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Abstract

Perspective functions have long been used to convert fractional pro-
grams into convex programs. More recently, they have been used to
form tight relaxations of mixed-integer nonlinear programs with so-
called indicator variables. Motivated by a practical application (max-
imising energy efficiency in an OFDMA system), we consider problems
that have a fractional objective and indicator variables simultaneously.
To obtain a tight relaxation of such problems, one must consider what
we call a “bi-perspective” (Bi-P) function. An analysis of Bi-P func-
tions leads to the derivation of a new kind of cutting planes, which we
call “Bi-P-cuts”. Computational results indicate that Bi-P-cuts typi-
cally close a substantial proportion of the integrality gap.

Keywords: fractional programming, mixed-integer nonlinear program-
ming, mobile wireless communications, OFDMA systems

1 Introduction

Let y be a vector of n continuous variables, and let f(y) be a real function of y
that is defined over a convex domain C ⊆ Rn+. The perspective function of f
takes the form tf(y/t), where t is a new continuous variable, and is defined
over the domain t ∈ R+, y ∈ tC [9, 17]. (By convention, the perspective
function takes the value zero when t = 0 and y is the origin.) It is known
that the perspective function of f(y) is convex (or concave) if and only if
f(y) is convex (or concave) [17].

Perspective functions have a wide range of uses in, e.g., convex analysis,
optimisation, statistics, signal processing and machine learning (see [4] for
a recent survey). In this paper, we focus on two uses in optimisation. The
first is to convert fractional programs into convex optimisation problems,
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and thereby render them easier to solve [3,19]. The second is to reformulate
certain mixed-integer nonlinear programs (MINLPs), in such a way that the
continuous relaxation is strengthened [6, 7]. The MINLPs in question are
those with so-called indicator variables.

Recently, while studying certain problems arising in the context of mobile
wireless communications, we encountered an MINLP that exhibited both of
these features (i.e., a fractional objective and indicator variables) simulta-
neously. It turns out that, in order to obtain tight convex relaxations of
such problems, one needs to study a new kind of function, which we call a
bi-perspective (Bi-P) function. These functions are the topic of this paper.

Unfortunately, it turns out that the Bi-P function of a concave function
is not concave in general. To deal with this, we characterise the concave
envelope of a Bi-P function over a rectangular domain. We then derive
a family of linear inequalities, which we call Bi-P cuts, that completely
describe the concave envelope. We also show how to generalise the Bi-P
cuts when there are “multiple-choice” constraints, stating that two or more
indicator variables cannot take the value 1 simultaneously. Finally, we report
the results of some computational experiments. It turns out that, for our
particular problem, the new cuts typically close over 95% of the integrality
gap.

The paper is structured as follows. The relevant literature is reviewed in
Section 2. In Section 3, we present the theoretical results concerning Bi-P
functions and Bi-P cuts. In Section 4, we consider the multiple-choice case.
In Section 5, we give details of our practical application. Computational
results are given in Section 6, and concluding remarks are made in Section
7.

2 Literature Review

Now we briefly review the relevant literature. We cover perspective functions
and perspective cuts in Subsections 2.1 and 2.2, respectively. In Subsection
2.3, we give some background on optimisation in mobile wireless communi-
cations.

2.1 Perspective functions

As mentioned in the introduction, two particular uses of perspective func-
tions will turn out to be of importance to us. These are as follows.

1. Consider a fractional program of the form:

max
{
f(y)/g(y) : x ∈ C

}
,

where C ⊆ Rn is convex, f(y) is non-negative and concave over the
domain C, and g(y) is positive and convex over the domain C. It is
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known [3,19] that such a problem can be reformulated as

max
{
tf(y′/t) : tg(y′/t) ≤ 1, y′ ∈ tC, t > 0

}
,

where t is a new non-negative variable representing 1/g(y), and y′ is a
new vector of variables representing y/g(y). The reformulated problem
can often be solved efficiently, since the objective function is concave
and the feasible region is convex.

2. Consider an MINLP of minimisation type, in which the cost function
contains a term f(y), where y is a vector of continuous variables and
f is a convex function. Suppose that the MINLP also contains an
indicator variable, i.e., a binary variable x with the property that,
if x takes the value zero, then all of the components of y must also
take the value zero. Then the continuous relaxation of the MINLP is
strengthened, while maintaining convexity, if we replace f(y) with the
perspective function xf(y/x) [6, 7]. (For a generalisation, see [1].)

