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Abstract 12 

Rushes, such as soft rush (Juncus effusus L.), hard rush (Juncus inflexus L.) and compact rush 13 

(Juncus conglomeratus L.) have become problem species within upland grasslands across the 14 

UK and the coastal grasslands of western Norway. Indeed, being largely unpalatable to 15 

livestock and having a vigorous reproductive ecology means that they can rapidly come to 16 

dominate swards. However, rush dominance results in a reduction in grassland biodiversity and 17 

farm productivity. Anecdotal evidence from the UK suggests that rush cover within marginal 18 

upland grasslands has increased considerably in recent decades. Yet, there is currently no 19 

published evidence to support this observation. Here, we use recent and historical Google Earth 20 

imagery to measure changes in rush frequency over a 13-year period within four survey years: 21 

2005, 2009, 2015 and 2018. During each survey year, we quantified rush presence or absence 22 

using a series of quadrats located within 300 upland grassland plots in the West Pennine Moors, 23 

UK. Data were analysed in two stages, first, by calculating mean rush frequencies per sample 24 

year using all the available plot-year combinations (the full dataset), and second by examining 25 

differences in rush frequency using only the plots for which rush frequency data were available 26 

in every sample year (the continuous dataset). The full dataset indicated that rush frequency 27 

has increased by 82% between 2005 and 2018. Similarly, the continuous dataset suggested that 28 

rush frequency has increased by 174% over the same period, with the increases in frequency 29 

being statistically significant (P<0.05) between 2005-2018 and 2009-2018. We discuss the 30 

potential drivers of rush expansion in the West Pennine Moors, the ecological and agronomic 31 

implications of grassland rush infestations, and priorities for future research.  32 
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1. INTRODUCTION 38 

Soft rush (Juncus effusus L.), hard rush (Juncus inflexus L.) and compact rush (Juncus 39 

conglomeratus L.) (henceforth known as “rushes” in this research paper) are native to the 40 

British Isles and occur throughout its many habitats (Preston et al., 2002). Rushes are generally 41 

tussock-forming, slowly spreading perennials that have a preference for wet, acidic and 42 

nutrient-poor environments (Richards and Clapham, 1941b, c, d; Hill et al., 2004). 43 

Nevertheless, they can establish and proliferate under a broad range of environmental 44 

conditions (Richards and Clapham, 1941b, c, d; Hill et al., 2004). However, the complete range 45 

of conditions under which rushes can survive (i.e. their fundamental niche) remains largely 46 

unknown (see, for example, Hamilton et al., 2018).  47 

In contrast, we do know about the reproductive ecology of rushes. For example, they 48 

can produce between 4500 and 8500 seeds per stem per year (McCarthy, 1971; Kaczmarek-49 

Derda et al., 2014), which, on rush infested ground, equates to approximately 4 to 6.7 million 50 

seeds per square metre per season (Moore and Burr, 1948; Ervin and Wetzel, 2001). To produce 51 

such large amounts of seed, a single rush plant only uses 0.27% of its annual net biomass 52 

production (Ervin and Wetzel, 2001). Depending on species, seeds ripen between July and 53 

September and are shed (mainly by the wind during dry conditions) up to the following spring 54 

(Richards and Clapham, 1941a, b, c). After shedding, seeds can remain dormant at the soil 55 

surface for up to 60 years (Moore and Burr, 1948), and, during this time, they may be dispersed 56 

by wind or surface run-off and/or germinate in areas disturbed by cultivation or livestock 57 

poaching (Agnew, 1961; McCarthy, 1971; Cairns, 2013). Once established, rushes persist for 58 

a long time and usually expand clonally via a shallow system of short rhizomes (Kaczmarek-59 

Derda et al., 2019), which ultimately leads to the formation of dense stands covering entire 60 

fields. 61 

The vigorous reproductive ecology of rushes may be a contributing factor behind their 62 

recent invasion of upland grasslands across the UK and the coastal grasslands of western 63 

Norway (Cherrill, 1995; Østrem et al., 2018). Indeed, there is anecdotal evidence from farmers 64 

and ecologists in the UK of rush infestations within upland grasslands (Hamilton et al., 2018). 65 

Such infestations are problematic because they significantly reduce the agricultural and 66 
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conservation value of the land (Cairns, 2013; Coyle et al., 2018). However, while there have 67 

been several static assessments of grassland rush infestation in the UK (e.g. Hopkins et al., 68 

1985; Cherrill, 1995), there are currently no peer-reviewed studies that have attempted to 69 

measure changes in grassland rush expansion over time (but, for examples within the grey 70 

literature, see: O'Reilly, 2011; Hamilton et al., 2018). The present study aims to address this 71 

research gap by providing a direct quantitative assessment of changes in grassland rush 72 

frequency between 2005 and 2018 within a large upland area: The West Pennine Moors Site 73 

of Special Scientific Interest (SSSI). In addition to presenting our results, we discuss the 74 

potential drivers of rush expansion in the West Pennine Moors, the agronomic and ecological 75 

implications of grassland rush infestations, and future research priorities. 76 

 77 

2. MATERIALS AND METHODS 78 

2.1. Site description and justification 79 

The West Pennine Moors (WPM) Site of Special Scientific Interest (SSSI) is situated in the 80 

North West of England (Fig. 1). The site covers an area of approximately 76 km2 and an 81 

elevation range of 100 to 450 m. It was designated as a SSSI in 2016 due to its extensive mosaic 82 

of upland and upland-fringe habitats, which support significant populations of breeding birds, 83 

including waders such as curlew (Numenius arquata L.), snipe (Gallinago gallinago L.) and 84 

lapwing (Vanellus vanellus L.) (Natural England, 2016). The Centre for Ecology & Hydrology 85 

(CEH) Land Cover Map (LCM) data from 2015 (Rowland et al., 2017) indicates that the 86 

dominant upland habitats within the SSSI are blanket bog, acid grassland and heather 87 

moorland; however, there are also substantial areas of improved grassland and broadleaved 88 

woodland (Fig. 1).  89 

  We chose to measure rush expansion within the WPM SSSI for two reasons. First, the 90 

SSSI contains large areas of marginal grassland, i.e., semi-improved and enclosed permanent 91 

pasture at or below the moorland line (above this line the land is generally unimproved and 92 

unenclosed). These grasslands are vital to hill farmers because they tend to be the most 93 

productive areas of their farm (Mansfield, 2008;  Nielsen and Søegaard, 2000). Also, by 94 

providing suitable nesting habitat, marginal grasslands can support large populations of wading 95 

bird species (Baines, 1988; Dallimer et al., 2010; Dallimer et al., 2012). Crucially, the value 96 

of marginal grasslands to both farmers and birds decreases as rush cover increases: rushes are 97 

generally less palatable and digestible to livestock than other grassland species (Grant et al., 98 

