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Many-body localization of zero modes
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The celebrated Dyson singularity signals the relative delocalization of single-particle wave functions at the
zero-energy symmetry point of disordered systems with a chiral symmetry. Here we show that analogous zero
modes in interacting quantum systems can fully localize at sufficiently large disorder, but do so less strongly
than nonzero modes, as signified by their real-space and Fock-space localization characteristics. We demonstrate
this effect in a spin-1 Ising chain, which naturally provides a chiral symmetry in an odd-dimensional Hilbert
space, thereby guaranteeing the existence of a many-body zero mode at all disorder strengths. In the localized
phase, the bipartite entanglement entropy of the zero mode follows an area law, but is enhanced by a system-
size-independent factor of order unity when compared to the nonzero modes. Analytically, this feature can be
attributed to a specific zero-mode hybridization pattern on neighboring spins. The zero mode also displays a
symmetry-induced even-odd and spin-orientation fragmentation of excitations, characterized by real-space spin-
correlation functions, which generalizes the sublattice polarization of topological zero modes in noninteracting
systems, and holds at any disorder strength.
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I. INTRODUCTION

Complex quantum systems owe their rich physical prop-
erties to the intricate interplay of symmetries, disorder, and
interactions. This interplay is mirrored by the intertwined
concepts and frameworks which have been developed to
capture these aspects. Symmetry-reduced representations of
quantum systems were established at the beginning of quan-
tum mechanics [1], while the absence of unitary symmetries
allows for complex wave dynamics even for low numbers
of degrees of freedom [2]. This ties both to semiclassical
descriptions of classically chaotic systems as well as to sta-
tistical descriptions of structureless noninteracting disordered
systems, the properties of which are captured by random-
matrix theory [3]. The latter provides a natural framework to
classify complex quantum systems also in accordance with
their invariance under antiunitary symmetries, as pioneered
by Wigner [4] and Dyson [5] and completed with the ten
Altland-Zirnbauer universality classes [6]. This tenfold way
also underpins the topological classification of electronic band
structures in periodic systems of different spatial dimension-
ality [7]. Besides time-reversal symmetry, this classification
also accounts for antiunitary charge-conjugation symmetries
and the combination of the two into a unitary chiral symmetry,
as originally encountered in random-matrix descriptions of
Dirac systems [8].
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For structureless systems, random-matrix theory describes
wave functions ergodically spreading across the whole sys-
tem, but this can be amended to also provide statistical de-
scriptions of Anderson-localized systems, in particular in one-
dimensional or quasi-one-dimensional geometries [9]. Again,
these descriptions can be organized according to the universal-
ity classes of the tenfold way [10], and then account for topo-
logical phenomena in nonperiodic, disordered settings. The
most striking effect amongst these is the possibility of such
systems to be less localized near spectral symmetry points.
This phenomenon was first realized by Dyson [11], who
noted that a one-dimensional system with hopping disorder
develops a logarithmically diverging density of states around
the band center—the so-called Dyson singularity, which
goes along with anomalously localized states that exhibit a
stretched-exponential spatial profile. Within the classification
framework described above, this relative delocalization phe-
nomenon becomes tied to the existence of a topologically
protected zero mode in a chirally symmetric system with an
odd-dimensional Hilbert space [12], and also occurs in higher-
dimensional systems, where the anomalously localized states
can resemble those at a metal-insulator transition [13,14].
Weaker analogs of such anomalous localization characteristics
also occur in absence of spectral symmetries [15,16]. Such
robust features deserve attention as they significantly broaden
the scope for topologically protected quantum phenomena to
realistic, disordered systems, both conceptually as well as in
practical terms.

For many-body systems, interactions provide a significant
complication of all of these aspects, with much recent effort
devoted to the question of ergodic versus many-body localized
behavior [17–19]. The ergodic phase is again well captured
by random-matrix theory [20], reflecting its original setting
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of nuclear physics [21]. Topological aspects have been ex-
tensively studied for gapped ground-state physics [22], but
topological order can also emerge in excited states, where
it competes with the many-body localized phase [23,24]. In
particular, it has been found that such novel phases can be in-
duced by a particle-hole symmetry that pairs up excited states
around the center of the spectrum [24–26]. However, the role
of many-body zero modes pinned to such spectral symmetry
points is much less understood, both conceptually as well as
concerning the identification of concrete phenomena.

Here, we clarify this role by drawing motivation from
the Dyson singularity. We first identify a natural disordered
many-body system displaying an analogous chiral many-body
zero mode, consisting of a simple spin-1 Ising chain with
a random transverse field. We then address the question of
its localization properties both in real space and in Fock
space, where we identify two localization phenomena that
characterize the zero mode.

(i) In real space the spin correlations of the zero mode
fragment into five independent sectors. This fragmentation
occurs both with respect to the even and odd sublattice,
which generalizes the sublattice polarization of chiral zero
modes in noninteracting systems, as well as with respect to
the orientations of the correlated spin, which is specific to
the chosen many-body context. This phenomenon holds at all
disorder strengths.

(ii) In contrast to the noninteracting case, the zero mode
still localizes at strong disorder, both in real space as well
as in Fock space, as indicated, e.g., by an area law for the
entanglement entropy, a large inverse participation ratio, and
short-ranged spatial correlations. However, these measures
also indicate that quantitatively the zero mode is noticeably
less localized than the nonzero modes—a phenomenon that
for brevity we refer to as “relative delocalization” in the re-
mainder of this paper. In particular, the bipartite entanglement
entropy is significantly enhanced for the zero mode by a
system-size-independent factor of order unity, while the in-
verse participation ratio is correspondingly reduced. Thereby,
the zero mode attains characteristics that set it apart from all
other states in the system, even if they may be very close in
energy.

