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Abstract

This thesis examines the issue of detecting components or features within time

series data in automatic procedures. We begin by introducing the concept of

Wavelets and briefly show their usage as a tool for detection. This leads to our

first contribution which is a novel method using wavelets for identifying correla-

tion structures in time series data which are often ambiguous with very different

contexts. Using the properties of the wavelet transform we show the ability to

distinguish between short memory models with changepoints and long memory

models. The next two Chapters consider seasonality within data, which is often

present in time series used in Offical Statistics. We first describe the historical evo-

lution of identification of seasonality, comparing and contrasting methodology as

it has expanded throughout time. Following this, motivated by the increased use

of high-frequency time series in Official Statistics and a lack of methods for identi-

fying low-frequency seasonal components within high-frequency data, we present

a method for identifying periodicity in a series with the use of a simple wavelet

decomposition. Presented with theoretical results and simulations, we show how

the seasonality of a series is uniquely represented within a wavelet transform and

use this to identify low frequency components which are often overlooked in favour

of a trend, with very different interpretations. Finally, beginning with the moti-

vation of forecasting European Area GDP at the current time point, we show the

effectiveness of an algorithm which detects the most useful data and structures for

a Dynamic Factor Model. We show its effectiveness in reducing forecasting errors

but show that under large scale simulation that the recovery of the true structure
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over two dimensions is a difficult task. All the chapters of this thesis are motivated

by, and give applications to, time series from different areas of Official Statistics.
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Chapter 1

Introduction

As technology has evolved, so has the data which we collect. Whilst accuracy and

length of data is often the issue for most pracitioners, a new emerging area is the

breadth, or width, of the data we collect. As the ability to store data efficiently

has increased and is no longer a limiting factor to the decision maker, data is now

collected from a wide variety of sources. The issue of automatically analysing and

utilising data becomes ever more important when it is predicted that the total

amount of new data generated in 2025 will be over five times more than that

generated in 2018 (Reinsel et al., 2019) and thus we must develop methodology to

meet this sudden rise in supply.

Wavelets have been used as a tool to efficiently store important features of a

data set. They have grown in their popularity as a tool to succinctly decompose

a series, and this thesis develops methods that continue in this vein. We begin by

reviewing the key concepts and techniques used such as Wavelet Decomposition

within Chapter 2. Here we present the key advantages of a time varying decom-

position, and show how they have been used in other areas of statistics such as

denoising and compression. Following this, in Chapter 3 we apply these particular

advantages to the case of classification between ambiguous models with very differ-

ent interpretations. Distinguishing between Long Memory or Short Memory with

Changepoints can significantly change interpretation, and we present a solution

to this ambiguity alongside applications to Price Inflation and Stock Correlation

15



Data.

To meet this high demand on knowledge we develop methodology for the use

of data which is collected more often, or at a higher frequency. However with this

comes additional concerns over interpretation, particularly in the area of seasonal

adjustment. Chapter 4 reviews the methodology currently available for seasonal

adjustment, providing one page overviews of the methods as they have developed

through time. We then look to use the advantages of Wavelets in Chapter 5

to aid in the discovery of low frequency seasonal components which may often

be overlooked as trends. We provide theoretical results for a particular type of

seasonality, or periodicity and present methodology to detect and identify this

component, before applying it French National Birth data.

With this increasing data availability, expectations are also rising as to the

lead time of publication of information. In the domain of Official Statistics, this

raises an interesting issue where data collection can only occur within a certain

timeframe, but the output still needs to be estimated to meet the growing demand

for timely information. Therefore methodology, colloquially referred to as ‘Now-

casting’, was created for the purpose of estimating large complex systems at the

current timepoint using their relationships with other more readily available data.

With the motivation of European Area Gross Domestic Product, Chapter 6 looks

at how these relationships change over time and how this may aid estimation of

the system. With encouraging results we then extend our methodology further

and test its capability to recover the truth under simulation.

16



Chapter 2

Wavelet Literature Review

The following chapter introduces the concept of wavelets and explains their com-

mon use cases. We begin by introducing them in terms of a Multi-Resolution

Analysis, before showing their relationships in the Fourier Domain. Following this

we give the example of the Haar Wavelet, then show how a wavelet decompo-

sition is constructed. We then explore this further by reviewing the decimated

and non-decimated approaches. Continuing, we then explain the concept of Lo-

cally Stationary Wavelet Processes before giving a brief review of the literature

of wavelet usage. Finally we conclude by mentioning a number of other wavelet

methods which we do not cover here.

2.1 Introduction

Defined seminally in Daubechies (1992) wavelets, or ‘little waves’, are a specially

constructed localised function which are used to capture information and features

on a local and global scale of a function or data. We begin first by formalising

this concept of multi-resolution analysis, before showing the relevance of wavelet

functions in this context.

Definition 2.1. A multi-resolution analysis is a collection of closed subspaces of

functions Vj ∈ L2(R) for j ∈ Z such that the following conditions are satisfied:

17



1. A containment hierarchy exists as such:

· · · ⊂ Vj+2 ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ Vj−2 ⊂ . . . (2.1)

2. There is a trivial intersection and dense union of these spaces,

⋂
j

Vj = {0},
⋃
j

Vj = L2(R).

3. There is a self-similarity in the spaces by scale,

f(2−jx) ∈ Vj ⇐⇒ f(x) ∈ V0.

4. Each space is invariant to translation,

f(x) ∈ Vj ⇐⇒ f(x+ 2−jk) ∈ Vj, ∀k ∈ Z.

5. There exists a function φ(x) ∈ L2(R), termed the scaling function, such that

for all j ∈ Z and k ∈ Z; the functions 2−
j
2φ(2−jx+ k) form an orthonormal

basis for Vj.

Here and going forward, we refer to the parameters j and k as scale and trans-

late respectively. It should be noted that in other literature often the index of the

subspaces is negatively reversed, however we proceed as this is more natural for

the algorithm development in the works that follow, as noted in Vidakovic (2009).

If we now consider the scaling function, usually referred to as the father wavelet

φ(x) ∈ V0, and the hierarchy shown in Equation (2.1) we can then determine a

relationship between scaling functions. This is such that

φj+1(x) =
∞∑

k=−∞

hk2
− j

2φ(2−jx+ k) =
∑
k∈Z

hkφj,k(x) (2.2)

so we can form an orthonormal basis for Vj based upon a function from V0 and

18



additional constant hk where k ∈ Z. It is the set of hk which form a wavelet filter,

of which we are particularly interested in. Each of these wavelet filters satisfy two

main conditions: firstly normalization such that
∑

k∈Z hk =
√

2; and orthogonality

such that ∑
k∈Z

hkhk−2l = δl, for l ∈ Z.

Consider next that following Equation (2.1) there exists a difference space

between each subspace, such that

Wj = Vj−1 	 Vj. (2.3)

Given that we are able to determine a wavelet filter hk on a scaling function φ(x),

this implies there exists a non-unique orthonormal basis in L2(R) for the different

space Wj. We denote this basis by the set

{ψj,k(x) = 2
−j
2 ψ(2−jx+ k) : j, k ∈ Z}. (2.4)

The function ψ0,0(x) or ψ(x) is referred to as the wavelet function, or colloquially

the mother wavelet. As ψ(x) ∈ W0 ⊂ V−1 we can relate the mother to the father

wavelet as

ψ(x) =
∞∑

k=−∞

gk
1√
2
φ(

1

2
x+ k)

or more generally

ψj,k(x) =
∞∑

k=−∞

gk2
− j

2φ(2−j−1x+ k).

2.2 Fourier Analysis

It is of interest to look at the properties of the mother and father wavelet in

the time-frequency dimensions. Such an analysis can be done by reviewing the

functions under a Fourier transformation.

Definition 2.2. For a given function f ∈ L1(R), the Fourier transformation is

19



given by

f̂(ω) = F [f(x)] =

∫
R

f(x)e−iωxdx. (2.5)

This transformation can be reversed also:

f(x) = F−1[f̂(ω)] =
1

2π

∫
f̂(ω)eiωxdω.

The Fourier transformation of a function allows analysis over frequency, but

sacrifices the information from the time dimension of the original function. There

are many properties attached to this transformation, which we will make use of in

the definitions and explanations to follow, however we do not detail them here but

refer the reader to Vidakovic (2009). It can be shown that by using the properties

associated with the Fourier transform, that there is a likewise recurrence relation

on the scaling function. This is such that

Φ(ω) = F [φ(x)] = 2−
1
2

∑
k∈Z

hk exp−ikω Φ
(ω

2

)
= m0

(ω
2

)
Φ
(ω

2

)
=
∞∏
j=1

Φ
( ω

2j

)
.

Similarly we can show how the set of translates {φ(x + k)}k∈Z using the Fourier

transform as
∞∑

k=−∞

|Φ(ω + 2πk)|2,

or similarly (but not equivalently)

|m0(ω)|2 + |mo(ω + π)|2 = 1.

For more information on the difference between these two statements, please con-

sult Vidakovic (2009).

Moving next to the wavelet filter, we have already shown a relationship between

both functions, but we further investigate it within the Fourier domain. Following
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similar calculations to those performed on the scaling function, we find that

Ψ(ω) = F [ψ(x)] = 2−
1
2

∑
k∈Z

gk exp−ikω Ψ
(ω

2

)
= m1

(ω
2

)
Ψ
(ω

2

)
=
∞∏
j=1

Ψ
( ω

2j

)
.

Most importantly, it can be shown that there exists a direct relationship between

m0 and m1:

|m0(ω)|2 + |m1(ω)|2 = 1.

With these relationships we are now able to directly compute the wavelet filter

coefficients gk from hk:

gk = (−1)kh1−k. (2.6)

Known as the quadrature mirror relation, this allows us to calculate a high-pass

filter (containing detail) from a low-pass (averaging) filter.

2.3 Haar Wavelet

An often used example of a wavelet is the Haar Wavelet. First discovered by Alfred

Haar (Haar, 1910), its simple nature and intuitive construction aid often in the

explanation of wavelets.

The scaling function for the Haar Wavelet is a simple step function of the form

φ(x) =


1 if 0 ≤ x < 1,

0 elsewhere.

It can be verified quickly that the set of functions {φ(x + k)}k∈Z forms an or-

thonormal basis for V0, as the function is non-overlapping due to the non-inclusive

upper bound on the domain, and also
∫
R
φ(x)dx = 1. Following Equation (2.2)

with j = −1 we determine that the only relevant values of k are k = −1, 0 giving,

φ(x) = h02
1
2φ(2x) + h12

1
2φ(2x+ 1) = h0φ−1,0(x) + h1φ−1,1(x).
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Figure 2.1: A number of Haar Wavelets over different scales j and position k
superposed upon a small white noise series (N (0, 0.12)) for clarity. Note that
values of zero for the wavelets are not shown.

Given that we have already determined that integer translates of the haar scaling

functions are non-overlapping, we can determine that h0 = h1 = 1√
2
. Following

on now, using the quadrature mirror filter relationship given in Equation (2.6) we

can now determine that the mother wavelet ψ has the following form

ψ(x) =


1 if 0 ≤ t < 1

2
,

−1 if 1
2
≤ t < 1,

0 else,

such that there is a set of wavelet coefficients gk = { 1√
2
,− 1√

2
}. We can now

translate and scale this function as per the set definition given in Equation (2.4).

An example of a number of wavelets drawn up is given in Figure 2.1.

2.4 Wavelet Decomposition

As we are now able to construct wavelet filters sufficiently, given an appropriate

scaling function, we now look at a transformation to decompose a function using

the orthonormal wavelet bases. First we define the coefficients generated by the
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inner product of the wavelet filter and scaling function as

cj,k = < f(x), φj,k(x) > =

∫ ∞
−∞

f(x)φj,k(x)dx,

dj,k = < f(x), ψj,k(x) > =

∫ ∞
−∞

f(x)ψj,k(x)dx.

Then, working from the scaling equation defined earlier in Equation (2.2), we are

able to create an approximation to a function f(x) at scale j:

f̂j(x) =
∑
k∈Z

cj,kφj,k(x),

which can be combined with the properties of the MRA given in Equation (2.1)

and (2.3) to extend the approximation. This leads to

f̂j(x) = f̂j−1(x) +
∑
k∈Z

dj,kψj,k(x)

=
∑
k∈Z

cj,kφj,k(x) +
∑
k∈Z

dj,kψj,k(x)

=
∑
k∈Z

cj0,kφj0,k(x) +

j∑
i=j0

∑
k∈Z

di,kψi,k(x), j0 ≤ j.

This is such that we can approximate a function at scale j by the information

provided at a coarser level j0 and the detail in between. If we then take an

increasing amount of scales, such that j →∞ we converge upon

f(x) =
∑
k∈Z

cj0,kφj0,k(x) +
∞∑
i=j0

∑
k∈Z

di,kψi,k(x).

This has a direct discrete counterpart, such that we can decompose a series y =

{y0, y1, . . . , yn−1} of dyadic length (∃J ∈ N : n = 2J) into ‘smooth’ components

and a number of ‘detail’ components:

{cJ,0, d1,0, d1,1, . . . , d1,2J−1−1, d2,0, . . . , d2,2J−2−1, . . . dJ,1}.
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2.5 Decimated Wavelet Decomposition

A direct calculation can be made for each of these components, however this can

be very costly computationally. If however the scaling function satisfies the prop-

erties of an MRA, then we can use the pyramidal algorithm detailed in Mallat

(1989). This algorithm uses the relations between each scale to calculate the dis-

crete wavelet transform of a series with order O(n) computations. To see this,

consider again the scaling relationships given in Equation (2.2) and see that we

can rewrite the calculation of the ‘smooth’ coefficient

cj,k =

∫ ∞
−∞

f(x)φj,k(x)dx =
∑
i∈Z

hicj−1,i+2k =
∑
i∈Z

hi−2kcj−1,i,

such that it relies upon the previous scale and a translation of the original hk filter.

This applies similarly to the wavelet function,

dj,k =
∑
i∈Z

gi−2kcj−1,i.

Note that there are half as many coefficients that can be computed at scale

j than scale j − 1. This is a consequence of the decimation that occurs between

scales which is described further within Mallat (1989). Here we briefly overview it

following similar notation.

Definition 2.3. Given a series y = {. . . , y−1, y0, y1, y2, . . . }, define the application

of filters H and G as

(Hy)k =
∑
i∈Z

hi−kyi, (Gy)k =
∑
i∈Z

gi−kyi.

Definition 2.4. Define the selection of each even element of a series as the binary

decimation operator D0 such that (D0y)j = y2j.

If we now let the coarest information of the transform be the original series, such

that c0 = y, then we can describe the successive operations required to compute
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the full transform by

cj = D0Hcj−1, dj = D0Gcj−1.

An example of this, using the Haar Wavelet given in Section 2.3 is shown in Figure

2.2, applied to the sawtooth function

f(x) =


4x2 + 4

3
x if 0 ≤ x ≤ 1

3

12
8
x2 + 4

8
x if 1

3
< x ≤ 2

3

x2 + 4
8
x− 1

2
if 2

3
< x ≤ 1

. (2.7)

2.6 Non-Decimated Wavelet Decomposition

Whilst computationally efficient, the decimated wavelet decomposition has a main

disadvantage that can be seen by merely shifting the data by a single point, as

shown in Figure 2.2. In particular note the shift in magnitude at the lowest scales

at half the length of the series. Due to the decimation process D0, shifting the

series by a single point creates a complete new set of coefficients. This is known

as the translation invariance property of the decimated wavelet transform.

To define the non-decimated transform, we must describe how to transform the

filtering operations and decimation process.

Definition 2.5. Let the inverse of the binary decimation operator be such that

upon application to a series y = {. . . , y−1, y0, y1, . . . }, it adds zeros between each

element. This is such that

D−1
0 y = ỹ, where ỹ = {. . . , 0, y−1, 0, y0, 0, y1, 0, . . . }.

Definition 2.6. The non-decimated wavelet transform can be computed by using
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(d) c and d coefficients for each scale.

Figure 2.2: Wavelet transform of a sawtooth function. Note in Figures 2.2b and
2.2d that each coefficient has been scaled by the maximum value and is centered
on a zero line, bounded above and below by 1 and -1 respectively shown by the
dotted lines.
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filters which are recursively related such that

H[0] = H, H[j] = D−1
0 H[j−1],

G [0] = G, G [j] = D−1
0 G [j−1].

Then the non-decimated smooth and detail coefficients sets, c̄j and d̄j are computed

by

c̄j = H[j−1]c̄j−1, d̄j = G [j−1]c̄j−1.

This then creates an overcomplete transform which considers both even and

odd decimations. As such, each coefficient set is of length 2J . In contrary to the

decimated wavelet transform, this is translation invariant, and often referred to as

the stationary wavelet transform. Our original example given by Equation (2.7),

is presented under a non-decimated wavelet transform, with a shifted version for

comparison, in Figure 2.3.

2.7 Locally Stationary Wavelet Processes

We must first define a time series, before defining Locally Stationary Wavelet

Processes. A time series is formally defined as a collection of data over time, such

that we have a series yt for t = 1, 2, . . . , n. A common assumption in the modelling

of a time series is that it is stationary, such that its properties do not vary over

time. This is often not valid, but a similar assumption of local stationarity, such

that a segment of data is stationary, may often prove more useful. For a review

of such processes and an overview of the literature surrounding them, Dahlhaus

(2012) is recommended.

Wavelets, with their ability to localise particular characteristics across different

scales and translations, provide a framework to model locally stationary wavelet

processes, introduced in Nason et al. (2000).
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(b) c and d coefficients for each scale.
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(d) c and d coefficients for each scale.

Figure 2.3: Non-decimated wavelet transform of a sawtooth function. Note in
Figures 2.3b and 2.3d that each coefficient has been scaled by the maximum value
and is centered on a zero line, bounded above and below by 1 and -1 respectively
shown by the dotted lines.
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Definition 2.7. A time series is of the locally stationary wavelet processes class

if it can be represented, in the mean-square sense, by a doubly indexed stochastic

process {Xt,N}N−1
t=0 (where N = 2J ≥ 1) such that

Xt,N =
N∑
j=1

∑
k∈Z

w0
j,k;Nψj,k(t)ξj,k

where j, k, are the scale and translation parameters seen previously and ψ is a

family of discrete non-decimated wavelets. Further:

1. The components ξ are an orthonormal random increment sequence, such that

E(ξj,k) = 0 for all j, k and Cov(ξj,k, ξl,m) = δj,lδk,m.

