑖
𝑖 } (9)

𝒙𝑘
𝑖 itself is the starting node of this new branch. Otherwise, the nearest prototype at the layer above, 𝒑ℎ−1,𝑛ℎ−1

∗
𝑖 is

recognized as the starting node with 𝓛ℎ−1,𝑛ℎ−1
∗

𝑖 updated as (ℎ ≥ 2):

 𝓛ℎ−1,𝑛ℎ−1
∗

𝑖 ← 𝓛ℎ−1,𝑛ℎ−1
∗

𝑖 ∪ {𝒑
ℎ,𝑀ℎ

𝑖
𝑖 } (10)

7

The links between the new prototypes, 𝒑
ℎ,𝑀ℎ

𝑖
𝑖 , 𝒑

ℎ+1,𝑀ℎ+1
𝑖

𝑖 ,..., 𝒑
𝐻,𝑀𝐻

𝑖
𝑖 are established by equation (5), and the current

system structure updating cycle is completed.

Otherwise, if Condition 1 is unsatisfied, 𝒙𝑘
𝑖 is associated with the nearest prototype, 𝒑ℎ,𝑛ℎ

∗
𝑖 and the meta-

parameters of 𝒑ℎ,𝑛ℎ
∗

𝑖 are updated as:

𝒑ℎ,𝑛ℎ
∗

𝑖 ←
𝑆
ℎ,𝑛ℎ

∗
𝑖 𝒑

ℎ,𝑛ℎ
∗

𝑖 +𝒙𝑘
𝑖

𝑆
ℎ,𝑛ℎ

∗
𝑖 +1

; 𝒑ℎ,𝑛ℎ
∗

𝑖 ←
𝒑
ℎ,𝑛ℎ

∗
𝑖

‖𝒑
ℎ,𝑛ℎ

∗
𝑖 ‖

; 𝑆ℎ,𝑛ℎ
∗

𝑖 ← 𝑆ℎ,𝑛ℎ
∗

𝑖 + 1 (11)

Then, 𝒙𝑘
𝑖 is passed to the next layer (ℎ ← ℎ + 1) of the hierarchy and the same procedure starting from equation

(6) is repeated until the bottom layer is updated or being interrupted when Condition 1 is satisfied at a particular

layer resulting in a new branch adding to the hierarchy. After the structure and/or meta-parameter updating with

𝒙𝑘
𝑖 , Stage 1 is repeated for the next available labelled sample (𝑘 ← 𝑘 + 1).

The supervised learning process of the ith prototype-based hierarchy is also summarized by the following pseudo

code [9].

Algorithm 1: supervised prototype-based hierarchy identification

Input: 𝐗𝐿
𝑖

Algorithm begins

\\ Stage 0. System initialization \\

a. 𝑘 ← 1;

b. Read 𝒙𝑘
𝑖 from 𝐗𝐿

𝑖 ;

c. Normalize 𝒙𝑘
𝑖 by (1);

i. For ℎ = 1 to 𝐻 do

1. Initialize 𝑀ℎ
𝑖 , 𝒑

ℎ,𝑀ℎ
𝑖

𝑖 and 𝑆
ℎ,𝑀ℎ

𝑖
𝑖 by (3);

2. If (ℎ = 1) then

* Initialize 𝓛0
𝑖 by (4);

3. Else

* Initialize 𝓛
ℎ−1,𝑀ℎ−1

𝑖
𝑖 by (5);

4. End if

ii. End for

\\ Stage 1. System dynamically evolving \\

d. While (𝑘 < 𝐿𝑖)
i. 𝑘 ← 𝑘 + 1;

ii. Read 𝒙𝑘
𝑖 from 𝐗𝐿

𝑖 ;

iii. Normalize 𝒙𝑘
𝑖 by (1);

iv. For ℎ = 1 to 𝐻 do

1. Identify 𝒑ℎ,𝑛ℎ
∗

𝑖 by (6);

2. If (Condition 1 is satisfied) then

* For 𝑗 = ℎ to 𝐻 do

- Update 𝑀𝑗
𝑖 and initialize 𝒑

𝑗,𝑀𝑗
𝑖

𝑖 and 𝑆
𝑗,𝑀𝑗

𝑖
𝑖 by (8);

* End for

* If (ℎ = 1) then

- Update 𝓛0
𝑖 by (9);

* Else

- Update 𝓛ℎ−1,𝑛ℎ−1
∗

𝑖 by (10);

* End

* For 𝑗 = ℎ + 1 to 𝐻 do

- Initialize 𝓛
ℎ−1,𝑀ℎ−1

𝑖
𝑖 by (5);

* End for

* Break for loop;

3. Else

8

- Update 𝒑ℎ,𝑛ℎ
∗

𝑖 and 𝑆ℎ,𝑛ℎ
∗

𝑖 by (11);

4. End if

v. End for

e. End while

Algorithm ends

Output: the ith prototype-based hierarchy

3.3. Decision-making process

During the decision-making process, for a given unlabelled sample, 𝒙, the local decision-maker of each pyramidal

hierarchy of the HP classifier will firstly produce a score of confidence, 𝜆𝑖(𝒙), which is calculated based on the

similarity between 𝒙 and the nearest prototype, 𝒑ℎ,𝑛ℎ
∗

𝑖 at the selected layer (assuming the hth one) for classification

(𝑖 = 1,2, … , 𝐶) [9]:

𝜆ℎ
𝑖 (𝒙) = max

𝑘=1,2,…,𝑀ℎ
𝑖 (𝑒

−‖𝒑ℎ,𝑘
𝑖 −𝒙‖

2

) = 𝑒
−‖𝒑

ℎ,𝑛ℎ
∗

𝑖 −𝒙‖
2

 (12)

Then, the global decision-maker determines the class label of 𝒙 by the “winner takes all” principle based on the

𝐶 scores of confidence (one per hierarchy) [8]:

𝑦 ← 𝑐𝑙𝑎𝑠𝑠 𝑖∗; 𝑖∗ = argmax𝑖=1,2,…,𝐶 (𝜆ℎ
𝑖 (𝒙)) (13)

4. Proposed Approach

In this section, the self-training mechanism for the proposed STHP approach is presented in detail. The aim of

self-training is to involve the unlabelled set, 𝐗𝑈 to train a better classifier primed by the labelled set, 𝐗𝐿 . The

flowchart of the proposed framework is depicted in Fig. 2.

Fig.2. Flowchart of proposed self-training process.

One can see from Fig. 2 that the self-training process of the STHP classifier is divided into the following three

stages. In Stage 0, the classifier is, firstly, primed with 𝐗𝐿 and 𝐘𝐿 in a supervised manner. In Stage 1, the classifier

compares 𝐗𝑈 with its knowledge base and selects out a set of the most confident unlabelled samples, �̂�𝐿 from 𝐗𝑈

with predicted class labels (pseudo-labels), �̂�𝐿. Then, in Stage 2, the classifier self-develops its knowledge base

using �̂�𝐿 and �̂�𝐿. After this, the classifier goes back to Stage 1 and starts a new learning cycle until no more

suitable unlabelled samples can be utilized for system updating. The algorithmic procedure of the self-training

process is described as follows.

Stage 0. Classifier priming

The STHP classifier is firstly trained with the labelled training samples, 𝐗𝐿 and their labels, 𝐘𝐿 in a supervised

manner using the same algorithmic procedure presented in subsection 3.2, resulting in 𝐶 prototype-based

hierarchies. Then, the classifier moves on to the next stage and the pseudo-labelling process starts.

9

Stage 1. Pseudo-labelled set acquisition

In this stage, a set of pseudo-labelled samples, �̂�𝐿 and the corresponding pseudo labels, �̂�𝐿 will be selected out

from 𝐗𝑈 for updating the classifier. Before the selection process starts, �̂�𝐿 and �̂�𝐿 are both initialized as: �̂�𝐿 ← ∅

and �̂�𝐿 ← ∅.

Then, for each unlabelled sample, 𝒙𝑘 ∈ 𝐗𝑈 (𝑘 = 1,2, … , 𝑈), it is compared with prototypes of the 𝐶 hierarchies

in a top-down manner starting from the top layer (ℎ = 1). The following condition is examined to see whether 𝒙𝑘

can be used for updating the classifier:

 𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟐:
𝐼𝑓 (‖𝒙𝑘 − 𝒑ℎ,𝑛ℎ

∗
𝑖 ‖

2

< 𝑟ℎ) 𝑎𝑛𝑑 (min𝑗=1,2,..,𝐶;𝑖≠𝑗 (‖𝒙𝑘 − 𝒑ℎ,𝑛ℎ
∗

𝑗
‖
2

) > 𝑟ℎ)

𝑇ℎ𝑒𝑛 (�̂�𝐿 ← �̂�𝐿 ∪ {𝒙𝑘}) 𝑎𝑛𝑑 (�̂�𝐿 ← �̂�𝐿 ∪ {�̂�𝑘 = 𝑖}) 𝑎𝑛𝑑 (𝐗𝑈 ← 𝐗𝑈\{𝒙𝑘})
 (14)

where 𝒑
ℎ,𝑛ℎ

∗
𝑗

 is the nearest prototype to 𝒙𝑘 at the hth layer of the jth hierarchy identified by equation (6). If

Condition 2 is satisfied at the hth layer, it means that 𝒙𝑘 is closely associated with an existing data pattern

observed from samples of the ith class and is distinctive from prototypes of other classes. In this case, the classifier

is able to assign a class label �̂�𝑘 (�̂�𝑘 = 𝑖) to 𝒙𝑘 with high confidence and, 𝒙𝑘 will be used for updating the classifier

in the next stage. Otherwise, 𝒙𝑘 is passed to the next layer (ℎ ← ℎ + 1) and the same examining process is

repeated.