In Sec. II, we describe the spin-1 Ising chain, which
provides a natural model for the described phenomena as it
combines a chiral symmetry with an odd-dimensional Hilbert
space, and always features a zero mode in one of the two
spin-parity sectors. In Sec. III we first discuss the real-space
fragmentation of the spin correlations, as this follows directly
from the symmetry constraints and holds at all disorder
strengths, which we show analytically and illustrate numeri-
cally. In this section we also identify the spin correlations that
are most characteristic to quantify the localization properties
of zero modes and nonzero modes, to which we then turn
in Secs. IV and V. In Sec. IV we demonstrate the relative
delocalization of the zero mode numerically based on both
Fock-space and real-space measures. The analytical expla-
nation of this relative delocalization is provided in Sec. V,
where we identify the dominant hybridization patterns of zero
modes and nonzero modes. Enforced by the chiral-symmetry
constraints, the dominant zero-mode hybridization configu-
rations involve three spin states on neighboring spins, while

those of nonzero modes only involve two spin states, so that
the Fock-space localization characteristics of these modes
fundamentally differ. In Sec. VI we summarize and discuss
the results and put them into further context.

II. BACKGROUND

A. Model

To demonstrate the effects outlined in this paper, we re-
quire a many-body system in which a chiral symmetry is
manifest for a system with an odd-dimensional Hilbert space.
This is naturally provided by a spin-1 Ising chain with a
transverse magnetic field, given by the Hamiltonian

H =
N∑

n=1

hnSz
n + J

N∑
n=1

Sx
nSx

n+1. (1)

Here J is the coupling strength between adjacent spins, de-
scribed by the matrices

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = 1√

2i

⎛
⎝ 0 1 0

−1 0 1
0 −1 0

⎞
⎠,

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, (2)

while disorder of strength W is introduced via the on-site
potentials, chosen independently from uniform box distribu-
tions hn ∈ [−W,W ]. The length of the chain is denoted as N ,
and in our general discussion below the size of the individual
spins is denoted as S. The Hilbert space then has dimension
N = (2S + 1)N , and is conveniently spanned by the joint
eigenbasis

|s〉 =
⊗

n

∣∣sz
n

〉
(3)

of all operators Sz
n, where we label the states by the vector s of

components sz
n ∈ {−S,−S + 1, . . . , S}.

B. Symmetries

The primary reason we choose to study the transverse Ising
model owes to the fact that it possesses a chiral symmetry

XHX = −H, (4)

with a unitary involution fulfilling XX † = X 2 = 1. To see
that this chiral symmetry is manifest for all sizes of spin,
consider the spin rotation operator

X = i2SN
∏

n even

U x
n (π )

∏
n odd

U y
n (π ), (5)

with individual rotation matrices

U a
n (ϕ) = exp

(
iϕSa

n

)
. (6)

The operator (5) is well defined in infinite chains and finite
chains with open boundary conditions, while periodic bound-
ary conditions require that the chain consists of an even num-
ber of spins, as we will thus assume. The operator X rotates
all spins by π about axes alternatingly aligned with x and y,
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which inverts the sign of all on-site terms ≈Sz
n, as well as

exactly one of the two spin operators in the interaction terms
≈Sx

nSx
n+1, in accordance with the requirements of Eq. (4). The

factor i2SN in the definition (5) makes sure that X 2 = 1 holds
for all system lengths and arbitrary spin.

The assignment of sites as even or odd provides a gauge
freedom, allowing the definition of an alternative chiral sym-
metry operator

X̃ = i2SN
∏

n even

U y
n (π )

∏
n odd

U x
n (π ). (7)

It follows that the system also possesses an ordinary symmetry
[P, H] = 0, arising from

XX̃ ∝ P ≡
∏

n

U z
n (π ), (8)

which inverts the sign of all operators Sx
n in the Hamiltonian

and leaves the operators Sz
n invariant. In the basis (3),

P|s〉 = exp

(
iπ

∑
n

sz
n

)
|s〉 = (−1)

∑
n sz

n |s〉, (9)

so that P represents the total spin-parity of the system.
Therefore, we can divide the Hilbert space into sectors of
even and odd parity, which are of size N+ = N− = N /2 for
half-integer spins, while

N± = (N ± (−1)N )/2 (10)

for integer spins.
Finally, as Sx

n and Sz
n can always be represented by real

matrices, the Hamiltonian displays a time-reversal symmetry
T HT ≡ H∗ = H , where T is antiunitary and fulfills T 2 = 1.
Therefore, the system also possesses a charge-conjugation
(particle-hole) symmetry CHC = −H , where C = T X is an
antiunitary operator with C2 = 1.

For spins of size 1/2, it is well known that the rotations
defined in Eq. (6) can be written as U a(π ) = iσa with the
usual 2 × 2-dimensional Pauli matrices σa, where one exploits
the fact that σ 2

a = 1. In the case of spin 1, where the spin
operators are given by Eq. (2), we obtain in contrast

U a(π ) = 1 − 2(Sa)2, (11)

where

U a(π )U b(π ) = U c(π ), ∀ a 
= b 
= c 
= a. (12)

In other words, the set of these chiral symmetry operators,
with the identity operator, is isomorphic to the Klein four-
group, which describes the symmetries of a nonsquare rect-
angle. We can also exploit the relations [U a, Sa] = 0 and
{U a, Sb} = 0, provided that a 
= b.

C. The zero mode

A direct consequence of the chiral symmetry is that
eigenstates |ψk〉 with energies Ek are paired with eigenstates
|ψk̄〉 = X |ψk〉 with energy Ek̄ = −Ek . The exception are zero
modes with energy Ek = 0, for which we formally identify
the indices k̄ = k. Even in the case of degeneracy of these
zero modes, they can always be chosen to fulfill X |ψk〉 =
σ |ψk〉, where σ = ±1 distinguishes between two types of

zero modes. The number νσ of modes of each type is then
constrained by the signature of X , according to tr X = ν+ −
ν−, which serves as a topological index. In particular, in a
system with an odd overall Hilbert-space dimension, at least
one zero mode is always guaranteed to exist, as it is impossible
to pair up all states.

In the Ising chain, the Hilbert-space dimension N is even
in the case of half-integer spins, and so are the two parity
sectors of dimensionality N± = (2S + 1)N−1 as soon as N �
2. In contrast, according to Eq. (10), for integer spins N− is
even but N+ is odd. Hence, at least one zero mode, denoted as
|ψ0〉, is guaranteed to exist in the even-parity sector of chains
with integer spins. In the basis (3), this can be attributed to
the existence of the state |0〉 (the state where sz

n = 0 for all
spins), which is the only basis state that is left invariant under
the operation with the chiral operator X , which connects all
other basis states in pairs with index s and s̄ = −s.