1984; Nielsen and Søegaard, 2000; Tweel and Bohlen, 2008), so increases in rush cover reduce 99 
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grassland productivity and milk/meat production (Cairns, 2013); likewise, for wading birds, 100 

grasslands where rush cover exceeds 30% become suboptimal nesting habitat (RSPB, 2017). 101 

The second reason for choosing the WPM SSSI is that there are anecdotal reports from Natural 102 

England advisors and farmers of substantial increases in grassland rush cover over the past 20 103 

years (K. Rogers, pers. comm., April 15, 2019). 104 

  105 

2.2. Detecting rush (Juncus spp.) using Google Earth imagery 106 

Rush tussocks are visible on colour aerial imagery, but only within habitats where the 107 

surrounding vegetation is much shorter and of a different colour or tone. The marginal 108 

grasslands within the WPM SSSI meet these criteria. For example, Figures 2 and 3 demonstrate 109 

that, compared to other upland habitats, there is a considerable height and colour differential 110 

between rush tussocks and the surrounding vegetation (mainly Poaceae spp.) within these 111 

grasslands, and these differences mean that rush tussocks are clearly visible on the 112 

corresponding aerial imagery. Thus, rush frequency within marginal grasslands can be 113 

quantified using aerial imagery and, if historical aerial imagery is available, one can measure 114 

changes in rush frequency over time. Google Earth (Google Inc) provides historical aerial 115 

imagery of the WPM SSSI for 2005, 2009, 2015 and 2018. However, images from 2009 and 116 

2015 only provide partial coverage of the SSSI. Using the available Google Earth imagery data, 117 

we aimed to quantify changes in rush frequency within the marginal grasslands of the WPM 118 

SSSI during four time periods: 2005, 2009, 2015 and 2018. 119 

 We decided to use aerial imagery instead of field surveys because there is a lack of 120 

historical field data on rush expansion within the marginal grasslands of the WPM SSSI. 121 

Furthermore, while field surveys are likely to be more accurate, rush expansion can be 122 

measured more efficiently using aerial imagery, which means that larger areas of grassland can 123 

be surveyed. Furthermore, the use of aerial imagery is much more convenient for sampling 124 

more remote or inaccessible areas and you do not require prior permission from landowners.  125 

 126 

2.3. GIS selection of marginal grassland parcels 127 

We used CEH LCM 2015 vector data (Rowland et al., 2017) to select marginal grassland 128 

parcels that lay within or intersected the WPM SSSI boundary. Since the CEH LCM 2015 does 129 

not have a ‘Marginal grassland’ land cover category (Rowland et al., 2017) we adopted the 130 

‘Improved grassland’ land cover category as a surrogate because Google Earth aerial imagery 131 

revealed this to be the best proxy for marginal grassland within the WPM SSSI. According to 132 

the CEH LCM 2015, ‘Improved grassland’ is “characterised by vegetation dominated by a few 133 
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fast-growing grasses such as Lolium spp., and also white clover (Trifolium repens), on fertile, 134 

neutral soils. Improved Grasslands are typically either managed as pasture or mown regularly 135 

for silage production” (NERC, 2017). 136 

In total, 340 improved grassland parcels lay within or intersected the WPM SSSI 137 

boundary. However, 40 grassland parcels were excluded from our survey because Google Earth 138 

imagery revealed that non-grassland habitats constituted ≥ 25% of their extent. We used the 139 

remaining 300 grassland parcels as discrete sampling units in which we measured temporal 140 

changes in rush frequency (see Supplemental File 1). These parcels varied in size from 0.5 to 141 

18.8 ha (mean parcel area of 2.8 ± 0.1 ha) and occurred at elevations ranging from 140 to 341 142 

m (mean parcel elevation of 253.5 ± 2.4 m) 143 

 144 

2.4. Retrieval and processing of Google Earth imagery 145 

We downloaded Google Earth images from 2005, 2009, 2015 and 2018 that corresponded to 146 

the 300 marginal grassland sample parcels we intended to survey. Google Earth images were 147 

available for every sample parcel in 2005 and 2018 but only for a selection of parcels in 2009 148 

and 2015. Furthermore, even when an image was available for a given survey year, there were 149 

specific instances when it could not be used for a given sample parcel. For example, if the 150 

sample parcel had been mown, was shaded, covered in bare earth (e.g. temporary ground 151 

disturbance, such as ploughing) or there was low contrast between rush tussocks and the 152 

surrounding vegetation. Consequently, we used a different number of grassland sample parcels 153 

during each survey year (Table 1). Further information on image availability and usage is 154 

provided in the Supplementary Information (Files 2 & 3). 155 

 A total of 205 high-resolution Google Earth images were downloaded (Table 2). All 156 

images were selected from an eye altitude of 1 km while all Google Earth layers were switched 157 

off. Also, before a Google Earth image was captured, the compass and tilt were reset, and the 158 

‘Atmosphere’, ‘Sun’ and ‘Water surface’ options from the ‘View’ menu were also deselected. 159 

After an image was downloaded, it was imported into ArcGIS and then georeferenced. Google 160 

Earth images are orthorectified, but the original images are captured using different camera 161 

angles (Google Inc). Therefore, to enhance subsequent alignment, the images were 162 

planimetrically corrected. We began by georeferencing 2018 images to the Ordnance Survey 163 

Open Carto base map layer within ESRI ArcGIS 10.4 using four control points per image (e.g. 164 

building corners, road intersections, field boundary intersections). We then aligned 2005, 2009 165 

and 2015 images to the georeferenced 2018 images using between 4 and 35 control points per 166 

image, i.e., we stopped adding control points once a reasonable alignment had been achieved. 167 
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Root Mean Square (RMS) error is a measure of the difference between known locations and 168 

locations that have been georeferenced, i.e., it is a measure of georeferencing accuracy. 169 

Therefore, care was taken to ensure that the RMS error of each georeferenced image was <1 170 

(Table 2). Additional information about the aerial images used in this study is contained within 171 

Supplemental File 2 (image date, the number of georeferenced points used and the RMS error 172 

per image). 173 

  174 

2.5. Sampling strategy 175 

We used a stratified random sampling approach whereby we recorded rush frequency per 176 

grassland parcel within ten randomly placed 2 x 2 m quadrats sited in a 20 x 20 m randomly 177 

located sample area. The same random quadrats were used during each survey year (2005, 178 

2009, 2015 and 2018). To begin with, a negative 20 m buffer was applied to each of the 300 179 

grassland parcels. This was done to ensure that the randomly located sampling plots did not 180 

extend outside the grassland parcel boundary. We then created a single randomly located 20 x 181 

20 m sampling plot within each of the 300 marginal grassland parcels using the ‘Create 182 

