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Highlights 26 

▪ A simple in-situ oxidation approach was developed to prepare MnO2/NCNT. 27 

▪ Prepared samples showed boosted activity for HCHO degradation at low 28 

temperature.  29 

▪ MnO2/NCNT exhibited better activity and selectivity than MnO2/CNT. 30 

▪ Mechanism of improved HCHO oxidation by MnO2/NCNT was revealed. 31 

  32 
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Abstract: Low-temperature oxidative degradation of formaldehyde (HCHO) using 36 

non-noble metal catalysts is challenging. Herein, novel manganese dioxide (MnO2)/N-37 

doped carbon nanotubes (NCNT) composites were prepared with varying MnO2 38 

content. The surface properties and morphologies were analyzed using X-ray 39 

photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and 40 

transmission electron microscope (TEM). Comparing with MnO2/carbon nanotubes 41 

(CNTs) catalyst, the 40% MnO2/NCNT exhibited much better activity and selectivity 42 

for HCHO oxidation, mineralizing 95% of HCHO (at 100 ppm) into CO2 at 30 °C at a 43 

gas hourly space velocity (GHSV) of 30,000 mL h-1 g-1. Density functional theory (DFT) 44 

calculation was used to analyze the difference in the catalytic activity of MnO2 with 45 

CNTs and NCNT carrier. It was confirmed that the oxygen on NCNT was more active 46 

than CNTs, which facilitated the regeneration of MnO2. This resulted in remarkably 47 

boosted activity for HCHO oxidation. The present work thus exploited an inexpensive 48 

approach to enhance the catalytic activity of transition metal oxides via depositing them 49 

on a suitable support. 50 

 51 

Keywords: Manganese dioxide; carbon nanotube; low-temperature; catalytic oxidation; 52 

formaldehyde removal  53 

 54 

1. Introduction 55 

In recent years, preventing or mitigating harmful volatile organic compound (VOC) 56 

emissions has been intensively researched because of the directly-implicated adverse 57 

health effects associated with these gaseous pollutants [1-4]. Formaldehyde (HCHO) is 58 

considered as one of the most harmful air pollutants in indoor environments. A 59 

chronical exposure to HCHO can lead to irreversible damage to skin, eyes and 60 

respiratory system, as well as can cause cerebrovascular diseases and cancers [5, 6]. 61 

Hence, the elimination of HCHO is essential for improving the safety of work or living 62 

environment.  63 

To date, methods proposed for the removal of HCHO included adsorption [7, 8], 64 
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plasma oxidation [9-11], photocatalytic degradation [12-15], and catalytic oxidation 65 

[16-19]. Among these methods, catalytic oxidation has been considered to be a highly 66 

efficient approach to feasibly convert HCHO into CO2 and H2O under mild conditions 67 

[20]. Traditionally, noble metal catalysts (e.g., Pt, Pd, Au) were commonly used for low 68 

temperature oxidation of HCHO due to the high catalytic efficiency and selectivity. 69 

However, high cost and scarcity have limited their application [21-24]. Therefore, 70 

exploring cost-effective, alternative catalysts for the HCHO oxidation at low 71 

temperature or even at room temperature is highly demanded at the moment. 72 

One of the most pragmatic strategies is to utilize supported transition metal oxides 73 

(e.g., Co3O4, CeO2, TiO2, MnO2) as catalysts for the oxidation removal of HCHO 74 

ascribed to the inexpensive, adequate catalytic activity, and satisfactory thermal 75 

stability [25-27]. Manganese dioxide (MnO2) is a practical choice for HCHO oxidation 76 

at room temperature [27]. It is regarded as the most active catalyst among transition 77 

metal oxides for HCHO oxidation because of its high oxidation-reduction potential. 78 

However, it remained a challenge to develop effective MnO2-based catalysts for 79 

complete oxidation of HCHO at ambient temperatures with improved CO2 selectivity 80 

[28].  81 

Despite the challenges, various MnO2 supported on carbon nanomaterials 82 

demonstrate excellent catalytic activity due to accelerated charge transport resulting 83 

from well-designed morphology and structure [29]. Both generic and heteroatom-doped 84 

carbon nanotube (CNT) has been meticulously tested for the above purposes in the last 85 

few years. N-doped carbon nanotube (NCNT) has become particularly appealing due 86 

to increased surface reactive sites improving catalytic performance [30]. Furthermore, 87 

a series of nanocomposite consisting of MnO2 supported by NCNT have been widely 88 

applied, including as superior anodes for lithium ion batteries, cathodic catalysts for 89 

microbial fuel cells, electrodes for supercapacitors, and so on [30-32]. Unfortunately, 90 

most of the researches focusing on catalytic HCHO degradation investigated on the 91 

single component of MnO2 or NCNT. As far as we know, there are no published reports 92 

with respect to well-dispersed MnO2 nanosheets supported by NCNT for the low-93 



6 

 

temperature catalytic removal of HCHO. 94 

In this work, MnO2 was directly deposited onto the NCNT surface using in-situ 95 

oxidation. The physical and chemical properties of MnO2/NCNT were characterized. 96 