The rationale behind Condition 2 is very straightforward. Each prototype of the classifier has an area of influence

in the form of a hypersphere occupying a part of the data space. If an unlabelled sample, 𝒙𝑘 locates at the area of

influence of a single prototype or the overlapping areas occupied by multiple prototypes of the same class, there

is a very high likelihood that 𝒙𝑘 belongs to that class as well. The reason for examining Condition 2 at each layer

in a “top-down” manner comes from the fact that prototypes at different layers are identified from data at different

levels of granularity. Upper-layer prototypes contain highly generalized information of data, and they approximate

the main data patterns. Lower-layer prototypes, on the other hand, contain finer details, and they represent the

local models of data. These unlabelled samples satisfying Condition 2 at lower layers are of great importance for

the classifier to learn more precise decision boundaries for classification. Therefore, it is worthwhile examining

Condition 2 at different layers for each unlabelled sample.

An illustrative example is given by Fig. 3 to demonstrate the idea, where large dots “●” in three different colours

are the prototypes of three different classes; white squares “□” represent unlabelled samples; the shadow area

surrounding each prototype is the corresponding area of influence. As shown by Fig. 3 (a), there are six unlabelled

samples in the data space, 𝐗𝑈 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5, 𝒙6} and three prototypes belonging to three different classes,

namely, 𝒑ℎ,1
1 , 𝒑ℎ,1

2 and 𝒑ℎ,1
3 . 𝒙1, 𝒙2 and 𝒙4 locate at the areas of influence of 𝒑ℎ,1

1 , 𝒑ℎ,1
2 and 𝒑ℎ,1

3 , respectively.

Thus, 𝒙1, 𝒙2 and 𝒙4 satisfy Condition 2 and will be used for updating the classifier, namely, �̂�𝐿 ← {𝒙1, 𝒙2, 𝒙4}.

𝒙3 and 𝒙6 locate at the overlapping areas occupied jointly by prototypes from different classes. 𝒙5 lies outside of

the area of influence of all prototypes at the hth layer. Therefore, 𝒙3, 𝒙5 and 𝒙6 will be passed to the (h+1)th layer

to see whether they can satisfy Condition 2 at the next layer. As one can see from Fig. 3(b), the data space is

partitioned by the nine prototypes, {𝒑ℎ+1,1
1 , 𝒑ℎ+1,2

1 , … , 𝒑ℎ+1,3
3 } at the (h+1)th layer at a higher level of granularity.

Nonetheless, 𝒙3 still sits at an overlapping area occupied by prototypes of classes 1 and 3, and 𝒙5 is, again, not

associated with any of the prototypes. Meanwhile, 𝒙6 is associated closely with 𝒑ℎ+1,2
2 thanks to the finer

partitioning. As a result, 𝒙6 will be used for updating the classifier, namely, �̂�𝐿 ← �̂�𝐿 ∪ {𝒙6}, and 𝒙3 and 𝒙5 will

be passed to the (h+2)th layer (if it exists) or be used for the next self-training cycle.

10

 (a) hth layer (b) (h+1)th layer

Fig. 3. Illustration of Condition 2.

If 𝒙𝑘 fails to satisfy Condition 2 at the bottom layer (namely, ℎ = 𝐻), it means that 𝒙𝑘 locates at either an

overlapping area that are occupied by prototypes from two or multiple classes or at a distant area that is out of

reach for all previously identified prototypes. In such cases, the following condition is checked to see whether 𝒙𝑘

can contribute to expanding the knowledge base of the classifier [7].

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟑:
𝐼𝑓 (𝜆1

𝑖 (𝒙𝑘) > 𝛾𝑜 ∙ max𝑗=1,2,..,𝐶;𝑖≠𝑗 (𝜆1
𝑗(𝒙𝑘)))

𝑇ℎ𝑒𝑛 (�̂�𝐿 ← �̂�𝐿 ∪ {𝒙𝑘}) 𝑎𝑛𝑑 (�̂�𝐿 ← �̂�𝐿 ∪ {�̂�𝑘 = 𝑖}) 𝑎𝑛𝑑 (𝐗𝑈 ← 𝐗𝑈\{𝒙𝑘})
 (15)

where 𝛾𝑜 is a user-controlled parameter (𝛾𝑜 > 1). If Condition 3 is unsatisfied as well, 𝒙𝑘 is put back to 𝐗𝑈 for

possible future use. Note that Condition 2 is based on the cluster assumption and is mostly dealing with unlabelled

samples that share the same and distinctive patterns with the labelled training samples. Condition 3 exploits the

manifold assumption and gives the classifier the ability to make inference. It effectively handles unlabelled

samples that either share similar patterns with samples of different classes or lie outside of the area of influence

of any prototype.

For better illustration, two three-layer prototype-based hierarchies derived from labelled samples of two different

classes (namely, class 1 and class 2) are depicted in Fig. 4 as an example. As shown in Fig. 4, each hierarchy has

one apex prototype, three prototypes at the second layer, and six leaf prototypes at the bottom layer. There are six

unlabelled samples observed in the data space, namely, 𝐗𝑈 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5, 𝒙6} and there are overlaps

between the areas of influence of prototypes of the two classes. It can be observed from Fig. 4 that, 𝒙1 lies outside

of the areas of influence of the two hierarchies (Condition 2 is unsatisfied), but ‖𝒙1 − 𝒑1,1
1 ‖ is much smaller than

‖𝒙1 − 𝒑1,1
2 ‖, thus, there is �̂�1 = 1 based on Condition 3 (assuming there is 𝜆1

1(𝒙𝑘) > 𝛾𝑜 ∙ 𝜆1
2(𝒙𝑘)). 𝒙2 can be

easily pseudo-labelled with �̂�2 = 1 based on Condition 2 because it locates at a place that is occupied by 𝒑1,1
2

only. Despite that 𝒙3 locates at the overlapping area occupied by two apex prototypes, 𝒑1,1
1 and 𝒑1,1

2 , 𝒙3 satisfies

Condition 2 at the second layer (ℎ = 2) because its position is covered by the area of influence of 𝒑2,2
1 only, and

thus, there is �̂�𝟑 = 2. 𝒙4 and 𝒙5 also locate at the overlapping area occupied by both 𝒑1,1
1 and 𝒑1,1

2 . Although 𝒙4

is not close enough to any prototypes at lower layers, it manages to satisfy Condition 3 because it is much closer

to 𝒑1,1
2 and, thus, there is �̂�4 = 2. 𝒙5 fails to satisfy Condition 2 due to the same reason as 𝒙4, and it also fails to

meet Condition 3 because ‖𝒙5 − 𝒑1,1
1 ‖ ≈ ‖𝒙5 − 𝒑1,1

2 ‖. 𝒙6 lies outside of the areas of influence of the two

prototype-based hierarchies, which is the same as 𝒙1, and it fails to satisfy Condition 3 because ‖𝒙6 − 𝒑1,1
1 ‖ ≈

‖𝒙6 − 𝒑1,1
2 ‖ similar to 𝒙5. As a result, 𝒙1, 𝒙2, 𝒙3, 𝒙4 are assigned with the respective pseudo-labels and will be

11

used for updating the two prototype-based hierarchies, meanwhile, 𝒙5 and 𝒙6 will be kept in 𝐗𝑈 for the next

learning cycle.

Fig. 4. Illustration of pseudo-labelling process.

The same process is repeated for the next unlabelled sample, 𝒙𝑘 (𝑘 ← 𝑘 + 1) until all samples in 𝐗𝑈 have been

examined. Then, the self-training process goes to the next stage.

Stage 2. Classifier self-updating

In this stage, the classifier self-evolves with the newly obtained pseudo-labelled set �̂�𝐿 and the corresponding

pseudo labels, �̂�𝐿. �̂�𝐿 is, firstly, divided into a number of subsets denoted by �̂�𝐿
1 , �̂�𝐿

2, … , �̂�𝐿
𝐶 based on �̂�𝐿, and then

each prototype-based hierarchy is updated with the corresponding pseudo-labelled subset using Algorithm 1

(starting from Stage 1. System dynamically evolving process). However, it has to be stressed that the classifier is

self-updated on a sample-by-sample basis and the self-updating process involves �̂�𝐿 and �̂�𝐿 only. Therefore, no

full re-training is needed. After the system has been updated, the self-training process goes back to Stage 1,

continuing to select out samples from 𝐗𝑈 that can be used for system self-developing until all the remaining

samples in 𝐗𝑈 fail to meet both Conditions 2 and 3.