2. There exists Wj(z) : [0, 1]→ R which are Lipschitz continuous functions on

z ∈ (0, 1) for each j. Each function Wj(z) satisfies

(a) The Lipschitz constants Lj are uniformly bounded in j and

∞∑
j=1

Lj2
j <∞

(b) A sequence of constants Cj exists such that for each N

sup
k

∣∣∣∣w0
j,k;N −Wj

(
k

N

)∣∣∣∣ ≤ Cj
N

where for each j the supremum is over k = 0, . . . , N − 1 and the con-

stants Cj are bounded such that
∑∞

j=1Cj <∞.

(c)
∑∞

j=1 |Wj(z)|2 <∞ uniformly in z.

Note that there is a further variation to this definition where jumps are allowed

within the amplitudes, given in Fryzlewicz and Nason (2006). From Definition 2.7

we are then able to construct a spectrum of the data, similarly to the Fourier spec-

trum that can be created by taking the modulus squared of the Fourier transform

given in Equation (2.5).
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Definition 2.8. The locally stationary wavelet process spectrum is defined as

Sj

(
k

N

)
=

∣∣∣∣Wj

(
k

N

)∣∣∣∣2

for a locally stationary wavelet process Xt,N , where j = 1, . . . , J = log2(N) and

k = 1, . . . , N .

There exists a biased approximation to this spectrum through the non-decimated

wavelet coefficients. This is defined as the local wavelet periodogram:

Definition 2.9. The LSW process spectrum can be approximated by

Ŝj

(
k

N

)
= Aj

∣∣∣∣∣
N−1∑
l=0

Xt,Nψj,k(l)

∣∣∣∣∣
2

= Aj |dj,k(l)|2 j = 1, . . . , J.

The bias correction matrix A is defined within Nason et al. (2000).

2.8 Statistical Applications of Wavelets

Wavelets provide a strong basis for decomposing data into a succinct set of in-

formation, and providing the methodology to reconstruct it. As such there are

several properties of interest to many statisticians that have led to research in a

number of areas.

Most prominent is the process of denoising, such that we improve the signal-

to-noise ratio of a piece of data by successfuly removing all or some of the noise.

The use of wavelets for this problem was first introduced within Donoho (1993),

where they presented methodology which thresholded wavelet coefficients which

could then be reconstructed to return denoised data. This work was further built

upon by extending the generation of wavelet coefficients through the use of a non-

decimated transform in Coifman and Donoho (1995) and similarly whilst using

bivariate thresholds in Bui and Guangyi Chen (1998). Indeed determining a suit-

able threshold to apply to the coefficients is studied closely, with procedures for an

adaptive threshold given in Donoho and Johnstone (1995) and selecting using the
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information from a non-decimated transform given within Gao and Bruce (1997).

Research has also been conducted into the correlation between wavelet coefficients

and the effect of this upon denoising in Cai and Silverman (2001) and He et al.

(2008) where the interscale correlation is used to determine a suitable threshold.

Further, these techniques can be used as a dimensional reduction tool as in Bruce

et al. (2002) and Kaewpijit et al. (2003). These methods have been used in many

areas such as ECG data (Singh and Tiwari, 2006), geospatial data (To et al., 2009)

and medical imaging (Dansena and Dewangan, 2015). The literature of denoising

is vast and thus we recommend Chen et al. (2013a) for further reading on this

area.

Given the scope of such methodology, usage has been extended into many

Machine Learning areas. In the area of pattern matching where the aim is to

determine if similar behaviour is exhibited within or between series, wavelet co-

efficients are used in cardiac data in Senhadji et al. (1995). Similarly work from

Du et al. (2006) thresholds coefficients to determine peaks within mass spectrums.

Interest has also been drawn to using wavelets in a classification method, where

contexts such as image annotation (Blume and Ballard, 1997) have used a Haar

Wavelet Transform to identify similar images and identification of seizure patterns

within EEG data (Panda et al., 2010). Work has also been conducted in clustering,

such that we group data together by their properties, where as examples: Vlachos

et al. (2003) uses multi-resolution properties of a wavelet transform to optimise

a k-means clustering approach; and Misiti et al. (2007) uses a subset of wavelet

coefficients to cluster directly onto. The scope of these applications and context

is large and thus Li et al. (2002) and Abbas and Raina (2018) are recommended

as good reviews of the area.

2.9 Other Wavelet Methods

Beyond the wavelet transformations detailed already, we must make note of a

number of further wavelet transforms that have gained popularity. In particular
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we draw attention to four areas: Bi-Orthogonal Wavelet Transforms; Multiple

Wavelet Bases; Wavelet Lifting; and Wavelet Packet Transforms. Each of these is

related in part to the descriptions already given and we explain them further here.

So far we have used the same wavelet to decompose a series, and then trans-

lated/scaled it into the next wavelet to continue the decomposition. Moving

beyond this principle we encounter what are referred to as ‘Second Generation

Wavelets’. A key example of this are Bi-Orthogonal wavelets, which separate

these two processes such that one wavelet is used in decomposition, and another

informs the wavelet to be used in the following transform. These wavelets are

specifically designed to be orthogonal only to each other, thus for two wavelets

ψa,b and ψ̃c,d we have

< ψa,b, ψ̃c,d >= δa,cδb,d.

For more information on the construction and usage of Bi-Orthogonal wavelets an

interesting article is given by Karoui and Vaillancourt (1994).

The use of second generation wavelets is further extended beyond Bi-Orthogonality

into Multiple Wavelet Bases. Here rather than decomposing a series by the ap-

plication of a vector of coefficients, this is extended into a matrix. This is such

that we apply more than one scaling and smooth functions to the data. Originally

introduced in Alpert (1993), appropriate pre-processing and post-processing must

be used to prepare and combine the results of the decompositions to adequately

describe the data. An example of such usage can be found in Geronimo et al.

(1994) where symmetric scaling functions are used simultaneously.

Further use of the relationship between multiple wavelet bases can be found

through Wavelet Lifting, or Wavelets on an interval. First shown in Sweldens

(1998) the process extends the idea of non-decimated transforms, sparse represen-

tation of data and recalculating wavelets. Using both the even and odd decimations

of the data, at each stage of the decomposition a preditive step occurs to determine

the most suitable wavelet to continue decomposing, minimising over the sparsity

of the return. This comes with many advantages, such as computational efficiency
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gains and in-place memory requirements (such that a fixed size memory space is

needed throughout). A strong review of the work conducted on this methodology

can be found in Acharya and Chakrabarti (2006).

Looking beyond efficiency gains and more towards sparsity requirements, the

Wavelet Packet Transform can be seen as a further generalisation of a wavelet

transform. Rather than continually decomposing the smooth coefficients, wavelet

packets look to exploit additional information that could be contained by decom-

posing the detail coefficients further. Each of these decompositions is then referred

to as a ‘packet’ which approximate a certain part of the function in question.

With such a selection of information, algorithms such as Best Bases (Coifman and

Wickerhauser, 1992) can be used to select a subset of packets to give a sparse

representation. For further information on the wavelet packet transform we direct

the reader to Nason (2010).
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Chapter 3

Long Memory and Changepoint

Models: A Spectral Classification

Procedure

Abstract Time series within fields such as Finance and Economics are often

modelled using long memory processes. Alternative studies on the same data can

suggest that series may actually contain a ‘changepoint’ (a point within the time

series where the data generating process has changed). These models have been

shown to have elements of similarity, such as within their spectrum. Without

prior knowledge this leads to an ambiguity between these two models, meaning it

is difficult to assess which model is most appropriate. We demonstrate that consid-

ering this problem in a time varying environment using the time varying spectrum

removes this ambiguity. Using the wavelet spectrum we then use a classification

approach to determine the most appropriate model (long memory or changepoint).

Simulation results are presented across a number of models followed by an appli-

cation to stock cross correlations and US inflation. The results indicate that the

proposed classification outperforms an existing hypothesis testing approach on a

number of models and performs comparatively across others.
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3.1 Introduction

It is not often the case that a given data set has a known explicit model from which

it is generated. Analysts will look to fit an appropriate model to such a series in

the hopes of understanding the underlying mechanisms or to make predictions into

the future. The models proposed are expected to be distinct in their properties

such that there is a clear prevalence of a suitable model for the data. However,

models with certain structural features have been known to have similar properties

to other models (Granger and Hyung, 2004). This overlap will be here referred to

as an ‘ambiguity’ between the models. This is such that either model may appear

similar to one another in some metrics, but provide very different interpretations

on the data generating process, and lead to different predictions into the future.

In this paper we consider the ambiguity between long memory and changepoint

models. This ambiguity has been documented in fields such as Finance and Eco-

nomics which are modelled using long memory models (Granger and Ding, 1996;

Pivetta and Reis, 2007) and changepoint models (Levin and Piger, 2004; Starica

and Granger, 2005). Thus it is reasonable to assert that there is an element of am-

biguity between these two models. Following the discussion and in-depth analysis

within Diebold and Inoue (2001), it has been shown that both models share some

similar properties, especially within the spectrum. Often a decision on a model

can not be made with the ‘luxury’ of prior knowledge, and as such assuming the

data derives from either of these models comes at a risk of mis-specification.

Existing work in Yau and Davis (2012) conducts a hypothesis test to determine

between the changepoint and long memory model. The authors choose to use the

changepoint model as a null model with the justification that this is the more

plausible model. However in some circumstances this may not be the case so it

leads to the question as to which model should be the null model. It would be

entirely feasible to choose the changepoint model as the null model, not reject H0

and then flip to have the long memory model as the null model and also not reject

H0. This does not give a clear answer to the question of an appropriate model.
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As an alternative this paper introduces a classifier, which places no such as-

sumptions on which model is preferred. Instead the purpose of a classifier is only

to give a measure of which category provides the best fit. In the context here,

it can measure which model best describes a time series, without assuming that

this model is where the data was originally generated from. Classification of time

series has been previously used in Grabocka et al. (2012) and Krzemieniewska

et al. (2014). It was shown in Yau and Davis (2012) that the autocorrelation

function and periodogram of data generated from a changepoint model and a long

memory model exhibit similar structures (i.e. slow decay in the autocorrelation

and spectral pole at zero). However, if we consider a time-varying periodogram,

then the stationarity of a long memory model can be seen (constant structure over

time), whilst a changepoint model exhibits the piecewise stationarity expected (see

for example Killick et al. (2013)). As the time varying spectrum shows evidence

of a difference between these models, we use it as the basis for our classification

procedure.

The structure of this article is as follows. The background and methods to our

approach are given in detail in Section 3.2. A simulation study of the proposed

classification method, with a comparison to the Likelihood Ratio Test from Yau

and Davis (2012), can be found in Section 3.3. Applications of the classifier are

then given using US price inflation and stock cross-correlations in Section 3.4.

Finally, concluding remarks and a discussion is given in Section 3.5.

3.2 Methods

3.2.1 Changepoint and Long Memory Models

The aim of our method is to distinguish between data which arises from either a

changepoint or a long memory model. To define these, we first define the general

Autoregressive Integrated Moving Average (ARIMA) model, characterised by its

Autoregressive (AR) parameters φ ∈ Rp, Moving Average (MA) parameters θ ∈ Rq
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and the Integration (I) parameter d ∈ N. For random variables X1, X2, . . . , Xn this

is formally defined as,

(
1−

p∑
k=1

φkB
k

)
(1−B)dXt =

(
1 +

q∑
k=1

θkB
k

)
εt

where εt are independent identically distributed as N(0, σ2) variables, and B is

the backward shift operator such that BXt = Xt−1 and Bεt = εt−1. A variation

of this, Autoregressive Fractional Integrated Moving Average (ARFIMA) is such

that d ∈ R, allowing it to be fractional. This modification allows long memory

behaviour to be captured through dependence over a large number of previous

observations.

For the purpose of this paper, we define the changepoint and long memory

models as:

Xt ∼


µ1 + ARMA(φ1,θ1) if t = 1, 2, . . . τ

µ2 + ARMA(φ2,θ2) if t = τ + 1, τ + 2, . . . n.

(3.1)

Xt ∼ µ+ ARFIMA(φ, d,θ) t = 1, 2, . . . , n (3.2)

Note that we depict a single changepoint τ = bnλc for notational ease, but the soft-

ware we provide (see Section 3.5) contains the generalisation to multiple changes

through use of the PELT algorithm Killick et al. (2012) and extending Equation

(3.1) to include multiple τ . Other models such as ARCH models and Fractional

Gaussian Noise (Molz et al., 1997) could also be used but we restrict our con-

sideration to ARFIMA here. In the general case we allow p, q ∈ N, but in the

simulations and applications given in Section 3.3 and 3.4 we restrict their range

for computational reasons. Further, we restrict the range of the fractional differ-

encing parameter to d ∈ (0, 0.5) and this resolves to a stationary model as will be

necessary for the work that follows.
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3.2.2 Wavelet Spectrum

(a) Changepoint periodogram. (b) Long memory periodogram.

(c) Changepoint wavelet spectrum. (d) Long memory wavelet spectrum.

Figure 3.1: Empirical periodogram and wavelet spectrum averaged over 500 real-
izations.

The ambiguity present between diagnostics of the competing models given in

Equation (3.1) and (3.2) can cause issues in identifying the correct model. Figure

3.1 shows the average empirical periodograms from realisations of long memory

(ARFIMA(0,0.4,0)) and changepoint (AR(1), λ = 0.5, φ1 = 0.1, φ2 = 0.4, µ1 = 0,

µ2 = 1) models. It can be seen that the periodogram for the changepoint model

has a pole at zero and shows similar behaviour to that of long memory.

Before discussing the wavelet spectrum, we provide a brief background to

wavelets and the specific spectrum we propose to use.

Wavelets capture properties of the data through a location-scale decomposition

using compactly supported oscillating functions. Through dilation and translation,

a wavelet is applied across a number of a scales and locations to capture behaviour

occurring over different parts of a series. Further information on them and their

application can be found in Daubechies (1992) and Nason (2010). In this work we

use the model framework of the Locally Stationary Wavelet process which provides

a stochastic model for second order structure using wavelets as building blocks.

38



We follow the definition in Fryzlewicz and Nason (2006) for a Locally Stationary

Wavelet (LSW) process.

Definition 3.1. Define the triangular stochastic array {Xt,N}N−1
t=0 which is in the

class of LSW processes given it has the mean-square representation

Xt,N =
∞∑
j=1

∑
k

Wj

(
k

n

)
ψj,k−tξj,k,

where j ∈ 1, 2, . . . and k ∈ Z are scale and location parameters respectively, ψj =

(ψj,0, . . . , ψj,Lj−1) are discrete, compactly supported, real-valued non-decimated wavelet

vectors of support length Lj. If the ψj are Daubechies wavelets Daubechies (1992)

then Lj = (2j − 1)(Nh − 1) + 1 where Nh is the length of the Daubechies wavelet

filter, finally the ξj,k are orthonormal, zero-mean, identically distributed random

variables. The amplitudes Wj(z) : [0, 1]→ R at each j ≥ 1 are time varying, real-

valued, piecewise constant functions which have an unknown (but finite) amount

of jumps. The constraints on Wj(z) are such that if Pj are constants representing

the total magnitude of jumps in W 2
j (z), then the variability of Wj(z) is controlled

by

•
∑∞

j=1 2jPj <∞,

•
∑∞

j=1W
2
j (z) <∞ uniformly in z.

Note that we apply this framework to our models given in Equations 3.1 and

3.3 as both are stationary models under the assumption that d ∈ (0, 0.5). Thus by

Wold’s Decomposition Theorem (Geary, 1956), which states that any stationary

model can be represented as a Moving Average (MA) model with infinite param-

eters, we can represent the ARFIMA model as an MA(∞). Further, by Nason

et al. (2000) it is shown that any MA model can be represented in as an LSW and

thus are applicable here.

As in the traditional Fourier setting, the spectrum is the square of the ampli-
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tudes and as such the Evolutionary Wavelet Spectrum can be defined as

Sj

(
k

N

)
=

∣∣∣∣Wj

(
k

N

)∣∣∣∣2

which changes over both scale (frequency band) j and location (time) k.

Considering both scale and location, the two dimensions allow the differences

between the proposed models to be seen. Examples of the differences in these

spectra are given in Figure 3.1 for both the changepoint and long memory models.

To interpret the wavelet spectrum: scale corresponds to frequency bands with

high frequency at the bottom to low frequency at the top. Further details on

the spectrum and its applicability can be found in Fryzlewicz and Nason (2006),

Nason (2010) and Killick et al. (2013). Note that there is a clear difference between

the wavelet spectra of the two models with the changepoint model being piecewise

stationary (pre and post change), with the change occurring in the spectrum where

the change occurs in the data. In contrast the long memory model remains flat

across each scale and time reflecting the stationarity of the original series.

Due to the fact that the wavelet spectrum gives a distinction between the two

models we propose to use this as the basis for our inference regarding the most

appropriate model. Whilst the Fourier spectrum could be used here as in Janacek

et al. (2005), we choose to use the Evolutionary Wavelet Spectrum. As shown in

Figure 3.1 this is advantageous for characterising the non-stationarity changepoint

data due to the Scale-Location transformation used. This is since the Wj(z) are

constant for stationary models, but for non-stationary models the break in the

second order structure of the original data causes breaks in the wavelet spectra,

as described in Cho and Fryzlewicz (2012).

In the next section we detail how to use the wavelet spectrum of the two models

in a classification procedure.
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3.2.3 Classification

Testing whether a long memory or changepoint model is more appropriate whilst

under model uncertainty comes with the hazard of mis-specification. A formal

hypothesis test places assumptions on the underlying model in both the null and

alternative, but the allocation of the null is hazardous - should the changepoint

model be the null or alternative? It would be entirely feasible to choose the

changepoint model as the null model, not reject H0 and then flip to have the

long memory model as the null model and also not reject H0. Given the absence

of a clear null model, which result to proceed with is unclear. Instead it may

be preferable to quantify the evidence for each model separately. A classification

method such as the one proposed here gives a candidate series a measure of distance

from a number of groups, which can then be used to select the most appropriate

group.

In the previous subsection it was demonstrated that the wavelet spectrum can

be used to distinguish the changepoint model from the long memory model, and the

classifier proposed here builds on this. However, to begin a classification method

must first ‘teach’ itself on the structure of the classes through sets of training data.

These are data sets already determined to be in each category and are the basis

for calculating the distances from each group. This previous knowledge allows

for determination of patterns and features of each category (that are unique from

other categories) for comparison to the candidate data set. A common example is

the spam filter on mailboxes, which is trained on previous spam emails so that it

can classify if a new email that arrives is spam or not. The decision is made by

comparing it to a number of patterns already determined to be features in spam

email for example, short messages or hidden sender identities. Further information

on classification methods and training them can be found within Michie et al.