2.2 Perspective cuts

One problem with perspective functions is that they are non-differentiable
at the origin. Moreover, they become increasingly ill-conditioned as t ap-
proaches zero from above. This can cause algorithms for convex optimisation
(or indeed convex MINLP) to run into serious numerical difficulties. To get
around this, Frangioni & Gentile [6] proposed to approximate perspective
functions using linear inequalities. They show that imposing a non-linear
constraint of the form z ≥ xf(y/x), where f is a convex function and x is
an indicator variable, is equivalent to imposing the linear constraints

z ≥ ∇f(ȳ) · y +
(
f(ȳ)−∇f(ȳ) · ȳ

)
x (1)

for all ȳ in the domain of y. The constraints (1) are called perspective
cuts. Although the perspective cuts are infinite in number, they can be very
useful as cutting planes within an exact algorithm for convex MINLPs with
indicator variables (see again [6, 7]).

Note that the classical Kelley cuts [10] for the function f(y) take the
form

z ≥ f(ȳ) +∇f(ȳ) · (y − ȳ).

Thus, the perspective cuts can be viewed as strengthened Kelley cuts.

2.3 Optimisation in mobile wireless communications

In mobile wireless communications, mobile devices (such as smartphones or
tablets) communicate with one another via so-called base stations. Each
base station must periodically allocate its available resources (time, power
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and bandwidth) in order to receive and transmit data efficiently (see, e.g.,
[5, 8, 16]).

These days, many base stations follow an Orthogonal Frequency-Division
Multiple Access (OFDMA) architecture. In an OFDMA system, we have a
set I of communication channels, called subcarriers, and a set J of users.
Each subcarrier can be assigned to at most one user, but a user may be
assigned to more than one subcarrier. If we let pi denote the power (in watts)
assigned to subcarrier i, the classical Shannon–Hartley theorem [21] states
that the maximum data rate (in bits per second) that can be transmitted
from subcarrier i is:

fi(pi) = Bi log2 (1 + pi/Ni) ,

where Bi is the bandwidth of subcarrier i (in hertz), and Ni is the level
of noise in channel i (in watts). We remark that fi(pi) is concave over the
domain pi ≥ 0. Moreover, if we let Sj ⊂ I denote the set of subcarriers
allocated to user j, the total data rate for user j is just

∑
i∈Sj

fi(pi).
A wide variety of optimisation problems concerned with OFDMA sys-

tems have been considered, with various objectives and side-constraints (see,
e.g., [11,12,14,15,20,22–26]). Recently, driven by environmental considera-
tions, some authors working on OFDMA systems have focused on maximis-
ing energy efficiency, which is defined as total data rate divided by total
power (e.g., [22–24, 26]). This leads immediately to a fractional objective
function, which is what led us to the present paper.

3 Bi-Perspective Functions and Cuts

This section is concerned with bi-perspective (Bi-P) functions and cuts.
In Subsection 3.1, we define Bi-P functions and point out that they are
neither convex nor concave in general. In Subsection 3.2, we show how to
compute concave over-estimators of Bi-P functions. Then, in Subsection 3.3,
we present the Bi-P cuts.

3.1 Bi-P functions

To begin, we give a formal definition of Bi-P functions.

Definition 1 Let y be a vector of n continuous variables, let f(y) be a
real function of y that is defined over a convex domain C ⊆ Rn+, let x be
an indicator variable, and let t be a continuous variable with domain [`, u],
where 0 < ` < u. The function

g(x, t, y) = x t f
( y
x t

)
,
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with domain x ∈ [0, 1], t ∈ [`, u] and y ∈ x tC, will be called the “bi-
perspective” (Bi-P) function of f(y). (By convention, the Bi-P function
takes the value zero when x t = 0 and y is the origin.)

Whereas standard perspective functions preserve convexity and/or con-
cavity, the same is not true for Bi-P functions. This is shown by the following
example.

Example 1 Let f(y) = 1 for all y ∈ C. The Bi-P function g(x, t, y) is just
xt, with domain x ∈ [0, 1], t ∈ [`, u] and y ∈ xtC. Since it is an indefinite
quadratic function, it is neither convex nor concave over the given domain.

3.2 Concave envelope

Now suppose that f(y) is concave over C. Since the corresponding Bi-
P function g(x, t, y) is not guaranteed to be concave over its domain, it
is natural to seek the strongest possible concave over-estimating function
(sometimes called the concave envelope). We will let h(x, t, y) denote this
function. The following theorem expresses h(x, t, y) as the solution to an
optimisation problem in the single continuous variable t′.

