1 2	MnO ₂ -decorated N-doped carbon nanotube with boosted activity for low- temperature oxidation of formaldehyde
3 4 5	Shuai Peng ^b , Xixian Yang ^{a*} , James Strong ^e , Binoy Sarkar ^d , Qiang Jiang ^e , Feng Peng ^f , Defei Liu ^a , Hailong Wang ^{g,h**}
6	^a School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
7	^b Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-
8	Based Textile Materials, Wuhan Textile University, Wuhan, 430073, China
9	^c School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy,
10	Queensland University of Technology, GPO Box 2432, 2 George St, Brisbane, QLD 4001,
11	Australia
12	^d Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
13	^e School of Chemistry and Chemical Engineering, South China University of Technology,
14	Guangzhou, 510000, China
15	^f School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510000,
16	China
17	^g Biochar Engineering Technology Research Center of Guangdong Province, Foshan University,
18	Foshan, Guangdong 528000, China
19	^h Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F
20	University, Hangzhou, Zhejiang 311300, China
21	*Corresponding authors:
22	Xixian YangEmail: yangxixian@yeah.netTel/Fax: +86 757 82272751
23	**Corresponding author:
24 25	Hailong Wang Email: hailong.wang@fosu.edu.cn Tel/Fax: +86 757 82272751

26 Highlights

- A simple *in-situ* oxidation approach was developed to prepare MnO₂/NCNT.
- Prepared samples showed boosted activity for HCHO degradation at low
 temperature.
- 30 MnO₂/NCNT exhibited better activity and selectivity than MnO₂/CNT.
- Mechanism of improved HCHO oxidation by MnO₂/NCNT was revealed.

33 Graphical Abstract

Abstract: Low-temperature oxidative degradation of formaldehyde (HCHO) using 36 non-noble metal catalysts is challenging. Herein, novel manganese dioxide (MnO₂)/N-37 doped carbon nanotubes (NCNT) composites were prepared with varying MnO₂ 38 content. The surface properties and morphologies were analyzed using X-ray 39 photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and 40 transmission electron microscope (TEM). Comparing with MnO₂/carbon nanotubes 41 (CNTs) catalyst, the 40% MnO₂/NCNT exhibited much better activity and selectivity 42 43 for HCHO oxidation, mineralizing 95% of HCHO (at 100 ppm) into CO₂ at 30 °C at a gas hourly space velocity (GHSV) of 30,000 mL h⁻¹ g⁻¹. Density functional theory (DFT) 44 calculation was used to analyze the difference in the catalytic activity of MnO₂ with 45 CNTs and NCNT carrier. It was confirmed that the oxygen on NCNT was more active 46 than CNTs, which facilitated the regeneration of MnO₂. This resulted in remarkably 47 boosted activity for HCHO oxidation. The present work thus exploited an inexpensive 48 approach to enhance the catalytic activity of transition metal oxides via depositing them 49 on a suitable support. 50

51

Keywords: Manganese dioxide; carbon nanotube; low-temperature; catalytic oxidation; formaldehyde removal

54

55 **1. Introduction**

56 In recent years, preventing or mitigating harmful volatile organic compound (VOC) 57 emissions has been intensively researched because of the directly-implicated adverse health effects associated with these gaseous pollutants [1-4]. Formaldehyde (HCHO) is 58 considered as one of the most harmful air pollutants in indoor environments. A 59 60 chronical exposure to HCHO can lead to irreversible damage to skin, eyes and respiratory system, as well as can cause cerebrovascular diseases and cancers [5, 6]. 61 Hence, the elimination of HCHO is essential for improving the safety of work or living 62 environment. 63

64

To date, methods proposed for the removal of HCHO included adsorption [7, 8],

plasma oxidation [9-11], photocatalytic degradation [12-15], and catalytic oxidation 65 [16-19]. Among these methods, catalytic oxidation has been considered to be a highly 66 efficient approach to feasibly convert HCHO into CO2 and H2O under mild conditions 67 [20]. Traditionally, noble metal catalysts (e.g., Pt, Pd, Au) were commonly used for low 68 temperature oxidation of HCHO due to the high catalytic efficiency and selectivity. 69 However, high cost and scarcity have limited their application [21-24]. Therefore, 70 exploring cost-effective, alternative catalysts for the HCHO oxidation at low 71 72 temperature or even at room temperature is highly demanded at the moment.

73 One of the most pragmatic strategies is to utilize supported transition metal oxides (e.g., Co₃O₄, CeO₂, TiO₂, MnO₂) as catalysts for the oxidation removal of HCHO 74 ascribed to the inexpensive, adequate catalytic activity, and satisfactory thermal 75 stability [25-27]. Manganese dioxide (MnO₂) is a practical choice for HCHO oxidation 76 at room temperature [27]. It is regarded as the most active catalyst among transition 77 metal oxides for HCHO oxidation because of its high oxidation-reduction potential. 78 However, it remained a challenge to develop effective MnO₂-based catalysts for 79 80 complete oxidation of HCHO at ambient temperatures with improved CO₂ selectivity [28]. 81

Despite the challenges, various MnO₂ supported on carbon nanomaterials 82 demonstrate excellent catalytic activity due to accelerated charge transport resulting 83 from well-designed morphology and structure [29]. Both generic and heteroatom-doped 84 carbon nanotube (CNT) has been meticulously tested for the above purposes in the last 85 few years. N-doped carbon nanotube (NCNT) has become particularly appealing due 86 to increased surface reactive sites improving catalytic performance [30]. Furthermore, 87 88 a series of nanocomposite consisting of MnO₂ supported by NCNT have been widely applied, including as superior anodes for lithium ion batteries, cathodic catalysts for 89 90 microbial fuel cells, electrodes for supercapacitors, and so on [30-32]. Unfortunately, most of the researches focusing on catalytic HCHO degradation investigated on the 91 single component of MnO₂ or NCNT. As far as we know, there are no published reports 92 93 with respect to well-dispersed MnO₂ nanosheets supported by NCNT for the low94 temperature catalytic removal of HCHO.

In this work, MnO₂ was directly deposited onto the NCNT surface using *in-situ* 95 oxidation. The physical and chemical properties of MnO₂/NCNT were characterized. 96 Subsequently, the MnO₂/NCNT composite was assessed for catalytic performance and 97 selectivity. Compared with pure MnO2 and MnO2/CNT, the MnO2/NCNT composite 98 displayed higher activity and stability for the degradation of HCHO at lower 99 temperature. Furthermore, density functional theory (DFT) calculations and x-ray 100 photoelectron spectroscopy (XPS) analyses were verified that the combination of MnO₂ 101 and NCNT had a strong synergistic catalytic effect via the formation of well-defined 102 interfaces and improved interfacial electron transfer. 103

104

105 **2. Experimental**

106 2.1. Preparation of formaldehyde oxidation catalyst

Carbon nanotubes (CNTs) were synthesized according to our previous work [30]. The
 preparation details are contained in the Supporting Information.