Subsequently, the MnO2/NCNT composite was assessed for catalytic performance and 97 

selectivity. Compared with pure MnO2 and MnO2/CNT, the MnO2/NCNT composite 98 

displayed higher activity and stability for the degradation of HCHO at lower 99 

temperature. Furthermore, density functional theory (DFT) calculations and x-ray 100 

photoelectron spectroscopy (XPS) analyses were verified that the combination of MnO2 101 

and NCNT had a strong synergistic catalytic effect via the formation of well-defined 102 

interfaces and improved interfacial electron transfer. 103 

 104 

2. Experimental 105 

2.1. Preparation of formaldehyde oxidation catalyst 106 

Carbon nanotubes (CNTs) were synthesized according to our previous work [30]. The 107 

preparation details are contained in the Supporting Information. 108 

N-doped carbon nanotubes (NCNT) were synthesized by a similar chemical vapor 109 

deposition (CVD) method as follows: 0.1 g Fe-Mo/Al2O3 catalyst (see reference [33]) 110 

was placed in a clean magnetic boat, which was placed in a quartz tube of a horizontal 111 

tube furnace with a 4 cm inner diameter and sealed. Ammonia (NH3) gas was injected 112 

into the tube at a flowrate of 400 sccm over 10 min. The temperature was increased to 113 

800 °C at a heating rate of 10 °C/min. Aniline (18 mL) was injected into the quartz tube 114 

at a rate of 3 mL/h via a microinjection pump. After 10 min, the furnace was turned off 115 

and the NH3 flow rate lowered to100 sccm. When the furnace temperature dropped 116 

below 100 °C, NH3 flow was replaced with air flushing at 500 sccm for 10 min. The 117 

sample was transferred into a stirred 30% nitric acid (HNO3) solution for 10 min, 118 

followed by refluxing in an oil bath at 120 °C for 5 h. The mixture was diluted, filtered 119 

and thoroughly washed with deionized water until neutral. Finally, the filter cake was 120 

dried at 105 °C for 12 h to yield NCNTs. 121 
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The CNT modified MnO2 catalysts (MnO2/CNT) were prepared as follows: 500 mg 122 

CNTs was placed in 10 mL 5 wt % polyethylene glycol (average molecular weight 123 

1000). After magnetic stirring for 1 h, deionized water was added and the suspension 124 

volume should reach to x mL. Then y g KMnO4 was slowly added into the solution 125 

under stirring. This suspension was transferred into an oil bath, heated to 75 °C for 2 h 126 

under continuous magnetic stirring. After cooling to room temperature, the mixture was 127 

filtered, then washed with water and followed by exhaustive rinsing with ethanol for 128 

five times. The solid filter cake was dried in vacuum drying chamber at 80 °C for 12 129 

hours to yield the MnO2/CNTs catalysts. Different x and y content resulted in different 130 

MnO2/CNT composites, as indicated below: When x=100 mL (40mL, 20mL), and 131 

y=1.7077 g (0.5667 g, 0.2214 g), MnO2 content could reach to 70% (40%, 20%) and 132 

the catalyst was defined as 70 % MnO2/CNTs (40% MnO2/CNTs, 20% MnO2/ CNTs). 133 

The method described above was used to generate MnO2/NCNT catalysts, also with 70% 134 

MnO2/NCNT, 40% MnO2/NCNT and 20% MnO2/NCNT. All material was assessed for 135 

HCHO catalysis. The synthesis schematic illustration of MnO2/NCNT was shown in 136 

Schematic.1. 137 

 138 

2.2. Catalyst characterization 139 

Scanning electron microscope (SEM) (LEO1530VP, Zeiss, Germany) and 140 

Transmission electron microscope (TEM) (JEM-2100F, JEOL, Japan) were used to 141 

observe the micro surface shape and structure of the catalyst. X-ray diffraction (XRD) 142 

analysis was carried out on a D8-Advance X-ray diffractometer with Cu- Kα radiation 143 

(λ=0.15418) (Bruker, Germany). Specific surface area of the catalysts was measured by 144 

N2 adsorption tests performed on an ASAP-2010 analyzer (Micomeritics, USA) and 145 

calculated via Brunauer-Emmett and Teller (BET) method. X-ray photoelectron 146 

spectroscopy (XPS) was conducted using a Thermo ESCALAB 250Xi X-ray 147 

photoelectron spectrometer with Al Kα X-ray source (1486.7 eV, 10.8 mA and 30 kV). 148 

2.3. Catalytic oxidation 149 

Catalytic oxidation test was performed using a custom-designed HCHO removal 150 
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system (Fig. S1; Supporting Information). Different catalyst samples (0.2 g) were 151 

uniformly dispersed in a glass tube (i.d. = 6.0 mm, length = 9 mm). After the tube was 152 

fixed in the reactor, the stream containing approximately 100 parts per million (ppm) 153 

HCHO was generated from polyformaldehyde at a temperature of 0 °C. The HCHO 154 

and CO2 concentrations (ppm) were analyzed by an Agilent 7890A online gas 155 

chromatograph with a flame ionization detector. The HCHO removal efficiency was 156 

calculated as:  157 

HCHO removal efficiency (%) = ([HCHO]in-[HCHO]out) / [HCHO]in×100%  158 

where [HCHO]in and [HCHO]out were the inlet HCHO concentration and outlet 159 

concentrations at any time during the catalytic process, respectively. 160 

2.4 Computational Details 161 

Density functional theory (DFT) calculations were performed with DMol3 software 162 

package [34]. The optimization and energy were calculated with Perdew-Burke-163 

Ernzerhof (PBE) functional under polarized function (DNP) basis set. The DFT semi-164 

core pseudopotentials (DSPPs) method was chosen as the core treatment. The 165 

Grimme’s method was used for dispersion correction [35]. Global orbital cutoff was set 166 

to 5.0 Å for all atoms. The electronic spin was unrestricted. For MnO2 structure, the 167 