Theorem 1 For any concave function f(y) with convex domain C, the con-
cave envelope h(x, t, y) of the Bi-P function of f is equal to:

max x t′ f( y
xt′ ) (2)

s.t. t−u(1−x)
x ≤ t′ ≤ t−`(1−x)

x (3)

t′ ∈ [`, u]. (4)

Proof. Theorem 1 of [2], together with the disjunction (x = 0) ∨ (x = 1),
implies that h(x, t, y) is equal to:

max θ0g(x0, t0, y
0) + θ1g(x1, t1, y

1)

s.t. θ0 + θ1 = 1

θ0x0 + θ1x1 = x

θ0t0 + θ1t1 = t

θ0y
0 + θ1y

1 = y

xk = k (k = 0, 1)

tk ∈ [`, u] (k = 0, 1)

yk ∈ xktkC (k = 0, 1).

Eliminating x0 and x1, and using the fact that y0 must be the origin, this
reduces to:

max θ1 t1 f(y1/t1)
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s.t. θ0 + θ1 = 1

θ1 = x

θ0t0 + θ1t1 = t

θ1y
1 = y

tk ∈ [`, u] (k = 0, 1)

y1 ∈ t1C.

We can now replace θ1 and θ0 with x and 1− x, respectively, to give:

max x t1 f(y1/t1)

s.t. (1− x)t0 + xt1 = t

x y1 = y

tk ∈ [`, u] (k = 0, 1)

y1 ∈ t1C.

Next, we can replace y1 with y/x, to give:

max x t1 f( y
x t1

)

s.t. (1− x)t0 + xt1 = t

tk ∈ [`, u] (k = 0, 1).

Finally, we eliminate t0, and replace t1 with t′ to get the result. �

In general, one must use calculus to solve the optimisation problem (2)–
(4). In some important special cases, however, it is possible to obtain a
closed-form solution. To show this, we will need the following two definitions.

Definition 2 The function f(y) is said to be t-increasing if

(t+ ε) f

(
y

t+ ε

)
≥ tf(y/t)

holds for all t ∈ [`, u), 0 ≤ ε ≤ u− t and y ∈ tC ∩ (t+ ε)C.

Definition 3 The function f(y) is said to be t-decreasing if

(t+ ε) f

(
y

t+ ε

)
≤ tf(y/t)

holds for all t ∈ [`, u), 0 ≤ ε ≤ u− t and y ∈ tC ∩ (t+ ε)C.

We then have the following two results:

Proposition 1 If f(y) is concave and t-increasing over convex domain C,
then

h(x, t, y) = min

{
ux f

( y

ux

)
, (t− `(1− x)) f

(
y

t− `(1− x)

)}
. (5)
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Proof. In this case, the optimum in (2)–(4) is obtained by setting t′ to its

maximum possible value, which is min
{
u, (t− `(1− x))/x

}
. �

Proposition 2 If f(y) is concave and t-decreasing over convex domain C,
then

h(x, t, y) = min

{
`x f

( y
`x

)
, (t− u(1− x)) f

(
y

t− u(1− x)

)}
.

Proof. In this case, the optimum in (2)–(4) is obtained by setting t′ to its

minimum possible value, which is max
{
`, (t− u(1− x))/x

}
. �

An obvious sufficient condition for a concave function to be t-increasing
is for it to be non-negative and non-decreasing. The following proposition
gives a rather different sufficient condition.

Proposition 3 If 0 ∈ C and f(0) ≥ 0, then f(y) is t-increasing.

Proof. Since f(y) is concave, we have

f

(
y

t+ ε

)
≥ ε

t+ ε
f(0) +

t

t+ ε
f
(y
t

)
.

Given that ε > 0, t ≥ ` > 0 and f(0) ≥ 0, we have

f

(
y

t+ ε

)
≥ t

t+ ε
f(y/t).

Multiplying both sides by t+ ε yields the stated result. �

Checking whether f(y) is t-decreasing, on the other hand, is more dif-
ficult. In particular, it is not sufficient for f(y) to be non-positive and
non-decreasing. For example, the function f(y) = −2y is non-positive
and non-decreasing over the domain R+, but it is not t-decreasing, since
0.6f(1/0.6) ≈ −1.905 > 0.5f(1/0.5) = −2. The same function also shows
that it is not sufficient to have 0 ∈ C and f(0) ≤ 0. On the other hand,
t-decreasing functions do exist. A trivial example is f(y) = −1. A more
complex example is f(y) = −

√
y2 + 1.