Random Points’ and ‘Buffer’ tools within ArcGIS. After this, we used the same process as 183 

above to create ten random 2 x 2 m quadrats within each 20 x 20 m sample plot. During this 184 

process, we set the ‘Minimum Allowed Distance’ to 1.5 m to ensure that the quadrats did not 185 

overlap. Finally, we recorded whether rush tussocks were present or absent within each of the 186 

ten quadrats for each available plot and survey year combination (see Supplemental File 3 for 187 

raw frequency data). Figure 4 provides an illustrative example of how rush frequency was 188 

recorded across survey years. 189 

 190 

2.6. Accuracy and limitations of the method 191 

We validated the accuracy of our rush detection method by ground-truthing 45 (15%) of the 20 192 

x 20 m sample plots. Validation plots were selected using a convenience sample, i.e., plots 193 

were selected based on their proximity to roads and public footpaths. The first stage of the 194 

validation process involved visiting all 45 of the 20 x 20 m validation plots and recording 195 

whether rush tussocks were present or absent. A shapefile containing all 45 of the 20 x 20 m 196 

validation plots was loaded into Google Maps (Google Inc) so that they could be accurately 197 

located using a tablet in the field. It is important to note that we recorded rush as absent if 198 

individual stems of young rush plants were present, but rush tussocks were absent. We did this 199 

because individual rush stems are not visible on aerial imagery, but rush tussocks are. 200 
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Consequently, our approach is likely to underestimate rush frequency. Ground truthing took 201 

place on the 20th of September 2019.  202 

During the second stage of the validation process, the most recent Google Earth images 203 

used during our survey (2018) were inspected to determine whether rush was present or absent 204 

within each of the 45 plots visited in the field. Unfortunately, due to the lack of site-specific 205 

field data, we could not validate rush presence within the plots during earlier study years (2005, 206 

2009, 2015). The field and 2018 aerial image data were then compared, and this indicated there 207 

was 100% agreement between the two datasets (see Supplemental File 4 for raw validation 208 

data). Despite the complete agreement between aerial imagery and field data, the 2 x 2 m 209 

quadrat polygons used during our survey are only likely to have sampled the same approximate 210 

(rather than exact) area within each grassland parcel between sample years. This is because 211 

Google Earth imagery is orthorectified, but the source images are captured using different 212 

camera angles, which means perfect alignment between survey years is impossible. 213 

Nevertheless, the RMS error of georeferenced images was extremely low during each survey 214 

year (Table 2). Furthermore, during the georeferencing process, care was taken to ensure that 215 

the field boundaries of the sample grassland parcels were aligned between survey years. 216 

Finally, it is also worth noting that other types of tall vegetation (e.g. thistles or nettles) may 217 

look similar to rushes on aerial imagery. However, such vegetation was rare within validation 218 

plots. In short, while our approach is not perfect, we believe that we have minimised error 219 

sufficiently to be confident that our approach is an accurate and valid technique for measuring 220 

rush frequency within marginal grasslands.  221 

 222 

2.7. Data analysis 223 

All statistical tests were performed in R v.3.6.0 (R Core Team, 2019). Plot within study year 224 

served as a replicate during data analysis. For every plot-year combination (i.e. replicate), we 225 

summed the number of quadrats containing rush, which gave a rush frequency score of between 226 

0 and 10. We subsequently examined temporal changes in rush frequency in two stages.  227 

 228 

2.7.1. Stage one: measuring rush frequency using the complete dataset 229 

Initially, we used descriptive statistics to explore changes in mean rush frequency across all 230 

survey years using all the sample plots for which frequency data were available: 294 sample 231 

plots in 2005, 106 sample plots in 2009, 189 sample plots in 2015 and 283 sample plots in 232 

2018. We also calculated and graphed the proportion of plots per study year in which rush 233 

frequency was: 0 (absent), 1-3, 4-6, 7-9 or 10 (dominant). 234 
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 235 

2.7.2. Stage two: measuring rush frequency using only continuous data 236 

During the second stage of analysis, we only used those plots for which continuous rush 237 

frequency data were available, i.e., the plots that had frequency data available for 2005, 2009, 238 

2015 and 2018 (91 of the 300 plots examined). Using these data, we tested for changes in rush 239 

frequency over time (2005, 2009, 2015 and 2018) using a Friedman’s test. We used Friedman’s 240 

test instead of a repeated-measures ANOVA because the data failed to meet several parametric 241 

assumptions, namely, normality and the homogeneity of variances. Friedman’s test was 242 

followed up by post hoc comparisons between individual survey years using Wilcoxon signed-243 

rank tests in which pairwise significance values were adjusted using the Bonferroni correction 244 

method. 245 

 Using the continuous frequency data, we then calculated and graphed three additional 246 

parameters. First, we calculated the average percent change in rush frequency per plot between 247 

2005-2009, 2009-2015 and 2015-2018. Second, each of the 91 plots was assigned to one of 248 

three categories depending on whether rush frequency remained stable, increased or decreased 249 

between 2005 and 2018: ‘No change’ (=), ‘Positive’ (+) or ‘Negative’ (-). Finally, we 250 

calculated the number of plots per study year in which rush frequency was: 0 (absent), 1-3, 4-251 

6, 7-9 or 10 (dominant). 252 

 253 

3. RESULTS 254 

3.1. Examining rush frequency using the complete dataset  255 

The complete dataset suggests that rush frequency has increased by 81.7% over the whole study 256 

period between 2005 and 2018 (Fig. 5a). In line with these increases, rush absence decreased, 257 

and rush dominance increased within sample plots between 2005 and 2018 (Fig. 5b). For 258 

example, rush was absent in 57.3% of the plots during 2005 but only absent in 35.3% of plots 259 

in 2018 (Fig. 5b). Conversely, rush was dominant in only 6.8% of plots in 2005, but 16.3% of 260 

plots in 2018 (Fig. 5b).  261 

 262 

3.2. Examining rush frequency using only continuous data  263 

For the 91 plots for which we had continuous data, we recorded an increase in rush frequency 264 

during each consecutive study year (Fig. 6a). Overall, mean rush frequency increased by 265 

174.2% between 2005 and 2018. The Friedman test results indicated that the differences in 266 

rush frequency across all study years were significant (d.f. = 3, χ2 = 48.5, p <0.001). 267 
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Furthermore, post hoc Wilcoxon signed-rank test comparisons suggested that there were 268 

significant differences in rush frequency between 2005-2018 (p = 0.003) and 2009-2018 (p = 269 

0.023) (Fig. 6a). Conversely, changes in rush frequency between 2005-2009, 2005-2015 and 270 

2009-2015 and 2015-2018 were not significant.  271 

 The largest percentage increases in rush frequency within the WPM SSSI occurred 272 

between 2009-2015 and 2015-2018, with mean percentage increases in rush frequency per plot 273 

of 51.9 ± 17.2% and 53.8 ± 15.7% recorded during these periods respectively (Fig. 6b). Overall, 274 

between 2005-2018 rush frequency remained unchanged within 45 plots (49.5% of plots), 275 

increased within 39 plots (42.9% of plots) and decreased within seven plots (7.7% of plots) 276 