(110) surface was cleaved for the unit cell (Fig. S9a), followed by establishing a (3*2) 168 

supercell and building a 25 Å vacuum layer (Fig. S9b). The k-point was set to (4*4*1) 169 

for calculations. For CNT structure, the (6,6) carbon nanotube was imported, followed 170 

by building a (1*1*3) supercell. One of the carbon atoms was replaced by nitrogen to 171 

form a NCNT model. The k-point was set to (1*1*6). 172 

3. Results and discussion 173 

3.1. Physico-chemical characterization of catalysts 174 

Fig. 1 shows the SEM images of MnO2/CNTs and MnO2/NCNT with different 175 

contents of MnO2. With increased amounts of MnO2 reacting with the carrier, it was 176 

clear that the number of MnO2 nanosheets were in-situ immobilized on the 177 

CNTs/NCNT surfaces, and resultant oxidative damages to CNTs and NCNT surface 178 
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structure were observed, according to the following redox reaction: 179 

4MnO4
–
+ 3C + H2O → 4MnO2 + CO3

2–+ 2HCO3
–
                     (1) 180 

Additionally, a pleated petal shape was apparent on the surface of these nanosheets, 181 

and they were bridged together to form a porous architecture. When MnO2 nanosheets 182 

were introduced onto nano-carbon structures, the surface of the carbon structure was 183 

initially oxidized with the reduction of permanganate ions. Specifically, from the SEM 184 

images of MnO2/NCNT (Fig. 1d and 1e), it can be clearly seen that potassium 185 

permanganate peeled off the NCNT structure, whereas some of the nanotubes have not 186 

been oxidized and exhibited very smooth surfaces. Hence, it could be preliminarily 187 

speculated that permanganate oxidation initially occurred at the edge and defect site, 188 

and with the increased concentrations or exposure, the NCNT were gradually eroded to 189 

the central areas (Fig. 1f) [32]. By the way, the oxidation process was also observed in 190 

the SEM images of MnO2/CNTs (Fig. 1a-c). The smooth CNTs were increasingly 191 

coated by identified MnO2 nanosheets on the surfaces. The elemental mapping of 192 

MnO2/NCNT is shown in Fig. 1g. The Mn and O were uniformly dispersed on the shell, 193 

while C and N were present in a fair dispersion degree as along with Mn and O, 194 

suggesting the existence of NCNT.  195 

All TEM images of MnO2/CNT and MnO2/NCNT composites displayed excellent 196 

hollow tubular structure with an average external diameter ranging from 15 to 45 nm 197 

and inner diameter from 6 to 25 nm (Fig. 2). The surfaces were well-covered by highly 198 

dispersed burrs. These were attributable to multiple layers of MnO2, which formed 199 

adherent flakes by depositing onto surface defects caused by permanganate oxidation. 200 

Correspondingly, the amount of MnO2 deposited increased with increased oxidation of 201 

the CNTs (Fig. 2b, f and j). MnO2 nanosheets were also highly dispersed on the surface 202 

of single CNTs (Fig. 2b). The high-resolution transmission electron microscopy 203 

(HRTEM) image of 40% MnO2/CNTs (Fig. 2g) clearly indicated lattice planes of CNTs 204 

with a spacing of 0.72 nm, and ε-MnO2 with a spacing of 0.29 nm, which corresponds 205 

to the (100) diffraction plane. In addition, a broad and diffused halo ring pattern was 206 

observed (Fig. 2h) from the selective area electron diffraction (SAED), confirming the 207 
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presence of amorphous MnO2. MnO2/NCNT and MnO2/CNTs were difficult to 208 

differentiate physical appearance as both had a similar external morphology (Fig. 2a). 209 

Nevertheless, bamboo-like structure with openings on both ends could be observed in 210 

NCNT by the successful doping of nitrogen (Fig. S2). According to the previous report, 211 

the NCNT-based composites had a wrinkled texture and relatively high defect density, 212 

which could be helpful in the acceleration of VOC oxidation [36]. This was evident in 213 

Fig. 2e, which showed a single NCNT completely encapsulated by MnO2 nanosheets. 214 

Thus, it demonstrated that the NCNT provided an excellent surface for in-situ growth 215 

of MnO2 nanosheets and could prevent agglomeration of the particles. Interestingly, 216 

other NCNT around the completely oxidized one did not yet start to be eroded. On the 217 

basis of these results, it could be inferred that NCNT oxidation initially occurred at 218 

defect sites and then rapidly covered the entire carbon tube, which were in coincidence 219 

with the previous SEM observations. Additionally, imperceptible lattice fringe was 220 

observed in the HRTEM image of 40% MnO2/NCNT (Fig. 2i) further confirmed the 221 

presence of an amorphous phase of MnO2 in the nanosheets. All the results above 222 

demonstrated successful anchoring of MnO2 nanocomposite on the surface of the 223 