N-doped carbon nanotubes (NCNT) were synthesized by a similar chemical vapor 109 deposition (CVD) method as follows: 0.1 g Fe-Mo/Al₂O₃ catalyst (see reference [33]) 110 was placed in a clean magnetic boat, which was placed in a quartz tube of a horizontal 111 tube furnace with a 4 cm inner diameter and sealed. Ammonia (NH3) gas was injected 112 113 into the tube at a flowrate of 400 sccm over 10 min. The temperature was increased to 800 °C at a heating rate of 10 °C/min. Aniline (18 mL) was injected into the quartz tube 114 at a rate of 3 mL/h via a microinjection pump. After 10 min, the furnace was turned off 115 and the NH₃ flow rate lowered to100 sccm. When the furnace temperature dropped 116 below 100 °C, NH₃ flow was replaced with air flushing at 500 sccm for 10 min. The 117 sample was transferred into a stirred 30% nitric acid (HNO₃) solution for 10 min, 118 followed by refluxing in an oil bath at 120 °C for 5 h. The mixture was diluted, filtered 119 and thoroughly washed with deionized water until neutral. Finally, the filter cake was 120 dried at 105 °C for 12 h to yield NCNTs. 121

The CNT modified MnO₂ catalysts (MnO₂/CNT) were prepared as follows: 500 mg 122 CNTs was placed in 10 mL 5 wt % polyethylene glycol (average molecular weight 123 124 1000). After magnetic stirring for 1 h, deionized water was added and the suspension volume should reach to x mL. Then y g KMnO₄ was slowly added into the solution 125 under stirring. This suspension was transferred into an oil bath, heated to 75 °C for 2 h 126 under continuous magnetic stirring. After cooling to room temperature, the mixture was 127 filtered, then washed with water and followed by exhaustive rinsing with ethanol for 128 five times. The solid filter cake was dried in vacuum drying chamber at 80 °C for 12 129 hours to yield the $MnO_2/CNTs$ catalysts. Different x and y content resulted in different 130 MnO₂/CNT composites, as indicated below: When x=100 mL (40mL, 20mL), and 131 y=1.7077 g (0.5667 g, 0.2214 g), MnO₂ content could reach to 70% (40%, 20%) and 132 the catalyst was defined as 70 % MnO₂/CNTs (40% MnO₂/CNTs, 20% MnO₂/ CNTs). 133

The method described above was used to generate MnO₂/NCNT catalysts, also with 70%
MnO₂/NCNT, 40% MnO₂/NCNT and 20% MnO₂/NCNT. All material was assessed for
HCHO catalysis. The synthesis schematic illustration of MnO₂/NCNT was shown in
Schematic.1.

138

139 2.2. Catalyst characterization

Scanning electron microscope (SEM) (LEO1530VP, Zeiss, Germany) 140 and Transmission electron microscope (TEM) (JEM-2100F, JEOL, Japan) were used to 141 observe the micro surface shape and structure of the catalyst. X-ray diffraction (XRD) 142 analysis was carried out on a D8-Advance X-ray diffractometer with Cu- K_{α} radiation 143 $(\lambda=0.15418)$ (Bruker, Germany). Specific surface area of the catalysts was measured by 144 N₂ adsorption tests performed on an ASAP-2010 analyzer (Micomeritics, USA) and 145 calculated via Brunauer-Emmett and Teller (BET) method. X-ray photoelectron 146 spectroscopy (XPS) was conducted using a Thermo ESCALAB 250Xi X-ray 147 photoelectron spectrometer with Al K_{α} X-ray source (1486.7 eV, 10.8 mA and 30 kV). 148

149 2.3. Catalytic oxidation

150 Catalytic oxidation test was performed using a custom-designed HCHO removal

151 system (Fig. S1; Supporting Information). Different catalyst samples (0.2 g) were 152 uniformly dispersed in a glass tube (i.d. = 6.0 mm, length = 9 mm). After the tube was 153 fixed in the reactor, the stream containing approximately 100 parts per million (ppm) 154 HCHO was generated from polyformaldehyde at a temperature of 0 °C. The HCHO 155 and CO₂ concentrations (ppm) were analyzed by an Agilent 7890A online gas 156 chromatograph with a flame ionization detector. The HCHO removal efficiency was 157 calculated as:

158 HCHO removal efficiency (%) = ([HCHO]_{in}-[HCHO]_{out}) / [HCHO]_{in} \times 100%

where [HCHO]_{in} and [HCHO]_{out} were the inlet HCHO concentration and outlet concentrations at any time during the catalytic process, respectively.

161 2.4 Computational Details

Density functional theory (DFT) calculations were performed with DMol3 software 162 163 package [34]. The optimization and energy were calculated with Perdew-Burke-Ernzerhof (PBE) functional under polarized function (DNP) basis set. The DFT semi-164 core pseudopotentials (DSPPs) method was chosen as the core treatment. The 165 Grimme's method was used for dispersion correction [35]. Global orbital cutoff was set 166 to 5.0 Å for all atoms. The electronic spin was unrestricted. For MnO₂ structure, the 167 (110) surface was cleaved for the unit cell (Fig. S9a), followed by establishing a (3*2) 168 supercell and building a 25 Å vacuum layer (Fig. S9b). The k-point was set to (4*4*1) 169 for calculations. For CNT structure, the (6,6) carbon nanotube was imported, followed 170 by building a (1*1*3) supercell. One of the carbon atoms was replaced by nitrogen to 171 form a NCNT model. The k-point was set to (1*1*6). 172

173 **3. Results and discussion**

174 3.1. Physico-chemical characterization of catalysts

Fig. 1 shows the SEM images of MnO₂/CNTs and MnO₂/NCNT with different contents of MnO₂. With increased amounts of MnO₂ reacting with the carrier, it was clear that the number of MnO₂ nanosheets were in-situ immobilized on the CNTs/NCNT surfaces, and resultant oxidative damages to CNTs and NCNT surface 179 structure were observed, according to the following redox reaction:

180

$$4MnO_4^{-} + 3C + H_2O \rightarrow 4MnO_2 + CO_3^{2-} + 2HCO_3^{-}$$
(1)

181 Additionally, a pleated petal shape was apparent on the surface of these nanosheets, and they were bridged together to form a porous architecture. When MnO₂ nanosheets 182 were introduced onto nano-carbon structures, the surface of the carbon structure was 183 initially oxidized with the reduction of permanganate ions. Specifically, from the SEM 184 images of MnO₂/NCNT (Fig. 1d and 1e), it can be clearly seen that potassium 185 186 permanganate peeled off the NCNT structure, whereas some of the nanotubes have not been oxidized and exhibited very smooth surfaces. Hence, it could be preliminarily 187 speculated that permanganate oxidation initially occurred at the edge and defect site, 188 and with the increased concentrations or exposure, the NCNT were gradually eroded to 189 the central areas (Fig. 1f) [32]. By the way, the oxidation process was also observed in 190 the SEM images of MnO₂/CNTs (Fig. 1a-c). The smooth CNTs were increasingly 191 coated by identified MnO₂ nanosheets on the surfaces. The elemental mapping of 192 193 MnO₂/NCNT is shown in Fig. 1g. The Mn and O were uniformly dispersed on the shell, while C and N were present in a fair dispersion degree as along with Mn and O, 194 suggesting the existence of NCNT. 195