(Fig. 6c). Finally, during each consecutive study year (2005, 2009, 2015 & 2018) the number 277 

of plots in which rush was absent decreased and the number of plots in which rush was 278 

dominant increased (Fig. 6d). 279 

 280 

4. DISCUSSION 281 

Our results provide quantitative evidence of rush expansion within the marginal upland 282 

grasslands of the WPM SSSI between 2005 and 2018. Both datasets suggest that rush frequency 283 

has increased by 81.7% (all data) to 174.2% (continuous data) during the study period. 284 

Moreover, the continuous dataset indicates that between 2005-2018 rush frequency increased 285 

within 42.9% of plots, but only decreased within 7.7% of plots. The continuous data also shows 286 

that the largest increases in rush frequency occurred more recently between 2009-2015 (51.9%) 287 

and 2015-2018 (53.8%), with only moderate increases recorded between 2005-2009 (22.3%). 288 

These findings corroborate the results reported in the grey literature, which suggest that there 289 

have been significant increases in rush cover or frequency over time within the upland hay 290 

meadows of northern England (O'Reilly, 2011; Hamilton et al., 2018). However, our study 291 

differs in that: we measured rush expansion within marginal semi-improved upland grasslands 292 

(as opposed to upland hay meadows); we used a much greater number of sample fields and 293 

quadrats; we measured changes in rush frequency across a greater number of time periods (we 294 

used four time periods, whereas studies in the grey literature used two); and, more importantly, 295 

we used a consistent survey method across each time period. 296 

Despite recording large and significant increases in rush cover, by 2018, there were still 297 

between 35.3% (all data) to 53.9% (continuous data) of plots in which rushes were absent. 298 

Furthermore, the continuous data also shows that within 42 of the 91 plots examined (46.2% 299 

of continuous data plots) rushes were absent throughout the entire duration of the study (i.e. 300 
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during 2005, 2009, 2015 and 2018). Given that rush frequency did not increase within every 301 

grassland parcel and that the greatest increases in rush frequency happened after 2009, recent 302 

changes in field-level management appear to be the most likely cause of rush expansion within 303 

the WPM SSSI. Nevertheless, the drivers behind the recent expansion of rushes within upland 304 

grasslands are currently unknown. 305 

 306 

4.1. Factors controlling rush expansion within upland grasslands 307 

4.1.1. Field-level factors 308 

One possible field-level factor driving the recent increase in rushes within upland grasslands is 309 

inadequate drainage. The gradual decline in the number of farmworkers combined with the low 310 

profitability of upland farming means that farmers do not have the time, labour or money to 311 

maintain existing drains or install a new drainage system. Given the preference of rushes 312 

(especially J. effusus) for damp conditions (Richards and Clapham, 1941b, c, d; Hill et al., 313 

2004), the recent decline in operational and efficient field drainage systems may have 314 

facilitated rush expansion. Surprisingly, Hamilton et al. (2018) found no evidence of a 315 

relationship between drainage and temporal changes in rush cover within the upland hay 316 

meadow sites they studied, but this could have been due to difficulties in relocating quadrat 317 

samples between repeat surveys and/or the assessment of hay meadow vegetation at the quadrat 318 

rather than field scale (e.g. two to three repeat quadrats per hay meadow). 319 

 Drainage capacity may have been further reduced in recent times by the increasing use 320 

of heavier farm machinery. For example, Hamilton et al. (2018) found that none of the upland 321 

hay meadow sites they studied had modern field drains, with many fields being described by 322 

farmers as having ‘old’ or ‘Victorian’ drainage systems (44.2% of farmers asked). Such old 323 

drainage systems are likely to have collapsed under the weight of heavier modern machinery 324 

and, because farmers are unable to repair or replace them, the soil in these fields will have 325 

become much wetter and thereby more favourable to rushes. The use of heavy farm machinery 326 

may have also caused soil compaction (Keller et al., 2019), which, in turn, may have facilitated 327 

rush expansion via increased soil surface wetness due to the creation of an impenetrable pan of 328 

soil preventing surface water from percolating down to the sub‐soil and any existing field 329 

drains (Chyba et al., 2014; Chyba et al., 2017).  330 

During the headage era (1980-2005) hill farmers were paid a subsidy based on the 331 

number of sheep within their flock (Thomson, 2011). This policy led to the overstocking of 332 

sheep and may well have led to increased soil compaction and surface wetness (and thereby 333 
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rush expansion) within marginal grasslands (Wathern et al., 1985; Fuller and Gough, 1999; 334 

Sutherland, 2002). For example, sheep grazing can increase soil bulk density and reduce soil 335 

infiltration capacity within upland grasslands (Marshall et al., 2014). Overstocking of sheep 336 

may also lead to poaching, especially on undrained fields with wet soils (Bilotta et al., 2007). 337 

The creation of bare ground via poaching would facilitate the spread of rushes by providing 338 

the germination niches required by overwintering seeds lying dormant at the soil surface 339 

(Agnew, 1961; McCarthy, 1971; Cairns, 2013). Poaching induced rush germination may even 340 

occur at low stocking densities in rush dominated grasslands because, due to the low 341 

palatability of rushes (Grant et al., 1984; Nielsen and Søegaard, 2000; Tweel and Bohlen, 342 

2008), sheep may concentrate their feeding activity within the small patches of grass that 343 

remain. Thus, what should be a low stocking density in a rush-free grassland, becomes a high 344 

stocking density that causes localised poaching on the few remaining areas of productive 345 

grassland.  346 

Sheep numbers within the British uplands have declined substantially since the 347 

outbreak of Foot and Mouth Disease in 2001 and the end of headage in 2005 (SAC, 2008; 348 

Thomson, 2011). Nevertheless, stocking densities may still be high enough to cause localised 349 

soil compaction and surface ponding in upland grasslands (e.g. Marshall et al., 2014). Thus, 350 

current stocking levels may still be promoting rush expansion, especially in rush dominated 351 

fields where grazing is restricted to small areas of palatable grass.  352 

Another possible field-level factor that has encouraged rush expansion is a reduction in 353 

management intensity. Many of the upland grassland agri-environment schemes available to 354 

farmers restrict the application of inorganic fertilisers or livestock manures and lime (RPA, 355 

2019a; RPA, 2019b). Before the widespread adoption of such schemes, farmers would 356 

regularly fertilise their fields and increase the pH by liming, with both actions making the 357 

conditions more favourable to grasses and less favourable to rushes (Hill et al., 2004; Cairns, 358 