NCNT. 224 

The X-ray diffraction patterns of MnO2/CNT powders are shown in Fig. 3a. For 225 

carbon nanotubes with different MnO2 content, five characteristic diffraction peaks 226 

were evident at 25.97°, 37.11°, 42.81°, 65.70°, and 78.06°. The wider diffraction peak 227 

at 25.97° and the small diffraction peak at 65.70° were indicative of the graphite 228 

structure of CNT (JCPDS 41-1487) [37]. With greater oxidation of CNTs and increased 229 

MnO2 loading, the intensity of the primary peak for graphite structure (25.97°) 230 

decreased significantly. Peaks at 37.11°, 42.81° and 65.70° were attributed to (100), 231 

(101), (110) crystal faces of MnO2 (JCPDS 30-0820) [25], respectively. These 232 

diffraction peaks were wide and weak, indicating an abundance of amorphous MnO2. 233 

Generally, this might be explained as the MnO2 present on the surface of catalyst was 234 

below the lower limit of X-ray detection, or that amorphous MnO2 might exist in 235 

amorphous state with good degree of dispersion. In comparison to the former reason, 236 
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the latter explanation was more relevant for this research based on the obtained TEM 237 

and SAED information. The XRD diffraction patterns of MnO2/NCNT (Fig. 3b) were 238 

very similar to that of MnO2/CNTs. However, there was a decrease in the peak 239 

intensities of MnO2, which indicated that the crystallinity of MnO2 was relatively low. 240 

The diffraction peak at 25.97°on behalf of graphite structure was gradually weakened 241 

and widened because the NCNT carrier was oxidized to a greater extent and 242 

consequently the crystal structure was seriously damaged [33]. Such a phenomenon 243 

was normal for carbon nanomaterials modified with metal oxide nanoparticles, 244 

resulting in increased defects and active sites exposed for catalytic oxidation. Previous 245 

literature also showed that the combination of metal oxide nanoparticles with CNTs 246 

enhanced HCHO mineralization efficiencies [17, 42]. Moreover, these results were in 247 

good agreement with SEM, TEM and SAED results already discussed.  248 

The pore size and distribution of MnO2/NCNT provided important information for 249 

the catalytic process during synthesis of the material. The specific surface area (SSA) 250 

and porosity of MnO2/CNTs and MnO2/NCNT were analyzed by N2 adsorption-251 

desorption technique using BET and BJH (Barrett, Joyner, and Halenda) methods (see 252 

Table 1). Essentially, CNTs were low-dimensional nanomaterials with large SSA. After 253 

MnO2 deposition, the SSA of CNTs initially decreased up to 40% MnO2 loading. When 254 

the material was further oxidized, more and more MnO2 were connected with each other 255 

to form a porous structure, and hence the SSA of the catalyst exhibited an increasing 256 

trend at 70% MnO2 loading (Table 1). As a result of this, the average pore size and total 257 

pore volume also initially increased and then decreased. In the case of MnO2/NCNT, 258 

the SSA and pore size distribution of NCNT and MnO2/NCNT were also analyzed (Fig. 259 

S3). All the samples exhibited a type IV isotherm with obvious hysteresis loops at 260 

P/P0 >0.4 in the P/P0 range of 0.6˜1.0, suggesting the presence of a large number of 261 

mesoporous structures. In contrast to CNTs, NCNT exhibited different physical 262 

properties. With an increased MnO2 loading, the SSA increased, but the average pore 263 

size and total pore volume gradually decreased (Table 1). In accordance with the SEM 264 

and TEM results, the inner space of NCNT was gradually exposed and more defective 265 
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sites of NCNT synchronously supplied during the oxidation process. Subsequently, a 266 

network of pores was connected to each other by the MnO2 nanosheets and stacked into 267 

a porous skeleton architecture, which increased the SSA of NCNT. It was ascertained 268 

that the large surface area generated larger adsorption capacity for gaseous reactants, 269 

which could facilitate the catalytic conversion in the solid-gas reaction. Simultaneously, 270 

the decrease in pore size and pore volume might be due to the introduced MnO2 271 

nanosheets with different sizes, forming a dense accumulation of structures, leading to 272 

smaller pore size and reduced total pore volume.   273 

The surface chemical environment and binding states of the dominant elements 274 

were characterized by XPS. The typical signals for C, N, O, and Mn were clearly 275 

presented in the full-range spectra (Fig. 4a). The C 1s spectra of different samples were 276 

shown in Fig. S4. When the spectra for MnO2/NCNT and MnO2/CNTs were compared, 277 

the shape and binding energy at ~284.6 eV, ~286.3 eV and ~288.2 eV were similar, 278 

corresponding to C-C, C-O and C=O bonds, respectively. However, an additional peak 279 

at 285.7 eV associated with C-N indicated successful doping of nitrogen in 280 

MnO2/NCNT. Typically, the N 1s spectrum of MnO2/NCNT (Fig. 4b) exhibited three 281 

main peaks at 398.3, 399.7 and 401.7 eV, which were assigned to pyridinic, pyrrolic 282 

and graphitic N [31], respectively. It was widely accepted that the presence of graphitic 283 

N contributes to improved catalytic activity for VOC oxidation in the heteroatom-doped 284 

carbon nanotubes [37].  285 

Fig. S5 illustrates the high-resolution spectrum of Mn 2p, which was apparently 286 

divided into two peaks, attributed to Mn 2p3/2 (~ 642.2eV) and Mn 2p1/2 (~654.0 eV) 287 

with a splitting energy of 11.8 eV, proving that the Mn4+ ions were dominant in the 288 

catalysts. This was consistent with literature reports [38]. As observed in Fig. 4c, the 289 