3.3 Bi-P cuts

Observe that the nonlinear function (5) is non-differentiable not only when
xt = 0, but also when u = t − `(1 − x). This suggests that standard NLP
solvers could struggle to handle functions of the form (5). Moreover, there
are situations in which one might prefer to use an LP (or MILP) solver rather
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than an NLP (or MINLP) solver. So, following Frangioni & Gentile [6], we
consider the hypograph of h(x, t, y), i.e., the set

H = {(x, t, y, z) : x ∈ [0, 1], t ∈ [`, u], y ∈ x tC, z ≤ h(x, t, y)}.

The following proposition gives a complete description of H by linear in-
equalities, for the case in which f(y) is t-increasing.

Proposition 4 When f(y) is t-increasing over C, the hypograph H is de-
scribed by the linear inequalities

z ≤ ∇f(ȳ) y +
(
f(ȳ)−∇f(ȳ) ȳ

)
ux (6)

z ≤ ∇f(ȳ) y +
(
f(ȳ)−∇f(ȳ) ȳ

)(
t− `(1− x)

)
. (7)

for ȳ ∈ C.

Proof. Let H+ denote the set of 6-tuples (x, t, y, z, α1, α2) satisfying

x ∈ [0, 1], t ∈ [`, u], y ∈ x tC (8)

α1 = ux (9)

α2 = t− `(1− x) (10)

z ≤ αkf(y/αk) (k = 1, 2). (11)

Given that the equations (9) and (10) are linear, H+ is an affine image of H.
Moreover, using exactly the same argument as in [6], one can show that H+

is described by the constraints (8) together with the following perspective
cuts:

z ≤ ∇f(ȳ) y +
(
f(ȳ)−∇f(ȳ) ȳ

)
αk (k = 1, 2; ȳ ∈ C).

Eliminating α1 and α2 yields the result. �

We will call constraints (6) and (7) type-1 and type-2 Bi-P cuts, respec-
tively. Note that the type-1 cuts can be derived as standard perspective
cuts from the modified perspective function uxf(y/(ux)). The type-2 cuts,
on the other hand, are harder to interpret.

We now make some remarks about Bi-P cuts.

Remark 1 The type 1 Bi-P cuts pass through all points satisfying t = `,
y = 0 and z = 0, along with the point x = 1, t = u, y = u ȳ and z = u f( ȳu).
Thus, they define maximal faces of H whenever the point (ȳ, f(ȳ)) lies on
a maximal face of the hypograph of the original function f(y). A similar
argument applies to the type-2 Bi-P cuts.
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Remark 2 If we reduce the domain of t, the Bi-P cuts become stronger.
Thus, if one wishes to make the cuts as tight as possible, it may be worthwhile
applying “domain reduction” techniques (see, e.g., [18]) to t.

Remark 3 Let (x∗, t∗, y∗, z∗) be the solution to some relaxation. To solve
the separation problem for type-1 Bi-P cuts, it suffices to compute the quan-

tity ux∗ f
(
y∗

ux∗

)
. If this quantity is less than z∗, then a cut is violated and the

vector ȳ yielding the cut is y∗/ux∗. Similarly, to solve the separation problem

for type-2 Bi-P cuts, it suffices to compute (t∗ − u(1 − x∗)) f
(

y∗

t∗−u(1−x∗)

)
and compare it with z∗.

4 Bi-P cuts and Multiple-Choice Constraints

It is very common in integer programming to encounter constraints which
state that at most one of a set of binary variables can take a positive value.
Such constraints go by various names, such as multiple-choice constraints,
clique constraints or generalised upper bounds. In this subsection, we con-
sider the case in which each of the variables in the given set is an indicator
variable.

To be more precise, suppose we have:

• positive constants `, u with ` < u;

• an integer m ≥ 2 and positive integers n1, . . . , nm;

• a convex domain Cj ⊆ Rnj for j = 1, . . . ,m;

• a t-increasing concave function fj : Rnj → R for j = 1, . . . ,m.

Let Q denote the set of quadruples (x, y, z, t) satisfying

t ∈ [`, u] (12)∑m
j=1 xj ≤ 1 (13)

zj ≤ tfj(yj/t) (j = 1, . . . ,m) (14)

xj ∈ {0, 1} (j = 1, . . . ,m) (15)

yj ∈ t Cj (j = 1, . . . ,m) (16)

zj ∈ R (j = 1, . . . ,m) (17)

xj = 0 ⇒ zj = 0 (j = 1, . . . ,m)

xj = 0 ⇒ yji = 0 (j = 1, . . . ,m; i = 1, . . . , nj).