The zero mode possesses an energy that remains pinned
to zero no matter the disorder or interaction strength. This
invariance with respect to parameter variations does not occur
for any other eigenstate, which leaves the question if this has
any bearings on the localization characteristics, in analogy to
what is known from single-particle systems. Therefore, the
key question explored in this paper is whether the zero mode
displays different localization characteristics to the modes
with finite energy.

D. Numerical techniques

We will address the localization properties of the zero
mode both by analytical and by numerical approaches. The
numerical results are obtained by exact diagonalization from
the positive-parity sector in chains with an even number N
of spins of size S = 1, where we apply periodic boundary
conditions. As the effective Hilbert-space dimension rises as
(3N + 1)/2, and only a single zero mode is present in each
realization, we obtain disorder averages from chains of limited
lengths up to N = 8, but also show results from individual
realizations with N = 10. For nonzero modes, we collect data
from the middle 10% of the spectrum. Quantities assigned
to the zero mode are denoted in the form Q0, while those
of nonzero modes are denoted in the form Q
=0. Disorder
averages of any quantity are denoted by an overline, and
are obtained from 10 000 realizations. Where focusing on
individual disorder strengths, we use values W = 1 for weak
disorder (ergodic regime), W = 8 for moderate disorder, and
W = 20 for strong disorder (localized regime).

III. FRAGMENTATION OF THE
ZERO-MODE CORRELATIONS

We start with a general key characteristic of the zero
mode, which relates to its real-space structure and holds at all
strengths of disorder. We first introduce the spin-correlation
matrix that captures this structure, and discuss its general
properties. We then show that the spin correlations of the zero
mode fragment into five independent elementary patterns,
while for nonzero modes there are only two, and verify and
illustrate these patterns numerically.
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A. Spin-correlation matrix

The real-space spin structure in a given energy eigenstate
|ψk〉 is captured by the correlations

Ck,nm ≡

⎛
⎜⎝

〈
Sx

nSx
m

〉 〈
Sx

nSy
m
〉 〈

Sx
nSz

m

〉
〈
Sy

nSx
m

〉 〈
Sy

nSy
m
〉 〈

Sy
nSz

m

〉
〈
Sz

nSx
m

〉 〈
Sz

nSy
m
〉 〈

Sz
nSz

m

〉
⎞
⎟⎠, (13)

which we consider as blocks of a Hermitian matrix Ck of
dimension 3N × 3N . We term the eigenvalues and eigen-
vectors of this correlation matrix the correlation eigenvalues
and eigenvectors, in distinction to the energy eigenvalues and
eigenvectors associated with the Hamiltonian.

The following features are useful to note.
(i) According to the relation (Sx

n )2 + (Sy
n)2 + (Sz

n)2 = 21,
the trace tr Ck = 2N is fixed.

(ii) The matrix is well behaved under local changes
(Sx

n, Sy
n, Sz

n) → (Sx
n, Sy

n, Sz
n)OT

n of the spin basis by an orthog-
onal transformation On (hence, basis changes that are com-
patible with the Lie algebra), which transform the correlation
matrix as Ck,nm → OnCk,nmOT

m. This leaves the eigenvalues of
Ck invariant, while the corresponding eigenvectors automati-
cally adapt to the chosen local spin orientations.

(iii) Since the eigenstates of the Hamiltonian have a fixed
parity, the expectation values 〈Sz

nSx
m〉 = 〈Sz

nSy
m〉 = 0. There-

fore, the spin-correlation matrix decomposes into a direct
sum Ck = �k ⊕ Zk , given by the block decomposition Ck,nm =
�k,nm ⊕ Zk,nm, where

�k,nm =
(〈

Sx
nSx

m

〉 〈
Sx

nSy
m
〉〈

Sy
nSx

m

〉 〈
Sy

nSy
m
〉
)

,

Zk,nm = 〈
Sz

nSz
m

〉
. (14)

(iv) Utilizing the unitary matrix

V = 1√
2

(
1 1
−i i

)
, (15)

we can further introduce the transformed matrix

ρk,nm = V †�k,nmV =
(〈S+

n S−
m 〉 〈S+

n S+
m 〉

〈S−
n S−

m 〉 〈S−
n S+

m 〉
)

(16)

with spin-ladder operators S±
n = 2−1/2(Sx

n ± iSy
n). Recalling

the analogy between spin-ladder operators and fermionic cre-
ation and annihilation operators for systems with spin 1/2, this
expression resembles a one-particle density matrix (OPDM),
equipped with a Bogoliubov-Nambu structure that is appro-
priate for a system with a nonconserved particle number.

(v) In a canonical basis state |s〉, the correlation matrix �s
is block diagonal, with each block having a correlation eigen-
value 1 and an eigenvalue 1 − (sz

n)2, so that the correlation
eigenvectors are localized on individual spins. The correlation
matrix Zs then has elements Zs,nm = sz

nsz
m, and hence is of

rank 1, with a single finite eigenvalue Zmax
s = ∑

n(sz
n)2 (as

indicated, we interpret this as the maximal eigenvalue). This
counts the number of spins with a nonzero z component.

These features imply that fully localized states are charac-
terized by an approximately quantized correlation spectrum,
in close analogy to the OPDM occupation spectrum in a

many-body localized system [27–29]. In contrast, in an er-
godic state represented by a random superposition of basis
states, the correlation matrix self-averages to Cerg

k ∼ (2/3)1.
This results in a correlation spectrum centered around the
single value 2/3, smoothed out by the influence of the residual
off-diagonal elements of Ck , which is in close analogy to the
smooth OPDM occupation spectrum in an ergodic many-body
system.

B. Zero-mode correlations

As we show next, for the zero mode, the correlation matrix
�0 further decomposes into four sectors, each pertaining the
Sx or Sy component and additionally confined to the sublattice
of even or odd sites. This structure follows directly from
the symmetry constraints, and hence holds at all strengths of
disorder.