Mn3+/Mn4+ ratios were determined by their peak areas as follows: MnO2/NCNT > 290 

MnO2/CNTs > pure MnO2. Generally, the oxygen vacancies increase with the ratio of 291 

Mn3+/Mn4+, and these were crucial as they provide the active sites for oxidation 292 

reactions [25]. Moreover, the binding energy of Mn 2p3/2 and Mn 2p1/2 peaks shifted to 293 

lower values for MnO2/NCNT and MnO2/CNTs compared to that of pure MnO2 (Fig. 294 
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S5). The downshift resulted from an increase in the π electron cloud density after the 295 

indraught of carbon nanotubes, implying the presence of interfacial charge transfer 296 

from carbon nanotubes to Mn atoms [43].  297 

Fig. 4d shows that the O1s spectrum was separated into two individual peaks at 298 

around 529.7 eV (lattice oxygen (Olatt)) and 531.6 eV (surface oxygen species (Osur)). 299 

The binding energy of Olatt at approximately 530.0 eV was for MnO2, and this shifted 300 

to 529.8 eV for MnO2/CNTs and 529.7 eV for MnO2/NCNT, respectively. It could thus 301 

be suggested that the decrease of the BE of Olatt was likely due to the increased electron 302 

density of Olatt by the existence of oxygen vacancies [30]. Furthermore, the electrophilic 303 

Osur associated with the surface vacancies might play an important role in the VOCs 304 

oxidation. It was noteworthy that the Osur/Olatt molar ratio decreased in the order of 305 

MnO2/NCNT > MnO2/CNTs > pure MnO2. According to these results, we can infer that 306 

MnO2/NCNT exhibited the best reaction activity for HCHO oxidation which was 307 

mainly attributed to the highest density of catalytically reactive sites [39]. 308 

3.2. Catalytic oxidation of formaldehyde 309 

The HCHO removal efficiency and CO2 selectivity of the catalysts were assessed 310 

at different temperatures (Fig. 5 and Fig. S6). The activity of the catalysts displayed a 311 

gradual increase with increasing temperature. The content of MnO2 also had a 312 

significant influence on the catalytic activity. For MnO2/CNTs, 40% MnO2/CNTs 313 

exhibited the best catalytic activity at room temperature (Fig. 5a), attaining 75% of 314 

removal efficiency, and its performance below 100 °C was better than 20% MnO2/CNTs 315 

and 70% MnO2/CNTs. This might be due to the better electron transfer ability of the 316 

relatively complete carbon tube and the appropriate modification by MnO2 nanosheets. 317 

When the temperature increased above 100 °C, the composite with the highest MnO2 318 

content (70% MnO2/CNTs) showed the best activity with 100% HCHO removal 319 

efficiency at 150 °C, which could be ascribed to the further increase of active MnO2 320 

nanosheets decorated on defective sites of CNTs [27]. These results confirmed that the 321 

catalytic activity of the MnO2/CNTs could be adjusted by turning the contents of MnO2 322 

nanosheets in the composite catalyst. Additionally, CO2 selectivity measurements for 323 
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70%MnO2/CNTs at different temperatures demonstrated that all formaldehyde was 324 

completely converted to CO2 at 120 °C. HCHO removal efficiencies in excess of 90% 325 

were achieved for MnO2/NCNTs at room temperature at least 15% higher than 326 

MnO2/CNTs (Fig. 5b). In terms of CO2 selectivity, the rising temperature greatly 327 

improved the catalytic ability to scavenge HCHO. A complete 100% conversion of 328 

HCHO to CO2 on 40% MnO2/NCNT was obtained at as low as 100 °C, which was 329 

about 50 °C lower than the equivalent MnO2/CNT catalyst. Under a very high GHSV 330 

of 120,000 mLh-1g-1, the complete oxidation temperature for 40% MnO2/NCNT was 331 

150 °C (Fig. 5c). This was notable because it was more efficient than many metal oxides 332 

tested at lower GHSVs [31], and the similar result was observed under high HCHO 333 

concentration of 300 ppm (Fig. S7). The evaluation of catalytic stability was performed 334 

using 100 ppm formaldehyde at 30,000 mL h-1 g-1 at 100 °C. As shown in Fig. 5d, the 335 

HCHO removal efficiency and CO2 selectivity remained above 95% with a minor 336 

fluctuation over 72 h. In addition, the apparent activation energy (Ea) was calculated 337 

according to Arrhenius plots for MnO2/CNTs and MnO2/NCNT, as shown in Fig. S8a 338 

(details in Supporting Information). The 40%MnO2/NCNT showed the lower Ea value, 339 

indicating that HCHO was more easily oxidized on 40%MnO2/NCNT. This result also 340 

revealed that the doping of nitrogen had changed the reaction mechanism compared to 341 

CNTs. Besides, the recyclability of the 40% MnO2/NCNT was further tested for fifty 342 

successive cycles at room temperature, and the catalytic activity presented no 343 

significant difference among the cycles of use, as depicted in Fig. S8b, suggesting that 344 

the composite catalyst was able to maintain a high and stabilized conversion efficiency. 345 