2013). Consequently, rushes may have been held back due to farmers making the grasses more 359 

competitive (Cairns, 2013). 360 

The cessation of traditional farming practices may have also created a series of field-361 

level factors that may have contributed to the spread of rushes within upland grasslands. For 362 

example, upland farmers used to keep a much wider range of livestock than just sheep, 363 

including native cattle and pony breeds (Fuller and Gough, 1999) that, unlike sheep, find rush 364 

more palatable (Grant et al., 1984; O'Reilly, 2012; Coyle et al., 2018). Native cattle and ponies 365 

may have been present in enough numbers to control rush expansion. Farmers also used to 366 

mow, bale and remove grassland cuttings every year, which could have reduced rush seed fall 367 
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and germination. Furthermore, the practice of burning rushes within marginal grasslands (i.e. 368 

swaling) has disappeared in upland areas across the UK. This practice would have had a 369 

negative effect on rush abundance via reductions in biomass and seed load (Ghantous and 370 

Sandker, 2015) and would have also increased the competitiveness of grass (in relation to 371 

rushes) via increases in soil nutrients and pH (e.g. Niering and Dreyer, 1989; Dudley and 372 

Lajtha, 1993; Brockway et al., 2002). 373 

To truly understand if and what field-level factors are contributing to rush expansion, 374 

we need to combine our satellite imagery approach with historical management data. 375 

Unfortunately, accurate historical data was not available for the grassland parcels used in this 376 

study, but such data is likely to be available in other areas across the UK.  377 

 378 

4.1.2. Climatic factors 379 

North West England and North Wales (the climatic region in which this study took place) were 380 

3% wetter between 2005 and 2018 than they were between 1981-2010 and 7% wetter than they 381 

were between 1961-1990 (Met Office, 2020b). Furthermore, recent increases in wetness during 382 

winter and summer have been even greater within the study region (Met Office, 2020b). For 383 

example, winters between 2005-2018 were 5% wetter than winters between 1981-2010 and 384 

14% wetter than winters between 1961-1990 (Met Office, 2020b). Likewise, summers between 385 

2005-2018 were 13% wetter than summers between 1981-2010 and 14% wetter than summers 386 

between 1961-1990 (Met Office, 2020b). By facilitating more favourable conditions for rushes 387 

(i.e. wetter and warmer), the recent increases in wetness may have compounded field-level 388 

drivers of rush expansion, such as inadequate drainage, soil compaction and poaching. 389 

 Alongside the observed increases in precipitation, there has been a recent reduction in 390 

the number of days of air frost across the study region. For example, between 2005–2018, there 391 

have been 6% fewer days of air frost compared to the 1981–2010 average (Met Office, 2020a). 392 

Similarly, compared to the 1961–1990 average, there have been 16% fewer days of air frost 393 

between 2009-2018 (Met Office, 2020a). Several studies suggest that rush regrowth after 394 

cutting (or grazing) is reduced when plants are exposed to freezing temperatures (Folkestad et 395 

al., 2010; Østrem et al., 2018). Thus, combined with the cessation of traditional management 396 

(e.g. swaling, use of a wider range of native grazers or the cutting and removing grassland 397 

arisings), the recent reductions in the number of air frost days may have also contributed to 398 

grassland rush expansion.  399 

 400 

4.2. Implications of rush expansion within upland grasslands 401 
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The expansion of rushes within upland grasslands has several negative consequences. First and 402 

foremost, as rushes increase, palatable and productive grasses tend to be outcompeted. 403 

Consequently, rush infestations reduce farm productivity. For example, Cairns (2013) states 404 

that a “15% rush infestation in a productive grass sward, could reduce output by 1.25t 405 

DM/ha/annum. If the field is cut for big bale silage on upland in-bye fields, the value of this 406 

lost production could be as high as £192/ha (£78/acre)”. As Hamilton et al. (2018) note, such 407 

large losses are extremely significant on livestock farms in marginal upland areas within 408 

England where the average farm income is between £130/ha and £141/ha (Rural Business 409 

Research, 2018 data from North West and North East England, respectively). Secondly, rush 410 

infestations lead to declines in plant and bird biodiversity. For instance, as more grassland area 411 

is taken up by rushes, there is less space for other grassland species. Also, while snipe and 412 

curlew may nest in rush-dominated fields, redshank (Tringa tetanus L.) and lapwing prefer to 413 

nest in fields with a mixture of scattered rush tussocks (no more than 30% cover) and grassland 414 

patches in which to feed (RSPB, 2017; Coyle et al., 2018). 415 

Rush dominated fields, particularly bordering heather moorland, could also be a 416 

significant, but currently unidentified, wildfire risk, especially given that we know rushes are 417 

combustible (e.g. as highlighted by the historical practice of swaling, but also see Ghantous 418 

and Sandker, 2015). Furthermore, fields in which rush cover exceeds 50% will have a 419 

significant amount of biomass that is likely to become very dry (and thereby more combustible) 420 

during summer. To date, the wildfire risk posed by moorland edge rush infestation has not been 421 

investigated. If rush infestations do pose a significant wildfire risk, we would need to reduce 422 

rush cover at and just below the moorland line. Such a task would be difficult, given that we 423 

still do not know the most effective way to control rush infestations within grassland habitats 424 

(O'Reilly, 2012; Coyle et al., 2018). 425 

 426 

4.3. Research priorities 427 

Our protocol for measuring rush frequency is subjective and restricted to grassland habitats 428 

where there is a clear height, colour or tone differential between rush tussocks and the 429 

surrounding vegetation. Therefore, an obvious next step would be to develop a more objective 430 

and automated protocol for quantifying rush abundance across multiple habitats. One approach 431 

would be to use Light Detection and Ranging (LiDAR) data to differentiate rush tussocks from 432 

the surrounding grassland vegetation in the same way tree canopies can be differentiated from 433 

the understory vegetation and the forest floor (e.g. Latifi et al., 2015; Hamraz et al., 2017). 434 

Rush tussocks are generally less than one metre wide (see Supplemental File 4), which means 435 
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that LiDAR with a spatial resolution of 1 metre or less would be the most appropriate for 436 

mapping soft rush. However, in other habitats (e.g. acid grassland, heather moorland or blanket 437 

bog) where there is less of a height differential between rushes and the surrounding vegetation, 438 

LiDAR may have to be replaced by or supplemented with spectral band analysis using satellite 439 

images, such as SENTINEL-2 or LANDSAT 8 (Davidson et al., 2016; Erinjery et al., 2018; 440 