To arrive at these features, we first note that for all states
time-reversal symmetry implies

〈ψk|Sy
nSx

m|ψk〉 = 0 if n 
= m, (17)

as this amounts to an expectation value of a Hermitian
operator with imaginary matrix elements, evaluated with a
real-valued eigenvector. This constraint does not apply for
n = m as the matrix product Sy

nSx
n is not Hermitian (it is

furthermore not simply related to Sz
n, in contrast to the case

of spin 1/2). However, for the zero mode the chiral symmetry
further implies

〈ψ0|Sx
nSx

m|ψ0〉 = 〈Xψ0|Sx
nSx

m|Xψ0〉
= (−1)n−m〈ψ0|Sx

nSx
m|ψ0〉, (18)

and analogously

〈ψ0|Sy
nSy

m|ψ0〉 = (−1)n−m〈ψ0|Sy
nSy

m|ψ0〉, (19)

〈ψ0|Sx
nSy

m|ψ0〉 = (−1)n−m−1〈ψ0|Sx
nSy

m|ψ0〉, (20)

〈ψ0|Sy
nSx

m|ψ0〉 = (−1)n−m−1〈ψ0|Sy
nSx

m|ψ0〉, (21)

which are relations that hold for all n and m. In combination
with the constraint (17) from time-reversal symmetry, these
relations imply that the blocks �0,nm are all diagonal, and
furthermore vanish if n − m is odd. Thus, for the zero mode
the � correlation matrix decomposes into four independent
blocks,

�0 = �x,even
0 ⊕ �x,odd

0 ⊕ �
y,even
0 ⊕ �

y,odd
0 , (22)

where the superscripts denote the supporting spin component
and sublattice. Including the spin correlations from Z0, we
can, therefore, identify five independent elementary spin-
correlation patterns for the zero mode.

C. Numerical illustration

This structure of the spin correlations is illustrated in
Fig. 1, where we show correlation eigenstates with minimal
and maximal correlation eigenvalues in a typical individual
disorder realization at (a) weak, (b) moderate, and (c) strong
disorder (W = 1, 8, 20, respectively). Subpanels (i)–(iv) show
the four types of correlation eigenvectors from �0, while
subpanel (v) shows correlation eigenvectors from Z0. The
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FIG. 1. Spin correlations in a zero mode of the spin-1 Ising chain, as quantified by the spin-correlation matrix C in an individual realization
of the disorder with strength (a) W = 1, (b) W = 8, and (c) W = 20. At any disorder, the correlation matrix fragments into five sectors.
Subpanels (i)–(v) show the correlation eigenvectors with the largest and smallest correlation eigenvalue in each sector. The corresponding
correlation eigenvalue spectra are shown in the adjacent subpanels (α-γ ). For weak disorder, these eigenvalues lie around the ergodic value
2/3, while for strong disorder they approach quantized values 1 (for �) and 0 (for Z).

position of these eigenvectors in the occupation spectrum is
depicted in the adjacent subpanels (α)–(γ ).

While the predicted fragmented structure holds at all dis-
order strengths, the correlation eigenvectors from �0 display
a noticeable trend from being extended over the whole system
for weak disorder, to becoming highly localized on individual
spins at strong disorder. In contrast, we notice that the Z corre-
lation eigenvectors more sensitively quantify the hybridization
of neighboring spins, a feature that will be important in the
subsequent sections. In conjunction, the correlation spectra
from �0 and Z0 both move away from the ergodic value 2/3,
approaching the quantized values 1 and 0, respectively, as
expected for a many-body localized state.

For comparison, Fig. 2 shows the analogous spin-
correlation features in a representative nonzero mode. Note
that subpanels (i) and (ii) now refer to the x and y components
of the same �-correlation eigenvectors, as these correlations
no longer separate. Furthermore, each of these eigenvectors
now populates both the even and odd sublattices. Otherwise,

we notice the same qualitative tendencies as for the zero
mode—the � spin correlations again become highly localized
for strong disorder, while the Z correlations remain more ex-
tended, and the corresponding correlation spectra move away
from their ergodic values 2/3 to quantized values, which now
depend on the number of finite spins in the approached basis
state |s〉. In the example, this state has four finite spins, so that
there are four nearly vanishing �-correlation eigenvalues, and
a dominant Z correlation eigenvalue approaching the value 4.

By surveying different examples, we can certify that these
qualitative features are typical for individual states in fixed
disorder realizations, with the variations at moderate and
strong disorder pointing to different spin hybridization pat-
terns. As indicated above, the Z0 eigenvector with maxi-
mal eigenvalue Zmax

0 is particularly useful to characterize
the excitation patterns of the zero mode above the refer-
ence state |0〉 for the zero mode, and analogously above
the reference states |s〉 for nonzero modes. These insights
will inform our discussion of the quantitative differences
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FIG. 2. Spin correlations for a nonzero mode close to the band center, in analogy to Fig. 1. Note that the correlation eigenvectors displayed
in subpanels (i) and (ii) now belong to the same correlation eigenvalues; hence, they represent their x and y components, as these no longer
separate, also not with respect to the sublattice. Therefore, only two types of elementary spin correlations exist for such nonzero modes. As
shown in subpanels (α) and (β ), the correlation spectra again become quantized for strong disorder, reflecting the number of spins with finite
sz in the approached basis state |s〉.

in their localization, on which we focus in the following
sections.

IV. ZERO-MODE DELOCALIZATION

We now turn to the second key feature of the zero mode,
which pertains to the fact that it is less localized than the
nonzero modes. In this section, we establish this feature
based on numerical results, while the theoretical explanation
is provided in the following section.

A. Measures of localization

To address this question, we consider a number of comple-
mentary indicators of localization, the general properties of
which we summarize first.