One attractive feature of the proposed approach is its higher tolerance to errors happened during the pseudo

labelling process. Thanks to the “one pass” learning ability of the base learner, each pseudo-labelled sample will

be used for updating the meta-parameters of one prototype at each layer only. Thus, such errors will not be

propagated to neighbouring prototypes. Given a small amount of pseudo-labelling errors, the majority of the

prototypes at the bottom layer will remain intact. The influence of pseudo-labelling errors on the affected

prototypes at the upper layers is also very limited because such errors can only slightly shift the locations of upper-

layer prototypes thanks to the much larger numbers of samples associated with them. In addition, even if these

errors create new branches in the hierarchies, they can only alter decision boundaries locally without a heavy

influence on the overall classification precision. Therefore, one may conclude that the classifier is highly robust

to pseudo-labelling errors and can always maintain high classification accuracy.

To further demonstrate this, the structure updating process following the example given by Fig. 4 is presented in

Fig. 5, where 𝒙1, 𝒙2, 𝒙3 and 𝒙4 are used for updating the two hierarchies. As one can see from Fig. 5, 𝒙1 becomes

a new apex prototype of the hierarchy corresponding to class 1 and initializes a new branch by itself, namely, 𝒑1,2
1 ,

𝒑2,4
1 and 𝒑3,7

1 . 𝒙2 and 𝒙4 are used for updating meta-parameters of the apex prototype, 𝒑1,1
2 because they both are

within the area of influence of 𝒑1,1
2 , and the updated apex prototype is re-denoted as 𝒑1,1(𝑎)

2 . Then, they both

initialize new branches and become new prototypes at the second and third layers of the hierarchy of class 2,

12

namely, 𝒑2,4
2 , 𝒑2,5

2 , 𝒑3,7
2 and 𝒑3,8

2 . 𝒙3 is used for updating the meta-parameters of 𝒑1,1
1 , 𝒑2,2

1 and 𝒑3,4
1 , and the

updated prototypes are re-denoted as 𝒑1,1(𝑎)
1 , 𝒑2,2(𝑎)

1 and 𝒑3,4(𝑎)
1 , respectively. Other prototypes remain in the

same positions. From this example one can also see that a pseudo-labelling error can only influence a branch of

the hierarchy, while the vast majority of prototypes at the bottom layers are not influenced by the error.

Fig. 5. Illustration of structure updating process.

Once the whole learning process is finished, for these remaining unlabelled samples 𝒙𝑘 ∈ 𝐗𝑈 (𝑘 = 1,2,… , 𝑈) that

still fail to satisfy Conditions 2 and 3 at the end of the self-training process, the classifier will predict the class

label for each of them by equations (12) and (13), but these samples will not be used for updating the classifier.

After this, the classifier is ready for out-of-sample prediction by following the same decision-making process as

described in subsection 3.3.

The overall learning process of the STHP classifier is summarized in the form of pseudo code as follows.

Algorithm 2: STHP classifier identification

Input: 𝐗𝐿 , 𝐘𝐿 and 𝐗𝑈

Algorithm begins

\\ Stage 0. Classifier priming \\

a. For 𝑖 = 1 to 𝐶 do

i. Select out 𝐗𝐿
𝑖 and 𝐘𝐿

𝑖 from 𝐗𝐿 and 𝐘𝐿;

ii. Prime the ith hierarchy using 𝐗𝐿
𝑖 by Algorithm 1;

b. End for

c. While (𝐗𝑈 ≠ ∅)

\\ Stage 1. Pseudo-labelled set acquisition \\

i. �̂�𝐿 ← ∅ and �̂�𝐿 ← ∅;
ii. For 𝑘 = 1 to 𝑈 do

1. For ℎ = 1 to 𝐻 do

* If (Condition 2 is satisfied) then

- �̂�𝐿 ← �̂�𝐿 ∪ {𝒙𝑘}; �̂�𝐿 ← �̂�𝐿 ∪ {�̂�𝑘 = 𝑖}; 𝐗𝑈 ← 𝐗𝑈\{𝒙𝑘};
- Break for loop;

13

* End if

2. End for

3. If (Condition 2 is unsatisfied) and (Condition 3 is satisfied) then

* �̂�𝐿 ← �̂�𝐿 ∪ {𝒙𝑘}; �̂�𝐿 ← �̂�𝐿 ∪ {�̂�𝑘 = 𝑖}; 𝐗𝑈 ← 𝐗𝑈\{𝒙𝑘};
* Break for loop;

4. End if

iii. End for

\\ Stage 2. Classifier self-updating \\

iv. If (�̂�𝐿 = ∅) then

1. Break while loop;

v. Else

1. For 𝑖 = 1 to 𝐶 do

* Select out �̂�𝐿
𝑖 and �̂�𝐿

𝑖 from �̂�𝐿 and �̂�𝐿;

* Update the ith hierarchy using �̂�𝐿
𝑖 by Algorithm 1;

2. End for

vi. End if

vii. 𝑈 ← |𝐗𝑈|;
d. End while

Algorithm ends

Output: the hierarchical prototype-based classifier

5. Computational Complexity Analysis

In this section, the computational complexity of the proposed STHP classifier is analysed.

5.1. Learning process

As the system structure and meta-parameters of the classifier are both dynamically evolving, it is impossible to

derive an exact expression of computational complexity for the overall learning process. Thus, only the lower and

upper bounds of the computational complexity of each algorithmic stage will be given.

The classifier is primed with the labelled set in Stage 0. For a particular labelled sample, 𝒙𝑘 ∈ 𝐗𝐿 with 𝑦𝑘 = 𝑖,

the lower and upper bounds of the computational complexity of the learning cycle have been given in [7], which

are 𝑂(𝑁𝑀1
𝑖) and 𝑂 (𝑁 (𝑀1

𝑖 + ∑ 𝑃ℎ,𝑛ℎ
∗

𝑖𝐻−1
ℎ=1 + 𝐻)), respectively. Here 𝑃ℎ,𝑛ℎ

∗
𝑖 is the cardinality of 𝓛ℎ,𝑛ℎ

∗
𝑖 . Therefore,

the overall computational complexity of the supervised classifier priming process as described in Stage 0 is

between 𝑂(𝐶𝑁) (when there is only one labelled sample per class available) and 𝑂 (𝐿𝑁 (max𝑖=1,2,…,𝐶 (𝑀1
𝑖 +

∑ 𝑃ℎ,𝑛ℎ
∗

𝑖𝐻−1
ℎ=1) + 𝐻)).

In Stage 1, for each unlabelled sample, 𝒙𝑘 ∈ 𝐗𝑈, it is firstly compared with apex prototypes at the top layer of

each hierarchy, and then the same process is repeated in a top-down manner until Condition 2 is met. If 𝒙𝑘 fails

to meet Condition 2, Condition 3 is checked before putting it back to the pool. As a result, the lower bound of

the computational complexity is reached when 𝒙𝑘 satisfies Condition 2 during the comparison with apex

prototypes. In this case, the computational complexity is 𝑂(𝑁∑ 𝑀1
𝑖𝐶

𝑖=1). Meanwhile, the maximum computational

complexity is reached if 𝒙𝑘 triggers both Conditions 2 and 3 and, in this case, the computational complexity is

𝑂(𝑁 ∑ ∑ 𝑀ℎ
𝑖𝐻

ℎ=1
𝐶
𝑖=1) (the computational complexity of Condition 3 is negligible compared with Condition 2).

Therefore, the lower and upper bounds of the computational complexity of Stage 1 are 𝑂(𝑈𝑁∑ 𝑀1
𝑖𝐶

𝑖=1) (when

all unlabelled samples meet Condition 2 with ℎ = 1) and 𝑂(𝑈𝑁∑ ∑ 𝑀ℎ
𝑖𝐻

ℎ=1
𝐶
𝑖=1) (when every unlabelled sample

triggers both Conditions 2 and 3).

Stage 2 mostly concerns with classifier updating. Thus, the same conclusion on Stage 0 can be applied. The

computational complexity of this stage is between 𝑂(0) (if no pseudo-labelled sample is selected for classifier

updating) and 𝑂 (�̂�𝑁 (max𝑖=1,2,…,𝐶 (𝑀1
𝑖 + ∑ 𝑃ℎ,𝑛ℎ

∗
𝑖𝐻−1

ℎ=1) + 𝐻)), where �̂� is the cardinality of �̂�𝐿.