Forkuor et al., 2018). Notwithstanding the points above, the development and implementation 441 

of an automated protocol for measuring rush abundance in upland grasslands across the UK 442 

are currently hampered by the limited coverage of high-resolution LiDAR data (spatial 443 

resolutions of ≤ 1m). 444 

 Four further research gaps need to be addressed. Firstly, we need to replicate our 445 

satellite imagery approach across different areas of the UK and further validate the method by 446 

using both contemporary and historical field data. Secondly, we need to determine the drivers 447 

behind the recent expansion in rushes within upland grasslands across the UK. This could be 448 

achieved by mapping changes in rush frequency over time and exploring how different 449 

management and environmental factors have influenced these changes. Potential drivers of 450 

rush expansion to explore are historical changes in management (e.g. changes in drainage 451 

efficiency, reduction in stocking levels and restricted fertiliser inputs), changes in climate (e.g. 452 

changes in rainfall and temperature) and environmental factors (e.g. slope, aspect and 453 

proximity to standing water). Climatic and topographical data for the UK are freely available 454 

online (e.g. Met Office and Ordnance Survey), and historical management data could be 455 

obtained by interview or questionnaire.  456 

Thirdly, we need to establish the most effective rush control techniques to give land 457 

managers the tools to reduce rush dominance. The effectiveness of several rush control 458 

techniques have been explored within several studies (see Coyle et al., 2018; O'Reilly, 2012 459 

and references therein), but not in any depth or within an experimental framework that 460 

compares the efficacy of different control methods across different farms with varying 461 

environmental and management contexts (i.e. in a way that provides practical knowledge to 462 

farmers and land managers).  463 

Finally, we need to quantify the fundamental niche of soft rush, hard rush and compact 464 

rush. Knowledge of the environmental tolerances of these invasive rush species will enable us 465 

to better understand the drivers behind the recent expansion in rushes within upland grasslands 466 

and allow us to reduce rushes where they have become dominant. 467 

 468 
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5. CONCLUSIONS 469 

This is the first peer-reviewed study to document the recent increases in rush abundance within 470 

upland grasslands. Our data suggest that the frequency of rushes within the marginal grasslands 471 

of the West Pennine Moors SSSI has increased by 81.7% to 174.2% between 2005-2018. It is 472 

not clear why such increases may have occurred. However, they may be due to changes in 473 

field-level management, which have been further compounded by recent increases in rainfall 474 

and reductions in the number of air frost days. Future research into rush ecology, expansion 475 

and management is urgently required to determine the broader extent of the problem in England 476 

and to combat the negative consequences of grassland rush infestations on the upland farm 477 

economy and grassland biodiversity. 478 

 479 

ACKNOWLEDGEMENTS 480 

We are grateful to the N8 AgriFood Research Partnership for funding this project. We are also 481 

grateful to Richard (Dusty) Rhodes (Natural England) and his family for hosting and helping 482 

with a rush management workshop which we held on the 1st of August 2019 in the Forest of 483 

Bowland as part of this project. We would also like to thank Ian Cairns (Agrifood Technical 484 

Services) for attending our rush management workshop and giving a very informative talk and 485 

field demonstration to farmers about grassland rush control. Finally, we would like to thank the 486 

anonymous reviewers for their helpful suggestions to improve the manuscript. 487 

 488 

COMPETING INTERESTS 489 

M. Ashby has provided independent ecological advice and evidence synthesis services to the 490 

Moorland Association since April 2019 and the Game & Wildlife Conservation Trust since 491 

October 2019. 492 

 493 

REFERENCES 494 

Agnew A. D. Q. (1961) The Ecology of Juncus effusus L. in North Wales. Journal of 495 

Ecology, 49, 83-102. 496 

Baines D. (1988) The effects of improvement of upland, marginal grasslands on the 497 

distribution and density of breeding wading birds (Charadriiformes) in northern 498 

England. Biological Conservation, 45, 221-236. 499 



16 
 

Bilotta G. S., Brazier R. E., Haygarth P. M. (2007) The Impacts of Grazing Animals on the 500 

Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands. 501 

In: Advances in Agronomy, pp. 237-280 Ed D. L. Sparks. Academic Press. 502 

Brockway D. G., Gatewood R. G., Paris R. B. (2002) Restoring fire as an ecological process 503 

in shortgrass prairie ecosystems: initial effects of prescribed burning during the 504 

dormant and growing seasons. Journal of Environmental Management, 65, 135-152. 505 

Cairns I. (2013) Management and Control of Common (Soft) Rush, Kenilworth, UK: 506 

Agriculture & Horticulture Development Board: Beef & Lamb. 507 

Cherrill A. (1995) Infestation of improved grasslands by Juncus effusus L. in the catchment 508 

of the River Tyne, Northern England: a field survey. Grass and Forage Science, 50, 509 

85-91. 510 

Chyba J., Kroulik M., Krištof K., Misiewicz P. (2017) The influence of agricultural traffic on 511 

soil infiltration rates. Agronomy Research, 15, 664-673. 512 

Chyba J., Kroulík M., Krištof K., Misiewicz P., Chaney K. (2014) Influence of soil 513 

compaction by farm machinery and livestock on water infiltration rate on grassland. 514 

Agronomy Research, 12, 59-64. 515 

Coyle H. E., Whitehead S. C., Baines D. (2018) A review of Soft Rush Juncus effusus 516 

management for breeding waders. Wader Study, 125, 1-5. 517 

Dallimer M., Marini L., Skinner A. M. J., Hanley N., Armsworth P. R., Gaston K. J. (2010) 518 

Agricultural land-use in the surrounding landscape affects moorland bird diversity. 519 

Agriculture, Ecosystems & Environment, 139, 578-583. 520 

Dallimer M., Skinner A. M., Davies Z. G., Armsworth P. R., Gaston K. J. (2012) Multiple 521 

habitat associations: the role of offsite habitat in determining onsite avian density and 522 

species richness. Ecography, 35, 134-145. 523 

Davidson S. J., Santos M. J., Sloan V. L., Watts J. D., Phoenix G. K., Oechel W. C., Zona D. 524 

(2016) Mapping Arctic Tundra Vegetation Communities Using Field Spectroscopy 525 

and Multispectral Satellite Data in North Alaska, USA. Remote Sensing, 8, 978. 526 

Dudley J. L., Lajtha K. (1993) The Effects of Prescribed Burning on Nutrient Availability 527 

and Primary Production in Sandplain Grasslands. The American Midland Naturalist, 528 

130, 286-298. 529 

Erinjery J. J., Singh M., Kent R. (2018) Mapping and assessment of vegetation types in the 530 

tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR 531 

Sentinel-1 satellite imagery. Remote Sensing of Environment, 216, 345-354. 532 



17 
 

Ervin G. N., Wetzel R. G. (2001) Seed fall and field germination of needlerush, Juncus 533 

effusus L. Aquatic Botany, 71, 233-237. 534 

Folkestad J., Østrem L., Netland J. (2010) Effect of frost on regrowth ability and frost 535 

tolerance of rush (Juncus spp.). Grassland in a changing world, 15, 256-258. 536 

Forkuor G., Dimobe K., Serme I., Tondoh J. E. (2018) Landsat-8 vs. Sentinel-2: examining 537 

the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in 538 

Burkina Faso. GIScience & Remote Sensing, 55, 331-354. 539 

Fuller R. J., Gough S. J. (1999) Changes in sheep numbers in Britain: implications for bird 540 

populations. Biological Conservation, 91, 73-89. 541 

Ghantous K. M., Sandker H. A. (2015) Hand-held Flame Cultivators for Spot Treatment 542 