As a general measure of localization, we consider the
bipartite von Neumann entanglement entropy [30]. This is
defined for each normalized eigenstate |ψk〉 as

Sk = −tr (ρ (k) ln ρ (k) ), (23)

where ρ (k) = tr B|ψk〉〈ψk| is the reduced density matrix of
a subsystem A, obtained by tracing out the complement B.
We take A to be a contiguous subchain of length NA = N/2,
hence half the length of the total system. In delocalized states,
the von Neumann entropy is large, and should be well ap-
proximated by Page’s law for completely ergodic states [20],
Sk � NA ln 3 − 1

2 . Therefore, the entropy grows linearly with
the system size, which manifests a volume law. In contrast, in
a localized state the von Neumann entropy is expected to be
small, and on average independent of the system size, which
manifests an area law. The value of the entropy can then be

taken as a proxy for the effective localization length [31]. In
a basis state |s〉, the entanglement entropy Ss = 0 vanishes as
these states are all separable.

To quantify the degree of Fock-space localization, we make
use of the inverse participation ratio (IPR) in the basis (3):

IPRk =
∑

s

|〈s|ψk〉|4. (24)

In the case of perfect Fock-space localization, the IPR goes
to unity, while in the case of complete delocalization the IPR
goes to 1/N .

We also consider the intensity

Ik = |〈0|ψk〉|2 (25)

of the states with the special state |0〉, which we expect to
become large for the zero mode at large disorder, while for
ergodic states again Ik � 1/N .

B. Numerical results

At strong disorder, the zero mode is expected to have a
large overlap I0 = |〈0|ψ0〉|2 with the state |0〉, in which the
contribution from the field h vanishes. This is verified in
Fig. 3(a), which shows that the disorder-averaged I0 rises
sharply at disorder strengths W � 4. In contrast, the cor-
responding average I
=0 ∼ O(N−1) for the nonzero modes
is negligible for all disorder strengths. Nonetheless, overall
the zero mode is noticeably less localized in Fock space
than the nonzero modes, as evidenced in Fig. 3(b) by an
inverse participation ratio IPR0 that is reduced relative to
IPR 
=0, and in Fig. 3(c) by a bipartite entanglement entropy
S0 that is increased relative to S
=0. Therefore, for strong
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FIG. 3. Disorder-averaged measures of localization for the zero
mode (light red) and nonzero modes (dark blue) as a function of
disorder strength W . (a) Overlap Ik with the basis state |0〉, as defined
in Eq. (25). For the zero mode, I0 increases with increasing disorder
strength, reaching I0 ∼ 1/2 at around W = 20. For nonzero modes,
the corresponding average I
=0 = O(N−1) remains negligible at all
disorder strengths. As shown in (b), the nonzero modes nonethe-
less have a larger extent of Fock-space localization, as quantified
by the inverse participation ratio IPR [see Eq. (24)], and hence
approach an eigenstate |s〉 with s 
= 0 more quickly than the zero
mode approaches |0〉. This relative delocalization of the zero mode
is confirmed in panel (c) by the bipartite entanglement entropy,
Eq. (23), which is enhanced for the zero mode. Panel (d) shows
the maximal Z spin-correlation eigenvalue Zmax

k , which quantifies the
residual hybridization of these states in the strongly localized regime,
as further discussed in Sec. V.

disorder the nonzero modes approach basis states |s〉 with
s 
= 0 more quickly than the zero mode approaches the basis
state |0〉. As we explain in Sec. V, the residual hybridiza-
tion of basis states can be quantified by the maximal Z

spin-correlation eigenvalue Zmax
k , the average of which is

shown in Fig. 3(d).
In Fig. 4, we show the disorder-averaged entanglement

entropy Sk as a function of the mode index k, obtained by
ordering all states by their energy and centering the resulting
index at the zero mode. The entropy of the zero mode is
clearly enhanced in the localized regime, by an amount that
is independent of the accessible system sizes, hence remain-
ing consistent with an area law. This well-confined relative
delocalization peak also confirms that the enhancement is
restricted to exact zero modes, and not shared, e.g., by nonzero
modes very close to the band center.

As shown by the statistical distribution functions of the
entanglement entropy in Fig. 5, this delocalizing tendency
can be attributed to an accumulation of zero modes with
entropy S0 slightly above 1, to be identified as S0 � ln 3
in the following section. This accumulation is already well
pronounced at moderate values of disorder [panel (b)], and
is well defined at very large values of disorder [panel (c)],
suggesting that it arises from a specific delocalization mech-
anism. In contrast, nonzero modes display accumulations at
smaller characteristic values of the entropy, to be identified
as ln 2 and (ln 8)/2, which hints towards a competition of
several distinct delocalization mechanisms. We will identify
the underlying hybridization patterns in the following section.

V. DIMER HYBRIDIZATION

We explain the relative delocalization of the zero mode
based on quasidegenerate perturbation theory at relatively
large disorder. This reveals a characteristic dimer hybridiza-
tion pattern involving three collective basis states localized
on neighboring spins, while nonzero modes support a much
wider range of hybridization patterns.

A. Perturbation theory setup

Separating the Hamiltonian into a dominant part H (0) =∑N
n=1 hnSz

n and a perturbation V = J
∑N

n=1 Sx
nSx

n+1, the unper-
turbed eigenstates of the system coincide with the canonical
basis states |s〉 defined in Eq. (3), with the zero mode given
by |ψ0〉 = |0〉. These states carry energy E (0)

s = ∑
hnsz

n and
have vanishing entanglement entropy S(0)

s = 0, Fock-space lo-
calization measures IPR(0)

s = 1 and I (0)
s = δs,0, and quantized

correlation eigenvalues from � and Z .

k
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4
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N=6

N=8

0

1
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k
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FIG. 4. Averaged entanglement entropy of energy eigenstates ordered by their energy, with the resulting mode index centered at the zero
mode, for disorder strengths (a) W = 1, (b) W = 8, and (c) W = 20 and system sizes N = 4, 6, 8. The entanglement entropy of the zero mode
is enhanced in the localized regime, by an amount that is independent of the accessible system sizes.
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FIG. 5. Distributions of the entanglement entropy for zero modes (top panels) and nonzero modes (bottom panels), for parameters as in
Fig. 4. From moderate disorder, the zero mode shows a significant enhancement of entropies S � 1, with the indicated value ln 3 identified in
Sec. V. Nonzero modes display less pronounced features at smaller characteristic values ln 2 and (ln 8)/2.