(1994).

In our example we only have a single data set of length n, the classifier has no

previous information to train on. To remedy this we create training data through
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simulation. Given a candidate series we first fit the competing models in Equations

(3.1) and (3.2) choosing the best fit for each model. For the changepoint model the

best fit uses the ARMA likelihood within the PELT multiple changepoint frame-

work to identify multiple changes in ARMA structure (Hyndman and Khandakar,

2008; Killick et al., 2012). When considering fitted long memory models, a number

of ARFIMA models are fitted (Veenstra, 2012) and selection occurs according to

Bayesian Information Criterion (following Beran et al. (1998)).

Following the identification of the best changepoint and long memory mod-

els, the training data is then simulated as (Monte Carlo) realisations from these,

denoted by

Xg
m =

{
Xg
i,m

}
i=1,2,...,n

m = 1, 2, . . . ,M.

g = 1, 2.

where the group, g = 1 for changepoint simulations and g = 2 for long memory

simulations, M is the number of simulated series and n is the length of the original

series. Note that we are not sampling from the original series, we are generating

realizations from the fitted models.

Now we have the training data and the observed data, denoted Xo, a measure

of distance of the observed data from each group is calculated. As discussed

previously we will use a comparison of their evolutionary wavelet spectra as the

distance metric. Before detailing the metric, we first define the estimated wavelet

spectrum of the original series as

Ŝ
o

=
{
Ŝok

}
k=1,2,...n∗J

where we remove the index over scale j by concatenating scales, hence k =

1, 2, . . . n ∗ J , where J = blog2(n)c. Similarly we define the spectra for each simu-

lated series:

Ŝ
g

m =
{
Ŝgk,m

}
k=1,2,...n∗J

.
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To obtain a group spectra, an average is then taken over the M simulated series

at each position of each scale for each group,

S̄
g

=

{
1

M

M∑
m=1

Ŝgk,m

}
k=1,2,...n∗J

.

Based on these spectra the distance metric proposed is a variance corrected

squared distance, across all spectral coefficients as proposed in Krzemieniewska

et al. (2014),

Dg =
M

(M + 1)

n∗J∑
k=1

(Ŝok − S̄
g
k)2∑M

m=1(Ŝgk,m − S̄
g
k)2

(3.3)

Note that the variance correction occurs within the denominator to account for

potentially different variability seen across simulations for each group. This is

modified from Krzemieniewska et al. (2014) to allow different variances within

each group. The theoretical consistency of the classification was shown in Theo-

rem 3.1 from Fryzlewicz and Ombao (2009) where the error for misclassifying two

spectra {S(1)
k }k and {S(2)

k }k (whose difference summed over k is larger than CN)

is bounded by O
(
N−1 log3

2N +N1/{2 log2(a)−1}−1 log2
2N
)
. However this result re-

quires a short memory assumption that is clearly not satisfied for our long memory

processes. Thus we prove a similar bound under the assumption that the spectra

are created from ARFIMA processes. We first replicate the required assumptions

from Fryzlewicz and Ombao (2009) for completeness:

Assumption 3.2. (Assumption 2.1 from Fryzlewicz and Ombao (2009))

The set of those locations z where (possibly infinitely many) functions Sj(z) contain

a jump is finite. In other words, let B := {z : ∃j limu→z− Sj(u) 6= ∃j limu→z+}. We

assume B := #B <∞.

Assumption 3.3. (Assumption 2.2 from Fryzlewicz and Ombao (2009))

There exists a positive constant C1 such that for all j, Sj(z) ≤ C12j.

Theorem 3.4. Suppose that Assumptions 3.2 and 3.3 hold, and that the constants

Pj from Definition 3.1 decay as O(aj) for a > 2. Let S
(1)
j (z) and S

(2)
j (z) be two
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non-identical wavelet spectra from Changepoint ARFIMA processes. Let I
(J)
k,N be

the wavelet periodogram constructed from a process with spectrum S(1)(z), and let

L
(j)
k,N be the corresponding bias-corrected periodogram, with J∗ = log2N . Let

∑
j,k

{
S

(1)
j (k/N)− S(2)

j (k/N)
}2

= O(N).

The probability of misclassifying L
(j)
k,N as coming from a process with spectrum

S
(2)
j (z) can be bounded as follows:

P (D1 > D2) = O
(

log2
2N

[
N−1 +N

1
(2 log2 a−1)

−1
])

Proof. The proof is given in Appendix 3.6.1.

A summary of the proposed procedure is given in Algorithm 1.

3.3 Simulation Study

To test the empirical accuracy of our proposed approach, simulations were con-

ducted over a number of models. Here, these models are chosen over a number

of parameter magnitudes and combinations to show the effectiveness of the ap-

proach outlined in Section 3.2. A number of these models also appear in Yau and

Davis (2012) which uses a likelihood-ratio method to test the null hypothesis of a

changepoint model. As part of their notation they introduce λ which represents

the location in the series where the changepoint occurs, such that λ = τ
n
. Their

results for these models are correspondingly given as a comparison.

For each model given in the tables below, 500 realisations of each model were

generated and classified, using M = 1000 training simulations for each fit. For

computational efficiency, the maximum order of the fitted models are constrained

to p, q ≤ 1. Three different time series lengths were computed for each model;

n = 512, 1024, 2048. It is expected that as a series grows larger, more evidence of

long memory features will become prevalent, and as such the effect of length of
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1 Initialization:
2 X : {Xi}ni=1 observed series.
3 n : Length of series
4 M : Number of bootstrap simulations

5 S̄
1
, S̄

2
: Empty Spectra 1, 2.

6

Algorithm:

1. Fit: M1 - best changepoint model (Equation (3.1)) to X.

2. Fit: M2 - best long memory model (Equation (3.2)) to X.

3. Calculate training spectra

for m = 1, 2, . . . ,M do
Simulate n observations from M1, denote as Y1

Calculate Evolutionary Wavelet Spectra Ŝ
1

m of Y1

Let S̄
1

= S̄
1

+ Ŝ
1

m

Simulate n observations from M2, Y2

Calculate Evolutionary Wavelet Spectra Ŝ
2

m of Y2

Let S̄
2

= S̄
2

+ Ŝ
2

m

end

4. Calculate the average Evolutionary Wavelet Spectra for each group

S̄
1

= S̄
1

M
, S̄

2
= S̄

2

M
.

5. Calculate Evolutionary Wavelet Spectrum of X, Ŝ
o
.

6. Compute the distance D1, D2, between Ŝ
o

and S̄
1
, S̄

2
respectively

(Equation (3.3)).

Output: Distances D1, D2.

Algorithm 1: Wavelet Classifier Algorithm
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series on accuracy is investigated.

We have used n = 2J as the length of the series as the wavelet decomposition

software in Nason (2016b) requires that the series transformed is of dyadic length.

This is not a desirable trait as data sets come in many different sizes. Thus we over-

come this using a standard padding technique described in Nason (2010) that adds

0’s to the left of each series until the data is of length 2J . The extended wavelet

coefficients are then removed before calculating the distance metric. Finally, we

use the Haar Wavelet across all simulations.

3.3.1 Changepoint Observations

Model Parameters Classification Rate (n =) Y&D LR (n =)
Ref λ µ φ1 θ1 φ2 θ2 512 1024 2048 500 1000

1 0.5 1 0.1 0.3 0.4 0.2 1.00 1.00 1.00 0.99 0.97
2 0.5 2 0.1 0.3 0.4 0.2 1.00 1.00 1.00 0.95 0.93
3 0.5 1 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.97 0.99
4 0.5 2 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.94 0.95
5 0.7 1 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.94 0.94
6 0.7 2 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.91 0.93

Table 3.1: Changepoint observations results with Likelihood Ratio results com-
parison taken from Yau and Davis (2012).

For the changepoint models we used the simulations given in Yau and Davis

(2012). Table 3.1 gives the parameters used in Equation (3.1) along with the

correct classification rate. The results show that if the data follows a changepoint

model then we have a 100% classification rate. A movement of the changepoint to

a later part of the series, as in models 5 and 6, does not appear to have an effect

upon classification rates unlike for the Yau and Davis method. It is not really a

surprise that we are receiving 100% classification rates as if a changepoint occurs

then it is a clear feature within the spectrum.

It should be noted that as the Yau and Davis method is a hypothesis test we

would expect results around 0.95 for a 5% type I error.
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3.3.2 Long Memory Observations

Model Parameters Classification Rate Y&D LR Power
Ref φ d θ1 θ2 n = 512 n = 1024 n = 2048 n = 500

7 -0.8 0.1 0.6 0.42 0.61 0.79 0.63
8 -0.8 0.2 0.6 0.56 0.83 0.94 0.97
9 -0.8 0.3 0.6 0.66 0.90 0.96 0.98

10 -0.8 0.4 0.6 0.75 0.88 0.96 0.96
11 0.1 0.1 -0.8 0.74 0.87 0.95 0.08
12 0.1 0.2 -0.8 0.84 0.96 0.99 0.09
13 0.1 0.3 -0.8 0.89 0.98 1.00 0.15
14 0.1 0.4 -0.8 0.88 0.99 1.00 0.32
15 0.1 0.1 0.8 0.54 0.78 0.90
16 0.1 0.2 0.8 0.61 0.85 0.91
17 0.1 0.3 0.8 0.62 0.87 0.95
18 0.1 0.4 0.8 0.63 0.87 0.98
19 0.6 0.1 -0.8 0.33 0.45 0.65
20 0.6 0.2 -0.8 0.38 0.62 0.83
21 0.6 0.3 -0.8 0.44 0.63 0.87
22 0.6 0.4 -0.8 0.39 0.59 0.86
23 0.0 0.1 0.7 -0.7 0.94 0.97 0.99
24 0.0 0.2 0.7 -0.7 1.00 0.99 1.00
25 0.0 0.3 0.7 -0.7 1.00 1.00 1.00
26 0.0 0.4 0.7 -0.7 1.00 0.99 1.00

Table 3.2: Long memory observations results with Likelihood Ratio results com-
parison taken from Yau and Davis (2012).

In contrast to the changepoint models, the classification of a long memory

model is expected to be less clear. This is due to the variation within the wavelet

spectrum of long memory series that could be interpreted as different levels and

hence a changepoint model would be more appropriate. To demonstrate the effect

of the classifier on long memory observations, a larger number of models were

considered. We simulated long memory models with differing levels of long memory

as measured by the d parameter, values close to 0 are closer to short memory

models and values close to 0.5 are stronger long memory models (values > 0.5 are

not stationary and thus not considered).

The results in Table 3.2 give an indication of the accuracy of the classifier in a

number of different situations. Overall, as the length of the time series increases

we see an increase in classification accuracy. This is to be expected as evidence of

47



long memory will be more prevalent in longer series. Similarly as we increase the

long memory parameter d from 0.1 to 0.4 we improve the classification rate.

Some interesting things to note include, when there are strong AR parameters

(φ) such as models 7-10 and 19-22 we require longer time series to achieve good

classification rates. However, in contrast if there are strong MA components as in

the remaining models the classifier performs better. A larger effect is found when

the MA parameter is negative, seen through models 11-14 where the classifier

performs strongly even at n = 512. This effect is further exemplified by models

23-26 which include a further MA parameter and achieve near 100% classification

at n = 512. Here the maximum used p, q was 2.

Comparing our results to that of Yau and Davis we note that the opposite

performance is seen. For the likelihood ratio method there is high power for models

with strong AR components and poor performance for strong MA components.

Notably the strong MA performance is much worse than our method on the strong

AR components.

3.4 Application

To further demonstrate the usage of our approach, two applications to real data are

given in this section. The first is an economics example based on US price inflation

and this is followed by financial data on stock cross-correlations. A sensitivity

analysis was conducted over the possible maximum values of p, q. It was found

that no additional parameters were required beyond maximum p, q = 4, thus these

results are presented here.

3.4.1 Price Inflation

US price inflation can be determined using the GDP index. The dataset used

here is available from the Bureau of Economic Analysis, based on quarterly GDP

indexes, denoted Pt, from the first quarter of 1947 to the third quarter of 2006 (227
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data points). Price inflation is calculated as πt = 400 ln(Pt/Pt−1) (thus n = 226).

A plot of the inflation is given below in Figure 3.2a. Studies of the persistence

of this data have been conducted to determine the level of dependence within

the series. A high amount of persistence, indicating long memory, was found in

Pivetta and Reis (2007). However Levin and Piger (2004) found a structural break,

which when accounted for showed the series to have low persistence, indicating the

presence of changepoints with short memory segments. Applying our classification

approach to this series will give an additional indication as to which model is

statistically more appropriate.

The parameters of the fitted changepoint and long memory models are given

in Table 3.3. Diagnostic autocorrelation and partial autocorrelation function plots

are given in Figure 3.3. The level shifts are given in respect to their position in

the series, but correspond to 1951 Q3, 1962 Q4, 1965 Q2, 1984 Q2. The classifier

returns a changepoint classification for this series.

3.4.2 Stock Cross Correlations

Stock Cross Correlation data has been obtained from the supplementary material

of Chiriac and Voev (2011). The data consists of Open to Close stock returns for

6 companies from January 1st 2001 to 30th July 2008 (n = 2156). The data is

first transformed using a Fisher Transformation, then correlations are calculated

between each stock. Here analysis will look at the correlation between American

Express and Home Depot.

This data has been analysed previously by Bertram et al. (2013) to determine

between fractional integration (long memory behaviour) and level shifts and is

given in Figure 3.2b. Parameters for the models fitted by the algorithm are also

in Table 3.3. It can be seen that one of the AR coefficients is close to 1 indicating

an element of non-stationarity, however we conducted a test of stationarity on

this segment using the locits R package (Nason, 2016a) which implements the

test of stationarity from Nason (2013) (no rejections) and also the fractal R
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package (Constantine and Percival, 2016) which implements the Priestley-Subba

Rao (PSR) test (Priestley and Rao, 1969) (time varying p-value 0.061). This

coupled with autocorrelation and partial autocorrelation function plots given in

Figure 3.4 means we conclude that the segment is stationary. Here the estimated

changepoints at times 715, 841, 847 and 896 correspond 15/12/2002, 20/04/2003,

26/04/2003 and 14/06/2003. The distance scores given by the classifier indicate a

strong preference for long memory over changepoints. This result stands against

that found in Bertram et al. (2013) which indicated a preference for a model with

similarly 4 changepoints. The difference is likely due to the fact that in Bertram

et al. (2013) the changepoint model does not contain any short memory dependence

and we have shown here that if that short memory structure is correctly taken into

account within the sub-series then the series shows greater evidence of long memory

properties.
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(a) Time series of US Price Inflation.

(b) Time series of the Cross Correlations of American Express and Home Depot.

Figure 3.2: Real Data Examples
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Figure 3.3: Inflation diagnostics. (Top) Left: Original data with fitted changepoint
model; Middle: Autocorrelation function of changepoint model residuals; Right:
Partial autocorrelations of changepoint model residuals. (Bottom) Left: Original
data with fitted long memory model; Middle: Autocorrelation function of long
memory model residuals; Right: Partial autocorrelations of long memory model
residuals.

Figure 3.4: Stock diagnostics. (Top) Left: Original data with fitted changepoint
model; Middle: Autocorrelation unction of changepoint model residuals; Right:
Partial autocorrelations of changepoint model residuals. (Bottom) Left: Original
data with fitted long memory model; Middle: Autocorrelation function of long
memory model residuals; Right: Partial autocorrelations of long memory model
residuals.
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3.5 Conclusion

The wavelet classification process presented within this paper provides the user a

distinct choice over a number of proposed models, and when explicitly applied to

an ambiguity such as long memory or a changepoint as in Section 3.3, it provides

an additional piece of information to aid decision making. The accuracy of the

classifier over a number of simulated models has been presented within Section 3.3

and applied to data from the Financial and Economic fields in Section 3.4.

The Evolutionary Wavelet Spectrum provides a representation of non-stationarity

which is lacking in the commonly used (averaged over time) spectrum. This gives

an advantage when drawing comparisons between non-stationary and stationary

series, since the wavelet spectrum may appear substantially different. Quantifying

this visual difference allows for a direct comparison between the series and each

proposed model.

The variance-corrected squared distance metric used in the proposed classifier

has been demonstrated to be quite accurate under the ambiguity of long memory

and changepoint models. It is particularly effective at identifying changepoint

models correctly, as the results in Table 3.1 demonstrate. It was noted that there

is relatively lower variation between the simulations generated for the changepoint

than the long memory model, which reduces the distance metric significantly even

though it is variance corrected.

As mentioned in Section 3.1 there are many series that can be found in fields

such as Economics and Finance which show evidence of the ambiguity investigated

here. This classification is not intended to propose a final model for these series,

but instead give additional information, treated perhaps as a diagnostic. This

could be to begin investigation of a series, or to confirm a previously found model

fit. As this is not a formal test, the lack of assumptions allows for more flexibility in

how the classification can be used. This work however is not restricted only to the

ambiguity mentioned here, further work could extend it to determine between other

features, such as local trends and seasonal behaviour or combining the behaviour
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of both models i.e., a long memory model with a changepoint.

An aspect not covered in this paper is the precise form of ARMA and long

memory models in the LSW paradigm, i.e. how the model coefficients relate to

the Wj,k’s. This is an interesting area for future research which would cement the

LSW model as an encompassing model but is beyond the scope of this paper.

An R package (LSWclassify) is available from the authors that implements

the method from the paper.
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3.6 Appendix

3.6.1 Proof of Theorem 3.4

Proof. We replicate the steps of the proof within the Appendix of Fryzlewicz and

Ombao (2009) up until (A.6), where following this step the short memory condition

is used. To briefly summarise previous steps,

P (D1 −D2 > 0) = P (X − t > 0) ≤ E(X̃2)/t2,

(by Chebyshev’s Inequality)

E(X̃2) =: I + II,

I ≤ CJ0J
∗
−J0∑
j=−1

−J∗∑
i=−1

2i+jE
{
b2
i,j

}
,

E
{
b2
i,j

}
=: 2A+ 2B.

Here D1, D2 are the squared distance metrics from each respective group, t is the

time index across the original series and C is a generic constant. Definitions for
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components X̃, t, bi,j, I, II, A and B can be found in the Appendix of Fryzlewicz

and Ombao (2009). Note that there is a negative indexing across the scales j

occurring in the proof which is analogous to the positive indexing used elsewhere

in the work, however this more closely aligns with the original proof.