14

5.2. Decision-making process

The computational complexity of the decision-making process is more straightforward. For a given data sample,

𝒙, each prototype-based hierarchy will give a score of confidence by equations (12) and (13), and the

computational complexity of the overall decision-making process is 𝑂(𝑁 ∑ 𝑀ℎ
𝑖𝐶

𝑖=1).

6. Experimental Investigation

In this section, numerical examples are presented to justify the effectiveness and validity of the proposed concept

and method. The algorithms were developed using MATLAB2018a, and the performance was evaluated on a

desktop with dual core i7 processor 3.60GHz × 2 and 32.0GB RAM.

6.1. Dataset description and experimental setting

Considering the significant interest in machine learning and computer vision communities to leverage the

astronomical amount of unlabelled images existing on the Internet for building recognition models [10], the

numerical experiments presented in this paper are focused on the image recognition perspective. Note that the

proposed approach is generic and applicable to numerical data as well.

The following well-known challenging benchmark image sets are involved for demonstration. Example images

of these datasets are given in Fig. 6 for illustration and key information is summarized in Table 3. Interested

readers may find very detailed descriptions on these six benchmark problems from [7],[9],[43].

1) Singapore dataset1;

2) WHU-RS dataset2;

3) UCMerced dataset3;

4) RSSCN7 dataset4;

5) Caltech101 dataset5; and,

6) Caltech256 dataset6.

In this paper, the pretrained VGG-VD-16 deep convolutional neural network (DCNN) model [29] is employed

for feature extraction due to its simple structure and high performance [43]. Following the common practice, the

4096 × 1 dimensional activations from the first fully connected layer are extracted as the feature vectors of the

images. Note that there is no further tuning involved. Moreover, one may consider using other feature descriptors

for feature extraction, e.g., GoogLeNet [32], AlexNet [17], Gist [26], but this is beyond the scope of this paper.

1 Available at: http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx

2 Available at: http://captain.whu.edu.cn/repository.html

3 Available at: http://weegee.vision.ucmerced.edu/datasets/landuse.html

4 Available at: https://sites.google.com/view/zhouwx/dataset

5 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech101/

6 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech256/

http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx
http://captain.whu.edu.cn/repository.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
https://sites.google.com/view/zhouwx/dataset
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/

15

(a) Singapore dataset

(b) WHU-RS dataset

(c) UCMerced dataset

(d) RSSCN7 dataset

16

(e) Caltech101 dataset

(f) Caltech256 dataset

Fig. 6. Example images of the benchmark image sets for numerical experiments.

Table 3. Details of the benchmark datasets for numerical examples

Dataset Resolution # Classes # Images # Attributes

Singapore 256×256×3 9 1086 4096×1

WHU-RS 600×600×3 19 950

UCMerced 256×256×3 21 2100

RSSCN7 400×400×3 7 2800

Caltech101 Roughly 300×200×3 101 8677

Caltech256 256 29780

For performance comparison, the following state-of-the-art semi-supervised classification approaches are

involved in numerical examples.

1) AnchorGraphReg method with a regression matrix with kernel-defined weights (AGR) [22];

2) AnchorGraphReg method with a regression matrix optimized by local anchor embedding (AGRL) [22];

3) Local and global consistency method (LGC) [46];

4) Greedy gradient Max-Cut method (GGMC) [38];

5) Laplacian SVM classifier (LapSVM) [1]; and

6) SSDRB classifier [7].

Note that AGR, AGRL, LGC, GGMC and LapSVM are widely used semi-supervised approaches. The user-

controlled parameter of AGR and AGRL, 𝑠 (number of the closest anchors) is set to be 3; the iteration number of

local anchor embedding for AGRL is set to be 10 as suggested in [22]. The user-controlled parameter, 𝛼 of LGC

is set to be 0.99 as suggested in [46]. The user-controlled parameter, 𝜇 of GGMC is set to be 0.01 as suggested in

[38]. Both LGC and GGMC use the KNN graph with 𝑘  =  5. LapSVM uses the “one-versus-all” strategy for all

the benchmark problems. Since the performance of LapSVM is subject to the externally controlled parameters, in

this paper, the following three parameter settings are considered, and the classifiers with the respective settings

are re-denoted as LapSVM1, LapSVM2 and LapSVM3, respectively. For LapSVM1, the radial basis function

kernel with 𝜎  =  10 is used; the two user-controlled parameters γ𝐼 and 𝛾𝐴 are set to be 1 and 10−6, respectively;

the number of neighbour, 𝑘, for computing the graph Laplacian is set to be 15 as suggested in [1]. For LapSVM2,

the following setting is used: 𝜎  =  10, γ𝐼 = 0.5, 𝛾𝐴 = 10
−6 and 𝑘 = 15. For LapSVM3, the following setting is

considered: 𝜎  =  1, γ𝐼 = 1, 𝛾𝐴 = 10
−5 and 𝑘 = 10. SSDRB is of the same type as the proposed STHP classifier;

the user-controlled parameter, Ω1 of SSDRB is set to be 1.2 as suggested in [7].

17

In addition, the following supervised classification approaches are involved for a better comparison.

7) HP classifier [9];

8) Deep rule-based (DRB) classifier [8];

9) SVM classifier [5]; and

10) KNN classifier [6];

It is well known that both SVM and KNN classifiers are the two main generic classifiers used by pre-trained

DCNN-based approaches and have demonstrated very strong performance on various benchmark problems

[27],[43]. In the numerical examples presented in this paper, SVM uses the linear kernel function, and the value

of 𝑘 for KNN is set to be 1. Both HP and DRB serve as the baseline because STHP and SSDRB reduce to HP and

DRB, respectively, if no self-training is performed. The experimental settings of HP and DRB follow the modes

of [9] and [8], respectively; the layer number of HP is set as 3.

All the reported results are obtained after 25 Monte Carlo experiments by randomly dividing the involved

benchmark datasets into labelled and unlabelled sets under certain ratios. In this paper, by default, the bottom

layer (namely, the Hth layer) of HP and STHP is used for decision-making because this layer contains a larger

number of leaf prototypes with fine details of the problem, and thus, is able to perform classification with higher

accuracy [9].

6.2. Experimental demonstration

First of all, the influence of the two user-controlled parameters, 𝐻 and 𝛾𝑜 on classification accuracy and system

complexity of the STHP classifier is investigated. This numerical example is based on Singapore dataset because

of its smaller scale and simpler structure. During this experiment, six images (𝐿𝑖 = 6) from each class are randomly

selected out to form the labelled set and the rest are used as the unlabelled set for training. The value of 𝐻 varies

from 1 to 5, and the value of 𝛾𝑜 varies from 1.05 to 1.35. The classification accuracy (𝐴𝑐𝑐) on the unlabelled

images and the average number of prototypes per layer per class (𝑀ℎ; the subscript h denotes the hth layer; ℎ =

1,2, … , 𝐻) are reported in Table 4. The performance of the HP classifier is also reported in the same table as the

baseline.

Table 4. Classification accuracy and system complexity of STHP with different values of 𝛾𝑜 and 𝐻

Algorithm STHP HP

𝐻 𝛾𝑜 1.05 1.10 1.15 1.20 1.25 1.30 1.35

1 𝐴𝑐𝑐 0.903 0.896 0.887 0.880 0.872 0.865 0.861 0.903

𝑀1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 𝐴𝑐𝑐 0.927 0.938 0.944 0.944 0.944 0.942 0.939 0.916

𝑀1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

𝑀2 9.04 7.72 6.65 5.76 5.15 4.64 4.34 3.38

3 𝐴𝑐𝑐 0.919 0.925 0.931 0.933 0.938 0.937 0.936 0.912

𝑀1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

𝑀2 9.04 7.73 6.67 5.78 5.19 4.68 4.37 3.38

𝑀3 92.78 89.83 87.40 84.95 82.90 80.87 79.06 5.89

4 𝐴𝑐𝑐 0.919 0.925 0.931 0.934 0.938 0.936 0.935 0.913

𝑀1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

𝑀2 9.04 7.73 6.67 5.78 5.19 4.68 4.37 3.38

𝑀3 92.78 89.83 87.40 84.95 82.90 80.87 79.06 5.89

𝑀4 118.15 115.05 112.51 109.91 107.83 105.72 103.74 6.00

5 𝐴𝑐𝑐 0.919 0.925 0.931 0.934 0.938 0.936 0.935 0.913

𝑀1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

𝑀2 9.04 7.73 6.67 5.78 5.19 4.68 4.37 3.38

𝑀3 92.78 89.83 87.40 84.95 82.90 80.87 79.06 5.89

𝑀4 118.15 115.05 112.51 109.91 107.83 105.72 103.74 6.00

18

𝑀5 118.45 115.32 112.75 110.13 108.06 105.95 103.89 6.00

Table 4 shows that the STHP classifier performs the best on this dataset with a two-layer structure (𝐻 = 2). Due

to the problem of overfitting, when adding extra layers to the system, the classification accuracy of the proposed

approach decreases slightly at first and then becomes stable. Thus, it can be concluded that the layer number has

a marginal influence on the learning outcomes. The other user-controlled parameter, 𝛾𝑜 has a larger influence on

both classification accuracy and system complexity (in terms of prototype numbers). In general, the classifier

identifies less prototypes after the self-training process with a larger value of 𝛾𝑜, and vice versa. It is also noticeable

that the classification accuracy is not linearly related to the value setting of 𝛾𝑜. If a smaller value of 𝛾𝑜 is used,

the system tends to produce more mistakes when making inferences on unlabelled samples using Condition 3,

and these pseudo-labelling errors deteriorate the overall performance. Meanwhile, a larger value of 𝛾𝑜 may impair

the inferencing ability of STHP and stop the system from gaining new knowledge. In such cases, the STHP

classifier may miss the valuable information hidden in the unlabelled samples. Based on Table 4, the best value

range of 𝛾𝑜 is between 1.10 and 1.25.