These characteristics define the typical features of all
modes in the strongly localized regime, where any hybridiza-
tion is absent. The question is how the modes gradually
delocalize due to resonant interactions at weaker disorder.
We show that this involves distinct hybridization processes
on adjacent spins, leading to characteristic features in the
entropy, inverse participation ratio, and spin correlations.

We first identify the resonance conditions in general terms,
and then derive the hybridization patterns and their charac-
teristic signatures, which we further support with numerical
results.

B. Resonance conditions

In first-order perturbation theory, the hybridization of the
zero mode with other states |s〉 is strongly suppressed by
energy denominators E (0)

s . In principle, hybridization can set
in for states with individual |hn| � J , for which individual
spins can align freely. However, at least two sites need to be in-
volved to retain positive parity, and furthermore these config-
urations have vanishing perturbation matrix elements unless
sites neighbor each other. On the other hand, it should then
suffice that |hn| − |hn+1| � J , instead of both |hn|, |hn+1| �
J individually, implying that such disorder configurations
should be dominant as they require fewer constraints.

We can verify the above reasoning by examining all exci-
tations patterns above the background state |0〉. Amongst the
excitations involving neighboring spins (hence relevant in the
first order of the perturbation), only two patterns are allowed
by parity, chiral, and time-reversal symmetry, namely, those
obtained from state |0〉 by terms generated via application of
the matrix combinations iSx

nSy
n+1 and iSy

nSx
n+1. These can be

conveniently combined into excitation operators

̂±
n ≡ iSx

nSy
n+1 ∓ iSy

nSx
n+1, (26)

leading to the perturbative ansatz

|ψ0〉 �
(

1 +
∑

n

φ+
n ̂+

n +
∑

n

φ−
n ̂−

n

)
|0〉, (27)

where φ±
n are the amplitudes of the two excitation fields.

Expanding the condition H |ψ0〉 = 0 in orders of the relative
interaction strength, we then obtain the perturbatively-closed
coupled equations

0 = (φ+
n + φ−

n )hn+1 + (−φ+
n + φ−

n )hn + J, (28)

0 = (φ+
n + φ−

n )hn + (−φ+
n + φ−

n )hn+1, (29)

whereupon

φ+
n = J

2(hn − hn+1)
, (30)

φ−
n = −J

2(hn + hn+1)
. (31)

Thus, one of the two fields becomes large when |hn| � |hn+1|,
which agrees with the resonance conditions identified above.

C. Zero-mode hybridization patterns

To describe such resonant disorder configurations more
accurately, we resort to quasidegenerate perturbation theory
in the subspace of the hybridizing spins, taken without loss
of generality as (n, n + 1) = (1, 2). We start with dimer hy-
bridizations of even parity, assuming initially that they are
embedded into a chain where the remaining spins are unhy-
bridized,

|ψ0〉 = |ψ0〉dimer ⊗ |0〉. (32)

We first consider the vicinity of the resonance condi-
tion (30), where we write h1 = h̄ + δ/2, h2 = h̄ − δ/2 while
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FIG. 6. Analytical predictions for the localization characteristics of zero modes (top) and nonzero modes (bottom) as a function of the
hybridization parameter δ from quasidegenerate perturbation theory (see text). (a) Bipartite entanglement entropy, (b) inverse participation
ratio, and (c) leading Z spin-correlation eigenvalue Zmax

k . Quantities arising from the zero-mode hybridizations (36) and (37) are given in
medium-dark red. In the case of nonzero modes, these hybridizations can still appear when embedded into a state in which an even number
of the remaining spins have a finite Sz component. For the nonzero modes, further configuration scenarios appear from the hybridizations (43)
(again embedded into states with an even number of remaining nonzero spins, light yellow) and (46) (embedded into states with an odd number
of remaining nonzero spins, dark blue). Examples of these hybridization patterns are shown at the bottom of the figure.

setting J = 1. Ordering the even-parity states as |1, 1〉,
|1,−1〉, |0, 0〉, |−1, 1〉, |−1,−1〉, the reduced Hamiltonian

H+
12 = [

h̄
(
Sz

1 + Sz
2

) + δ/2
(
Sz

1 − Sz
2

) + JSx
1Sx

2

]
+ (33)

=

⎛
⎜⎜⎜⎝

2h̄ 0 1/2 0 0
0 δ 1/2 0 0

1/2 1/2 0 1/2 1/2
0 0 1/2 −δ 0
0 0 1/2 0 −2h̄

⎞
⎟⎟⎟⎠ (34)

then separates into three sectors, with states |1, 1〉 and
|−1,−1〉 gapped out by an energy � ± 2h̄, while the zero
mode is contained in the quasidegenerate sector

H̃+
12 =

⎛
⎝ δ 1/2 0

1/2 0 1/2
0 1/2 −δ

⎞
⎠ (35)

spanned by the states |1,−1〉, |0, 0〉, |−1, 1〉. Diagonalizing
this sector, we find two states of finite energy ±

√
δ2 + 1/2, to

which we will come back later, as well as a zero mode

|ψ0〉dimer = |1,−1〉 − 2δ|0, 0〉 − |−1, 1〉 (36)

of vanishing energy, which we will call the dimer zero mode.
Near the resonance condition (31), the same considerations
apply upon writing h1 = h̄ + δ/2, h2 = −h̄ + δ/2 with the
roles of the states (|1, 1〉, |−1,−1〉) and (|1,−1〉, |−1, 1〉)
interchanged, leading to zero-mode hybridizations

|ψ0〉dimer = |1, 1〉 − 2δ|0, 0〉 − |−1,−1〉. (37)

In both cases, the bipartite entanglement entropy of the
dimer zero mode is given by

S0,dimer = ln(2 + 4δ2) − 2δ2 ln(4δ2)

1 + 2δ2
, (38)

and the inverse participation ratio is given by

IPR0,dimer = 1 + 8δ4

2(1 + 2δ2)2
. (39)

On the dimer, the Z correlation matrix has a single finite
eigenvalue

Zmax
0,dimer = 2

1 + 2δ2
, (40)

which we interpret as the maximal eigenvalue as for the
remaining spins Z0,nn = 0 vanishes [32].