Component A is where we alter the proof. Recall I
(i)
k,N is the wavelet peri-

odogram at a fixed scale i, at position k with total length N , with d
(i)
k,N the wavelet

coefficient corresponding to it through the relationship I
(i)
k,N =

(
d

(i)
k,N

)2

. We con-

tinue the proof from (A.6) using the ARFIMA assumption instead. Following from

above (A.6):

A = E

{
N∑
k=1

{
I

(i)
k,N − E

(
I

(i)
k,N

)}
cj,k

}2

≤ 22j

N∑
k,k′=1

∣∣∣cov
(
I

(i)
k,N , I

(i)
k′,N

)∣∣∣
= 22j

N∑
k,k′=1

2cov2
(
d

(i)
k,N , d

(i)
k′,N

)
(by Isserli’s Theorem) (3.4)

Jensen (2000) gives bounds for the covariance of wavelet coefficients;

cov
(
d

(m)
k,N , d

(j)
n,N

)
= C1|α|2d−1−2M +R2M+1

α = 2m−jk − n, m ≥ j

|R2M+1| ≤ C2|α|2d−2−2M ,

where M ≥ 1 is the number of vanishing moments in the wavelet used. Using
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|α| = |2i−ik − k′| = |k − k′| ≥ 1 and substituting into Equation (3.4):

A = 22j+1

N∑
k,k′=1

(C3|α|2d−1−2M +R2M+1)2

= 22j+1

N∑
k,k′=1

|C3|α|2d−1−2M +R2M+1|2

≤ 22j+1

N∑
k,k′=1

(
∣∣C3|α|2d−1−2M

∣∣+ |R2M+1|)2

≤ 22j+1

N∑
k,k′=1

(C4|α|2d−1−2M

+ C5|α|2d−2−2M)2

As |α|2d−2−2M ≤ |α|2d−1−2M we have:

A ≤ 22j+1

N∑
k,k′=1

(
C6|k − k′|2d−1−2M

)2

= 22j+1

N∑
k,k′=1

C7
1

|k − k′|−2(2d−1−2M)

= 22j+1

N−1∑
s=1

(N − s)C7
1

s−2(2d−1−2M)

= 22j+1C7

[
N

N−1∑
s=1

1

s−2(2d−1−2M)

−
N−1∑
s=1

1

s−4(d−M)+1

]

Given that |d| < 0.5 and M ≥ 1 then 4 < −2(2d− 1− 2M) = δ1 and

3 < −4(d −M) + 1 = δ2. We can then replace the sums using the definition of

Generalised Harmonic Numbers and their convergence:

Hn,m =
n∑
k=1

1

km

Hn,m = O(1) as n→∞ (m > 1).
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Thus

A ≤ 22j+1C7 (NHN−1,δ1 −HN−1,δ2) = 22j+1C7HN ,

where HN = NHN−1,δ1 − HN−1,δ2 . Returning to consider (A.4) from Fryzlewicz

and Ombao (2009), we find a bound for component I, where J0, J
∗ = log2N and

∆ = 1
(2 log2 a−1)

:

I = C8J0J
∗
−J0∑
j=−1

−J∗∑
i=−1

2i+j
[
22j+1C7 (NHN−1,δ1

−HN−1,δ2) +N1+∆2j
]

= C8 log2
2N

−J0∑
j=−1

2j
[
22j+1C7HN

+N1+∆2j
] (

1− 2J∗
)

= C8 log2
2N

[
−J0∑
j=−1

C723j+1
(
1− 2J∗

)
HN

+

−J0∑
j=−1

23j
(
1− 2J∗

)
N1+∆

]

= C9 log2
2N

(
1− 2−J∗

)
HN

−J0∑
j=−1

23j+1

+ C8 log2
2N

(
1− 2−J∗

)
N1+∆

−J0∑
j=−1

23j

= C9 log2
2N

(
1− 2−J∗

)
HN

2

7

(
1− 2−3J0

)
+ C8 log2

2N
(
1− 2−J∗

)
N1+∆ 1

7

(
1− 2−3J0

)
= log2

2N
(
1−N−1

) (
1−N−3

)
[
C10HN + C11N

1+∆
]

= log2
2N

(
1−N−3 −N−1 +N−4

)
[
C10HN + C11N

1+∆
]

≤ C12 log2
2N

(
HN +N1+∆

)
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Following this, using results in Fryzlewicz and Ombao (2009) the probability

of misclassification is:

P (X > t) = O
(
log2

2N
[
N−1 +N∆−1

])
.
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Chapter 4

Evolution of Seasonal Adjustment

Methods

4.1 Introduction

It is well known that many economic variables are affected by the time of year.

For example, it is often the case that during the winter, unemployment will fall

as businesses look to take temporary staff for the Christmas period. This sim-

ilarly affects sales across businesses, and ultimately may contribute to a rise in

Gross Domestic Product (GDP). It would be unfair to present such a rise in a key

economic indicator with the knowledge of such seasonal movements without first

explaining what effect should be expected throughout the year. Such an effect is

referred to as a seasonal component, and its estimation and consequent removal

from a series is known as Seasonal Adjustment.

The aim of the following report is to provide a timeline of the development

of seasonal adjustment methods and to review their methodology. As part of this

report, an overview of each method discussed is given using a standard template for

ease of comparison, followed by a bibliography. The act of seasonally adjusting a

series from empirical to adjusted can involve a number of steps beforehand known

as pre-treatments. These pre-treatment methods look to identify for example,
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structural breaks, outliers, calendar effects (such as trading day or Easter for

example). For the purpose of this report, only the method of estimating and

removing a seasonal component is given, however if any such pre-treatment is

given within the work this is mentioned on the individual method reports within

Section 4.6.

Before reviewing seasonal adjustment methods, it is useful to review the decom-

position of a seasonal series. This was significantly formalised in Persons (1919)

into a number of main components and is given as:

Additive: yt = Tt + Ct + St + It or Multiplicative: yt = Tt ∗ Ct ∗ St ∗ It. (4.1)

Here Tt is referred to as the trend level, and represents the general movement of the

series, considered the long-term growth. Ct is the cyclical component, representing

cycles which are longer than a year and often represent the ‘business cycle’. St

is the seasonal component, which has a similar pattern each year and represents

changes in frequencies less than a year (monthly for example). Finally It is the

irregular component, the unobservable events and variation that occur throughout.

Often the trend and cycle components are grouped together giving the standard

form:

Additive: yt = Tt + St + It or Multiplicative: yt = Tt ∗ St ∗ It.

Methods of estimating and extracting St form a wide and varied field of study.

Within the early 20th Century, parametric methods included using multiple re-

gression (Mendershausen, 1939) to model different periods, or harmonic analysis

(Beveridge, 1921) to define cyclical components. A method of forecasting with

exponential weights (Holt, 2004) (a reprint from 1957) could also be used to sea-

sonally adjust. Non-parametric methods such as the link relatives method (Per-

sons, 1919), moving averages (Federal Reserve Board, 1922) (accredited to F. R.

Macaulay), successive arithmetic means (Kuznets, 1933), seasonal indices (Shiskin,
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1942) and graphical estimates (Spurr, 1940) became popular techniques, provid-

ing effective and quick methods in a time when calculations were completed by

clerical assistants. With the introduction of computing, more complex calcula-

tions could be completed efficiently. This lead first to an earlier moving aver-

age method soon becoming automated (Shiskin and Eisenpress, 1957) allowing a

large amount of seasonal adjustment to be undertaken. Computation also aided

a multivariate approach to moving averages on monetary series (Young, 1992).

With calculations becoming more automated, more complex parametric methods

were developed including varying harmonic calculation used to determine a slowly

changing seasonal component (Hannan, 1964), the general linear model (Henshaw,

1966) a combination of harmonic regression and moving averages (Burman, 1965),

mixed multiplicative-additive regression (Durbin and Murphy, 1975), moving me-

dians and polynomials (Cleveland et al., 1979) and a composite of a number of

applied filters (Hylleberg, 1986). As development grew further, it was found that

modelling of stochastic variables (ARIMA) gave a close approximation to the non-

parametric approach (Cleveland and Tiao, 1976), showing the common ground

between the two approaches, where they would both later be combined (Dagum,

1980). Frequency domain extraction methods (Burman, 1980) were also developed,

and a method allowing each component to vary stochastically in a regression model

(Havenner and Swamy, 1981). Following that, local regression techniques (Cleve-

land et al., 1990) and the development of unobserved components being modelled

using Markov properties (Harvey, 1990) were created. Now, methods such as

variations to state space models (Tripodis and Penzer, 2004), modifications to the

popular X-11 algorithm (McElroy, 2010), analysis of eigenvectors and values (Chen

et al., 2013b) and wavelets (Stachura, 2014) are being investigated.

The methods briefly mentioned above will be covered in more detail in Sections

4.2, 4.3 and 4.4. Within those sections a number of parametric, non-parametric and

semi-parametric (crossover) methods will be outlined and compared respectively.

In Section 4.5 the report concludes on methods of seasonal adjustment and the
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difficulties within the field. More details on the methods can be found in the

overview sheets in Section 4.6 where further reading is given.

4.2 Non-Parametric Methods

The approach of non-parametric methods is to place little to no assumptions on

the underlying form of the data. This is such that there is no requirement for

the data to follow any particular statistical model. In a field where there may

only be a limited amount of prior information on an economic series, reducing the

assumptions on the data can be seen as a more unbiased approach. However, with

few assumptions on the data, a longer series is necessary for accurate smoothing

to occur.

The following section describes a number of non-parametric methods. Firstly

the early use of seasonal indexes, medians and moving averages is described, along

with how they are modified and their issues. This leads into the use of exponen-

tially weighted averages as a seasonal adjustment tool. Following this, a more effi-

cient graphical approximation is detailed, with accuracy issues mentioned. Next, a

multivariate approach to a composite series is given. Lastly two developing meth-

ods are given to conclude the section, that of singular spectrum analysis and a

multi-resolution approach using wavelets.

One of the earliest full methodological approaches to seasonal adjustment came

from the ‘link-relative’ method (Persons, 1919). The decomposition within the

method aimed to remove influence from cycle and seasonal variation, beyond that

of the usual seasonal pattern, to estimate trend and seasonal components robustly.

This is done by relating seasonal indexes to their previous values, known as ‘link-

relatives’. These link relatives can be calculated, for monthly seasonal indexes zi,j
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(over months and years i, j respectively) as:

zLRi,j =


100 if i, j = 1

zi,j
z1,j−1

if i = 12

zi,j
zi−1,j

else.

∀i = 1, 2, . . . , 12. ∀j = 1, 2, . . . , n/12.

A median of these values would then be taken, allowing for greater protection

from the influence of extreme values. However, the method assumed that a large

amount of data was available (15 years) and was a complex procedure to implement

in a time of clerical aid for calculations. An overview sheet for this method can

be found on page 79. Seasonal indexes where further used in a model which did

not distinguish between trend and cycle. Rather than compute medians of link-

relatives, the method instead looked at successive larger averages of the indexes

to find a stable seasonal component (Kuznets, 1933). This also aimed to reduce

the effect of extreme observations, but assumed that there was a stable seasonal

component. Further details of this method can be found in on page 80.

Moving averages, known for their smoothing properties, were a much more

readily available method. The use of different lengths and weights leads to dis-

tinctive features being extracted from a series. A moving average filter is defined

as the following:

M f
θ,s(yt) =

f∑
i=s

θ(i−s+1)yt+i

for a given series yt, weighting coefficients θ and start and finishing points s, f

respectively. These can be centred (such that f − s + 1 is odd) or uncentered

(f − s + 1 even); centred moving averages can also be symmetric in that the

weights are reflected around the centre point. Uncentred averages can be centred

to a time t by applying another moving average to the results of the filter.

Longer length filters are used to estimate a long running trend in a series,

whereas shorter filters can be used to estimate short fluctuations such as those of

a seasonal pattern. Work on optimal filter coefficients began within the actuarial
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field where Henderson (1916) detailed a 13-point moving average ideal for trend

estimation, giving both symmetric and asymmetric versions. Due to the endpoint

issue, where there are not enough data points at the terminal ends of a series,

asymmetric weights must be used. This can lead to large revisions when new data

is available, as the estimation of the components will not be as accurate at the

endpoints. However, this issue can be reduced by using forecasting methods, but

this was implemented much later (Dagum, 1980). Further work on a number of a

different moving averages, including the optimal 43-term filter (Macaulay, 1931a),

can be found in Macaulay (1931b), Bongard (1960) and Kenny and Durbin (1982).

The first automated moving average process was that of Census Method I

(Shiskin and Eisenpress, 1957) which approximated the procedure set out in Barton

(1941) in use at the time by the Federal Reserve. This method used a combination

of equally weighted 12 and 5 month moving averages for estimation of the trend,

and 5 month moving averages for seasonal indices. An overview of this method is

given on page 85.

A combination of moving averages and medians have also been applied to a

series using an iterative algorithm (Cleveland et al., 1979). Using repeated medians

the method looks to improve the robustness of moving medians, whilst employing

moving averages to aid selection of the relevant components. These are used in

collaboration with methods such as ‘splitting’ and ‘midmeans’. The algorithm

itself involves a large amount of steps and there are necessary extension rules for

when a moving average cannot smooth the endpoints. An overview sheet for this

method can be found on page 92.

However, as previously mentioned, smoothed endpoints of a series cannot be

as accurately estimated through moving averages due to the limited information

to pass to the filter. As such asymmetric weights or forecasts have to be used in

their place, of which forecasts have been shown to reduce revisions in collaboration

with parametric methods (Huyot et al., 1986), this is given later in Section 4.4.

This issue has to be counter-balanced against the need for certain lengths in a
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filter to reduce the impact of a trend estimation capturing elements of seasonality,

and vice versa. A study into the gain functions, showing which components are

captured, of filters was undertaken in O’Gorman (1982). Whilst the filters provide

an efficient and robust estimation of a general movement, these issues must be

kept in mind when choosing which is most appropriate for a series.

Another form of weighted average which was originally used for forecasting

purposes is the exponentially weighted moving average (Winters, 1960). This

is a continuation of a method originally proposed by Holt (2004)(reprint from

1957) in which forecasts were drawn from a seasonal series. Through use of an

recursive average, a value at any time is a combination of: all previous values with

deteriorating weights; previous trend estimates; and previous seasonal factors.

This is in contrast to the moving average approach which requires both future and

past values, removing the need for asymmetric filtering. A seasonally adjusted and

detrended series y∗t is expressed as

y∗t = A
yt
Ft−L

+ (1− A)(y∗t−1 +Rt−1) (4.2)

where Ft, Rt represent the seasonal and trend respectively, which each have their

own recursive equation. Further details on this method and its implementation as

a form of seasonal adjustment can be found on page 86.

Whilst this method appears intuitive in that it uses all the data previously

available at any point, it can also be hampered by the same strength. Without

prior robust estimation and consequent removal of extreme values the fitted recur-

sive scheme can lead to large and long lasting variations from the true estimate

of the seasonal and trend. However, this can make the system very adaptable to

change within the series, if it is not sudden, and as such it is effective in cap-

turing evolving seasonality. Although, consideration must be given to the length

of previous values to be used in estimation, and if a static weighting variable (A

in Equation (4.2)) is suitable throughout the series. Further details on exponen-

tial smoothing and recent developments can be found in Gardner (1985), Gardner
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(2006) and Svetunkov and Kourentzes (2016). Variations of different smoothing

techniques have also been developed, such as the weighted ratio-to-moving-average

procedure outlined in Shiskin (1942), described further on page 84.

Before the time of computers, repeated use of smoothing techniques such as

moving averages and exponential weights could prove time consuming, where for

example exponential weights would have to be capped at a certain length. Follow-

ing this, a graphical approximation to the iterative use of smoothing techniques

was proposed. Such approximations are outlined in Spurr (1937), who advocate the

use of only small strips of paper to compute a trend and seasonal component with

‘neglible’ error. The method, which would prove more inefficient today, showed

only minor deviations from a calculated moving average filter, but showed large

gains in efficiency. It is outlined on page 81. However, the procedure was criticised

for the amount of subjectivity involved. Later a variation was detailed which re-

placed the most subjective steps with calculation of moving averages, at the cost

of time (Spurr, 1940). This however, is a non-issue given the computational power

we have access to today.

Computational aid also allows for a greater approach to dealing with composite

series, those made up of smaller series but forming a greater seasonal series. A

common filter is applied to all of these series with the aim of balance and fairness,

using symmetric moving averages on page 97. Endpoints are accounted for by

use of sequentially smaller filters where necessary. This approach was typically in

use for monetary series, with previous knowledge on a relationship between the

macro and micro series. This information however leads to the assumption that

the true seasonal pattern of the macro series has been accounted for through the

large amount of data, as such it is only typically useful where such relationships

are known. Further details regarding this multivariate approach can be found in

the overview sheet on page 97.

Looking ahead, a developing non-parametric method used within primarily the

geophysical sciences is one of Singular Spectrum Analysis (Chen et al., 2013b).
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The method looks at the eigenvectors and eigenvalues of the covariances between

the series and aims to group them according to their periodic behaviour. This is

performed according to three criteria, which can appear subjective, but are more

formal than say the graphical approximation. There are a number of variants

of this method in other work for example, Golyandina and Shlemov (2015). A

description of the Singular Spectrum Analysis method is given on page 102.

A second developing non-parametric method is a multi-scale decomposition of

a series using wavelets (Stachura, 2014). Through use of a pre-defined wavelet

function, a series can be de-constructed over different scales and analysed sepa-

rately. This allows periodicities to be seen more clearly and the coefficients from

the transform can be used to decompose it the series into multiple components.

These components are then grouped into seasonal and trend, similarly to singular

spectrum analysis, however the determination of the decomposition leads to the

grouping of components. The choice of wavelet however, is left to the users discre-

tion and this can lead to poor specification of the components if not adequately

selected. This method is described further on page 103.

Each non-parametric approach looks to allocate certain features in a series to

components without an explicit model to explain them. Use of moving medians al-

lows for greater robustness against extreme items rather than the moving-average

approach, which is hampered by terminal points in a series, and the user must

be careful on the specification of the filter coefficients else they may also remove

periodic features. In contrary however, the exponential smoothing approach re-

quires much less specification, and has no issue with endpoints. This unfortunately

makes the method more static when dealing with changes in the series. More sub-

jective methods such as that of the graphical approximation are able to account

for changes within the seasonal patterns. However, the level of subjectivity within

this method is not suitable for the reproducible world of today. Developing meth-

ods look to be using multi-level approaches to decomposition, increasing the level

of complexity but allowing for greater analysis over multiple scales.
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The following section contrasts the non-parametric methods described above

with parametric methods which require a model assumption to be placed on the

data generating process.