Control of Soft Rush (Juncus effusus). Weed Technology, 29, 121-127. 543 

Grant S. A., Bolton G. R., Russel A. J. F. (1984) The utilization of sown and indigenous plant 544 

species by sheep and goats grazing hill pastures. Grass and Forage Science, 39, 361-545 

370. 546 

Hamilton H., Ross S., Silcock P., Steer S. (2018) Towards an Understanding of the Perceived 547 

Increase in Juncus (Rush) Species in SPecies-Rich Upland Hay Meadows. Report for 548 

Natural England, Buxton, UK. 549 

Hamraz H., Contreras M. A., Zhang J. (2017) Vertical stratification of forest canopy for 550 

segmentation of understory trees within small-footprint airborne LiDAR point clouds. 551 

ISPRS Journal of Photogrammetry and Remote Sensing, 130, 385-392. 552 

Hill M. O., Preston C. D., Roy D. B. (2004) PLANTATT – Attributes of British and Irish 553 

plants: Status, size, life history, geography and habitats, Abbotts Ripton, UK. 554 

Hopkins A., Matkin E. A., Ellis J. A., Peel S. (1985) South-west England grassland survey 555 

1983. Grass and Forage Science, 40, 349-359. 556 

Kaczmarek-Derda W., Folkestad J., Helgheim M., Netland J., Solhaug K. A., Brandsæter L. 557 

O. (2014) Influence of cutting time and stubble height on regrowth capacity of Juncus 558 

effusus and Juncus conglomeratus. Weed Research, 54, 603-613. 559 

Kaczmarek-Derda W., Østrem L., Myromslien M., Brandsæter L. O., Netland J. (2019) 560 

Growth pattern of Juncus effusus and Juncus conglomeratus in response to cutting 561 

frequency. Weed Research, 59, 67-76. 562 

Keller T., Sandin M., Colombi T., Horn R., Or D. (2019) Historical increase in agricultural 563 

machinery weights enhanced soil stress levels and adversely affected soil functioning. 564 

Soil and tillage research, 194, 104293. 565 



18 
 

Kendon M., McCarthy M., Jevrejeva S., Matthews A., Legg T. (2019) State of the UK 566 

climate 2018. International Journal of Climatology, 39, 1-55. 567 

Latifi H., Heurich M., Hartig F., Müller J., Krzystek P., Jehl H., Dech S. (2015) Estimating 568 

over- and understorey canopy density of temperate mixed stands by airborne LiDAR 569 

data. Forestry: An International Journal of Forest Research, 89, 69-81. 570 

Mansfield L. (2008) The Cumbrian hill sheep initiative: a solution to the decline in upland 571 

hill farming community in England? In: Sustainable Rural Systems: Sustainable 572 

Agriculture and Rural Communities, pp. 161-183 Ed G. M. Robinson. Abingdon, UK: 573 

Routledge. 574 

Marshall M. R., Ballard C. E., Frogbrook Z. L., Solloway I., McIntyre N., Reynolds B., 575 

Wheater H. S. (2014) The impact of rural land management changes on soil hydraulic 576 

properties and runoff processes: results from experimental plots in upland UK. 577 

Hydrological Processes, 28, 2617-2629. 578 

McCarthy J. (1971) Investigations into Juncus species in Ireland. M.Sc., University College 579 

Dublin. 580 

Met Office (2020a) Areal values from HadUK-Grid 1km gridded climate data from land 581 

surface network. Monthly, seasonal and annual number of days in the month with air 582 

frost (minimum temperature below zero) for England NW and N Wales [Online], 583 

Exeter, UK: Met Office National Climate Information Centre. Available: 584 

https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/AirFrost/date/En585 

gland_NW_and_N_Wales.txt [Accessed 17/03/2020] 586 

Met Office (2020b) Areal values from HadUK-Grid 1km gridded climate data from land 587 

surface network. Monthly, seasonal and annual total precipitation amount for 588 

England NW and N Wales [Online], Exeter, UK: Met Office National Climate 589 

Information Centre. Available: 590 

https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Rainfall/date/Eng591 

land_NW_and_N_Wales.txt [Accessed 17/03/2020] 592 

Moore H. I., Burr S. (1948) The control of rushes on newly reseeded land in Yorkshire. 593 

Grass and Forage Science, 3, 283-290. 594 

Natural England (2016) West Pennine Moors SSSI. Reasons for designating the SSSI 595 

[Online]. Peterborough, UK: Natural England. Available: 596 

https://designatedsites.naturalengland.org.uk/PDFsForWeb/Citation/2000830.pdf 597 

[Accessed 25/09/2019]. 598 

https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/AirFrost/date/England_NW_and_N_Wales.txt
https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/AirFrost/date/England_NW_and_N_Wales.txt
https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Rainfall/date/England_NW_and_N_Wales.txt
https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Rainfall/date/England_NW_and_N_Wales.txt
https://designatedsites.naturalengland.org.uk/PDFsForWeb/Citation/2000830.pdf


19 
 

NERC (2017) Land Cover Map 2015. Dataset Documentation. Version 1.2, 22nd May 2017, 599 

Wallingford, UK: NERC Environmental Information Data Centre, Centre for Ecology 600 

& Hydrology. 601 

Nielsen A. L., Søegaard K. (2000) Forage quality of cultivated and natural species in semi-602 

natural grassland. Grassland Science in Europe, 5, 213-215. 603 

Niering W. A., Dreyer G. D. (1989) Effects of Prescribed Burning on Andropogon scoparius 604 

in Postagricultural Grasslands in Connecticut. The American Midland Naturalist, 122, 605 

88-102. 606 

O'Reilly Á. (2012) The ability of Irish Moiled and Dexter cattle to control the problem 607 

species soft rush (Juncus effusus). Grazing Animals Project. In. Crumlin, Co. Antrim, 608 

UK. 609 

O'Reilly J. (2011) An Analysis of Survey Data from upland hay meadows in the North 610 

Pennines AONB. Natural England Commissioned Report NECR069, Peterborough, 611 

UK: Natural England. 612 

Østrem L., Folkestad J., Solhaug K. A., Brandsæter L. O. (2018) Frost tolerance, regeneration 613 

capacity after frost exposure and high photosystem II efficiency during winter and 614 

early spring support high winter survival in Juncus spp. Weed Research, 58, 25-34. 615 

Preston C. D., Pearman D. A., Dines T. D. (2002) New atlas of the British and Irish flora, 616 

Oxford, UK: University Press. 617 

R Core Team (2019) R: A language and environment for statistical computing., Vienna, 618 

Austria: R Foundation for Statistical Computing. 619 

Richards P. W., Clapham A. R. (1941a) Juncus conglomeratus L. (J. communis α 620 

conglomeratus E. Mey.; J. Leersii Marsson). Journal of Ecology, 29, 381-384. 621 

Richards P. W., Clapham A. R. (1941b) Juncus effusus L. (Juncus communis β effusus E. 622 

