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Abstract 

 
The ability to form mental representations of word sounds is central to 

language comprehension and production, and provides the basis of grammatical 

development and literacy. However, this process remains poorly understood. The five 

empirical studies presented in this thesis address open questions related to the 

formation and use of word sound memories. Chapter four presents a meta-analysis of 

studies using the auditory lexical decision task to measure the quality of word sound 

representations in typically developing children and children with DLD 

(developmental language disorder). This chapter also provides baseline data and 

recommendations of use to both researchers and clinicians. The study presented in 

chapter five uses Bayesian multi-level regression to model large-scale parental report 

data from CDI’s (communicative development inventories). This study provides 

insight into the role that high phonological neighbourhood density plays in early word 

production, though not comprehension, relative to factors including word length, 

frequency, concreteness, and relevance to infants. The study in chapter six uses the 

same methodology to evaluate individual differences in the importance of 

neighbourhood density as a predictor of word production, and presents results with 

implications for the development of clinical interventions. The study in chapter seven 

presents a quantitative corpus analysis examining spoken word accuracy and 

variability rates in typically developing children recorded over a three-year period. I 

report the effects of age, frequency, and neighbourhood density on accuracy and 

variability rates, and argue against the view that such rates may provide a reliable 

marker of speech sound disorder. Finally, in chapter eight, I present a neural network 

simulation of the high neighbourhood density learning advantage reported in studies 

two, three, and four, and present an account of network performance that can also 

accommodate contradictory behavioural evidence of low-density word learning 

advantages. All studies are integrated within an exemplar-based framework of 

auditory-lexical development emphasising the mechanism of analogous 

generalisation. In the interests of transparency this thesis is accompanied by an online 

repository containing pre-registration protocols and the data and code required to 

reproduce each analysis: osf.io/u3qsc. 
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Chapter 1 General Introduction  

1.1 The problem 

One of the defining characteristics of early language development is a bias 

towards learning words from dense phonological neighbourhoods, i.e. words that 

sound similar to many other words (Stokes, 2014; Storkel, 2004; Vitevitch & Storkel, 

2013). This observation might seem trivial, but it is counterintuitive. You are, for 

instance, more likely to remember that one person you saw dressed as a clown on the 

underground during your commute to work than any of the hundreds of people you 

saw in suits. Similarly, try remembering the following words: Match, Mitch, clinch, 

hitch, penguin, finch, stitch, watch, touch. It is likely that penguin stood out from the 

list, and that you found this word easier to remember. Such distinctiveness biases – 

also known as isolation effects – are well documented in cognitive science, where 

they are commonly explained in terms of greater attention prompting greater depth of 

processing and this in turn supporting better encoding in memory (Hunt & Worthen, 

2006).  

The robustness of the association between stimulus distinctiveness and 

successful memorisation prompts the following question, which is at the centre of this 

thesis: 

 

Why do young children learn dense rather than distinctive words?  

 

This thesis is not the first attempt to tackle this question. The high-density bias in 

early word learning has previously been explained in terms of short-term memory 

advantages (Hoover, Storkel, & Hogan, 2010; Stokes, Kern, & Dos Santos, 2012), 
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long-term memory advantages (Storkel, 2004), the relative ease of determining the 

meanings of dense words (Smith & Yu, 2008), verbal practice effects (Čeponienė & 

Keren-Portnoy, 2011), and sensitivity to sub-lexical sound-pattern probabilities 

(Fourtassi, Bian, & Frank, 2018). This thesis does, however, present a novel answer to 

the question above, namely:  

 

Because the auditory lexicon is built through analogous generalisation.  

 

The notion of analogous generalisation is developed fully in chapter two, in which I 

also review literature relevant to the specific aims of the five empirical studies 

presented in this thesis. In short, three closely related processes are essential to the 

theory proposed. The first is the memorisation of auditory words from the ambient 

language. The child hears the words catch, hat, mat, can, sat, match, and bat in the 

speech around them and these words are encoded in memory, giving the child an 

implicit understanding of the sound structure of their target language. The second 

process is a short-term memorisation advantage for high-density target words with 

sound features consistent with those frequently encoded. The child hears the novel 

target word cat, for instance, and this is held in short-term memory easily because it 

contains familiar sounds; namely those attested in catch, hat, mat, can, sat, match, and 

bat. Note that this supporting neighbourhood provides the basis of analogous 

generalisation to cat whether or not the child can understand or produce these words 

(i.e. whether the neighbourhood constitutes implicit or explicit knowledge). The third 

process is the explicit long-term memory advantage that this short-term memory 

advantage entails. Continuing the example, the word cat is held in short-term memory 

easily and this supports the formation of a well-detailed long-term memory trace. The 

child has learned the word cat through analogous generalisation. 

Two points of clarification are necessary. First, when I say that the theory I 

propose is novel, I acknowledge that previous studies have identified components of 

the account outlined here as integral to the high-density bias, perhaps most notably 

short-term memory advantages (e.g. Hoover et al., 2010; Stokes et al., 2012). My 

claim, however, is that existing explanatory accounts of the high-density bias are 
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fragmentary, and that when defined in terms of a combination of fundamental 

processes – implicit, short-term, and long-term memory advantages – analogous 

generalisation provides a powerful unified framework for explaining this bias in the 

face of isolation effects (i.e. distinctiveness-driven learning advantages). Despite a 

large literature on analogy-based learning, including both mathematical and verbal 

models of early language development (Ambridge, 2019; Johnson, 1997; Skousen, 

1989), I am not aware of any theoretical account describing the high-density bias 

central to early word learning in these terms. 

Second, my claim is not that analogous generalisation across dense 

neighbourhoods is the only factor driving growth of the emerging auditory lexicon. As 

emphasised throughout this thesis, children are likely to remember the sounds of 

words that are, for instance, highly frequent, highly concrete, and highly relevant to 

their lives. The learning preference for high-density words may be overridden when 

any of these conditions are met. Just imagine a child readily remembering the 

phonologically complex name of their favourite monster or alien cartoon character. 

Rather my claim is that all else being equal high-density words will be acquired more 

easily than low-density words because they are easier to generalise to. 

The account outlined so far provides the thread linking the five empirical 

studies that follow. However, each empirical study comes with its own set of goals 

and methodology, and aims to make its own contribution to the field. Open science 

principles are upheld throughout this thesis, with pre-registration protocols and all 

data and code required to produce each analysis available via an online repository: 

osf.io/u3qsc. The empirical studies are as follows.  

In chapter four, Auditory lexical decisions in developmental language 

disorder, I present a meta-analysis of studies testing children with developmental 

language disorder in the auditory lexical decision task. In this task, participants are 

required to provide a ‘yes’/‘no’ or non-linguistic response (i.e. button press) to 

identify auditory word and non-word stimuli. The advantage of the auditory lexical 

decision task over related tasks such as naming or non-word repetition is that it 

minimises the possibility that an observed deficit (e.g. heightened inaccuracy) is 
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attributable to expressive or oral-motor factors. The contribution of this study is to 

provide summary effect size estimates for accuracy and response time measures for 

comparisons to age- and language-matched control groups, and to make concrete 

recommendations for future research and clinical practice.  

Chapter five, Do children really acquire dense neighbourhoods?, presents 

results from a Bayesian hierarchical regression model in which rates of word 

understanding and production among 300 children aged 12 to 25 months were 

predicted by: (i) phonological neighbourhood density, (ii) frequency, (iii) word length, 

(iv) babiness rating, (v) concreteness, (vi) valence, (vii) arousal, and (viii) dominance. 

The contribution of this study is to examine the effect of high phonological 

neighbourhood density on both word understanding and word production when 

neighbourhood density is modeled alongside a large inventory of predictor variables. 

This analysis is valuable because prior studies investigating the high-density bias have 

modeled neighbourhood density alongside only a handful of variables (e.g. frequency 

or length), and properties that appear to facilitate acquisition in relative isolation may 

prove to have only a limited impact when considered alongside a more representative 

range of explanatory factors (Braginsky, Yurovsky, Marchman, & Frank, 2019). 

In chapter six, Neighbourhood density and word production in delayed and 

advanced learners, I use a similar methodology to examine individual differences in 

the importance of ambient-language phonological neighbourhood density as a 

predictor of word production in 442 children aged 18-months, with productive lexicon 

sizes between zero and 517 words. The contribution of this study is to re-examine the 

hypothesis that a difficulty forming memories of words comprising uncommon sound 

sequences (i.e. low phonological neighbourhood density words) is a central 

determinant of delayed expressive vocabulary development (e.g. Stokes, 2014).  

Chapter seven, Accuracy and variability in early spontaneous word 

production, examines factors explaining rates of accuracy and variability in 244,459 

spontaneous word productions from five typically developing children recorded over a 

three-year period (0:11-4;0). High rates of error and variability in early word 

production have been proposed as a marker of speech sound disorder (e.g. Holm, 

Crosbie, & Dodd, 2007), however this approach has been challenged by studies 
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reporting high rates of error and variability in the typically developing population 

(Sosa, 2015). Chapter seven evaluates this debate, and provides recommendations for 

future research and clinical practice. In addition, I report the effects of age, frequency 

and neighbourhood density on accuracy and variability rates. 

The overarching theory presented in this thesis is that the auditory lexicon is 

built through analogous generalisation across dense neighbourhoods. One challenge to 

this account comes from behavioural evidence that high-density words are also more 

likely to be misunderstood as instances of known words, and therefore that high-

density may under certain circumstances complicate the learning process (e.g. 

Swingley & Aslin, 2007). In chapter eight, Density and distinctiveness in early word 

learning, I present a neural network simulation illustrating how these apparently 

contradictory density and distinctiveness effects can emerge from a common learning 

mechanism.  

Chapter nine includes an integrated discussion of these empirical studies, and 

revisits the overarching principle of analogy-based learning driving growth of the 

auditory lexicon. This chapter also summarises the major contributions of this thesis 

and outlines directions for future research.  

The study of early word learning provides a springboard to many vital 

questions; from the identification and treatment of speech and language disorders, to 

the architecture of the brain and mind, to the engineering of machine intelligence. My 

hope is that this comprehensive account of the development of the early auditory 

lexicon is of interest to both researchers and clinicians. 





 

  

Chapter 2 Background 

It is almost customary for studies of early word learning to begin with a 

description of Quine’s (1960) gavagai problem. In this thought experiment, a linguist 

studying an undocumented language hears the word gavagai shouted by a native 

speaker as a white rabbit runs passed. What does the linguist infer about the word 

gavagai? Quine’s problem encourages us to think about the subtle challenges facing 

young word learners. Does gavagai refer to the rabbit as a whole or to a particular part 

of the rabbit? Does it mean white or running? Or might it mean catch it! Existing 

solutions to this problem – often called the problem of indeterminacy – fall on a 

continuum from nativist accounts emphasising innate biases such as the assumption 

that labels extend to whole objects, to constructivist accounts emphasising socio-

pragmatic cues such as shared attention, the ability to follow speaker gaze, and the 

ability to infer speaker states of mind (Ambridge & Lieven, 2011).  

Research related to the problem of indeterminacy dominates developmental 

cognitive science and the study of early word learning more specifically. However 

implicit in the gavagai thought experiment are a series of more primary problems, 

which the learner must overcome prior to inferring the meaning of the spoken word 

gavagai and its appropriate patterns of use. Perhaps most general is the question of 

how the learner develops a mental representation of the spoken word gavagai. 

Crucially, this word-sound representation needs to be flexible enough to support 

accurate recognition when the word is produced by different speakers and at different 

rates, while at the same time detailed enough to support accurate production by the 

learner. The overarching aim of this thesis is to develop a comprehensive account of 

this process. In short, I will argue that the auditory lexicon is built principally through 

analogy-based learning. However, the five empirical studies in this thesis cover a lot 
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of ground. Staying with the gavagai example, this thesis will address questions 

including: 

 

1. Is the word gavagai easy or difficult to remember and to produce relative to, 

say, the word elephant? Would the word gavagai be easier or more difficult to 

remember and produce if the target language contained many or few similar 

sounding words?  

 

2. With respect to overall learnability, how important is the sound of the word 

gavagai relative to alternative factors including the concreteness of the 

inferred referent (i.e. a rabbit), the relevance of the label-referent pairing to the 

life of the learner, and the frequency with which the learner hears the label? 

 

3. What does the representation of gavagai look like in the mind? And what is 

the most appropriate simplification of that mental representation that allows us 

to study and communicate about it? Relatedly, how best can we operationalise 

the associations between the mental representations of gavagai and other 

known words?  

 

4. How might we measure the quality of the word sound memory of gavagai? Is 

the degree of detail in this mental representation high from the outset, or does 

it improve with exposures? Does a two-year-old child exposed to gavagai 

form a memory trace of similar quality to that formed by a ten-year-old child?  

 

5. If we exposed a large number of children to the spoken word gavagai, we 

might expect individual differences in retention and production accuracy 

scores at test. What explains this variation? What is the relation between 

cognitive and oral-motor development and auditory word memorisation and 

production? How might neurological disorder impede memorisation and 

production? And how can we best identify and treat children with language 

disorder? 
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This review chapter provides background to the key ideas outlined in the questions 

above. It develops a theory of early auditory-lexical development centred on the 

mechanism of analogous generalisation. Each empirical study in this thesis contains 

its own focused literature review, and the purpose of this chapter is to provide a bird’s 

eye view of the field. The structure of this chapter is as follows. I begin with a 

comparison of abstractionist, exemplar, and hybrid accounts of word sound 

representation, before describing different methodological approaches to quantifying 

the associations between representations. I then evaluate theories of early auditory 

word learning and discuss how this process may be affected by neurological disorder. 

Finally, I summarise the explanatory framework linking the five empirical studies that 

follow, namely the notion that the auditory lexicon is built through analogous 

generalisation.  

2.1 What do words look like in the mind? 

2.1.1 Prototypes  

A dominant and perhaps intuitive view of word sound memory is that word 

representations in the mind resemble the phonemic transcriptions accompanying 

orthographic dictionary entries (see Port, 2007; Ramscar & Port, 2016, for 

discussion). That is, our memory of the sound of the word cat, for instance, might 

broadly resemble the international phonetic alphabet (IPA) form /kæt/ stored 

alongside possible meanings and patterns of use. This, put crudely, is the view of 

prototype theories of word sound representation (see Ambridge, 2019, for review). 

Two features are essential here. First, auditory word representations in the mind are 

assumed to be abstractions from the variation inherent in natural speech; a product of 

factors including speaker age, gender, dialect, and speech rate. Prototype theories 

entail that such information is jettisoned during acquisition, and see this normalisation 

process as an advantage enabling learners to generalise word knowledge across 

speakers and contexts. Second, word prototypes are assumed to be composed of 



34 Background 

 
elementary segments, such as phonemes rendered in the IPA or alternate symbolic 

systems representing articulatory features (e.g. Chomsky & Halle, 1968). These, 

alongside similarly abstract combinatorial rules, provide the basis of spoken word 

recognition and the building blocks of spoken word production.  

The appeal of prototype theory is that it proposes an apparently efficient mode 

of word storage supporting cross-contextual recognition and productivity. However, 

the principles of abstraction and segmentation essential to the prototype framework 

each face challenges. Perhaps most damagingly, the notion of an abstract word-level 

prototype is difficult to reconcile with evidence of speaker effects that the process of 

abstraction should wash out. For instance, recognition memory among adults and 

children is better when test stimuli are presented in voices similar (e.g. of people of 

the same biological sex) to that in which they were taught (e.g. Houston & Jusczyk, 

2000). A second and closely related challenge for prototype theories of word 

representation is to specify the form of the relevant prototype given that discrete 

systems of linguistic representation (e.g. orthographic letters, phonemes, morphemes, 

words) map poorly to continuous speech (Ramscar & Port, 2016). For instance, the 

phoneme [æ] – a candidate sub-lexical prototype – may be rendered differently in 

terms of quality and duration depending on speaker and context. Do learners then 

form different prototypes of all possible renderings of [æ] or a single prototype with 

rules linking that prototype to its various possible realisations? Similarly, at the word-

level, does the word butter spoken in cockney dialect (/bʌʔə/) and received 

pronunciation (/bʌtər/) correspond to two distinct prototypes or a single prototype 

with additional transformation rules linking to these different pronunciations 

(Ambridge, 2019)?  

2.1.2 Exemplars 

An alternative to the prototype framework known as exemplar theory aims to 

address these specific criticisms (Ambridge, 2019; Johnson, 1997; Skousen, 1989). 

Under an exemplar account, spoken word exposures are stored in rich auditory code 

alongside associated speaker- and context-specific details. Broadly, if under prototype 

theory word representations are conceived of as types, then under exemplar theory 



2.1 What do words look like in the mind?  35 

 

 

word representations are conceived of in terms of clouds of tokens. Every spoken 

word exposure is held to contribute to the on-going development of the auditory 

lexicon concretely and without abstraction. Units such as phonemes and indices of 

manner and place relations are therefore considered tools for the study and 

communication of language science that have no cognitive reality. It is held that word 

recognition and production involve on-the-fly generalisation across multiple 

exemplars to the target item rather than, for instance, the search for a uniqueness point 

corresponding to a unique prototype or the placing together of abstract segments (e.g. 

phonemes) according to abstract combinatorial rules to form a motor plan for 

production (Ambridge, 2019).  

Notable objections to exemplar theories of language development are that it is 

implausible that the mind stores such a large amount of information, and also that the 

framework sits uncomfortably with dominant models of memory, for instance the 

semantic/episodic divide. That is, exemplar-based word learning is often associated 

with episodic memory (i.e. spoken word exposures are stored as rich episodes), while 

many existing word learning frameworks focus on the semantic memory system (i.e. 

the division of long-term memory dedicated to abstract ideas and concepts). This 

criticism might be particularly damaging to exemplar theory as applied to early word 

learning, given evidence that episodic memory may not come fully online until after 

the onset of word comprehension and production (Ghetti & Lee, 2011). However, 

proponents of the exemplar framework point out that each of these criticisms suffers 

due to on-going controversy in the basic literature (Ambridge, 2019). There is 

disagreement, for instance, regarding the amount of information the mind can store 

(note also that exemplar theory accommodates forgetting), and the classification of 

memory systems (e.g. procedural, episodic, semantic, etc.) and more importantly the 

specific role these systems play in early language development remains an area of 

considerable debate.  

More serious for exemplar theory is the charge that the analogous 

generalisation mechanism essential to the framework remains underspecified. In lieu 

of a satisfactory account of how this mechanism operates in the absence of abstract 
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information, it is perhaps unsurprising that some theorists, advocates of so-called 

hybrid models, argue that both abstract and prototypic representations must be 

involved in language representation and use. Pierrehumbert (2016), for instance, 

acknowledges that strict abstractionist models are too minimal to account for evidence 

of speaker effects, but nevertheless defends the principle that the ability to generalise 

during both spoken word recognition and production necessitates abstract prototypes 

including phonemes and combinatorial rules. From an exemplar-based perspective, 

however, the significant limitation of the hybrid position remains that it is hard to 

specify the form that such prototypes may take in the face of the variation inherent in 

natural speech (e.g. in idiolect, dialect, sociolect, and speech rate and loudness).  

2.1.3  Section summary  

Evidence of sensitivity to speaker effects apparently rules out strict 

abstractionist accounts of auditory word representation (section 2.1.1), while the 

difficultly of specifying functional prototypes at any level of linguistic representation 

stands against both abstractionist and hybrid accounts (section 2.1.2). In contrast, 

exemplar-based theories of word sound representation find relatively good support in 

the existing language development literature, for instance studies reporting speaker 

effects (Houston & Jusczyk, 2000). Work is, however, required to clarify how the 

exemplar framework relates to dominant models of early memory and language 

development. It will also be valuable to develop the verbal account of analogous 

generalisation in order to supplement existing mathematical and computational 

models of this process (e.g. Johnson, 1997; Skousen, 1989). Each of these aims is 

pursued throughout this thesis.  

2.2 Association networks  

2.2.1 Lexical competition effects 

The current review has so far described auditory word representations in 

isolation. However, word representations interact to affect target word processing on a 
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range of paradigms (see Weber & Scharenborg, 2012, for review). Interestingly, 

contrasting effects are observed whether the experimental outcome of interest is word 

production or recognition. Longer recognition latencies and higher error are observed 

for target words that sound similar to many other known words, theoretically because 

a large cohort of mental representations sharing initial auditory features becomes 

activated and significant target word sound information is required to reach an 

identification point (e.g. the cohort model; Marslen-Wilson & Tyler, 1980; Sommers 

& Lewis, 1999; Vitevitch & Luce, 1998). Conversely, retrieval and production 

advantages are observed for words that sound similar to many other words, a finding 

that has been explained in terms of both articulatory practice effects (i.e. words that 

sound similar to many other words are more likely to be regularly produced) and 

excitatory feedback between lexical and phonemic levels of processing (see Dell & 

Gordon, 2003, p. 11). 

The degree of auditory similarity between words therefore has important 

implications for accurate and rapid word recognition, retrieval, production, and – as 

detailed at length below – successful word acquisition. Various approaches to 

quantifying degrees of auditory word-form similarity exist. Vitevitch (2008), for 

instance, applied the principles of network analysis (i.e. the degree metric and 

clustering coefficients) to the study of word retrieval. However, a dominant approach 

has been to use measures of string edit distance such as Levenshtein distance based on 

IPA or similar representations of target words (e.g. SAMPA; the Speech Assessment 

Methods Phonetic Alphabet). This metric – broadly termed phonological 

neighbourhood density – is central to four out of five of the empirical studies in this 

thesis, and is therefore discussed in detail in the remainder of this section.  

2.2.2 Phonological neighbourhood density 

2.2.2.1 The plus-minus-one-phoneme criterion 

Phonological neighbourhood density constitutes a general principle rather than 

fixed operational definition. Broadly, words that sound similar to many other words 
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are termed high density, and words that sound similar to few other words are termed 

low density. Specific operational definitions of neighbourhood density differ between 

studies. However, following Luce and Pisoni (1998; experiment two), the dominant 

approach in adult and child language research has been to define neighbourhood 

density as the number of words in a given corpus that can be formed by the addition, 

substitution, or elimination of a single phoneme in a target word. Under this so-called 

plus-minus-one phoneme metric, the word cat, for instance, neighbours catch, hat, 

and at. A significant limitation of the plus-minus-one-phoneme method is that there is 

no grading of phonological distance within neighbour and non-neighbour categories. 

For instance, the words bag, map, and hippocampus are all non-neighbours of the 

target cat, despite different degrees of phonological similarity from this target. 

Conversely, cat neighbours both can and hat, suggesting equivalent phonological 

distance between these items. In this way, the use of plus-minus one neighbourhood 

density entails the loss of information about degrees of word-level phonological 

similarity between words.  

Such loss similarly occurs at the corpus level, and this may be particularly 

damaging in child language research or when quantifying the phonological structure 

of small corpora more generally. While at the word-word level the plus-minus one 

criterion is categorical – that is, two words are either neighbours or not – a graded 

picture of phonological structure should emerge through density counts across the 

corpus, i.e. some words will have greater neighbour density counts than other words. 

In adult samples – the population for which the plus-minus one criterion was 

originally developed (Luce & Pisoni, 1998) – there may be a large range of positive 

density counts across the corpus (e.g. some words may have one neighbour while 

others will have hundreds of neighbours) and the number of frequently produced 

words with zero neighbourhood density may be very low. However, because young 

children know considerably fewer words than adults, a significant proportion of words 

in a child corpus may be ascribed zero neighbourhood density, while the range of 

positive density counts across the corpus may be limited (Fourtassi, Bian, & Frank, 

2018). For instance, in a preliminary analysis conducted during the development of 

pre-registration protocols for the empirical studies presented in this thesis, I found that 
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48.31% of words listed in the UK communicative development inventory (UK-CDI; 

Alcock, Meints, & Rowland, 2017) had zero plus-minus-one-phoneme neighbourhood 

density, with a range of zero to nine neighbours. Thus a substantial proportion of 

words in a representative child lexicon – including frequently produced words – 

constitute lexical hermits under a plus-minus-one-phoneme criterion of 

neighbourhood density.  

2.2.2.2 The plus-minus-two-phoneme criterion 

One suggested way to address information loss when quantifying auditory 

similarity structure is to increase string edit distance from one to two phonemes 

(Fourtassi et al., 2018). Under a plus-minus-two phoneme metric of word similarity 

the target cat, for instance, not only neighbours hat and can, but also bag and map. 

Adopting a plus-minus-two-phoneme criterion of similarity considerably reduces the 

number of words ascribed zero neighbourhood density within a given corpus, while 

expanding count ranges across the corpus. For instance, in the preliminary analysis 

described above, I found that an average of 12.92% of words listed in the UK-CDI 

(Alcock et al., 2017) had zero plus-minus-two-phoneme neighbourhood density, with 

a range of zero to 63 neighbours across the corpus. Information loss therefore appears 

reduced relative to the plus-minus one phoneme criterion, resulting in a dataset that 

may be relatively more powerful in statistical analysis (i.e. higher sensitivity, 

inferences may be made with fewer cases). However, the usefulness of two-phoneme 

neighbourhood density remains questionable because the perceptual similarity of 

words classed as neighbours under this criterion may not be immediately clear, 

particular for short words with few phonemes such as cat and bag, which dominate 

the emergent lexicon. Note, for instance, that other two-phoneme neighbours of cat 

include (via caught): cawed, bought, and fought. Furthermore, in the recent 

manuscript employing this approach (Fourtassi et al., 2018), words are apparently 

scored as neighbours whether they are one or two phonemes from a target, as in the 

case of can (one phoneme) and bag (two phonemes) relative to the target cat. 
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Information loss therefore remains an issue for categorical measures of phonological 

similarity even when string edit distance is increased. 

2.2.2.3 Continuous measures of word-form similarity 

One way to alleviate these issues is to adopt a continuous criterion of word-

form similarity. Continuous measures of word-level phonological similarity may be 

operationalised in a number of ways. In two out of the five empirical studies that 

follow I used a continuous metric of word form similarity called phonological 

Levenshtein distance, or PLD20, defined as the mean number of additions, 

substitutions, or eliminations of phonemes required to change a particular word into 

its nearest twenty phonological neighbours (Suárez, Tan, Yap, & Goh, 2011, p. 606). 

In contrast to classic definitions and operationalisations of word-form similarity (e.g. 

Luce & Pisoni, 1998), a smaller PLD20 indicates greater phonological similarity (i.e. 

high density), while a high PLD20 indicates greater phonological distance (i.e. high 

distinctiveness). The major advantage of this continuous measure is that every word 

in any given corpus is attributed a density value, and this supports the identification 

of neighbourhood effects – such as the inhibition and facilitation effects described at 

the beginning of this section – for words that would be classed as lexical hermits 

under a categorical criterion (Suárez et al., 2011).   

Despite advantages of decreased information loss and associated increases in 

predictive power, continuous measures of word-level phonological similarity have not 

been widely adopted in developmental research, where their application may be 

especially useful because young children know few categorical neighbours. Criterion 

selection is ultimately question dependent, and researchers may have justification to 

adopt a categorical measure of word-form similarity. The question of criterion may 

arguably matter less, for instance, when quantifying large-scale input corpus densities, 

where frequently produced words might have many attested categorical neighbours. 

Generally speaking, however, the use of categorical criteria of phonological word-

form similarity may be unwarranted, particularly given the recent development of 

software packages supporting computation using continuous criteria and open-source 

datasets listing pre-computed values (e.g. stringdist; van der Loo, 2014).  
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2.2.3 Section summary  

In the previous and current sections, I described auditory word representations 

in terms of clouds of exemplars, which may be characterised as forming complex 

association networks on the basis of auditory distance. The use of IPA word 

representations and ideally continuous measures of string edit distance (e.g. PLD20) 

constitute dramatic simplifying approaches essential to studying and describing the 

mental lexicon. In the following section I situate this system in a developmental 

framework, with special emphasis on development prior to literacy. 

2.3 Building an auditory lexicon 

2.3.1 Auditory-linguistic sensitivity in newborns  

One of the astonishing claims of developmental cognitive science is that 

auditory word learning starts in utero (Partanen et al., 2013). The fetal brain 

undergoes dramatic changes, including extensive synapse production (i.e. an increase 

in the number of connections between neurons), the myelination of axons (i.e. the 

insulation of neuron projections), and the organisation of the auditory cortex in 

response to external stimuli. Such plasticity is continuous with a capacity to learn 

before birth, and the sounds coming through the intrauterine walls, including the 

sound of caregiver speech, provide a dominant stimulus prompting learning during 

this time. Accordingly, a number of studies have demonstrated newborn sensitivity to 

properties of the ambient language, including listening preferences (e.g. identified 

using a sucking rate habituation paradigm) to the target language, the mother’s voice, 

and storybooks read during pregnancy (see Aslin, Jusczyk, & Pisoni, 1998, for 

review). The important observation here is that substantial information about the 

sound structure of the target language is learned prior to the onset of word learning as 

commonly defined, for example as the ability to recognise or label a white rabbit as 

gavagai.  
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2.3.2 First words  

Infants commonly understand a limited number of words by six to nine months 

(Bergelson & Swingley, 2012), with first words emerging around the first birthday 

and exponential growth in productive lexicon size thereafter (Tomasello, 2005). As in 

most areas of development, there are substantial individual differences in early 

receptive and productive vocabulary size. For instance, 18-month-old children in the 

95th centile may produce up to 240 words, while age-matched peers below the 10th 

centile may produce as few as five words (Alcock et al., 2017). Nevertheless, despite 

common differences in size, the content of children’s early lexicons is remarkably 

consistent between children both within and across language communities (Braginsky, 

Yurovsky, Marchman, & Frank, 2019). To demonstrate this, Braginsky et al. (2019) 

modeled ages of acquisition for 400 words recorded in large-scale parental report data 

as a function of a range of predictor variables previously associated with variance in 

learning outcomes, for instance word length, frequency, concreteness, and relevance 

to babies and infants. Results indicated that, across ten languages, early-acquired 

words tended to be short, high frequency, highly concrete, and highly relevant to the 

lives of babies and infants.  

2.3.3 Phonological neighbourhood density and the early lexicon 

Braginsky et al. (2019) emphasise that the relatively comprehensive list of 

predictors included in their statistical model of age of acquisition is incomplete. 

Accordingly, to build on this work in the interest of better understanding the 

development of the auditory lexicon, Jones and Brandt (2019a, chapter five) fitted a 

modified version of Braginsky et al.’s (2019) model with the addition of ambient 

language phonological neighbourhood density as a predictor variable. The aim of this 

analysis was to determine the importance of neighbourhood density relative to other 

predictors of word comprehension and production (e.g. frequency, concreteness, 

babiness) in 300 children aged 12;0 to 25;0. We considered this an important analysis 

given the insights the study of neighbourhood density effects has provided into 

auditory word representation and association network growth. Jones and Brandt 
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(2019a, chapter five) replicated Braginsky et al.’s (2019) major findings, reporting 

learning advantages for high-frequency, concrete words with high relevance in 

infancy and early childhood. In addition, we reported that high phonological 

neighbourhood density strongly predicted word production but not word 

comprehension – with which frequency, concreteness, and relevance to babies were 

more strongly associated. The results also suggested that the high-density word 

production advantage was stronger in younger children. Each of these findings is 

consistent with prior work reporting that high-density words are learned 

developmentally earlier and on fewer or noisier experimental exposures than low-

density words, and, furthermore, that high neighbourhood density appears to confer 

specific advantages on word production (e.g. Stokes, 2010; Stokes, Kern, & Dos 

Santos, 2012; Storkel, 2004, 2006, 2011; Takac, Knott, & Stokes, 2017; Vitevitch & 

Storkel, 2013; Vitevitch, Storkel, Francisco, Evans, & Goldstein, 2014). Also of 

relevance here is the observation that word production accuracy and stability are often 

better for high neighbourhood density words, with low-density words commonly 

produced inaccurately and inconsistently (i.e. differently aross multiple productions; 

e.g. Sosa & Stoel-Gammon, 2012; Jones, 2019, chapter seven).  

The early high-density word learning advantage is intriguing in light of the 

aforementioned high-density word competition effects observed during recognition 

tasks (Weber & Scharenborg, 2012), and similarly in light of the distinctiveness 

advantages – i.e. isolation effects – described in the General Introduction. On the 

other hand, high-density has been associated with word production advantages (Weber 

& Scharenborg, 2012), and Jones and Brandt (2019a, chapter five) similarly report a 

substantial production though not comprehension effect in early acquisition. Together, 

these findings suggest that it might be more accurate to talk about a high-density 

expressive lexicon advantage, rather than a high-density word learning advantage per 

se. Putting this question aside for now, it is apparent that a bias towards the 

acquisition of high-density words is a defining characteristic of the emerging auditory 

lexicon, though the mechanism underlying this advantage remains poorly understood 

(Gierut & Morrisette, 2012). The aim of this thesis is to propose a theory of the high-
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density bias centred on the principle of analogous generalisation. In the paragraphs 

that follow I begin to build the account of this process that will ground the empirical 

studies that follow.  

2.3.4  Building an auditory lexicon through analogous generalisation  

It is first important to clarify the idea of generalisation in the context of 

auditory word learning. Studies of early auditory word learning commonly refer to the 

acquisition of dense neighbourhoods. This is true, for instance, of chapter five of this 

thesis and the landmark study by Storkel (2004) from which that chapter takes its 

name (Do children acquire dense neighbourhoods?). This title may, however, be 

somewhat misleading. For instance, it has been shown by Schwartz and colleagues 

that young children acquire and produce test words that contain sounds that the child 

has previously produced more easily than test words containing previously unattested 

sounds (e.g. Schwartz & Leonard, 1982; Schwartz, Leonard, Frome Loeb, Swanson, 

& Loeb, 1987). Nevertheless, this is often not what is meant by the acquisition of 

dense neighbourhoods. Instead, many studies, including those of the current thesis, 

demonstrate that children learn target words that are high density in the input 

language, whether or not they have explicit knowledge of those words’ phonological 

neighbours (i.e. whether or not they are able to recognise and produce those 

neighbours).  

This distinction is made clear in the aforementioned study by Fourtassi et al. 

(2018), in which two hypotheses of early auditory word learning are compared. The 

first hypothesis is of a learning preference for novel auditory words associated with 

many other words in the child’s lexicon (i.e. internal connectivity; as in the work by 

Schwartz and colleagues cited above). The second hypothesis is of a learning 

preference for novel auditory words associated with many other words in the input or 

ambient language (i.e. external connectivity; as in Storkel, 2004). Using a network 

growth model, Fourtassi et al. (2018) provide evidence that, outside of the lab, 

phonological representation networks grow predominantly on the basis of external 

connectivity. That is, Fourtassi et al. (2018) argue it is connectivity in the ambient 

language, and not connectivity to words in the child’s lexicon, that makes high-
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density target words relatively easy to learn, and which guides the development of the 

early auditory lexicon.  

2.3.4.1 Long-term auditory priming and conspiracy effects 

Fourtassi et al.’s (2018) argument requires some qualification. Crucially, for 

any neighbourhood density learning effect to exist, the phonological association 

structure of the ambient language would have to be represented in the mind of the 

child. Without such representation, the high-density bias is seemingly inexplicable. 

My position – supported by evidence of children’s sensitivity to the association 

structure of the ambient language from the neonatal period (e.g. Church & Fisher, 

1998; Goldinger, 1996; Jusczyk, Luce, & Charles-Luce, 1994) – is that it is not word-

level phonological connectivity in the ambient language per se that drives auditory-

lexical growth, but that early auditory-lexical growth is driven by the representation of 

ambient language connectivity across spoken word exemplars stored in the mind of 

the child. This position may be characterised by adopting Church and Fisher’s (1998) 

label “long-term auditory priming”. Under this account, spoken word exposures are 

encoded in memory and this supports the recognition and production of a target word 

with auditory features identical or similar to primes even after considerable delay, for 

instance a week (see Fisher, Church, & Chambers, 2004, for an extensive review). 

Interestingly, such priming effects (i.e. higher accuracy or shorter response time) are 

reduced when training and test voices differ, as predicted under exemplar accounts of 

early word learning that emphasise context-sensitive encoding (Ambridge, 2019). 

Analogous generalisation may, then, be characterised as the child successfully 

learning, for instance, the word cat, after exposure to words including catch, hat, mat, 

can, sat, match, and bat. Exposure to such words supports analogous generalisation to 

cat whether or not the child has functional knowledge of the words in the supporting 

neighbourhood (e.g. catch, hat, mat, etc.). That is, the representations that support 

analogous generalisation to the novel target word may be conceptual, i.e. stored with 

semantic details including referential information, or they may be perceptual, i.e. 

stored without semantic details (Fisher et al., 2004). The encoding of a large number 
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of exemplars with similar auditory features (e.g. catch, hat, mat, etc.) may be 

described as a form of conspiracy effect (Rumelhart, McClelland, and the PDP 

Research Group, 1986), which is a computational modelling term used to describe the 

process by which the connection weights in a neural network become biased in the 

direction of frequent input patterns during training, supporting low-error 

generalisation to similar targets (Jones & Brandt, 2020, chapter eight; see also chapter 

three). 