Note that all points in Q satisfy the (non-convex) constraints

yj ∈ t xj Cj (j = 1, . . . ,m)

zj ≤ txjfj
(
yj

txj

)
(j = 1, . . . ,m),
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provided that, as usual, we use the convention that the right-hand side
evaluates to zero when txj is zero. Together with Remark 3 in Subsection
3.2, this implies that all points in Q satisfy the convex constraints:

zj ≤ uxj fj
(
yj

uxj

)
(j = 1, . . . ,m) (18)

zj ≤ (t− `(1− xj)) fj
(

yj

t−`(1−xj)

)
(j = 1, . . . ,m). (19)

From this, one can derive one family of type-1 and type-2 Bi-P cuts for each
value of j.

Perhaps surprisingly, the addition of the constraints (18), (19) to the
system (12)–(17) does not yield a complete description of the convex hull of
Q. This is shown in the following example.

Example: Let ε be a small positive constant. Suppose that (i) ` = ε and
u = 1; and (ii) nj = 1, Cj = [0, 1] and fj(y

j
1) = (yj1)ε for all j. Consider the

fractional point obtained by setting t to ε, all x and y variables to 1/m, and
all z variables to ε/(mε)ε. One can check that this point satisfies (18) and
(19) for all j, and therefore all Bi-P cuts. Now, observe that all points in Q
satisfy the following convex inequality:

m∑
j=1

zj ≤ t

(∑m
j=1 y

j
1

t

)ε
.

The above-mentioned fractional point does not satisfy this, since the left-
and right-hand sides evaluate to (mε)1−ε and ε1−ε, respectively. Accord-
ingly, the point cannot lie in the convex hull of Q. �

Now, for any j ∈ {1, . . . ,m} and any ȳj ∈ Cj , let ||ȳj || denote fj(ȳ
j) −

∇fj(ȳj) · ȳj . The following theorem presents a huge family of valid inequal-
ities, which generalise the type-2 Bi-P cuts (7).

Theorem 2 Let S be any non-empty subset of {1, . . . ,m}. For each j ∈ S,
let ȳj be any point in Cj such that ||ȳj || > 0. Then the linear inequality

∑
j∈S

zj
||ȳj ||

≤
∑
j∈S

∇fj(ȳj) · yj

||ȳj ||
+ t− `

1−
∑
j∈S

xj

 (20)

is satisfied by all points in Q.

Proof. We consider two cases:

Case 1: xj = 0 for all j ∈ S. This forces yji to be zero for all j ∈ S and
for i = 1, . . . , nj . This in turn forces zj to be zero for all j ∈ S. Thus, the
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inequality reduces to t ≥ a, which is trivially valid.

Case 2: xj = 1 for some j ∈ S. This forces xk to be zero for all k ∈ S \ {j},
along with the associated y and z variables. Thus, the inequality reduces to

zj
||ȳj ||

≤ ∇fj(ȳ
j) · yj

||ȳj ||
+ t.

Multiplying this by ||ȳj || we obtain:

zj ≤ ∇fj(ȳj) · yj + ||ȳj || t.

This last inequality can be derived from the (convex) constraint zj ≤ tfj(yj/t),
in exactly the same way as the perspective cuts. �

We call the constraints (20) multiple-choice Bi-P cuts, or MC cuts for
short. They reduce to type-2 Bi-P cuts when |S| = 1.

The separation problem for MC cuts can be solved in polynomial time as
follows. Let (x∗, y∗, z∗, t∗) be the point to be separated. For j = 1, . . . ,m,
compute `x∗jf((yj)∗/(`x∗j )). If this quantity is less than z∗j , then insert j

into S and set ȳj to (yj)∗/(`x∗j ); otherwise, do not insert j into S. Once this
has been done for all j, check the MC cut for violation.

5 Application to OFDMA Systems

We now apply the theoretical results in the last section to an optimisation
problem associated with OFDMA systems. In Subsection 5.1, we define
our problem formally and model it as a mixed 0-1 fractional program with
indicator variables. In Subsection 5.2, we reformulate the problem as a
semi-infinite mixed 0-1 linear program. In Subsection 5.3, we show how to
strengthen the semi-infinite formulation using Bi-P cuts.