Following the example presented in Table 4, the influence of 𝜃𝑜 on classification accuracy and system complexity

of the STHP classifier is investigated. In this example, a two-layer STHP classifier with 𝛾𝑜 = 1.2 is used for

demonstration. During the experiment, six images per class are randomly selected out as the labelled set, and the

remaining images are used as the unlabelled set. The value of 𝜃𝑜 varies from
𝜋

2
 to

𝜋

16
, and the classification accuracy

on the unlabelled images and the average number of prototypes per layer per class are reported in Table 5. The

same experiment is repeated by using 12 images per class to form the labelled set, and the results are reported in

Table 5 as well. The performance of the HP classifier is also given as the baseline.

Table 5. Classification accuracy and system complexity of STHP with different values of 𝜃𝑜

𝜃𝑜 𝜋

2

𝜋

4

𝜋

8

𝜋

16

𝐿𝑖 Algorithm STHP HP STHP HP STHP HP STHP HP

6 𝐴𝑐𝑐 0.944 0.916 0.936 0.912 0.938 0.913 0.937 0.913

𝑀1 1.00 1.00 5.84 3.38 78.74 5.89 103.47 6.00

𝑀2 5.76 3.38 86.77 5.89 104.36 6.00 103.71 6.00

12 𝐴𝑐𝑐 0.965 0.949 0.961 0.947 0.963 0.947 0.963 0.947

𝑀1 1.00 1.00 6.43 4.67 79.20 11.56 104.78 12.00

𝑀2 6.36 4.67 86.97 11.56 105.21 12.00 105.03 12.00

Table 5 shows that 𝜃𝑜 can significantly influence the system complexity of the STHP classifier. A smaller value

of 𝜃𝑜 will reduce the area of influence of each prototype within the system, resulting in more prototypes being

identified during both the supervised and semi-supervised learning processes. In addition, it can be observed from

Table 5 that the classification accuracy deceases with a smaller value of 𝜃𝑜. The main reason for this is as follows.

As the area of influence of each prototype is reduced, Condition 2 becomes less important during the pseudo-

labelling process. At the same time, Condition 3 starts to play as the dominant role in determining the pseudo-

labels of unlabelled samples. Since Condition 3 is less strict than Condition 2, more pseudo-labelling errors are

inevitably introduced to the classifier during the semi-supervised learning process by Condition 3, which, in turn,

deteriorates the system performance. It is also worth to be noticed that Condition 3 performs pseudo-labelling

based on the mutual distances between unlabelled samples and labelled prototypes, thus, this condition becomes

more effective when more labelled samples are given.

To further verify this, the following numerical example is performed. In this example, three two-layer STHP

classifiers with different pseudo-labelling mechanisms are considered (𝛾𝑜 = 1.2 for all of them). The first STHP

classifier assigns pseudo-labels to unlabelled samples by using Condition 2 only. The second one uses Condition

3 for pseudo-labelling only. The third one uses both Conditions 2 and 3, which is the same as the previous

numerical examples. The three STHP classifiers are re-denoted as STHP1, STHP2 and STHP3, respectively. The

19

same experiments conducted in Table 5 are repeated and the obtained results are tabulated in Table 6. As one can

see, STHP2 identifies more prototypes than STHP1 and STHP3, and its classification accuracy is higher than

STHP1 when more labelled samples are given. Nonetheless, STHP3 outperforms the other two in both

experiments. This example further justifies the effectiveness and validity of the proposed self-training mechanism.

Table 6. Comparison of classification accuracy and system complexity between three different STHP classifiers

𝐿𝑖 Algorithm STHP1 STHP2 STHP3 HP

6 𝐴𝑐𝑐 0.934 0.933 0.944 0.916

𝑀1 1.00 1.00 1.00 1.00

𝑀2 3.57 8.66 5.76 3.38

12 𝐴𝑐𝑐 0.957 0.962 0.965 0.949

𝑀1 1.00 1.00 1.00 1.00

𝑀2 4.83 7.98 6.36 4.67

For better illustration, three prototype-based hierarchies corresponding to three classes “airplane”, “industry” and

“runway” of Singapore dataset obtained during a particular experiment with 𝐻 = 2 and 𝛾𝑜 = 1.2 are given in Fig.

7. Since the STHP classifier performs semi-supervised learning and classification based on the 4096 × 1

dimensional feature vectors of images and the identified prototypes in their vector forms are not intuitive for

visualization, images with the feature vectors that are the most similar to the identified prototypes are used for

visualization in Fig. 7 for clarity.

(a) the hierarchy of the class “airplane” after being primed with labelled samples

(b) the hierarchy of the class “airplane” after self-training with unlabelled samples

(c) the hierarchy of the class “industry” after being primed with labelled samples

20

(d) the hierarchy of the class “industry” after self-training with unlabelled samples

(e) the hierarchy of the class “runway” after being primed with labelled samples

(f) the hierarchy of the class “runway” after self-training with unlabelled samples

Fig. 7. Illustration of prototype-based hierarchies.

One can see from Fig. 7 that each prototype-based hierarchy is able to gain a few new prototypes through the self-

training process by utilizing unlabelled images. In this way, the proposed STHP classifier effectively self-expands

its knowledge base and self-improves its system structure without human supervision. However, one may notice

that the self-training process also introduces some errors into the system (namely, the prototypes in the yellow

boxes). This is due to the very high visual similarity between these unlabelled images and the prototypes identified

from labelled images of a different class. For example, some images of the class “runway” are highly similar to

the images of class “airplane”. Nonetheless, this issue could be addressed by using alternative feature descriptors

with stronger descriptive abilities for feature extraction instead.

In the numerical examples presented in the rest of this section, the two user-controlled parameters of STHP

classifier are set to be 𝐻 = 3 and 𝛾𝑜 = 1.2 following the mode of [9] and [7]. However, it has to be stressed that

this is only a general setting. The best parameter setting may differ from case to case and needs prior knowledge

to be determined.

6.3. Performance comparison and discussions

In this subsection, the performance of the STHP classifier is compared with the state-of-the-art semi-supervised

and supervised classification algorithms on the six benchmark datasets listed in subsection 6.1.

Firstly, for Singapore, WHU-RS, UCMerced and RSSCN7 datasets, 𝐿𝑖 = 2, 4, 6, … ,12 images from each class

(𝑖 = 1,2, . . . , 𝐶) are randomly selected out to form the labelled set, the remaining images are used as the unlabelled

set. The classification accuracy rates of the STHP classifier and the 12 comparative algorithms on the unlabelled

21

sets of the four datasets are reported in Table 7 in the form of 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛. The best results are

highlighted.