2.3.4.2 Short-term and long-term memory advantages 

Central to the account of analogous generalisation developed here is the idea 

that this conspiracy effect (i.e. the implicit and explicit encoding of dominant patterns 

of the auditory ambient language structure; Jusczyk et al., 1994) comes with short-

term memory advantages. Short-term memory refers to the temporary storage 

(seconds to a couple of minutes) of information without transformation. The ability to 

accurately repeat a phone number, for instance, is a short-term memory skill. Tasks in 

which transformations are involved, for instance repeating a phone number 

backwards, tap working memory skills. The dominant model of these faculties is 

Baddeley & Hitch’s (1974) working memory model, and at the core of this model and 

of its subsequent refinements (e.g. Baddeley, 2000) is a component termed the 

phonological loop, in which untransformed speech information is held and sub-

vocally rehearsed. There is a substantial literature on the role of the phonological loop 

in early language development (see Vance, 2008, for review). This literature indicates 

that the ability to successfully repeat non-words or a string of digits is strongly 

associated with linguistic competence, and that deficits in such tasks are often 

associated with language-delay (Baddeley, Gathercole, & Papagno, 1998; Gathercole, 

Hitch, Service, & Martin, 1997; Gathercole & Baddeley, 1990; Gathercole, Service, 

Hitch, Adams, & Martin, 1999). 

Short-term memory is differentiable from long-term memory. While short-

term memory involves temporary storage, long-term memory can include 

representation for the lifespan. Short-term memory does, however, act as a gatekeeper 

to long-term memory, in the sense that stimuli such as words that are held in short-



2.3 Building an auditory lexicon  47 

 

 

term memory accurately will be passed to long-term memory and stored there in 

greater detail (Vance, 2008). In addition, the established lexicon – defined as the total 

store of spoken word exemplars in long-term memory – confers top-down effects on 

the short-term storage of spoken words. That is, target high-density words that contain 

sound patterns attested in many other exemplars stored implicitly and explicitly in 

long-term memory are held in short-term memory more accurately than low-density 

words, and this in turn supports the subsequent formation of highly detailed long-term 

word memory traces (e.g. Gathercole, Frankish, Pickering, & Peaker, 1999).  

2.3.4.3 Word representation and production 

  The auditory lexicon is therefore built by the learner implicitly following high-

density pathways through the ambient language. Analogous generalisation may be 

characterised specifically in terms of the short- and long-term memory advantages that 

occur given a large number of stored spoken word exemplars with close proximity to 

the target word (Gathercole et al., 1999). The specific production advantages for high-

density words reported above – e.g. earlier age-of-first-production and heightened 

production accuracy and stability – then emerge as a by-product of this primary 

cognitive advantage. Many variables support entry to the receptive lexicon. For 

instance, young children are highly likely to recognise concrete words that they hear 

frequently and that are highly relevant to their lives, for instance the word pushchair. 

Words with such characteristics may be recognised despite complex phonology. 

However, entry to the productive lexicon is dependent on the ability to form an 

accurate motor plan, understood not as an abstract representation but as a 

generalisation made across existing auditory word exemplars on the fly (Ambridge, 

2019). Fuzzy stored exemplars of words with complex phonology may not be 

amenable to early production, leaving such words anchored initially in the receptive 

lexicon. As the range of stored exemplars increases as a function of language 

exposure, however, children become better able to represent and use words with 

relatively complex phonology; a factor reflected in the weakening of the association 
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between high neighbourhood density and word production over time (Jones & Brandt, 

2019a, chapter five).  

 One criticism of this account might concern how we know the high-density 

productive advantage is cognitive and not oral-motor in nature. For instance, could it 

not be that the early exemplar representations of pushchair are in fact highly detailed, 

but that the child’s immature oral-motor skills simply prevent them from producing 

this word accurately? This is an apparently viable position because oral-motor skills 

do develop markedly during the early years, and there is evidence that these skills 

confer effects on language ability independent of the child’s general cognitive ability 

(Alcock, 2006). Nevertheless, there is also strong evidence that when you remove the 

necessity of a verbal response from the word processing task demands, as in the 

auditory lexical decision task described at length in chapter four of the current thesis, 

performance still varies as a function of age and language proficiency (Jones & 

Brandt, 2018, chapter four; see Claessen, Heath, Fletcher, Hogben, & Leitão, 2009, 

for review). Similarly, clinical evidence indicates that children diagnosed with 

expressive language deficits usually also score poorly on measures of receptive 

language, a factor prompting Leonard (2009) to question the validity of pure 

expressive language deficit as a diagnostic category.  

Separating out oral-motor and representational accounts of both typical and 

atypical development remains an important challenge. There is little doubt that oral-

motor skills develop in early childhood, and that production practice effects may 

sharpen the representation of word sounds. Early-learned, high-density words contain 

sounds that are produced more frequently and which may require minimal articulatory 

recourses. However, the existing empirical evidence – particularly the large body of 

evidence probing early word sound representation quality, and evidence that 

expressive language deficits are in general attributable to underlying representational 

problems (see section 2.4) – stands against the idea that the high-density word 

learning bias central to the development of the auditory lexicon may be explicable in 

terms of a pure oral-motor effect.    
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2.3.5  Controversies and complications  

2.3.5.1 Emergentism and accessibility  

It is important to acknowledge controversy regarding the level of detail in 

early auditory word representations (see Ainsworth, Welbourne, & Hesketh, 2016, for 

review). As touched on above, newborns come into the world with a number of 

auditory-perceptual biases that set the stage for early language development (Aslin et 

al., 1998) including preferences for speech over non-speech sounds (Vouloumanos & 

Werker, 2004), infant- or child-directed speech (Cooper & Aslin, 1990), and familiar 

voices (DeCasper & Fifer, 1980). However, despite these apparently sophisticated 

auditory-perceptual skills, infants commonly make errors in auditory word recognition 

that suggest insensitivity to fine-grained word sound details. For instance, infants and 

young children may fail to identify mispronunciations of known words (Van Der 

Feest & Fikkert, 2015; cf. White & Morgan, 2008), or may fail to map minimally 

different non-words including bih and dih to novel objects (Pater, Stager, & Werker, 

2004; Stager & Werker, 1997).  

Such findings have motivated emergentist accounts of early auditory word 

representation, perhaps most prominently the lexical restructuring model (Metsala & 

Walley, 1998). Under this account, the small size of the early lexicon makes gestalt 

word sound representation possible, enabling children to focus on establishing a 

rudimentary lexical base. Growth of the lexicon, however, renders this strategy 

increasingly implausible and inefficient, and infants then apply their skills of auditory-

perception to the task of developing rich word sound representations, which are then 

organised on the basis of fine-grained phonemic similarity networks. Support for this 

position comes from experimental tasks assumed to probe the detail of word sound 

representations (see Claessen, Heath, Fletcher, Hogben, & Leitão, 2009, for review), 

including the gating paradigm (Grosjean, 1980) in which participants aim to identify 

auditory target words on the basis of clipped segments of increasing length. Young 

children typically identify familiar high-density target words upon exposure to shorter 
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segments, suggesting that these items are better detailed (Walley, 1993). Support for 

the restructuring of the lexicon also comes from studies reporting lexical competition 

effects – comparable to the adult-study effects reported above – at 24 but not 18 

months (see Nivedita & Borovsky, 2018, p. 63, for review). These findings suggest 

that at 18 months auditory word representations exist in relative isolation, but that by 

two years of age, perhaps as a function of heightened detail, word sound 

representations are restructured in similarity neighbourhoods. Note that such 

competition effects are also present in children younger than two years who have large 

vocabularies, supporting the idea that restructuring is a product of lexicon size rather 

than age (Walley, 1993).   

One challenge for emergentist accounts such as the lexical restructuring model 

is to accommodate evidence of sensitivity to minimal changes or aberrations in the 

target item during lexical perception tasks from as early as 14 months (e.g. Swingley, 

2005; White & Morgan, 2008). Swingley (2005), for instance, observed an early 

preference for accurately produced known words over inaccurately produced known 

words using a preferential looking paradigm. Such findings have motivated the 

development of accessibility accounts of early word representation, such as Werker & 

Curtin’s (2005) influential processing rich information from multidimensional 

interactive representations or PRIMIR model. Under PRIMIR, rich auditory word 

information is encoded from infancy, but access to this detail during recognition or 

production varies as a function of developmental stage, exposure context, and 

experimental task demands. PRIMIR therefore provides a unifying framework 

accommodating findings underpinning both strict emergentist accounts and strict 

accessibility accounts of early word representation (Ainsworth et al., 2016). In 

addition, PRIMIR accommodates findings from the aforementioned literature 

motivating exemplar theories of auditory word representation, for instance by 

emphasising the context-sensitive encoding of early word sound exemplars. 

Furthermore, closely in keeping with exemplar principles, PRIMIR assumes 

phonemes have no initial cognitive reality, for instance as the building blocks of word 

representations. Instead, phonemes are assumed to emerge slowly as fuzzy 

representations from the distributional analysis of stored word exemplars (Ainsworth 
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et al., 2016), before being sharpened as a product of later developing literacy skills 

including the awareness of orthographic and phonemic associations. The ability to 

accommodate such factors constitutes an important improvement on the lexical 

restructuring model, and makes PRIMIR a robust theoretical framework for 

understanding early word sound representation. 

2.3.5.2 Multicolinearity and interactions 

The empirical studies that follow illustrate a number ways in which the general 

account of high neighbourhood density effects and analogous generalisation presented 

here becomes more complicated. First, as described above, neighbourhood density is 

just one of many variables associated with variance in early word learning, including 

word frequency, length, babiness rating, and alternative word sound variables such as 

phonotactic probability, which is a measure of the co-occurrence probability of a 

sequence of phonemes. Sub-lexical phonotactic probability effects have been of 

considerable interest in prior work in this general area, given that the study of such 

effects can inform understanding of how children learn the sound structure of the 

ambient language. However, given high levels of correlation between predictors – a 

factor often resulting in multicolinearity – it is often difficult to include phonotactic 

probability in statistical models designed to assess early word-level density effects. 

This unfortunately makes it impossible to determine the influence of the excluded 

variable. Second, and relatedly, neighbourhood density interacts with other lexical 

variables, perhaps most importantly word frequency. In particular, there is some 

evidence that high neighbourhood density is more strongly associated with word 

production for low-frequency words, with high frequency apparently nullifying this 

effect (Hollich, Jusczyk, & Luce, 2002; Storkel, 2004). Focused discussions of 

multicollinearity and interaction effects appear in the empirical chapters that follow.  
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2.3.5.3 Learning advantages for distinctive stimuli  

A further complication to the explanatory account presented here is the finding 

that high neighbourhood density may in certain contexts impede word learning. As 

argued in chapter eight of this thesis, understanding this apparent contradiction 

depends on looking at word learning sub-process (e.g. Leach & Samuel, 2007). For 

instance, some studies identify an initial triggering of learning, in which the mismatch 

between an auditory target stimulus and stored exemplars is large enough for that 

target to be identified as novel, and a configuration stage, in which a word sound 

representation is established (Hoover, Storkel, & Hogan, 2010; McKean, Letts, & 

Howard, 2014; Storkel & Lee, 2011). Low neighbourhood density (i.e. high 

distinctiveness) has been associated with triggering stage advantages, while high 

neighbourhood density has been associated with configuration stage advantages. 

Storkel and Lee (2011), for instance, report an immediate naming and referent 

identification advantage for low-density stimuli (also low phonotactic probability 

stimuli), which is attributed to a heightened triggering effect, though better delayed 

test performance for high-density stimuli in the absence of further training, which is 

attributed to the formation of a detailed and robust long-term memory trace.  

Similar effects are seen when the learning environment is made competitive 

through the presentation of high-density auditory stimuli (e.g. bih, dih) in the absence 

of additional cues associated with successful word learning, such as variance in 

syntactic or semantic class, pragmatic information, or related gaze or gesture cues 

(Stager & Werker, 1997; Swingley & Aslin, 2007). In such cases, the target word may 

be so similar to known neighbours that the child processes the target stimulus as an 

instance, perhaps a mispronunciation, of a known word. That is, learning is not 

triggered. Despite constituting poor task performance, this behaviour is generally 

adaptive because – as noted in the General introduction – recognition mechanisms 

must be liberal enough to support cross-contextual comprehension on the fly, for 

instance when a learner encounters an unfamiliar dialect (Church & Fisher, 1998). 

Furthermore, as described in the previous section on association networks, the number 

of minimally different words that young children know and hear in the speech directed 

to them is limited (Guevara-Rukoz et al., 2018). Therefore, the prior probability that a 
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sound sequence that is very similar to a known word refers to a distinct referent is 

low, making it reasonable to classify that sound sequence as an instance of a known 

word (Swingley & Aslin, 2007).  

Nevertheless, existing studies demonstrate that when complementary cues are 

present, the issue of the mis-perception of a novel neighbour as a known rather than 

unknown word may not arise. Dautriche, Swingley, and Christophe (2015), for 

instance, report that children aged 18 months were unable to learn a novel noun that 

neighboured a well-known noun (as in Swingley & Aslin, 2007), but successfully 

learned a novel noun that neighboured a well-known verb. Such results highlight that 

children’s understanding of the similarity of a novel target word to stored exemplars is 

multi-dimensional, in this case involving syntactic class in addition to phonological 

features. Thus the potentially inhibitive effect of close phonological proximity is 

likely to be over-ridden in naturalistic learning environments, where multiple cues 

(e.g. gaze, gesture, pragmatic information) are present (Roy, Frank, DeCamp, Miller, 

& Roy, 2015), allowing learners to capitalise on phonological string similarity and 

acquire high-density words through analogous generalisation. 

2.3.6  Section summary 

In this section, I evaluated the literature on the emergence of the auditory 

lexicon from pre-birth to pre-literacy. The account presented can be summarised as 

follows. Spoken word exposure results in the formation of perceptual and conceptual 

memory traces, which as a whole represent the sound structure of the ambient 

language in the mind of the child. This process may be characterised as a form of what 

in computational research has been termed a conspiracy effect (Rumelhart et al., 

1986). This effect confers memory and processing advantages, which themselves have 

been described by Church and Fisher (1998) in terms of long-term auditory priming. 

Unpacking this a little, high-density target words exhibiting auditory features 

consistent with the dominant features of stored exemplars are held in short-term 

memory more accurately and passed to long-term memory in greater detail. This is 

evident in better performance for high-density words on a range of tasks considered to 
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probe the quality of word sound memories (e.g. the auditory lexical decision task), 

and in a marked production advantage for high neighbourhood density words. The 

term analogous generalisation provides a useful shorthand for describing this 

combination of fundamental memory processes. In the final section of this review, I 

consider how this process may be affected by neurological disorder.  

2.4 The auditory lexicon in atypical development 

 Outside of the considerable variation observed in typical language 

development there are a subset children – estimated at up to 7.5% of the English-

speaking population (Norbury et al., 2016) – who present language-learning 

difficulties severe enough to interfere with their education, career prospects, and 

general quality of life. Such children are heterogeneous in terms of the patterns of 

impairment they present, and this has contributed to the study and diagnosis of 

language disorder becoming something of a terminological minefield. Affected 

children may, for instance, be referred to variously as having developmental 

dysphasia, language delay, or specific language impairment. As a result of the recent 

CATALISE consortium on language impairment, however, developmental language 

disorder is now the generally agreed on term for children displaying significant 

language learning difficulties in the absence of a clear biomedical cause (Bishop, 

Snowling, Thompson, & Greenhalgh, 2016).  

2.4.1 Representational deficits in developmental language disorder 

While problems with the acquisition and accurate use of syntax are 

characteristic of developmental language disorder, a substantial number of affected 

children also show word learning difficulties. Such problems affect both semantic and 

phonological development, though the focus of this review is on the latter of these 

domains. Children with developmental language disorder commonly not only know 

fewer words than their age-matched peers, but also present experimental performance 

profiles suggesting that the long-term auditory word representations they form lack 

sufficient detail (Bishop, 2014). Across a range of tasks held to tap the quality of 
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underlying word sound representation – including auditory lexical decision, non-word 

repetition, gating, naming, and eye-tracking – children with developmental language 

disorder commonly perform worse than age-matched though not language-matched 

peers, indicating a developmental delay rather than deviance (Kan & Windsor, 2010; 

Claessen et al., 2009; Claessen & Leitão, 2012; Maillart, Schelstraete, & Hupet, 2004; 

see Leonard, 2014, for review). Studies demonstrating such deficits in the absence of 

elicited verbal responses have been instrumental in linking these children’s 

performance profiles to poor quality long-term word sound representations, and ruling 

out an explanation in terms of pure expressive impairments. For instance, in a meta-

analysis of studies using the auditory lexical decision task, Jones and Brandt (2018, 

chapter four) reported that even when no verbal response (or only a simple yes/no 

response) was required, children with developmental language disorder were 

significantly less accurate than age-matched peers at identifying whether an auditory 

string was a word or non-word (see also Claessen et al., 2009; and discussion of 

Leonard, 2009, above).  

2.4.2  Explaining representational deficits  

2.4.2.1 The temporal processing deficit hypothesis  

There are a number of prominent explanatory accounts of auditory word 

representation deficits in children with developmental language disorder. One such 

account is Tallal and colleagues’ temporal processing deficit hypothesis (e.g. Tallal & 

Piercy, 1973), according to which the deficits observed in developmental language 

disorder are explicable in terms of a general impairment in processing auditory 

information. This position was bolstered by evidence that children with developmental 

language disorder often performed poorly on tasks testing the processing of verbal and 

non-verbal stimuli presented either rapidly (i.e. each stimulus presentation is short) or 

in quick succession (i.e. presentations follow each other quickly) (e.g. Tallal, Stark, & 

Curtiss, 1976; Tallal & Piercy, 1973; cf. Mody, Studdert-Kennedy, & Brady, 1997). 

Later attempts to establish a direct causal influence of auditory-perceptual processing 
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on language development led to the release of a targeted intervention program that 

claimed to train auditory processing and produce improvements that transferred to 

language processing (Merzenich et al., 1996; Tallal et al., 1996).  

Despite the initial promise of research in this direction, the temporal 

processing deficit hypothesis has, as summarised by Bishop (2014), fared less well in 

recent years. While evidence that auditory-processing deficits are sometimes 

associated with language impairment is generally robust, evidence that the training of 

auditory-perceptual deficits may improve language ability has been contradicted in 

more recent randomised controlled trials (Strong, Torgerson, Torgerson, & Hulme, 

2011). This, along with evidence that auditory-perceptual deficits do not appear to be 

heritable, has revived concerns regarding the causal impact of auditory-perceptual 

deficits in developmental language disorder, with recent studies arguing that such 

deficits may be the outcome rather than origin of children’s language difficulties 

(Bishop, Hardiman, & Barry, 2012). 

2.4.2.2 Short-term memory 

A second branch of explanatory research that maintains considerable influence 

in the study of early atypical word representation emphasises phonological short-term 

memory deficits (e.g. Gathercole & Baddeley, 1990). Children with developmental 

language disorder often perform significantly worse than typically developing 

children on measures of short-term memory, most prominently the non-word 

repetition task in which participants must verbally repeat a nonsense auditory string 

such as hampent or dopelate. Performance on this task is positively associated with 

vocabulary growth, providing suggestive evidence that the word learning deficits 

observed in developmental language disorder may be attributable to a difficulty 

holding target words – particularly items of three syllables or above – in phonological 

short-term memory, with this impeding the subsequent formation of accurate long-

term word memories (Bishop, North, & Donlan, 1996; Dollaghan & Campbell, 1998; 

Gathercole & Baddeley, 1990). This may be because the capacity of short-term 

memory is limited or because its contents are subject to abnormally rapid decay.  
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Putting short-term memory at the heart of the lexical deficits often observed in 

developmental language disorder is appealing because poor performance on such 

tasks is heritable and highly robust, replicating with small sample sizes and stimulus 

inventories (Bishop et al., 1996). Nevertheless, despite being a strong marker of 

language disorder in general, it is clear that a range of sub-skills are involved in short-

term memory tasks such as non-word repetition (e.g. auditory-perception, encoding, 

and motor planning), making an interpretation of one-to-one correspondence with a 

particular domain of deficit such as the phonological loop unwarranted (Coady & 

Evans, 2008). Furthermore, causal directionality is again an issue, with evidence that 

non-word repetition is better for relatively word-like targets indicating that the 

established lexicon plays an important top-down role in task performance. This has 

led some researchers to argue that poor non-word repetition performance is the 

outcome rather than origin of limited auditory lexicon size (Melby-Lervåg et al., 

2012; Snowling, Chiat, & Hulme, 1991). In turn, however, evidence against a top-

down explanation of non-word repetition task performance comes from Bishop et al. 

(1996), who demonstrated that task deficits remained in children with a history of 

language impairment but typical vocabulary size. Were non-word repetition task 

performance causally attributable to the top-down influence of the established lexicon 

this pattern would not be expected. One additional possibility is, of course, that non-

word repetition task performance and vocabulary development are associated via a 

third factor, such as the aforementioned deficits in auditory-perception or relatedly in 

speech encoding. Summarising the literature in this area, for instance, Bishop (2014) 

writes:  

 

The available evidence could be parsimoniously explained in terms of a 

primary auditory deficit in speed of encoding information that affects the 

development of phonological classification, so that children persist in using 

immature strategies of encoding speech, and hence have inefficient 

organisation of phonological representations in the lexicon. The memory 
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difficulties would be seen then as secondary to atypical encoding of 

phonological information. (p. 131) 

 

Bishop’s (2014) account centers on a primary impairment to mechanisms involved in 

speech encoding which results in a protracted period of gestalt lexical representation, 

as touched on in the prior comparison of the lexical restructuring hypothesis and 

PRIMIR. 

2.4.2.3 The procedural learning deficit hypothesis 

There has also been significant interest in the role that impairment to implicit 

memory systems may play in language disorder. One dominant account in this area is 

the procedural learning deficit hypothesis (Ullman & Pierpont, 2005), under which 

early language disorder is attributed to a difficulty unconsciously or automatically 

abstracting rule-like information from natural speech (e.g. Lum, Conti-Ramsden, 

Morgan, & Ullman, 2014; Lum, Conti-Ramsden, Page, & Ullman, 2012; Tomblin, 

Mainela-Arnold, & Zhang, 2007). Just as the non-word repetition task has been 

central to studies of phonological short-term memory, the serial response time task has 

been central to studies of procedural memory. Tomblin et al. (2007), for instance, 

asked adolescents with and without developmental language disorder to press one of 

four buttons in order to identify which of four squares a creature appeared in on a 

computer screen. In some blocks of trials the creature appeared at random across the 

four possible squares, while in other blocks of trials the creature appeared in a 

systematic (though difficult to discern) pattern. In such tasks, procedural learning is 

evidenced by a decrease in reaction time during patterned trials. Children with 

developmental language disorder are often reported to perform poorly on the serial 

reaction time task, with considerable systematic pattern exposure required to prompt a 

reaction time decrease similar to typically developing peers (e.g. Tomblin et al., 

2007).  

While in its initial formulation the procedural learning deficit hypothesis was 

linked principally to grammatical impairment, more recent work by Gupta and 

colleagues has emphasised the role of procedural learning mechanisms in the 
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acquisition of word phonology (e.g. Gupta, 2012; Gupta & Cohen, 2002; Gupta & 

Tisdale, 2009). The account finds support in neuroanatomical and electrophysiological 

data indicating that children with developmental language disorder sometimes show 

abnormalities in the brain structures and patterns of activity associated with 

procedural learning (see Leonard, 2014, for review). However, while it is 

uncontroversial that implicit learning mechanisms play a role in language 

development, the position that a deficit in this area plays a causal role in 

developmental language disorder has recently come under intense criticism. Notably, 

West, Vadillo, Shanks, and Hulme (2017) reported low reliability across measures of 

procedural learning and no association between performance on such tasks and 

language and literacy outcomes.  

2.4.3  Section summary 

The etiology of developmental language disorder is complex, and homing in 

on a single explanatory account or pitting apparently distinct explanatory accounts 

against each other is unwarranted: Auditory processing, implicit memory, and short-

term memory may all be implicated to some degree in the lexical representation 

deficits observed in certain children affected by developmental language disorder. 

That said, evidence of short-term memory deficits from studies using the non-word 

repetition task currently provides arguably the best proximal explanation of the 

auditory word learning difficulties observed in this population. In contrast to work in 

other domains (e.g. auditory-processing, implicit memory) such findings replicate 

widely and task performance is demonstrated to be heritable. Concerns regarding 

causal directionality remain well justified, as do concerns regarding the specific 

interpretation of non-word repetition data (e.g. its relation to a distal causal 

mechanism such as speech-encoding) and its relation to data from closely related 

paradigms such as auditory-processing tasks. In general, the literature reviewed in this 

section suggests that much more work is required in order to develop our 

understanding of the origin of such deficits. As highlighted by West et al. (2017), 

improving task reliability and increasing statistical power by working with larger 
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participant samples will be central to this process, as will attempting to reach 

consensus regarding the cognitive process tapped in particular tasks and relatedly the 

interpretation of resulting data. Better understanding of the auditory word processing 

deficits observed in some children affected by developmental language disorder is 

essential because the auditory lexicon provides the basis for intelligible speech and 

later literacy and grammatical development, which in turn affect educational, career, 

and psychosocial outcomes (Conti-Ramsden, Durking, Toseeb, Botting, & Pickles, 

2018). 

2.5 Conclusion 

The aim of this chapter has been to ground the five empirical studies that 

follow in a theoretical framework explaining the acquisition and use of dense word 

sound memories. I began by describing a series of questions implicit in Quine’s 

(1960) gavagai thought experiment, each of which is given fuller attention in the 

empirical studies that follow. I then evaluated prototype, exemplar, and hybrid 

theories of word sound representation, arguing in favour of an exemplar-based 

framework in which spoken word exposures are stored in rich auditory code alongside 

non-linguistic speaker- and context-specific features. I also discussed lexical 

competition effects, and evaluated categorical and continuous methods of quantifying 

the association structure such effects imply. I then traced the emergence of this system 

of stored exemplars and networks of association from pre-birth to pre-literacy. This 

section involved the description of early implicit learning – a biological conspiracy 

effect – and the development of the auditory lexicon via the primary process of 

analogous generalisation across dense phonological neighbourhoods in the ambient 

language – a process to which I argued short-term memory advantages were central. 

Successful analogous generalisation during auditory word learning is therefore a 

function primarily of short-term memory advantages (that transfer to long-term 

memory), which are attributable to mechanisms of both implicit learning and the top-

down influence of the established lexicon. This is realised as a learning advantage for 

high-density words, which is the defining characteristic of the emerging auditory 
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lexicon. Finally, I looked at auditory word learning in developmental language 

disorder, and reported consensus that this population often shows auditory word 

representation deficits. Such deficits were linked to underlying impairments in 

auditory processing and implicit and short-term memory. However, it was argued that 

the literature on short-term memory is to date most reliable. In the following chapter, I 

provide an overview of the main methodological approaches used in this thesis. 

 





 

  

Chapter 3 Methodology 

The auditory lexicon can only be studied indirectly, and so inquiry in this area 

benefits from adopting multiple converging methodological approaches. The purpose 

of this chapter is to provide an outline of the primary methodological approaches used 

throughout this thesis. I begin by describing the principles of meta-analysis, which is 

central to chapter four. I then provide an overview of Bayesian parameter estimation, 

which is used in chapters five, six, seven, and eight. Finally, I describe autoencoder 

neural networks, which are used in chapter eight. This chapter provides a brief outline 

of key principles, and I provide recommendations for further reading throughout.  

3.1 Principles of meta-analysis 

The aim of meta-analysis is to provide aggregated data summaries. If we have 

a series of similar studies reporting differing degrees of support for a particular effect, 

it can be useful to pool this evidence to arrive at a summary estimate of the true 

population effect. In chapter four I apply this method to studies using the auditory 

lexical decision task. The motivation for this is that the auditory lexical decision task 

provides a good index of the quality of word sound representations when the 

confounding influence of retrieval or motor planning processes are removed. 

However, many of the existing studies using this paradigm have small sample sizes 

and may therefore be underpowered. Pooling estimates in a meta-analysis therefore 

provides one way to get a more reliable picture of the true effect in the population.  

 The crucial stages of conducting a meta-analysis are those prior to fitting the 

statistical model. An informal theorem often applied to meta-analysis is junk in, junk 

out, and avoiding a junk out scenario with unreliable population estimates begins by 
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defining search terms that identify all empirical studies of central interest to the 

question at hand. It is also vital to employ a search strategy that can counteract the 

impact of publication bias. Published studies are likely to report stronger effects than 

unpublished studies, and so not including available unpublished studies – so-called 

grey literature – may distort results and provide a biased estimate of the population 

effect. On the other hand, unpublished studies may be of varying quality, having not 

been subject to peer review. This brings us to the second essential stage of meta-

analysis prior to model fitting. Studies selected on the basis of pre-defined search 

terms must be filtered according to strict inclusion and quality criteria. In chapter four, 

for instance, this entails the removal of a large number of studies not reporting 

essential diagnostic information, studies not using control groups, and studies not 

reporting the statistics required to compute the population estimate.  

 With a cohort of applicable high-quality studies in hand, the meta-analysis can 

be conducted using a variety of software packages. In chapter four I use the metafor 

package (Viechtbauer, 2010) in R (RStudio Team, 2016). Digging into the statistical 

procedure used is outside of the scope of this chapter, and readers are referred to Field 

(2013) for a detailed account. Essentially, the aim is to take the mean score (e.g. 

reaction time/accuracy), the standard deviation, and the sample size for each group of 

interest (e.g. in chapter four this is groups with and without developmental language 

disorder), and in addition the total study cohort size, and then to use these statistics to 

calculate effect sizes and the standard errors of effect sizes for each empirical study. It 

is then possible to fit a statistical model that summarises the effect sizes across 

studies, providing the estimate of the true population effect that we are interested in. It 

is also possible to add moderators to this model to predict variance in effect sizes. For 

instance in chapter four I used a moderator analysis to predict individual study effect 

sizes on the basis of group identity (i.e. with and without language disorder) and 

experimental outcome (i.e. response time and accuracy). 

 There are, then, a number of methods for testing for publication bias post 

analysis. In chapter four I used the fail-safe N method, which provides an estimate of 

the number of studies reporting null effects that would be required to nullify the 

estimated population effect. If one or two studies could nullify the estimated 
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population effect then the effect is not particularly robust. However, a fail-safe N in 

the hundreds or thousands would suggest a more substantial effect. It is important to 

acknowledge that the fail-safe N method faces criticism. Field (2013, p. 327), for 

instance, writes; ‘because significance testing the estimate of the population effect 

size is not really the reason for doing a meta-analysis, the fail-safe N is fairly limited.’ 

I am writing this Methodology chapter after the publication of chapter four of the 

current thesis, and in retrospect it is likely that I would have selected an alternative 

method of publication bias estimation, such as funnel plot visualisation (see Field, 

2013). One advantage of making all data and code associated with the study in chapter 

four available via an online repository is that readers unhappy with the decision to use 

fail-safe N can easily compute their own preferred measure.   

 To summarise, meta-analysis provides a useful way to pool similar studies and 

estimate a true population effect, mitigating the issues of small sample sizes and 

measurement error. The folk theorem of meta-analysis is junk in, junk out. This 

emphasises how important it is to define clear search terms, apply strict eligibility and 

quality criteria, and to test for publication bias. Adopting open science principles such 

as pre-registration, the use of a PRISMA protocol (see chapter four and repository), 

and providing open data and code, also contributes to a persuasive meta-analysis.  

3.2 Bayesian parameter estimation 

The goal of statistical modelling is to summarise datasets into interpretable 

forms. Say we have a dataset of one million land sizes in squared meters and 

associated land values. Rather than scrolling through all this data in an attempt to 

make sense of it, it would be useful to summarise the data into a simple formula that 

would tell us the average value of one squared meter of land and then the average 

increase in the value of land associated with each square meter increase in size. On a 

chart with land size on the horizontal x-axis and land value on the vertical y-axis, the 

results of such an analysis may approximate an upward-sloping line (see Figure 3.1). 

This would enable us to quickly provide estimates of the value of particular land sizes, 

whether or not we had value data for the land size of interest. The same goal is at the 
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heart of statistical modelling in the apparently more complex projects common in 

developmental cognitive psychology, where we might want to predict response 

reaction time or accuracy as a function of age or clinical profile, or as in chapters five, 

six, seven, and eight, to predict proportions of word production and comprehension 

using neighbourhood density.  

 

 
Figure 3.1: Line illustrating the relationship between two variables. This could be land size (x-axis) and 

land value (y-axis), or neighbourhood density (x-axis) and proportions of children who produce a given 

word (y-axis). 

 Two essential parameters define the summary line shown in Figure 3.1. The 

first is the point where the line touches the vertical y-axis. This is known as alpha, α. 

The second is the gradient or slope of the line with each unit of increase on the x-axis. 

This is known as beta, β. Beta is often of particular interest because it tells us the 

relationship between the predictor variable and the response variable. For instance, 

does response time on a given task increase or decrease as a function of age? Or does 

the chance that a child will produce a given word increase or decrease as a function of 

that word’s neighbourhood density? In classical, so-called frequentist statistics, the 

outcome of many statistical tests is a value for β, positive for an upward-sloping line 

and negative for a downward-sloping line, and a p-value which tells you how likely it 

is that you would observe a β value at least that extreme if there was actually no 

effect. If the p-value is very low, it is unlikely that you would ever observe an effect 

that large if in reality there was no association between the variables assessed.  

In contrast to this approach, the outcome of Bayesian statistical modelling is a 

probability distribution that describes the plausibility of different values of the 

parameter of interest. For instance, how plausible is it that β is 2.11, or -3.87, or 0.00? 
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As I describe in the empirical papers that follow, a probability distribution for β bound 

above zero (e.g. β=0.3 to 0.7) indicates a positive association between variables. That 

is, as the predictor value on the x-axis increases so does the response value on the y-

axis. A distribution for β bound below zero (e.g. β=-0.3 to -0.1) suggests a negative 

association between the predictor and outcome variables, i.e. as the predictor value 

increases the response value decreases. And a distribution for β encompassing zero 

(e.g. β=-0.5 to 0.3) suggests that no linear relationship between predictors is plausible, 

i.e. a flat regression line. 

To arrive at a β value that explains the relationship between variables of 

interest we can use a parameter estimation algorithm. To set this up for our 

neighbourhood density and word production example using the brms package 

(Bürkner, 2018) we can load the relevant data and packages and type the following 

code into R:  

 
 model <- brm(produces ~ neighbourhood_density,  

       data = master,  
       family = 'binomial', 

          prior = set_prior('normal(0, 1)',  
           class = "b")) 
 
 

The code above fits a statistical model (model <-) using the brms package in R (brm). 

In this model word production is predicted by neighbourhood density (produces ~ 

neighbourhood_density), as recorded in the master dataset (data = master). The 

family argument refers to the likelihood, formally understood as the conditional 

density of the data given the parameters. In this example, we are looking at parental 

report data including aggregated ‘produces’ and ‘does not produce’ responses, and the 

binomial distribution is appropriate under these conditions (family = 'binomial') 

(see chapter five). Finally, we set priors, which provide the algorithm with a starting 

point for estimation. Here I have set a prior for the β parameter with a normal 

distribution centred on zero and a standard deviation of 1 (prior = 

set_prior('normal(0, 1)', class = "b")). Note that tight, informative priors 

are more important when you are working with small samples. In large-scale projects 
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such as chapters five and six of this thesis priors will often be overwhelmed by the 

data.  

We can also add levels to our model. For instance, linguistically advanced 

children might be expected to do well in most experimental trials. We may therefore 

add a child identification variable to the syntax above to indicate that we expect the 

responses of each individual child to be correlated. In the same way, we might add age 

as a grouping variable, indicating, for instance, that two year olds will in general 

perform similarly to other two year olds, while five year olds will in general perform 

similarly to other five year olds. Such grouping information is used throughout the 

empirical studies of this thesis, and is added to the syntax introduced above by using 

the following bracketed arguments (identified by the bold black arrow): 

 
 model <- brm(produces ~ neighbourhood_density 

       + (1| child) + (1| age),   ç 
       data = master,  
       family = 'binomial', 

          prior = set_prior('normal(0, 1)',  
      class = "b")) 
 

 

Inputting this code starts the parameter estimation algorithm running; a 

process called sampling. The outcome of this process is a series of visual chains, 

which represent the algorithm stepping around the parameter space (i.e. around all 

possible values of β) to find the most plausible value of the parameter. Figure 3.2 

shows the raw output from this process with respect to proportions of word production 

and neighbourhood density. As you can see in the right-hand panel, the chains output 

from sampling resemble the output from a polygraph lie detector test, with the 

parameter value (e.g. β) on the y-axis and the sample number on the x-axis. It is 

important that the chain does not pulse or wave up and down over time and also that it 

is walking around and not stuck in a trough. This is what the terms stationary and well 

mixing refer to in the empirical studies that follow. The rhat diagnostic that can be 

retrieved by calling the fitted model in R provides an indication of sampling quality. 