5.1 The problem

Let I, J , Bi, Ni and fi be defined as in Subsection 2.3. Let P > 0 denote
the maximum power available, and let σ ∈ (0, P ) denote the system power,
which is the amount of power needed by the OFDMA system regardless of
actual data rates. Finally, suppose that each user j ∈ J has a non-negative
demand dj . The task is to maximise the energy efficiency, subject to the
constraint that the total data rate for each user j is at least dj .

We call this problem the fractional subcarrier and power allocation prob-
lem with rate constraints (F-SPARC). (A related problem, called the SPARC,
was studied in [12]. The difference is that the objective in the SPARC was
simply to maximise the total data rate.)

A natural formulation of the F-SPARC is obtained as follows. For all
i ∈ I and j ∈ J , let xij be a binary variable, indicating whether user j is
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assigned to subcarrier i. Also let pij be a non-negative continuous variable,
which represents the amount of power supplied to subcarrier i (if xij = 1),
or zero otherwise. We then have:

max
∑

i∈I
∑

j∈J fi(pij)

σ+
∑

i∈I
∑

j∈J pij
(21)

s.t.
∑

i∈I
∑

j∈J pij ≤ P − σ (22)∑
j∈J xij ≤ 1 (∀i ∈ I) (23)∑

i∈I fi(pij) ≥ dj (∀j ∈ J) (24)

pij ≤ Pxij (∀i ∈ I, j ∈ J) (25)

pij ∈ R+ (∀i ∈ I, j ∈ J) (26)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J). (27)

The objective function (21) represents the total data rate divided by the total
power used (including system power). The constraint (22) ensures that the
total power used does not exceed the amount available. Constraints (23)
ensure that each subcarrier is assigned to at most one user. Constraints
(24) ensure that the user demands are met. Constraints (25)–(27) are self-
explanatory.

The problem (21)–(27) is a mixed 0-1 fractional program. The x variables
are clearly indicator variables, since setting any x variable to zero forces the
corresponding p variable to zero. Moreover, the constraints (23) are clearly
multiple-choice constraints.

From now on, we let D =
∑

j∈J dj denote the total user demand. Note
that an upper bound for the F-SPARC can be computed by solving the
following (continuous) fractional program:

max

{∑
i∈I fi(pi)

σ +
∑

i∈I pi
:
∑
i∈I

pi ≤ P − σ,
∑
i∈I

fi(pi) ≥ D, p ∈ R|I|+

}
.

This fractional program can be converted into a convex program using the
transformation mentioned in Subsection 2.1. We denote the corresponding
upper bound by U .

5.2 Reformulation

We now reformulate the problem to make it easier to solve. This is done in
three steps.

The first step is to convert the fractional objective function into a con-
cave function. To do this, we use the transformation mentioned in Subsec-
tion 2.1. Let t be a non-negative continuous variable, representing 1/(σ +∑

i∈I
∑

j∈J pij), i.e., the reciprocal of the total power used. Also, for all i
and j, let p̃ij be a non-negative continuous variable, representing t pij . The

12



problem is then equivalent to the following:

max
∑

i∈I
∑

j∈J tfi(p̃ij/t) (28)

s.t. (23), (27)

σt+
∑

i∈I
∑

j∈J p̃ij = 1 (29)

1/P ≤ t ≤ 1/σ (30)∑
i∈I fi(p̃ij/t) ≥ dj (∀j ∈ J) (31)

0 ≤ p̃ij ≤ xij (∀i ∈ I, j ∈ J). (32)

The objective function (28) is now concave, and all constraints are linear,
apart from (31), which are convex.

The second step is the following. For i ∈ I and j ∈ J , define a new
variable, say zij , representing the quantity tfi(p̃ij/t). The problem then
becomes:

max
∑

i∈I
∑

j∈J zij

s.t. (23), (27), (29), (30), (32)∑
i∈I zij ≥ djt (∀j ∈ J)

zij ≤ tfi(p̃ij/t) (∀i ∈ I, j ∈ J) (33)

zij ∈ R+ (∀i ∈ I, j ∈ J).

Now, all of the nonlinearity has been “concentrated” in the (convex) con-
straints (33).

Finally, we replace the constraints (33) with the following linear con-
straints:

zij ≤ f ′i(p̄) p̃ij +
(
fi(p̄)− f ′i(p̄) p̄

)
t (∀i ∈ I, j ∈ J, p̄ ∈ [0, P − σ]). (34)

These linear constraints can be derived in the same way as standard per-
spective cuts. Since they are infinite in number, we have formulated the
F-SPARC as a semi-infinite mixed 0-1 linear program. It can be solved (to
arbitrary fixed accuracy) with an LP-based branch-and-cut algorithm.