Table 7. Performance comparison on benchmark remote sensing datasets

Dataset Algorithm 𝐿𝑖
2 4 6 8 10 12

Singapore STHP 0.888±0.040 0.914±0.025 0.933±0.023 0.944±0.018 0.952±0.016 0.959±0.013

AGR 0.823±0.038 0.849±0.032 0.858±0.024 0.868±0.035 0.876±0.033 0.887±0.021

AGRL 0.833±0.051 0.859±0.043 0.882±0.028 0.900±0.026 0.906±0.026 0.915±0.020

LGC 0.850±0.049 0.902±0.032 0.913±0.025 0.937±0.022 0.941±0.016 0.944±0.015

GMMC 0.807±0.062 0.818±0.055 0.836±0.062 0.853±0.054 0.840±0.045 0.838±0.041

LapSVM1 0.466±0.092 0.673±0.072 0.745±0.046 0.820±0.045 0.848±0.036 0.887±0.019

LapSVM2 0.446±0.091 0.665±0.070 0.771±0.043 0.834±0.042 0.857±0.033 0.892±0.019

LapSVM3 0.401±0.075 0.576±0.075 0.684±0.055 0.790±0.051 0.827±0.041 0.872±0.027

SSDRB 0.893±0.042 0.922±0.028 0.939±0.018 0.953±0.014 0.954±0.016 0.964±0.014

HP 0.839±0.036 0.884±0.026 0.912±0.014 0.930±0.018 0.934±0.014 0.947±0.012

DRB 0.839±0.036 0.882±0.025 0.912±0.015 0.929±0.018 0.932±0.014 0.947±0.012

SVM 0.680±0.066 0.817±0.042 0.854±0.036 0.898±0.023 0.898±0.025 0.922±0.019

KNN 0.715±0.053 0.805±0.036 0.844±0.030 0.883±0.025 0.886±0.023 0.908±0.017

WHU-RS STHP 0.767±0.034 0.835±0.021 0.854±0.025 0.876±0.011 0.886±0.011 0.890±0.011

AGR 0.617±0.077 0.671±0.046 0.705±0.036 0.717±0.028 0.742±0.032 0.741±0.009

AGRL 0.693±0.057 0.745±0.048 0.759±0.034 0.784±0.028 0.794±0.039 0.805±0.017

LGC 0.738±0.035 0.804±0.033 0.831±0.020 0.849±0.018 0.863±0.011 0.864±0.015

GMMC 0.785±0.023 0.805±0.030 0.820±0.019 0.825±0.022 0.826±0.019 0.842±0.032

LapSVM1 0.614±0.041 0.772±0.030 0.832±0.018 0.858±0.011 0.871±0.012 0.880±0.027

LapSVM2 0.606±0.041 0.764±0.035 0.837±0.019 0.860±0.013 0.872±0.011 0.879±0.010

LapSVM3 0.601±0.037 0.754±0.034 0.830±0.016 0.862±0.011 0.882±0.010 0.888±0.010

SSDRB 0.728±0.036 0.783±0.024 0.814±0.022 0.838±0.015 0.853±0.015 0.857±0.012

HP 0.699±0.030 0.775±0.022 0.804±0.018 0.829±0.016 0.846±0.014 0.852±0.011

DRB 0.699±0.030 0.775±0.023 0.804±0.018 0.828±0.017 0.844±0.015 0.848±0.011

SVM 0.576±0.041 0.719±0.033 0.776±0.021 0.807±0.023 0.844±0.018 0.860±0.017

KNN 0.602±0.032 0.697±0.033 0.739±0.019 0.764±0.015 0.795±0.022 0.802±0.013

UCMerced STHP 0.681±0.029 0.740±0.023 0.766±0.016 0.792±0.015 0.804±0.011 0.819±0.012

AGR 0.601±0.037 0.657±0.026 0.677±0.028 0.704±0.016 0.717±0.014 0.734±0.016

AGRL 0.640±0.030 0.691±0.028 0.718±0.027 0.737±0.019 0.751±0.020 0.765±0.018

LGC 0.631±0.033 0.694±0.022 0.718±0.020 0.743±0.021 0.762±0.020 0.773±0.016

GMMC 0.606±0.042 0.635±0.036 0.649±0.030 0.670±0.026 0.677±0.027 0.683±0.024

LapSVM1 0.442±0.038 0.590±0.027 0.668±0.019 0.722±0.020 0.760±0.014 0.787±0.012

LapSVM2 0.428±0.043 0.576±0.033 0.674±0.020 0.724±0.022 0.764±0.014 0.788±0.012

LapSVM3 0.419±0.045 0.566±0.031 0.669±0.023 0.725±0.023 0.767±0.016 0.790±0.013

SSDRB 0.651±0.030 0.722±0.022 0.750±0.023 0.779±0.06 0.792±0.011 0.807±0.014

HP 0.618±0.023 0.692±0.019 0.723±0.016 0.758±0.013 0.774±0.013 0.792±0.012

DRB 0.618±0.023 0.692±0.019 0.722±0.016 0.757±0.012 0.773±0.013 0.791±0.012

SVM 0.504±0.029 0.639±0.036 0.701±0.019 0.744±0.020 0.781±0.019 0.804±0.014

KNN 0.524±0.027 0.610±0.024 0.645±0.024 0.681±0.016 0.712±0.015 0.730±0.014

RSSCN7 STHP 0.534±0.050 0.602±0.040 0.646±0.023 0.676±0.033 0.697±0.027 0.700±0.015

AGR 0.545±0.052 0.590±0.043 0.645±0.026 0.651±0.032 0.655±0.032 0.675±0.022

AGRL 0.556±0.047 0.609±0.045 0.658±0.031 0.668±0.030 0.666±0.032 0.678±0.029

LGC 0.495±0.060 0.571±0.061 0.617±0.048 0.647±0.035 0.664±0.028 0.680±0.030

GMMC 0.536±0.067 0.537±0.074 0.564±0.052 0.563±0.054 0.544±0.060 0.581±0.052

LapSVM1 0.175±0.034 0.225±0.057 0.261±0.059 0.276±0.056 0.314±0.049 0.353±0.049

LapSVM2 0.177±0.039 0.207±0.047 0.254±0.058 0.267±0.052 0.315±0.051 0.357±0.045

LapSVM3 0.176±0.026 0.213±0.044 0.262±0.059 0.282±0.054 0.318±0.052 0.367±0.046

SSDRB 0.501±0.050 0.573±0.055 0.624±0.029 0.656±0.035 0.671±0.031 0.687±0.026

HP 0.488±0.042 0.549±0.042 0.598±0.023 0.628±0.029 0.637±0.023 0.649±0.024

DRB 0.488±0.042 0.549±0.043 0.598±0.023 0.628±0.029 0.637±0.023 0.649±0.024

SVM 0.448±0.047 0.554±0.035 0.617±0.030 0.655±0.033 0.684±0.018 0.697±0.021

KNN 0.434±0.046 0.504±0.042 0.549±0.026 0.582±0.034 0.598±0.023 0.606±0.036

As one can see from Table 7, the proposed STHP classifier demonstrates very high classification accuracy on all

four remote sensing datasets surpassing the best-performing alternatives in most of the cases.

22

Apart from the classification accuracy, it is also important to investigate whether the performance improvement

of the proposed approach over the comparative approaches is of statistical significance. Therefore, statistical

pairwise Wilcoxon tests between the STHP classifier and the selected comparative algorithms with higher

classification precision (namely, AGRL, LGC, LapSVM3, SSDRB, HP and DRB) are conducted in the following

example. The Fisher’s method is employed to combine the p-values returned from the hypothesis tests on 25

Monte Carlo experiments:

𝑋2 = −2∑ ln(𝑝𝑗)
25
𝑗=1 (16)

where 𝑝𝑗 is the p-value returned from the jth hypothesis test; 𝑗 = 1,2, … ,25. The 𝑋2 values returned from the

pairwise Wilcoxon tests between STHP and the alternatives are tabulated in Table 8, where “Inf” denotes infinite

value. In addition, the pairwise Wilcoxon tests between the ground truth and all the algorithms are also performed

and the results are reported in Table 8 as well. It is worth to be noticed that the value of 𝑋2 tends to be large when

the p-values are small, which suggests that the null hypotheses are not true for all the tests. If the obtained 25 p-

values are all greater than 0.05, 𝑋2 is smaller than −2 × 25 × ln(0.05) ≈ 149.7866. Based on the returned 𝑋2

values from the 25 statistical tests tabulated in Table 8, one can conclude that the performance of the STHP

classifier is significantly better than alternatives.