All TEM images of MnO₂/CNT and MnO₂/NCNT composites displayed excellent 196 hollow tubular structure with an average external diameter ranging from 15 to 45 nm 197 and inner diameter from 6 to 25 nm (Fig. 2). The surfaces were well-covered by highly 198 dispersed burrs. These were attributable to multiple layers of MnO₂, which formed 199 200 adherent flakes by depositing onto surface defects caused by permanganate oxidation. Correspondingly, the amount of MnO₂ deposited increased with increased oxidation of 201 202 the CNTs (Fig. 2b, f and j). MnO₂ nanosheets were also highly dispersed on the surface of single CNTs (Fig. 2b). The high-resolution transmission electron microscopy 203 (HRTEM) image of 40% MnO₂/CNTs (Fig. 2g) clearly indicated lattice planes of CNTs 204 with a spacing of 0.72 nm, and ε -MnO₂ with a spacing of 0.29 nm, which corresponds 205 to the (100) diffraction plane. In addition, a broad and diffused halo ring pattern was 206 observed (Fig. 2h) from the selective area electron diffraction (SAED), confirming the 207

presence of amorphous MnO₂. MnO₂/NCNT and MnO₂/CNTs were difficult to 208 differentiate physical appearance as both had a similar external morphology (Fig. 2a). 209 Nevertheless, bamboo-like structure with openings on both ends could be observed in 210 NCNT by the successful doping of nitrogen (Fig. S2). According to the previous report, 211 the NCNT-based composites had a wrinkled texture and relatively high defect density, 212 which could be helpful in the acceleration of VOC oxidation [36]. This was evident in 213 Fig. 2e, which showed a single NCNT completely encapsulated by MnO₂ nanosheets. 214 215 Thus, it demonstrated that the NCNT provided an excellent surface for in-situ growth of MnO₂ nanosheets and could prevent agglomeration of the particles. Interestingly, 216 other NCNT around the completely oxidized one did not yet start to be eroded. On the 217 basis of these results, it could be inferred that NCNT oxidation initially occurred at 218 defect sites and then rapidly covered the entire carbon tube, which were in coincidence 219 with the previous SEM observations. Additionally, imperceptible lattice fringe was 220 observed in the HRTEM image of 40% MnO₂/NCNT (Fig. 2i) further confirmed the 221 presence of an amorphous phase of MnO₂ in the nanosheets. All the results above 222 223 demonstrated successful anchoring of MnO2 nanocomposite on the surface of the NCNT. 224

The X-ray diffraction patterns of MnO₂/CNT powders are shown in Fig. 3a. For 225 carbon nanotubes with different MnO₂ content, five characteristic diffraction peaks 226 were evident at 25.97°, 37.11°, 42.81°, 65.70°, and 78.06°. The wider diffraction peak 227 at 25.97° and the small diffraction peak at 65.70° were indicative of the graphite 228 structure of CNT (JCPDS 41-1487) [37]. With greater oxidation of CNTs and increased 229 MnO₂ loading, the intensity of the primary peak for graphite structure (25.97°) 230 decreased significantly. Peaks at 37.11°, 42.81° and 65.70° were attributed to (100), 231 (101), (110) crystal faces of MnO₂ (JCPDS 30-0820) [25], respectively. These 232 diffraction peaks were wide and weak, indicating an abundance of amorphous MnO₂. 233 Generally, this might be explained as the MnO₂ present on the surface of catalyst was 234 below the lower limit of X-ray detection, or that amorphous MnO₂ might exist in 235 amorphous state with good degree of dispersion. In comparison to the former reason, 236

the latter explanation was more relevant for this research based on the obtained TEM 237 and SAED information. The XRD diffraction patterns of MnO₂/NCNT (Fig. 3b) were 238 very similar to that of MnO₂/CNTs. However, there was a decrease in the peak 239 intensities of MnO₂, which indicated that the crystallinity of MnO₂ was relatively low. 240 The diffraction peak at 25.97° on behalf of graphite structure was gradually weakened 241 and widened because the NCNT carrier was oxidized to a greater extent and 242 consequently the crystal structure was seriously damaged [33]. Such a phenomenon 243 244 was normal for carbon nanomaterials modified with metal oxide nanoparticles, resulting in increased defects and active sites exposed for catalytic oxidation. Previous 245 literature also showed that the combination of metal oxide nanoparticles with CNTs 246 enhanced HCHO mineralization efficiencies [17, 42]. Moreover, these results were in 247 good agreement with SEM, TEM and SAED results already discussed. 248

The pore size and distribution of MnO₂/NCNT provided important information for 249 the catalytic process during synthesis of the material. The specific surface area (SSA) 250 and porosity of MnO₂/CNTs and MnO₂/NCNT were analyzed by N₂ adsorption-251 252 desorption technique using BET and BJH (Barrett, Joyner, and Halenda) methods (see Table 1). Essentially, CNTs were low-dimensional nanomaterials with large SSA. After 253 MnO₂ deposition, the SSA of CNTs initially decreased up to 40% MnO₂ loading. When 254 the material was further oxidized, more and more MnO2 were connected with each other 255 to form a porous structure, and hence the SSA of the catalyst exhibited an increasing 256 trend at 70% MnO₂ loading (Table 1). As a result of this, the average pore size and total 257 pore volume also initially increased and then decreased. In the case of MnO₂/NCNT, 258 the SSA and pore size distribution of NCNT and MnO₂/NCNT were also analyzed (Fig. 259 260 S3). All the samples exhibited a type IV isotherm with obvious hysteresis loops at $P/P_0 > 0.4$ in the P/P_0 range of 0.6~1.0, suggesting the presence of a large number of 261 mesoporous structures. In contrast to CNTs, NCNT exhibited different physical 262 properties. With an increased MnO₂ loading, the SSA increased, but the average pore 263 size and total pore volume gradually decreased (Table 1). In accordance with the SEM 264 and TEM results, the inner space of NCNT was gradually exposed and more defective 265

sites of NCNT synchronously supplied during the oxidation process. Subsequently, a 266 network of pores was connected to each other by the MnO₂ nanosheets and stacked into 267 a porous skeleton architecture, which increased the SSA of NCNT. It was ascertained 268 that the large surface area generated larger adsorption capacity for gaseous reactants, 269 which could facilitate the catalytic conversion in the solid-gas reaction. Simultaneously, 270 the decrease in pore size and pore volume might be due to the introduced MnO₂ 271 nanosheets with different sizes, forming a dense accumulation of structures, leading to 272 273 smaller pore size and reduced total pore volume.