The ideal rhat is 1 and 1.1 is acceptable, but higher values of rhat may indicate 

sampling problems. 
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Figure 3.2: Raw probability distribution (left) and chain (right) for the association between 

neighbourhood density and proportions of word production. The left panel shows the density 

distribution of plausible values of β. The right panel shows the chain from which this distribution is 

derived. 

The left-hand panel of Figure 3.2 shows the chain in the right-hand panel flipped on 

its side as a probability distribution. That is, the x-axis of the left panel is the y-axis of 

the right panel. Just eyeballing this density distribution you can see that most of the 

mass is positive (high density is associated with greater rates of word production), 

with a peak at around β=0.14. However note that the left-hand tail of this distribution 

crosses zero, indicating that it is plausible, though highly unlikely, that the true effect 

is zero. By putting central emphasis on a posterior distribution as shown in Figure 3.2, 

Bayesian statistics propagates uncertainty in the data more strongly than an emphasis 

on point estimates such as p-values. It is also possible, however, to summarise the 

posterior distribution shown by calculating a posterior mean or density interval. 

In summary, Bayesian parameter estimation is one of many statistical 

approaches that enable us to summarise large data frames into interpretable forms. 

This overview focussed on the estimation of the beta, β, parameter, which along with 

alpha, α, describes the relationship between variables (e.g. neighbourhood density and 

word comprehension or production). Bayesian statistics propagates uncertainty in 

parameter value estimates via the posterior probability distribution, which can also be 

summarised into means and intervals. McElreath (2016) is a superb resource detailing 

the approach summarised here.  
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3.3 Autoencoder neural networks 

 Autoencoders are a class of artificial neural network that are trained to output 

the data they are given as input. This might seem trivial: If we already have the input 

data, what use is there in training a network to output it? Perhaps more puzzling is the 

fact that autoencoders are designed to be bad at copying their input to output. This 

feature is, however, the key asset of the architecture. Autoencoders are constrained to 

be unable to copy their input perfectly and as a result they learn to represent only the 

dominant characteristics of the input. For this reason, autoencoders are well suited to 

compression and denoising tasks in which the aim is to strip away extraneous detail 

and extract core features. 

A simplified autoencoder architecture is shown in Figure 3.3, which is taken 

from chapter eight of this thesis. The autoencoder has three layers, an input 𝑥 to the 

left, a hidden layer ℎ in the middle, and an output or reconstruction layer 𝑟 to the 

right. Labelled to the bottom left of Figure 3.3 is the encoder 𝑓 that passes an input 

data representation such as string of 0s and 1s describing the sound features of a given 

word to the hidden layer ℎ (see chapter eight for examples). To the bottom right of 

Figure 3.3 is the decoder, 𝑔, which tries to recreate the input 𝑥. The lines between 

layers illustrate weights, which are scalars that increase or reduce the influence of the 

signal they receive. The aim of the autoencoder is to map the input to the output via 

the hidden layer, that is: 𝑔(𝑓(𝑥)) = 	𝑥. However, as ℎ is constrained to be smaller 

than 𝑥, the network is forced to extract only dominant features of 𝑥.   
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Figure 3.3: A simplified autoencoder architecture. 

Prior to application the network must be trained by exposing it to data. During 

training the weights connecting network layers adapt gradually in order to minimise 

the difference between input 𝑥 and output 𝑔(𝑓(𝑥)). This discrepancy, sometimes 

called the reconstruction error, may be measured using mean squared error, which is 

the average squared distance between input and output values. During training, 

connection weights will increase to amplify the signal from features that decrease the 

mean squared error, and decrease to de-amplify the signal from features that increase 

the mean squared error.  

Mean squared error is useful because it tells us which properties of the input 

are easy or difficult for the network to represent. This allows us to train the 

autoencoder, present test items, and then use the test-phase error rates to make 

inferences about the quality of the internal representations formed for particular items. 

In chapter eight, for instance, I train an autoencoder neural network on a large corpus 

of child-directed speech. At test, I then present words from the MacArthur-Bates 

communicative development inventory (Fenson et al., 2007), and record the mean 

squared error for each word. It is then possible to use Bayesian regression to fit a 

statistical model in which test word mean squared error is predicted by lexical 

characteristics such as word length, exposure frequency, and neighbourhood density. 

Modelling results can then be validated against data from real communicative 

development inventory administrations.  

Central to the interpretation of network performance presented in chapter eight 

is the principle that autoencoders have two major applications. The first, as we have 

seen, is feature extraction, which is central to denoising and compression tasks. When 

Input Output 

Encoder Decoder 

Hidden	layer 
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working with the numerical representations of spoken words, the network is able to 

form a representation of the dominant features of the sound structure of the input 

across the connection weights. This process is sometimes called a conspiracy effect in 

the literature; a term used at a number of points in this thesis (Rumelhart, McClelland, 

and the PDP Research Group, 1986). Presenting a new word at test that has features 

similar to the dominant trained features will result in a low mean squared error, as the 

conspiracy effect has primed the model to generalise easily to this high-density item. 

This property provides the basis of the theory of learning by analogous generalisation 

developed throughout this thesis. In contrast, presenting a test word with features 

orthogonal to those represented across the network’s weights prompts a spike in error 

rate. Chapter eight suggests a parallel between this spike in error rate, a signal of 

anomaly detection, and the learning advantages reported for highly distinctive words 

in the behavioural literature (Swingley & Aslin, 2007). On this basis, it is argued that 

autoencoders provide a neat computational analogy to both the density and 

distinctiveness advantages that have been reported in studies of early word learning, 

showing that these apparently contradictory effects can emerge from a common 

architecture and learning algorithm.  

In summary, autoencoders are a class of artificial neural network that aim to 

reconstruct a given input. Due to constraints on hidden layer size they are unable to do 

this perfectly, resulting in a degraded internal representation and reconstruction error. 

Using statistical modelling, reconstruction error can tell us which properties of the 

input data are easy or difficult for the network to represent. It is possible, for instance, 

to model reconstruction error as a function of lexical characteristics such as word 

length, exposure frequency, and neighbourhood density. Autoencoder modelling 

provides a useful computational analogy for understanding the formation of word 

sound representations (chapter eight), the quality of which we can tap using a range of 

experimental paradigms. Results can then be validated against real-world data. 

Goodfellow, Bengio, and Courville’s (2016) Deep learning – the go-to textbook on 

the subject – is available in full online: https://www.deeplearningbook.org.  



 

  

Chapter 4 Auditory Lexical Decisions in 

Developmental Language Disorder: A Meta-

Analysis of Behavioural Studies 

Linking statement: The empirical studies in this thesis are connected by the theme of 

word sound representation and use. The aim of this study is to set the stage for those 

that follow by demonstrating group differences in the ability to represent spoken 

words.  

4.1 Abstract 

Despite the apparent primacy of syntactic deficits, children with 

developmental language disorder (DLD) often also evidence lexical impairments. In 

particular, it has been argued that this population have difficulty forming lexical 

representations that are detailed enough to support effective spoken word processing. 

In order to better understand this deficit, a meta-analysis of studies testing children 

with DLD in the auditory lexical decision task was conducted. The objective was to 

provide summary effect size estimates for accuracy and response time measures, for 

comparisons to age- and language-matched control groups. Two thousand three 

hundred and seventy-two (2372) records were initially identified through electronic 

searches and expert consultation, with this cohort reduced to nine through duplicate 

removal and the application of eligibility and quality criteria. The final study cohort 

included 499 children aged 3;8-11;4. Multivariate analysis suggests that children with 

DLD were significantly less accurate in the auditory lexical decision task than age-
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matched controls. For the response time estimate, however, confidence intervals for 

the same group comparison crossed zero, suggesting no reliable difference between 

groups. Confidence intervals also crossed zero for language-matched control estimates 

for both accuracy and response time, suggesting no reliable difference between groups 

on either measure. Results broadly support the hypothesis that children with DLD 

have difficulty forming detailed lexical representations relative to age- though not 

language-matched peers. However, further work is required to determine the 

performance profiles of potential subgroups and the impact of manipulating different 

lexical characteristics, such as the position and degree of non-word error, phonotactic 

probability, and semantic network size. 

4.2 Introduction 

 Children with developmental language disorder (DLD; also specific language 

impairment, or SLI), show severe language deficits in the absence of frank 

neurological damage, acquired epileptic aphasia, autism-like behavior, sensory-neural 

hearing loss, or genetic conditions such as Down syndrome or cerebral palsy (Bishop, 

Snowling, Thompson, & Greenhalgh, 2016). While morpho-syntactic deficits are the 

hallmark of DLD, spoken word processing is also commonly impaired (see Kan & 

Windsor, 2010, for review).  Affected children may, for instance, have difficulty 

repeating non-words accurately (Graf Estes, Evans, & Else-Quest, 2007), or may 

require longer auditory strings than age-matched controls in order to recognise a word 

in the gating paradigm (e.g. Dollaghan, 1998; Montgomery, 1999).  

 The current meta-analysis looks at the auditory lexical decision task, in which 

participants are required to provide a ‘yes’/‘no’ or non-linguistic (i.e. button press) 

judgement response to auditory word and non-word stimuli. For instance, in response 

to the word dinosaur (/daɪnəsɔː/) the participant is required to make an affirmative 

response, while in response to the non-word dinokor (/daɪnəkɔː/) the participant is 

required to reject the stimulus. Accuracy and response time may be recorded, and 

word and non-word stimuli are normally manipulated in line with primary research 
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aims. This may include, for instance, controlling target word frequency, phonotactic 

probability, the number of semantically associated words (i.e. semantic network size), 

the position of non-word error, e.g. dinokor (/daɪnəkɔː/) versus kinosaur (/kaɪnəsɔː/), 

and the degree of non-word divergence, e.g. dinokor (/daɪnəkɔː/) versus kinokor 

(/kaɪnəkɔː/).  

 In its conventional form, the auditory lexical decision task is argued to 

measure ‘the quality or precision of stored phonological representations at the whole-

word level’ (Claessen & Leitão, 2012, p. 215), with accurate rejection of a non-word 

taken as evidence that the corresponding word-level, phonological representation is 

appropriately detailed. As such, the lexical decision paradigm constitutes a useful tool 

to examine the hypothesis that children with DLD have difficulty forming detailed 

lexical representations in long-term memory, potentially as a result of underlying 

auditory processing or short-term memory deficits (Bishop, 1997). This pattern of 

development constitutes a delay rather than deviance, with young, typically 

developing children also apparently forming relatively holistic lexical representations 

prior to the emergence of a system of phonemic representation that supports the 

retention, and accurate and rapid processing of minimally different words (e.g. /kæt/ 

and /kæʧ/); a transition interacting closely with growth of the lexicon (Walley, 1993; 

see, however, Ainsworth, Welbourne, & Hesketh, 2016, for an interpretation of early 

underspecification-like performance in terms of the complexity of task demands).  

 In this context, the auditory lexical decision task has a number of advantages 

over other paradigms. First, the task arguably resembles natural spoken word 

recognition more closely than alternatives such as gating or non-word repetition, and 

so results may be more generalisable. Second, in requiring only a button touch or 

minimal verbal response, the task minimises the possibility that performance deficits 

stem from the motor output level rather than underspecification of the lexicon; an 

interpretation not ruled out by paradigms requiring more complex verbal responses, 

for instance naming and non-word repetition.  

 Superficially, there may be little question that children with DLD perform 

worse than age-matched controls on the auditory lexical decision task. However, 

previous meta-analyses of associated paradigms (e.g. non-word repetition; Graf Estes 
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et al., 2007) indicate that there may exist heterogeneity in effect sizes that is masked 

by a general emphasis on statistical significance. The meta-analytic approach 

facilitates the fine-grained assessment of such heterogeneity, enabling researchers to 

examine which particular clinical profiles or task design features are associated with 

smaller or larger performance discrepancies. In doing so, results may improve our 

understanding of factors inhibiting spoken word processing in this population, and 

provide a platform for the development of evidence-based practice. Better 

understanding of this deficit is important because protracted lexical underspecification 

may have a detrimental impact on various areas of linguistic development and 

behaviour, including not only vocabulary learning and spoken word recognition and 

production, but also grammatical development and literacy (Claessen & Leitão, 2012; 

Goodman & Bates, 1997).  

 Given the extensive use of the lexical decision task in clinical and non-clinical 

contexts, this report may be of interest to both researchers and practitioners. The 

population effect size estimates may provide a useful benchmark for future research, 

for instance when conducting prospective power analyses or for researchers adopting 

a Bayesian analytical framework in which priors must be specified. Data aggregation 

is particularly valuable in the field of DLD given the prevalence of studies with low 

sample sizes, often entailing low statistical power and a high false positive rate, i.e. 

small samples are more likely to produce extreme values (Robey & Dalebout, 1998). 

The question examined is: 

 

What are the estimated population effect sizes of the discrepancies in 

performance (response accuracy and latency) between children with DLD and 

age- and language-matched controls on the auditory lexical decision task? 

 

A substantial literature documenting lexical processing deficits across a range of 

paradigms (see Kan & Windsor, 2010) suggests population estimates will indicate 

age-matched controls regularly outperform children with DLD, with higher accuracy 

rates and lower response times. However, given that evidence of lexical 
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underspecification is held to reflect a developmental delay rather than deviance 

(Bishop, 1997), it may be reasonable to expect little difference in estimates between 

children with DLD and language-matched controls.  

4.3 Method 

This study was pre-registered with the Open Science Framework on June 9th, 

2017, with a protocol available from the associated project page (see 

https://osf.io/2cvnm/). The study fulfils Preferred Reporting Items for Systematic 

reviews and Meta-Analysis guidelines (PRISMA, see http://prisma-statement.org), 

with a completed checklist also available from the Open Science Framework project 

page. 

4.3.1  Eligibility criteria 

4.3.1.1 Participants 

The population of primary interest was atypically developing children and 

adolescents, defined as those prior to or in full-time education, with age- and 

language-matched control groups included on the basis of provision in primary 

studies. Atypically developing was defined as children with DLD, as described by 

Bishop et al. (2016) and repeated in the introduction to the current study. A summary 

of the CATALISE statement on diagnostic terminology can be found at: https:// 

naplic.org.uk/sites/default/files/Summary%20of%20CATALISE%20%28v3%29.pdf. 

Participants were not distinguished on the basis of age, gender, socio-economic status, 

ethnicity, language, or geographical location. 

4.3.1.2 Experimental design  

Studies of interest were those using the auditory lexical decision task to test 

children with DLD. Studies were required to use experimental and control groups. No 
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single-subject case studies were included, though there was no lower boundary on 

cohort size.  

4.3.1.3 Outcome measures 

The values of interest were the means and associated standard deviations of 

typical and atypical group performance on the auditory lexical decision task. This 

could be an accuracy rate (percentage or raw score) and/or a response time (in 

milliseconds; note that response times are typically only included for accurate 

responses in the primary literature). Standardised mean differences and variances were 

calculated from these primary statistics, in addition to group sizes. Throughout this 

study, negative effect sizes for accuracy outcomes indicate that children with DLD 

were less accurate than controls, while positive effect sizes for response time indicate 

that children with DLD were slower to respond.  

4.3.1.4 Types of study 

Journal articles, research reports, book chapters, and grey literature, including 

conference abstracts and unpublished theses and datasets were considered for 

inclusion. Accommodating grey literature is crucial to mitigating the impact of 

publication bias, whereby significant results are more likely to be published than non-

significant results. Newspapers, magazine articles, and blogs were excluded. There 

was no restriction on the date of publication.  

4.3.2  Defining and piloting search terms 

 Initial scope searches using the free text strings specific language impairment, 

developmental language disorder, and lexical decision were conducted on June 1st, 

2017, using the databases PubMed, PsychINFO, Web of Knowledge, and Linguistics 

and Language Behavior Abstracts. These searches returned eleven studies testing 
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clinical populations using the auditory lexical decision task, from which specific 

search terms were extracted from keyword lists (see Table 4.1).  

 
Table 4.1: Keywords extracted from initial scope searches 

1. Developmental language disorder (DLD) 

2. Specific language impairment (SLI) 

3. Language impairment 

4. Phonological representation  

5. Lexical representation 

6. Auditory lexical decision 

7. Auditory lexical judgement 

 

These initial scope searches revealed that the paradigm was referred to variously as 

the auditory lexical decision task and the auditory lexical judgement task. In addition, 

there were anticipated differences between diagnostic labels, prominently: SLI, DLD, 

and language impairment. Main search terms were defined to accommodate this 

diversity. In particular, a strategy was developed using Boolean operators to link 

variations in diagnostic terminology to variations in paradigm terminology. An 

example search strategy in simplified (i.e. no field specification or MeSH terms) 

PubMed format is: 
 

 

(specific language impairment OR developmental language disorder OR language 

impairment) AND (auditory lexical decision OR auditory lexical judgement) 

 

Piloting this strategy on PubMed on June 5th, 2017 returned 67 results. The number of 

records retrieved did not increase with the inclusion of alternative diagnostic labels 

including primary language impairment, developmental dysphasia, or language 

disability. Note that none of the finalised search terms listed above differ in British 

and American English spelling.  
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4.3.3  Main search strategy 

 Four approaches were used in evidence gathering: Electronic database 

searches, journal searches, bibliographic searches, and expert consultation. First, the 

following seven electronic databases were searched using the strategy specified 

above: Scopus, PubMed, Web of Science, LLBA, JSTOR, OVID, and ERIC. Second, 

forty-six journals in child language, psycholinguistics, speech-language therapy, and 

developmental psychology were hand searched using the aforementioned search terms 

and associated free text strings. The journals examined were identified during prior 

electronic database searches, and are listed in full on the Open Science Framework 

page associated with this project (see https://osf.io/2cvnm/). Third, the literature 

reviews and reference sections of retrieved papers were hand searched for further 

relevant papers. Fourth, 55 researchers were contacted regarding overlooked studies 

and the availability of unpublished datasets. The email sent included a link to the pre-

registration protocol and a spreadsheet of studies retrieved prior to consultation, 

specifying author, year, title, and DOI with hyperlinks to the primary sources. The 

pre-registered stop search date for all data gathering was August 29th, 2017. 

4.3.4  Quality, strength of evidence, and bias risk assessment  

 The strength of the body of evidence collected using these four search 

strategies was assessed according to the following criteria. Only papers that met these 

criteria were included; there was no ranked quality index.  
 

1. Studies lacking an appropriate control group or data required to compute 

standardised mean differences and sampling variances (e.g. M, SD, N/n) after 

author consultation were excluded.  

 

2. Studies lacking primary diagnostic or linguistic data (e.g. age, non-verbal IQ, 

standardised language test scores) for experimental or control groups were 
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excluded.  

 

3. Studies in which authors declared conflict of interest were excluded.  

 

Statistics from studies meeting the above quality criteria were extracted for inclusion 

in the meta-analysis.  

4.4 Meta-analysis  

4.4.1   Data extraction 

Studies were attributed numeric IDs and coded by: (a) author(s); (b) year of 

publication; (c) DLD group mean chronological age; (d) DLD group mean language 

age; (e) control type (i.e. age- or language-matched); (f) outcome measure (i.e. 

accuracy or response time); (g) stimulus type (i.e. words, non-words); (h) stimuli sub-

classification, commonly unique to the aims of original study (e.g. word initial or final 

manipulation in non-word formation); (i) mean scores (typically a percentage for 

accuracy outcomes, with response times specified in milliseconds), standard 

deviations, and sample sizes of DLD groups; and (j) mean scores, standard deviations, 

and sample sizes of control groups. Coding was conducted by the first author, with a 

random sample of five studies then repeated by a trained coder. Disagreements were 

resolved through re-examination until agreement was 100%. The complete dataset can 

be built using the R code available from the Open Science Framework page associated 

with this project (see https://osf.io/2cvnm/). 

4.4.2   Software package and model selection 

The meta-analysis was conducted using the Metafor package in R 

(Viechtbauer, 2010). This package was chosen because it is freely available and the 

associated code can be easily disseminated in the interests of quality assessment and 

replication. Metafor is also able to manage complex datasets like that analysed in the 
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current study, with multiple control groups and dependent measurements. Given that a 

number of studies include both accuracy and latency outcomes (i.e. multiple-

endpoints; Gleser & Olkin, 2009), as well as two types of control group (age- and 

language-matched), the decision was taken to fit a multivariate, random-effects model, 

which would accommodate stochastically dependent effect sizes while providing an 

overall estimate for each control group and outcome pairing.  

4.4.3   Procedure 

With the data frame in R, standardised mean differences (Hedges’ g: Hedges, 

1981) and sampling variances were computed using metafor::esclac(). In the 

current study, there are four comparisons of interest (see Table 4.2). 

 

Table 4.2: Group and outcome comparisons of interest 

Group comparison Outcome measure 
DLD - Age-matched controls Accuracy 
DLD - Language-matched controls  Accuracy 
DLD - Age-matched controls Response time 
DLD - Language-matched controls Response time 

 
 

In order to retrieve estimates for each of these combinations (i.e. groups (age-

matched, language-matched) with outcomes (accuracy, response time)), dummy 

variables were created and plugged into the linear model specified within the 

rma.mv() function as moderators. The model was then passed to the 

robust.rma.mv() function, which provides a robust estimate of the variance-

covariance matrix of model estimates and computes tests and confidence intervals of 

coefficients using a small-sample adjustment. Adopting the same procedure, two 

additional models were fitted which specified identical moderators plus random 

effects at (a) study level (denoted ‘author’; see model 2), and (b) both study and 

outcome levels (i.e. accuracy and response time; see model 3). This reflects the 
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assumption that the underlying true effects within these levels will be more similar 

than the underlying true effects from different levels (see http://www.metafor-

project.org/doku.php/analyses:konstantopoulos2011). Model fit was then compared 

using fitstats() to retrieve Akaike information criterion values, before identifying 

potential outliers calculating standardised residuals; rstandard(). Publication bias 

risk was assessed using fail-safe N, which provides an estimate of the number of 

additional studies reporting negligible effects required in order to nullify a summary 

effect (Rosenthal, 1979; Orwin, 1983; Rosenberg, 2005). If this number is relatively 

large, it may be inferred that the estimate is unlikely to be compromised by 

publication bias. 

4.4.4  Search results and study selection  

 Figure 4.1 shows the number of studies retrieved through searches and expert 

consultation, and the number excluded during preliminary screening and quality and 

eligibility assessment. A total of 2340 records were retrieved through electronic 

database searches. A full record of our electronic database searches is available from 

the Open Science Framework page associated with this project (see 

https://osf.io/2cvnm/). Twelve unique records were then retrieved through 

bibliographic and hand searches using the aforementioned search terms and associated 

free text strings. The response rate to expert consultation emails was 20%, with eleven 

contributing author comments received and twenty studies not previously identified 

recommended for inclusion. In all, 2372 records were retrieved, with 2335 then 

excluded through duplicate removal and the screening of abstracts in line with the 

aforementioned criteria. This brought the number of studies sent to full-text quality 

and eligibility assessment to thirty-seven. At this stage the cohort included four 

articles considered grey literature: One pre-print, one poster, one doctoral thesis, and 

one research report. The bottom right panel of Figure 4.1 lists the rationales for 

excluding 28 studies during full-text appraisal and quality assessment. Nine studies 

were ultimately included in the meta-analysis, all of which were published in peer-

reviewed journals between 1994 and 2016. No contributing authors declared a 
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Figure 4.1: Study search and selection flow diagram.  

4.4.5 Description of selected studies  

 An extensive summary of the nine studies included in the meta-analysis is 

presented in Appendix A.1, which details: (a) author, (b) year, (c) type(s) (i.e. age- or 

language-matched), ages, and sample sizes of experimental and control groups, (d) the 

standardised tests used to determine DLD, age-matched, and language-matched 
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control groups1, (e) stimulus type and number (including sub-classifications), (f) 

response type (verbal or non-verbal), and (g) outcome measure (accuracy or response 

time).  

4.4.5.1 Participants 

The nine studies involved a total of 499 participants: 191 with DLD (age range 

3;8-11;4), 120 age-matched control participants (age range 7;3-11;4), and 188 

language-matched control participants (age range 4;1-9;7). One study included only 

age-matched controls, while three studies included only language-matched controls. 

The remaining five studies included both age- and language-matched controls. Five 

studies included participants whose first language was English, while three tested 

French-speaking children, and one tested Brazilian-Portuguese speakers. Five studies 

specified that participants were monolingual, with monolingual or multilingual status 

unclear in the remaining studies. 

 The diagnostic criteria used in each study are specified in Appendix A.1. 

Diagnosis commonly worked on the basis of a verbal/non-verbal IQ discrepancy. In 

two studies (Edwards & Lahey, 1996; Windsor & Hwang, 1999) data from 

standardised diagnostic tests was use to identify subgroups, namely expressive-only 

(termed SLI-expressive) and expressive-receptive DLD (termed SLI-mix). In one 

study (Crosbie, Howard, & Dodd, 2004), subgroups not initially identified through 

standardised tests were defined post-hoc on the basis of auditory lexical decision task 

data. Befi-Lopes, Pereira, and Bento (2010) and Maillart, Schelstraete, and Hupet 

(2004) also include language-impaired, lexical-age subgroups based on receptive 

vocabulary test performance. The remaining studies did not differentiate subgroups. 

Note, relatedly, that the test group of James, Van Steenbrugge, and Chiveralls (1994) 

comprised language-disordered children with concurrent central auditory processing 

deficits.  

 
1 Note that the standardised measures used to determine language-matched control 
groups differed between studies (see Appendix A.1). 
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4.5 Results 

 Three robust, multivariate, random effects models were fitted. Model one 

specified moderators only (i.e. dummy variables specifying comparison and outcome 

pairing; see Table 4.2); model two specified moderators and random effects at study 

level; and model three specified moderators and random effects at both study and 

outcome levels. These models were compared using Akaike information criterion 

(AIC); a parsimony-adjusted measure of relative model fit based on out-of-sample 

deviance (McElreath, 2016). The results of this process are summarised in Table 4.3. 
 

Table 4.3: Akaike information criterion (AIC) by model. 

 Moderators 
only 

Moderators and 
random effects at 
study level 

Moderators and 
random effects at study 
and outcome levels 

AIC 216.28 148.97 144.44 
 

Decreases in AIC indicate that model fit is improved considerably by the specification 

of random effects at study level, and marginally by the additional specification of 

random effects at outcome level. Computing internally standardised residuals for 

model three suggested no significant outliers according to a +/-2 threshold (though a 

small number of cases approached this figure; see R code). Accordingly the estimates 

and confidence intervals reported here are derived from model three. Table 4.4 

presents a full model summary.  
 
 

Table 4.4: Model three summary statistics, showing condition, effect size (Hedges' g) estimate, 

standard error (SE), t-value, p-value, and 95% confidence interval (CI) lower (L) and upper (U) bounds. 

RT = reaction time. 

Control type - Measure Estimate SE t-value p-value L-CI U-CI 
Age - Accuracy -0.88 0.19 -4.63 0.00 -1.37 -0.39 
Age - RT 0.53 0.21 2.52 0.05 -0.01 1.06 
Language - Accuracy -0.46 0.23 -1.99 0.10 -1.06 0.13 
Language - RT 0.22 0.13 1.74 0.14 -0.10 0.54 
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Four primary observations can be taken from the output shown in Table 4.4. First, 

children with DLD are substantially less accurate than age-matched controls in the 

lexical decision task, with an estimated Hedges’ g of -0.88 (SE=0.19) and a 

confidence interval bound below zero (95%CI = -1.37 to -0.39), suggesting a robust 

population effect. Second, despite a moderate effect size, the confidence interval for 

the estimate reflecting response time discrepancies between children with DLD and 

age-matched controls marginally crosses zero (Hedges’ g = 0.53; SE=0.21; 95%CI = -

0.01 to 1.06), suggesting zero or values approaching zero are a reasonable possibility 

for the population effect. Third, the confidence interval for the moderate effect size 

reflecting accuracy discrepancies between children with DLD and language-matched 

controls crosses zero (Hedges’ g = -0.46; SE=0.23; 95%CI = -1.06 to 0.13). Fourth, 

the confidence interval for the small effect size reflecting response time discrepancies 

between children with DLD and language-matched controls crosses zero (Hedges’ g = 

0.22; SE=0.13; 95%CI = -0.10 to 0.54). Forest plots visualising case and summary 

effect sizes and confidence intervals grouped by control type and outcome measure 

are presented in Appendix A.2. These plots indicate considerable variability between 

both studies and cases. For instance, Figure A.2.3 shows differing estimates for cases 

87 (Hedges’ g = -0.26; 95%CI = -0.78 to 0.26) and 88 (Hedges’ g = 0.15; 95%CI = -

0.36 to 0.67), both of which record discrepancies in accuracy judgements to real 

words between children with DLD and language-matched controls in the Haebig, 

Kaushanskaya, and Ellis Weismer (2015) study. Two factors potentially contributing 

to between- and within-study variability, namely sample heterogeneity and differences 

in the manipulation of experimental stimuli, are considered at length in the discussion 

section, where we also justify our decision not to include stimuli sub-classifications or 

posited subgroups as moderators. 

4.5.1  Risk of publication bias  

Standard fail-safe N methods do not generalise to multiple dependent 

outcomes (e.g. Rosenthal, 1979; Orwin, 1983; Rosenberg, 2005). In such conditions, 

sub-setting is required. Table 4.5 shows fail-safe Ns for Rosenthal, Orwin, and 
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Rosenberg methods, grouped by control group and outcome measure combination.  
 

Table 4.5: Rosenthal, Orwin, and Rosenberg method fail-safe N by group and outcome pairing. DLD = 

developmental language disorder. See primary studies for details of the technical differences between 

methods. 

Group comparison Measure Rosenthal Orwin Rosenberg 
DLD - Age-matched Accuracy 297 17 193 
DLD - Language-matched Accuracy 2178 55 937 
DLD - Age-matched Response time 262 15 187 
DLD - Language-matched  Response time 20 17 5 

 

The above estimates vary considerably, with a range of N=5 to N=2178 and 

substantial variation between group and outcome combinations across methods. Given 

a total cohort of nine studies, however, it may be reasonable to tentatively assume a 

low risk of publication bias significantly impacting the results reported above. 

Nevertheless, there does exist unobtainable data that may have shifted the estimates 

presented in Table 4.4: Two applicable studies were not included in the meta-analysis 

due to insufficient data to calculate standardised mean differences and sampling 

variances (Pizzioli & Schelstraete 2007, 2011), and an additional unpublished dataset 

was identified though not retrieved through expert consultation. 

4.6 Discussion 

 This meta-analysis examined studies testing children with DLD on the 

auditory lexical decision task. Two thousand three hundred and seventy-two (2372) 

records were initially retrieved through electronic database searches, bibliographic 

searches, and expert consultation, with nine studies then selected for inclusion on the 

basis of eligibility and quality criteria. The final cohort included 499 children aged 

3;8-11;4. The question examined was: 
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What are the estimated population effect sizes of the discrepancies in 

performance (response accuracy and latency) between children with DLD and 

age- and language-matched controls on the auditory lexical decision task? 

 

This question was addressed using a multivariate, random effects model. Estimates 

shown in Table 4.4 suggest children with DLD were considerably less accurate than 

age-matched controls at identifying auditory words and rejecting auditory non-words, 

with a strong effect size estimate in this condition. However, the response time 

estimate for the same group comparison was less conclusive, with a confidence 

interval marginally crossing zero. This does not demonstrate no population effect, but 

indicates that zero or effect sizes approaching zero are a reasonable possibility for the 

underlying true effect. Thus while children with DLD appear considerably less 

accurate in the auditory lexical decision task than their age-matched peers, the current 

estimates suggest that they may not, in general, be significantly slower in making their 

responses. It is worth noting here that four primary studies investigated but found no 

evidence of a speed-accuracy trade-off, in which response accuracy may be 

compromised by a concern to provide a rapid response, or, alternatively, accuracy is 

high among participants who take considerable time planning a response (Crosbie et 

al., 2004; Edwards & Lahey, 1996; Pizzioli & Schelstraete, 2013; Quémart & 

Maillart, 2016). Note also that Edwards and Lahey (1996) and Crosbie et al. (2004) 

included a measure of auditory-vocal reaction time (AVRT), in which participants 

were required to say ‘yes’ immediately upon hearing a tone. In each study, analysis 

indicated no significant difference between experimental and control groups, 

suggesting between-group discrepancies in responses to lexical stimuli may not be 

attributable to difficulty identifying general forms of signal, formulating and 

articulating a verbal response, or the general complexity of task demands.  

Confidence intervals for estimates of comparisons to language-matched 

controls crossed zero for both accuracy and response time outcomes, again suggesting 

zero is a reasonable possibility for the underlying true effect in these conditions. The 

observation that the accuracy deficit in particular ‘disappears’ when groups are 

matched by language ability is consistent with the view that the development of 
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affected children is delayed though not deviant (Bishop, 1997), and provides tentative 

support for accounts specifying a causal association between vocabulary growth and 

increasingly detailed lexical representations (e.g. Walley, 1993; Walley, Metsala, & 

Garlock, 2003). A ‘delayed but not deviant’ account of results should, however, be 

taken with some caution. As commented by an anonymous reviewer, the current study 

looks at just one type of task, and it is plausible that the same participants are delayed 

by different time intervals in different types of task; one year in task A, though two 

years in task B, etc. Indeed, below we discuss posited subgroups whose receptive 

vocabulary skills appear unimpaired despite receptive grammatical deficits warranting 

diagnosis. The term delayed may therefore be something of an oversimplification 

because the linguistic profile of a particular language-impaired child is unlikely to 

correspond to a discrete age range in typical development. The term delayed also 

suggests that these children will eventually catch up with peers, which is unclear from 

the data at hand.   

In summary, results of the current meta-analysis are in line with previous 

reports of performance deficits among children with DLD relative to age-matched 

controls in tasks held to measure the accuracy of lexical representations (e.g. 

Borovsky, Burns, Elman, & Evans, 2013; Farquharson, Centanni, Franzluebbers, & 

Hogan, 2014; Ramus, Marshall, Rosen, & van der Lely, 2013; Rispens & Baker, 

2012). However, this conclusion requires some qualification. The forest plots shown 

in Appendix A.2 indicate variance in effect sizes both between and within studies, and 

the meta-analysis included a number of studies presenting results that contradict the 

overall estimates presented in Table 4.4. Befi-Lopes et al., (2010) and Maillart et al. 

(2004), for instance, report accuracy discrepancies between children with DLD and 

language-matched controls, while Edwards and Lahey (1996) and Pizzioli and 

Schelstraete (2013) report significant differences in response time between children 

with DLD and age-matched controls. In the sections that follow we discuss two broad 

factors that may contribute to such variability in outcomes: (a) sampling variation, 

within-group heterogeneity, and the presence of possible sub-groups, and (b) study-

specific differences in stimulus manipulation.  
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4.6.1  Sampling variation and sub-groups 

Children with DLD differ widely in the specific problems they have with 

language. Unsurprisingly, then, primary studies included in the meta-analysis often 

reported relatively large variances among experimental groups (e.g. Crosbie et al., 

2004), while in three studies subgroups associated with different performance profiles 

were formally identified (Crosbie et al., 2004; Edwards & Lahey, 1996; Windsor & 

Hwang, 1999). Such sub-group analyses are valuable because they may help explain 

how children with particular patterns of impairment approach the problem of spoken 

word recognition. Two studies sub-classified experimental-group participants on the 

basis of standardised test data (Edwards & Lahey, 1996; Windsor & Hwang, 1999). 

Edwards and Lahey (1996) report that children they describe as having expressive-

only deficits performed considerably better than children with so-called mixed, or 

expressive-receptive deficits. This may be expected given that the auditory lexical 

decision task is itself a receptive measure. However, the authors note that their sub-

group analysis is of questionable validity given a lack of appropriate statistical power, 

which post-hoc analysis estimated at just 26% (with a type I error rate of α = .05 and a 

type II error rate of β = .20, power should be .80, or 80%). Analysis of the same sub-

groups by Windsor and Hwang (1999) was statistically inconclusive, and results were 

omitted from the published manuscript. Given sample sizes comparable to those in 

Edwards and Lahey (1996), however, it is likely that Windsor and Hwang’s (1999) 

analysis was similarly underpowered. On analysis of their auditory lexical decision 

task data, Crosbie et al. (2004) identify a sub-group of children described as having 

pronounced ‘lexical’ deficits, who performed worse than age-matched controls, and a 

‘post-lexical’, syntactic or integration deficit sub-group who performed in line with 

age-matched controls. As Crosbie et al. (2004) note, however, the post-hoc 

identification of sub-groups is unsatisfactory, particularly given this approaches close 

association with questionable research practices such as p-hacking (or data dredging), 

in which data is mined for significant patterns not included in pre-specified 

hypotheses. In summary, the few existing attempts to accommodate experimental 

group heterogeneity and sub-groups are insufficient, and this prevented against the 
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inclusion of linguistic sub-group as a moderator in our statistical model. Further 

studies pre-registering sub-groups of interest and conducting prospective power 

analyses are required to determine the impact of linguistic sub-profile on auditory 

lexical decision task performance. That said, a number of researchers have 

emphasised the need to look at DLD in terms of dimensions of impairment rather than 

discrete subtypes (e.g. Bishop, 2006, p. 220). One useful direction, therefore, may be 

to use standardised assessment scores as continuous predictors of task performance in 

a linear regression model, rather than defining categorical subgroups (e.g. lexical 

versus post-lexical) for use in t-tests or ANOVAs. 