Mey). Journal of Ecology, 29, 375-380. 623 

Richards P. W., Clapham A. R. (1941c) Juncus inflexus L. (Juncus glaucus Ehrh.). Journal of 624 

Ecology, 29, 369-374. 625 

Richards P. W., Clapham A. R. (1941d) Juncus L. Journal of Ecology, 29, 362-368. 626 

Rowland C. S., Morton R. D., Carrasco L., McShane G., O’Neil A. W., Wood C. M. (2017) 627 

Land Cover Map 2015 (vector, GB), Wallingford, UK: NERC Environmental 628 

Information Data Centre, Centre for Ecology & Hydrology. 629 

RPA (2019a) Countryside Stewardship Mid Tier and Wildlife Offers Manual, Worksop, UK: 630 

Rural Payments Agency. 631 



20 
 

RPA (2019b) Countryside Stewardship: Higher Tier Manual, Worksop, UK: Rural Payments 632 

Agency. 633 

RSPB (2017) Rush Management [Online]. Sandy, Bedfordshire, UK: The Royal Society for 634 

the Protection of Birds. Available: https://www.rspb.org.uk/our-635 

work/conservation/conservation-and-sustainability/farming/advice/techniques-to-636 

help-wildlife/rush-management/ [Accessed 20/09/2019]. 637 

Rural Business Research (2018) Farm Business Survey Region Reports 2015/16, University 638 

of Nottingham, UK: Rural Business Research Unit. 639 

SAC (2008) Farming’s Retreat from the Hills, Edinburgh, UK: SAC Rural Policy Centre. 640 

Sutherland W. J. (2002) Restoring a sustainable countryside. Trends in Ecology & Evolution, 641 

17, 148-150. 642 

Thomson, S. (2011) Response from the hills: Business as usual on a turning point? An update 643 

of “Retreat from the Hills”, Edinburgh, UK: SAC Rural Policy Centre. 644 

Tweel A. W., Bohlen P. J. (2008) Influence of soft rush (Juncus effusus) on phosphorus flux 645 

in grazed seasonal wetlands. Ecological Engineering, 33, 242-251. 646 

Wathern P., Brown I. W., Roberts D. A., Young S. N. (1985) Assessing the environmental 647 

impact of European economic community policy. Landscape Research, 10, 2-5. 648 

 649 

SUPPORTING INFORMATION 650 

Supplemental File 1 – Grassland Parcel and Sample Plot Data 651 

Supplemental File 2 – Aerial Imagery Data 652 

Supplemental File 3 – Raw Rush Frequency Data 653 

Supplemental File 4 – Method Validation Data and Rush Tussock Dimensions Field Data 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 



21 
 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

TABLES 674 

 675 

Table 1. The number of grassland parcels 

used for each survey year. The ‘All years’ 

category refers to sample parcels for which 

data were available across all four survey 

years (i.e. continuous data). 

Survey year  Number of parcels used 

   

2005  293 

2009  106 

2015  189 

2018  283 

All years  91 

   

 676 

 677 

 678 

 679 

 680 

 681 

Table 2. Descriptive statistics for the georeferenced Google Earth images used for each 

survey year. RMS error minimised using a 1st order polynomial (Affine) transformation. 

For further information about the Google Earth images used see Supplemental File 2.  

  Georeference points RMS error 

Survey year No of images Mean ± SEM Min-Max Mean ± SEM Min-Max 

      

2005 70 10.4 ± 0.7 4-30 0.4 ± 0.0 0.02-0.56 

2009 19 8.0 ± 0.9 4-17 0.3 ± 0.0 0.07-0.51 

2015 46 9.1 ± 0.8 4-35 0.3 ± 0.0 0.03-0.75 

2018 70 4.0 ± 0.0 4-4 0.2 ± 0.0 0.02-0.36 

      

 682 
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FIGURES 686 

 687 

Figure 1. CEH land cover categories present within the West Pennine Moors SSSI (Rowland et al., 2017). Inset: Location of the West Pennine 688 

Moors SSSI (green circle) in the UK. The base map used is the Ordnance Survey Open Background map accessed through ArcGIS 10.4. 689 
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 690 

 691 

Figure 2. The upper photos show the homogeneous height and colour contrast found between rushes and 692 

the surrounding vegetation within (a) Acid Grassland and (b) Heather Moorland. The lower photos show 693 

the heterogeneous height and colour contrast found between rushes and the surrounding vegetation within 694 

the Marginal Grasslands (c & d). The large height and colour contrast between rushes and the surrounding 695 

vegetation within Marginal Grassland parcels mean that it is clearly visible on Google Earth imagery (see 696 

Fig.3). The spade pictured is approximately 1 m tall. All photos were taken on the 11th of September 2019. 697 

 698 
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 699 

Figure 3. Modified Google Earth images corresponding to photographs a, b, c and d in Fig. 2. The yellow 700 

arrow denotes the location and direction of the corresponding photograph. Note how rushes cannot be seen 701 

clearly within (a) Acid Grassland parcels and areas of (b) Heather Moorland, but they can be seen clearly 702 

within Marginal Grassland (c & d). 703 
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 704 

Figure 4. An illustrative example of recording rush frequency within the ten quadrats (yellow squares) in the sample plots (white squares) across 705 

each sample year. Along the bottom row, quadrats are filled if rush is present and unfilled if rush is absent. Quadrats along the top row are left 706 

unfilled for comparison. We recorded rush as present if any part of a rush tussock (no matter how small) was within the quadrat boundary. 707 
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 708 

 709 

Figure 5. Results from the analysis of the complete dataset: a) mean rush frequency per year (error bars are 710 

standard errors of the mean); and, b) the proportion of plots per year in which rush frequency was: 0 711 

(absent), 1-3, 4-6, 7-9 or 10 (dominant). Rush frequency was measured within ten quadrats per sample plot 712 

per year. 713 
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 721 

 722 
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 728 



28 
 

 729 

Figure 6. Results from the analysis of the continuous dataset: a) mean rush frequency per year with bars 730 

marked with different letters being significantly different (p < 0.05) according to post hoc comparisons 731 

between individual survey years using Wilcoxon signed-rank tests adjusted using the Bonferroni correction 732 

method; b) the mean percentage change in rush frequency per plot between 2005-2009, 2009-2015 and 733 

2015-2018; c) the number of continuous data plots in which rush frequencies displayed no change (=), were 734 

positive (+) or were negative (-) between 2005 and 2018; and, d) the proportion of plots per year in which 735 
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rush frequency was: 0, 1-3, 4-6, 7-9 or 10. For figures a) and b) error bars are standard errors of the mean. 736 

Rush frequency was measured within ten quadrats per sample plot per year. 737 