The surface chemical environment and binding states of the dominant elements 274 were characterized by XPS. The typical signals for C, N, O, and Mn were clearly 275 presented in the full-range spectra (Fig. 4a). The C 1s spectra of different samples were 276 shown in Fig. S4. When the spectra for MnO₂/NCNT and MnO₂/CNTs were compared, 277 the shape and binding energy at ~284.6 eV, ~286.3 eV and ~288.2 eV were similar, 278 corresponding to C-C, C-O and C=O bonds, respectively. However, an additional peak 279 at 285.7 eV associated with C-N indicated successful doping of nitrogen in 280 281 MnO₂/NCNT. Typically, the N 1s spectrum of MnO₂/NCNT (Fig. 4b) exhibited three main peaks at 398.3, 399.7 and 401.7 eV, which were assigned to pyridinic, pyrrolic 282 and graphitic N [31], respectively. It was widely accepted that the presence of graphitic 283 N contributes to improved catalytic activity for VOC oxidation in the heteroatom-doped 284 carbon nanotubes [37]. 285

Fig. S5 illustrates the high-resolution spectrum of Mn 2p, which was apparently 286 divided into two peaks, attributed to Mn 2p_{3/2} (~ 642.2eV) and Mn 2p_{1/2} (~654.0 eV) 287 with a splitting energy of 11.8 eV, proving that the Mn⁴⁺ ions were dominant in the 288 catalysts. This was consistent with literature reports [38]. As observed in Fig. 4c, the 289 Mn^{3+}/Mn^{4+} ratios were determined by their peak areas as follows: $MnO_2/NCNT >$ 290 $MnO_2/CNTs > pure MnO_2$. Generally, the oxygen vacancies increase with the ratio of 291 Mn^{3+}/Mn^{4+} , and these were crucial as they provide the active sites for oxidation 292 reactions [25]. Moreover, the binding energy of Mn 2p_{3/2} and Mn 2p_{1/2} peaks shifted to 293 294 lower values for MnO₂/NCNT and MnO₂/CNTs compared to that of pure MnO₂ (Fig.

S5). The downshift resulted from an increase in the π electron cloud density after the indraught of carbon nanotubes, implying the presence of interfacial charge transfer from carbon nanotubes to Mn atoms [43].

Fig. 4d shows that the O1s spectrum was separated into two individual peaks at 298 around 529.7 eV (lattice oxygen (Olatt)) and 531.6 eV (surface oxygen species (Osur)). 299 The binding energy of Olatt at approximately 530.0 eV was for MnO₂, and this shifted 300 to 529.8 eV for MnO₂/CNTs and 529.7 eV for MnO₂/NCNT, respectively. It could thus 301 302 be suggested that the decrease of the BE of Olatt was likely due to the increased electron density of Olatt by the existence of oxygen vacancies [30]. Furthermore, the electrophilic 303 O_{sur} associated with the surface vacancies might play an important role in the VOCs 304 oxidation. It was noteworthy that the Osur/Olatt molar ratio decreased in the order of 305 $MnO_2/NCNT > MnO_2/CNTs >$ pure MnO_2 . According to these results, we can infer that 306 MnO₂/NCNT exhibited the best reaction activity for HCHO oxidation which was 307 mainly attributed to the highest density of catalytically reactive sites [39]. 308

309 3.2. Catalytic oxidation of formaldehyde

310 The HCHO removal efficiency and CO₂ selectivity of the catalysts were assessed at different temperatures (Fig. 5 and Fig. S6). The activity of the catalysts displayed a 311 gradual increase with increasing temperature. The content of MnO₂ also had a 312 significant influence on the catalytic activity. For MnO₂/CNTs, 40% MnO₂/CNTs 313 exhibited the best catalytic activity at room temperature (Fig. 5a), attaining 75% of 314 removal efficiency, and its performance below 100 °C was better than 20% MnO₂/CNTs 315 316 and 70% MnO₂/CNTs. This might be due to the better electron transfer ability of the relatively complete carbon tube and the appropriate modification by MnO₂ nanosheets. 317 When the temperature increased above 100 °C, the composite with the highest MnO₂ 318 content (70% MnO₂/CNTs) showed the best activity with 100% HCHO removal 319 320 efficiency at 150 °C, which could be ascribed to the further increase of active MnO₂ nanosheets decorated on defective sites of CNTs [27]. These results confirmed that the 321 catalytic activity of the MnO₂/CNTs could be adjusted by turning the contents of MnO₂ 322 nanosheets in the composite catalyst. Additionally, CO2 selectivity measurements for 323

70%MnO₂/CNTs at different temperatures demonstrated that all formaldehyde was 324 completely converted to CO2 at 120 °C. HCHO removal efficiencies in excess of 90% 325 were achieved for MnO₂/NCNTs at room temperature at least 15% higher than 326 MnO₂/CNTs (Fig. 5b). In terms of CO₂ selectivity, the rising temperature greatly 327 improved the catalytic ability to scavenge HCHO. A complete 100% conversion of 328 HCHO to CO₂ on 40% MnO₂/NCNT was obtained at as low as 100 °C, which was 329 about 50 °C lower than the equivalent MnO₂/CNT catalyst. Under a very high GHSV 330 of 120,000 mLh⁻¹g⁻¹, the complete oxidation temperature for 40% MnO₂/NCNT was 331 150 °C (Fig. 5c). This was notable because it was more efficient than many metal oxides 332 tested at lower GHSVs [31], and the similar result was observed under high HCHO 333 concentration of 300 ppm (Fig. S7). The evaluation of catalytic stability was performed 334 using 100 ppm formaldehyde at 30,000 mL h⁻¹ g⁻¹ at 100 °C. As shown in Fig. 5d, the 335 HCHO removal efficiency and CO₂ selectivity remained above 95% with a minor 336 fluctuation over 72 h. In addition, the apparent activation energy (E_a) was calculated 337 according to Arrhenius plots for MnO₂/CNTs and MnO₂/NCNT, as shown in Fig. S8a 338 (details in Supporting Information). The 40%MnO₂/NCNT showed the lower E_a value, 339 indicating that HCHO was more easily oxidized on 40%MnO₂/NCNT. This result also 340 revealed that the doping of nitrogen had changed the reaction mechanism compared to 341 CNTs. Besides, the recyclability of the 40% MnO₂/NCNT was further tested for fifty 342 successive cycles at room temperature, and the catalytic activity presented no 343 significant difference among the cycles of use, as depicted in Fig. S8b, suggesting that 344 345 the composite catalyst was able to maintain a high and stabilized conversion efficiency. 346 As observed from Table 2, the reaction temperatures (T_{50%} and T_{100%}) of the MnO₂-347 based catalysts could be compared for catalytic performances when their HCHO conversion reached to 50% and 100%, respectively. Note also that the catalytic 348 performance was significantly enhanced by the recombination of MnO₂ and NCNT, 349 which was superior to previously reported MnO2-based catalysts. According to the 350 catalyst characterization results, the boosted performance by MnO₂/NCNT could be 351 due to improved electron transfer between NCNT and MnO₂. The incorporation of N-352

heteroatoms would have increased the number of structural defects and valence
electrons, leading to improved electron transfer and regeneration [29].

355 3.3. Oxygen molecule activation on CNT and NCNT

The overall HCHO oxidation by O₂ or air was generally described by the Mars-356 van Krevelen mechanism, as illustrated in Fig. 6a. At the first stage, the surface lattice 357 358 oxygen in MnO₂ was involved into the C-H bond activation in HCHO, followed by cracking of the C-H bond and forming the surface intermediates of the adsorbed H and 359 CO molecule. Accordingly, the lattice oxygen was transferred into CO to produce CO₂, 360 leaving the oxygen vacancy on the MnO₂ surface. At the second stage, the activated O₂ 361 362 molecule reacted with the oxygen vacancy and the adsorbed H, generating H_2O and recovering MnO₂. Herein, the NCNT was supposed to primarily enhance the oxygen 363 activation process, thereby the overall HCHO oxidation was promoted by NCNT. 364

The HCHO oxidation and O₂ activation were also evaluated by DFT calculations, 365 as shown in Fig. 6b. One of the C-H bonds in the adsorbed HCHO molecule was 366 disrupted during the interaction with a lattice oxygen of MnO₂, producing a *CHO 367 368 intermediate. The *CHO can react with another lattice oxygen atom, together with removal of hydrogen atom. Thus, the adsorbed CO₂ molecule was formed, leaving an 369 oxygen vacancy on the surface of MnO₂. The energy evolution showed that the HCHO 370 oxidation process involving lattice oxygen atoms (from step 1 to 5 in Fig. 6b) was an 371 overall endothermic process. However, the energy change was not too large to 372 overcome, so an increased temperature made it happen. The produced oxygen vacancy 373 374 on MnO₂ surface would be reacted with oxygen so as to recover the catalytic activity 375 of MnO₂.