4.6.2  Study-specific stimulus manipulation 

There was broad consensus that the rejection of non-words was slower and 

less accurate across groups than responses to words, with this pattern typically 

pronounced in DLD groups relative to age-matched controls (Edwards & Lahey, 

1996; Haebig et al., 2015; Pizzioli & Schelstraete, 2013). This finding may be 

attributable to the absence of long-term representations corresponding to non-words 

prompting extended lexical searches, though positive response bias may also play a 

role.  

Word and non-word stimuli were often further manipulated in line with the 

primary study aims. Haebig et al. (2015), for instance, manipulated semantic network 

size to examine the role of semantics in spoken word processing by children with 

DLD and autism spectrum disorder. In this study, stimuli comprised twenty target 

words with a high number of semantically associated words, and twenty target words 

with a low number of semantically associated words. There is no question that such 

manipulations contribute to variability in effect sizes. For instance, the discrepancy 

highlighted above between cases 87 and 88 from Haebig et al. (2015) may be 

attributable to the use of high- and low-semantic network words respectively. 

However, because such variables were often study specific, we considered their 

formal inclusion as moderators in our model to be of questionable value. Position and 
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degree of non-word manipulation (see introduction for examples) were included as 

independent variables in two out of nine studies (Befi-Lopes et al., 2010; Maillart et 

al., 2004), which we again considered insufficient to warrant the inclusion of these 

variables as moderators. Interestingly, however, these studies showed considerable 

disagreement. Maillart et al. (2004), for instance, report that children with DLD were 

relatively less accurate when non-word manipulations occurred in initial or final 

(though not medial) positions, while Befi-Lopes et al. (2010) report a word initial 

manipulation advantage relative to language-matched controls for children with DLD 

lexical age 5;0. It is plausible that this disagreement is attributable in part to assessing 

samples with different first languages (French- and Brazilian-Portuguese-speaking 

respectively), with the word regions most amenable to segmentation apparently 

moderated by the phonological system of a particular language (van der Feest & 

Fikkert, 2015). This example illustrates the complex interaction between fine-grained 

differences in stimulus type and the sampling variation discussed above. In summary, 

lack of an appropriate number of studies incorporating comparable stimulus sub-

classifications made it unclear what conclusions could be drawn had we included 

these variables as moderators, though identifying the specific characteristics that make 

a non-word difficult for children with DLD to accurately reject undoubtedly 

constitutes an important part of the future research agenda. Researchers interested in 

examining the variables discussed in this section in more detail may consult the 

associated R file, in which all sub-classifications are coded as part of the master 

dataset.  

4.6.3  Limitations of the study cohort  

This section addresses what we consider limitations of the study cohort, with 

the aim of improving future research using the auditory lexical decision task. First, we 

are aware of no paper including formal reliability and validity estimates with respect 

to the auditory lexical decision task. A useful model for this line of inquiry is a recent 

paper by West, Vadillo, Shanks, and Hulme (2017), who conducted reliability 

analyses into a range of tasks thought to measure procedural learning. These 
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researchers report low task reliability and a prevalence of so-called ‘extreme groups’, 

which may overestimate the extent of linear relationships between variables in the 

population (p. 11). It is unclear whether the lexical underspecification literature 

suffers from similar issues, though a partial replication of West et al.’s (2017) study in 

this domain would be welcome considering the diversity of paradigms argued to 

converge on the quality of lexical representations (e.g. gating, naming, non-word 

repetition, and lexical decision), as well as widespread inconsistency in outcomes. 

 Second, a number of studies provided no conclusive evidence that the words 

used at test were known to the participant (e.g. Windsor & Hwang, 1999). In some 

research contexts this may be unnecessary. However, in auditory lexical decision 

studies claiming to assess the quality of lexical representations in long-term memory, 

it is essential to confirm that participants know the test words. Using normative data is 

common, though may not be appropriate in language-impaired samples unless 

carefully adjusted. Explicitly testing word knowledge prior to measuring auditory 

lexical decisions at delayed test may be preferable. 

 Third, designs showed variation in both the response required by children (e.g. 

verbal – ‘yes’/‘no’ – or non-verbal – ergonomic box or computer screen with 

green/red or smiley/sad-face buttons) and the method of auditory stimulus 

presentation (i.e. pre-recorded or spoken live by an experimenter; see Appendix A.1). 

While these dissimilarities appear trivial, they can introduce systematic bias. For 

instance, Maillart et al. (2004) describe a pilot study in which children with DLD 

responded differently to pre-recorded stimuli presented via computer and stimuli 

spoken live by an experimenter, arguably due to adopting a compensatory strategy 

involving visual cues (i.e. lip reading) to aid target word discrimination (see also 

Bishop, Brown, & Robson, 1990). Such accounts reaffirm that researchers must 

carefully consider and justify each methodological decision. 

 Fourth, the focus of the current meta-analysis has been behavioural studies. 

However, McArthur and Bishop (2005) note that one limitation of the use of 

behavioural paradigms with children with DLD is that results below criterion could 

reflect low attention or motivation rather than linguistic deficits. Considering this, 
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future research using the auditory lexical decision task may benefit from integrating 

neuroimaging methods assumed less susceptible to disruption by fluctuations in 

attentiveness, e.g. electroencephalography.  

4.6.4  Limitations of the current review 

 This meta-analysis attempted to reduce error and bias by following PRISMA 

guidelines, applying explicit eligibility and quality criteria, pre-registering a research 

protocol, consulting experts, using multiple coders, and making the associated R code 

publicly available. Notwithstanding this methodological thoroughness, the current 

analysis has a number of limitations. First, three known datasets were omitted due to 

reporting insufficient statistics (n=2) or no longer being available (n=1; the latter was 

identified through expert consultation). Importantly, two of these studies (Pizzioli & 

Schelstraete 2007, 2011), reported no significant difference in response accuracy 

between children with DLD and age-matched controls, and so contradict the strong 

effect size estimate reported in Table 4.4. Unfortunately, the degree to which the 

inclusion of these datasets would have affected the population estimates presented in 

the current meta-analysis is unclear. Second, heterogeneity in the population of 

children with DLD along with unsatisfactory attempts to accommodate posited 

subgroups in the primary literature restrict the extent to which we are currently able to 

generalise findings to the population. Relatedly, it is regrettable that the numbers of 

primary studies incorporating particular stimulus sub-classifications were not 

sufficient to warrant the inclusion of these variables as moderators.  

4.7 Conclusion 

Despite the apparent primacy of syntactic deficits, children with DLD often 

evidence lexical impairments. In particular, it has been argued that this population has 

difficulty forming lexical representations detailed enough to enable them to process 

spoken words efficiently. The current meta-analysis examined studies testing children 

with DLD in the auditory lexical decision task; a behavioural paradigm commonly 
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used in both clinical and non-clinical research contexts to assess the quality of lexical 

representations. Effect size estimates suggest children with DLD were less accurate 

though not necessarily slower in this task than age-matched controls, with no 

significant difference with respect to either accuracy or response time between 

children with DLD and language-matched controls. The primary literature provides 

suggestive evidence that the observed accuracy deficit may not be attributable to a 

speed accuracy trade-off, difficulty identifying general forms of signal, formulating 

and articulating a verbal response, or the complexity of task demands. Future research 

using the auditory lexical decision task should address the issue of within-group 

heterogeneity by pre-registering experimental sub-groups of possible interest or using 

continuous rather than categorical predictors, and conducting prospective power 

analyses to determine adequate sample sizes. Better understanding of the specific 

lexical characteristics (e.g. the position of non-word manipulation) that make an 

auditory non-word difficult for certain children with DLD to reject is also required. 

Finally, reliability analysis constitutes an important part of the future research agenda 

given inconsistencies in the existing literature on lexical underspecification. 
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Chapter 5 Do Children Really Acquire Dense 

Neighbourhoods? 

Linking statement: Chapter four demonstrated group differences in the ability to 

represent spoken words. Chapter five presents the first of three studies that look at 

child and lexical factors (e.g. age, proficiency, word frequency, and neighbourhood 

density) that affect the quality of spoken word representations, as inferred from 

production data.  

5.1 Abstract 

Children learn high phonological neighbourhood density words more easily 

than low phonological neighbourhood density words (Storkel, 2004). However, the 

strength of this effect relative to alternative predictors of word acquisition is unclear. 

We addressed this issue using communicative inventory data from 300 British 

English-speaking children aged 12 to 25 months. Using Bayesian regression, we 

modelled word understanding and production as a function of: (i) phonological 

neighbourhood density, (ii) frequency, (iii) length, (iv) babiness, (v) concreteness, (vi) 

valence, (vii) arousal, and (viii) dominance. Phonological neighbourhood density 

predicted word production but not word comprehension, and this effect was stronger 

in younger children. 
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5.2 Introduction 

A variable that has received considerable attention in studies of early 

vocabulary development is phonological neighbourhood density, commonly defined 

as the number of words in a given corpus that can be formed by the addition, 

substitution, or elimination of a single phoneme in a target word (e.g. cat neighbours 

catch, mat, and at; Luce & Pisoni, 1998; e.g. Storkel, 2004; Storkel & Lee, 2011; 

Stokes, 2010, 2014; Stokes, Kern, & Dos Santos, 2012; Takac, Knott, & Stokes, 

2017). Work in this direction suggests that words with high phonological 

neighbourhood density – i.e. words that sound similar to many other words in the 

target language – may be learned developmentally earlier, and on fewer experimental 

exposures than words that are phonologically similar to few other words. Prominent 

causal accounts of this effect maintain that high neighbourhood density words contain 

regularly occurring sounds that are held in memory more accurately during short-term 

processing (e.g. the at in cat, mat, and catch; Gathercole, Frankish, Pickering, & 

Peaker, 1999), and that this supports the formation of highly detailed long-term word 

memory traces (Hoover, Storkel, & Hogan, 2010; Metsala & Walley, 1998; Sosa & 

Stoel-Gammon, 2012; Storkel, 2004; Walley, Metsala, & Garlock, 2003; see chapter 

two).  

Previous studies reporting high neighbourhood density advantages in early 

word learning have, however, considered neighbourhood density alongside only a 

small number of alternative predictor variables, most notably word frequency, length, 

and phonotactic probability (i.e. the positional probabilities of adjacent phonemic 

segments) (e.g. Storkel, 2004; Stokes, 2014). This is unsatisfactory because properties 

that appear to facilitate word acquisition in relative isolation may prove to have only a 

limited impact when considered alongside a more representative range of explanatory 

variables. For instance, Braginsky, Yurovsky, Marchman, and Frank (2019) report 

that word valence and word arousal, semantic features identified by Moors et al. 

(2013) as important determinants of word acquisition, have a relatively limited effect 

when modelled as part of a more representative set of predictors.  
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The work of Braginsky and colleagues (Braginsky et al., 2019; Braginsky, 

Yurovsky, Marchman, & Frank, 2016) – an important impetus for the current study – 

predicted age of acquisition using word frequency, word length, and a range of 

semantic variables (including valence and arousal) that are fully defined below. In 

doing so, these authors have provided the most comprehensive survey to date of 

features previously linked to effects in early word learning. Braginsky et al. (2016; 

2019) acknowledge, however, that their explanatory models of early word learning are 

incomplete, with a substantial proportion of variance left unexplained (estimated at 

R2=71% in Braginsky et al. 2016). The purpose of the current study is to build on 

Braginsky and colleagues’ work by asking: When adopting a similar multi-predictor 

methodology, how much does word sound matter in early word learning? The variable 

of primary interest in this study is phonological neighbourhood density, which, as 

outlined above, has been widely studied in child language research. Research 

Question 1 asks:  

 

What is the strength of association between phonological neighbourhood 

density and word understanding and word production when neighbourhood 

density is modeled alongside a representative inventory of predictor 

variables?  

 

Following previous analyses by Braginsky et al. (2016; 2019), the current study also 

examines developmental changes in the importance of phonological neighbourhood 

density and control variables as predictors of word understanding and production. 

Research Question 2 asks:  

 

Do phonological neighbourhood density and other predictors interact with age 

to affect word understanding and word production? 
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5.3 Method 

This study was pre-registered with the Open Science Framework on 

September 16th, 2018. A pre-registration protocol, R code, and all data required to re-

run the analyses are available via the associated project page: https://osf.io/zfy2p/.  

5.3.1 Dependent variables 

We used communicative development inventory data to examine phonological 

neighbourhood density effects in early word learning. The common format of a 

communicative development inventory is a wordlist plus checkboxes with fixed 

response options. For instance, the word cat may be listed as one of many words, each 

with two response options: ‘understands’ and ‘produces’. During administration, 

caregivers may check the first box if the target child is able to understand the word 

cat, and check the second box if the target child is able to produce the word cat. The 

dependent variables used in the current study were ‘understands’ and ‘produces’ 

responses to 418 words from the Oxford Communicative Development Inventory, 

accessed via the Stanford Wordbank project (Hamilton, Plunkett, & Schafer, 2000; 

Frank, Braginsky, Yurovsky, & Marchman, 2017). Following previous work by 

Braginsky and colleagues, we restricted our analysis to cross-sectional responses. This 

data, collected by Floccia (2017) over a five-year period at Plymouth University, 

contains responses from caregivers of 300 British English-speaking children (n=140 

female) between the ages of 12 and 25 months (M=18.61 months).  

Parental report data are subject to reasonable validity concerns, with 

respondents potentially over- or under-reporting the linguistic knowledge of target 

children and such biases potentially affecting modelling results (see Bennetts, 

Mensah, Westrupp, Hackworth, & Reilly, 2016, for review). One anonymous 

reviewer commented that parental report comprehension data may be particularly 

noisy. However, the cost of administering communicative inventories is low, meaning 

– as Braginsky et al. (2019) note – that sample sizes are often large enough to reduce 

the impact of noise at the individual respondent level. The advantages of parental 
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report data are that they provide insight into the linguistic knowledge of the child as 

realised in a naturalistic setting during talk with familiar people; they assess a number 

of words way in excess of the typical stimulus count in an experimental design; and 

they provide an index of words both understood and produced, allowing researchers to 

assess how different lexical characteristics affect these different aspects of early word 

learning.  

5.3.2 Independent variables 

Braginsky et al. (2016; 2019) present an inventory of independent variables 

previously assessed with respect to their association with word acquisition. The 

authors’ approach follows Goodman, Dale, and Li (2008) in appropriating predictor 

data from multiple sources. We broadly adopted Braginsky et al.’s (2016; 2019) 

inventory of predictor variables, although we made changes to certain data sources 

and excluded predictors related to sentence complexity, such as a word’s mean length 

of utterance or utterance position frequency, in order to home in on lexical effects. We 

then built on Braginsky et al.’s inventory by incorporating ambient language 

phonological neighbourhood density. Predictors, associated data sources, and example 

words are shown in Table 5.1.  

 

Table 5.1: Independent variables, data sources, and minimum and maximum value examples from the 

Oxford CDI data. 

Variable Source Oxford CDI examples 

Child-directed speech frequency, 

calculated from the Manchester 

corpus in CHILDES 

Theakston, Lieven, 

Pine, and Rowland 

(2001); MacWhinney 

(2000) 

Min: broom 

Max: you 
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Length, in phonemes Balota et al. (2007) Min: eye 

Max: cockadoodledoo 

Adult babiness rating: [1] ‘not 

associated with babies’ to [10] 

‘associated with babies’ 

Perry, Perlman, and 

Lupyan (2015) 

Min: donkey 

Max: baby 

Concreteness rating: [1] ‘abstract’ 

to [5] ‘concrete’  

Brysbaert, Warriner, 

and Kuperman (2014)  

Min: how 

Max: apple 

Valence rating: [1] ‘unhappy’ to [9] 

‘happy’  

Warriner, Kuperman, 

and Brysbaert (2013)  

Min: sad 

Max: happy 

Arousal rating: [1] ‘calm’ to [9] 

‘exciting’  

Warriner, Kuperman, 

and Brysbaert (2013)  

Min: asleep 

Max: naughty 

Dominance rating: [1] ‘controlled’ 

to [9] ‘in control’  

Warriner, Kuperman, 

and Brysbaert (2013)  

Min: cry 

Max: smile 

Phonological neighbourhood 

density, calculated using a +/-1 

phoneme criterion from the English 

Lexicon Project data 

Balota et al. (2007)  

 

Min: aeroplane 

Max: moo 

 

The log child-directed speech frequency of each word was calculated from caregiver 

utterances in the Manchester corpus, which is hosted within the CHILDES database 

(Theakston et al., 2001; MacWhinney, 2000). This corpus includes transcripts from 12 

typically developing English-speaking children (age range 1;8.22–2;0.25 at study 

onset) and their caregivers, who were recorded in free play for one hour, twice every 

three weeks for one year. Collectively these transcripts comprised 1,454,060 child-

directed word tokens and 12,734 child-directed word types. Phoneme counts for each 
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CDI word were retrieved from the English Lexicon Project (Balota et al., 2007), with 

dipthongs and affricates counted as single phonemes. The English Lexicon Project 

provides lexical characteristic data for 40,481 words, including behavioural measures 

(e.g. naming response times and accuracy) from 1200 subjects. Other commonly used 

measures of word length, including number of orthographic letters, syllables, or 

morphemes, are closely correlated, and may therefore provide similar results (e.g. as 

in Lewis & Frank, 2016). We selected the phoneme-based measure of word length 

given the central interest in the phoneme as a unit of representation in the current 

analysis (i.e. as the basis of similarity neighbourhoods). Multiple data sources were 

accessed to retrieve adult ratings for babiness, concreteness, valence, arousal, and 

dominance. Babiness refers to the relevance of a word to babies and infants; 

concreteness refers to word tangibility versus abstractness; valence refers to 

associations with happiness or sadness; arousal to degree of excitability; and 

dominance to whether the word invokes notions of being controlled or submissive, or 

being in control or strong. Note that this last variable, dominance, was not included in 

prior studies by Braginsky et al. (2016; 2019). We include this variable here because it 

has been associated with age-related interactions in previous studies, with early-

learned words having relatively high dominance ratings (Brysbaert et al. 2014). 

Finally, plus-minus-one phoneme phonological neighbourhood densities for Oxford 

CDI words were retrieved from the English Lexicon Project (Balota et al., 2007). We 

should acknowledge that there are a number of alternative measures of word-level 

phonological similarity. For instance, similarity may be calculated across only word 

onsets, or by taking the average edit distance between the target word and that word’s 

twenty nearest neighbours (i.e. PLD20; Suárez, Tan, Yap, & Goh, 2011). We selected 

the un-weighted measure of phonological neighbourhood density excluding 

homophones because this is the most commonly used criterion in the developmental 

literature, plausibly due to the long-term dominance of this measure in adult word 

recognition and production studies (e.g. Storkel, 2004; Storkel & Lee, 2011; Stokes, 

2010, 2014; Stokes et al., 2012; Takac et al., 2017). Importantly, this consistency 

allows us to directly re-evaluate the existing developmental literature reporting high 

neighbourhood density word learning advantages in the context of a big data, 
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multiple-predictor analysis. Given the strong correlation between different measures 

of word-level phonological similarity (Suárez et al., 2011), we would expect the 

results reported below to hold across alternative measures.  

It is also important to acknowledge word sound variables other than 

phonological neighbourhood density. Given our central interest in neighbourhood 

density effects, we omitted alternative measures including phonological variability 

(i.e. the degree to which productions of a single word by a single speaker vary) and 

phonotactic probability, which was omitted because high correlation with 

neighbourhood density would have caused multicollinearity (Storkel & Lee, 2011; see 

Missing data and multicollinearity for further discussion of this issue). It is likely, 

however, that experimenting with alternative word sound variables within a similar 

multi-predictor framework will improve current understanding of the factors that 

facilitate early word learning. Readers are therefore invited to use our data to 

experiment with different configurations of predictor variables, for instance by 

including alternative measures of neighbourhood density (e.g. PLD20) or variables 

such as phonotactic probability (the data repository can be found at: 

https://osf.io/zfy2p/).  

5.3.3 Missing data and multicollinearity  

The percentage of missing data ranged from 0% to 22.73% across predictor 

variables (see Appendix B for rates of missing data, predictor correlations, and 

variance inflation factors). We imputed missing values using predictive mean 

matching via the mice (multivariate imputation by chained equations) package in R 

(Buuren & Groothuis-Oudshoorn, 2011; R Core Team, 2016). All predictors were 

then centred and scaled into comparable units (i.e. M=0, SD=1).  

Figure B.1.1 shows substantial correlations between word length and 

phonological neighbourhood density (r=-0.66), as well as between word valence and 

dominance (r=0.61), and concreteness and frequency (r=-0.51). Multicollinearity risk 

was assessed by fitting a multivariate binomial multiple regression model and 

computing variance inflation factors (VIFs) using the lme4 and car packages in R 
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(Bates, Maechler, Bolker, & Walker, 2015; Fox & Weisberg, 2011). Estimates 

suggested multicollinearity risk was low across predictors, with a maximum value of 

VIF=1.93 for the word length variable. We also conducted a post-hoc sensitivity 

analysis, in which we removed the word length variable and refitted the Bayesian 

regression model introduced fully below (see Model fitting). Word length was selected 

for removal in this analysis because of its relatively high VIF and correlation with 

neighbourhood density, which was the primary independent variable of interest. We 

found no substantial difference in estimates from the model including word length and 

the model excluding word length, in terms of the direction or magnitude of the 

estimates, or the size of the estimate errors. This can be confirmed by recalling the 

model summaries using the R code associated with this project, available from: 

https://osf.io/zfy2p/.  

5.3.4 Model fitting 

We used the brms package (Bürkner, 2018) to fit a Bayesian multivariate 

multiple binomial regression model. The model specified two outcome variables; (i) 

understands and (ii) produces, as reported in the 418-item communicative inventory 

data from 300 children. Outcomes were configured as the proportion of children at 

each month of age (i.e. 12 to 25 months; a 14-month range) who were able to 

understand or produce each item. Therefore there were 14 × 418 = 5852 rows of data. 

Word understanding and production were predicted by the independent variables 

listed in Table 5.1 both as main effects and in interaction with the age of the target 

child at the time of communicative inventory completion. We specified a random 

slope for age for each word, a binomial family likelihood, and a weakly informative 

prior across beta parameters. This model fitted successfully, with a sufficient number 

of effective samples, stationery and well-mixing chains, no rhats above 1.1, and 

credible posterior predictive checks. These analytics can be confirmed by recalling the 

model summary in the R code associated with this project (https://osf.io/zfy2p/).  
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5.4 Results 

Model summaries are shown in Appendix B.3. Main effects can be seen in 

Figure 5.1, where the estimated strength of association between each predictor and 

outcome variable is visualised as a probability distribution. A distribution with mass 

below zero indicates a negative association between variables; a distribution with 

mass above zero indicates a positive association between variables; and a probability 

distribution centred on zero suggests no relationship between variables.  

Words that children both understood and produced typically occurred at high 

frequency in the corpus of child-directed speech (e.g. you, it, and that). While many 

children understood relatively long words (e.g. cock-a-doodle-do, pushchair, and 

television), they tended to produce words with relatively few phonemes (e.g. no, yes, 

hi, bye, and ball). Words children both understood and produced scored highly on 

adult ratings of babiness (e.g. bottle, milk, and blanket) and concreteness (e.g. doll, 

ball, and fish). The direction of effects for word valence, arousal, and dominance 

differed by outcome measure. Positive valence (e.g. happy, hug, and love) and 

positive arousal (e.g. chase, naughty, and spider) were negatively associated with 

understanding but positively associated with production. In contrast, high dominance 

(e.g. smile, happy, help) was positively associated with word understanding and 

negatively associated with production. Finally, and with central importance to the 

current study, the estimate probability mass for phonological neighbourhood density 

(PND) was centred on zero for understanding, but positive for word production. This 

suggests that when we have already taken into account a word’s frequency, length, 

babiness, concreteness, valence, arousal, and dominance, additionally knowing that 

word’s phonological neighbourhood density does little to improve the prediction of 

early word understanding, but does improve the prediction of early word production. 

The children assessed were more likely to produce words that were phonologically 

similar to many other words in the language to which they were exposed (e.g. toe, 

show, shoe, bee, and key). 
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Figure 5.1 Estimate probability masses for each predictor variable in the inventory, split by understands 

and produces outcomes. The dark blue central line is the estimate mean, the light blue region is the 50% 

probability interval, and the distribution tails cover the 99% probability region. Positive values indicate 

that learned words were, on average, high in the associated variable. Negative values indicate that 

learned words were, on average, low in the associated variable. PND indicates phonological 

neighbourhood density. 

Figure 5.2 shows interactions between each predictor and participant age, 

which ranged between 12 and 25 months. A positive interaction estimate indicates that 

the value of the predictor became more positive as age increased (e.g. a slope estimate 

increase from 0.01 to 0.03 between 12 and 25 months). A negative interaction 

estimate indicates that the value of the predictor became more negative as age 

increased (e.g. a slope estimate decrease from 0.01 to -0.01 between 12 and 25 

months). An interaction estimate centered on zero suggests no change in the value of 

the predictor with age. Note that the interpretation of interaction effects depends on 

the direction (or sign) of the main effect. For instance, if the sign of the effect is 

positive, a positive interaction with age indicates a strengthening of this effect (e.g. an 

increase from 0.01 to 0.03). However, if the sign of the effect is negative, a positive 

interaction with age may indicate a weakening of this negative effect (i.e. an initially 

negative effect approaching zero as age increases; e.g. from -0.03 to 0). 
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Figure 5.2: Predictor-age interaction effect probability masses by outcome. The dark blue central line is 

the estimate mean, the light blue region is the 50% probability interval, and the distribution tails cover 

the 99% probability region. Positive values indicate that the value of the predictor became more 

positive as age increased from 12 to 25 months. Negative values indicate that the value of the predictor 

became more negative between 12 and 25 months. PND indicates phonological neighbourhood density. 

High input frequency became a less important determinant of word 

understanding across development. However, children became increasingly able to 

produce the words they were exposed to most frequently (e.g. you, it, and that). Older 

children were able to understand and produce words comprising more phonemes than 

younger children (e.g. cock-a-doodle-do, pushchair, and television). High relevance to 

the lives of babies and infants became a less important predictor of word 

understanding and production between 12 and 25 months, with older children 

acquiring low relevance words such as broom, scissors, and write. The association 

between concreteness and understanding weakened with age, as children learned 

abstract words such as how, later and bad. But the association between concreteness 

and production increased over development, with words such as knee, bird, and comb 

becoming part of the children’s productive vocabularies. Negative trends were seen 

for both valence and (marginally) arousal across development, with older children 

more likely to understand and produce words such as sad, sick, and hurt (low 

valence), and asleep, tea, and blanket (low arousal). Dominance became more 

positively associated with understanding and less negatively associated with 

production (i.e. the production estimate approached zero). That is, older children were 
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more likely to understand and produce words with associations of being in control 

(e.g. smile, happy, help, eat, and say). 

 For both understands and produces outcomes, the phonological neighbourhood 

density (PND) estimate was marginally negative, suggesting that phonological 

similarity to other words in the language to which children are exposed became a 

weaker determinant of word understanding and production across development. 

Estimates suggest that at around 12 months children are more likely to produce words 

that sound similar to other words they hear (e.g. toe, show, shoe, bee, and key), but 

that by 25 months they are able to both understand and produce words comprising less 

frequent sound sequences (e.g. breakfast, telephone, toothbrush, and trousers).  

5.5 Discussion 

In this study, we estimated the strength of the association between 

phonological neighbourhood density and word understanding and production when a 

wide range of other determining factors, including word frequency, length, valence, 

concreteness, babiness, arousal, and dominance, were taken into account. We also 

examined whether the importance of phonological neighbourhood density as a 

predictor of word understanding and production changed between the ages of 12 and 

25 months. Results broadly comparable with prior research were observed where 

predictor inventories overlapped. Early-learned words were, for instance, high in 

child-directed speech frequency (for understanding and production), short in length 

(for production only), and high in babiness rating (for understanding and production) 

(Braginsky et al., 2016; 2019). Interaction effects also showed close parallels with 

prior work. A word’s association with babies, for instance, was a more important 

predictor of understanding and production early in development than it was late in 

development (Braginsky et al., 2016; 2019).  

Our estimates suggest that phonological neighbourhood density is an important 

predictor of early word production though not word understanding. In understanding a 

word, the balance of importance across the predictors assessed favoured high 
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frequency of exposure, high concreteness, and high relevance to the lives of babies 

and infants. A word with such characteristics but complex phonology may be 

memorised imperfectly, which may be sufficient if the child is required to recognise 

and respond to though not necessary produce such a word (e.g. ‘Eat your breakfast!’ 

‘Do you want to rest in the pushchair?’ ‘Where’s your toothbrush?’). However, 

accurate production is impossible with imperfect phonological memorisation. 

Therefore, with respect to word production there is an increase in the relative 

importance of high phonological neighbourhood density, and concurrently shorter 

word length (in phonemes). That is, words enter the productive lexicon more readily if 

their phonology is easy to remember, in terms of a low number of phonemes that 

occur frequently in the language to which children are exposed.  

Estimates for the interaction between neighbourhood density and age suggest 

that phonological similarity to other words in the ambient language is a more 

important predictor of word understanding and production early in development rather 

than late in development. These results accord closely with those of prior studies 

reporting that the importance of phonological neighbourhood density as a predictor of 

word acquisition is greater in younger children and children with language delay, 

particularly with respect to word production (e.g. Storkel, 2004; Storkel & Lee, 2011; 

Stokes, 2010, 2014; Stokes et al., 2012; Takac et al., 2017). It is plausible that this 

effect signals increased competence in phonemic and word-level phonological 

representation. Accurately representing phonologically anomalous words may be 

difficult in early development given a relatively low frequency of exposure and 

limited production practice. As a result, young children may tend implicitly towards 

acquiring new words comprising familiar phonological patterns. Later in 

development, however, children are better able to represent a wider range of sounds, 

making phonological neighbourhood density a marginally less important predictor of 

whether or not a word is acquired.  

A prominent explanatory account of the high neighbourhood density 

advantage is that cognitive demand is low during the initial processing of a novel 

spoken word comprising commonly occurring sounds, and that this enables the 

formation of detailed long-term phonological word memories that are relatively robust 
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to forgetting and which provide detailed motor plans supporting accurate word 

production (Gathercole et al., 1999; Hoover et al., 2010; Metsala & Walley, 1998; 

Sosa & Stoel-Gammon, 2012; Storkel, 2004; Walley et al., 2003). A limitation of the 

current study is that it is impossible to provide evidence for any causal account on the 

basis of correlational data alone. In fact, it has proven difficult to test explanatory 

accounts of the high-density word learning advantage even in tightly controlled 

experiments, given multicollinearity between metrics such as neighbourhood density 

and phonotactic probability. The early high-density word learning advantage is, 

however, non-trivial, with a substantial literature documenting memorisation 

advantages for phonologically distinctive (i.e. as opposed to similar, or dense) stimuli 

(see Hunt & Worthen, 2006, for review), and further work is required to develop a 

causal account of this phenomenon. What the current study shows is that any 

explanatory model of early vocabulary development, particularly of early word 

production, must account for word sound features.  
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Chapter 6 Neighbourhood Density and Word 

Production in Delayed and Advanced Learners 

Linking statement: Chapter five looked at the effect of neighbourhood density on word 

comprehension and production by 300 children aged 12 to 25 months. It was reported 

that the strength of the high-density bias declined during this period. In chapter six, I 

look at the association between neighbourhood density and word production in age-

matched children with productive lexicons of different sizes. 

6.1 Abstract 

This study re-examines the claim that difficulty forming memories of words 

comprising uncommon sound sequences (i.e. low phonological neighbourhood density 

words) is a determinant of delayed expressive vocabulary development (e.g. Stokes, 

2014). We modelled communicative development inventory data from N=442, 18-

month old children, with expressive lexicon sizes between zero and 517 words 

(median=84). We fitted a Bayesian regression model in which the production of each 

communicative inventory word (N=680) by each child was predicted by interactions 

between that child’s expressive lexicon size and the word’s (i) phonological 

neighbourhood density, (ii) frequency in child-directed speech, (iii) length, (iv) 

babiness, and (v) concreteness. Children with larger expressive lexicons were more 

likely to produce words comprising uncommon sound sequences than age-matched 

children with smaller lexicons. However, the magnitude of the interaction between 

expressive lexicon size and phonological neighbourhood density was modest relative 

to interactions between expressive lexicon size and word frequency, length, babiness, 
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and concreteness. Emphasis on a difficulty with the memorisation of low 

neighbourhood density words as a determinant of slow vocabulary growth may be 

unwarranted, and the current evidence base in this direction is not robust enough to 

strongly support the development of possible interventions for late talkers (e.g. 

Stokes, 2014). 

6.2 Introduction 

Rates of spoken vocabulary development differ dramatically between children 

in the second year of life. By 18 months, children in the 95th centile (advanced 

learners) may produce an estimated 240 words, while same-age children below the 

10th centile (so-called ‘late-talkers’) may produce fewer than five words (Alcock, 

Meints, & Rowland, 2017). Variance in expressive vocabulary size has been attributed 

to heritability, child gender, birth order, caregiver speech rate and quality, 

temperament, and attentional factors (Hammer et al., 2017; Rowe & Leech, 2017). 

Some studies into variance in expressive vocabulary size have also focussed on 

identifying the lexical characteristics that make a particular word easy or difficult for 

certain children to learn and produce. This work has addressed both semantic and 

phonological features, and suggests that the direction of discrepancy between delayed 

and advanced learners differs across these domains. In semantics, there is suggestive 

evidence that children in lower percentiles may be liberal learners (Beckage, Smith, & 

Hills, 2011). That is, the lexicons of late talkers may exhibit reduced semantic 

consistency. These children show a greater tendency than age-matched controls to 

acquire ‘oddball’ words, i.e. words that do not fit easily into existing semantic 

networks (though see Jimenez & Hills, 2017). With respect to phonology, however, 

there is evidence that children in lower expressive language percentiles are 

conservative learners. It has been argued that late talkers continue producing words 

that sound similar to many other words in the ambient language (i.e. high 

neighbourhood density words), when age-matched controls have started producing 

words comprising less common sounds (Stokes, 2010, 2014; Stokes, Kern, & Dos 
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Santos, 2012; Takac, Knott, & Stokes, 2017). This delay has been attributed to 

underlying working memory deficits impeding the accurate memorisation of words 

from sparse phonological neighbourhoods (e.g. Stokes, 2014). Having argued that 

processing phonologically uncommon words is a central determinant of delayed 

vocabulary growth, some of these studies have suggested interventions in which 

clinicians identify known words from dense phonological neighbourhoods and build 

vocabulary by transitioning outward from this knowledge base into increasingly 

sparse neighbourhoods (e.g. Stokes, 2010, 2014). 

The purpose of the current study is to re-examine the claim that phonological 

neighbourhood density is more strongly associated with word production in children 

with small expressive vocabularies than in children with relatively large vocabularies. 

We analyse communicative development inventory data similar to that used in 

previous studies in this area (e.g. Stokes, 2014), but adopt a methodology that avoids 

some of the limitations of this earlier work. For instance, previous studies have 

dichotomised data into ‘late talker’ and ‘typically developing’ groups. This approach 

reduces both statistical power and the quality of inferences that can be drawn. Data 

dichotomisation may be justified when analysing populations with qualitatively 

different profiles, such as children with and without autistic spectrum disorder. 

However, it is unclear whether this approach is justifiable with respect to the study of 

individual differences in rates of expressive vocabulary development, including late 

talking, given that the majority of late talkers do not show later language difficulties 

(Hammer et al., 2017; Rowe & Leech, 2017).  

In addition, evidence for a protracted density association in late talkers has 

previously involved the comparison of statements of statistical significance. For 

instance, Stokes (2014, p. 651) reports a statistically significant difference in the 

neighbourhood density of the expressive lexicons of typically developing children and 

late talkers, and a non-significant difference in the neighbourhood density of the 

receptive lexicons of typically developing and late talkers. It is argued that the 

expressive lexicons of late talkers, though not children in the normal range, are 

characterised by high neighbourhood density. This interpretation is, however, 

somewhat controversial because the difference between ‘statistically significant’ and 
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‘non-significant’ may not in itself be significant. This point is illustrated by Gelman 

and Stern (2006, p. 328), who imagine one analysis with a resulting effect estimate of 

25 and a standard error of 10, and a second analysis with an effect estimate of 10 and 

a standard error of 10. Analysis one is significant at the 1% threshold, while analysis 

two is non-significant. Nevertheless, the difference between results is not itself 

significant, with a difference between estimates of 15 and a standard error of 14. 