The top row in Fig. 6 displays these characteristics of the
dimer zero mode as a function of the detuning δ. The entropy
has a stationary point at δ = 0 with the value S0 = ln 2, where
IPR0 = 1/2 and Zmax

0 = 2, and two stationary points at δ =
±1/2 with the value S = ln 3, where IPR0 = 1/3 and Zmax

0 =
4/3.

We note that several of these hybridization patterns can
be embedded along different positions of the zero mode. The
entropy then arrives from the dimers spanning the bipartite
partition point, and still adheres to Eq. (38). The resulting
inverse participation ratio is the product of those of all hy-
bridized dimers, so that Eq. (39) provides an upper bound for
IPR0. Furthermore, the Z correlation matrix decomposes into
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independent blocks, so that Eq. (40) provides a lower bound
for the maximal Z correlation eigenvalue Zmax

0 .

D. Hybridization patterns of nonzero modes

We next identify the dominant hybridization patterns of
nonzero modes,

|ψ〉 = |ψ〉dimer ⊗ |s′〉, (41)

of which there is a much wider variety, each having its own
characteristic signatures.

We start with dimer hybridizations of even parity, embed-
ded into a chain where the remaining spins |s′〉 also have even
parity. Assuming again first h1 = h̄ + δ/2, h2 = h̄ − δ/2, the
dimers of even parity are still described by the reduced Hamil-
tonian (34), but all five resulting dimer states have to be taken
into account. Alongside the hybridization pattern (36), this
includes the gapped states |1, 1〉 and |−1,−1〉, which remain
separable, as well as the two finite-energy hybridizations

|ψ+,±〉dimer = (
δ ±

√
δ2 + 1

2

)|1,−1〉 + |00〉

+ ( − δ ±
√

δ2 + 1
2

)|−1, 1〉 (42)

from the sector (34). In the dimer subspace |1, 0〉, |0, 1〉,
|0,−1〉, |−1, 0〉 with odd parity, the reduced Hamiltonian
takes the form

H−
12 = [

h̄
(
Sz

1 + Sz
2

) + δ
(
Sz

1 − Sz
2

) + JSx
1Sx

2

]
− (43)

=

⎛
⎜⎜⎝

h̄ + δ/2 1/2 1/2 0
1/2 h̄ − δ/2 0 1/2
1/2 0 −h̄ + δ/2 1/2
0 1/2 1/2 −h̄ − δ/2

⎞
⎟⎟⎠, (44)

leading to pairwise hybridization

|ψ−,±,1〉dimer = (δ ±
√

1 + δ2)|1, 0〉 + |0, 1〉, (45)

|ψ−,±,2〉dimer = (δ ±
√

1 + δ2)|0,−1〉 + |−1, 0〉 (46)

only.
Overall, we therefore arrive at seven hybridization patterns

and two nonhybridized states, reflecting the full dimension-
ality of the dimer subspace. For the second resonance case
h1 = h̄ + δ/2, h2 = −h̄ + δ/2, the same considerations apply
upon interchanging dimer basis states |s, s′〉 ↔ |s,−s′〉.

The characteristic features of these finite-energy hybridiza-
tion patterns are shown in the bottom row of Fig. 6. Hybridiza-
tions based on |ψ0〉dimer still produce the same entropies and
inverse participation ratios as for the zero mode, while the
largest eigenvalue of the Z correlation matrix now arises from
the remainder of the chain, where it counts the number of fi-
nite spins, thus giving rise to the straight lines at even integers.
For the hybridizations |ψ+,±〉dimer of even parity, the entropy
is stationary around δ = 0, where Sk = (ln 8)/2 while the
inverse participation ratio takes the value IPRk = 3/8. For the
hybridizations |ψ−,±,k〉dimer of odd parity, a similar behavior
is observed with stationary entropies Sk = ln 2 and inverse
participation ratios IPRk = 1/2. In both these hybridization
patterns, the eigenvalue Zmax

k depends both on the hybridiza-
tion strength δ and the number of finite spins in the remainder
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FIG. 7. Analytical predictions for correlations between the lo-
calization characteristics of zero modes (top) and nonzero modes
(bottom), following from the results shown in Fig. 6.

of the chain. Considering that several hybridized dimers can
occur along the chain, we again interpret the predicted inverse
participation ratios and Z correlation eigenvalues as upper
bounds and lower bounds, respectively.

E. Summary and numerical verification

Summarizing the results from this section, we arrive at the
following detailed predictions.

For the zero mode, delocalization occurs via dimer hy-
bridization patterns with typical entropies S0 ∼ ln 3 or ln 2,
as already observed numerically in the upper panels of Fig. 5.
Entropies S0 ∼ ln 3 are further expected to correlate with in-
verse participation ratios bounded as IPR0 � 1/3 and leading
Z correlation eigenvalues bounded by Zmax

0 � 4/3, while for
entropies S0 ∼ ln 2 we expect IPR0 � 2 and Zmax

0 ∼ 2. More
generally, these quantities should be correlated as shown in
the upper panels of Fig. 7. These predictions are verified in
Fig. 8, where we show scatter plots of the described quantities
from 104 disorder realizations for chains of length N = 8.
The expected correlations are already well established for
moderate values of disorder W = 8.

Furthermore, nonzero modes should predominantly dis-
play entropies around Sk = ln 2, which can be achieved by
the widest variety of hybridization patterns, followed by
Sk = (ln 8)/2, while Sk = ln 3 should occur relatively less
frequently, as indeed observed in the lower panels of Fig. 5.
The expected correlations with IPRk and Zmax

k are depicted in
the lower panels of Fig. 7. These predictions are verified in
Fig. 9.