Based on the proposed mechanism in Fig. 6 (a), the CNT and NCNT primarily influenced the oxygen activation process. As described from step 5 to 6 in Fig. 6b, the oxygen adsorptions behaved differently for CNT and NCNT. The energy of oxygen molecules was further promoted on NCNT, which was favorable for the following exergonic oxidation involving oxygen vacancy on MnO₂ (from step 6 to 7 in Fig. 6b). Besides, the difference in O-O bond length of O₂ molecules could reveal the same conclusion that the oxygen was more active on NCNT with a 1.31 Å O-O bond, resembling an active superoxide species which would facilitate the regeneration of MnO₂. In contrast, the O₂ molecule on CNT exhibited an O-O bond of 1.23 Å, representing the inert state of oxygen.

386 3.4. Cost analysis

The HCHO mineralization carried out by the MnO₂/NCNT catalyst appeared to be 387 promising, and we made a preliminary attempt to calculate the cost of the MnO₂/NCNT 388 389 catalyst in this study. To date, a pilot-scale trial for HCHO removal by our synthesized catalysts was not performed, hence only the costs incurred on raw materials were 390 considered as the major cost items in the preliminary analysis. The main raw material 391 392 for MnO₂/NCNT preparation included NCNT, polyethylene glycol and KMnO₄, which approximately costed US\$ 0.06/g, US\$ 0.017/g and US\$ 0.02/g, respectively. In terms 393 of the synthetic ratio and manufacturing cost, the price of the 40%MnO₂/NCNT was 394 about US\$ 0.049/g. Compared to some noble metal catalysts, such as Au-CNT 395 396 (chloroauric acid, US\$ 54.74/g), Pd-CNT (palladium chloride, US\$ 81.32/g), CNTs/Pt (chloroplatinic acid, US\$ 52.46/g) [44], the cost of our prepared catalysts was much 397 lower. Besides, the MnO₂/NCNT could be reused in fifty cycles without additional 398 treatment making it a highly cost-effective catalyst during the application process (Fig. 399 S8b). In comparison to other methods such as adsorption (US\$ 0.052/g), plasma 400 oxidation (US\$ 859/m³/h), photocatalytic degradation (US\$ 378/year), which showed 401 20-70%, 20-60% and 10-40% removal efficiency, the catalytic oxidation process 402 presented here was more economical with a cost reduction of 10-40% [45-49]. In terms 403 of carbon footprint analysis, methods such as catalytic oxidation, adsorption, plasma 404 405 oxidation and photocatalytic degradation were reported to respectively consume approximately 4.57×10^{6} , 3.21×10^{2} , 1.23×10^{7} and 2.52×10^{5} kg CO₂ equivalents [48]. 406 Based on further experimental data, an exhaustive life cycle evaluation of the 407 408 MnO₂/NCNT catalyst would be given in our future study.

409 **4. Conclusions**

In summary, N-doped carbon nanotube samples with different contents of 410 manganese dioxide were synthesized via a direct in-situ oxidation. The morphology, 411 crystal structure and compositional ratio of the composites, as well as their effect on 412 HCHO decomposition at low temperature were evaluated. The formaldehyde 413 conversion rate on MnO₂/NCNT was more than 95% at room temperature under a 414 GHSV of 30,000 mL h⁻¹ g⁻¹. When the reaction temperature was assessed to 100 °C, the 415 formaldehyde conversion and CO₂ selectivity was 100% for 40% MnO₂/NCNT. The 416 introduction of transition metal oxides onto NCNT carriers was more effective than that 417 onto CNT for formaldehyde oxidation due to the synergy of well-formed interfaces and 418 strong electron transfers. In addition, the density functional theory simulations clearly 419 showed that the energy of oxygen molecules was further promoted on N-doped carbon 420 nanotubes, which was favorable for the following exergonic oxidation involving the 421 oxygen vacancy on MnO₂. This research also pointed a reliable strategy for constructing 422 manganese dioxide/nanocarbon composites that can replace costly noble metals for the 423 catalytic oxidation of volatile organic compounds. 424

425

426 Acknowledgments

This work was supported by the National Science Foundation of China (51406209); the Youth Fund of Hubei Natural Science Foundation (2019CFB212), the Guangdong Innovative Youth Talents Program, China (2018KQNCX283), the Science and Technology Program of Guangzhou, China (201704030040) and the Special Funding for the Science and Technology Innovation Team of Foshan, China (1920001000083).

432

433 **Reference**

- L. Feng, C.J. Musto, K.S. Suslick. A simple and highly sensitive colorimetric detection method
 for gaseous formaldehyde. J. Am. Chem. Soc. 2010, 132, 4046-4047.
- Q. Zhao, Y. Li, X. L. Chai, L. Z. Xu, L. F. Zhang, P. Ning, J. H. Huang, S. L. Tian. Interaction
 of inhalable volatile organic compounds and pulmonary surfactant: Potential hazards of VOCs
 exposure to lung. J Hazard Mater. 2019, 369, 512-520.

- 439 [3] Shu Y, He M, Ji J, H. B. Huang, S. W. Liu, D. Y. C. Leung. Synergetic degradation of VOCs
- by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5. J Hazard Mater.
 2019, 364, 770-779.
- [4] R. Pérez-Padilla, A. Schilmann, H. Riojas-Rodriguez. Respiratory health effects of indoor air
 pollution. Int. J. Tuberc. Lung. D. 2010, 14, 1079-1086.
- L.F. Qi, B. Cheng, J.G. Yu, W.K. Hob. High-surface area mesoporous Pt/TiO₂ hollow chains
 for efficient formaldehyde decomposition at ambient temperature. J. Hazard. Mater. 2016, 301,
 522-530.
- [6] M. Hakim, Y. Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick. Volatile organic
 compounds of lung cancer and possible biochemical pathways. Chemical Reviews. 2012, 112,
 5949-5966.
- J. Bellat, I. Bezverkhyy, G. Weber, S. Royer, R. Averlant, J. Gi-raudon, J. Lamonier, Capture
 of formaldehyde by adsorption on nanoporous materials. J. Hazardous. Mater. 300 (2015) 711–
 717.
- [8] H. X. Liu, M. Wang, J. Y. Ma, G. X. Lu. Modulation of HCHO, H₂O and H adsorption on AgPd
 cocatalyst by optimizing of selective exposed facet to enhancing the efficiency of conversion
 toxic formaldehyde into hydrogen driven by visible light. J Catal. 2019, 375, 493-506.
- [9] L. Hou, X. Li, D. Xie, H. Wang. Effects of BTEX on the Removal of Acetone in a Coaxial
 Non-Thermal Plasma Reactor: Role Analysis of the Methyl Group. Molecules. 2018, 23, 890904.
- [10] Y. J. Wan, X. Fan, T.L. Zhu. Removal of low-concentration formaldehyde in air by DC corona
 discharge plasma, Chem. Eng. J. 2011, 171, 314-319.
- [11] X. Fan, T. Zhu, Y. Sun, X.J. Yan. The roles of various plasma species in the plasma and plasmacatalytic removal of low-concentration formaldehyde in air. J. Hazardous Mater. 2011, 196380196385.
- [12] M.C. Hu, Z.H. Yao, X.G. Liu, L.P. Ma, Z. He, X.Q. Wang. Enhancement mechanism of
 hydroxyapatite for photocatalytic degradation of gaseous formaldehyde over
 TiO₂/hydroxyapatite. Journal of the Taiwan Institute of Chemical Engineers. 2018. 85, 91-97.
- 467 [13] Q. Yuan, Z. Wu, Y. Jin, F. Xiong, W. Huang. Surface Chemistry of Formaldehyde on Rutile