Therefore while one result is significant and the other non-significant, the difference 

between outcomes may itself be of little practical importance. 

To address these concerns in the current study, expressive lexicon size is 

modelled continuously. There is also an emphasis on estimate probability distributions 

rather than p-values. A probability distribution shows the relative plausibility of 

different parameter values, such as the beta (i.e. slope) coefficient in a linear 

regression model (McElreath, 2016). A probability distribution crossing zero would 

suggest that no linear relationship between variables was plausible (i.e. a horizontal 

regression line). A probability distribution with mass bound above zero would suggest 

a positive relationship between variables (i.e. a positive slope), and a probability mass 

bound below zero would suggest a negative relationship between variables (i.e. a 

negative slope). The decision to apply this methodology reflects our belief that 

probability distributions show uncertainty in the data better than point estimates such 

as p-values. The first research question we address is:  

 

Is the importance of ambient language phonological neighbourhood density as 

a predictor of word production moderated by expressive vocabulary size in 

(N=442) children aged eighteen months?  

 

Throughout this study we are interested in whether variables such as phonological 

neighbourhood density are more important predictors of individual word production 

for children with relatively small or large expressive vocabularies. In statistical terms 

this means that there is an emphasis on interaction effects rather than main effects, 

most importantly the interaction between the child’s expressive lexicon size and word 
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phonological neighbourhood density. Evidence that children with small lexicons were 

more likely to produce words with high phonological neighbourhood density would be 

an interaction effect estimate probability distribution bound below zero. This would 

show that as vocabulary size increased, the strength of the positive association 

between high neighbourhood density and word production decreased (as reported by 

Stokes, 2010, 2014; Stokes et al., 2012; Takac et al., 2017). Our second research 

question is:  

 

What is the strength of the interaction between expressive vocabulary size and 

phonological neighbourhood density as a predictor of word production 

relative to interactions between expressive vocabulary size and alternative 

variables associated with age of acquisition (i.e., word frequency, length, 

babiness, and concreteness)? 

 

As described above, previous studies have claimed that difficulty processing 

phonologically sparse words is a central determinant of limited expressive vocabulary 

size (Stokes 2010, 2014). These studies have also suggested interventions on the basis 

of evidence from parental report data similar to that used in the current study. 

However, because phonological neighbourhood density has to date been considered in 

isolation (i.e. commonly alongside only word length and frequency), we do not 

currently know whether the relative strength of the association between expressive 

lexicon size and phonological neighbourhood density is strong enough to constitute 

preliminary support for this position. Previous work by Braginsky, Yurovsky, 

Marchman, and Frank, (2019), for instance, has demonstrated that lexical features 

associated with significant variance in word understanding and production when 

modelled in isolation may show only limited relative effects when modelled as part of 

a larger, more representative inventory of predictors linked with age of acquisition. 

With this in mind, we model the interaction between expressive vocabulary size and 

neighbourhood density as a predictor of word production alongside interactions 

between expressive vocabulary size and a range of variables previously associated 

with age of acquisition effects; namely, word length (in phonemes), frequency 
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(calculated from token counts in child-directed speech), babiness (i.e. adult ratings of 

the relevance of words for infants and babies), and concreteness. A substantial 

estimate for the interaction between expressive lexicon size and phonological 

neighbourhood density relative to estimates for the interactions between expressive 

lexicon size and word length, frequency, babiness, and concreteness, would constitute 

preliminary evidence that low phonological neighbourhood density may be a 

particular problem area for some children with language delay.  

6.3 Method 

This study was pre-registered with the Open Science Framework on 19th 

October 2018. A pre-registration protocol, R code, and all data required to re-run the 

analysis are available via the associated project page: https://osf.io/p8ax4/. The study 

was unfunded and undertaken as part of the first author’s PhD. We declare no conflict 

of interest.  

6.3.1  Database and sample 

 To answer the questions above, we used parental report data collected using 

the MacArthur-Bates communicative development inventory, words and sentences 

version (MCDI-WS; Fenson et al., 2007). The reason for using this data is that similar 

data were used in previous work which argued that a protracted neighbourhood 

density effect characterises the expressive lexicons of late talkers (i.e. children in low 

percentiles) (e.g. Stokes, 2010, 2014). We wanted to test whether this claim stands 

when using a different statistical approach and controlling for other variables (e.g. 

babiness and concreteness). The MCDI-WS comprises a checklist of words and 

phrases, but note that our analysis looked only at words. During administration, 

caregivers are asked to tick the boxes adjacent to items that their child is able to say. 

These responses (0 = does not produce; 1 = produces) for 680 words and 442 children 

form our dependent variable.  
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 We accessed MCDI-WS data for 442 American English-learning children 

from the wordbank database using the wordbankr package in R (Braginsky, Yurovsky, 

Frank, & Kellier, 2018; Frank, Braginsky, Yurovsky, & Marchman, 2017; R Core 

Team, 2016). We selected the American English data because these were well 

sampled within wordbank. We selected the 18-month subset of the American English 

data because this was the best-sampled age group, and also because the existing work 

reporting protracted density effects has looked at a comparable age range (e.g. Stokes, 

2010, 2014). Gender was not reported for 119 children, while 148 children were 

identified as female and 175 children were identified as male. Figure 6.1 shows the 

distribution of expressive lexicon sizes across children.  

 
Figure 6.1: Density distribution of expressive lexicon sizes for 442 American English-learning children 

aged 18 months. 

Figure 6.1 confirms that the sample showed the substantial individual differences in 

expressive lexicon size typical of their age (Alcock et al., 2017). The median lexicon 

size was 84 words (M=118 words), with a range of zero to 517 words. Ten children in 

the 442-participant sample had expressive lexicons of fewer than five words, and 

would be considered late talkers under a ≤10th centile criterion (e.g. Dale et al., 1998).  

6.3.2  Predictor variables 

We aimed to predict whether each child produced each MCDI-WS word using 

a range of lexical variables in interaction with the child’s expressive vocabulary size. 
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The inventory of lexical variables we used was selected by reference to work by 

Braginsky et al. (2019), who found substantial effects for word length, frequency, 

babiness, and concreteness. We expanded this predictor inventory by adding 

phonological neighbourhood density, operationalised as the number of words in a 

given corpus that can be formed from a target word through one phoneme in addition, 

deletion, or substitution (Luce & Pisoni, 1998). Predictors, data sources, and 

minimum- and maximum-value example words from the MCDI-WS are shown in 

Table 6.1. 

 

Table 6.1: Independent variables, data sources, and minimum and maximum value examples. 

Variable Source(s) Examples 

Child directed speech 
frequency 

 

Fenson et al. (2007); Fernald, 
Marchman, and Weisleder 
(2013); Thal, Marchman, and 
Tomblin  (2013)2 

 

Min: downtown 
Max: you 

 

Length, in phonemes 
 

Balota et al. (2007) 
 

Min: a 
Max: cockadoodledoo 
 

Adult babiness rating: 
[1] ‘not associated 
with babies’ to [10] 
highly ‘associated 
with babies’ 
 

Perry, Perlman, and Lupyan 
(2015) 

Min: donkey 
Max: baby 

Concreteness rating: 
[1] ‘abstract’ to [5] 
‘concrete’  
 

Brysbaert, Warriner, and 
Kuperman (2014) 

Min: would 
Max: apple 

Phonological 
neighbourhood 
density 
 

Balota et al. (2007) 
 
 

Min: aeroplane 
Max: boo 

 

 
2 See http://wordbank.stanford.edu/contributors ‘American English’ for a full list of 
contributors.  
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Child-directed speech frequencies for each MCDI-WS word were calculated from 

American English transcripts in the wordbank database, before being transformed to 

log frequencies. We limited raw counts to transcripts in which speech from caregivers, 

siblings, or researchers was directed at children aged between 16 and 20 months of 

age. Word length was calculated in number of phonemes. Babiness and concreteness 

ratings from adults were retrieved from separate databases, each of which has been 

used in previous work by Braginsky et al. (2019). Finally, phonological 

neighbourhood density counts for each MCDI-WS word were retrieved from the 

English Lexicon project. We used the un-weighted measure of phonological 

neighbourhood density excluding homophones given the apparent preference for this 

criterion in the related literature (e.g. Stokes, 2014, Storkel, 2009).  

We assessed multicolinearity risk (i.e. the possibility that high predictor correlation 

may distort estimates) by fitting a simple binomial regression model in which word 

production was predicted by each variable listed in Table 6.1 as a main effect and then 

calculating variance inflation factors (VIFs) using the car package in R (John et al., 

2017). VIFs were low, with a maximum of 2.01 for the word length variable, 

suggesting that multicolinearity was not a significant issue.  

 The rates of missing data for each predictor variable were: 0% for expressive 

lexicon size, 0% for word length, 3.68% for child-directed speech frequency, 13.82% 

for babiness rating, 4.12% for concreteness rating, and 4.26% for phonological 

neighbourhood density. We imputed missing values using predictive mean matching 

via the mice (multivariate imputation by chained equations) package in R (Buuren & 

Groothuis-Oudshoorn, 2011). We then confirmed that the imputed values were 

plausible through strip plot visualisation, a process that can be repeated using the 

associated R code. All predictors were then scaled in order to make model fitting more 

efficient and to simplify the comparison of estimates.  

6.3.3  Analysis 

We used the brms package in R (Bürkner, 2018) to fit a Bayesian multiple 

logistic regression model in which MCDI-WS item production was predicted by each 
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variable listed in Table 6.1 in interaction with each child’s expressive vocabulary size. 

Child id was used as a grouping variable. We set a weakly informative prior across β 

parameters (a normal distribution centred on zero with a standard deviation of three), 

which we expected to be overwhelmed by the large number of observations (i.e. 

N=442 caregiver responses for 680 words=300,560 observations). This model fitted 

successfully, with an adequate number of effective samples, stationery and well-

mixing chains, rhats uniformly at 1, and credible posterior predictive checks (see R 

code for analytics). 

6.4 Results 

A complete summary of model estimates (including main effects) is presented 

in Table C.1 of Appendix C. Figure 6.2 shows probability distributions for the 

interaction between each lexical predictor and expressive vocabulary size. A positive 

estimate, to the right of the grey line, indicates that as expressive vocabulary size 

increased, children were more likely to produce words with higher values of the 

associated variable. A negative estimate, to the left of the grey line, indicates that as 

expressive vocabulary size increased, children were more likely to produce words 

with lower values of the associated variable. 

 

 



6.4 Results  133 

 

 

    
Figure 6.2: Predictor and expressive vocabulary size interaction effect probability distributions. The 

dark blue central line is the estimate mean, the light blue region is the 50% probability interval, and the 

distribution tails cover the 90% probability region. 

From top to bottom (y-axis, Figure 6.2), children with larger expressive vocabularies 

were more likely to produce long words, as measured in phonemes (β =0.08; lower 

95% credible interval=0.06; upper 95% credible interval=0.10). They were also more 

likely to produce words that occurred frequently in caregiver speech addressed to 

children between 16 and 20 months of age (β =0.03; lower 95% CI=0.01; upper 95% 

CI=0.04). Children with larger expressive lexicons were more likely than children 

with smaller lexicons to produce words with low babiness ratings (β =-0.03; lower 

95% CI=-0.04; upper 95% CI=-0.02). They were also more likely to produce words 

with high concreteness ratings, with this being the most substantial effect (β =0.12; 

lower 95% CI=0.10; upper 95% CI=0.13). Finally, and with central importance to the 

current study, children with larger expressive lexicons were more likely than children 

with smaller expressive lexicons to produce words that were phonologically similar to 

few words in the ambient language (β =-0.03; lower 95% CI=-0.04; upper 95% CI=-

0.01). Stated differently, high phonological neighbourhood density was more strongly 

associated with word production in children who could produce few words. Like all 

the observed estimates this interaction effect showed no probability distribution across 

zero. Importantly, however, the relative magnitude of the estimate for the interaction 

between expressive vocabulary size and phonological neighbourhood density was 
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modest relative to interactions between expressive vocabulary size and other lexical 

predictors in the inventory. The neighbourhood density interaction effect was 

comparable to that of word frequency and word babiness, but substantially smaller in 

magnitude than the observed interactions with word length and concreteness. Thus, on 

the basis of the current or similar data, it is impossible to single out low 

neighbourhood density as a primary factor leading to delayed vocabulary 

development.  

6.5 Discussion 

The current study examined whether the association between phonological 

neighbourhood density and word production was stronger in children with small or 

large expressive lexicons. Research Question 1 was: Is the importance of ambient 

language phonological neighbourhood density as a predictor of word production 

moderated by expressive vocabulary size in children aged eighteen months? Results 

from parental report based on 442 children suggest that the association between 

phonological neighbourhood density and word production is moderated by expressive 

vocabulary size. The direction of the reported estimate accords with previous work on 

early density effects. Children with small productive lexicons were more likely to 

produce words with high phonological neighbourhood density (e.g. Stokes, 2014; 

Storkel, 2004). The interaction appears reliable, with a probability distribution bound 

below zero (β=-0.03; lower 95% CI=-0.04; upper 95% CI=-0.01).  

We also considered the strength of the interaction between expressive 

vocabulary size and neighbourhood density relative to interactions between expressive 

vocabulary size and word length, frequency, babiness, and concreteness. These 

variables have shown substantial age of acquisition effects in previous work (e.g. 

Braginsky et al., 2019). Research Question 2 asked; What is the strength of the 

interaction between expressive vocabulary size and phonological neighbourhood 

density as a predictor of word production relative to interactions between expressive 

vocabulary size and alternative variables associated with age of acquisition (i.e., 



6.5 Discussion  135 

 

 

word frequency, length, babiness, and concreteness)? None of the estimates for 

interactions between expressive vocabulary size and the selected lexical variables 

crossed zero, suggesting reliable effects for all predictors. Furthermore, the pattern of 

estimates for these predictors resembled those reported in work by Braginsky et al. 

(2019), who looked at interactions with age rather than interactions with lexicon size. 

For instance, our analysis showed that larger lexicons comprised more words with 

high CDS frequency (e.g. function words potentially omitted in early development 

such as if, is, and that), high concreteness (e.g. a substantial number of common nouns 

in addition to typically early-learned onomatopoeia and routine words such as meow, 

moo, hello, bye, no), and low babiness ratings (e.g. glasses, stove, salt). Recovering 

the reported age-related trajectories using age-matched participants serves as a 

reminder that the development of children in the lower percentiles we looked at was 

delayed though not deviant. That is, the composition of low-percentile children’s 

lexicons in our analysis appears comparable to that of younger children in the normal 

range reported by Braginsky et al. (2019) (see also chapter five). Similarly, these 

results suggest that when discussing changes in the importance of a predictor variable, 

vocabulary size is a better indicator of development than age (e.g. Ainsworth, 

Welbourne, & Hesketh, 2016). High phonological neighbourhood density, for 

instance, becomes a less important predictor of word production when expressive 

vocabulary size rather than age per se increases.  

Despite a probability distribution bound below zero signalling a reliable effect 

separable from other predictors, the strength of the estimate for the interaction 

between expressive vocabulary size and phonological neighbourhood density was 

modest relative to interactions between expressive vocabulary size and the other 

lexical variables we considered in our model. The magnitude of the phonological 

neighbourhood density interaction was comparable to interactions between expressive 

vocabulary size and word babiness and frequency. Much stronger estimates were seen 

for interactions between expressive vocabulary size and word length (larger lexicons 

comprised longer words, in number of phonemes) and concreteness. In short, the 

neighbourhood density interaction estimate did not stand out, with other lexical 



136 Neighbourhood Density and Word Production in Delayed and Advanced 

Learners 

 

 

characterises similarly or more strongly associated with variance in expressive lexicon 

size.  

A large number of experimental, naturalistic, and computational studies have 

demonstrated that phonology matters in word learning (e.g. Hogan, Bowles, Catts, & 

Storkel, 2011; Hoover, Storkel, & Hogan, 2010; Schwartz & Leonard, 1982; Stokes, 

2010; Storkel, 2002, 2004, 2006, 2009; Storkel & Lee, 2011). For instance, children 

are more likely to recall words from dense phonological neighbourhoods at delayed 

test. They are also more likely to memorise and accurately produce non-words that 

contain sounds already in their expressive lexicons. Such experimental results suggest 

that the reported high phonological similarity advantage in early word learning is not 

an epiphenomenon but a substantive and separable effect. However, when it comes to 

identifying lexical characteristics that help explain the variance observed in expressive 

vocabulary development, previous studies reliant on parental report data may have 

overestimated the importance of the high neighbourhood density association in 

smaller lexicons by excluding important alternative predictor variables (e.g. Stokes, 

2010, 2014; Stokes et al., 2012). Other factors leading to an overestimation of the 

importance of phonological neighbourhood density may be data dichotomisation and 

an emphasis on statements of statistical significance. A large number of 

environmental (Hammer et al., 2017; Rowe & Leech, 2017) and lexical variables (e.g. 

word frequency, length, babiness, and concreteness) are associated with variance in 

rates of expressive vocabulary growth. Placing central emphasis on a difficulty 

processing uncommon word phonology on the basis of the current or similar data may 

therefore be unwarranted.  

6.5.1 Limitations  

Following previous studies in this area, we analysed data from the MacArthur-

Bates communicative development inventory, words and sentences version (MCDI-

WS). One general limitation with repeating this correlational approach is that we 

cannot discuss causality. In other words, we cannot say why high phonological 
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similarity appears to continue to be a more important predictor of word production for 

children in low language percentiles. Prior work has linked an early high 

neighbourhood density advantage to undeveloped phonemic representation capacity 

(e.g. Storkel, 2002, 2004). This work has also linked a reported protracted density 

association in late talkers to memory deficits such as those sometimes identified in 

language-impaired children (e.g. Gathercole & Baddeley, 1990; as in Stokes, 2014). 

In each case, it is argued that children may find it more difficult to form detailed 

memories of words containing sounds that occur infrequently in the ambient language. 

While word comprehension is possible despite underspecified lexical representations, 

accurate word production is not, leading to a heightened density effect in the 

expressive lexicons of young and language-delayed children. While prior correlational 

studies in this area have argued that findings similar to our own corroborate this 

causal account (e.g. Stokes, 2010, 2014; Stokes et al., 2012; Takac et al., 2017), the 

validity of any causal account can only be determined on the basis of experimental 

data.  

A second limitation of the current analysis is that the MCDI-WS data tells us 

nothing about production variability. A disclaimer on the front page of the inventory 

addressed to caregivers reads: “If your child uses a different pronunciation of a word 

(for example, ‘raffe’ instead of ‘girraffe’ or ‘sketti’ instead of ‘spaghetti’), mark the 

word anyway” (Fenson et al., 2007, p. 1). Prior work in this area has, however, argued 

that production accuracy stabilises over time, and that words from dense 

neighbourhoods are first produced most accurately (e.g. McLeod & Hewett, 2008; 

Sosa & Stoel-Gammon, 2012). It is therefore probable that children in lower 

percentiles not only produce fewer words than age-matched peers, but also that they 

are less accurate and more variable in their productions, particularly with respect to 

phonologically uncommon words (i.e. words from sparse neighbourhoods). Given the 

binary outcome variable used (i.e. ‘produces’ or ‘does not produce’), we were unable 

to examine associations between the selected predictors and accuracy and variability 

in word production. However, it would be informative to repeat the current analysis 

using a similar inventory with graded response options (e.g. 0=‘does not produce’; 

1=‘produces poorly’, 2=‘produces adequately’, 3=‘produces well’), or by calculating 
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the accuracy and variability of transcribed phonological words (e.g. McLeod & 

Hewett, 2008; Sosa & Stoel-Gammon, 2012). 

Future research should examine whether the results reported here generalise to 

different age ranges and populations, including clinical populations and children 

learning different languages. Such studies would improve our current understanding 

of individual differences in the importance of high phonological neighbourhood 

density as a cue to early word production.  

6.6 Conclusion 

A number of studies have used correlational data to argue that difficulty 

processing phonologically uncommon words is a central determinant of delayed 

expressive vocabulary development (e.g. Stokes, 2010, 2014; Stokes et al., 2012). 

Applying a revised methodology to comparable data we found that high phonological 

neighbourhood density was a reliable predictor of early word production and that this 

effect appears necessarily protracted in language-delayed children. However, the 

magnitude of this estimate relative to other known predictors of word acquisition was 

modest. Therefore, the claim that a difficulty acquiring low phonological 

neighbourhood density words is a central determinant of delayed expressive 

vocabulary growth may be unwarranted. The existing parental report evidence of a 

protracted density association in late talkers is not robust enough to support the 

development of possible interventions (e.g. Stokes, 2010, 2014). Experimental data is 

required to explore this line of inquiry further, and to determine the validity of any 

associated causal account. 
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Chapter 7 Accuracy and Variability in Early 

Spontaneous Word Production 

Linking statement: Chapters five and six looked at binary outcomes, i.e. ‘produces’ or 

‘does not produce’. In chapter seven, I go beyond binary outcomes and analyse the 

associations between age, frequency, and neighbourhood density, and word 

production accuracy and variability.  

7.1 Abstract 

High rates of error and variability in early word production may signal speech 

sound disorder. However, there is little consensus regarding the degree of error and 

variability that may be expected in the typical range. Relatedly, while variables 

including child age, word frequency, and word phonological neighbourhood density 

are associated with variance in word production accuracy and variability, such effects 

remain under-examined in spontaneous speech. This study measured the accuracy and 

variability of 234,551 spontaneous word productions from five typically developing 

children in the Providence corpus (0:11-4;0). Using Bayesian regression, accuracy and 

variability rates were predicted by age, input frequency, phonological neighbourhood 

density, and interactions between these variables. Between 61% and 72% of word 

productions were both inaccurate and variable according to strict criteria. However 

loosening these criteria to accommodate production inconsistencies unlikely to be 

considered erroneous (e.g. the target /æləɡeɪtəɹ/ pronounced /ælɪɡeɪtəɹ/) reduced this 

figure to between 10% and 17%, with the majority of word productions then classed 

as accurate and stable (48% to 58%). In addition, accuracy was higher and variability 
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was lower in later months of sampling, and for high-frequency words and high-density 

words. I discuss the implications of these results for future research and the 

differential diagnosis of speech sound disorder, and present an explanatory account of 

findings emphasising the development of oral-motor skills and increasingly detailed 

phonological word representations.  

7.2 Introduction 

 Word learning is often construed as a binary phenomenon: Either a child is 

able to understand or produce a word or not. This is reflected, for instance, in studies 

using Communicative Development Inventory (CDI) data, in which variables such as 

word frequency and neighbourhood density may be modelled as predictors of 

caregiver estimates of age of acquisition (e.g. Jones & Brandt, 2019a; Braginsky, 

Yurovsky, Marchman, & Frank, 2019; Storkel, 2004). It is clear, however, that early 

word learning is far from black-and-white. Children’s early word productions – the 

focus of the current study – are often recognisable though inaccurate, and different 

productions of the same word can vary considerably. For instance, in a landmark 

study, Ferguson and Farwell (1975) describe a child aged 1;3 (one year; three months) 

producing ten variants of the word pen in a thirty minute elicitation. Such 

observations serve as a reminder that word learning is a dynamic process, in which 

oral-motor, lexical, and phonological development closely interact, and in which word 

productions typically become more accurate and less variable over time (Macrae, 

2013).  

The purpose of this study is to examine word accuracy and variability in 

spontaneous speech from five children recorded between 11 months and four years of 

age. The novelty of the current analysis is that it provides a more representative 

account of early word production accuracy and variability than previous work, which 

has been limited to a small number of target words, utterances, or consonant clusters. 

In the experimental literature, for instance, Sosa (2015) assessed the production of 25 

words; Sosa and Stoel-Gammon (2012) assessed 30 words; Macrae (2013) assessed 

20 words; and Betz and Stoel-Gammon (2005) assessed just five words all elicited 
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repeatedly in controlled fashion. Meanwhile, with respect to prior naturalistic 

analyses, McLeod and Hewett (2008) assessed spontaneous speech samples collected 

over a six-month period but limited their analysis to words with initial or final 

consonant clusters that occurred in a subset of 100 utterances. Similarly, Ota and 

Green (2013) analysed accuracy and variability rates among three children recorded in 

the Providence corpus (Demuth & McCullough, 2009) – the corpus used in the current 

study – but limited their analysis to six classes of consonant cluster. In contrast, this 

study involves the analysis of 234,551 word tokens (4360 types) spoken over a three-

year period. 

The selection of a small number of target words, utterances, or consonant 

clusters may be seen as an advantage rather than as a limitation. Restricting the test 

inventory to a handful of items makes experimentation and analysis more practical 

and establishes a procedural framework that may be applied in clinical settings, where 

rates of accuracy and variability are of diagnostic interest and in which time or the 

child’s attention may be limited. For this reason, measures such as the Word 

Inconsistency Assessment (developed to identify inconsistent speech disorder; Dodd, 

Hua, Crosbie, Holm, & Ozanne, 2002) test the accuracy and variability of just 25 

words. However, it is also likely that an analysis unrestricted by phoneme cluster, 

word class, syllable, word, or by utterance count, can provide additional insight into 

early word production accuracy and variability rates, which may in turn improve 

understanding of early language, memory, and oral-motor development. This is the 

broad aim of the current study.  

The current manuscript presents two analyses. The first is a descriptive 

summary of word production accuracy and variability rates for each child in the 

Providence corpus (Demuth & McCullough, 2009). Following Grunwell (1992), prior 

experimental studies have categorised word productions into four classes: (i) accurate 

and stable (i.e. correct across multiple productions); (ii) accurate but variable (i.e. 

different across productions but including correct forms); (iii) inaccurate but stable; 

and (iv) inaccurate and variable (e.g. Holm et al., 2007; McLeod & Hewett, 2008; 

Sosa, 2015). The current study is novel in applying this taxonomy to early 

spontaneous speech. In the prior literature using this approach there has been special 
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interest in the rate of words produced variably in the absence of accurate forms; this 

class is termed variable without hits (e.g. Holm et al., 2007; Grunwell’s, 1992, class 

(iv) listed above). This is because high rates of variability without hits has been 

proposed as a marker of early speech sound disorder, which is an umbrella term 

describing a general difficulty acquiring accurate and intelligible speech in line with 

peers (Sosa, 2015, p. 24). The production of an excessive number of words 

categorised as variable without hits has been termed inconsistent speech disorder in 

order to differentiate this profile from the spoken word error and variability expected 

within the normal range (e.g. Holm et al., 2007).  

A problem with using inconsistency rates to identify speech sound disorder, 

however, is that substantial discrepancies in accuracy and variability estimates from 

studies involving typically developing children make it difficult to determine what 

constitutes the normal range. For instance, Holm et al. (2007) report on an elicitation 

task involving 409 typically developing children in which only 13% of words were 

produced variably at age 3;0–3;5, with this figure dropping to 2.5% by age six. 

Notably, these authors report that the majority of variable forms produced were 

variable with hits, and conclude that “inconsistency [i.e. variability without hits] is not 

a feature of normal development at any age” (Holm et al., 2007, p. 483). In contrast, a 

number of studies have reported much higher rates of error and variability in typically 

developing children. McLeod and Hewett (2008), for instance, report a variability rate 

of 53.7% among children aged 2;0-3;4; Macrae (2013) reports a variability rate of 

77.7% among children aged 1;9-3;1; and, in a direct replication of Holm et al. (2007), 

Sosa (2015) reports a variability rate of 77% among children aged 2;6-2;11, and 57% 

among children aged 3;6-3;11. Importantly, the most frequent response type reported 

by Sosa (2015) was variable without hits, which comprised 45% of all responses 

across age groups for 25 words (range = 4% to 76%). Sosa (2015) attributes the 

discrepancy in estimates with the original Holm et al. (2007) study in part to 

heightened transcription validity. Sosa (2015) made offline transcriptions of 

recordings and adopted a so-called consensus procedure in which two or more 

listeners transcribed each spoken word. In contrast, Holm et al. (2007) used online 

transcription (i.e. transcriptions were made as the child was speaking) and no 
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consensus procedure, with reliability checks for up to only 10% of the data. Sosa 

(2015) notes, however, that transcription validity alone cannot fully account for the 

discrepancy observed. Re-coding the replication study data and ignoring vowel quality 

differences – which it is argued may be vulnerable to online transcription error – Sosa 

(2015) reports an overall variability rate of 56%. Although lower than the rate of 68% 

variability from the initial coding, this revised figure remains considerably higher than 

the 12% reported by Holm et al. (2007). Ultimately, it is concluded that the reason for 

the discrepancy in estimates remains difficult to establish, and this may mean that 

transcription-based assessment is too unreliable for use in a clinical setting. Sosa 

(2015) maintains, however, that the prevalence of variable without hits responses in 

the typically developing population (observed under both methods of transcription) 

calls into question the validity of using production inconsistency as a marker for the 

differential diagnosis of early speech sound disorder. An aim of the current study – 

specifically the first analysis – is to contribute to on-going debate regarding the degree 

of accuracy and variability that may be expected in the normal range.  

The second analysis of the current study looks at factors explaining early 

accuracy and variability rates. Despite between-study discrepancies in estimates, there 

is general agreement that older children show higher word production accuracy and 

lower word production variability than younger children (Macrae, 2013; Sosa 2015; 

Holm et al., 2007). For this reason, age at word production is included as a predictor 

in the statistical model of accuracy and variability rates later presented. It is important 

to note, however, that age is serving here as a proxy variable in lieu of more fine-

grained measurements, and that two dominant overlapping mechanisms have been 

suggested to explain this developmental trend. In one account, early production 

inaccuracy and variability is attributed to immature oral-motor control (e.g. Kent, 

1992). This position is apparently supported by evidence of heightened spatial and 

temporal variation in the movement of articulators (i.e. jaw, tongue, lips) during 

childhood (Goffman & Smith, 1999). One limitation of this account, noted by Sosa 

(2015, p. 33), is that the mapping between motor control and segment production 

accuracy and variability is imperfect. Goffman, Gerken, and Lucchesi (2007), for 

instance, note that word production can be accurate despite spatial and temporal 
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variation in motor control, while conversely segment production inaccuracy and 

variability may occur despite apparently mature motor control. There is, nevertheless, 

good evidence that children’s oral-motor skills develop substantially during the early 

years, and furthermore that this development correlates with language skills 

independently of general cognitive ability (e.g. Alcock, 2006). Thus while production 

error or instability may not always indicate immature or disordered motor control, it 

would appear reasonable to assume that oral-motor development to some degree 

underpins children’s developing word production accuracy and stability.  

 A second and compatible account attributes early word production error and 

variability to underspecified phonological word representations. In learning a new 

word, the child must remember that word’s phonological features alongside semantic 

and pragmatic information. A large number of studies have argued that phonological 

word representation follows a trajectory from holistic to segmental (Metsala & 

Walley, 1998; Ventura, Kolinsky, Fernandes, Querido, & Morais, 2007; Walley, 

1993; Ferguson & Farwell, 1975). For instance, older and linguistically advanced 

children often identify mispronunciations in known words more rapidly and 

accurately than younger or less advanced peers (e.g. Ainsworth, Welbourne, & 

Hesketh, 2016; see also Edwards, Beckman, & Munson, 2004; Munson, Edwards, & 

Beckman, 2005, for related evidence with respect to non-word repetition accuracy). 

This work remains somewhat controversial, with apparently conflicting studies 

reporting early sensitivity to sub-lexical phonemic detail and mispronunciations (e.g. 

Swingley & Aslin, 2002). Nevertheless, a broad view is that phonological word 

representations become increasingly detailed as the lexicon grows, and subsequently 

with the onset of literacy. One possibility, then, is that holistic phonological word 

representations provide an insufficient basis for accurate and stable motor planning 

and output, which evidences in production error and variability in early typical 

development and protracted speech inconsistency in atypical development (Holm et 

al., 2007; Sosa, 2015). In line with this position, Macrae and Sosa (2015) report no 

effect of child age on word production variability when controlling for expressive 

vocabulary size.  
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In addition to these child-based factors – i.e., oral-motor and 

memory/representational development – it is important to acknowledge lexical 

influences on early word production accuracy and variability. Young children produce 

certain words more or less accurately or stably than other words (Sosa & Stoel-

Gammon, 2006), suggesting that child-based factors interact with specific features of 

the target word. In order to understand this observation, a number of studies have 

modelled accuracy and variability rates as a function of lexical variables of specific 

interest, such as phonological complexity (Macrae, 2013). In the same way, the 

current study examines how child-directed speech frequency and phonological 

neighbourhood density affect spoken word accuracy and variability. Frequency effects 

occur at all levels of linguistic representation (e.g. phoneme, word, and syntax), and it 

is therefore argued that such effects must be accommodated under any credible 

account of first language acquisition (Ambridge, Kidd, Rowland, & Theakston, 2015). 

Prior work using a range of paradigms (e.g. elicitation, naming) shows a negative 

association between word frequency and error and variability rates (e.g. Sosa & Stoel-

Gammon, 2012). This pattern has been attributed to repeated exposure to a target 

word strengthening the corresponding phonological word representation and therefore 

providing a fine-grained motor plan. 

High phonological neighbourhood density – i.e. phonological similarity 

between a target word and other words in a given lexicon – is also associated with 

higher accuracy and more stable word production (e.g. Sosa & Stoel-Gammon, 2012), 

as well as with lower age of acquisition and better target retention in experimental 

paradigms (Storkel, 2009; Storkel & Lee, 2011). Such effects are separable from those 

of word frequency, despite a high correlation between these variables (i.e. high 

frequency words are usually high density; Storkel, 2004). A dominant explanatory 

account of this effect is that high neighbourhood density words contain regular sound 

patterns that are held in short-term memory more precisely during initial processing 

(e.g. the at in mat, cat, and catch; Gathercole, Frankish, Pickering, & Peaker, 1999). 

This supports the subsequent formation of detailed phonological word representations 

in long-term memory, which may in turn provide fine-grained motor plans (Hoover, 

Storkel, & Hogan, 2010; Metsala & Walley, 1998). 
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Word frequency and phonological neighbourhood density are also reported to 

interact in early word learning. For instance, Hollich, Jusczyk, and Luce (2002) and 

Storkel (2004) report that high neighbourhood density predicted successful acquisition 

and production for low though not high frequency words. This suggests that high 

neighbourhood density is important when word frequency is low but that high 

frequency nullifies the high neighbourhood density advantage. Both neighbourhood 

density and frequency are also considered to interact with age (Jones & Brandt, 

2019a; Braginsky et al., 2019). For instance, in a study of 300 British English-

speaking children, Jones and Brandt (2019a) found that high neighbourhood density 

and high frequency were more strongly associated with caregiver reports of word 

production at 12 months than at 25 months. Whether or not similar interactions are 

associated with degrees of early spontaneous word production accuracy and 

variability remains unknown.  

7.2.1  The current study 

This study estimates spontaneous word production accuracy and variability 

rates in longitudinal data from five American English-speaking children. I present a 

classification of spontaneous word productions in terms of: (i) accurate and stable; (ii) 

accurate but variable; (iii) inaccurate but stable; and (iv) inaccurate and variable. The 

purpose of this analysis is to contribute to on-going discussion regarding the rates of 

accuracy and variability that can be expected in the normal range. Given widespread 

disagreement in the prior literature in this area (e.g. Holm et al., 2007; Sosa, 2015), I 

made no predictions regarding the results of this analysis. I also present an analysis of 

accuracy and variability rates modelled as a function of child age, input frequency, 

and ambient language phonological neighbourhood density, both as main effects and 

in interaction. Based on the literature reviewed, my predictions were that word 

production accuracy would increase with age, while production variability would 

decrease with age. I predicted that high frequency and high neighbourhood density 

would be associated with greater production accuracy and stability, and that these 

associations would be stronger in earlier periods of sampling. Finally, high 
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neighbourhood density was expected to be more strongly associated with accurate and 

stable production for low frequency words.  

7.3 Method 

7.3.1  Corpus 

This study examined accuracy and variability rates in spontaneous speech 

recorded in the Providence corpus (Demuth & McCullough, 2009). The Providence 

corpus contains transcripts of 364 hours of audio and video recordings from six 

monolingual children (three girls, three boys) aged 0:11-4;0. Data from one child, 

Ethan, were excluded from the current analysis given this child’s diagnosis of 

Asperger’s Syndrome at age five. From the onset of first words, children were 

recorded for a minimum of one hour every two weeks during interaction with their 

caregivers, ordinarily their mothers. Details of each child’s data are shown in Table 

7.1.  