Table 8. 𝑋2 values returned from pairwise Wilcoxon tests

 Dataset 𝐿𝑖 STHP AGRL LGC LapSVM3 SSDRB HP DRB

STHP

vs

Singapore 2 734.43 1316.84 9324.46 703.45 318.56 311.79

4 396.89 766.69 4966.00 323.08 256.92 255.16

6 366.98 415.21 3337.22 228.39 291.77 275.75

8 581.71 353.60 1524. 80 199.12 280.25 283.82

10 381.02 285.98 1136.42 138.88 263.28 270.13

12 501.42 345.54 697.75 182.23 233.88 230.57

Ground

truth vs

2 644.46 768.69 1200.37 9023.28 698.26 639.33 661.63

4 592.74 842.05 881.97 5685.27 602.80 754.76 751.04

6 400.81 559.72 555.28 4167.45 572.84 688.55 677.48

8 263.93 805.88 278.07 1795.50 387.90 467.52 470.92

10 298.43 648.88 187.59 1510.24 402.53 514.86 516.78

12 172.35 654.60 255.63 823.45 340.68 420.12 416.60

STHP

vs

WHU-RS 2 306.75 723.85 1233.20 510.64 142.11 140.68

4 309.38 500.61 848.58 332.68 181.28 178.80

6 346.06 288.33 356.84 213.22 77.85 78.10

8 184.98 229.31 114.63 168.92 95.39 98.34

10 265.01 182.28 110.31 151.45 102.67 120.20

12 230.03 138.36 80.84 89.08 50.14 65.22

Ground

truth vs

2 376.24 261.76 590.45 1313.79 538.35 275.44 273.85

4 270.79 236.52 536.57 695.11 372.89 211.81 210.08

6 133.72 214.39 305.74 219.11 177.42 125.51 122.22

8 98.25 176.96 222.20 96.34 106.87 81.04 78.18

10 118.49 209.58 166.82 49.58 104.25 87.67 84.50

12 91.73 183.47 173.16 59.28 115.92 85.92 100.86

STHP

vs

UCMerced 2 796.77 1638.49 7541.93 1145.99 278.60 278.79

4 348.68 925.52 4411.05 525.76 249.36 249.74

6 313.13 330.09 1492.64 355.73 151.00 157.17

8 188.19 330.99 823.86 308.54 238.09 248.44

10 182.95 484.74 503.04 152.48 194.53 188.79

12 179.67 178.65 287.62 202.56 126.31 121.17

Ground

truth vs

2 934.58 529.36 1423.33 6574.41 932.48 533.98 532.78

4 497.23 208.15 1023.79 4686.62 450.06 220.49 221.06

6 452.88 146.21 510.84 2110.71 366.35 269.74 276.09

23

8 328.46 163.30 444.80 1117.58 212.01 168.48 166.52

10 339.14 145.40 650.56 776.35 234.97 158.99 163.26

12 179.38 214.84 266.08 486.63 139.75 158.13 151.23

STHP

vs

RSSCN7 2 2399.65 5512.90 Inf 4115.21 625.94 625.94

4 1468.41 6662.87 Inf 2516.29 703.30 734.65

6 1541.43 4433.36 Inf 1399.10 703.69 710.88

8 954.25 3537.62 Inf 1215.88 284.55 293.22

10 990.91 2580.95 Inf 1402.36 458.28 472.09

12 864.54 3784.01 14330.77 1332.11 713.18 681.77

Ground

truth vs

2 3071.55 1073.00 5827.33 Inf 6323.16 2433.81 2433.81

4 1667.30 423.04 7499.36 Inf 2800.61 1076.93 1091.51

6 1745.63 249.95 5340.46 Inf 2352.75 850.18 840.51

8 980.20 217.34 4002.20 Inf 2129.19 770.23 766.71

10 791.79 161.67 1642.37 14949.64 1262.06 662.96 665.82

12 855.50 187.40 3774.69 13455.29 1327.41 480.35 464.88

In the last numerical example, for Caltech101 and Caltech256 datasets, 𝐿𝑖 = 1,2,3, … ,6 images from each class

(𝑖 = 1,2, . . . , 𝐶) are randomly selected out to form the labelled set, the remaining images are used as the unlabelled

set. The classification accuracy rates of the STHP classifier and the 12 comparative algorithms on the unlabelled

sets of the two datasets are reported in Table 9 in the form of 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛. The best results are

highlighted.

Table 9. Performance comparison on Caltech datasets

Dataset Algorithm 𝐿𝑖
1 2 3 4 5 6

Caltech101 STHP 0.707±0.032 0.771±0.020 0.792±0.018 0.812±0.014 0.819±0.013 0.827±0.011

AGR 0.549±0.035 0.545±0.073 0.565±0.080 0.611±0.048 0.607±0.068 0.634±0.036

AGRL 0.533±0.075 0.545±0.088 0.5634±0.077 0.632±0.039 0.646±0.053 0.657±0.031

LGC 0.643±0.035 0.715±0.026 0.745±0.028 0.764±0.022 0.773±0.021 0.783±0.015

GMMC 0.610±0.037 0.646±0.020 0.655±0.024 0.660±0.023 0.671±0.023 0.673±0.023

LapSVM1 0.244±0.044 0.464±0.049 0.585±0.033 0.641±0.034 0.672±0.022 0.682±0.031

LapSVM2 0.264±0.050 0.473±0.038 0.516±0.071 0.527±0.080 0.602±0.069 0.628±0.051

LapSVM3 0.240±0.051 0.458±0.044 0.526±0.059 0.530±0.090 0.609±0.057 0.623±0.050

SSDRB 0.717±0.017 0.754±0.013 0.779±0.013 0.792±0.007 0.803±0.008 0.810±0.009

HP 0.635±0.026 0.705±0.023 0.749±0.017 0.774±0.013 0.785±0.011 0.800±0.009

DRB 0.635±0.026 0.705±0.023 0.748±0.017 0.773±0.013 0.783±0.013 0.798±0.010

SVM 0.391±0.038 0.524±0.033 0.596±0.032 0.647±0.022 0.672±0.026 0.702±0.021

KNN 0.503±0.029 0.586±0.027 0.637±0.021 0.679±0.016 0.687±0.022 0.714±0.015

Caltech256 STHP 0.426±0.017 0.524±0.012 0.563±0.004 0.590±0.007 0.604±0.007 0.617±0.004

AGR 0.327±0.029 0.369±0.043 0.404±0.031 0.426±0.028 0.443±0.026 0.460±0.014

AGRL 0.337±0.040 0.393±0.024 0.418±0.022 0.445±0.022 0.453±0.017 0.470±0.012

LGC Out of system memory

GMMC Out of system memory

LapSVM1 0.140±0.013 0.262±0.033 0.349±0.028 0.391±0.048 0.403±0.031 0.427±0.040

LapSVM2 0.149±0.013 0.239±0.025 0.314±0.025 0.375±0.034 0.415±0.027 0.467±0.010

LapSVM3 0.139±0.021 0.249±0.035 0.290±0.036 0.319±0.047 0.391±0.039 0.450±0.034

SSDRB 0.465±0.012 0.526±0.010 0.554±0.007 0.578±0.007 0.593±0.005 0.602±0.005

HP 0.363±0.016 0.446±0.009 0.488±0.006 0.524±0.006 0.540±0.006 0.555±0.004

DRB 0.363±0.016 0.446±0.009 0.488±0.006 0.523±0.006 0.539±0.006 0.554±0.004

SVM Out of system memory

KNN 0.274±0.012 0.350±0.009 0.392±0.008 0.424±0.006 0.444±0.006 0.462±0.006

From Table 9 one can see that, the proposed STHP approach is able to outperform or, at least, be on par with

alterative semi-supervised and supervised classification approaches on the two challenging benchmark problems

under different experimental settings. This demonstrates the promise of the STHP classifier as a powerful semi-

supervised learning technique.

24

Moreover, it can be observed from Tables 7 and 8 that thanks to both Conditions 2 and 3, the self-training

mechanism of the STHP classifier is generally more effective compared with the SSDRB classifier in terms of

classification accuracy improvement, especially for the large-scale, complex problems. In addition, the advantage

is more obvious if more labelled samples are given during the classifier priming stage. For example, in the

experiments with Caltech101 and Caltech256 datasets with 𝐿𝑖 = 6, the classification accuracy of the STHP

classifier increases from 79.98% to 82.70% on Caltech101 dataset, and from 55.45% to 61.68% on Caltech256

dataset through self-training. In contrast, the classification accuracy of the SSDRB classifier increases from

79.76% to 81.04% on Caltech101 dataset, which is 60% less than STHP, and from 55.43% to 60.20% on

Caltech256 dataset through self-training, which is around 30% less.

Based on the numerical examples and discussions presented in this section, one may conclude that the proposed

approach is a strong alternative to the state-of-the-art approaches.

7. Conclusion and Future Works

This paper presented a novel approach for semi-supervised classification by extending the recently introduced HP

classifier with a self-training mechanism based on the widely used pseudo-label technique. After being primed

with labelled samples, the STHP classifier can continue to self-evolve its multi-layered structure from unlabelled

samples via pseudo-labelling without human supervision. Compared with alternative semi-supervised learning

approaches, unique features of the proposed approach include:

1) a highly transparent multi-layered system structure self-organized from both labelled and unlabelled samples;

2) a fully traceable, explainable self-training and decision-making mechanism;

3) the capability to self-learn from labelled and pseudo-labelled samples in a non-iterative manner;

4) the ability of visualizing the learned knowledge at multiple levels of specificity.

Numerical examples on various benchmark image classification problems demonstrate that the proposed STHP

classifier can perform highly accurate classification given very few labelled samples surpassing or, at least, on par

with the state-of-the-art semi-supervised learning approaches.

As future work, there are several considerations. Firstly, the self-training process of the STHP classifier presented

in this paper is mostly limited to offline scenarios. Despite that the proposed approach can work in online scenarios

on a chunk-by-chunk basis thanks to the online learning ability of the base learner, it will be more useful to develop

an online, sample-by-sample self-training mechanism for STHP. Secondly, it will be a strong novelty if the STHP

classifier can autonomously recognize unfamiliar data patterns within the unlabelled set and actively add them as

new classes. This will also give STHP the capability to autonomously spot anomalies from unlabelled samples.

Thirdly, users have to determine the layer number for the current STHP classifier. It will be a valuable

modification if the STHP classifier can self-determine the optimal layer number during the learning process.