- 468 TiO₂ (110) Surface: Photocatalysis vs Thermal-Catalysis J. Phys. Chem. C. 2014, 118, 20420 469 20428.
- [14] N. S. Kovalevskiy, M. N. Lyulyukin, D. S. Selishchev, D. V. Kozlovab. Analysis of air
 photocatalytic purification using a total hazard index: Effect of the composite TiO₂/zeolite
 photocatalyst. J. Hazard. Mater. 2018, 358, 302-309.
- [15] A. A. Assadi, S. Loganathan S, P. N. Tri, S. G. Ghaida, A. Bouzaza, A. N. Tuand, D. Wolbert.
 Pilot scale degradation of mono and multi volatile organic compounds by surface discharge
 plasma/TiO₂ reactor: Investigation of competition and synergism. J. Hazard. Mater. 2018, 357,
 305-313.
- [16] C.H. Zhang, C. Wang, S. Gil, A. Boreave, L. Retailleau, Y.G. Guo, J.L. Valverde, A.G. Fendler.
 Catalytic oxidation of 1,2-dichloropropane over supported LaMnOx oxides catalysts. Appl.
 Catal. B. Environ, 2017, 201, 552-560.
- [17] Y.Y. Wang, C.J. Jiang, Y. Le, B. Cheng, J.G. Yu. Hierarchical honeycomb-like Pt/NiFeLDH/rGO nanocomposite with excellent formaldehyde decomposition activity. Chem. Eng. J.
 2019, 365, 378-388.
- [18] L. Wang, H.Q. Yue, Z.L. Hua, H.Y. Wang, X.B. Li, L.C. Li. Highly active Pt/NaxTiO2 catalyst
 for low temperature formaldehyde decomposition. Appl. Catal. B. Environ. 2017, 219, 301313.
- [19] L. Yu, R. S. Peng, L. M. Chen, M. L. Fu, J. L. Wu, D. Q. Ye. Ag supported on CeO₂ with
 different morphologies for the catalytic oxidation of HCHO. Chem. Eng. J. 2018, 334, 24802487.
- [20] B.Y. Bai, Q. Qiao, J.H. Li, J.M. Hao, Progress in research on catalysts for catalytic oxidation
 of formaldehyde. Chinese. J. Catal. 2016, 37, 102-122.
- [21] Z.X. Yan, Z.H. Xu, J. G. Yu, M. Jaroniec. Highly active mesoporous ferrihydrite supported Pt
 catalyst for formaldehyde removal at room temperature. Environ. Sci. Technol. 2015, 49, 66376644.
- 494 [22] H.Y. Tan, J. Wang, S.Z. Yu, K.B. Zhou. Support Morphology-dependent catalytic activity of
 495 Pd/CeO₂ for formaldehyde oxidation. Environ. Sci. Technol. 2015, 49, 8675-8682.
- 496 [23] B. Liu, Y. Liu, C. Li, W. Hu, P. Jing, Q. Wang, J. Zhang. Three-dimensionally ordered

- 497 macroporous $Au/CeO_2-Co_3O_4$ catalysts with nanoporous walls for enhanced catalytic oxidation 498 of formaldehyde. Appl. Catal. B. Environ. 2012, 127, 65-76.
- [24] L. Ma, D.S. Wang, J.H. Li, B.Y. Bai, L.X. Fu, Y.D Li. Ag/CeO₂ nanospheres: efficient catalysts
 for formaldehyde oxidation. Appl. Catal. B. Environ. 2014, 148-149, 36-43.
- [25] B.Y. Bai, J.H Li, J.M Hao. 1D-MnO₂, 2D-MnO₂ and 3D-MnO₂ for low-temperature oxidation
 of ethanol. Appl. Catal. B. Environ. 2015, 164, 241-250.
- 503 [26] Y.S. Xia, H.X. Dai, L. Zhang, J.G. Deng, H. He, C.T. Au. Ultrasound-assisted nanocasting
- fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous
 chromia for the combustion of formaldehyde, acetone, and methanol. Appl. Catal. B. Environ.
 2010, 100, 229-237.
- 507 [27] Y. Sekine. Oxidative decomposition of formaldehyde by metal oxides at room temperature.
 508 Atmos. Environ. 2002, 36, 5543-5547.
- 509 [28] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat.
 510 Mater. 2011, 10, 569-581.
- [29] S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao,
 Nanostructured carbon for energy storage and conversion. Nano Energy. 2012, 1, 195-220.
- [30] Y. H. Cao, h. Yu H, F. Peng, H. J. Wang. Selective allylic oxidation of cyclohexene catalyzed
 by nitrogen-doped carbon nanotubes. ACS Catal. 2014, 4, 1617-1625.
- [31] Q. Cao, J.A. Rogers. Ultrathin films of single-walled carbon nanotubes for electronics and
 sensors: a review of fundamental and applied aspects. Adv. Mater. 2010, 21, 29-53.
- 517 [32] H. N. Jia, Y. F. Cai, X. H. Zheng, J. H. Lin, H. Y. Liang, J. L Qi, J. Cao, J. C. Feng, W. D. Feng.
- Mesostructured Carbon Nanotube-on-MnO₂ Nanosheet Composite for High-Performance
 Supercapacitors. ACS Appl. Mater. Inter. 2018, 10, 38963-38969.
- [33] D. Méhn, A. Fonseca, G. Bister, J.B. Nagy. A comparison of different preparation methods of
 Fe/Mo/Al₂O₃ sol-gel catalyst for synthesis of single wall carbon nanotubes. Chem. Phys. Lett.
 2004, 393, 378-384.
- [34] B. Delley. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 77567764.
- 525 [35] S. Grimme. Semiempirical GGA-type density functional constructed with a long-range