Table 7.1: Corpus summary. Showing total recorded utterances and glosses, mean length of utterance 

(MLU) in morphemes, and usable token and type counts. Glosses identifies transcribed strings, whether 

or not these are words, e.g. ‘mum’, ‘cat’, ‘hmm’, ‘haha’, ‘achoo’. Tokens and Types identify lexical 

items (e.g. ‘mum’, ‘cat’) for which independent variable data was available; see Independent variables: 

Age, frequency, and neighbourhood density. 

Speaker Age (months) Utterances Glosses MLU Tokens Types 
Alex 16-41 29,251 63,727 2.31 31,150 1434 
Lily 13-48 40,027 105,003 3.07 58,088 2011 
Naima 11-46 43,499 145,783 4.03 72,280 2765 
Violet 14-47 17,296 41,924 2.92 20,750 1533 
William 16-40 21,291 46,508 2.38 26,361 1314 

 
Transcript format was the major motivation for using the Providence corpus. 

Recordings are narrowly transcribed in the International Phonetic Alphabet (IPA), and 

produced word forms are listed alongside target forms. This makes it straightforward 

to calculate production accuracy and variability scores. A second motivation for using 
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the Providence corpus was that transcription reliability for the corpus is high. After 

initial transcription, a second trained coder transcribed a sample of 10% of each 

recording, with inter-rater reliability reported between 80-98%. Given its high 

suitability to early word accuracy and variability research, it is perhaps unsurprising 

that the Providence corpus has been used in related previous work. Notably, Ota and 

Green (2013) analysed the effect of input frequency on the production of consonant 

clusters by three children in this corpus.  

7.3.2  Data preparation 

Providence corpus data files in Phon software format (Hedlund & Rose, 2019) 

were accessed via the project website (https://phonbank.talkbank.org/access/Eng-

NA/Providence.html) and converted to .csv files in Phon to enable further pre-

processing and modelling in R (R Core Team, 2016). Raw .csv files are hosted on the 

associated project repository alongside an R script allowing readers to re-create all 

analyses reported in the current study (https://osf.io/w9y27/). These files contain the 

following columns for each word token: (i) participant name; (ii) participant age; (iii) 

orthographic word; (iv) IPA target word; and (v) IPA produced form. Analysis in R 

began with the removal of non-lexical items including conversational sounds such as 

‘hmm’, ‘haha’, and ‘achoo’.  

7.3.2.1 Independent variables: Age, frequency, and  

neighbourhood density 

Independent variable preparation then proceeded with the transformation of 

participant age into an appropriate format for statistical modelling, e.g. from 

‘P1Y10M24D’ to ‘16’ (months). Using the childesr package in R (Sanchez et al., 

2019), frequencies for each word produced by each child were then calculated from 

all American English caregiver transcripts in the CHILDES database (MacWhinney, 

2000) in which the children addressed were aged between 22 and 36 months. This 

included 2,194,651 word tokens and 21,981 word types. Raw counts from this corpus 

were then log-plus-one transformed. Finally, I retrieved phonological neighbourhood 
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density values for each produced word. In many developmental studies, phonological 

neighbourhood density is operationalised as the number of words in a given corpus 

that can be formed by the addition, substitution, or elimination of a single phoneme in 

a target word, e.g. cat neighbours hat, cot, can, and catch (e.g. Stokes, 2014; Storkel, 

2004; following Luce & Pisoni, 1998). A general limitation of this operational 

definition, however, is that it may result in a substantial proportion of words in a given 

corpus being categorised as lexical hermits with zero neighbourhood density (Suárez, 

Tan, Yap, & Goh, 2011). Accordingly, the current study adopted a metric of word-

level phonological similarity called phonological Levenshtein distance, or PLD20, 

defined as the mean number of additions, substitutions, or eliminations of phonemes 

required to change a particular word into its nearest twenty phonological neighbours 

(Suárez et al., 2011, p. 606). PLD20 values for each word produced were calculated 

across words in the English Lexicon Project, which provides lexical characteristic 

data for 40,481 words and which may be considered representative of the ambient 

language (Balota et al., 2007; retrieved from: http://www.talyarkoni.com/ 

downloads/pld20.txt). The PLD20 metric is operationalised continuously in order to 

maximise statistical power. In contrast, the common approach of splitting tokens 

into high- and low-density groups has the effect of reducing statistical power, and 

limiting the quality of inferences that can be drawn. In contrast to plus/minus one-

phoneme metrics of word-level phonological similarity (e.g. Luce & Pisoni, 1998), 

where a high value equals greater density, a high PLD20 indicates greater 

phonological distance between a target and its nearest neighbours, or low 

neighbourhood density. Different criteria of word-level phonological similarity such 

as the plus-minus-one phoneme criterion and PLD20 are highly correlated, and have 

been shown to confer analogous effects (Suárez et al., 2011). I therefore strongly 

expect the results reported below to hold across alternative measures of 

neighbourhood density.  
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7.3.2.1.1 Predictor correlation and multicolinearity  

One limitation of the use of observational data without restriction to a 

particular target cluster, word, or utterance count is that it is difficult to mitigate the 

detrimental impact of high predictor correlation. High predictor correlation is an issue 

because it may cause multicolinearity, which manifests as a distortion of regression 

model results such as a substantial increase in the size of the estimate or the estimate 

error, or a shift in estimate direction (e.g. from a positive to a negative value). For this 

reason, researchers are commonly required to select only variables of personal 

theoretical interest for testing a specific hypothesis and to omit highly correlated 

variables that may be of general theoretical interest. In the current study, for instance, 

high rates of correlation motivated the omission of a word length variable and 

alternative word-sound variables including phonotactic probability (note that Storkel, 

2004, among others takes the same approach; though see Storkel & Lee, 2011). 

Correlations between the three predictors included in this study are shown in Table 

7.2.  

Table 7.2: Pearson correlation matrix for independent variables. 

 Age Frequency PLD20 
Age 1 0.12 -0.05 
Frequency 0.12 1 -0.33 
PLD20 -0.05 -0.33 1 

 

 Notably, a moderate correlation was observed between PLD20 and word frequency 

(r=-0.33), with high frequency words commonly being high density (i.e. low PLD20). 

Multicollinearity risk was therefore tested by computing variance inflation factors 

(VIFs) using the lme4 and car packages in R (Bates, Maechler, Bolker, & Walker, 

2015; Fox & Weisberg, 2011). These estimates suggested multicollinearity risk was 

low across predictors, with a maximum value of VIF = 2.61 for the frequency and 

neighbourhood density interaction term. Recommended maximum VIFs range from 

four to ten in the literature (e.g. Hair, Anderson, Tatham, & Black, 1995; Pan & 

Jackson, 2008). In a second assessment of multicolinearity risk I conducted a 



7.3 Method  157 

 

 

sensitivity analysis. This involved removing each predictor and re-fitting the main 

regression model (introduced fully below) to test for changes in the resulting 

coefficients. No substantial difference in estimates was found during this analysis, in 

terms of the direction or magnitude of estimates or the size of the estimate errors.  

7.3.2.2 Dependent variables: Accuracy and variability  

The dependent variables were word production accuracy and word production 

variability. Numerous operational definitions of each of these variables have 

previously been used (see Ingram, 2002, for review). In the current study, the 

Levenshtein distance between target and actual transcriptions was used as a measure 

of word accuracy. A word production identical to the listed adult form scored zero and 

lower accuracy was coded in terms of the number of phonetic insertions, substitutions, 

or deletions required to turn the produced form into the listed adult form. For instance, 

if the target word alligator listed /æləɡeɪtəɹ/ was produced /ælɪɡeɪɾə/, this production 

was scored a Levenshtein distance of three: One change from /ɪ/ to /ə/; one change 

form /ɾ/ to /t/; and the addition of /ɹ/. Levenshtein distance provides an accuracy 

metric that is not only intuitive but also computationally efficient. The measure also 

provides a graded picture of target and produced form distance, in contrast to the 

binary scoring of accurate and inaccurate forms using zeros and ones sometimes used 

(e.g. Macrae, 2013).  

The second dependent variable of interest was word production variability. For 

this measure, I followed Ingram (2002, see p. 719 for examples) and used the 

proportion of whole-word variability (PWV) defined as the number of distinct 

productions of a word divided by the total number of productions. Where only one 

distinct form was produced, this form was attributed a variability score of zero. Using 

tidyverse package functions in R (Wickham, 2019), the data were grouped by child 

and age in months before calculating the degree of variability for each word, produced 

by each child, within each month of sampling.  

The master dataset lists 234,551 word tokens (4360 types) with columns for: 

(i) speaker name; (ii) speaker age at word production; (iii) orthographic form of word 
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produced; (iv) child-directed speech frequency; (v) phonological neighbourhood 

density, PLD20; (vi) IPA target form; (vii) IPA produced form; (viii) accuracy 

(Levenshtein distance); and (ix) variability (PWV) for the produced word in that 

month of age. This file is available from the project repository (https://osf.io/w9y27/).  

7.3.3 Accuracy and variability profiles 

One aim of this study was to adopt Grunwell’s (1992) conventions to provide 

accuracy and variability profiles based on spontaneous speech from five children, 

without restriction to a particular lexical subset. To do this, conditional statements 

were used in R to divide all tokens from the master dataset into four classes, before 

calculating the proportion of produced words within each class for each child. For 

each of the 234,551 tokens produced, classification worked as follows: 

 

1. If target / actual distance = 0 and variability = 0, then class = “Hit / stable” 
2. If target / actual distance = 0 and variability > 0, then class = “Hit / variable” 
3. If target / actual distance > 0 and variability = 0, then class = “Miss / stable” 
4. If target / actual distance > 0 and variability > 0, then class = “Miss / variable” 

 

As discussed in the introduction, there has been specific interest in the rate of words 

produced variably without hits in the typically developing population (i.e. statement 4 

above; “Miss / variable”). Estimating this rate in spontaneous speech from typically 

developing children may improve our understanding of expected rates of accuracy and 

variability, and in turn help determine whether a high rate of variability without hits 

constitutes a useful clinical marker. Note that in this analysis accuracy is calculated 

for each word production, while variability is calculated across all productions of each 

word during each month. 

 During peer review two anonymous reviewers raised concerns that the coding 

method presented above may be too stringent. It was noted, for instance, that the 

production of /æləɡeɪtəɹ/ as /ælɪɡeɪɾə/ may be considered accurate as the vowel change 

from /ə/ to /ɪ/, the use of /ɾ/ instead of /t/, and the dropping of the word-final /ɹ/ do not 

constitute errors per se and may be attributable to dialectical variation. Along similar 
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lines, it was suggested that requiring zero variability might be an unrealistic standard 

given that tokens are being collapsed across a month of sampling. These points are 

well taken, and in line with the reviewer suggestions I present a second accuracy and 

variability taxonomy with the modified standards listed below. Note that <= indicates 

‘smaller than or equal to’, while >= indicates ‘greater than or equal to’. 

 

1. If target / actual distance <= 1 and variability <= 0.1, then class = “Hit / 
stable” 

2. If target / actual distance <= 1 and variability >= 0.1, then class = “Hit / 
variable” 

3. If target / actual distance >= 1 and variability <= 0.1, then class = “Miss / 
stable” 

4. If target / actual distance >= 1 and variability >= 0.1, then class = “Miss / 
variable” 

 

 

These modified standards allow for minimal deviation from the listed adult form: A 

Levenshtein distance of zero or one phoneme, and variability of 10% across 

productions. I encourage readers to experiment further by modifying these threshold 

values (i.e. 1, 0.1) in the Boolean statements listed in the R code associated with this 

paper (https://osf.io/w9y27/). 

7.3.4 Statistical modelling 

The second analysis looks at child and lexical influences on word production 

accuracy and variability. To do this, the brms package (Bürkner, 2018) was used to fit 

two simple Bayesian regression models in R. In model one, accuracy (Levenshtein 

distance) was predicted by (i) the child’s age at production; (ii) the word’s child-

directed speech frequency; and (iii) the word’s phonological neighbourhood density 

(PLD20) in the ambient language. In model two, variability (for each target word 

during each month of age) was predicted by (i) the child’s age at production; (ii) the 

word’s child-directed speech frequency; and (iii) the word’s neighbourhood density 

(PLD20) in the ambient language. Given known interactions between these variables 

(e.g. Storkel, 2004), interaction terms were also included for each combination of 

predictors, i.e. age:frequency, age:PLD20, and frequency:PLD20. All predictors were 
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centred (i.e. M = 0) prior to model fitting. This explains the presence of zeros and 

negative values (e.g. negative frequencies) on the x-axes of the figures that follow (see 

Modelling results). In both models, brms package default priors were used (see R 

code), which I expected to be overwhelmed by the large number of observations (i.e. 

234,551 cases). These models fitted well, with a large number of effective samples, 

stationery and well-mixing chains, rhats uniformly at 1, and good posterior predictive 

checks (see R code for detailed diagnostics, and the brms package documentation for 

a detailed description of diagnostic terminology; Bürkner, 2018). 

The goal of modelling is to estimate parameters (e.g. β, the beta coefficient) 

that define the relationship between variables of interest – in this case the relationship 

between age, frequency, and neighbourhood denisty (main effects and interactions), 

and rates of spontaneous word production accuracy and variability. In Bayesian 

statistics the outcome of modelling is a probability distribution that describes the 

plausibility of different values of the parameter of interest (e.g. β). One motivation for 

this approach is that it communicates uncertainty in the data better than an emphasis 

on point estimates such as p values. Of particular interest in this study is the beta 

parameter estimate, β; i.e. the slope for the regression line for each predictor and 

response. A distribution for β bound above zero (e.g. 0.2 to 0.5) suggests a positive 

association between variables. That is, as the predictor value increases so does the 

response value; there is an upward-sloping regression line. A distribution for beta 

bound below zero (e.g. -0.5 to -0.2) suggests a negative association between the 

predictor and outcome, i.e. as the predictor value increases the response value 

decreases; there is a downward-sloping regression line. And a distribution for β 

spanning zero (e.g. -0.2 to 0.2) suggests no linear relationship between predictors, i.e. 

a flat regression line, is plausible. 
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7.4 Results 

7.4.1  Accuracy and variability profiles 

  Table 7.3 shows accuracy and variability profiles for each child, based on the 

conventions developed by Grunwell (1992) and shown in the Method, Accuracy and 

variability profiles section as conditional statements (i.e. under the initial zero 

distance / zero variability criterion). Percentages of forms within each class do not 

differ substantially between children, despite differences in the rates of usable forms 

(see Table 7.1). Importantly, miss / variable rates were high across children, with 

inaccurate productions of variable words comprising between 61% and 72% of all 

productions. Hit / stable, i.e. consistently accurate, was the least common production 

type, ranging from 4% to 7%. 

 
Table 7.3: Proportions of words produced within each accuracy and variability class, under the initial 

zero distance / zero variability criterion. 

Speaker Hit / stable Hit / variable Miss / stable Miss / variable 
Alex 0.04 0.16 0.10 0.71 
Lily 0.06 0.18 0.14 0.61 
Naima 0.04 0.17 0.09 0.69 
Violet 0.07 0.18 0.15 0.61 
William 0.04 0.14 0.11 0.72 

 

In Table 7.4, I report the results of the categorisation using less strict criteria in 

which discrepancies of one phoneme and variability of up to 10% were allowed. To 

re-cap, this approach was prompted by a concern that the criteria generating the 

results shown in Table 7.3 were too stringent, and that these criteria would qualify fair 

deviations from the corpus target listing as errors. Table 7.4 shows that the proportion 

of words in each category again ranks similarly across participants. However, there is 

a substantial difference in the proportions across categories relative to those reported 

in Table 7.3. Under the revised criteria, hit / stable is the most common production 

type, followed by miss / stable, miss / variable, and hit / variable. Criteria selection 
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therefore has a substantial impact on the shape of the taxonomy.   
 

 

 

Table 7.4: Proportions of words produced within each accuracy and variability class, under revised 

criteria tolerating one-phoneme of distance and 10% variability. 

Speaker Hit / stable Hit / variable Miss / stable Miss / variable 
Alex 0.48 0.08 0.28 0.16 
Lily 0.58 0.06 0.26 0.10 
Naima 0.52 0.07 0.28 0.13 
Violet 0.49 0.11 0.23 0.17 
William 0.49 0.08 0.28 0.15 

7.4.2 Modelling results 

Regression model summaries are presented in the Appendix. Figure 7.1 shows 

marginal effects from model one, in which production accuracy (Levenshtein 

distance) was predicted by child age, child-directed speech frequency, and ambient 

language neighbourhood density (PLD20). Production accuracy improved with age, 

with a reduction in target / actual distance in later months of sampling (β = -0.03; 

lower 95% credible interval = -0.03; upper 95% credible interval = -0.03). Words that 

occurred at relatively high frequency in child-directed speech were produced more 

accurately than low frequency words (β  = -0.12; lower 95% CI = -0.12; upper 95% CI 

= -0.12). Finally, words with many neighbours in the ambient language were produced 

more accurately than words with few neighbours in the ambient language (β = 0.10; 

lower 95% CI = 0.10; upper 95% CI = 0.10).  
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Figure 7.1: Associations between child age (0:11-4;0), word frequency, and phonological 

neighbourhood density (PLD20), and production accuracy (Levenshtein distance). Shading represents 

the 95% credible intervals, i.e. the range in which the parameter value falls with 95% probability. Note 

the scale differences on the y-axes.  

I also tested for interactions between age, frequency, and PLD20 as predictors 

of word production accuracy. The results of this analysis are shown in Figure 7.2. No 

interaction was found between age and word frequency (β = 0.00; lower 95% CI = 

0.00; upper 95% CI = 0.00), indicating that the strength of association between 

frequency and production accuracy did not change during the sampling period. The 

interaction between age and PLD20 was marginally negative (β = -0.01; lower 95% 

CI = -0.01; upper 95% CI = 0.00), indicating that low phonological distance (i.e. high 

density) is a more important predictor of accurate word production in early rather than 

late development. Finally, there was a negative interaction between word frequency 

and PLD20 (β = -0.02; lower 95% CI = -0.03; upper 95% CI = -0.02), indicating that 

as word frequency increased the association between high-density and word 

production accuracy weakened.  
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Figure 7.2: Interactions between: (i) child age (0:11-4;0) and frequency; (ii) child age and 

neighbourhood density (PLD20), and; (iii) frequency and neighbourhood density (PLD20), with respect 

to the accuracy response (Levenshtein distance). To ease the interpretation of interactions, age and 

PLD20 are binned into three levels by default by the brms package (i.e. high, mid, low). Shading 

represents the 95% credible intervals. Note the scale differences on the y-axes. 

Figure 7.3 shows posterior probability distributions from model two, in which 

the proportion of whole-word variability (PWV) was predicted by child age, child-

directed speech frequency, and neighbourhood density (PLD20). Production 

variability declined with age, with lower PWV scores in later months of sampling (β = 

-0.02; lower 95% credible interval = -0.03; upper 95% credible interval = -0.02). 

Words that occurred at relatively high frequency in child-directed speech were 

produced more stably than low frequency words (β  = -0.48; lower 95% CI = -0.48; 

upper 95% CI = -0.47). Finally, there was a positive association between PLD20 and 

word variability (β = 0.10; lower 95% CI = 0.10; upper 95% CI = 0.11), indicating 

that words that sounded similar to many other words in the ambient language were 

produced more stably than words that sounded similar to few other words in the 

ambient language. 
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Figure 7.3: The associations between child age (0:11-4;0), word frequency, and phonological 

neighbourhood density (PLD20), and production variability. Shading represents the 95% credible 

intervals. Note the scale differences on the y-axes. 

I also tested for interactions between age, frequency, and PLD20, as predictors 

of word production variability. The results of this analysis are shown in Figure 7.4. 

The interaction between age and frequency was marginally positive (β = 0.02; lower 

95% CI = 0.01; upper 95% CI = 0.02), indicating that high frequency words tended to 

be produced stably across the sampling period, while low frequency words tended to 

be produced more stably in later months of sampling. The interaction between age and 

PLD20 was also positive (β = 0.02; lower 95% CI = 0.02; upper 95% CI = 0.03), 

indicating that in earlier months of sampling word productions were often variable 

regardless of a word’s neighbourhood density, but that in later months variability was 

particularly high for low-density words. Finally, there was a positive interaction 

between word frequency and PLD20 (β = 0.01; lower 95% CI = 0.01; upper 95% CI = 

0.02). This suggests that variability for a low frequency word was often high 

regardless of that word’s PLD20. However, productions of high frequency words were 

marginally more stable for words that sounded similar to many other words in the 

ambient language.  
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Figure 7.4: Interactions between: (i) child age (0:11-4;0) and frequency; (ii) child age and 

neighbourhood density (PLD20), and; (iii) frequency and neighbourhood density (PLD20), with respect 

to the variability response. To ease the interpretation of interactions, age and PLD20 are binned into 

three levels by default by the brms package (i.e. high, mid, low). Shading represents the 95% credible 

intervals. Note the scale differences on the y-axes. 

7.5 Discussion 

This study presented two analyses. First, I estimated overall rates of word 

production accuracy and variability in the spontaneous speech of five typically 

developing children recorded between the ages of 0;11 and 4;0. The aim here was to 

contribute to on-going debate regarding the rates of error and variability that may be 

expected in the typical range, and relatedly to debate regarding whether a high rate of 

word production inaccuracy and variability can provide a useful marker of speech 

sound disorder. Second, the study used Bayesian regression to model word production 

accuracy and variability as a function of age, frequency, neighbourhood density, and 

interactions between these variables. While these variables have previously been 

linked with word production accuracy and variability effects in experimental studies 

(e.g. Macrae, 2013), such effects remained poorly understood with respect to early 

spontaneous speech. The results from each analysis are discussed in the following 

sections.  
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7.5.1 Accuracy and variability profiles 

Following Grunwell (1992) and others (e.g. Holm, Crosbie, & Dodd, 2007; 

McLeod & Hewett, 2008; Sosa, 2015), spontaneously produced words were 

categorised into four classes: (i) accurate and stable; (ii) accurate but variable; (iii) 

inaccurate but stable; and (iv) inaccurate and variable. These classes were populated 

according to two criteria. Under the first criterion, spoken word productions were 

classified as accurate and stable only if they did not differ from the listed adult form. 

This approach broadly replicates the experimental method of Sosa (2015, p. 28). The 

results of this analysis (Table 7.3) indicated high rates of error and variability broadly 

in line with Macrae (2013), McLeod and Hewett (2008), and Sosa (2015), and in 

contrast to the relatively low estimates presented by Holm et al. (2007). Under this 

criterion, up to three quarters of the words produced by children in the Providence 

corpus were variable without hits, which, as in some prior work (e.g. Sosa, 2015), was 

the most frequent production type. Apparently in direct contrast to Holm et al.’s 

(2007) claim that “inconsistency [i.e. variability without hits] is not a feature of 

normal development at any age” (p. 483), the results shown in Table 7.3 of the current 

study imply that young typically developing children are highly inconsistent in their 

early word productions. This in turn makes it reasonable to suggest, following Sosa 

(2015, p. 33), that overall variability rates – particularly rates of variability without 

hits – may not provide a useful index to aid the differential diagnosis of children with 

speech sound disorder.  

Under a second criterion, however, spoken word tokens were classified as 

accurate despite differing from the listed adult target form by a single phoneme, and 

classified as stable across multiple productions up to a 10% variability threshold. 

These modifications to the initial criteria were prompted by concerns raised during 

peer review that the original approach may unfairly qualify reasonable deviations 

from the adult target listing as errors. This point is well taken, and closely examining 

the data I found a number of examples supporting the anonymous reviewers’ claims: 

/mɑm/, for example, pronounced /mʌm/. Though unlikely to be considered erroneous 
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by many listeners, such productions were classed as erroneous under the criterion first 

used.  

As might be expected, the change in criterion had a dramatic impact on the 

accuracy and variability profiles derived (Table 7.4). Under the revised criterion, hit / 

stable was the most common production type (48%–58%), while miss / variable 

comprised between just 10% and 16% of productions. These figures appear broadly 

continuous with Holm et al.’s (2007) estimate of 13% variability in 409 typically 

developing children aged 3;0–3;5 (Holm et al., 2007) as well as with the previously-

cited conclusion that production inconsistency is not a feature of typical language 

development. The revised results (Table 7.4) suggest that although young children do 

deviate minimally from the listed adult form used as an experimental standard, they 

remain generally accurate and stable in their spontaneous word productions, and this 

in turn constitutes support for the claim that a high overall inaccuracy and variability 

rate may be considered a valid marker of speech sound disorder (Holm et al., 2007).  

Increasing the thresholds used during classification to a Levinshtein distance 

of one and variability of 10% successfully accommodates productions that deviate 

from the adult listed form but which are unlikely to be considered erroneous. 

However, this approach comes with a significant cost, as loosening the thresholds 

permits the classification of minimal errors as accurate forms. This may appear 

particularly damaging with respect to short words, which dominate the early 

productive lexicon. The mode length of words in the Providence corpus is three 

phonemes (M = 3.74), and 155,088 words – or 66% of the corpus – comprise three 

phonemes or fewer. For such words one discrepant phoneme may represent a 

substantial erroneous deviation, which is ignored under the relaxed thresholds. For 

example, instances classed as accurate productions under the revised criteria include 

the production of /bæɡ/ as /bæk/, the production of /bæθ/ as /bæ/, and the production 

of /bæt/ as /bɛt/. Inspecting the data, such instances appear far from exceptional. 

Setting a hard and fast decision boundary for the quantification of accurate and 

variable spoken word forms therefore involves a difficult trade-off: (i) categorise a 

level of apparently tolerable production deviance as erroneous or (ii) categorise 

minimal production errors as accurate. When comparing child productions to adult 
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listed forms, this trade-off would apparently exist whether considering large-scale 

spontaneous speech data such as that of the current study or small-scale elicited 

speech data, such as that of prior experimental studies (e.g. Sosa, 2015; Holm et al., 

2007). 

Unfortunately it is impossible to select between the contrasting taxonomies 

presented in this study on the basis of the current or existing data. Each underlying 

criterion is well justified, and each generates a taxonomy with proportions of accuracy 

and variability broadly continuous with those previously reported (e.g. Sosa, 2015; 

Holm et al., 2007). Given the apparent sensitivity of spoken word classification to 

minimal changes in the underlying criterion, and given the extensive discrepancies in 

rates of accuracy and variability reported in the existing literature, it remains unclear 

whether accuracy and variability profiles can provide a useful method of identifying 

speech sound disorder. It may well be, as Sosa (2015, p. 32) writes, that: 

 

The use of phonetic transcription to quantify [accuracy and] variability is too 

unreliable to be used for differential diagnosis of speech sound disorder; more 

refined acoustic and/or kinematic analysis methods may be needed. 

 

Establishing a robust method of quantifying the degree of spoken word accuracy and 

variability that occurs in early naturalistic and elicited speech constitutes an important 

part of the future research agenda, both for our understanding of typical and atypical 

language development and for the purposes of assessment and intervention. One 

conceivable direction for future research would be to collect large samples of child, 

spontaneous and elicited speech data, and then to record accuracy judgements for 

specific spoken word tokens within that data from a large group of impartial, adult 

listeners. Listeners would hear spoken word instances and identify (for instance via 

button pressing) whether they considered each token to be accurate or inaccurate (e.g. 

/æləɡeɪtəɹ/ produced /ælɪɡeɪtəɹ/ and /ælɪɡeɪɾə/). These accuracy judgments could then 

form a basis for the classification of spoken word tokens into accuracy and variability 

taxonomies. This study would be highly resource intensive and the method clearly 

could not be applied directly in clinical contexts. However such an approach may 
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provide the baseline data needed to break the apparent deadlock and help resolve 

widespread disagreement in the existing literature on early spoken word accuracy and 

variability rates.  

7.5.2 Age and lexical effects on accuracy and variability 

 The second part of this study looked at child and lexical influences on early 

rates of spoken word accuracy and variability. The child-related predictor of interest 

was age, which has previously been reported to have a positive association with word 

production accuracy and a negative association with word production variability 

(Holm et al., 2007; Macrae, 2013). The current analysis is the first to confirm that 

these findings hold in longitudinal spontaneous speech across a sampling age range 

considerably larger than that of any prior study (i.e. 0:11-4;0). That is, I reported that 

both error and variability were lower in the later months sampled. The first lexical 

predictor of interest was child-directed speech frequency, a variable central to the 

study of early language acquisition which has previously been positively linked to 

high spoken word accuracy and stability (e.g. Sosa & Stoel-Gammon, 2012). The 

current study also replicated this finding, reporting a robust association between high 

frequency, and better accuracy and reduced variability. The second lexical predictor of 

interest was phonological neighbourhood density (PLD20), which has been positively 

linked to memorisation and production advantages (e.g. Storkel, 2004, 2009; Storkel 

& Lee, 2011). As in Sosa and Stoel-Gammon, (2012), I reported heightened accuracy 

and reduced variability for high neighbourhood density words, and in doing so 

demonstrated that previous findings scale-up when assessing children’s spontaneous 

speech without restriction to a spoken word token limit (e.g. Sosa & Stoel-Gammon, 

2012, assessed 30 elicited words).  

Modelling also suggested interactions between age, word frequency, and 

phonological neighbourhood density as predictors of spoken word accuracy and 

variability. For instance, I reported that in early months of sampling productions were 

highly variable regardless of the words’ neighbourhood density but that in later 

months of sampling high-density (i.e. low PLD20) words were substantially less 
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variable (Figure 7.4, centre panel). The current study also corroborated previous work 

by Hollich et al. (2002), and Storkel (2004), who found that high neighbourhood 

density predicted word acquisition for low- but not high-frequency words. Such 

findings contribute to a developing picture of high word exposure frequency as a 

primary force driving growth of the productive lexicon, and alternative word 

characteristics such as neighbourhood density ‘stepping in’ and supporting learning 

when exposure frequency is relatively low. The results of this study show for the first 

time that this effect extends to the accuracy of children’s early spontaneous word 

productions (Figure 7.2, right panel).  

With the exception of Ethan, who was excluded from the current analyses on 

the basis of a later diagnosis of Asperger’s Syndrome, children in the Providence 

corpus are typically developing. It is therefore important to understand the 

associations between predictors and accuracy and variability rates reported here as 

part of a typical trajectory, i.e. not within the framework of speech sound disorders. 

Explanatory accounts compatible with the results reported in this study emphasise 

oral-motor maturity and a shift from holistic to segmental word representations. There 

is evidence that children’s oral-motor skills are associated with their language skills 

independently of their general cognitive abilities (Alcock, 2006). Thus, although 

further experimentation is required, it may be reasonable to assume that increases in 

production accuracy and stability with age are to some degree attributable to improved 

control of the articulators. In addition, early word phonology may be memorised only 

approximately as a result of working memory limitations or initial focus on relatively 

holistic word features (Metsala & Walley, 1998), and accurate and stable production 

will be compromised in the absence of a mental representation detailed enough to 

provide a solid motor plan. High-frequency, high-density words hold an advantage in 

this early trajectory of oral-motor and cognitive development because they are 

repeatedly encountered and encoded in memory both explicitly and implicitly. High 

input frequency, high-density words are also likely to be produced by the child more 

regularly, and contain familiar sound patterns that may require minimal articulatory 

and cognitive recourses. Assessing this emergent explanatory account remains an 

important on-going research line, both for its contribution to our general 



172 Accuracy and Variability in Early Spontaneous Word Production 

 

 

understanding of the interaction between early oral-motor and cognitive development, 

and for our understanding of how to improve phonological word representation and 

production in children with developmental language disorder. The current study 

constitutes an important addition to our understanding of how developmental stage, 

exposure frequency, and phonological neighbourhood density influence the dynamics 

of early word production accuracy and variability.  

7.5.3 Limitations 

Despite its contributions to the literature the current study has a number of 

limitations. I have already discussed the issue of multicolinearity, which prevents 

against the inclusion of alternative variables of theoretical interest such as phonotactic 

probability. This is regrettably unavoidable, and I can only encourage readers to use 

the published code to experiment with different configurations of predictor variables 

that may be of personal theoretical interest (https://osf.io/w9y27/). A second issue is 

that at a number of points in this manuscript I draw parallels between the estimates I 

derived under different criteria of accuracy and variability and the estimates reported 

in prior studies (e.g. Sosa 2015; Holm et al., 2007). However, given differences in the 

sampling methods of the current study and previous work presenting accuracy and 

variability profiles (e.g. Holm et al., 2007, evaluated variability across only three 

repetitions), such comparisons are imperfect. It is acknowledged, for instance, that 

there is more opportunity for word production error and variability in spontaneous 

speech than there is during elicitation tasks, and that the possibility of spoken word 

error or variability grows with rates of production, which are not uniform across 

words in the corpus (McLeod & Hewett, 2008). Furthermore, it is noted that the 

Providence corpus uses a narrow transcription, while some prior studies (e.g. Sosa, 

2015) have made broad transcriptions. Finally, in the introduction to the current study 

it was argued that the analysis of spontaneous speech data unrestricted by a target 

cluster, word type, or utterance count can provide insight beyond the analysis of a 

small number of target words elicited in an experimental setting, for instance by 

supporting or challenging the validity of such experimental data. I believe the current 
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manuscript to have delivered on this claim not only by raising important questions 

regarding methods of quantifying early accuracy and variability rates, but also by 

showing for the first time that a range of findings from the early word acquisition 

literature (e.g. age, frequency, neighbourhood density effects, and interactions) can be 

found in accuracy and variability rates derived from large-scale, longitudinal, 

naturalistic word production data. That said, an important trade-off of the use of 

longitudinal data with a relatively high sampling rate such as the Providence corpus is 

that because the collection and transcription of such data is both challenging and 

highly time-consuming participant numbers are often low. A further limitation of the 

current study is, therefore, that it includes data from just five children, making it 

difficult to extrapolate findings to the broader population.  

7.6 Conclusion 

 This study examined rates of spontaneous word production accuracy and 

variability with respect to three predictor variables: Child age, word frequency, and 

word phonological neighbourhood density. Increases in accuracy and decreases in 

variability between the ages of 11 months and four years were interpreted within a 

framework of early memory and oral-motor development – a trajectory within which 

high exposure frequency and high neighbourhood density confer acquisition and 

production advantages. I also presented two taxonomies of early accuracy and 

variability rates that highlighted the difficulty of setting hard and fast error 

discrimination thresholds. I proposed an accuracy judgement study that may address 

this issue and help resolve widespread disagreement regarding the rates of accuracy 

and variability expected within the typical range. Without such normative data it may 

be difficult to determine the validity of measures of spoken word accuracy and 

variability used in research and clinical settings.  
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Chapter 8 Density and Distinctiveness in Early 

Word Learning: Evidence from Neural Network 

Simulations 

Linking statement: Chapters four to Six have identified individual differences in the 

ability to represent spoken words that are attributable to age, clinical profile, and 

lexical influences. In particular, these studies have shown that high-density words are 

usually better represented and therefore more accurately produced than low-density 

words. In this chapter I simulate the high-density bias in a neural network and 

provide an interpretation of network performance that accommodates conflicting 

behavioural evidence of high distinctiveness word learning advantages. This chapter 

strongly informs the development of the explanatory account of the high-density bias 

linking each empirical study of this thesis. 

8.1 Abstract 

High phonological neighbourhood density has been associated with both 

advantages and disadvantages in early word learning. High density may support the 

formation and fine-tuning of new word sound memories; a process termed lexical 

configuration (e.g. Storkel, 2004). However, new high-density words are also more 

likely to be misunderstood as instances of known words, and may therefore fail to 

trigger the learning process (e.g. Swingley & Aslin, 2007). To examine these 

apparently contradictory effects, we trained an autoencoder neural network on 

587,954 word tokens (5497 types; including mono- and multi-syllabic words of all 

grammatical classes) spoken by 279 caregivers to English-speaking children aged 18 
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to 24 months. We then simulated a communicative development inventory 

administration and compared network performance to that of 2292 children aged 18 to 

24 months. We argue that autoencoder performance illustrates concurrent density 

advantages and disadvantages, in contrast to prior behavioural and computational 

literature treating such effects independently. Low network error rates signal a 

configuration advantage for high-density words, while high network error rates signal 

a triggering advantage for low-density words. This interpretation is consistent with the 

application of autoencoders in academic research and industry, for simultaneous 

feature extraction (i.e. configuration) and anomaly detection (i.e. triggering). 

Autoencoder simulation therefore illustrates how apparently contradictory density and 

distinctiveness effects can emerge from a common learning mechanism.  

8.2 Introduction 

 Words with high phonological neighbourhood density (i.e. words that sound 

similar to many other words in the language to which children are exposed) are 

learned developmentally earlier and remembered and produced more accurately than 

words with low phonological neighbourhood density (Fourtassi, Bian, & Frank, 2018; 

Hollich, Jusczyk, & Luce, 2002; Stokes, 2014; Storkel, 2004). One way to understand 

this effect is in terms of long-term auditory priming (e.g. Church & Fisher, 1998). In 

this account, phonological representations of words heard in child-directed and 

overheard speech are formed in the child’s long-term memory (Port, 2007). These 

representations may be perceptual, meaning that they are stored without semantic 

details, or they may be conceptual, meaning that they are stored with semantic details. 