Comparing the results in Figs. 8 and 9, we find that the
zero modes and nonzero modes are most clearly discriminated
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FIG. 8. Scatter plot of localization characteristics of the zero
mode for disorder strengths (a) W = 1, (b) W = 8, and (c) W = 20.
In panel (c), the dashed lines indicate the predicted analytical bounds;
see the top panels in Figs. 7(a) and 7(b). Note the different scale on
the horizontal axis in panel (a).

by their distinct correlations between the inverse participation
ratio IPRk and the leading Z correlation eigenvalue Zmax

k .
Having confirmed these key predictions, we return to Fig. 6

to observe that the dominant hybridization patterns of the
zero modes are appreciable over a larger range of detunings
δ than for the nonzero mode. This verifies that the zero mode
hybridizes more readily than the nonzero modes, and then
exhibits more delocalized Fock-space configurations, which
provides the general explanation for the numerical observa-
tion of this effect in the previous section.

VI. DISCUSSION AND CONCLUSIONS

In summary, in many-body systems zero modes protected
by a chiral symmetry can localize, but then do so with
distinctively different characteristics than nonzero modes. In
particular, the zero modes are more delocalized in terms of
both their real-space and their Fock-space signatures. We
explained these differences by the characteristic symmetry-
restricted mechanisms allowing the localized basis states to
hybridize. These symmetry constraints can be extended to
all disorder strengths by considering the fragmentation of
real-space correlations.

We developed and demonstrated these effects for the exam-
ple of a disordered spin-1 Ising chain. For spin-1/2 chains, the
chiral symmetry is already present, but symmetry-protected
zero modes do not occur as the Hilbert-space dimension is
even in both parity sectors. In spin-1/2 chains, the nonzero
modes are known to delocalize by a single dominant hy-
bridization pattern, involving dimers with bipartite entan-
glement entropy Sk = ln 2 [33]. In contrast, in the spin-1
chain, the delocalization mechanism of zero modes involves a
dominant hybridization pattern with entropy S0 = ln 3, while
nonzero modes involve a competition of various hybridization
patterns, including such with entropy Sk = (ln 8)/2. Even
though the underlying hybridizations differ, these entangle-
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FIG. 9. Scatter plot of localization characteristics of nonzero
modes in analogy to Fig. 8, with the analytical bounds in (c) taken
from the bottom panels of Figs. 7(a) and 7(b).

ment values are reminiscent of those encountered in the
fragmented ground state of the spin-1 system by Affleck,
Kennedy, Lieb, and Tasaki (the AKLT model) [34], as well
as for other spin-1 systems, where such entanglement entropy
values can be found between a single spin and the remainder
of the system [35,36]. Furthermore, for the studied system the
fragmentation of real-space correlations occurs both with re-
spect to the spin orientation as well as with respect to the even
and odd sublattices, where the latter is particularly noteworthy
as statistically the system is translationally invariant.

A fundamental tenet for disordered interacting quantum
systems is the expectation that many-body states close in
energy share the same statistical signatures. The symmetry-
protected zero modes discussed here provide a mechanism
to equip individual states with their own characteristic signa-
tures. It would be interesting to explore whether the remark-
able differences between zero modes and nonzero modes be-
come further accentuated for larger integer spins, and whether
these observations also extend to appropriately designed itin-
erant fermionic systems.

The numerical data in this publication can be accessed at
Ref. [37].
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APPENDIX: LEVEL STATISTICS

The results in this paper firmly indicate that all states in the
spin-1 Ising chain (1) become many-body localized when the
disorder becomes sufficiently strong, irrespective of whether
they are zero modes or nonzero modes (see, e.g., Fig. 3). As
this specific model has not been considered before, we here
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FIG. 10. Disorder-averaged level-spacing ratio (A1) as a func-
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restricted to the middle 10% of the spectrum). The dotted line
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Gaussian orthogonal ensemble of random matrix theory, while the
dashed line indicates the value for a localized system with Poissonian
level statistics. For the three system sizes N = 6, 8, 10, the data
shown are obtained from ≈104, 103, 102 realizations, respectively.

provide further supporting evidence based on the statistics of
the standard level-spacing ratio rk , defined as [38–40]

rk = min

(
Ek+1 − Ek

Ek − Ek−1
,

Ek − Ek−1

Ek+1 − Ek

)
, (A1)

where the energies Ek are ordered by magnitude. In an ergodic
system, the averaged ratio is expected to be large due to level
repulsion, with rk ≈ 0.5307(1) if modeled via the Gaussian
orthogonal ensemble, while in a many-body localized sys-
tem it is expected to drop to a smaller value, approaching
rk = 2 ln 2 − 1 ≈ 0.38629 corresponding to Poissonian level
statistics [41].

We restrict our attention to the parity sector including the
zero mode. Given the chiral symmetry, we arrange the indices
k so that E0 = 0 denotes the zero mode and Ek = −E−k
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FIG. 11. Distribution of level-spacing ratios corresponding to
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strength set to (a) W = 1, (b) W = 5, and (c) W = 20, using
2 × 105 disorder realizations. The curves indicate the expected dis-
tribution for an ergodic system modeled by the Gaussian orthogonal
ensemble of random matrix theory (dotted), as well as a localized
system with Poissonian level statistics (dashed).

denotes the levels paired by the spectral symmetry. Due to
this pairing, r0 ≡ 1 in each individual disorder realization,
so we instead resort to r1 to characterize the zero mode
(which is involved via the spacing E1 − E0). We contrast
this with the statistics of rk with k � 1 for the nonzero
modes, which we constrain to the middle 10% of the spec-
trum (note that the chiral symmetry furthermore implies
rk = r−k).

In Fig. 10, the disorder-averaged spacing ratios are shown
as a function of disorder strength for three system sizes
N = 6, 8, 10. The statistical fluctuations for r1 are large as
only a single value is obtained for each disorder realization.
Nonetheless, both figures consistently point towards states
becoming localized at about the same strength of disorder,
with the averaged ratios of different system size crossing near
a point of inflection at around W � 5.

In Fig. 11, we show the full statistical distribution of the
spacing ratios for the smallest system size N = 6, where
enough data can be collected, for representative values of
the disorder strength W = 1, 5, 20. The results for r1 and
r>1 resemble each other closely in all three cases, being
consistent with ergodic behavior for W = 1 as well as many-
body localized behavior for W = 20, and displaying similar
intermediate statistics for W = 5.
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