5.3 Bi-P cuts

We now use the results in Section 3 to strengthen our semi-infinite formu-
lation of the F-SPARC.

We start by reducing the domain of t. Recall that D denotes the total
user demand. We compute the following lower bound on the total amount
of power used:

Pmin = σ + min

{∑
i∈I

pi :
∑
i∈I

fi(pi) ≥ D, pi ≥ 0 (i ∈ I)

}
.
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The upper bound on t in (30) can then be reduced from 1/σ to 1/Pmin.
Now, let i and j be fixed, and consider the constraints (27), (32) and

(33). It is clear that all feasible triples (xij , p̃ij , rij) satisfy

zij ≤ t xijfi

(
p̃ij
txij

)
,

where, as usual, the convention is that the function on the right-hand side
takes the value zero when p̃ij = txij = 0. The function is clearly a t-
increasing Bi-P function. The only tricky part is that the natural domain of
p̃ij is [0, 1], which is not equal to t xij C for some convex domain C. Despite
this complication, we have the following result:

Proposition 5 For all i ∈ I, j ∈ J and p̄ ∈ [0, P − σ], the following type-1
and type-2 Bi-P cuts are valid for the F-SPARC:

zij ≤ f ′i(p̄) p̃ij +

(
fi(p̄) − f ′i(p̄) p̄

Pmin

)
xij (35)

zij ≤ f ′i(p̄) p̃ij +
(
fi(p̄)− f ′i(p̄) p̄

)(
t− 1− xij

P

)
. (36)

Proof. We already know that t must lie in the interval [1/P, 1/Pmin]. Also,
pij ≤ P − σ, or, equivalently, p̃ij ∈ t [0, P − σ]. In fact, given that p̃ij must
be zero when xij is zero, we can conclude that p̃ij ∈ t xij [0, P − σ]. We can
now generate Bi-P cuts as usual. �

Note that the type-2 cuts (36) dominate (34).
Finally, since the constraints (23) are multiple-choice constraints, we can

also generate MC cuts. In our preliminary experiments, we found that the
most useful MC cuts were those with (a) S = J and (b) p̄ij equal to the
same (positive) value for all j ∈ J . These cuts take the form:∑
j∈J

zij ≤ f ′i(p̄)
∑
j∈J

p̃ij +
(
fi(p̄)− f ′i(p̄)p̄

)
t (i ∈ I, p̄ ∈ [0, P − σ]). (37)

We remark that the cuts (37) collectively enforce the following convex in-
equalities: ∑

j∈J
zij ≤ t fi

(∑
j∈J p̃ij

t

)
(i ∈ I). (38)

From this it can be shown that the upper bound obtained by adding all of
the cuts (37) to the continuous relaxation of the semi-infinite formulation is
equal to U , the upper bound mentioned at the end of Subsection 5.1.

We remark that the separation problem for the cuts (37) can be solved
simply by setting p̄ to the current value of

∑
j∈J p̃ij , and checking the in-

equality (38) for violation. This can be done in O(|J |) time for a given
i.
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6 Computational Experiments

In the previous section, we described three families of cutting planes for the
F-SPARC: the type-1 cuts (35), the type-2 cuts (36), and the special MC
cuts (37). In this section, we present some computational results to shed
light on the relative usefulness of these different kinds of cuts.

6.1 Test instances

To construct our test instances, we used the procedure described in [12],
which is designed to produce instances typical of a small base station. In
detail, the instances have |I| = 72, |J | ∈ {4, 6}, and P set to 36 watts. The
noise powers Ni are random numbers distributed uniformly in (10−6, 10−5),
and the bandwidths Bi are all set to 1.25MHz. The user demands follow a
lognormal distribution.

Let D be the total demand, as before, and let M be the maximum
possible data rate of the system. As in [12], we call the quantity D/M the
demand ratio (DR) of the given instance. The user demands are scaled so
that the DR takes values in {0.75, 0.8, 0.85, 0.9, 0.95}. (The closer the DR
is to 1, the harder the instance tends to be.) For each combination of |J |
and DR, we constructed 10 random instances. This makes 2× 5× 10 = 100
instances in total. These instances have been made available at:

http://www.research.lancs.ac.uk/portal/en/datasets/search.html

under “OFDMA Optimisation”.