High neighbourhood density words are memorised more easily than low 

neighbourhood density words because high-density words contain sound features that 

are well represented in existing perceptual and conceptual word memories. The novel 

high-density word coal, for instance, may be acquired through analogy to existing 

memories including coat, pole, cone, hole, code, and mole (Church & Fisher, 1998).  
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One challenge for research in early word learning has been to reconcile 

evidence of a high-density word learning advantage with contrasting evidence of a 

high-density word learning disadvantage in specific contexts (e.g. Stager & Werker, 

1997; Swingley & Aslin, 2007). Swingley and Aslin (2007), for instance, found that 

children aged 1;6 (one year, six months) struggled to associate phonologically similar 

labels (e.g. tog, neighbouring the known word dog) to novel objects and reported a 

learning advantage for distinctive stimuli with no or very few phonological 

neighbours (e.g. meb). One interpretation of this finding is that children may 

misidentify a novel high-density word as an instance of a known neighbour, 

particularly in the absence of additional cues to support word leaning, such as a 

sentence frame or speaker gaze. This behavior is generally adaptive because stored 

word sound memories and related perceptual mechanisms must be flexible enough to 

support cross-contextual comprehension on the fly, for instance when a learner 

encounters a known word in an unfamiliar dialect (Church & Fisher, 1998). 

Furthermore, the number of minimally different words that young children know and 

hear regularly in the speech directed to them is limited (Guevara-Rukoz et al., 2018), 

and this makes it reasonable to classify a novel sound sequence that is very similar to 

a known word as an instance of that known word instead of as an instance of an 

unknown word (Swingley & Aslin, 2007).  

Overall, then, the evidence suggests that phonological density and 

phonological distinctiveness support different aspects of word learning. Phonological 

distinctiveness supports the triggering of word learning, in which potential targets of 

acquisition are identified. Phonological density meanwhile supports lexical 

configuration, or the formation and ongoing fine-tuning of sound memories for these 

words. These effects have commonly been treated separately, as in the aforementioned 

studies by Storkel (2004) and Swingley and Aslin (2007), and in related work by 

Hoover, Storkel, and Hogan (2010) and McKean, Letts, and Howard (2014). 

Furthermore, there has been a tendency to frame evidence of either a high-density or 

high-distinctiveness learning advantage as evidence against the opposing effect (e.g. 

as in Vitevitch & Storkel’s, 2013, p. 520, reference to Swingley & Aslin, 2007). The 

purpose of the current study is to provide a unified framework for understanding 
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apparently contradictory density and distinctiveness effects in early word learning. We 

use a simple autoencoder neural network to illustrate how these effects can emerge 

from a common underlying mechanism. 

 The current study was motivated by Vitevitch and Storkel (2013), who 

examined neighbourhood effects in early word learning by training and testing an 

autoencoder on a small number of monosyllabic non-words (N=60), which were 

dichotomised into high-density and low-density groups. One novel contribution of the 

current study is to determine how the high-density advantage reported by Vitevitch 

and Storkel (2013) scales when using sizeable naturalistic data. In order to make the 

training data representative of young children’s input, we trained an autoencoder on 

587,954 word tokens (5497 word types) spoken by 279 caregivers to English-speaking 

children aged 18 to 24 months. This age range was selected to reflect participants in 

the aforementioned literature on density and distinctiveness effects (e.g. Storkel, 2004; 

Swingley & Aslin, 2007). The training data included mono- and multi-syllabic words 

from all grammatical classes, for instance nouns, verbs, adjectives, and prepositions. 

To test the trained network, we simulated a MacArthur-Bates communicative 

development inventory administration (Fenson et al., 2007). Then, to validate network 

performance, we compared the results of this simulated administration to those from 

2292 real administrations involving children aged 18 to 24 months. Note that this 

validation phase was not possible in prior work using non-words (Vitevitch & Storkel, 

2013). In addition to testing the network’s ability to represent and output trained 

words, we also tested the network’s ability to generalise and process new, previously 

untrained words. In all phases, neighbourhood density was modeled continuously, 

avoiding dichotomisation that can reduce statistical power and limit the quality of 

inferences drawn.  

 Our interpretation of network performance is informed by our understanding 

of the application of autoencoders in academic research and industry. Autoencoders 

are a class of neural networks in which – in three-layer instantiations – input is 

received in the first layer, compressed in a second ‘hidden’ layer, and then 

reconstructed in a third output layer. Autoencoders learn through back propagation, 
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updating between-layer connection weights in order to reduce input-output error.  

 

 

Figure 8.1: A simplified autoencoder architecture. 

Autoencoders show large error when there is a big difference between the input data 

representation and the output data representation. Importantly, whether or not high 

network error is undesirable depends on the task at hand. Low error indicates that a 

given data point has features consistent with the well-represented properties of the 

previous network input, such as the dominant features in a set of images or the 

semantic or phonological features common across a set of words. In the context of 

neighbourhood density effects, the low error rate reported by Vitevitch and Storkel 

(2013) represents a configuration advantage for high-density words. However, high 

error may be considered advantageous when the purpose of the autoencoder is to 

detect anomalies. For example, in credit card fraud detection, an autoencoder may be 

trained on non-fraudulent transactions only, with both non-fraudulent and fraudulent 

transactions subsequently presented and the latter prompting an increase in error rate. 

Similarly, in a categorisation task simulation, the network may habituate to a set of 

similar stimuli and de-habituate on presentation of an anomalous stimulus. In each 

case, high error rates indicate that a novel data point (i.e. a transaction or stimulus) is 

unlikely to be a member of any trained class. In the context of simulating 

neighbourhood density effects in early word learning, a spike in error rate indicates 

that a novel string is unlikely to be an instance of any previously trained word. And in 

this sense, high autoencoder error provides a strong analogy to the triggering 

advantage for distinctive stimuli observed in human participants (e.g. Swingley & 

Aslin, 2007). 

Input Output 

Encoder Decoder 

Hidden	layer 
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A broad similarity may be seen between the computational approach used in 

this study and behavioural paradigms such as the naming task, in which participants 

must accurately read a word or verbally label a stimulus, or the non-word repetition 

task, in which participants must accurately repeat a nonsense auditory word stimulus. 

In each case, lower error rates are taken as evidence of better-memorised properties of 

the input. However, we want to emphasise that the focus of this report is a simple 

model of word sound memory configuration and associated triggering effects, rather 

than an explicit model of word comprehension or production. In addition, we remain 

agnostic regarding the nature of actual word sound representations, for instance 

prototypes, exemplars, or hybrids (see Ambridge, 2019, for discussion).  

8.3 Method 

8.3.1 Network specification 

A full network specification can be retrieved via the R code hosted on the 

Open Science Framework repository associated with this project 

(https://osf.io/2qk5j/). We used the h2o machine learning platform (H2O.ai, 2016) to 

build an autoencoder with rectified linear unit activation functions, a learning rate of 

.1, one thousand training epochs, and randomised initial weights. These parameters 

make our network broadly comparable to that of Vitevitch and Storkel (2013). Our 

autoencoder had 114 input nodes and 114 output nodes; a number determined through 

the numerical encoding of words from the training corpus (see Training). In a basic 

sensitivity analysis, we compared networks with 10, 20, and 30 hidden-layer nodes, 

i.e. with smaller or larger processing resources. Having observed equivalent main 

effects we settled on a hidden-layer size of 20 nodes.  
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8.3.2 Training  

The autoencoder was trained on 587,954 tokens (5497 mono- and multi-

syllabic unique word types, including all grammatical classes) from child-directed 

speech from 279 caregivers, directed at American English-speaking children aged 18 

to 24 months. These data were retrieved from the Child Language Data Exchange 

System (CHILDES) using the childesr package in R (MacWhinney, 2000; Sanchez et 

al., 2019). For each word type we extracted a machine-readable phonological 

encoding (i.e. a string of 0s and 1s; an example follows) from the pre-embedded 

Medical Research Council (MRC) dictionary hosted as part of the PyPatPho package 

(Coltheart, 1981; Grimm & Tulkens, 2015; see https://github.com/RobGrimm/ 

PyPatPho). Only words listed in this database were included in the training inventory. 

These numerical encodings were generated using PatPho via PyPatPho in Python 

(Grimm & Tulkens, 2015; Li & MacWhinney, 2002). PatPho converts words into 

114-unit binary value vectors on the basis of a range of articulatory features (e.g., 

voiced, voiceless, front, back, labial, high, lateral, etc.) adopting a syllabic template 

scheme that accommodates input of varying length and therefore enabling us to model 

mono- and multi-syllabic words within a parallel architecture. Truncated example 

PatPho encodings for the words cat and hat are shown below. Note that encodings 

were fronted, meaning that word-initial features start at the beginning of the 114-digit 

vector. 

 

/kæt/ =  [0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0...0144] 
/hæt/ =  [0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0...0144] 

 
 

Shading identifies the portion of the vector containing the differences in 0s and 

1s that map to the difference in the first phonemes of cat and hat (i.e. /k/ versus /h/). 

The subsequent string identity – continuous up to 114 digits – reflects the shared 

phonemes /æt/ and placeholders supporting the encoding of longer, multi-syllabic 

words. During training, the encoded child-directed speech corpus was passed to the 

network defined in Network specification. 
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8.3.3 Test  

After training, we tested the network on a 586-item subset of the trained data 

that appear in the MacArthur-Bates communicative development inventory, words 

and sentences version (MCDI-WS; Fenson et al., 2007). The MCDI-WS contains a list 

of words and phrases and accompanying checkboxes under the response option 

‘produces’3. During real-world administration, caregivers are asked to tick the boxes 

next to the words that their child is able to say. We accessed the MCDI-WS data using 

the wordbankr package in R (Braginsky, Yurovsky, Frank, & Kellier, 2018; Frank, 

Braginsky, Yurovsky, & Marchman, 2017). The test word list was encoded using the 

process described in Training.  

For each test word we calculated three independent variables: Phonological 

neighbourhood density, frequency, and length. Following Luce and Pisoni (1998), 

developmental researchers commonly define phonological neighbourhood density as 

the number of words in a given corpus that can be formed by the addition, 

substitution, or elimination of a single phoneme in a target word, e.g. cat neighbours 

hat, cot, can, and catch. A limitation of this approach, however, is that many of the 

words to which young children are exposed are ‘lexical hermits’ with zero plus/minus 

one-phoneme neighbourhood density. Accordingly, we used a continuous metric of 

similarity called phonological Levenshtein distance, or PLD20, defined as the mean 

number of additions, substitutions, or eliminations of phonemes required to change a 

particular word into its nearest twenty phonological neighbours (Suárez, Tan, Yap, & 

Goh, 2011, p. 606). PLD20 values for each test word were calculated using all 

words in the training corpus. A smaller PLD20 indicates greater phonological 

similarity (i.e. high density).  

Frequency and length variables were also included in our statistical model 

because close association with neighbourhood density (i.e. high-density words are 

typically high frequency and short) makes it important to control statistically for these 

 
3 Note that we only tested MCDI-WS words and that MCDI-WS phrases were 
excluded from our analysis. 
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effects. Previous studies have also reported interactions between these variables. For 

instance, Storkel (2004) found a significant association between high phonological 

neighbourhood density and early age-of-acquisition for low- but not high-frequency 

words. In the current study, we used log token frequencies for each test word in the 

training inventory, and length was measured in number of phonemes. Alternative 

measures of word length, including number of letters, syllables, or morphemes, are 

highly correlated and may therefore provide similar results (Lewis & Frank, 2016). 

We selected the phoneme-based measure given the central interest in this unit of 

representation in the current study (i.e. as the basis of the PLD20 calculation). 

The statistical analysis of test phase error rates was conducted in R (R Core 

Team, 2016) using the brms package (Bayesian regression models using Stan) 

(Bürkner, 2018). For all models, likelihood functions were selected on the basis of 

response variable distribution. In the test phase analysis, we fitted a multiple 

regression model with a lognormal likelihood, in which autoencoder mean squared 

error was predicted by word frequency, word length, phonological distance (PLD20), 

and interactions between PLD20 and word frequency and length (i.e. 

PLD20*frequency, PLD20*length). We used brms default priors, with each predictor 

centered and scaled prior to model fitting. This model fitted successfully, with a good 

number of effective samples, stationery and well-mixing chains, rhats uniformly at 1, 

and credible posterior predictive checks (see R code for full diagnostics, and the brms 

package documentation for further description of diagnostic terminology; Bürkner, 

2018). 

8.3.4 Validation  

Using real words during training and test made it straightforward to compare 

network performance to data from children. We used the network’s test-phase error 

rates to predict rates of word production among 2292 American English-speaking 

children aged 18 to 24 months, i.e. matched in age to the training inventory. That is, 

we compared the results of our simulated MacArthur-Bates communicative 

development inventory administration to a large database of completed, real-world 
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administrations. This data was retrieved from the wordbank database using the 

wordbankr package in R (Braginsky et al., 2019; Frank et al., 2017; R Core Team, 

2016). We calculated the proportion of children that were able to produce each test 

word and used this as the dependent variable in a Bayesian regression model in which 

the by-word mean squared error rate from our autoencoder was the independent 

variable. We used a gamma family likelihood and brms default priors, and the 

predictor was centered and scaled for model fitting (see R code for diagnostics). 

8.3.5 Generalisation 

In this phase, we exposed the trained network to 500 words it had not been 

trained on and measured the error rates for these items. Generalisation-phase words 

were randomly sampled from the Massive Auditory Lexical Decision (MALD) 

database (Tucker et al., 2018), and the degree of phonological similarity between each 

generalisation word and words in the training inventory was calculated using the 

PLD20 metric. The question addressed in this analysis was whether error rates were 

higher or lower for generalisation words that sounded relatively similar or dissimilar 

to words that the autoencoder had been trained on. We addressed this question using a 

Bayesian regression model in which generalisation word mean squared error rate was 

predicted by PLD20 and word length in phonemes. We used a skew-normal family 

likelihood and brms default priors, with predictors again centered and scaled for 

model fitting (see R code for diagnostics). 

8.4 Results 

We begin with the results from the test phase, in which we simulated a 

MacArthur-Bates communicative development inventory (MCDI-WS) administration 

on an autoencoder trained on a large corpus of authentic child-directed speech (see 

Appendix E for model summaries). We found main effects for each predictor, which 

are visualised as posterior probability distributions in Figure 8.2. High reconstruction 
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error rates were associated with: (i) Long word length in phonemes (β =0.04; 

error=0.02; lower 95% credible interval=-0.00; upper 95% credible interval=0.08); (ii) 

low child-directed speech frequency (β =-0.02; error=0.01; lower 95% credible 

interval=-0.04; upper 95% credible interval=0.00); and (iii) high phonological 

Levenshtein distance (PLD20), i.e. low phonological neighbourhood density (β =0.18; 

error=0.02; lower 95% credible interval=0.13; upper 95% credible interval=0.22).  
 

 

 

 

Figure 8.2: Posterior probability distributions for the beta (β) coefficients representing the association 

between autoencoder mean squared error and; (i) word length (in phonemes), (ii) log child-directed 

speech frequency, and (iii) phonological Levenshtein distance (PLD20). 

We also found evidence of a higher-order interaction between PLD20 and 

word frequency (β =-0.04; error=0.01; lower 95% credible interval=-0.07; upper 95% 

credible interval=-0.02). This indicates that the association between high 

neighbourhood density and low error rate was particularly strong for low frequency 

words, with high frequency nullifying the PLD20 effect. No higher-order interaction 

was observed between word length and PLD20 (β =-0.01; error=0.01; lower 95% 

credible interval=-0.02; upper 95% credible interval=0.01). 

 During the subsequent validation phase, we used the error rates from our 

simulated MCDI-WS administration to predict proportions of MCDI-WS word 

production among 2292 American English-speaking children matched in age to the 

training inventory (i.e. 18-24 months). We found a negative trend, with words with 

higher autoencoder error rates produced by a smaller proportion of children (β =-0.03; 

error=0.03; lower 95% credible interval=-0.09; upper 95% credible interval=0.02).  

 Finally, during the generalisation phase, we exposed the trained autoencoder to 

a randomly sampled inventory of 500 previously unseen words that varied in 

Length Frequency PLD20
0.00 0.05 0.10 −0.06 −0.04 −0.02 0.00 0.02 0.08 0.12 0.16 0.20 0.24

Marginal posterior distributions for main effects
Predictor association with autoencoder mean squared error
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phonological similarity to words in the training inventory. Higher error rates were 

observed for high-PLD20 (i.e. low-density) words when controlling for the effect of 

word length (β =0.02; error=0.00; lower 95% credible interval=0.01; upper 95% 

credible interval=0.02).  

8.5 Discussion 

This study used an autoencoder neural network to simulate phonological 

neighbourhood density and distinctiveness effects observed in early word learning. 

One contribution of this study was to determine how the results of Vitevitch and 

Storkel (2013) scaled when using sizeable naturalistic training and test data, avoiding 

data dichotomisation, and incorporating validation against real world data. We trained 

a three-layer autoencoder using a large corpus of child-directed speech before 

simulating a communicative development inventory administration at test and then 

comparing network performance to that of children who were age-matched to the 

training data (i.e. 18-24 months). Lower reconstruction error rates were observed for 

words that sounded similar to many other words in the child-directed speech on which 

the autoencoder was trained. This effect was separable from the effects of word 

frequency and word length, which also tended in the expected directions given the 

existing behavioral data. That is, lower error rates were observed for high frequency 

words and for short words (Braginsky, Yurovsky, Marchman, & Frank, 2019). 

Despite the extreme simplicity of our network, we were therefore able to simulate the 

high phonological neighbourhood density configuration advantage reported 

behaviorally (e.g. Fourtassi et al., 2018; Hollich, Jusczyk, & Luce, 2002; Stokes, 

2014; Storkel, 2004). We also reported a higher-order interaction between word 

frequency and phonological distance. As demonstrated behaviorally by Hollich et al. 

(2002) and Storkel (2004), we found that high frequency nullified the high 

phonological neighbourhood density advantage, with amplified error rates for low-

frequency, low-density words.  
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In network validation, we used test-phase error to predict word production 

rates among 2292 children. Despite a credible interval including zero – indicating that 

zero may be the true value of the effect – we observed a negative trend in which fewer 

children produced words that the autoencoder had difficulty representing and 

reconstructing at test (β =-0.03). Finally, we examined the network’s ability to 

generalise to previously unseen data and found an advantage for words with low 

PLD20 (i.e. high density) relative to the training corpus. That is, the autoencoder was 

better able to represent and reconstruct novel words that sounded similar to trained 

words than novel, phonologically anomalous words. Broadly similar results have been 

reported behaviorally by Schwartz and colleagues, who found that children were more 

likely to learn to successfully produce a novel word if that word contained IN-sounds 

– i.e. sounds that the child had previously produced – than if it contained previously 

unattested OUT-sounds (Schwartz & Leonard, 1982; Schwartz, Leonard, Frome Loeb, 

Swanson, & Loeb, 1987; see also Storkel, 2006).  

High neighbourhood density is associated with low network error because the 

encodings of phonologically similar words exhibit similar patterns (i.e. comparable 

series of 0s and 1s; see the cat and hat example in Training) that are better represented 

across the network during dimensionality reduction, a process sometimes termed a 

conspiracy effect in machine learning research (Rumelhart, McClelland, and the PDP 

Research Group, 1986). This makes it possible to reconstruct high phonological 

neighbourhood density words more accurately, as reflected in low error rates during 

training, test and generalisation. For instance, exposure to the words coat, pole, cone, 

hole, code, and mole prompts changes in the connection weights that support the 

reconstruction of the novel neighbour coal. As the autoencoder is forced through the 

hidden layer bottleneck (see Figure 8.1) to extract dominant input properties, 

generalisation to a novel word exhibiting features orthogonal to those previously 

experienced is inhibited, as reflected by high reconstruction error rates for 

phonologically distinctive, high PLD20 words.  

In our view, a real world parallel to the computational mechanism described 

above is the cognitive process of long-term auditory priming (e.g. Church & Fisher, 

1998). In this account, representations of direct and indirect spoken word exposures 



192 Density and Distinctiveness in Early Word Learning: Evidence from Neural 

Network Simulations 

 

 

are stored in long-term memory (Port, 2007). These representations are initially 

perceptual rather than conceptual in nature and may be formed implicitly in the 

absence of semantic information, much like the representations formed by our 

network. Children are sensitive to the degree of similarity between stored perceptual 

representations and are able to use this sensitivity to identify (e.g. in the head-turn 

preference procedure) word sounds that occur at high-probability in their native 

language (Fourtassi et al., 2018; Jusczyk, Luce, & Charles-Luce, 1994). Novel high-

density target words comprising phonological features consistent with existing 

perceptual memory traces may be held in memory more easily during initial 

processing (Gathercole, Frankish, Pickering, & Peaker, 1999; Hoover et al., 2010), 

and this supports the formation of long-term, perceptual and conceptual memory 

traces that are well detailed and robust to forgetting (Metsala & Walley, 1998; Sosa & 

Stoel-Gammon, 2012; Storkel, 2004; Walley, Metsala, & Garlock, 2003). Learners 

may increasingly use their awareness of high-probability word sounds, as well as their 

related aptitude in producing such sounds, to generalise readily to novel though 

phonologically familiar words, as in the aforementioned IN-sound/OUT-sound studies 

of Schwartz and colleagues (Schwartz & Leonard, 1982; Schwartz et al., 1987; see 

also Storkel, 2006). Low-density words are in general difficult for young children to 

acquire because there exist few similar stored word representations – whether 

perceptual or conceptual – from which to generalise. 

In the introduction we noted a tendency in the prior literature to treat density 

and distinctiveness effects separately, and to frame evidence of either a high-density 

or high- distinctiveness learning advantage as evidence against the opposing effect 

(e.g. Storkel, 2004; Swingley & Aslin, 2007; Hoover et al., 2010; McKean et al., 

2014; Vitevitch & Storkel, 2013). In contrast to this approach, the second contribution 

of this study is to provide a unified framework for understanding density and 

distinctiveness effects in early word learning. To do this, we want to emphasise that 

autoencoder neural networks perform both feature extraction and anomaly detection in 

parallel. In this sense, it would be inaccurate to suggest that high autoencoder error 

rates for low-density words provide an analogy to learning deficits in children 
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(Vitevitch & Storkel, 2013). Whereas low network error rates may indeed be 

understood as exposure to high-density words prompting a conspiracy effect 

supporting lexical configuration, high autoencoder error signals the detection of an 

anomalous target word comprising phonological features inconsistent with those 

previously trained. This latter effect – i.e. computational anomaly detection – parallels 

the triggering advantage observed for low-density words in children (e.g. Stager & 

Werker, 1997; Swingley & Aslin, 2007), which itself may be decomposed into 

attention- or curiosity-based learning advantages (Twomey & Westermann, 2017; we 

note that additional learning mechanisms conceivably dependent on the fundamental 

triggering mechanism simulated form no part of our model). Autoencoder neural 

networks therefore provide a neat computational analogy to both the density 

advantages and the distinctiveness advantages observed in behavioral studies of early 

word learning. Triggering effects may be seen as the advantageous by-product of 

long-term auditory priming (or a conspiracy effect), which itself supports lexical 

configuration. These effects can be simulated in parallel within a single autoencoder 

employing common algorithms and parameter values. In this way, autoencoder 

simulation illustrates how apparently contradictory density and distinctiveness 

advantages emerge from a common cognitive mechanism. 

The current study demonstrates neighbourhood density and distinctiveness 

effects similar to those observed in young children in the absence of semantic and 

pragmatic information. This illustrates the crucial role that raw auditory word 

similarity plays in the formation of the early lexicon. It is important to emphasise, 

however, that high phonological neighbourhood density is just one of many factors 

supporting early word learning, including high exposure frequency, high concreteness, 

high relevance to babies and infants, and alternative sound variables including 

phonotactic probability, i.e. the probability of phoneme co-occurrence (Braginsky et 

al., 2019; Jones & Brandt, 2019a; see Limitations, for discussion of phonotactic 

probability). The current study, for instance, accorded with prior behavioral work in 

reporting that the high neighbourhood density effect was nullified by high exposure 

frequency (e.g. Hollich et al., 2002; Storkel, 2004); a finding that suggests an apparent 

primacy of word-level frequency effects relative to word sound characteristics. It is 
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therefore expected that if a child hears a target word frequently enough, or if that 

target word is, for instance, highly concrete or highly relevant to the child, then the 

implicit generalisation preference for words with familiar phonological properties may 

be nullified.  

8.5.1 Limitations 

Computational cognitive modelling requires researchers to make numerous 

decisions, from the overall model type used (e.g. a neural network or Bayesian 

network) to fine-grained details regarding parameters (e.g. priors, network learning 

algorithm and learning rate, number of training epochs, etc.). Inevitably, then, some 

readers may question particular choices we made. One particular point of concern may 

be our decision to use an autoencoder rather than a recurrent neural network or long 

short-term memory network, given that recurrent architectures are so commonly used 

in natural language processing research. The rationale for our choice of architecture 

was twofold. First, an autoencoder was used in the work by Vitevitch and Storkel 

(2013) that inspired this study, and replication with naturalistic data necessitated the 

use of the same architecture. Second, autoencoders are a somewhat distinctive branch 

of architecture in the sense of performing parallel feature extraction and anomaly 

detection. This choice of architecture was therefore essential to our aim of illustrating 

how apparently contradictory behavioural evidence of both density and distinctiveness 

advantages can be explained in terms of a common mechanism. We have made all of 

our data and code fully available online, and researchers are welcome to access this 

material to test alternative configurations of network or stimulus encoding approaches.  

Another potential limitation of this report is the exclusion of alternative 

predictor variables, perhaps most importantly phonotactic probability. High positive 

correlation between neighbourhood density and phonotactic probability may cause 

multicolinearity (Storkel, 2004; Storkel & Lee, 2011), which distorts results by 

changing the magnitude or the direction of estimates, or by inflating estimate errors. 

While it is possible to tease apart the effects of neighbourhood density and 



8.6 Conclusion  195 

 

 

phonotactic probability in controlled experimental settings (e.g. Storkel & Lee, 2011), 

this is usually not possible when working with naturalistic data or communicative 

development inventory data (see Storkel, 2004, with respect to MacArthur-Bates 

data). In this case, the safest way to address multicolinearity risk is to exclude the 

variable of least interest from the regression model. For us, given our central interest 

in neighbourhood density effects, this meant omitting phonotactic probability. 

However, as one anonymous reviewer commented, this makes it impossible to 

determine the potential contribution of phonotactic probability to the results presented. 

We would like to re-emphasise that all our code and data can be accessed via the 

project repository accompanying this paper, and that researchers with a primary 

interest in sub-lexical phonotactic probability effects rather than the word-level 

neighbourhood density effects covered in this study are welcome to modify these 

materials.  

8.6 Conclusion 

 High phonological neighbourhood density has been associated with both 

advantages (Storkel, 2004) and disadvantages (Swingley & Aslin, 2007) in behavioral 

studies of early word learning. We explored these effects using an autoencoder neural 

network in conjunction with corpus and communicative development inventory data. 

We suggested that the widely reported high-density advantage is explicable in terms 

of exposure to a phonological neighbourhood prompting a natural conspiracy effect; a 

process termed long-term auditory priming in the behavioural literature (e.g. Church 

& Fisher, 1998). We then noted that high phonological distinctiveness supports word 

learning by reducing the risk of mis-processing novel words as known words in 

competitive learning environments. Autoencoder modelling encourages us to think of 

these apparently contradictory effects as emerging from a common mechanism. 
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Chapter 9 Summary and Conclusions 

I began this thesis by describing the following contradiction. Memory 

advantages for distinctive stimuli are well established (Hunt & Worthen, 2006). You 

are, for instance, more likely to form an accurate memory of the standout object in an 

array or the standout word in a list. Despite this, young children learn high-density 

words more readily than they learn phonologically distinctive, low-density words (e.g. 

Storkel, 2004). This high-density bias is the defining characteristic of the emerging 

auditory lexicon, which itself underpins language comprehension and production, and 

provides the foundation of grammatical development and literacy (Claessen & Leitão, 

2012; Goodman & Bates, 1997). The question is, then: 

 

Why do young children learn dense rather than distinctive words? 

 

This question guided the five empirical studies presented in this thesis, as well as the 

review that preceded them. As an integrated whole this thesis provides the most 

comprehensive account to date of the high-density bias that characterises early 

auditory word learning. Evidence of a high-density bias of course precedes the 

empirical studies included in this thesis. However, by adopting pre-registration, large-

samples, open data and code, and modelling principles such as the avoidance of 

unwarranted predictor and group dichotomisation, I believe that this thesis has 

contributed substantially to putting such evidence on a firmer foundation. The 

development of an explanatory account of the high-density bias grounded in the 

principle of analogous generalisation and spelled out by recourse to pre-existing 

implicit, short-term, and long-term memory research is also a major contribution. The 

purpose of this final chapter is to summarise the major contributions of this work, and 

to outline directions for future research.  
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9.1 Summary of empirical findings 

Chapter four, Auditory lexical decisions in developmental language disorder, 

presented a meta-analysis of studies using the auditory lexical decision task to 

measure the quality of word sound representations in children with and without 

developmental language disorder (DLD). The auditory lexical decision task was 

selected for this study because it minimises or even removes the requirement of a 

verbal response (e.g. requiring a simple yes/no response or button press), meaning that 

performance deficits cannot be attributed to retrieval issues or motor delay. Electronic 

database searches and emails sent out to researchers in the field initially identified 

2372 studies, with this reduced to nine studies as a result of duplicate removal and the 

application of stringent eligibility and quality criteria. The final collection of studies 

included 499 children aged between 3;8 and 11;4. Analysis indicated that children 

with DLD were significantly less accurate in the auditory lexical decision task than 

age-matched controls, but that there was no substantial difference between these 

groups in terms of response time. There was also no reliable difference between 

children with DLD and language-matched controls in either accuracy or response 

time. This pattern of results is in line with the general view that the linguistic profiles 

of children with DLD are delayed though not deviant. The results of this study broadly 

support the hypothesis that some children with DLD have difficulty forming detailed 

lexical representations relative to age- though not language-matched peers. However, 

further work is required to determine the performance profiles of potential subgroups, 

as well as the impact of manipulating different lexical characteristics, such as the 

position and degree of non-word error, phonotactic probability, and semantic network 

size. Due to the small cohort size (i.e. nine studies), I was unfortunately unable to 

include such factors in moderator analyses. This first study set the stage for those that 

followed by identifying group differences in the ability to represent word sounds.  

In the subsequent studies of this thesis, the quality of word sound 

representations was inferred from comprehension and production data (e.g. parental 

report data, accuracy and variability rates), and there was a specific focus on the effect 

of phonological neighbourhood density. Chapter five, Do children really acquire 
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dense neighbourhoods?, used communicative development inventory data from 300 

British English-speaking children aged between 12 and 25 months. In this study, 

Bayesian regression was used to model word understanding and production as a 

function of: (i) phonological neighbourhood density, (ii) frequency, and (iii) length, as 

well as adult ratings of; (iv) babiness, (v) concreteness, (vi) valence, (vii) arousal, and 

(viii) dominance. Results showed a separable, positive association between 

phonological neighbourhood density and word production, particularly among 

younger children, though no reliable association between phonological neighbourhood 

density and spoken word comprehension. That is, young children were more likely to 

produce words that sounded like many other words, but they could apparently 

understand words with relatively uncommon phonology as long as they were, for 

instance, concrete, frequent, and highly relevant to their lives (e.g. pushchair). It was 

argued that cognitive demand may be low during the initial processing of spoken 

words comprising commonly occurring sounds (i.e. high-density words), and that this 

may support the formation of detailed long-term phonological word memories that 

provide motor plans facilitating accurate word production. Comprehension, in 

contrast, remains possible even when the corresponding word sound memory lacks the 

detail required for accurate production (Bishop, 2014). The observed age-related 

decline in the importance of high phonological neighbourhood density as a predictor 

of word production indicates that the ability to remember words comprising 

uncommon phonological sequences improves across early development.  

Chapter six, Neighbourhood density and word production in delayed and 

advanced learners, then pursued this line of inquiry further by looking at the 

association between phonological neighbourhood density and word production in 442 

18-month old children with expressive lexicon sizes between zero and 517 words. The 

emphasis here, then, was on individual differences in the importance of phonological 

neighbourhood density as a predictor of word production (i.e. variance associated with 

vocabulary size), in contrast to the age-related variance examined in chapter five. In 

particular, this study aimed to re-examine the claim that a difficulty forming memories 

of low phonological neighbourhood density words may be a central determinant of 

delayed expressive vocabulary growth (e.g. Stokes, 2014). To do this, I fitted a 
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Bayesian regression model in which the production of each communicative inventory 

word by each child was predicted by interactions between that child’s expressive 

lexicon size and the word’s (i) phonological neighbourhood density, (ii) frequency in 

child-directed speech, and (iii) length, as well as adult ratings of; (iv) babiness, and (v) 

concreteness. I found that children with larger expressive lexicons were more likely to 

produce words containing uncommon sound sequences than age-matched children 

with smaller lexicons. This indicates that the decline in the importance of high 

phonological neighbourhood density as a predictor of word production reported in 

chapter five could be a function of vocabulary size rather than of age per se. The 

magnitude of the interaction between expressive lexicon size and phonological 

neighbourhood density remained modest, however, relative to interactions between 

expressive lexicon size and word frequency, length, and adult ratings of babiness and 

concreteness. This makes it impossible to single out the acquisition of low-density 

words as a specific problem area for language-delayed children – including late 

talkers – on the basis of this or similar data (cf. Stokes, 2010, 2014). On the basis of 

such correlational data alone it would, for instance, be equally valid to argue that late 

talking is the result of a difficulty learning words with low relevance to the child’s life 

(i.e. words with low babiness ratings). This prompted the conclusion that prior 

emphasis on a difficulty with the memorisation of low neighbourhood density words 

as a determinant of slow vocabulary growth may be unwarranted, and that the current 

evidence base in this direction is not robust enough to strongly support the 

development of possible interventions for late talkers (cf. Stokes, 2014). 

Chapter seven, Accuracy and variability in early spontaneous word 

production, then went beyond the binary ‘produces’ / ‘does not produce’ outcomes 

analysed in chapters five and six to assess the effects of age, frequency, and 

neighbourhood density on rates of spoken word accuracy and stability. These effects 

were studied across 234,551 spontaneous word productions from five typically 

developing children (0:11-4;0) in the Providence corpus. This was the first study I am 

aware of to look at these effects in large-scale naturalistic data without restriction to a 

particular phoneme cluster, word class, or utterance count. In keeping with the results 

of chapters five and six, Bayesian regression indicated positive associations between 
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age, input frequency, and phonological neighbourhood density, and spoken word 

accuracy and stability rates. Accordingly, an explanatory account of findings 

emphasising the quality of phonological word memories was again presented.  

Finally, in chapter eight, Density and distinctiveness in early word learning, I 

presented a computational simulation of the neighbourhood effects reported in 

chapters five, six, and seven. I trained a vanilla autoencoder neural network on a large 

corpus of child-directed speech and simulated a communicative development 

inventory administration to test the accuracy of the word sound representations that 

the network had formed. I then validated the results of this simulation using 

communicative development inventory data from over two thousand children. Like 

the children recorded in the validation data, and similarly those assessed in chapters 

five, six, and seven, the network represented high-density words more accurately than 

it represented low-density words, and this bias was separable from the effects of 

exposure frequency and word length. In an additional generalisation phase simulation, 

the network was also shown to represent novel words that sounded like previously 

trained words more accurately than it represented novel phonologically unfamiliar 

words. I presented an account of network performance accommodating conflicting 

evidence of distinctiveness advantages (e.g. Swingley & Aslin, 2007). The high-

density bias was interpreted in terms of a conspiracy effect, which supported 

generalisation to novel words with sound features similar to those dominant in the 

training data. It was then argued that distinctiveness advantages emerge as a by-

product of this fundamental process, with a spike in error rate observed for words 

containing sound features orthogonal to those previously experienced. An analogy 

was made between computational anomaly detection and the trigger stage learning 

advantage reported for low-density words among young children (e.g. Storkel & Lee, 

2011). This study showed, then, that the apparently contradictory density and 

distinctiveness advantages reported in behavioral studies of early word learning can 

emerge within a single computational architecture.  
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9.2 Summary of methodological contributions 

9.2.1 Identifying limitations of existing applications of the auditory 

lexical decision task and related paradigms 

The primary aim of chapter four, Auditory lexical decisions in developmental 

language disorder, was to produce aggregated data summaries that could provide a 

useful benchmark for future analyses. However, when reviewing the studies included 

in this analysis, I also identified a number of issues with existing applications of the 

auditory lexical decision task that may similarly affect related paradigms including 

mispronunciation identification and gating. For instance, some studies included no 

formal assessment of whether the words used at test were known to the participant 

(e.g. Windsor & Hwang, 1999). Additionally, while cross-references were often made 

between studies, the experimental designs used across studies showed considerable 

variation in both the response required by children (e.g. verbal or non-verbal) and the 

method of stimulus presentation (e.g. pre-recorded or spoken live by an experimenter; 

see Appendix A.1). It was noted that although such factors may appear trivial, they 

can in fact introduce systematic bias. Maillart et al. (2004), for instance, describe a 

study in which children with DLD responded differently to stimuli presented via 

computer and stimuli spoken live by an experimenter, perhaps due to adopting a lip-

reading strategy during target word discrimination. A review of the methods used to 

measure the quality of word sound memories is required given such disparities, and 

given the importance of these paradigms in translational research relating to the 

identification and assessment of children with DLD. As described below (section 

9.4.2), determining the validity and reliability of the various measures held to 

converge on the quality of lexical representations will form a key part of this process.  
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9.2.2 Encouraging a shift away from unwarranted data dichotomisation 

in early language research  

The decision to use a particular method of data preparation or statistical 

analysis is ultimately research question dependent, and any number of methods may 

be adequately justified with respect to a given study. However, there are two 

approaches involving data dichotomisation commonly adopted in language 

development research that I believe to be often unwarranted, and which I hope the 

empirical studies of this thesis have helped to discourage. 