Finally, the optimality of the STHP classifier needs to be analysed. It will be interesting to see how the classifier

performs if all prototypes are optimized, e.g., by evolutionary computation algorithms, to the locally optimal

positions.

References

[1] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: a geometric framework for learning from

labeled and unlabeled examples,” J. Mach. Learn. Res., vol. 7, no. 2006, pp. 2399–2434, 2006.

[2] K. P. Bennett and A. Demiriz, “Semi-supervised support vector machines,” in Advances in Neural

Information Processing Systems, 1999, pp. 368–374.

[3] A. Blum and S. Chawla, “Learning from labeled and unlabeled data using graph mincut,” in International

Conference on Machine Learning, 2001, pp. 19–26.

[4] V. Cheplygina, M. de Bruijne, and J. P. W. Pluim, “Not-so-supervised: a survey of semi-supervised, multi-

instance, and transfer learning in medical image analysis,” Med. Image Anal., vol. 54, pp. 280–296, 2019.

25

[5] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based

learning methods. Cambridge: Cambridge University Press, 2000.

[6] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,” Mult. Classif. Syst., vol. 34, pp. 1–17,

2007.

[7] X. Gu and P. P. Angelov, “Semi-supervised deep rule-based approach for image classification,” Appl. Soft

Comput., vol. 68, pp. 53–68, 2018.

[8] X. Gu, P. P. Angelov, C. Zhang, and P. M. Atkinson, “A massively parallel deep rule-based ensemble

classifier for remote sensing scenes,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 3, pp. 345–349, 2018.

[9] X. Gu and W. Ding, “A hierarchical prototype-based approach for classification,” Inf. Sci. (Ny)., vol. 505,

pp. 325–351, 2019.

[10] M. Guillaumin, J. J. Verbeek, and C. Schmid, “Multimodal semi-supervised learning for image

classification,” in IEEE Conference on Computer Vision & Pattern Recognition, 2010, pp. 902–909.

[11] H. Hagras, “Toward human-understandable, explainable AI,” Computer (Long. Beach. Calif)., vol. 51, no. 9,

pp. 28–36, 2018.

[12] T. K. Ho and M. Basu, “Complexity measures of supervised classification problems,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 24, no. 3, pp. 289–300, 2002.

[13] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Label propagation for deep semi-supervised learning,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 5070–5079.

[14] A. Iwayemi and C. Zhou, “SARAA: semi-supervised learning for automated residential appliance

annotation,” IEEE Trans. Smart Grid, vol. 8, no. 2, p. 779, 2017.

[15] B. Jiang, H. Chen, B. Yuan, and X. Yao, “Scalable graph-based semi-supervised learning through sparse

bayesian model,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 12, pp. 2758–2771, 2017.

[16] M. Kim, D. Lee, and H. Shin, “Semi-supervised learning for hierarchically structured networks,” Pattern

Recognit., vol. 95, pp. 191–200, 2019.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural

networks,” in Advances In Neural Information Processing Systems, 2012, pp. 1097–1105.

[18] D.-H. Lee, “Pseudo-label: the simple and efficient semi-supervised learning method for deep neural

networks,” in Workshop on Challenges in Representation Learning, ICML, 2013, p. 2.

[19] Y. Li, C. Guan, H. Li, and Z. Chin, “A self-training semi-supervised SVM algorithm and its application in an

EEG-based brain computer interface speller system,” Pattern Recognit. Lett., vol. 29, no. 9, pp. 1285–1294,

2008.

[20] Y. F. Li, J. T. Kwok, and Z. H. Zhou, “Semi-supervised learning using label mean,” in International

Conference on Machine Learning, 2009, pp. 633–640.

[21] Y. F. Li and Z. H. Zhou, “Towards making unlabeled data never hurt,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 37, no. 1, pp. 175–188, 2015.

[22] W. Liu, J. He, and S.-F. Chang, “Large graph construction for scalable semi-supervised learning,” in

International Conference on Machine Learning, 2010, pp. 679–689.

[23] P. K. Mallapragada, R. Jin, A. K. Jain, and Y. Liu, “SemiBoost: boosting for semi-supervised learning,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 2000–2014, 2008.

[24] U. Maulik and D. Chakraborty, “A self-trained ensemble with semisupervised SVM: an application to pixel

classification of remote sensing imagery,” Pattern Recognit., vol. 44, no. 3, pp. 615–623, 2011.

[25] S. Mehrkanoon, C. Alzate, R. Mall, R. Langone, and J. A. K. Suykens, “Multiclass semisupervised learning

based upon kernel spectral clustering,” IEEE Trans. Neural Networks Learn. Syst., vol. 26, no. 4, pp. 720–

733, 2015.

[26] A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic representation of the spatial envelope,”

Int. J. Comput. Vis., vol. 42, no. 3, pp. 145–175, 2001.

[27] A. B. Penatti, K. Nogueira, and J. A. Santos, “Do deep features generalize from everyday objects to remote

sensing and aerial scenes domains ?,” in IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 44–51.

[28] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille, “Deep co-training for semi-supervised image

recognition,” in European Conference on Computer Vision, 2018, pp. 135–152.

26

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in

International Conference on Learning Representations, 2015, pp. 1–14.

[30] I. Škrjanc, J. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F. Gomide, “Evolving fuzzy and neuro-fuzzy

approaches in clustering, regression, identification, and classification: a survey,” Inf. Sci. (Ny)., vol. 490, pp.

344–368, 2019.

[31] R. G. F. Soares, H. Chen, and X. Yao, “Semisupervised classification with cluster regularization,” IEEE

Trans. Neural Networks Learn. Syst., vol. 23, no. 11, pp. 1779–1792, 2012.

[32] C. Szegedy et al., “Going deeper with convolutions,” in IEEE conference on Computer Vision and Pattern

Recognition, 2015, pp. 1–9.

[33] J. Tanha, M. van Someren, and H. Afsarmanesh, “Semi-supervised self-training for decision tree classifiers,”

Int. J. Mach. Learn. Cybern., vol. 8, no. 1, pp. 355–370, 2017.

[34] J. Thorsten, “Transductive inference for text classification using support vector machines,” in International

conference on Machine learning, 1999, pp. 200–209.

[35] I. Triguero, J. A. Sáez, J. Luengo, S. García, and F. Herrera, “On the characterization of noise filters for self-

training semi-supervised in nearest neighbor classification,” Neurocomputing, vol. 132, pp. 30–41, 2014.

[36] Z. Wang, B. Du, L. Zhang, L. Zhang, and X. Jia, “A novel semisupervised active-learning algorithm for

hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 6, pp. 3071–3083, 2017.

[37] M. Wang, W. Fu, S. Hao, D. Tao, and X. Wu, “Scalable semi-supervised learning by efficient anchor graph

regularization,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 7, pp. 1864–1877, 2016.

[38] J. Wang, T. Jebara, and S. F. Chang, “Semi-supervised learning using greedy Max-Cut,” J. Mach. Learn.

Res., vol. 14, pp. 771–800, 2013.

[39] W. Wang, H. Wang, Z. Zhang, C. Zhang, and Y. Gao, “Semi-supervised domain adaptation via Fredholm

integral based kernel methods,” Pattern Recognit., vol. 85, pp. 185–197, 2019.

[40] Y. Wang, X. Xu, H. Zhao, and Z. Hua, “Semi-supervised learning based on nearest neighbor rule and cut

edges,” Knowledge-Based Syst., vol. 23, no. 6, pp. 547–554, 2010.

[41] H. Wu and S. Prasad, “Semi-supervised deep learning using pseudo labels for hyperspectral image

classification,” IEEE Trans. Image Process., vol. 27, no. 3, pp. 1259–1270, 2018.

[42] D. Wu et al., “Self-training semi-supervised classification based on density peaks of data,” Neurocomputing,

vol. 275, pp. 180–191, 2018.

[43] G. Xia et al., “AID: a benchmark dataset for performance evaluation of aerial scene classification,” IEEE

Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3965–3981, 2017.

[44] S. Xiang, F. Nie, and C. Zhang, “Semi-supervised classification via local spline regression,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 2039–2053, 2010.

[45] Y. M. Zhang, K. Huang, G. G. Geng, and C. L. Liu, “MTC: a fast and robust graph-based transductive

learning method,” IEEE Trans. Neural Networks Learn. Syst., vol. 26, no. 9, pp. 1979–1991, 2015.

[46] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local and global consistency,”

in Adv. Neural. Inform. Process Syst, 2004, pp. 321–328.

[47] Z. H. Zhou and M. Li, “Semi-supervised regression with co-training,” in International Joint Conference on

Artificial Intelligence, 2005, pp. 908–913.

[48] X. J. Zhu, “Semi-supervised learning literature survey,” 2005.

[49] X. Zhu, Z. Ghahraman, and J. D. Lafferty, “Semi-supervised learning using gaussian fields and harmonic

functions,” in International conference on Machine learning, 2003, pp. 912–919.