6.2 Experimental setup

For each instance, we did the following. We began by computing the upper
bound U mentioned at the end of Subsection 5.1, using MOSEK. We then ran
the heuristic described in [13] to compute a lower bound. If the bounds
differed by more than 0.1%, we ran an exact algorithm, similar to the one
described in [12], until the difference between the lower and upper bounds
dropped below 0.1%. We remark that this exact algorithm took a long time
(sometimes several minutes) to converge for some of our test instances.

The next step was to solve, for each instance, the continuous relaxation
of the formulation described in Subsection 5.2. To do this, we used a (fairly
standard) LP-based cutting-plane algorithm, in which the inequalities (34)
were added dynamically as cutting planes. In each major iteration, all in-
equalities violated by more than 10−4 were added to the LP. A time limit
of two minutes per instance was also imposed. (In most cases, tailing off
occurred well before the time limit.)

The cutting-plane algorithm was coded in Julia v0.5 and run on a vir-
tual machine cluster with 16 CPUs (ranging from Sandy Bridge to Haswell
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Table 1: Average percentage gaps when |J | = 4

Demand Ratio

Cuts 0.75 0.80 0.85 0.90 0.95

∅ 165 165 168 172 175
T1 0.00 0.00 0.09 0.03 0.02
T2 0.01 0.01 0.03 0.01 0.03
MC 2.19 1.39 1.06 0.25 0.06

T1, T2 0.00 0.00 0.03 0.01 0.01
All 0.00 0.00 0.02 0.01 0.01

architectures) and 16GB of RAM, under Ubuntu 16.04.1 LTS. The program
used the LP solver from the CPLEX 12.6.3 Callable Library (with default
settings). More specifically, we used primal simplex to solve the initial re-
laxation and dual simplex to re-optimise after adding cuts.

Finally, we ran the cutting-plane algorithm again for each instance,
switching on and off various combinations of the cuts (35)–(37). The pur-
pose of this was to enable us to identify the cuts that tend to be most useful
in practice.

6.3 Results

We present results for six versions of the cutting-plane algorithm:

• “∅”: Constraints (34) alone, without any Bi-P cuts.

• “T1”: Constraints (34) plus type-1 Bi-P cuts (35).

• “T2”: Type-2 Bi-P cuts (36) alone.

• ‘MC”: Constraints (34) plus MC cuts (37).

• “T1+T2”: Type-1 cuts (35) and type-2 cuts (36).

• “All”: Type-1 cuts (35), type-2 cuts (36) and MC cuts (37).

Tables 1 and 2 show, for each set of 10 instances and each combination of
cutting planes, the average gap between the upper bound from the cutting-
plane algorithm and the lower bound from the exact algorithm, expressed
as a percentage of the lower bound.

From the tables, we see that the unstrengthened cuts (34) lead to ex-
tremely poor upper bounds in all cases. Moreover, the gaps for |J | = 4 are
much worse than the gaps for |J | = 6. Type-1, type-2 and MC cuts all close
the gap considerably, but type-1 and type-2 cuts appear to be more effective
than MC cuts. Using type-1 and type-2 cuts in combination is particularly
effective. In fact, the benefit gained by including MC cuts as well is rather
small.
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Table 2: Average percentage gaps when |J | = 6

Demand Ratio

Cuts 0.75 0.80 0.85 0.90 0.95

∅ 275 276 279 286 291
T1 0.08 0.08 0.14 0.15 0.05
T2 0.01 0.01 0.04 1.64 0.81
MC 2.30 2.41 1.63 0.33 0.15

T1, T2 0.01 0.01 0.04 0.15 0.03
All 0.01 0.01 0.04 0.14 0.03

7 Concluding Remarks

Perspective reformulations and cuts are an invaluable tool for both frac-
tional programming and MINLP with indicator variables. We have shown
that, when one is dealing with a mixed-integer fractional program with indi-
cator variables, one needs to use “bi-perspective” reformulations and cuts in
order to obtain bounds that are useful within an exact solution algorithm.
We believe that extensions of perspective reformulations and cuts to other
classes of problems would be a valuable topic for future research.

As for our specific application, to optimisation in OFDMA systems, we
plan to look next at stochastic dynamic variants of the problem, in which
users arrive and depart at random over time.

Acknowledgement: We are grateful to an anonymous referee whose care-
ful reading and detailed suggestions enabled us to improve the paper sub-
stantially.
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