4.3 Parametric Methods

In contrast to non-parametric methods in Section 4.2, parametric methods allow

for a direct interpretation of the data. Assuming that the models fitted to the

data are correct (or at least adequate), the parameters and relationships within

the model can be used to explain the movements within the different components

and allow for forecasting methods under the assumption of a specific model. Prior

knowledge of a series’ behaviour can aid in the discovery of an appropriate model

significantly. However, should the model be incorrectly specified, this can dras-

tically affect estimation, interpretation and forecasts. As such, any fitted model

needs to be rigorously tested as part of any parametric methodology.

In this section, a number of parametric methods are detailed and compared.

To begin, a regression approach is outlined which looks at how the seasonal com-

ponent can be modelled by sine and cosine waves, known as harmonic regression

or trigonometric seasonality. An adaptation of this model to account for both

additive and multiplicative seasonality is also given. Regression is then extended,

attempting to explain the seasonal component in terms of potential covariates. A

more general approach follows, using fixed degree models to explain movements

within the same period (month on month for example), and a method which is

used in collaboration with moving averages. Following this, a description of the

use of ARIMA models is outlined in the context of seasonal adjustment. Structural

time series models are then given, and how they can be set up in state space form.

Lastly a developing method is given, a variation of the structural approach which

considers sub-periods to test seasonal heteroscedasticity.

Early regression techniques looked to model seasonality by visualising the sea-

sonal component as a combination of sine and cosine waves. This was captured
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in Beveridge (1921) who used harmonic analysis from a clerically calculated peri-

odogram. Significant periodicities could then be identified by prominent peaks p∗i

which could be then be implemented into seasonal factors:

st =

[
k∑
i=1

ap∗i cos
2πt

p∗i
+ bp∗i sin

2πt

p∗i

]
(4.3)

where ap∗i , bp∗i can be calculated through a Fourier Transformation. More details

on the method of harmonic regression can be found on page 83. Peak detection

methods have developed since publication of the method, see for example Davis

(1941), Granger et al. (1964) and McElroy and Holan (2009). A variation of this

model has been proposed such that the components can be modelled stochastically

as an autoregressive procedure. This is such that the models of the parameters

for seasonal factors defined in Equation (4.3) are assumed to deviate from their

overall mean with set variance. This method is detailed on page 94.

Extraction from the spectral domain for harmonic regressors has also been

adapted for detailing a slowly changing seasonal (Hannan, 1964). By specifying a

dependence variable, the user can set the length of time that they expect season-

ality to evolve into a new structure. Time-varying harmonic regressors are then

iteratively calculated, varying slowly with the period. However, the model can

only capture variation which is slow, quick changes can not be accurately cap-

tured. Further details on the method can be found in an overview sheet on page

87.

Further development of harmonic regression looked to explain relationships

between the variables in the basic structural model in Equation (4.1) (Durbin and

Murphy, 1975). Rather than assuming an additive or multiplicative decomposition,

both can be simultaneously modelled. A testing procedure is outlined to determine

which type of relationship most suited to the data. Harmonic factors are then fitted

with local scaling factors to aid moving seasonality. However this is only up to a

degree of two. An overview of this method, including the testing procedure, can

be found on page 90.
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The regression model was later specified to include covariates to explain sea-

sonal behaviour. This raised the issue of which and how many covariates should be

included in a model. For example, patterns in weather will drive crop yields, and

as mentioned in Section 4.1 social conventions such as Christmas will affect em-

ployment and output. These relationships have been used in an attempt to explain

seasonality in a regression model (Mendershausen, 1939). The model proposed for

the seasonal components of a series is:

sk = s̄k +
m∑
i=1

αixi +
n∑
j=1

βjyj, k = 1, 2, . . . , p. (4.4)

where s̄k is the average over that period across the series, with meteorological and

social covariates xi, yj respectively. Possible meteorological variables may include

average temperature or daily rainfall, whilst social covariates may include the num-

ber of trading days or moving holidays (such as Easter and Ramadan etc.). The

effect of such variables would appear intuitive, but their relationship may not be

as simple as linear. Whilst modifications to Equation (4.4) would accommodate

more complex relationships a consideration in the efficiency of finding these rela-

tionships should be made. If however there is prior knowledge about the series and

possible covariates then this should, where possible, be efficiently introduced into

the model. It must also be noted that in the model proposed above, the seasonal

factors were not constrained to sum to unity over a yearly period, but over the

course of the series. This is contrary to a popular assumption that the seasonal

should not add or take away from the series over a yearly period. An overview

sheet for this model and how to fit it is given on page 82.

Block-wise regression techniques are also employed with aid from moving aver-

ages (detailed in Section 4.2) for endpoints (Hylleberg, 1986). Seasonal estimation

is computed using least squares over each block, before compositing the series to-

gether, using a number of moving averages to estimate the seasonal factors close

to the end of a series. However, due to the nature of algorithm in use, only the

seasonally adjusted series is returned. An overview sheet of this method can be
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found on page 100.

Within economic series, it is not often that a relationship between covariates

and the seasonal component will explain near all variation, due to the large num-

ber of possible events that may occur. As such the regression framework was

further extended to the general linear model which attempts to model each period

difference (each month across all years for example) through fixed degree models

(Henshaw, 1966). The model is such that

yt =
12∑
j=1

s∑
ν=0

λνjΥ
ν
jt +

c∑
ν=s+1

λνt
ν + ut (4.5)

where s, c are the degree of the seasonal and non-seasonal components respectively.

More details of the method, including the rearrangement of Equation (4.5) into

component form is given on page 89. Although the degree expected for these

components is low (the paper implies it is often the seasonal which is lowest) it

is an issue of trial and error to find the correct degree such that the errors ut are

uncorrelated white noise.

The method of modelling such correlations is the approach of the popularised

ARIMA (Auto Regressive Integrated Moving Average) models popularised by Box

and Jenkins (1976). These models describe series in relation to their past values

only, unlike the covariate approach which uses external factors. The generalised

seasonal ARIMA(p, d, q)(P,D,Q)m model for a demeaned series yt is:

(yt−µ) =
(1 + θ1B + · · ·+ θqB

q)(1 + Θ1B
m + · · ·+ 1 + ΘQB

Qm)εt
(1− φ1B + · · ·+ φpBp)(1− Φ1Bm + · · ·+ ΦPBmP )(1−B)d(1−Bm)D

(4.6)

as mentioned in Section 4.1. It was found that using such models to estimate

the components of an economic series closely approximates one of the procedures

used within the X-11 algorithm (Cleveland and Tiao, 1976). The method used

within this work is detailed on page 91. A model derived in this work, often

referred to as the ‘Airline Model’, is a common seasonal ARIMA model used for
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seasonal adjustment of a series. However, these models require a level of pre-

treatment to be able to accurately estimate their coefficients, such as accounting

for structural breaks or other non-stationary behaviours that cannot be resolved

through differencing. Note also that the model assumes that once the data has

been sufficiently modelled by ARIMA the remaining component is stationary white

noise, which with evolving data may not necessarily be true.

A more descriptive variation of ARIMA modelling is that of the recently in-

troduced structural time series models (Harvey, 1990). These models allow direct

description of each component stochastically. Structural models use the Kalman

filter (Kalman, 1960) initially set up in State Space Form which directly describes

the expected behaviour of given components. This allows the user to describe any

features they expect to find in their series. Whereas non-stationary behaviour has

to be pre-treated when using ARIMA models solely, these can be included within

the state space form and estimated through the Kalman Filter. An overview of a

general approach to setting up the components for dummy seasonal variables and

harmonic seasonality can be found on page 96.

Extensive work has been developed within structural models, the monograph

Harvey (1990) is a key reference here. Further work is contained within Hamilton

(1994), Penzer (2006) and Durbin and Koopman (2012). Although the Kalman

filter was originally designed for use within Engineering, it is finding increasing

use within economic time series. However, whilst the Kalman Filter is efficient in

identifying the coefficients of proposed models, this is only the case if the model is

correctly specified and convergence is not guaranteed otherwise. Therefore this re-

lies on a low level understanding of the process to adequately describe the possible

models.

Structural time series models have been developed recently such that they

are used to model each sub-period (yearly for example) separately (Tripodis and

Penzer, 2004). This allows for more significant changes within the seasonal pattern

on a sub-period basis. By testing the models proposed for each sub-period after
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estimation using the Kalman Filter, seasonal heteroscedasticity can be determined.

However, this leads to more testing procedures before the final estimate of the

seasonally adjusted series can be obtained. An overview of this method can be

found on page 99. Unlike regression models, this periodic structural model can

not only capture an evolving seasonality, but also a structural change.

The level of description of the components varies throughout these models.

Regression models can be used to give a high amount of information if the correct

covariates are used. However, it is not often the case that these relationships can

be found, and a more cyclical interpretation may be more representative. This

however is still more information than given by ARIMA models, which are only

modelled on previous values of the series. Although, the extension to structural

models does lead to a greater understanding of the behaviour of the whole of the

series, not just the components, if specified sufficiently.

4.4 Semi-Parametric Methods

The methods given within this section detail procedures which look to use both a

modelling and smoothing procedure as part of seasonal adjustment. This is such

that a model has to be estimated to explain the data, but the signal extraction

that occurs is based on a non-parametric approach.

Four of the methods listed in this section use the capabilities of ARIMA models

to enhance previous methods. Firstly, they are used to aid harmonic regression

through extrapolation and use of a frequency response function of a filter. Next

they are used to extrapolate, but instead to aid use of moving average filters in

X-11. Following that, a method which uses the spectrum of a fitted ARIMA model

is used to create filters to extract components. The next method uses a local form

of regression to smooth a series in an iterative and robust algorithm. Lastly a

developing method is given which is similar in using ARIMA models to create

filters, but they are applied in a fashion similar to the X-11 algorithm.

ARIMA modifications on the harmonic regression approach given in Equation
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(4.3) can be found within Burman (1965). Here trigonometric seasonal factors

are determined using an extrapolated series from ARIMA models and smoothed

using a chosen filter from a list of candidates. This technique uses the frequency

response function of a moving average filter as part of determining the seasonal

factors, where this function is often used to show how a moving average impacts

upon certain periodicities. However it is pointed out in the work that the method

of extrapolation used here can be hazardous when dealing with highly varying

series. An overview of this model is on page 88. The use of ARIMA models

here allows for more accurate use of a moving average filter, which can produce

inaccurate results when smoothing terminal points.

The issue of terminal points is directly addressed however in X-11-ARIMA,

proposed by Dagum (1980) and officially implemented and extended by the US

Census Bureau as X-12-ARIMA (Findley et al., 1998), amongst other changes

such as the introduction of regression variables for calendar effects. Within X-11-

ARIMA, the issue of smoothing terminal points within a series is tackled using

ARIMA models to back/forecast values, rather than the use of asymmetric filters.

X-12-ARIMA implements ARIMA models similarly but also allows for regression

variables to be introduced such that (yt − µ) is replaced by (yt − xtβ) within

Equation (4.6). These regression variables can be such that they account for

trading days and moving holidays for example, a pre-treatment before the series

is modelled. An overview sheet is given for X-11-ARIMA on page 95, however

further detail on their evolution can be found in Ladiray and Quenneville (2012),

Findley et al. (1998) and Findley (2005).

Following from the ARIMA modelling approach, a signal extraction procedure

was outlined using the proposed models spectrum in Burman (1980). This fits a

seasonal ARIMA model as in Equation (4.6) and calculates the spectrum, decom-

poses it according to constraints on the level of variation within each components.

This decomposition can then be used to calculate filters for extraction. Details on

how the decomposition is created can be found on page 93. Note that this method
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constrains by minimising the amount of variation attributed to the seasonal and

trend component, providing less flexible descriptions of these components. This

is in contrast to ARIMA modelling alone however, which aims to minimise the

variance of the irregular where possible.

Regression techniques have also been modified to collaborate with moving aver-

ages to smooth a series (Cleveland et al., 1990). By fitting a polynomial to a local

segment of a series (such as all January values for example) an approximate value

of seasonal components are estimated and then smoothed appropriately. However,

the degree of these polynomials is constant across all monthly series, assuming

that any evolution of the seasonal pattern will be of consistent degree across the

board. Although this translates to a smoothing procedure, a parametric expla-

nation is first given to the movements in the periodic values. Robustness is also

attempted through use of weighting more extreme values to remove any harmful

effects they may have on estimation, which is calculated iteratively. More details

on this method are given on page 98. The weighting functions used in determina-

tion of the local regression model has the same issues with terminal endpoints as

in the moving average case, but a different extrapolation approach.

A developing semi-parametric method is to follow a similar procedure to the

smoothing process of X-11 but using a model based approach instead (McElroy,

2010). This process estimates the series as an ARIMA model and uses the coeffi-

cients of the model to determine filters which are iteratively applied in a similar

fashion to X-11. Motivation behind such a procedure is a bias that is often not

explored, created during the exponential and logarithmic transformations taken on

multiplicative series (Burman, 1980). This method has been summarised on page

101. However it is noted in the work that this method could suffer from a lack of

convergence, perhaps if the model is misspecified, a weakness shared amongst all

ARIMA models.
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4.5 Conclusion

This report has aimed to give a review of a number of methods of seasonally

adjusting a series that developed throughout the 20th century. Whilst it is not

completely comprehensive in that not every variation of the methods are given here,

it is hoped that it will give the reader an understanding of the general approaches

that are undertaken when dealing with seasonal adjustment and their evolution so

far. Given a series which needs to be seasonally adjusted, there are many issues

that need to be considered, not least is which method is most appropriate.

A note should be made to the consideration of the basic structural model in

Equation (4.1) as to the ambiguity of the seasonal component. It is noted in Bell

and Hillmer (1984) that different authors give different definitions of the seasonal

component, without formally defining it. In their work they place a number of

assumptions on the components of the basic model which are seen in the ARIMA

model (Cleveland and Tiao, 1976) process. However, different works approach

the definition of seasonality in a different manner, such as that in the harmonic

regression (Beveridge, 1921) approach, where the seasonal components only sum

to unity over the whole range of the series, not a year. This is contrary to the

common definition that a seasonal component should not take or add anything

away from a series over a year. Before approaching any seasonal adjustment, an

analyst should be clear on the definition of seasonality that are they are estimating.

The report shows there is a wide and varied amount of methods available for

seasonal adjustment, dependent on the level of information to be input and the

expected output. For the most amount of information regarding movements in

the series, a user first needs to provide a method with assumptions on what they

expect. Parametric methods allow this information to become part of the model

through their specification. However, if the aim is to only to determine the general

movement of a series which is confounded with seasonal effects, a non-parametric

approach may prove more useful. Within the overview sheets, where at all possible,

a link to software which incorporates the methods has been given, such that they
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can be tested. Many of the older methods can be calculated through standard

functions within statistical packages such as R and SAS.

As outlined in Sections 4.2, 4.3, and 4.4 each method has its own weaknesses

and strengths. Empirical studies into the efficiency of some of methods mentioned

here can be found in Bianchi (1996), Hood (2002) and Jain (2012). However,

considering only the methodological issues involved, and the development of the

field throughout, it would appear that methods are becoming more parametric.

The widely popular X-11 algorithm, currently now X-13-ARIMA-SEATS has in-

corporated parametric methods to aid their estimation. The increased efficiency

of computing is allowing for more complex methods to be used when analysing a

series, leading to more complex methods to decompose them.

4.6 Overview Sheets

Overview sheets can be found overleaf.
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Median Link Relatives 1919
Persons, W. M., (1919), Outline of the Method, The Review of Economics and Statistics, 1(1), 3737.

Non-parametric Keywords: Least Squares, Median, Parabola, Moving Average.
Strengths
• Estimates both trend and cycle components separately.

• Medians used are more resistant to extreme observations.

Weaknesses
• Monthly data of length 15 years minimum is necessary.

• Separation of the secular trend and seasonal variation is not possible.

Description
A combination of locally fitted linear functions, link relatives, medians and a 12 month moving average are
used to seasonally adjust a series. This was one of the first main methodologies for seasonal adjustment.

Pre-Adjustments
The data is assumed to be homogenous monthly data, so any calendar effects have been accounted for
and that the seasonal is stable. A multiplicative decomposition is detailed but additive can be achieved
using a logarithmic trnasformation.

Method
1. Given initial series yt for t = 1, 2, . . . , n assume that it follows the model yt = τt∗ct∗st∗εt where the trend,

secular trend (cycle), seasonal and irregular components are represented by τt, ct, st, εt respectively.

2. Estimate the trend component by fitting an appropriate function to sub-periods of the data. Often it is
acceptable to fit a linear function, that which minimises the residual sum of squares. It may be necessary
to vary the lengths of the sub-periods and weight appropriately. Denote the estimated trend τ̂t

3. Once the estimated trend component has been removed (by subtraction (yt − τ̂t) or division yt/τ̂t))
decompose the series into monthly (i) series across all years (j), denoted zi,j . Then compute link
relatives of the monthly changes by:

zLRi,j =


100 if i, j = 1
zi,j
z1,j−1

if i = 12
zi,j
zi−1,j

else.

∀i = 1, 2, . . . , 12. ∀j = 1, 2, . . . , n/12.

4. Next take the median value of each month within all years, denoted zmi , and base them on the January
value (set to 100) with adjustment by:

1

1.011i−1
100

a∏
i=1

zmi i = 2, 3, . . . , 12.

then divide by their total to center them. This is the seasonal index repeated for each year, denoted as
ŝt.

5. To account for secular trend and seasonal variation, compute a 12 month moving average on the original
series yt to generate a curve that goes through all the data (by extension) and denote the results as λt.
Following this, the correction (and thus seasonally adjusted series) can be calculated as:

y∗t =
yt − ŝtλt

λt

Derivation
Percentage changes of monthly observations in relation to their mean are used.

Copeland, M. T., (1915), Statistical Indices of Business Conditions, The Quarterly Journal of Eco-
nomics, 29(3), 522-562.

Periodicity of the cycle component is argued.
Moore, H. L., (1914), Economic cycles: Their law and cause, Macmillan Company.

Development
Disadvantages of the link relative method are further detailed.

Bauman, A. O., (1928), Thirteen-Months-Ratio-First-Difference Method of Measuring Seasonal Vari-
ation, Journal of the American Statistical Association, 23(163), 282-290.

Software available within standard packages.
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Successive Mean Seasonal Index 1933
Kuznets, S., (1933), The Statistical Measurement, In Seasonal Variations in Industry and Trade, (pp. 23-40), NBER.

Non-parametric Keywords: Moving Average, Successive, Graphical.
Strengths
• Positional successive arithmetic means are used to guard against extreme values.