As observed from Table 2, the reaction temperatures (T50% and T100%) of the MnO2-346 

based catalysts could be compared for catalytic performances when their HCHO 347 

conversion reached to 50% and 100%, respectively. Note also that the catalytic 348 

performance was significantly enhanced by the recombination of MnO2 and NCNT, 349 

which was superior to previously reported MnO2-based catalysts. According to the 350 

catalyst characterization results, the boosted performance by MnO2/NCNT could be 351 

due to improved electron transfer between NCNT and MnO2. The incorporation of N-352 
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heteroatoms would have increased the number of structural defects and valence 353 

electrons, leading to improved electron transfer and regeneration [29].  354 

3.3. Oxygen molecule activation on CNT and NCNT 355 

The overall HCHO oxidation by O2 or air was generally described by the Mars-356 

van Krevelen mechanism, as illustrated in Fig. 6a. At the first stage, the surface lattice 357 

oxygen in MnO2 was involved into the C-H bond activation in HCHO, followed by 358 

cracking of the C-H bond and forming the surface intermediates of the adsorbed H and 359 

CO molecule. Accordingly, the lattice oxygen was transferred into CO to produce CO2, 360 

leaving the oxygen vacancy on the MnO2 surface. At the second stage, the activated O2 361 

molecule reacted with the oxygen vacancy and the adsorbed H, generating H2O and 362 

recovering MnO2. Herein, the NCNT was supposed to primarily enhance the oxygen 363 

activation process, thereby the overall HCHO oxidation was promoted by NCNT. 364 

The HCHO oxidation and O2 activation were also evaluated by DFT calculations, 365 

as shown in Fig. 6b. One of the C-H bonds in the adsorbed HCHO molecule was 366 

disrupted during the interaction with a lattice oxygen of MnO2, producing a *CHO 367 

intermediate. The *CHO can react with another lattice oxygen atom, together with 368 

removal of hydrogen atom. Thus, the adsorbed CO2 molecule was formed, leaving an 369 

oxygen vacancy on the surface of MnO2. The energy evolution showed that the HCHO 370 

oxidation process involving lattice oxygen atoms (from step 1 to 5 in Fig. 6b) was an 371 

overall endothermic process. However, the energy change was not too large to 372 

overcome, so an increased temperature made it happen. The produced oxygen vacancy 373 

on MnO2 surface would be reacted with oxygen so as to recover the catalytic activity 374 

of MnO2. 375 

Based on the proposed mechanism in Fig. 6 (a), the CNT and NCNT primarily 376 

influenced the oxygen activation process. As described from step 5 to 6 in Fig. 6b, the 377 

oxygen adsorptions behaved differently for CNT and NCNT. The energy of oxygen 378 

molecules was further promoted on NCNT, which was favorable for the following 379 

exergonic oxidation involving oxygen vacancy on MnO2 (from step 6 to 7 in Fig. 6b). 380 

Besides, the difference in O-O bond length of O2 molecules could reveal the same 381 
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conclusion that the oxygen was more active on NCNT with a 1.31 Å O-O bond, 382 

resembling an active superoxide species which would facilitate the regeneration of 383 

MnO2. In contrast, the O2 molecule on CNT exhibited an O-O bond of 1.23 Å, 384 

representing the inert state of oxygen. 385 

3.4. Cost analysis 386 

The HCHO mineralization carried out by the MnO2/NCNT catalyst appeared to be 387 

promising, and we made a preliminary attempt to calculate the cost of the MnO2/NCNT 388 

catalyst in this study. To date, a pilot-scale trial for HCHO removal by our synthesized 389 

catalysts was not performed, hence only the costs incurred on raw materials were 390 

considered as the major cost items in the preliminary analysis. The main raw material 391 

for MnO2/NCNT preparation included NCNT, polyethylene glycol and KMnO4, which 392 

approximately costed US$ 0.06/g, US$ 0.017/g and US$ 0.02/g, respectively. In terms 393 

of the synthetic ratio and manufacturing cost, the price of the 40%MnO2/NCNT was 394 

about US$ 0.049/g. Compared to some noble metal catalysts, such as Au-CNT 395 

(chloroauric acid, US$ 54.74/g), Pd-CNT (palladium chloride, US$ 81.32/g), CNTs/Pt 396 

(chloroplatinic acid, US$ 52.46/g) [44], the cost of our prepared catalysts was much 397 

lower. Besides, the MnO2/NCNT could be reused in fifty cycles without additional 398 

treatment making it a highly cost-effective catalyst during the application process (Fig. 399 

S8b). In comparison to other methods such as adsorption (US$ 0.052/g), plasma 400 

oxidation (US$ 859/m3/h), photocatalytic degradation (US$ 378/year), which showed 401 

20-70%, 20-60% and 10-40% removal efficiency, the catalytic oxidation process 402 

presented here was more economical with a cost reduction of 10-40% [45-49]. In terms 403 

of carbon footprint analysis, methods such as catalytic oxidation, adsorption, plasma 404 

oxidation and photocatalytic degradation were reported to respectively consume 405 

approximately 4.57×106, 3.21×102, 1.23×107 and 2.52×105 kg CO2 equivalents [48]. 406 

Based on further experimental data, an exhaustive life cycle evaluation of the 407 

MnO2/NCNT catalyst would be given in our future study. 408 

4. Conclusions  409 
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In summary, N-doped carbon nanotube samples with different contents of 410 

manganese dioxide were synthesized via a direct in-situ oxidation. The morphology, 411 

crystal structure and compositional ratio of the composites, as well as their effect on 412 