The first is the application of arbitrary cut-offs to standardised language test 

scores in order to distinguish experimental and control groups for use as predictors in 

analyses such as t-tests and ANOVAs. As written in chapter six, this approach not 

only reduces statistical power but also appears unjustifiable with respect to the study 

of early developmental delay (e.g. late talking, possible DLD) given that the majority 

of children with early language delay do not show later language difficulties (Hammer 

et al., 2017; Rowe & Leech, 2017). It is not the case, therefore, that children with and 

without early language difficulties comprise qualitatively different groups. Instead 

there is a continuous range of ability that modelling should in many cases aim to 

capture, for instance by using standardised language test scores as a continuous (rather 

than categorical) predictor in a regression model.  

  The second common area of unwarranted data dichotomisation involves the 

neighbourhood density variable central to this thesis. Many studies into 

neighbourhood effects in early language development – including two studies of this 

thesis – adopt a plus-minus-one-phoneme criterion of neighbourhood density, under 

which, for instance, cat neighbours hat, cot, can, and catch (e.g. Jones & Brandt, 

2019a, 2019b; Stokes, 2014; Storkel, 2004). However, as reviewed at length in section 

2.2.2, this approach involves throwing out a great deal of information regarding 

degrees of phonological distance. In section 2.2.2.1, for instance, I reported results 

from a preliminary analysis showing that approximately half (48.31%) of words 

within a representative child lexicon may be attributed zero neighbourhood density 

under the plus-minus-one phoneme approach. To make this point clear, consider that 
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both bag and supercalifragilisticexpialidocious are non-neighbours of cat under a 

categorical, plus-minus-one-phoneme criterion. The solution to this limitation is to 

adopt a continuous measure of word-level phonological similarity such as PLD20, 

defined as the mean number of additions, substitutions, or eliminations of phonemes 

required to change a given word into its nearest twenty phonological neighbours 

(Suárez et al., 2011, p. 606). This is the approach taken in chapter seven of this 

thesis and currently the metric I consider most appropriate to the study of 

neighbourhood density effects. It is worth noting, however, that the use of the 

categorical, plus-minus-one-phoneme criterion in chapters five and six is unlikely to 

compromise the results of these studies. The plus-minus-one phoneme criterion and 

PLD20 are highly correlated, and have been shown to confer analogous effects 

(Suárez et al., 2011). However, the value of continuous measures of phonological 

word similarity remains that they avoid the issue of data loss and the ‘lexical hermit’ 

problem.  

9.2.3 Highlighting the fragility of hard-and-fast spoken word accuracy 

and variability thresholds 

A major contribution of chapter seven was to illustrate the extent to which 

accuracy and variability rates fluctuate given apparently minor changes in the 

underlying categorisation criteria used (see section 7.3.3). This factor may contribute 

to the current lack of consensus regarding the accuracy and variability rates expected 

in the typically developing population (e.g. Holm, et al., 2007; Sosa, 2015). Without 

such consensus it is somewhat difficult to interpret data from accuracy and variability 

assessments of children suspected of having language disorder. On the basis of the 

data modelled in chapter seven, it was impossible to select between the taxonomies 

presented (i.e. Table 7.3 and Table 7.4). Each underlying categorisation criterion was 

well justified, and each generated a taxonomy with proportions of accuracy and 

variability broadly continuous with those previously reported (e.g. Sosa, 2015; Holm 

et al., 2007). Furthermore, this element of the study highlighted the trade-off inherent 

in setting hard-and-fast decision boundaries (section 7.3.3). Setting strict criteria 
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meant some apparently acceptable word productions were classified as erroneous (e.g. 

the target /æləɡeɪtəɹ/ pronounced /ælɪɡeɪtəɹ/). In contrast, loosening the error and 

variability thresholds permitted the classification of some clear errors as accurate 

forms, for instance the production of /bæɡ/ as /bæk/, the production of /bæθ/ as /bæ/, 

and the production of /bæt/ as /bɛt/. It was noted that this may be particularly 

damaging with respect to short words, which dominate the early productive lexicon. 

(The mode word length among children in the Providence corpus is three phonemes.) 

For such words one discrepant phoneme may represent a substantial error, which was 

ignored under the minimally relaxed thresholds. Further research that aims to address 

this issue is vital given the potential importance of baseline accuracy and variability 

data to translational research and clinical practice. In section 9.4.3, I re-iterate my 

proposal of an accuracy judgement task to break the apparent deadlock in the 

literature on early spoken word accuracy and variability rates. 

9.3 Summary of theoretical contributions 

9.3.1 Identifying the high-density word learning bias as a separable 

production effect associated with vocabulary size 

Chapter five, Do children really acquire dense neighbourhoods?, was the first 

empirical study that I am aware of to show that the neighbourhood density bias is 

separable from the effects of a large range of alternative predictors commonly linked 

to variance in age of acquisition, such as frequency, concreteness, and relevance to 

infants. A similar approach was also taken in chapter six, Neighbourhood density and 

word production in delayed and advanced learners. Together, these analyses 

constitute an important contribution to the literature because one plausible answer to 

the question guiding the studies of this thesis – that is, why do young children learn 

dense rather than distinctive words? – is that high-density words also happen to be, 

for instance, highly concrete or highly relevant to the child’s life, and that it is in fact 

these factors that underpin the high-density bias. In other words, the high-density bias 



210 Summary and Conclusions 

 

 

may be an epiphenomenon. The major contribution of chapters five and six was to 

rule out this possibility by demonstrating that the high-density bias holds over and 

above a large range of alternative explanatory factors.  

Chapter five, Do children really acquire dense neighbourhoods?, was also 

novel in using Bayesian multivariate regression to separate the effects of 

neighbourhood density on word comprehension and on word production. In doing so, 

this study identified a strong association between high neighbourhood density and 

early word production. On this basis, it was argued that young children are able to 

understand words that are, for instance, highly frequent, highly concrete, or of high 

relevance to their lives, but that accurate word production also depends on a high-

quality word sound representation, and this is more likely to be available for high-

density words early in development. This is an important contribution because the 

high neighbourhood density bias is often framed as a learning advantage, broadly 

defined. However, these results suggest instead that it is more accurate to talk about 

an early high-density word production advantage. Chapter six, Neighbourhood density 

and word production in delayed and advanced learners, then built on these findings 

by showing that the age-related decline in the importance of high phonological 

neighbourhood density as a predictor of word production in fact emerges as a function 

of vocabulary size. In combination, then, the contribution of chapters five and six has 

been to situate the high-density bias as a separable production effect, characteristic 

among young children and children with limited expressive vocabularies.  

9.3.2 Detailing an explanatory account of the high-density word 

production bias in terms of analogous generalisation 

Chapter eight, Density and distinctiveness in early word learning, contributed 

significantly to the development of the broader theoretical account of the high-density 

production bias detailed in chapter two of this thesis and drawn on throughout. 

Building this account involved trying to spell out the fundamental processes 

underpinning the high-density bias in the autoencoder neural network used in this 

chapter in terms of analogous cognitive processes identified in the developmental 
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literature. The account I developed has three essential elements. First, direct and 

indirect spoken word exposure results in the formation of perceptual and conceptual 

memory traces that represent the sound structure of the ambient language in the mind 

of the child (Jusczyk et al., 1994). In computational terms this is the conspiracy effect; 

the fine-tuning of connection weights to accommodate dominant sound patterns in the 

language to which the network is exposed. Second, short-term memorisation 

advantages are observed for words with sound features consistent with those 

represented perceptually and conceptually in long-term memory. In computational 

terms this means that connection weights are required to update less on exposure to a 

novel stimulus with familiar auditory features. Third, the short-term memory trace is 

passed to long-term memory in high detail, supporting accurate processing (e.g. 

mispronunciation identification) and production for this high-density item (e.g. 

Gathercole et al., 1999). Computationally, in chapter eight, this is analogous to the 

reconstruction error being lower for high-density stimuli. In addition to addressing a 

series of open questions related to the high-density bias, then, this thesis went beyond 

the contribution of each individual study to offer a novel answer to the question: Why 

do young children learn dense rather than distinctive words? Namely: Because the 

auditory lexicon is built through analogous generalisation. The explicit and implicit 

memorisation of direct and indirect exposure to the neighbourhood catch, hat, mat, 

can, sat, match, and bat, for instance, supports analogous generalisation to the word 

cat by way of short- and associated long-term memory advantages. To re-iterate the 

qualifying points made at the beginning of this thesis, my claim is not that analogous 

generalisation is the only factor driving growth of the auditory lexicon. The empirical 

studies of this thesis make this clear. For instance, in chapter five I report that children 

are also more likely to produce words that are concrete and relevant to their lives (e.g. 

ball, pushchair) than they are to produce abstract low-relevance words (e.g. how, 

later). Instead, my claim is that, all else being broadly equal, a production bias for 

high-density words will be observed because these words are easier to generalise to 

from existing explicit and implicit long-term word sound memories. I also recognise 

that each component of the account outlined here (i.e. implicit, short-term, and long-

term memory processes) has previously been associated with neighbourhood effects in 
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early word learning. However, this thesis is to my knowledge the first attempt to unify 

these existing fragmentary accounts of the high-density production bias under the 

label of analogous generalisation.  

9.4 Directions for future research 

9.4.1 Determining the significance of exemplar and prototype 

frameworks in translational research and clinical practice 

Exemplar theory has a long history in cognitive science, but has only recently 

begun to gain traction in the study of child language, where prototype theories remain 

dominant (Ambridge, 2019). As noted throughout this thesis, there is a large literature 

purporting to test the quality of ‘underlying representations’, where underlying or 

similar terminology denotes being abstracted from the variation inherent in natural 

speech. However, evidence of speaker effects and the difficulty of specifying the form 

of the underlying abstract representation appear to make this position untenable (see 

chapter two). Much of the research on auditory word representation quality, like 

chapter four of the current thesis, relates to theories of early language impairment and 

clinical practice, for instance the identification of disorders and the development of 

programs of intervention (see Claessen & Leitão, 2012, for review). It will be 

interesting to see how this area of research responds to growing interest in exemplar-

based theories of early auditory word representation. The fundamental question for 

translational researchers and clinicians is whether conceiving of word sound 

representations as exemplars rather than as abstract prototypes may inform approaches 

to experimental design and the interpretation of results, and also to the identification 

and treatment of language disorder. 



9.4 Directions for future research  213 

 

 

9.4.2 An assessment of the accuracy and reliability of tasks measuring 

word sound representation quality 

The studies of this thesis were linked by an interest in factors affecting the 

quality of word sound representations, whether child-based factors such as age or 

clinical profile, or lexical factors such as neighbourhood density. Many of the studies 

of this thesis follow a long trend, starting perhaps with Ferguson and Farwell (1975), 

in assuming that the quality of word sound representations can be inferred from 

comprehension and production data. For instance, if a child without pronounced motor 

impairment is able to comprehend but not accurately and stably produce a word, it is 

reasonable to assume that the mental representation of that word’s sound lacks detail. 

As described in chapter four, a number of experimental paradigms have been 

developed to assess the quality of underlying word sound representations. This 

includes gating, naming, non-word repetition, mispronunciation identification, and the 

lexical decision task. Results from these tasks are, however, sometimes mixed. For 

instance, in the gating task auditory words are cut and presented in chunks of 

increasing length – for instance [e], [ele], [elepha], [elephant] – with the aim being to 

identify the target word as quickly as possible. In one of the earliest studies to adopt 

this paradigm, Dollaghan (1998) reports that children with developmental language 

disorder require considerably longer gates to recognise newly taught though not 

familiar words than their age-matched peers. Subsequent studies, however, have failed 

to replicate this effect (Mainela-Arnold, Evans, & Coady, 2008; Montgomery, 1999). 

Such discrepancies make the experimental literature on word sound representation 

quality reminiscent of that on procedural learning, recently critiqued by West, Vadillo, 

Shanks, and Hulme (2017). These authors identified a prevalence of small sample 

sizes and extreme group designs that may exaggerate effects (i.e. language disordered 

versus language typical), as well as low reliability across tasks thought to measure 

procedural learning. Given that the quality of early word sound representations 

remains an area of considerable debate which feeds directly into clinical practice, and 

given that existing results are often inconsistent and based on small-sample, extreme 
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group designs, a large-scale study to determine the reliability of the various tasks held 

to converge on the quality of word sound representations is much needed.  

9.4.3 A comprehensibility judgement task to determine baseline spoken 

word accuracy and variability rates 

Chapter seven, Accuracy and variability in early spontaneous word 

production, highlighted a sharp division in the existing literature on spoken word 

accuracy and variability rates (e.g. Sosa, 2015; Holm et al., 2007), as well as the 

difficulty of setting hard-and-fast decision boundaries. These are important issues 

because baseline accuracy and variability data may prove useful in aiding the 

identification of language disorder. One way to address these issues may be to 

conduct a comprehensibility judgement task. This would involve collecting large 

samples of spontaneous and elicited child speech data, and then having a group of 

adult listeners make accuracy judgements for word tokens within that data. Listeners 

would hear isolated spoken word tokens and identify whether they considered each to 

be accurate or inaccurate, with these judgments then forming the basis for the 

classification of tokens into accuracy and variability taxonomies. It would also be 

possible to stratify this data by child age, to provide a detailed assessment of changes 

in accuracy and variability rates throughout development. As written in chapter seven, 

such a study may deliver the baseline data needed to break the apparent deadlock and 

resolve existing disagreement regarding the spoken word accuracy and variability 

rates that can be expected within the typical range.  

9.4.4 Testing the account of analogous generalisation in early auditory 

word learning 

 Future behavioural research should test the explanatory account of the high-

density production bias presented in this thesis. For instance, it may be informative to 

expose two groups of children to two artificial-language lexicons; one in which high-

density neighbourhoods were present and one in which they were not. It would then 
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be possible to expose children to a novel high-density target word and test their 

delayed recall or production of that word in order to determine whether the sound 

structure of the ambient language during training had a causal influence on successful 

word learning. It would also be possible to incorporate short-term memory measures 

in order to probe the influence of short-term memory on analogous generalisation. 

This type of investigation would be valuable because much of the existing data in this 

area is correlational.  

The theoretical account presented would also benefit from further instantiation 

as a computational model. While the vanilla autoencoder neural network presented in 

chapter eight significantly helped to develop this account, it would be possible to 

improve on this work by creating an architecture with distinct short-term and long-

term memory modules that could be differentially manipulated alongside the 

neighbourhood structure of the training data in order to assess the contributions of 

each module to successful analogous generalisation. Note also that despite my general 

support for an exemplar-based framework (see chapter two), the account of analogous 

generalisation developed throughout this thesis makes no direct predictions regarding 

the underlying nature of word sound representations (i.e. analogy from both 

prototypes and exemplars is possible), and similarly the artificial neural network 

presented in chapter eight is not a formal instantiation of either an exemplar- or 

prototype-based approach. It would also be interesting, therefore, to build features 

consistent with both exemplar- and prototype-based frameworks into a number of 

architectures, and then to compare each network’s performance on simulated 

analogous generalisation tasks.  
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Appendix A Auditory Lexical Decisions in 

Developmental Language Disorder: A Meta-

Analysis of Behavioural Studies 

 
A.1 Study summaries 

Table A.1.1: Summary characteristics of included studies. DLD = developmental language disorder; 
AMC = age-matched controls; LMC = language-matched controls; RT = reaction time; SD = standard 

deviation; nr = not reported. See primary literature for standardised test references. 

Citation  
(date) 

Groups  
(n) 

Mean 
age 
(SD) 

Standardised tests 
used/inclusion 
criteria 

Stimuli  
(n) 

Response 
type 

Measure 

James, Van 
Steenbrugge, 
and Chiveralls 
(1994) 

DLD  
(6) 

9;09 
(0;11) 

Linguistic:  

• Peabody Picture 
Vocabulary Test 
Revised (PPVT-
R) 

• Test for the 
Reception of 
Grammar 
(TROG) 

• Neale Analysis 
of Reading 
Ability-Revised 

• Staggered 
Spondaic Word 
test (SSW)  

Familiar words  
(n = 40) 
 
Viable non-
words  
(n = 40) 

Nr: 
Assumed 
verbal but 
unclear 

Accuracy 
 

AMC  
(6) 

9;09 
(0;11) 

LMC  
(6) 

7;09 
(0;10) 



A-2 Auditory Lexical Decisions in Developmental Language Disorder: A 

Meta-Analysis of Behavioural Studies 

 

 

• Competing 
Sentence Test 
(CST) 

Non-linguistic:  

• Peripheral 
hearing status 
and non-verbal 
IQ (RCPM, see 
p. 314) in normal 
range 

Edwards and 
Lahey (1996) 

DLD  
(46) 

7:3  
(1:7) 

Independent 
diagnosis by 
certified SLT 
 
 
Linguistic:  

• Clinical 
Evaluation of 
Language 
Fundamentals 
Revised (CELF-
R) 

• Peabody Picture 
Vocabulary Test 
Revised (PPVT-
R) 

• Test of Language 
Development-2-
Primary (TOLD-
P) 

• Illinois Test of 
Psycholinguistic 
Abilities 
 

Non-linguistic:  

• Test of Non-
verbal 
Intelligence 
(TONI) 

• Kauffman Brief 
Intelligence Test 

Familiar words  
(n = 20) 
 
Legal non-
words  
(n = 20) 

Verbal; 
‘yes’/‘no’ 

Response 
time  

Subgroup 
1: DLD-
expressive 
(10) 

7;0  
(1;3) 

Subgroup 
2: DLD-
mix  
(20) 

8;0  
(1;3) 

AMC  
(46) 

7:3  
(1:6) 
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Windsor and 
Hwang (1999) 

DLD  
(20)  

11;4  
(nr) 

Linguistic:  

• Peabody Picture 
Vocabulary Test 
Revised (PPVT-
R) 

• Test of Language 
Development-
Intermediate 
(TOLD-I) 
 

 
Non-linguistic:  

• Test of Non-
verbal 
Intelligence 
(TONI) 

• Hearing 
screening test 

Study A:  
 
Real word 
derivatives  
(n = 20) 
 
Pseudo 
derivatives  
(n = 20) 
 
Foils 
(n = 20) 
   
Study B: 
 
Phonologically 
transparent 
(PT) real 
derivatives  
(n = 15)  
 
Phonologically 
opaque (PO) 
real derivatives  
(n = 15) 
 
PT pseudo 
derivatives  
(n = 15) 
 
PO pseudo 
derivatives  
(n = 15) 
 
Foils  
(n = 15) 

Button 
pressing 
on 
computer; 
‘yes’/‘no’ 

Response 
time 

AMC  
(20) 

11;4  
(nr) 

LMC  
(20) 

9;0  
(nr) 

Maillart, 
Schelstraete, 
and Hupet 
(2004) 

DLD 1; 
lexical 
age 5;0  
(7) 

7;8  
(nr)  

Independent 
diagnosis by 
certified SLT 
 
 
 
Linguistic:  

• Peabody 
Picture 
Vocabulary 

Real words  
(n = 24)  
 
High-similarity 
non-words  
(n = 12) 
 
Low-similarity 
non-words  
(n = 12) 
 

Verbal; 
‘yes’/‘no’ 
response 
to uttered 
(i.e. not 
pre-
recorded) 
words  

Accuracy 

DLD 1 
LMC  
(16) 

5;1  
(nr) 

DLD 2; 
lexical 
age 6;0  
(10) 

9;2  
(nr) 
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DLD 2 
LMC  
(21) 

5;5  
(nr) 

Test Revised 
(PPVT-R) 

• French 
equivalent of 
the Test for the 
Reception of 
Grammar 
(TROG); 
ECOSSE 
 

Non-linguistic:  

• Leiter 
International 
Performance 
Scales 

• Echelle 
d’Intelligence 
Pour Enfants 
(3ème éd.) 
[Wechsler 
Intelligence 
Scale for 
Children (3rd 
ed.)] 

 

Word-initial 
manipulation 
(n = 8)  
 
Word-medial 
manipulation 
(n = 8) 
 
Word-final 
manipulation 
(n = 8)  

DLD 3; 
lexical 
age 7;0  
(8) 

9;2  
(nr) 

DLD 3 
LMC  
(11) 

6;10  
(nr) 

Crosbie, 
Howard, and 
Dodd (2004) 

DLD  
(15) 

8;11 
(0;9) 

Independent 
diagnosis by 
certified SLT and 
educational 
psychologist 
 
Linguistic:  

• British Picture 
Vocabulary 
Scales 

• The German 
Test of Word 
Finding 

• South 
Tyneside 
Assessment of 
Phonology 
(STAP) 

Real words  
(n = 20) 
 
Real word foils  
(n = 20) 
 
Legal non-
words  
(n = 20) 
 
Phonotactically 
illegal non-
words (n = 20) 
 

Verbal; 
‘yes’/‘no’ 
response 
to pre-
recorded 
words  

Accuracy 
and 
response 
time 

AMC  
(15) 

9;3  
(0;7)  

LMC  
(15) 

6;10 
(0;11) 
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Non-linguistic:  

• Test of Non-
verbal 
Intelligence-3 
(TONI-3) 

Befi-Lopes, 
Pereira, and 
Bento (2010) 

Lexical 
age 4 
DLD  
(5) 

Range 
= 3;8-
5;0 

Independent 
diagnosis of SLI by 
certified SLT 
 
Linguistic:  

• Receptive 
vocabulary test 
from the 
Laboratory for 
Investigation in 
Language 
Development 
and Alterations, 
at the Faculdade 
de Medicina da 
Universidade de 
São Paulo (see p. 
306).  

Real words  
(n = 24)  
 
Non-words 
varying in 
degree, 
position, and 
type of 
modification (n 
= 24). See p. 
309 for 
summary 

Verbal; 
‘yes’/‘no’ 
response 
to pre-
recorded 
words 

Accuracy  

Lexical 
age 4 
control  
(10) 

Range 
= 4;1-
4;11 

Lexical  
age 5 
DLD  
(6)  

Range 
= 
4;10-
7;9 

Lexical 
age 5 
control  
(12) 

Range 
= 5;1-
5;7 

Lexical 
age 6 
DLD  
(7)  

Range 
= 
4;10-
8;9 

Lexical 
age 6 
control  
(14) 

Range 
= 6;0-
6;8 

Pizzioli and 
Schelstraete 
(2013)  

DLD  
(13) 

10;1 
(1;02) 

Independent 
diagnosis by 
certified SLT 
 
Linguistic:  

• French 
equivalent of the 
Peabody Picture 
Vocabulary Test 
Revised (PPVT-
R); EVIP 

• French 
equivalent of the 
Test for the 
Reception of 
Grammar 

Target real 
words  
(n = 42) 
 
Filler real 
words  
(n = 60) 
 
Pseudowords  
(n = 68) 

Button 
pressing: 
green = 
real 
word; red 
= non-
word 

Accuracy 
and 
response 
time  
 
 

AMC  
(13) 

10;2 
(1;0) 

LMC  
(13)  

7;7  
(0;5)  
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(TROG); 
ECOSSE 
 

Non-linguistic:  

• Hearing 
assessment 

• Wechsler 
Intelligence 
Scale for 
Children-
Revised  

• No history of 
neurological 
dysfunction or 
psychopathology 

Haebig, 
Kaushanskaya, 
and Ellis 
Weismer 
(2015) 

DLD  
(28) 

10;0 
(1;5) 

Linguistic:  

• The Clinical 
Evaluation of 
Language 
Fundamentals – 
fourth edition 
(CELF-4) 

• Peabody Picture 
Vocabulary Test, 
fourth edition 
(PPVT-4) 
 

Non-linguistic:  

• Wechsler 
Intelligence 
Scale for 
Children, fourth 
edition.  

Words  
(n = 40) 
 
Non-words A; 
low semantic 
network  
(n = 20) 
 
Non-words B; 
high semantic 
network  
(n = 20)  

Button 
pressing: 
smiling 
face = 
real 
word; 
frowning 
face = 
non-word 

Accuracy 
and 
response 
time  
 
 LMC  

(30)  
9;7 
(1;8) 

Quémart and 
Maillart 
(2016) 

DLD  
(20) 

10;1 
(1;10) 

Independent 
diagnosis by 
certified team of 
practitioners 
 
Linguistic:  

Bi-syllabic 
words  
(n = 120) 
 
High 
phonotactic 

Button 
pressing: 
smiley 
key = real 
word; red 

Accuracy 
and 
response 
time  
 

AMC  
(20)  

10;0 
(1;10) 
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LMC  
(20) 

7;4  
(0;7) 

• Evaluation du 
Langage Oral 
(ELO) 

• Langage Oral, 
Langage Ecrit, 
Mémoire et 
Attention 
(L2MA2) 
 

Non-linguistic:  

• Hearing 
assessment 

• Wechsler 
Intelligence 
Scale for 
Children  

probability 
(PP) non-
words  
(n = 60) 
 
Low PP non-
words  
(n = 60) 

‘X’ = 
non-word 
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A.2 Forest plots  

 
Figure A.2.1: Forest plot showing case and summary (i.e. ‘Estimate’) Hedges’ g and 95% confidence 

intervals for the DLD/age-matched control comparison on the accuracy measure. Case id indexes 

individual effect sizes as listed in the master dataset. Negative effect sizes indicate children with DLD 

were less accurate than controls.  
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Figure A.2.2: Forest plot showing case and summary (i.e. ‘Estimate’) Hedges’ g and 95% confidence 

intervals for the DLD/age-matched control comparison on the response time measure. Case id indexes 

individual effect sizes as listed in the master dataset. Positive effect sizes indicate children with DLD 

took longer to respond than controls. 
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Figure A.2.3: Forest plot showing case and summary (i.e. ‘Estimate’) Hedges’ g and 95% confidence 

intervals for the DLD/language-matched control comparison on the accuracy measure. Case id indexes  

individual effect sizes as listed in the master dataset. Negative effect sizes indicate children with DLD  

were less accurate than controls. 
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Figure A.2.4: Forest plot showing case and summary (i.e. ‘Estimate’) Hedges’ g and 95% confidence 

intervals for the DLD/language-matched control comparison on the response time measure. Case id 

indexes individual effect sizes as listed in the master dataset. Positive effect sizes indicate children with 

DLD took longer to respond than controls 
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Appendix B Do Children Really Acquire Dense 

Neighbourhoods?  

B.1 Predictor correlations 

 
Figure B.1.1 Post-imputation Pearson correlations between predictors (pnd indicates phonological 

neighbourhood density). 
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B.2 Missing data and variance inflation factors 

Table B.2.1: Rates of missing data and variance inflation factors for each predictor variable, 

calculated (using the car and lme4 packages in R) from the model: glmer(cbind(understands, 

produces) ~ length + pnd + frequency + babiness + concreteness + valence + arousal + dominance + 

(1 | word), family = binomial). Note that VIFs are shown for post-imputation values.  

 

Predictor  Missing (%) VIF 
Frequency 5.5 1.50 
Length 0 1.93 
Babiness 22.73 1.08 
Concreteness 4.55 1.52 
Phonological neighbourhood density (PND) 3.35 1.83 
Valence 18.18 1.79 
Arousal 18.18 1.08 
Dominance 18.18 1.63 
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B.3 Model summaries 

Table B.3.1: Model summary for the understands outcome, showing term, estimate, standard error (Std. 

error), and lower and upper 95% confidence intervals (CI). CDS indicates child-directed speech. PND 

indicates phonological neighbourhood density. 

Term: Understands Estimate Std. error Lower 95% CI Upper 95% CI 
Intercept -1.25 0.04 -1.32 -1.18 
CDS frequency 0.12 0.04 0.05 0.21 
PND 0 0.05 -0.1 0.09 
Length (phonemes) 0.06 0.05 -0.03 0.15 
Babiness 0.14 0.03 0.07 0.21 
Concreteness 0.18 0.04 0.10 0.26 
Valence -0.02 0.05 -0.11 0.06 
Arousal -0.04 0.03 -0.11 0.02 
Dominance 0.1 0.04 0.01 0.18 
Age 0.11 0.02 0.08 0.15 
     
Interactions     
CDS frequency: Age -0.08 0.02 -0.13 -0.04 
PND: Age -0.02 0.03 -0.07 0.03 
Length (phonemes): Age 0.01 0.03 -0.04 0.06 
Babiness: Age -0.06 0.02 -0.1 -0.03 
Concreteness: Age -0.15 0.02 -0.20 -0.11 
Valence: Age -0.03 0.02 -0.08 0.02 
Arousal: Age -0.01 0.02 -0.05 0.02 
Dominance: Age 0.01 0.02 -0.03 0.06 
     
Standard deviations (SD) and correlations (Corr) 
SD: Word intercept 0.67 0.02 0.62 0.71 
SD: Age slope, word 
intercept 0.33 0.02 0.3 0.35 
Corr: Age slope, word 
intercept -0.58 0.04 -0.66 -0.51 
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Table B.3.2: Model summary for the produces outcome, showing term, estimate, standard error (Std. 

error), and lower and upper 95% confidence intervals (CI). CDS indicates child-directed speech. PND 

indicates phonological neighbourhood density. 

Term: Produces Estimate Std. error Lower 95% CI Upper 95% CI 
Intercept -2.21 0.06 -2.33 -2.09 
CDS frequency 0.2 0.07 0.07 0.34 
PND 0.13 0.08 -0.03 0.28 
Length (phonemes) -0.07 0.08 -0.22 0.09 
Babiness 0.17 0.06 0.06 0.28 
Concreteness 0.42 0.07 0.29 0.56 
Valence 0.09 0.07 -0.05 0.24 
Arousal 0.06 0.06 -0.05 0.18 
Dominance -0.08 0.07 -0.21 0.06 
Age 1.43 0.02 1.39 1.46 
     
Interactions     
CDS frequency: Age 0.04 0.02 0.01 0.08 
PND: Age -0.01 0.02 -0.05 0.03 
Length (phonemes): Age 0.04 0.02 -0.01 0.08 
Babiness: Age -0.04 0.01 -0.07 -0.01 
Concreteness: Age 0.04 0.02 0.01 0.08 
Valence: Age -0.02 0.02 -0.06 0.02 
Arousal: Age -0.00 0.02 -0.03 0.03 
Dominance: Age 0.03 0.02 -0.00 0.07 
     
Standard deviations (SD) and correlations (Corr) 
SD: Word intercept 1.11 0.04 1.03 1.20 
SD: Age slope, word 
intercept 0.18 0.02 0.15 0.21 
Corr: Age slope, word 
intercept -0.96 0.03 -1 -0.89 
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Appendix C Neighbourhood Density and Word 

Production in Delayed and Advanced 

Learners 

C.1 Model summary 

Table C.1.1: Model summary showing term (main effects and interactions), estimate, standard error 

(Std. error), and lower (L) and upper (U) 95% confidence intervals (CI). 

Term (main effects) Estimate Std. error L-95% CI U-95% CI 
Intercept -2.23 0.02 -2.27 -2.19 
     SD of random intercepts 0.45 0.01 0.41 0.48 
Length -0.19 0.01 -0.2 -0.17 
Vocabulary size 1.27 0.02 1.24 1.31 
Frequency 0.58 0.00 0.57 0.6 
Babiness 0.33 0.01 0.32 0.34 
Concreteness 0.78 0.01 0.77 0.8 
Neighbourhood density 0.07 0.01 0.06 0.08 
     
Term (interactions) Estimate Std. error L-95% CI U-95% CI 
Length: Vocabulary 0.08 0.01 0.07 0.09 
Frequency: Vocabulary 0.03 0.01 0.01 0.04 
Babiness: Vocabulary -0.03 0.01 -0.04 -0.02 
Concreteness: Vocabulary 0.11 0.01 0.11 0.13 
Neighbourhood density: 
Vocabulary -0.02 0.01 -0.04 -0.02 
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Appendix D Accuracy and Variability in Early 

Word Production 

D.1 Model Summaries 

Table D.1.1: Model summary for the production accuracy outcome (model 1; m.1), showing term, 

estimate, standard error (SE), and lower and upper 95% confidence intervals (CI). PLD20 indicates 

phonological neighbourhood density (i.e. average 20-step phonological Levenshtein distance). 

Terms are grouped into main effects, interactions, and family specific parameters. 

Term Estimate SE Lower 95% CI Upper 95% CI 
Intercept 0.47 0.00 0.46 0.47 
Frequency -0.12 0.00 -0.12 -0.12 
Age -0.03 0.00 -0.03 -0.03 
PLD20 0.10 0.00 0.10 0.10 
Frequency: Age 0.00 0.00 0.00 0.00 
Age: PLD20 -0.01 0.00 -0.01 0.00 
Frequency: PLD20 -0.02 0.00 -0.03 -0.02 
Sigma 0.46 0.00 0.46 0.46 
Hu 0.22 0.00 0.21 0.22 
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Table D.1.2: Model summary for the production variability outcome (model 2; m.2), showing term, 

estimate, standard error (SE), and lower and upper 95% confidence intervals (CI). PLD20 indicates 

phonological neighbourhood density. Terms are grouped into main effects, interactions, and family 

specific parameters. 

Term Estimate SE Lower 95% CI Upper 95% CI 
Intercept -0.56 0.00 -0.56 -0.55 
Frequency -0.48 0.00 -0.48 -0.47 
Age -0.02 0.00 -0.03 -0.02 
PLD20 0.10 0.00 0.10 0.11 
Frequency: Age 0.02 0.00 0.01 0.02 
Age: PLD20 0.02 0.00 0.02 0.03 
Frequency: PLD20 0.01 0.00 0.01 0.02 
Phi 5.96 0.02 5.93 5.99 
Zoi 0.23 0.00 0.23 0.23 
Coi 0.31 0.00 0.30 0.31 
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Appendix E Density and Distinctiveness in Early 

Word Learning: Evidence from Neural 

Network Simulations 

E.1 Model Summaries 

Table E.1.1: Test phase model summary showing term (main effects, interactions, and family specific 

parameters), estimate, standard error (Std. error), and lower (L) and upper (U) 95% confidence 

intervals (CI). Model formula: Mean reconstruction error ~ Length + Frequency + PLD20 + PLD20 * 

Length + PLD20 * Frequency. 

Term (main effects) Estimate Std. error L-95% CI U-95% CI 
Intercept -3.38 0.01 -3.4 -3.36 
PLD20 0.18 0.02 0.14 0.22 
Length 0.04 0.02 0 0.07 
Frequency -0.02 0.01 -0.04 0 
Term (interactions) Estimate Std. error L-95% CI U-95% CI 
PLD20: Length -0.01 0.01 -0.02 0 
PLD20: Frequency -0.04 0.01 -0.06 -0.02 
Term (family specific parameters) Estimate Std. error L-95% CI U-95% CI 
Sigma 0.23 0.01 0.22 0.24 
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Table E.1.2: Validation phase model summary showing term (main effects and family specific 

parameters), estimate, standard error (Std. error), and lower (L) and upper (U) 95% confidence 

intervals (CI). Model formula: Produces (%) ~ Mean squared error. 

Term (main effects)  Estimate Std. error L-95% CI U-95% CI 
Intercept -1.21 0.03 -1.25 -1.16 
Mean squared error -0.03 0.03 -0.08 0.02 
Term (family specific parameters) Estimate Std. error L-95% CI U-95% CI 
Shape 1.98 0.11 1.8 2.16 

 
 

Table E.1.3: Generalisation phase model summary showing term (main effects and family specific 

parameters), estimate, standard error (Std. error), and lower (L) and upper (U) 95% confidence 

intervals (CI). Model formula: Mean reconstruction error ~ PLD20 + Length. 

Term (main effects)  Estimate Std. error L-95% CI U-95% CI 
Intercept -0.01 0 -0.01 0 
PLD20 0.02 0 0.01 0.02 
Length 0 0 0 0.01 
Term (family specific parameters) Estimate Std. error L-95% CI U-95% CI 
Sigma 0.02 0 0.02 0.02 
Alpha 1.83 0.4 1.19 2.45 

 