Weaknesses
• Assumes a stable seasonal component.

• Possible correlation amongst components not accounted for.

Description
A moving average of 13 points is estimated for the trend, followed by successive positional arithmetic
means used as a method of estimating the seasonal index.

Pre-Adjustments
No pre-adjustments to the data are given in the work, the method can be used for additive series by
using subtraction rather than division where necessary.

Method
1. Given pre-adjusted data yt for t = 1, 2, . . . , n assume it can be decomposed as yt = τtstεt such that the

trend, seasonal and irregular components are τt, st, εt respectively. Estimate the trend as τ̂t using a 13
point moving average with weights

1

24
(1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1).

2. Divide this estimate into the original data yt/τ̂t = ysεt and multiply the ratio by 100.

3. Plot the results of each month over all years separately, and calculate successively larger averages of
middle items within each month. For example, given ysεi,j for month i and year j calculate means
(assuming all years have 12 observations) for all months i:

if j ∈ 2N :
1

L+ 1

L/2∑
k=−L/2

y(j/2)+k, L = 2, 4, . . . , j.

if j ∈ 2N+ 1 :
1

L

L/2∑
k=−L/2

y(j+k)/2, L = 3, 5, . . . , j.

4. Center each successive mean to 100, by dividing by the sum of the components, and multiplying by 100.

5. Inspection of the indexes against the successive means should be undertaken to assess fit.

6. Select the mean which most accurately has other means clustered about it for each month. Compose
these together to get the estimated seasonal index ŝt.

7. Comparison of this index against the relatives plotted in step 3 should be used for inspection of validity.

8. This final seasonal index is then divided into the original series to obtain the seasonally adjusted series.
yτεt = yt/ŝt

Derivation
Weekly variations are analysed.

Crum, W. L., (1927), Weekly Fluctuations in Outside Bank Debits, The Review of Economics and
Statistics, 9(1), 3036.

The algorithm is very similar to the method then in use at the Federal Reserve Board.
Joy, A., & Thomas, W., (1928), The use of moving averages in the measurement of seasonal variations,
Journal of the American Statistical Association, 23(163), 241-252.

Development
Seasonal indexes are used to estimate moving seasonality.

Cowden, D. J., (1942), Moving seasonal indexes, Journal of the American Statistical Association,
37(220), 523-524.

Software available within standard statistical packages.
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Graphical Method 1937
Spurr, W. A. (1937), A Graphic Method of Measuring Seasonal Variation, Journal of American Statistical Association, 32.198
281-289.

Non-Parametric Keywords: Graphical Measure, Trend, Trend-Cycle, Seasonal Index, Subjective.
Strengths
• Less laborious than calculating Moving Averages with ‘negligible’ error.

• Adaptive to progressive seasonal indices.

Weaknesses
• Computer calculations now mean the save in efficiency is now neglible/defunct.

• Two subjective stages to the process could lead to greater variation if separate people perform the
analysis.

Description
This method contrasts from analytical methods in that it uses free hand curve and best estimated
graphical procedures. These are based off the same analytical methods but reduce computational time
for the sake of efficiency. Computing times (in comparison to methods at that time) are efficient with a
small level of error.

Pre-Adjustments
The original data is either plotted on semi-logarithmic paper for multiplicative series or arithmetic paper
for additive series. Extreme values within the seasonal indices are accounted for within the method.

Method
1. Draw a non-seasonal baseline through the original data, this may be a trend or trend-cycle. This can be

done freehand or using the method of least squares. A graphic link relative method can also be used.

2. For each period (month, quarter etc.) measure the distance in each year from the non-seasonal to the
data. This is done using a vertical strip of paper which has been bisected with a dotted line. This line is
placed adjacent to the non-seasonal line for that period and the position of the original value from this
line is marked on the strip with the year noted. This is done for each month.

3. When turned horizontal, these strips show the behaviour of the seasonal ratios for each month and can
indicate progressive seasonality. This is dealt with further below.

4. Calculate a geometric mean of the central group and mark it with a caret on the strip. Extreme items
can be discarded by inspection. The distance of the caret from the dotted line is the preliminary seasonal
index.

5. Next normalise the seasonal indices by plotting them vertically over a horizontal origin and dividing each
distance by twelve (bisect and trisect), then summing these differences. Multiply this average difference
with each monthly index caret, marking this as the corrected index.

6. To plot the seasonally adjusted series, line each month’s corrected caret up on the corresponding point,
then mark where on the chart the dotted line lies. A freehand curve can then be drawn through the
points.

Progressive Seasonality:

a) Rather than taking a geometric mean over the monthly differences from trend, instead draw a curve
through the points on the strip, and transferring that trend for each year to the left hand side of the
strip.

b) The differences now between the dotted line and the seasonal trend values for each year are the seasonal
indices. These are then normalised as per Steps 4 and 5.

c) When plotting the adjusted series, the point must correspond to that year’s index.

Derivation
Freehand curves are used in the revision of Factory Employment by the Federal Reserve Bureau over
moving averages.

Federal Reserve Bureau Bulletin, December 1936.
The adaptive mean used in the calculation of the indices is similar to the “positional arithmetic mean”
by Kuznets.

Kuznets, S. (1933), The Statistical Measurement, Seasonal Variation in Trade and Industry, NBER,
23-40.

Development
Spurr alters his method, changing the subjective trend/trend-cycle estimation making it computational.

Spurr, W. A. (1940), A Graphic Short Cut to the Moving Average Method of Measuring Seasonality,
Journal of the American Statistical Association, 35.212 667670.

Examples of how to use the paper strips are given in the work.
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Multiple Regression Analysis 1939
Mendershausen, H. (1939), Eliminating Changing Seasonals by Multiple Regression Analysis, The Review of Economics and
Statistics, 21.4 171-177.

Parametric Keywords: Multiple Regression, Evolving Seasonality, Variate Analysis.
Strengths
• Allows for evolving seasonality throughout the period analysed.

• No extrapolation/data loss at the terminal ends of a series are necessary.

Weaknesses
• Not all seasonal movements can be explained using the linear equations, curvilinear equations are then

suggested, but their determination is not given.

• Constrains the seasonal component over the period of the data, but not over the period of a year.

Description
Mendershausen shows how multiple regression analysis can be used to develop evolving seasonal patterns
dependent on variables such as weather and variables for fall of employment levels. This is done through
two case studies, but an attempt at generalisation is made here, however methods for determining the
regression equations have been assumed.

Pre-Adjustments
No pre-adjustments are given in the method, attempts to explain unusual movements are made with
knowledge of events and adjustments to the seasonal regression equations. A logarithmic transformation
should be used for suspected multiplicative series.

Method
1. Given a series yt, t = 1, 2, . . . , n = sN + e where s is the amount of periods (i.e. 12 months), N is the

length of the data (5 years) and e is the additional (non-full years) data, let the seasonal normal for each
period be:

Sk = S̄k +

l∑
i=1

αixi +

m∑
j=1

βjzj , k = 1, 2, . . . , s

where xi are significant meteorological variables and zj are social variates, with lengths l,m respectively
and s̄k represents the average seasonal component with average social and meteorological conditions.

2. A method is not given in the work to fit the equations, however multiple linear regression using least
squares techniques would enable computation of the coefficients and constants.

3. Again, the method of selection of the optimal subset of coefficients is not given, but is referred to earlier
work given below.

4. Select significant seasonal normal equations by considering the percentage of variance explained by each.
The statistics used and their testing procedures are given in work below.

5. If a particular months seasonal normal tested insignificant, the stable seasonal component is used instead.

6. The seasonal component can be removed using subtraction from the original series at each month.

Additionally, the irregular can be removed from the remaining series using a 3 term moving average. Curvi-
linear equations may also be fitted to the seasonal normals rather than a simple linear relationship, however
these are drawn free-hand and must be read off a scatterplot.

Derivation
Description of the variates and the process of their selection is given in an earlier study.

Mendershausen, H. (1937), Les variations du mouvement saisonnier dans l’industrie de la construc-
tion: etude methodologique et analyse des faits, Geneve: Georg & Cie. s. a.

Statistics used to explain the percentage of variation explained are detailed.
Ezekiel, M. (1930), Methods of Correlation Analysis, Wiley, Oxford, England.

Development
Linear regression techniques for seasonal adjustment are extended to use dummy variables to account
for extreme points, and corrections are made for autocorrelated residuals.

Lovell, M. C. (1963), Seasonal Adjustment of Economic Time Series and Multiple Regression Analysis,
Journal of the American Statistical Association, 58.304 993-1010.

Software employing standard regression techniques can be used.
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Early Harmonic Regression 1941
Davis, H. T. (1941), The Technique of Harmonic Analysis, The Analysis of Economic Time Series, Bloomington, Indiana: The
Principia Press Inc, 77-83.

Non-Parametric Keywords: Periodogram, Harmonic Analysis, Period, Cycle Extraction.
Strengths
• Cycle extraction is a straight forward process.

• Allows period extraction over longer cycles (2 years for example).

Weaknesses
• No formal significance test is given within the method, only by eye.

• Does not account for changing seasonality.

• Construction of different periods for analysis leads to a loss of data.

Description
Harmonic analysis of economic time series allows key peaks of periodicity to be noticed through use of a
constructed periodogram. Following this, prevalent cycles can be analysed and where necessary removed
through use of sine and cosine regression terms.

Pre-Adjustments
No pre-adjustments are given in the work. Logarithms should be taken on multiplicative series.

Method
1. Given data y1, y2, . . . , yN , arrange into m rows of p observations (N ′ = mp, p ∈ Z, N ′ ≤ N), and calculate

column totals:

Yi =

m∑
j=1

y(j−1)p+i for i = 1, 2, . . . , p,

selecting a range of periods p relevant to the data.

2. Following this, for each period p calculate:

ap =
2

N ′

p∑
i=1

Yi cos

(
2πi

p

)
, bp =

2

N ′

p∑
i=1

Yi sin

(
2πi

p

)
, r2

p = a2
p + b2p.

3. The values of rp can be plotted against their period to give the periodogram. Peaks on this graph
indicate the possible existence of a periodicity.

4. Given significant periods p∗1, p
∗
2, . . . , p

∗
k determined by eye, the percentage of energy contained in these

periods can be calculated as:

P =

∑k
i=1R

2(p∗i )

2σ2

5. An adjusted series can then be obtained by removing these significant peaks through:

Yt = yt −

[
k∑
i=1

ap∗i cos

(
2πt

p∗i

)
+ bp∗i sin

(
2πt

p∗i

)]

Derivation
The Ohio Annual rainfall is investigated using a periodogram. (Chapter produced in 1914)

Moore, H. L. (1967), Cycles in Rainfall, Economic Cycles: Their Law and Cause, The Macmillan
Company, New York, 6-34.

Analysis of a periodogram was conducted by Beveridge in his attempt to justify weather cycles.
W. H. Beveridge (1921), Weather and Harvest Cycles, The Economic Journal, 31.124 429-452.

Development
Decomposition of uncorrelated spectral components is described with programs.

Granger, C. W. J. & M. Hatanaka (1964), Spectral Analysis of Economic Time Series, Princeton
University Press.

Harmonic regression and polynomial trend curves are used to seasonally adjust a series.
Speth, H. T., (2006), The BV4.1 procedure for decomposing and seasonally adjusting economic time
series.

Software available within standard statistical software.
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Weighted Ratio Indices 1942
Shiskin, J. (1942), A New Multiplicative Seasonal Index, Journal of the American Statistical Association, 37.220 507-516.

Non-Parametric Keywords: Moving Average, Multiplicative, Indices, Additive, Centred.
Strengths
• Shown to be quicker to compute than the monthly means indices and the ratio-to-moving average index

in small empirical study.

• A multiplicative seasonal index can be converted to additive (or vice versa).

Weaknesses
• Assumed that the random factor has no disturbing effect upon any relationships between the monthly

trend-cycle and seasonal factors.

• Trend-cycle curve estimated through a twelve month moving average is known to potentially capture
elements of seasonality and also needs to be extended using a freehand curve.

Description
A new ‘weighted ratio-to-moving-average index’ or ‘weighted ratio index’ is proposed to calculate the
seasonal indices. This new index has a close relationship and is very similar with the ratio-to-moving
average index and monthly means index which is shown in the work.

Pre-Adjustments
No pre-adjustment methods are mentioned in the work, but it is mentioned that it will be difficult to
determine extreme values within ratio-index charts. The method accounts for additive or multiplicative
indices.

Method
1. Given original observations yi for i = 1, 2, . . . , n, calculate the trend-cycle component by a 12 month

moving average and extend the curve freehand. This can be calculated by (without freehand extension):

Ti =
1

12

i+5∑
j=i−6

yj i = 7, 8, . . . , n− 5.

2. For each month calculate the sum of the observations and the sum of the trend cycle component as:

yτ =

n/12∑
i=1

y12(i−1)+τ , Tτ =

n/12∑
i=1

x12(i−1)+τ , τ = 1, 2, . . . , 12.

3. Each month’s multiplicative uncentered weighted-ratio seasonal index is then S∗τ = yτ/Tτ .

4. Centre the indices through:

S̃∗τ =
S∗τ=1∑12
τ=1 S

∗
τ

.

To convert this multiplicative index S∗τ to an additive seasonal index S+
τ ,

S+
τ =

n(S∗τ − 1)

xτ
.

Derivation
The ratio-to-moving averages method this is related to is used within Census Method I.

Shiskin, J., & Eisenpress, H. (1957), Seasonal Adjustments by Electronic Computer Methods, JASA,
52.280 415-449.

Development
Durbin describes an additive seasonal index very similar in construction, with endpoint correction.

Durbin, J. (1963), Trend elimination for the purpose of estimating seasonal and periodic components
of time series, Time Series Analysis, 3-16.

Software can be created using the standard techniques quickly.
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Census Method I 1954
Shiskin, J. (1954), Seasonal computations on UNIVAC, The American Statistician, 9.1 19-23.

Non-parametric Keywords: Moving Average, Filter, Extrapolation, Repeated.
Strengths
• Simple yet effective procedure to decompose a series into Trend-Cycle, Seasonal and Irregular signals.

• Accounts for non-constant seasonality by allowing the seasonal factors to change over time.

Weaknesses
• An ill-fitting curve can occasionally be obtained through the five month moving average used to estimate

the Trend-Cycle signal.

• A trend at the beginning or end of the series can create problems when extrapolating during the 5 month
moving average.

• Freehand curve estimation using moving averages as guides.

Description
Method I was the first mechanised Seasonal Adjustment Method, developed by the US National Census
Bureau. Programmed on the Univac Computer, it allowed automatic adjustment of many series. Using
different moving average filters, signals are extracted from the series and presented within 19 tables. A
test of Seasonality is also made on the original series and the adjusted series to conclude on the effect of
adjustment.

Pre-Adjustments
No pre adjustments given within the work. If the series is believed to be multiplicative, then a logarithmic
transformation should be taken.

Method
1. Given series yt for t = 1, 2, . . . , n = Ns (N is the number of years and s the periodicity, i.e. 12 for

monthly) assume it can be decomposed into yt = Tt + St + It, where Tt is the trend, St the seasonal
comopent and It the irregular. Test for evidence of seasonality by dividing the original figures by an
average of the preceding and following months value, yt÷ 1

2 (yt−1 +yt+1). If the variations appear random
about 1 then this suggests no seasonality.

2. Trend-Cycle signals are estimated by a freehand curve aided by plotting the series yt with an equally
weighted and uncentred 12-month moving average, denote this as T ∗t .

3. This is divided into the original series to leave the Seasonal-Irregular signal, (S∗t + I∗t ) = yt/T
∗
t .

4. Calculate a five term moving average across the series representing the Seasonal-Irregular signal (seasonal
factors) for each month across all years. Factors are extrapolated for this calculation by extending the
previously calculated factor across the two missing initial and terminal years, denote the factors as S∗N,s.

5. Center seasonal factors such that their sum equals 1200, such that S∗t = SN∗,e/
∑N∗

i=1 S
∗
i,e where t =

sN∗ + e.

6. Preliminary seasonally adjusted series is considered to be the original series divided by the seasonal
factors calculated above, ypt = yt/S

∗
t

7. Smooth this preliminary seasonally adjusted series with a five month moving average extending it as in
step 4, giving a more adaptable Trend-Cycle signal than the 12 month moving average.

8. Repeat steps 2, 3, 4 for the 5-month moving average, returning the final adjusted series.

9. Check for seasonality, by dividing an uncentered 12 month moving average of the original series by a
uncentered 12 month moving average of the seasonally adjusted series.

Derivation
This is a mechanical approximation to the method given by the Federal Reserve Bureau.

Barton, H. C. Jr. (1941), Adjustment for Seasonal Variation, Federal Reserve Bulletin, 518-528.
Adaptation of the ratio-to-moving average method.

Mills, F. C. (1955), Statistical Methods, New York, 360-375.

Development
The method was further developed into Census Method II.

Shiskin, J. & Eisenpress, H. (1957), Seasonal Adjustments by Electronic Computer Methods, Journal
of the American Statistical Association, 415-449.

Software available as part of Statistica : http://www.statsoft.com/Products/STATISTICA/
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Exponentially Weighted Moving Average 1960
Winters, P. R. (1960), Forecasting Sales by Exponentially Weighted Moving Averages, Management Science, 6 324-342.

Non-Parametric Keywords: Moving Average, Exponential, Forecasting, Seasonal, Decomposition.
Strengths
• Can be computed only reliant on previous values, making it quick and efficient.

• Method can be used for effective forecasting of the series (widely used today).

Weaknesses
• Initial weights on previous values need to be chosen through trial and error.

• Initial values for the seasonal factors, trend and beginning adjustment based on averages.

Description
The work builds on previous work by Holt and is primarily for the function of forecasting. However, the
method can be used as a form of seasonal adjustment. One can use the exponential weights and simple
iterative relationships between the components to supply an adjusted series.

Pre-Adjustments
No pre-adjustments are given within the work. Procedures for multiplicative series are given, if it is
believed that the series is additive, take exponentials.

Method
Begin with observations yt where t = 1, 2, . . . , sN such that s is the amount of periods (12 months for
example) and N the amount of years. Model the adjusted series through the equations and relationships:

Adjusted Series: ỹt = A
yt
St−s

+ (1−A)(ỹt−1 + Tt−1) (4.7)

Seasonal Factors: St = B
yt
ỹt

+ (1−B)St−L (4.8)

Trend Estimate: Tt = C(ỹt − ỹt−1) + (1− C)Tt−1 (4.9)

Values of the constants A,B, and C can be found through exploratory methods, the work suggests the
Gradient Method. The initialisation of ỹ1, S1, S2, . . . , Ss, T1 is suggested as:

1. Consider N∗ years of data to begin initialisation and calculate the average observation for each year
i = 1, 2, . . . , N∗ as Vi and the average trend across the period as T1 by,

Vi =

sN∗∑
t=12(N∗−1)+1

yt, i = 1, 2, . . . , p; T1 =
VN∗ − V1

N ∗ −1
.