HCHO decomposition at low temperature were evaluated. The formaldehyde 413 

conversion rate on MnO2/NCNT was more than 95% at room temperature under a 414 

GHSV of 30,000 mL h-1 g-1. When the reaction temperature was assessed to 100 °C, the 415 

formaldehyde conversion and CO2 selectivity was 100% for 40% MnO2/NCNT. The 416 

introduction of transition metal oxides onto NCNT carriers was more effective than that 417 

onto CNT for formaldehyde oxidation due to the synergy of well-formed interfaces and 418 

strong electron transfers. In addition, the density functional theory simulations clearly 419 

showed that the energy of oxygen molecules was further promoted on N-doped carbon 420 

nanotubes, which was favorable for the following exergonic oxidation involving the 421 

oxygen vacancy on MnO2. This research also pointed a reliable strategy for constructing 422 

manganese dioxide/nanocarbon composites that can replace costly noble metals for the 423 

catalytic oxidation of volatile organic compounds. 424 
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Figure captions 566 

Table 1. Composition and surface characteristics of MnO2 based catalysts. 567 

Table 2. Comparison of MnO2 catalytic oxidation of HCHO. 568 

Schematic.1. Schematic illustration of MnO2/NCNT synthesis. 569 

Fig. 1. SEM images of 20%MnO2/CNTs (a), 40%MnO2/CNTs (b), and 70%MnO2/CNTs (c); SEM 570 

image of 20%MnO2/NCNT (d), 40%MnO2/NCNT (e), and 70%MnO2/NCNT (f); elemental 571 

mapping images of MnO2/NCNT (g). 572 

Fig. 2. TEM images of 20%MnO2/CNTs (a), 40%MnO2/CNTs (b), 70%MnO2/CNTs (c), 573 

20%MnO2/NCNT (d), 40%MnO2/NCNT (e), 70%MnO2/NCNT (f); HRTEM images of 574 

40%MnO2/CNTs (g) and 40%MnO2/NCNT (i); SAED pattern of 40%MnO2/CNTs (h). 575 

Fig. 3. XRD patterns of (a) MnO2/CNTs and (b) MnO2/NCNT with different MnO2 contents. 576 

Fig. 4. XPS spectra of MnO2/NCNT, MnO2/CNTs, and pure MnO2: (a) survey spectra, (b) N 1s, (c) 577 

Mn 2p3/2, and (d) O 1s. 578 

Fig. 5. Formaldehyde removal efficiencies and CO2 selectivity of (a) MnO2/CNTs catalyst and (b) 579 

MnO2/NCNTs exposed to 100ppm HCHO and GHSV 30000 mL h-1 g-1 (c) Temperature 580 

dependence of HCHO conversion over 40% MnO2/NCNT under the different GHSVs 581 

(HCHO concentration = 100 ppm) (d) Catalytic stability of 40%MnO2/NCNT under 100 °C 582 

for 72 h. 583 

Fig.6. (a) Proposed formaldehyde oxidation mechanism on MnO2-CNTs/NCNT. (b) Catalytic cycle 584 

of formaldehyde oxidation on MnO2-based on DFT calculations and the oxygen molecule 585 

activation on CNT and NCNT. Where red = O, white = H, grey = C, blue = N and purple = 586 

Mn. 587 

588 



24 

 

Table 1. Composition and surface characteristics of MnO2 based catalysts. 589 

Sample Mn (wt%)a SSA(m2 g-1) 
Average pore 

size(nm) 
Vtotal (cm3g-1) 

CNTs — 149.29 5.45 0.201 

20%MnO2/CNTs 12.51 140.34 6.16 0.208 

40%MnO2/CNTs 25.20 132.28 6.73 0.618 

70%MnO2/CNTs 43.12 136.32 5.63 0.469 

NCNT — 68.92 7.12 0.355 

20%MnO2/NCNT 12.49 75.89 6.94 0.348 

40%MnO2/NCNT 25.17 85.52 6.54 0.288 

70%MnO2/NCNT 42.80 99.41 6.25 0.275 
a: Determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) 590 
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Table 2. Comparison of MnO2 catalytic oxidation of HCHO. 592 

Catalyst 
Reaction 

conditions 
T50% (°C) T100% (°C) References 

MnOx-CeO2 

580 ppm 

HCHO, 

GHSV~30,000 

mL h-1 g-1 

>80 100 40 

MnO2/TiO2 

50 ppm HCHO, 

GHSV~30,000 

mL h-1 g-1 

>60 130 41 

Pyrolusite 

400 ppm 

HCHO, 

GHSV~18,000 

mL h-1 g-1 

150 180 42 

α-MnO2 

nanowires 

100 ppm 

HCHO, 

GHSV~90,000 

mL h-1 g-1 

125 150 39 

Birnessite 

40 ppm HCHO, 

GHSV~120,000 

mL h-1 g-1 

53 96 43 

70%MnO2/CNTs 

100 ppm 

HCHO, 

GHSV~30,000 

mL h-1 g-1 

<30 150 This study 

40%MnO2/NCNT 

100 ppm 

HCHO, 

GHSV~30,000 

mL h-1 g-1 

<30 100 This study 
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 594 

 595 

Schematic.1. Schematic illustration of MnO2/NCNT synthesis. 596 
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 598 