- 526 dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
- [36] A.M.P. Salvo, V. La Parola, L.F. Liotta, F. Giacalone, M. Gruttadauria. Highly loaded multi–
 walled carbon nanotubes non-covalently modified with a bis-imidazolium salt and their use
 as catalyst Supports. Chempluschem. 2016, 81, 471-476.
- [37] P. X. Xiong, X. X. Zhao, Y. H. Xu. Nitrogen-Doped Carbon Nanotubes Derived from Metal–
 Organic Frameworks for Potassium-Ion Battery Anodes. Chemsuschem, 2018, 11, 202-208.
- [38] D.S. Yuan, J.X. Chen, J.H. Zeng, S.X. Tan. Preparation of monodisperse carbon nanospheres
 for electrochemical capacitors. Electrochem. Commun. 2008, 10, 1067-1070.
- [39] S. P. Rong, P. Y. Zhang, F. Liu, Y. J. Yang. Engineering crystal facet of α-MnO₂ nanowire for
 highly efficient catalytic oxidation of carcinogenic airborne formaldehyde. ACS Catal, 2018,
 8, 3435-3446.
- [40] B. Bai, Q. Qiao, H. Arandiyan, J. H. Li, J. M. Hao. Three-dimensional ordered mesoporous
 MnO₂-supported Ag nanoparticles for catalytic removal of formaldehyde. Environ. Sci.
 Technol. 2016, 50, 2635-2640.
- [41] W. S. Bai, F. Nie, J. B. Zheng, Q. L. Sheng. Novel silver nanoparticle-manganese
 oxyhydroxide-graphene oxide nanocomposite prepared by modified silver mirror reaction and
 its application for electrochemical sensing. ACS. Appl. Mater. Inter. 2014,6, 5439-5449.
- [42] M. Saraf, K. Natarajan, S. M. Mobin. Robust nanocomposite of nitrogen-doped reduced
 graphene oxide and MnO₂ nanorods for high-performance supercapacitors and nonenzymatic
- 545 peroxide sensors. ACS. Sustain. Chem. Eng. 2018, 6,10489-10504.

547 in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Appl. Catal.
548 B-Environ. 2017, 204, 147-155.

[43] J. L. Wang, J. G. Li, C. J. Jiang, P. Zhou, P. Y. Zhang, J. G. Yu. The effect of manganese vacancy

- [44] B. H. Wu, Y. J. Kuang, X. H. Zhang, J. H. Chen. Noble metal nanoparticles/carbon nanotubes
 nanohybrids: Synthesis and applications. Nano Today. 2011, 6, 75-90.
- [45] H. Zaitan, A. Korrir, T. Chafik, D. Bianchi. Evaluation of the potential of volatile organic
 compound (di-methyl benzene) removal using adsorption on natural minerals compared to
 commercial oxides. J. Hazardous. Mater. 2013, 262, 365-376.
- 554 [46] S. Sultana, A. M. Vandenbroucke, C. Leys C, N. D. Geyter, R. Morent. Abatement of VOCs

- with alternate adsorption and plasma-assisted regeneration: a review. Catalysts. 2015, 5, 718746.
- [47] L. P. Yang, Z. Y. Liu, J. W. Shi, Y. Q. Zhang, H. Hu, W. F. Shangguan. Degradation of indoor
 gaseous formaldehyde by hybrid VUV and TiO₂/UV processes. Sep. Purif. Technol, 2007, 54,
 204-211.
- [48] J. B. Wilson. Life-cycle inventory of formaldehyde-based resins used in wood composites in
 terms of resources, emissions, energy and carbon. Wood. Fiber. Sci. 2010, 42, 125-143.
- 562 [49] G. C. Yin, X. W. Song, L. Tao, B. Sarkar, A. K. Sarmah, W. X. Zhang, Q. T. Lin, R. B. Xiao,
- 563 Q. J. Liu, H. L. Wang. Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cd (II)
- from aqueous solutions. Chem. Eng. J, 2020, 389, 124465.

566 **Figure captions**

- 567 Table 1. Composition and surface characteristics of MnO₂ based catalysts.
- 568 Table 2. Comparison of MnO₂ catalytic oxidation of HCHO.
- 569 Schematic.1. Schematic illustration of MnO₂/NCNT synthesis.
- 570 Fig. 1. SEM images of 20%MnO₂/CNTs (a), 40%MnO₂/CNTs (b), and 70%MnO₂/CNTs (c); SEM
- 571 image of 20%MnO₂/NCNT (d), 40%MnO₂/NCNT (e), and 70%MnO₂/NCNT (f); elemental
 572 mapping images of MnO₂/NCNT (g).
- 573 Fig. 2. TEM images of 20%MnO₂/CNTs (a), 40%MnO₂/CNTs (b), 70%MnO₂/CNTs (c),
 574 20%MnO₂/NCNT (d), 40%MnO₂/NCNT (e), 70%MnO₂/NCNT (f); HRTEM images of
- 575 40%MnO₂/CNTs (g) and 40%MnO₂/NCNT (i); SAED pattern of 40%MnO₂/CNTs (h).
- 576 Fig. 3. XRD patterns of (a) MnO₂/CNTs and (b) MnO₂/NCNT with different MnO₂ contents.
- Fig. 4. XPS spectra of MnO₂/NCNT, MnO₂/CNTs, and pure MnO₂: (a) survey spectra, (b) N 1s, (c)
 Mn 2p_{3/2}, and (d) O 1s.
- Fig. 5. Formaldehyde removal efficiencies and CO₂ selectivity of (a) MnO₂/CNTs catalyst and (b)
 MnO₂/NCNTs exposed to 100ppm HCHO and GHSV 30000 mL h⁻¹ g⁻¹ (c) Temperature
 dependence of HCHO conversion over 40% MnO₂/NCNT under the different GHSVs
 (HCHO concentration = 100 ppm) (d) Catalytic stability of 40%MnO₂/NCNT under 100 °C
 for 72 h.
- 584 Fig.6. (a) Proposed formaldehyde oxidation mechanism on MnO₂-CNTs/NCNT. (b) Catalytic cycle 585 of formaldehyde oxidation on MnO₂-based on DFT calculations and the oxygen molecule
- 586 activation on CNT and NCNT. Where red = O, white = H, grey = C, blue = N and purple =

587 Mn.

Sample	Mn (wt%) ^a	$SSA(m^2 g^{-1})$	Average pore size(nm)	$V_{total}(cm^3g^{-1})$
CNTs		149.29	5.45	0.201
20% MnO ₂ /CNTs	12.51	140.34	6.16	0.208
40% MnO ₂ /CNTs	25.20	132.28	6.73	0.618
70%MnO ₂ /CNTs	43.12	136.32	5.63	0.469
NCNT		68.92	7.12	0.355
20% MnO ₂ /NCNT	12.49	75.89	6.94	0.348
40% MnO ₂ /NCNT	25.17	85.52	6.54	0.288
70% MnO ₂ /NCNT	42.80	99.41	6.25	0.275

Table 1. Composition and surface characteristics of MnO₂ based catalysts.