2. Initialise ỹ1 = V1 and calculate seasonal factors for each sub-period t, where j represents the position
with the year (i.e. j = 1 for January in a monthly series), then average and normalise them by

Ŝt =
yt

Vi −
(
s+1

2 − j
)
T1

t = 1, 2, . . . , sN ; S̄j =
s∑
i=1

Ŝs(j−1)+i, Sj =
S̄jL∑s
j=1 S̄j

.

Equations (4.7), (4.8) and (4.9) can then be iteratively calculated and a seasonally adjusted series given by
yt/St.

Derivation
The exponential models were first developed in a paper by Charles C. Holt.

Holt, C. C. (2004), Forecasting seasonals and trends by exponentially weighted moving averages,
International Journal of Forecasting, 20.1 5-10.

The gradient method is described by Lance in
Lance, G. N. (1959), Solution of Algebraic and Transcendental Equations on an Automatic Digital
Computer, Journal of Association for Computing Machinery, 6 97-101.

Development
Gardner reviews the models and attempts to improve them using Fourier functions for the seasonal
factors.

Gardner, E. S. (1985), Exponential smoothing: The state of the art, Journal of Forecasting, 4 1-28.

Software available as the R function HoltWinters.
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Slowly Changing Seasonal 1964
Hannan, E. J., (1964), The Estimation of a Changing Seasonal Pattern, Journal of the American Statistical Association,
59(308), 1063-1077.

Parametric Keywords: Harmonic Regression, Evolving Seasonality, Moving Average.
Strengths
• The method attempts to account for seasonality that isn’t assumed to be constant.

• A level of expected dependence amongst seasonal components can be set.

Weaknesses
• Fast fluctuations within the seasonal component can hinder the method.

• There is no way to incorporate information regarding the behaviour of the seasonal.

Description
By decomposing the spectrum of a series, the method aims to capture both stable and varying seasonality
through an iterative relationship.

Pre-Adjustments
The work assumes any pre-adjustments necessary, such as calendar effects or transformations of the data
has already been done. An additive model is assumed, logarithms could be taken for a multiplicative
series.

Method
1. Assume that a series yt for t = 1, 2, . . . , n can be modelled as yt = τt + st + εt for trend, seasonal and

irregular components τt, st, εt respectively.

2. The trend is estimated using a moving average, in an example within the work a 12 point moving average
is employed, denote the results as τ̂t and subtract them from the original series to get y∗t = yt − τ̂t.

3. Calculate:

α̂k,t =
1

12

6∑
s=−6

(2− δ6
k)y∗t+s cosλk(t+ s) for k = 1, 2, . . . , 6. Where: δ6

k =

{
0 if k 6= 6

1 if k = 6

β̂k,t =
1

12

6∑
s=−6

(2− δ6
k)y∗t+s sinλk(t+ s) for k = 1, 2, . . . , 5. λk =

2πk

6

and smooth each series using a moving average across t to obtain α̂k, β̂k.

4. Given a value for ρk ≥ 0.95 and sufficiently large m such that β̂jk is negligible for j > m, calculate for
an initial time point t0:

ξk,t0 = (1− ρ−1
k β̂k)

m∑
j=0

β̂jky
∗
t0−j cosλkj k = 1, 2, . . . , 6.

ψk,t0 = (1− ρ−1
k β̂k)

m∑
j=0

β̂jky
∗
t0−j sinλkj k = 1, 2, . . . , 5.

5. These items can be iteratively calculated by the following relationships:

ξk,t+1 = β̂k{ξ̂k,t cosλk − ψ̂k,t sinλk}+ (1− ρ−1
k β̂k)yt+1

ψk,t+1 = β̂k{ψ̂k,t cosλk + ξ̂k,t sinλk}.

6. Finally the seasonal component can be calculated as ŝt =
∑6
k=1 ξk,t(2− δ6

k). This can be subtracted to
give the seasonally adjusted series ŷt = yt − ŝt.

Derivation
Spectral analysis of seasonal adjustment is undertaken.

Nerlove, M., (1964), Spectral Analysis of Seasonal Adjustment Procedures, Econometrica, 32(3),
241-286.

An early attempt to account for slowly varying seasonality is presented.
Kuznets, S., (1932), Seasonal Pattern and Seasonal Amplitude: Measurement of Their Short-Time
Variations. Journal of the American Statistical Association, 27(177), 9-20.

Development
Methods of seasonal adjustment, including this method are compared.

Godfrey, M. D., & Karreman, H. F., (1964), A spectrum analysis of seasonal adjustment, Princeton
University.

Software not available.
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Moving Average/Harmonic Analysis 1965
Burman, J. P. (1965), Moving Seasonal Adjustment of Economic Time Series, Journal of the Royal Statistical Society: Series
A, 128.4 534-558.

Parametric Keywords: Moving Average, Harmonic, Regression, Adaptive, ARIMA model.
Strengths
• Adaptive based algorithm which chooses the most flexible moving average within context of the series.

Weaknesses
• The extrapolation methods described can be ‘hazardous’ when used on highly irregular series.

Description
Burman describes an extensive method of seasonal adjustment using moving averages for trends and
harmonic regression for the seasonal factors with exponential extrapolation. It is described for monthly
series.

Pre-Adjustments
Extreme values are found using root mean square deviations in the method. An additive series method
is described, for multiplicative series steps 1, 5 and 7 are used on the logarithms.

Method
1. Apply the optimal 13-term moving average detailed in the work to the series to estimate the trend.

2. Model the deviations of the original series from the trend estimate yt − Tt using harmonic analysis,

akj =
2

12g(ωk)

12∑
i=1

xij cos iωk, bkj =
2

12g(ωk)

12∑
i=1

xij sin iωk, k = 1, . . . , 6,

where xij = yij−Tij is the deviation from the trend of the ith month in the jth year and g(ωk) = 1−F (ωk)
where F is the frequency response function, values of which can be found in Table 2 of the work.

3. Form a time series of each harmonic zj,k across all years j, then calculate the von Neumann Ratio,

V =

11∑
k=1

∑n
t=2(zt,k − zt−1,k)2∑n

t=1(zt − z̄k)2
, z̄k =

1

n

n∑
t=1

zt,k

and test at the 25% significance level. If insignificant, choose z̄ as the smoothed amplitudes. However,
if significant, replace zt,k now with zt,k − z̄t,k where z̄t,k is the smoothed amplitude calculated from the
next flexible average according to page 547 of the work. If this list is exhausted, use the 5 term moving
average. Denote the smoothed amplitudes āk,j and b̄k,j , giving seasonal variations in the ith month and
jth year as ui,j below. Then extrapolate the amplitudes at each end by a year by following the formula
for ẑt+1 :

ui,j =

6∑
k=1

āk,j cos iωk +

5∑
k=1

b̄k,j sin iωk ẑt+1 =
zt + λzt−1 + λzt−2 + · · ·+ λt−1z1

1 + λ+ λ2 + · · ·+ λt−1

taking λ as either the value used during smoothing or λ = 0.6 for the 3x5 moving average. If however
the 5-term moving average was used, then find by least squares methods the optimal value of λ.

4. Apply the extrapolation and smoothing to the last 12 terms and combine this with the 11 smoothed
amplitudes. Deduct these from the original series, giving the preliminary seasonally adjusted series
(PSA).

5. Deduct the trend estimate from Step 1 and calculate the root mean square of these deviations σ1.

6. Any term whose residuals are more than 2.5σ1 away in distance should be replaced by the trend value.

7. Extrapolate the PSA by 6 terms at the end (and if the series spans whole years, the beginning) using
the Box-Jenkins 3 term adaptive predictor based on the previous (first) 60 terms. Add the seasonal
deviations and their extrapolations to obtain an extended original series. Replace any extreme items as
per step 6.

8. Finally repeat steps 1-4 on the extended series to provide a final seasonally adjusted series. A full
measure of deviation can also be obtained by applying step 5 to the seasonally adjusted extended series.

Derivation
The method is a variation on the Method II census program of seasonal adjustment.

Shiskin, J. & Eisenpress, H. (1957), Seasonal Adjustments by Electronic Computer Methods, Journal
of the American Statistical Association, 415-449.

Development
Further optimal design on filters using Frequency Response Functions is detailed.

O’Gorman, T. W. (1982), On the Design of Seasonal Adjustment Methods Using Linear Programming
Techniques, Journal of the American Statistical Association, 77.380 739-742.

Software mentioned in work, but were not able to be found.
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General Linear Model 1966
Henshaw, R. C. (1966), Application of the General Linear Model to Seasonal Adjustment of Economic Time Series, Econo-
metrica, 34.2 381-395.

Parametric Keywords: Linear Model, Least Squares Estimation, Moving Seasonality, Autocorre-
lated Disturbances.

Strengths
• Adaptable process where degree of components can be changed to fit different evolutionary patterns.

Weaknesses
• Trial and Error process requiring initial knowledge of expected features of a series.

Description
This method decomposes the series into trend-cycle (referred to as non-periodicities) and seasonal (pe-
riodicities) components using linear models of varying degrees. The degree of the seasonal polynomials
allows for moving seasonal components.

Pre-Adjustments
It is assumed that any systematic error variables or configurations, such as trading day effect and holidays
have been removed. The method of employing polynomials in time (t) is suggested. Logarithms should
be taken if it is suspected that the series is in fact multiplicative.

Method
Given the standard model of (Log) Yt = Tt + St + It, model the observations (assumed monthly) by:

yt =

12∑
j=1

s∑
ν=0

λνjΥ
ν
jt +

c∑
ν=s+1

λνt
ν + ut, t = 1, 2, . . . T. where Υν

jt =

{
tν if t− j ∈ 12Z

0 otherwise
.

This is such that the seasonal and non seasonal components are represented by:

Tt =

c∑
ν=0

λνt
ν , St =

12∑
j=1

s∑
ν=0

(λνj − λν)Υν
jt, where λν =

∑
tj λνjΥ

ν
jt∑

tj Υν
jt

, and

T∑
t=1

St = 0.

A dependence structure is defined on disturbances such that ut = δut−1 + et, 0 ≤ δ < 1 where et
are IID Normal variables with mean zero and constant variance σ2. This is fitted using least square
regression techniques given the degree of the (non)seasonal components (c) s. Formulae are given in the
Appendices of the work. An iterative procedure is then employed:

1. Begin by choosing large values of ŝ and ĉ such that δ̂ is almost surely zero.

2. Calculate von Neumann ratio of least-squares regression disturbances:

d =

∑T
t=2(ût − ût−1)2∑T

t=1 û
2
t

3. Test H0 : (δ = 0) vs. H1 : (δ > 0) using the Durbin-Watson test at the 5% level with d as the test
statistic.

4. If H0 is not rejected, through trial and error, reduce (ŝ, ĉ) such that they are minimized whilst H0 is not
rejected. ANOVA F tests and t tests on the regression coefficients are suggested to aid decision making.

5. Obtain Seasonally Adjusted series ỹt = yt − Ŝt.

Derivation
Cowden suggests fitting polynomials in t by least squares to each of the monthly seasonals.

D. J. Cowden (1942), Moving Seasonal Indexes, Journal of American Statistical Association, 37
523-524.

Hald simultaneously fits 12 constant polynomials to fixed seasonal components and a general polynomial
to the trend.

A. Hald (1948), The decomposition of a series of observations composed of a trend, a periodic
movement and a stochastic variable, Thesis.

Development
Stephenson develops the model further to include both constant and evolving seasonal variables.

J. A. Stephenson & H. T. Farr, Seasonal Adjustment of Economic Data by Application of the General
Linear Statistical Model, JASA, 67.337, 37-45 (1972)

Software available through standard regression methods.
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Multiplicative/Additive Regression 1975
Durbin, J. & Murphy, M. J. (1975), Seasonal Adjustment Based on a Mixed Additive–Multiplicative Model, Journal of the
Royal Statistical Society, Series A, 138(3), 385-410.

Parametric Keywords: Mixed Model, Regression, Test Procedure, Moving Average, Filters.
Strengths
• Allows for both a multiplicative and additive form of the seasonal.

• A testing procedure is outlined for detection of mixed models.

Weaknesses
• Example series show that different trend filters can influence the multiplicative/additive test.

• Moving seasonality allowed only up to a degree of two.

Description
Step-wise regression under a number of constraints is used to estimate both multiplicative and additive
seasonal components, potentially including both in a model. Trend estimation is done iteratively using
21-point and Burman filters.

Pre-Adjustments
Adjustments for calendar effects are not given in the work, however a procedure that accounts for extreme
values is used between steps 2-3, 5-6 and 6-7 can be found in Section 5 of the work.

Method
1. Assume that a given pre-adjusted series yi,j can be expressed as yi,j = τi,j +λi,j(s

+
j +s∗j )τi,j + εi,j where

τi,j is the trend, s+
j , s
∗
j are the harmonic regressors for additive and multiplicative seasonal regressors

with local scaling factor λi,j , and εi,j is the irregular component. The indexes i, j represent month and
year.

2. Estimate preliminary seasonal factors τPi,j by using a 21-point moving average with weights:
(−0.04769,−0.02535,−0.00301, 0.01933, 0.04167, 0.06401, 0.08634, 0.10868, 0.13102, 0.08333, 0.08333).
Asymmetric weights are used for the endpoints. The Burman Mixed trend filter is also suggested.

3. Fit the 11 additive harmonic seasonal components s+
i,j and, using an F-test at either 1% or 5%, fit the

multiplicative components s∗i,j . If the multiplicative components are deemed significant then denote the
event by SM , if insignificant then NM .

4. Repeat step 3 but instead beginning with the multiplicative components with events SA and NA. The
choice of model is then ‘Either’ for NMNA, ‘Additive’ for NMSA, ‘Multiplicative’ for SMNA and ‘Mixed’
for SMSA. Denote the preliminary seasonal factors by sPA, s

P
M .

5. The local scaling factors λi,j can be estimated using regression on yi,j−τPi,j = λi,js
P
i,j+εi,j using 15 month

windows centred on a time point. Giving preliminary seasonally adjusted series yPSi,j = yi,j − λPi,jsPi,j .

6. Apply a 13 point moving average to yPSi,j with weights:
(−0.0331,−0.0208, 0.0152, 0.0755, 0.1462, 0.2039, 0.2262) (A Burman Filter) and fit seasonal harmonics
as per steps 3 and 4, giving new estimates of sPi,j and τPi,j .

7. Re-calculate amplitude factors λPi,j as per step 6, giving a new preliminary seasonally adjusted series

yPSi,j .

8. For the last time, recalculate the final trend (τFi,j) and seasonal (sFi,j), but including possible time varying
parameters such that there are extra additive seasonal components based on time t = 12j + i:

yi,j = τFi,j + λPi,j(s
+
0,j + s+

1,jt+ s+
2,jt

2 + s∗j )τ
F
i,j + εi,j

9. Calculate the final local amplitudes λFi,j , giving final seasonally adjusted series yFi,j = yi,j − sFi,j .

Derivation
A mixed model is used but without much flexibility.

Deutsche Bundesbank (1960), The Practice of Seasonal Adjustment with Regression Equations,
Frankfurt (Main): Deutsche Bundesbank.

Burman filters are derived in an earlier work.
Burman, J. P. (1965), Moving Seasonal Adjustment of Economic Time Series. Journal of the Royal
Statistical Society. Series A, 128(4), 534-558.

Development
A mixed seasonal model estimated in X-12-ARIMA is detailed.

Arz, S. (2006), A new mixed multiplicative-additive model for seasonal adjusment (No. 2006, 47,.
Discussion paper Series 1/Volkswirtschaftliches Forschungszentrum der Deutschen Bundesbank.

Software not currently available publicly.
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Seasonal ARIMA Models 1976
Cleveland, W. P. & Tiao, G. C. (1976), Decomposition of Seasonal Time Series: A Model for the Census X-11 Program,
Journal of the American Statistical Association, 71.355 581-587.

Parametric Keywords: ARIMA models, Decomposition, Autoregressive, Moving Average, Dif-
ferencing.

Strengths
• Provides a parametric explanation to the behaviour of a series.

• No issues when dealing with the terminal ends of series.

• Allows nonstationary trend and seasonal components.

Weaknesses
• Larger residual sum of squares is found after modelling than the Census I procedure.

• The model given closely approximates the procedure for a 13 month moving-average, but not for a 9
term or 23 term.

Description
The work presents ARIMA models and shows how they can closely approximate the moving average
procedures used in the X-11 Seasonal Adjustment procedure. These models approximate non-stationary
seasonality and trend components primarily for forecasting, but can be used to decompose a series.

Pre-Adjustments
No pre-adjustments are given in the work. Logarithms should be taken on multiplicative series.

Method
1. Given a series yt, t = 1, 2, . . . , n propose the additive decomposition into component form yt = Tt+St+It

where Tt is the trend, St the seasonal component and It the noise.

2. ARIMA models are proposed for the trend and seasonal components:

φr1(B)(Tt − µ) = ψq1(B)b1,t, φr2(B)St = ψq2(B)b2,t.

Here Byt = yt−1 such that B is that Backward Shift Operator, φj , ψj are real polynomials of degrees
qj . It is required that the roots of φj(B) are outside the unit circle, and the roots of ψj(B) are on or
outside the unit circle. Note It, b1,t, b2,t are independent white noise processes each with zero mean and
individual variance.

3. The full procedure for fitting such a model to the series yt can be found in the book by Box and Jenkins
below, this involves monitoring the auto-correlation, partial auto-correlation and the periodogram to aid
model selection. An automatic ARIMA fitting procedure exists in many software packages such as the
auto.arima function within R. The aim is to accurately measure the whole of the dependence structure
of the series and their components, leaving uncorrelated residuals.

4. Given estimated seasonal component Ŝt =
ψ̂q2

φ̂r2
(B)

(B)b2,t a seasonally adjusted series can obtained

through subtraction: ŷt = yt − St.

Note that in this work the commonly used ‘airline model’ is detailed, where

(1−B)(1−B12)yt = (1− θ1B)(1− θ12B
12)ct

and ct is a white noise process with variance σct .

Derivation
Model based on a previous multiplicative model detailed in

Box, G. E. P. & Jenkins, G.M. (1970), Time series analysis: forecasting and control, Holden-Day.
When comparing the weights given by the ARIMA models to the filters, compparisons where made to
the X-11 Procedure.