Fig. 1. SEM images of 20%MnO2/CNTs (a), 40%MnO2/CNTs (b), and 70%MnO2/CNTs (c); SEM 599 

image of 20%MnO2/NCNT (d), 40%MnO2/NCNT (e), and 70%MnO2/NCNT (f); elemental 600 

mapping images of MnO2/NCNT (g). 601 
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 603 

Fig. 2. TEM images of 20%MnO2/CNTs (a), 40%MnO2/CNTs (b), 70%MnO2/CNTs (c), 604 

20%MnO2/NCNT (d), 40%MnO2/NCNT (e), 70%MnO2/NCNT (f); HRTEM images of 605 

40%MnO2/CNTs (g) and 40%MnO2/NCNT (i); SAED pattern of 40%MnO2/CNTs (h). 606 
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 608 

Fig. 3. XRD patterns of (a) MnO2/CNTs and (b) MnO2/NCNT with different MnO2 contents. 609 
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 611 

Fig. 4. XPS spectra of MnO2/NCNT, MnO2/CNTs, and pure MnO2: (a) survey spectra, (b) N 1s, (c) 612 

Mn 2p3/2, and (d) O 1s. 613 
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 615 

Fig. 5. Formaldehyde removal efficiencies and CO2 selectivity of (a) MnO2/CNTs catalyst and (b) 616 

MnO2/NCNTs exposed to 100ppm HCHO and GHSV 30000 mL h-1 g-1 (c) Temperature 617 

dependence of HCHO conversion over 40% MnO2/NCNT under the different GHSVs 618 

(HCHO concentration = 100 ppm) (d) Catalytic stability of 40%MnO2/NCNT under 100 °C 619 

for 72 h. 620 
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 622 

Fig.6. (a) Proposed formaldehyde oxidation mechanism on MnO2-CNTs/NCNT. (b) Catalytic cycle 623 

of formaldehyde oxidation on MnO2-based on DFT calculations and the oxygen molecule 624 

activation on CNT and NCNT. Where red = O, white = H, grey = C, blue = N and purple = 625 

Mn. 626 
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Preparation of CNTs  653 

Briefly, CNTs were produced by a chemical vapor deposition (CVD) method with 654 

liquefied petroleum gas as carbon source over a Fe-Mo/Al2O3 catalyst in a horizontal 655 

tubular quartz furnace with 4 cm inner diameter (i.d.). Before the growth of CNTs, the 656 

catalyst was activated by a mixture of H2 and N2 (both at 25 N cm3 min–1) for 30 min. 657 

The growth of CNTs was carried out at 700 °C for 130 min with 20 N cm3 min–1 of 658 

liquefied petroleum gas, 10 N cm3 min–1 of H2, and 50 N cm3 min–1 of N2.  659 

 660 

Static test  661 

The static test was used to evaluate the activity of sample for HCHO removal at 662 

different temperatures (30 °C, 60 °C and 100 °C). Briefly, 100 mg of sample was put 663 

in a 3.5 L organic glass reactor. The reactor was flushed with CO2-free synthetic air for 664 

15 min to eliminate the interference of atmospheric CO2 on the measurement of CO2 665 

formation, and the initial concentration of HCHO was adjusted to 100 ppm. The change 666 

of HCHO concentration was monitored with an Agilent 7890A online gas 667 

chromatograph with a flame ionization detector.  668 

 669 

Calculation of apparent activation energy (Ea) 670 

We implemented kinetics tests with both MnO2/CNTs and MnO2/NCNT catalysts to 671 

study the HCHO oxidation mechanism. The catalytic reaction rates at different 672 

temperatures were first obtained by assuming the first-order reaction for HCHO 673 

oxidation (it is widely accepted that the reaction for HCHO oxidation in the presence 674 

of excess oxygen follows a first-order reaction) [1-3], and then the Arrhenius plots were 675 
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obtained by plotting the logarithm of rate versus 1/T, as shown in Fig. S8a. The apparent 676 

activation energy was acquired from the Arrhenius plots.   677 

 678 

 679 

Fig. S1. Platform of catalyst activity evaluation and formaldehyde catalytic reaction 680 

 681 

 682 

 683 

Fig. S2. TEM image of NCNT 684 

 685 

 686 
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Fig. S3. N2 adsorption-desorption isotherms and pore size distributions (inset) of the NCNT and 687 

40%MnO2/NCNT.  688 

 689 

 690 

Fig. S4. C 1s XPS spectra of MnO2/CNT and MnO2/NCNT.  691 

 692 

 693 
Fig. S5. Mn 2p XPS spectra of MnO2/NCNT, MnO2/CNTs, and pure MnO2. 694 

 695 

 696 
Fig. S6. Formaldehyde removal performance and CO2 selectivity of pure MnO2. 697 



37 

 

 698 

 699 

 700 

Fig. S7. Temperature dependence of HCHO conversion over 40% MnO2/NCNT under different 701 

HCHO concentrations (GHSV = 30000 mLh-1g-1). 702 

  703 
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 704 

 705 

 706 

Fig. S8 (a) Arrhenius plots for HCHO oxidation over MnO2/CNTs and MnO2/NCNT. (b) The 707 

cycling experiments of 40% MnO2/NCNT (HCHO concentration = 100 ppm, room 708 

temperature). 709 

 710 

 711 

 712 

Fig. S9 (a) Unit cell of MnO2. (b) Established (110) facet model of MnO2 for calculations. 713 

 714 
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