^a: Determined by inductively coupled plasma optical emission spectroscopy (ICP-OES)

Catalyst	Reaction conditions	T50% (°C)	T100% (°C)	References
MnO _x -CeO ₂	580 ppm HCHO, GHSV~30,000 mL h ⁻¹ g ⁻¹	>80	100	40
MnO2/TiO2	50 ppm HCHO, GHSV~30,000 mL h ⁻¹ g ⁻¹	>60	130	41
Pyrolusite	400 ppm HCHO, GHSV~18,000 mL h ⁻¹ g ⁻¹	150	180	42
α-MnO2 nanowires	100 ppm HCHO, GHSV~90,000 mL h ⁻¹ g ⁻¹	125	150	39
Birnessite	40 ppm HCHO, GHSV~120,000 mL h ⁻¹ g ⁻¹	53	96	43
70% MnO2/CNTs	100 ppm HCHO, GHSV~30,000 mL h ⁻¹ g ⁻¹	<30	150	This study
40%MnO2/NCNT	100 ppm HCHO, GHSV~30,000 mL h ⁻¹ g ⁻¹	<30	100	This study

592 Table 2. Comparison of MnO₂ catalytic oxidation of HCHO.

Fig. 1. SEM images of 20%MnO₂/CNTs (a), 40%MnO₂/CNTs (b), and 70%MnO₂/CNTs (c); SEM
image of 20%MnO₂/NCNT (d), 40%MnO₂/NCNT (e), and 70%MnO₂/NCNT (f); elemental
mapping images of MnO₂/NCNT (g).

Fig. 2. TEM images of 20%MnO₂/CNTs (a), 40%MnO₂/CNTs (b), 70%MnO₂/CNTs (c),
20%MnO₂/NCNT (d), 40%MnO₂/NCNT (e), 70%MnO₂/NCNT (f); HRTEM images of
40%MnO₂/CNTs (g) and 40%MnO₂/NCNT (i); SAED pattern of 40%MnO₂/CNTs (h).

Fig. 3. XRD patterns of (a) MnO₂/CNTs and (b) MnO₂/NCNT with different MnO₂ contents.

Fig. 4. XPS spectra of MnO₂/NCNT, MnO₂/CNTs, and pure MnO₂: (a) survey spectra, (b) N 1s, (c)

613 Mn 2p_{3/2}, and (d) O 1s.

614

Fig. 5. Formaldehyde removal efficiencies and CO₂ selectivity of (a) MnO₂/CNTs catalyst and (b)
MnO₂/NCNTs exposed to 100ppm HCHO and GHSV 30000 mL h⁻¹ g⁻¹ (c) Temperature
dependence of HCHO conversion over 40% MnO₂/NCNT under the different GHSVs
(HCHO concentration = 100 ppm) (d) Catalytic stability of 40%MnO₂/NCNT under 100 °C
for 72 h.

Fig.6. (a) Proposed formaldehyde oxidation mechanism on MnO_2 -CNTs/NCNT. (b) Catalytic cycle of formaldehyde oxidation on MnO_2 -based on DFT calculations and the oxygen molecule activation on CNT and NCNT. Where red = O, white = H, grey = C, blue = N and purple = Mn.

020 Supporting mormation	628	Supp	orting	infor	mation:
--------------------------	-----	------	--------	-------	---------

629 630	MnO ₂ -decorated N-doped carbon nanotube with boosted activity for low- temperature oxidation of formaldehyde		
631 632 633	Shuai Peng ^b , Xixian Yang ^{a*} , James Strong ^c , Binoy Sarkar ^d , Qiang Jiang ^e , Feng Peng ^f , Defei Liu ^a , Hailong Wang ^{g,h**}		
634	^a School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China		
635	^b Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-		
636	Based Textile Materials, Wuhan Textile University, Wuhan, 430073, China		
637	^c Queensland University of Technology, GPO Box 2432, 2 George St, Brisbane, QLD 4001,		
638	Australia		
639	^d Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK		
640	^e School of Chemistry and Chemical Engineering, South China University of Technology,		
641	Guangzhou, 510000, China		
642	^f School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510000,		
643	China		
644	^g Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F		
645	University, Hangzhou, Zhejiang 311300, China		
646	^h Biochar Engineering Technology Research Center of Guangdong Province, Foshan University,		
647	Foshan, Guangdong 528000, China		
648	*Corresponding authors:		
649	Xixian YangEmail: yangxixian@yeah.netTel/Fax: +86 757 82272751		
650	**Corresponding author:		
651 652	Hailong Wang Email: hailong.wang@fosu.edu.cn Tel/Fax: +86 757 82272751		

653 **Preparation of CNTs**

Briefly, CNTs were produced by a chemical vapor deposition (CVD) method with liquefied petroleum gas as carbon source over a Fe-Mo/Al₂O₃ catalyst in a horizontal tubular quartz furnace with 4 cm inner diameter (i.d.). Before the growth of CNTs, the catalyst was activated by a mixture of H₂ and N₂ (both at 25 N cm³ min⁻¹) for 30 min. The growth of CNTs was carried out at 700 °C for 130 min with 20 N cm³ min⁻¹ of liquefied petroleum gas, 10 N cm³ min⁻¹ of H₂, and 50 N cm³ min⁻¹ of N₂.

661 Static test

The static test was used to evaluate the activity of sample for HCHO removal at different temperatures (30 °C, 60 °C and 100 °C). Briefly, 100 mg of sample was put in a 3.5 L organic glass reactor. The reactor was flushed with CO₂-free synthetic air for 15 min to eliminate the interference of atmospheric CO₂ on the measurement of CO₂ formation, and the initial concentration of HCHO was adjusted to 100 ppm. The change of HCHO concentration was monitored with an Agilent 7890A online gas chromatograph with a flame ionization detector.

669

670 Calculation of apparent activation energy (E_a)

We implemented kinetics tests with both $MnO_2/CNTs$ and $MnO_2/NCNT$ catalysts to study the HCHO oxidation mechanism. The catalytic reaction rates at different temperatures were first obtained by assuming the first-order reaction for HCHO oxidation (it is widely accepted that the reaction for HCHO oxidation in the presence of excess oxygen follows a first-order reaction) [1-3], and then the Arrhenius plots were

- obtained by plotting the logarithm of rate versus 1/T, as shown in Fig. S8a. The apparent
- activation energy was acquired from the Arrhenius plots.

- 684 Fig. S2. TEM image of NCNT

Fig. S3. N₂ adsorption-desorption isotherms and pore size distributions (inset) of the NCNT and
40%MnO₂/NCNT.

Fig. S5. Mn 2p XPS spectra of MnO₂/NCNT, MnO₂/CNTs, and pure MnO₂.

Fig. S6. Formaldehyde removal performance and CO₂ selectivity of pure MnO₂.

701Fig. S7. Temperature dependence of HCHO conversion over 40% MnO₂/NCNT under different702HCHO concentrations (GHSV = $30000 \text{ mLh}^{-1}\text{g}^{-1}$).

- 714
- 715 References
- [1] Y. Wang, X. B. Zhu, M. Crocker, B. B. Chen, C. Shi. A comparative study of the catalytic
 oxidation of HCHO and CO over Mn_{0.75}Co_{2.25}O₄ catalyst: The effect of moisture. Appl. Catal.
 B. Environ, 2014, 160-161, 542-551.
- [2] L. Lu, H. Tian, J. H. He, Q. W. Yang. Graphene-MnO₂ Hybrid Nanostructure as a New Catalyst
 for Formaldehyde Oxidation. J. Phys. Chem. C, 2016, 120, 23660-23668.
- [3] S. P. Rong, P. Y. Zhang, F. Liu, Y. J. Yang. Engineering crystal facet of α-MnO₂ nanowire for
 highly efficient catalytic oxidation of carcinogenic airborne formaldehyde. ACS Catal, 2018, 8,
 3435-3446.
- 724
- 725

Fig. S9 (a) Unit cell of MnO₂. (b) Established (110) facet model of MnO₂ for calculations.