Shiskin, J. & Young, A. H. & Musgrave, J. C. (1965), The X-11 variant of the census method II
seasonal adjustment program, US Department of Commerce, Bureau of the Census.

Development
ARIMA models are incorporated into the X-11 procedure, providing more robust extrapolation at the
terminal ends of a series.

Dagum, E. B. (1978), Modelling, Forecasting and Seasonally Adjusting Economic Time Series with
the X-11 ARIMA Method, Journal of the Royal Statistical Society: Series D, 27.3/4 203-216.

Software for fitting ARIMA models is available in most statistical software.
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SABL 1979
Cleveland, W. S. & Dunn, D. M., & Terpenning, I. J. (1979), SABL: A resistant seasonal adjustment procedure with graphical
methods for interpretation and diagnosis, In Seasonal Analysis of Economic Time Series (pp. 201-241), NBER.

Non-Parametric Keywords: Power Transformation, Moving Median, Moving Average, Polynomial
Estimation.

Strengths
• Use of moving medians makes the smoothing procedures more resistant to extreme values.

• Multiple methods used collaboratively aims to reduce ‘leakage’ of components.

Weaknesses
• Testing the stability of the seasonal component involved assumes it is perfectly stable.

• A large amount of smoothing steps are involved.

Description
An iterative procedure using locally fitted polynomials, moving medians and moving averages is used to
estimate components. The methods are used in co-ordination with each other and are ‘spliced’ together.

Pre-Adjustments
An adjustment of the original series is made dependent on minimal residuals of a number of fitted models.

Method
1. Given pre-adjusted series yt divide it into 9 sections. The midmean (the mean value between the 25th

and 75th quartile) of time t and series yt is calculated for each section. A line of best fit is then computed
and a moving median of length 12 is then applied to the residuals, giving results by at. Then a weighted
24 point moving average is applied to the moving median values, giving bt.

2. Apply a 12 point moving average to at and denote this cl, and create preliminary trend estimate:

τPt =


ct for 12 ≤ t ≤ 17 and n− 16 ≤ t ≤ n− 11

(1− cos ((t− 17.5)π/12) + cos ((t− 17.5)π/12)ct for 18 ≤ t ≤ 29 and n− 28 ≤ t ≤ n− 17

bt for 30 ≤ t ≤ n− 29

3. Given a raw seasonal sRt = yT − τPt create monthly subseries mj across all years.

4. Smooth each series with a moving median of length 4 (applying an extension rule in the work), then
repeatedly apply a moving median of three till the values are consistent (extended). Smooth these values
by a method called splitting (in work), then repeatedly smooth using a 3 point moving median. Next a
2 point moving average is used (and extended by the work), to give series m∗j .

5. Apply step 4 to the differences mj −m∗j (and extended). Compose these to give seasonal component spt .

6. Extend sPt by six points either end, by extending the necessary monthly series by taking the median of:
mj−1; 2mj−1 −mj−2; (4mj−1 +mj−2 − 2mj−3)/3. This is reflected analogously for backcasting.

7. Apply step 2 then a 2 point moving average and subtract from the original seasonal estimate, giving sPt .

8. The trend is re-estimated then from yt − sPt by applying step 1, a 12 month moving median (extended)
and a 2 point moving average, which is all extended. Next apply step 4 and 5 to the trend estimate.
Then for moving blocks of 15 points, fit local quadratic polynomials, giving output ai,k for i = 1, . . . , 15
and k = 1, . . . , n/15. Then create the trend estimate:

τt =


at,1 for 1 ≤ t ≤ 7 and n− 6 ≤ t ≤ n
(1− cos ((t− 7.5)π/8) + cos ((t− 7.5)π/8)ct for 8 ≤ t ≤ 15 and n− 14 ≤ t ≤ n− 7

bt for n− 15 ≤ t ≤ n− 8

9. Re-apply steps 4,5,6,7,8 and 9 with the new trend, obtaining another trend.

10. Re-apply steps 4,5,6,7 and 8, obtaining the final seasonal component.

Derivation
The algorithm holds many similarities to the X-11 seasonal adjustment software.

Ladiray, D., & Quenneville, B. (2012), Seasonal adjustment with the X-11 method (Vol. 158),
Springer Science & Business Media.

Development
Non-linear methods of smoothing are reviewed, SABL included.

Velleman, P. F. , (1982), Applied Nonlinear Smoothing. Sociological Methodology, 13, 141-177.

Software no longer available.
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Minimum Signal Extraction 1980
Burman, J. P. (1980), Seasonal Adjustment by Signal Extraction, Journal of the Royal Statistical Society, Series A, 143.3
321-337.

Parametric Keywords: ARIMA Model, Spectrum Analysis, Decomposition.
Strengths
• ARIMA models can be used to forecast and backcast to improve fit of the models.

• Parametric model gives an explanation of the series.

Weaknesses
• The method is found to be less flexible than adjustments using the X-11 method.

• The model is evaluated only for low orders.

Description
The method proposes a signal extraction technique that can extract seasonal and trend components
after fitting an ARIMA model to the series, coupled with forecasts and backcasts provided by the fitted
model.

Pre-Adjustments
Extreme items are identified within the method between the preliminary and final adjustments. For
multiplicative series, take logarithms.

Method
1. Given a seasonal decomposition of a series yt = Tt + St + It, assume that it follows a

ARIMA(p, d, q)(P,D,Q)m model where the denominator can be factorised into trend components ψT ,
seasonal components ψS and white noise at. Here B is the Backward Shift Operator (such that
Byt = yt−1), and the spectrum of the series gy(w) is given by:

yt =
θ(B)

ψT (B)ψS(B)
at, gy(ω) = f(eiω)f(e−iω)σ2

a =
θ(eiω)θ(e−iω)

ψT (eiω)ψT (e−iω)ψS(eiω)ψS(e−iω)
σ2
a

=
U(x)

VT (x)VS(x)
σ2
a = hy(x)σ2

a. (where x = cosω)

Note hy(x) = Q(x) +
R(x)

VT (x)VS(x)
= Q(x) +

RT (x)

VT (x)
+
RS(x)

VS(x)
= hI(x) + hT (x) + hS(x)

2. Note that this is not a unique decomposition of the spectrum, and as such the method suggests removing
the minimum of the trend and seasonal spectral components and adding them to the irregular to give a
unique decomposition. This is such that minhS(x) = εs and h∗S(x) = hS(x)− εS and similarly for trend
T , with irregular now h∗I(x) = hI(x) + εS + εM .

3. As x = 1
2 (eiω + e−iω) = 1

2 (B + F ) where F is the Forward Shift Operator (B = F−1) then h∗S(x) ≡
HS(B,F ) giving a minimum signal extraction filters:

h∗S(x)

hy(x)
=
Hs(B,F )ψT (B)ψT (F )

θ(B)θ(F )
=
CS(B,F )

θ(B)θ(F )
similarly

h∗T (x)

hy(x)
=
CT (B,F )

θ(B)θ(F )
.

4. The model and signal extraction filters are fitted in a two stage process:

(a) Fit ARIMA model to the series yt using maximum likelihood techniques, forecasting and back-
casting.

(b) Generate filters using parameters estimated with fore/backcasts.

Derivation
Signal extraction for unobserved components from time series is briefly explained.

Whittle, P. (1963), Prediction and regulation by linear least-square methods, English Universities
Press.

The maximum likelihood technique of fitting ARIMA models given in the method.
Osborn, D. R. (1977), Exact and Approximate Maximum Likelihood Estimators for Vector Moving
Average Processes, Journal of the Royal Statistical Society, Series B, 39.1 114-118.

Development
Selection of the seasonal model and a ‘canonical’ model is developed.

Maravall, A. & Pierce, D. A. (1987), A Prototypical Seasonal Adjustment Model, Journal of Time
Series Analysis, 8.2 177-193.

TRAMO/SEATS is developed using signal extraction, with changes to the decomposition algorithm.
Gomez, V. & A. Maravall (1997a), Program TRAMO and SEATS: Instructions for the User, Beta
Version, Banco de Espana.

Software available through TRAMO/SEATS:
www.bde.es/bde/en/secciones/servicios/Profesionales/Programas_estadi/Programas.html

93

www.bde.es/bde/en/secciones/servicios/Profesionales/Programas_estadi/Programas.html


Stochastic Regression Analysis 1981
Havenner, A. & Swamy, P. A. V. B. (1981), A Random Coefficient Approach to Seasonal Adjustment of Economic Time Series,
Journal of Econometrics, 15.2 177-209.

Parametric Keywords: Regression, Stochastic Components, Harmonic.
Strengths
• Simultaneous calculation of components is believed to be superior to step-wise procedures.

• Allows for analysis of both possible deterministic and stochastic components for the trend and seasonal.

Weaknesses
• The backward eliminating method of removing coefficients can be inefficent.

Description
The work extends the typical decomposition of a seasonal time series into trend, seasonal and irregular
to include stochastic counterparts using harmonic regression.

Pre-Adjustments
No pre-adjustments are given in the work, however logarithms were taken of a multiplicative series used
as an example and this should be extended across all multiplicative series.

Method
1. Given a time series yt where t = 1, 2, . . . , 12T (for a monthly series) assume the series follows the model:

yt =β0,t +

5∑
j=1

[
βj,t cos

2πj

12
t+ βj+5,t sin

2πj

12
t

]
+ β11,t(−1)t + β12,tt

=

[
1, cos

πt

6
, . . . , cos

5πt

6
, sin

πt

6
, . . . , sin

5πt

6
, (−1)t, t

]
[β0,t, β1,t, , . . . , β12,t, ]

′
= x

′

tβt

Assume Eβt = β̄t = (β̄0, β̄1, . . . , β̄12) and (βt − β̄) = Φ(βt−1 − β̄) + at where the roots of Φ are
absolutely less than 1, and at is a white noise process with fixed variance. The coefficients represent

• (β̄0) the level of the series;

• (β0,t − β̄0) is the remainder;

• (β̄12t) the deterministic trend;

• (β12,t − β̄12)t is the stochastic trend;

•
∑5
j=1

[
β̄j cos 2πj

12 t+ β̄j+5 sin 2πj
12 t
]

+ β̄11(−1)t is the deterministic seasonal;

•
∑5
j=1

[
(βj,t − β̄j) cos 2πj

12 t+ (βj+5,t − β̄j+5) sin 2πj
12 t
]
+(β11,t− β̄11)(−1)t is the stochastic seasonal.

2. Estimation of the parameters, their corresponding standard errors, the residuals and their structure can
be found within the work.

3. Hypothesis tests can be performed on the coefficients β̄j to determine if they are significant. Adequacy
of the model can be tested using a normalised sum of squares of a variable described within the work.

4. A seasonally adjusted series can then be obtained by subtracting the stochastic and deterministic seasonal
factors from the original series (and exponentiating if the series is multiplicative).

Derivation
Further details of the model are given in an earlier work by the author.

Swamy, P.A.V.B. & Tinsley, P.A. (1980), Linear prediction and estimation methods for regression
models with stationary stochastic coefficients, Journal of Econometrics, 12.2 103-142.

An overview of methods determining deterministic and stochastic seasonality is given, and a model for
both described.

Pierce, D. A. (1979), Seasonal Adjustment When Both Deterministic and Stochastic Seasonality are
Present, In A. Zellner, Seasonal Analysis of Economic Time Series, NBER 242-280.

Development
An efficient algorithm for computation of the model is determined and given.

Chang, I. & Hallahan, C. & Swamy, P. A. V. B. (1992), Efficient Computation of Stochastic Coef-
ficients Models, In H. M. Amman, D. A. Besley, L. F. Pau, Computational Economics and Econo-
metrics, Springer Netherlands, 43-53.

No software given in the work.
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X-11-ARIMA 1988
Dagum, E. B. (1988), The X-II-ARIMA Seasonal Adjustment Method, Statistics Canada, Seasonal Adjustment and Time
Series Staff.

Semi-Parametric Keywords: X-11 Algorithm, ARIMA models, Forecast, Backcast, Semi-Parametric.
Strengths
• Use of ARIMA models to forecast/backcast remove the need for asymmetrical filters.

• An explanation to the behaviour of the series can be given through a model.

Weaknesses
• Only a selection of models are available to use, which may not meet all requirements when fitted.

• ARIMA models have been shown not to be able to adequately model all series.

Description
X-11-ARIMA is a modified X-11 algorithm such that the series is fore/backcasted using ARIMA models
to aid the use of asymmetrical filters.

Pre-Adjustments
Logs should be taken on a multiplicative series. The algorithm is given for monthly series but can
be extended to other frequencies. Upon development to X-12-ARIMA (amongst other changes) the
regARIMA modelling approach was incorporated to allow for fore/backcasts and regression variables such
as calendar effects to be incorporated before trend and seasonal component estimation. X-13-ARIMA-
SEATS goes further by adding the option of using signal extraction in place of the X-11 algorithm.

Method
1. Given a pre-adjusted series yt = yi,j for t = 1, 2, . . . , n; i = 1, 2, . . . , P and j = 1, 2, . . . , n/P where n is

the length of the series and P is the periodicity (i.e. P = 12 for monthly data) assume it can be modelled
by yt = τt ∗ st ∗ εt and fit the following ARIMA models, minimising the conditions, given below.

Possible ARIMA models:

• ARIMA(0, 1, 1)(0, 1, 1)P

• ARIMA(2, 1, 2)(0, 1, 1)P

• ARIMA(2, 1, 2)(0, 1, 1)P

Conditions to be met:

• Absolute average forecasting error in the last three years is <
12%. This condition is minimised to choose between sufficient
models.

• Chi-squared probability value is less than 10%.

• There is no evidence of over-differencing.

2. If a model is fitted, create fore/backcasts, giving y∗t∗ for t∗ = 1, . . . , n+ 2P . Else, let y∗t∗ = yt.

3. Compute a 2x12 Moving average on the series y∗t∗ to given an initial estimate of the trend τt∗ . This gives
the initial seasonal-irregular as y∗t∗/τt∗ .

4. Calculate a 3x3 moving average on each sub-period i across all years j of the seasonal irregular y∗t∗/τt∗

individually to obtain initial seasonal factors st.

5. Apply a 2x12 Moving average to st, extending the series by six observations either side by repeating the
beginning/last seasonal factor. Divide by the moving average values and make a correction for outliers
(detail given in work). With adjusted values, repeat step 4. These are preliminary seasonal factors.

6. Repeat step 5 on the factors, then divide into yt to obtain a preliminary seasonally adjusted series.

7. Apply a 9/13/23 term Henderson average to this series, then divide into yt for a seasonal-irregular series.

8. Calculate a 3x5 Moving average to the seasonal-irregular series, obtaining the new seasonal factors.
Repeat step 5 on this series, and divide into the original series to give the final seasonally adjusted
series.

Derivation
The X-11 algorithm is outlined by the US Census Bureau.

Ladiray, D. & Quenneville, B. (2012), Seasonal adjustment with the X-11 method, Springer Science
& Business Media, Vol 158.

Derivation of Henderson moving averages is detailed.
Henderson, R. (1924), A new method of graduation, Transactions of the Actuarial Society of America,
25, 29-40.

Development
ARIMA models are officially incorporated by the US Census Bureau amongst others into X-12-ARIMA.

Findley, D. F. & Monsell, B. C. & Bell, W. R. & Otto, M. C. & Chen, B. C. (1998), New capabilities
and methods of the X-12-ARIMA seasonal-adjustment program, Journal of Business & Economic
Statistics, 16.2, 127-152.

Software not currently publicly available.
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Structural Time Series Models 1989
Harvey, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press.

Parametric Keywords: State Space Models, Kalman Filter, Trigonometric, Dummy Variable.
Strengths
• Allows use of previous statistical knowledge of the components.

• Separable components allow for new elements to be added given knowledge of events.

Weaknesses
• A low level of previous knowledge of the behaviour of the series is required to begin.

• Complex models can have issues with stability and convergence if model is incorrectly specified.

Description
Structural time series models allow for the model of a time series to be defined in terms of unobserved
components with certain behaviour attached to each component which then has a direct interpretation.

Pre-Adjustments
Pre-adjustments can be made to the data, however there are methods to add components into the model
to account for outliers and calendar effects. Taking logarithms of multiplicative series is advised.

Method
1. Given a series represented in basic structural form with seasonal dummy variables yt = Tt + St + It, for

t = 1, . . . , T with seasonal period s, the trend Tt and seasonal St are represented by

Tt = Tt−1 + βt−1 + ηt, βt = βt−1 + ζt,

s−1∑
j=0

St−j = ωt,

where ηt, ζt, ωt, εt are uncorrelated white noise. This leads to a state space form of yt = [1 0 1 0 0]αt +
It:

αt =



Tt

βt
...

St

St−1
...

St−s+1


=



1 1
... 0

0 1
...

...
...

...
...

...
...

...

0
... −1 −1 · · · −1
... 1 0 · · · 0

...
...

...
...

...
...

...
... 0 · · · 1 0





Tt−1

βt−1
...

St−1

St−2
...

St−s


+



ηt

ζt
...

ωt

0
...

0


.

2. If a trigonometric seasonality is to be defined, then the series yt = Tt + St + It is defined by:

St =

[s/2]∑
j=1

Sj,t, Sj,t = Sj,t−1 cosλj + S∗j,t−1 sinλj + ωj,t, S∗j,t = −Sj,t−1 sinλj + S∗j,t−1 cosλj + ω∗j,t,

This leads to a state space form of yt = [1 0 1 0 1]αt + εt where

αt =



Tt

βt
...

S1,t

S∗1,t
...

S[s/2],t


=



1 1
... 0

... 0

0 1
...

...
...

...
...

...
...

...
...

0
... C1

[s/2]

... −1
...

... 0
...

...
...

...
...

...
...

0
′ ... 0

′ ... −1





Tt−1

βt−1
...

St−1

St−2
...

St−s


+



ηt

ζt
...

ωt

0
...

0


,

C1
[s/2] =

 C1
C2
...

C[s/2]

 ,
Cj =

[
cos 2πj

s sin 2πj
s

− sin 2πj
s cos 2πj

s

]
.

Derivation of the components can then be calculated using the Kalman Filter, given an initial estimate of
α0.

Derivation
The Kalman Filter:

Kalman, R. E. (1960), A New Approach to Linear Filtering and Prediction Problems, Transactions
of the ASME - Journal of Basic Engineering, 82.1 35-45.

State space models are used in systems theory:
Hutchinson, C. E. (1984), The Kalman Filter Applied to Aerospace and Electronic Systems, IEEE
Transactions on Aerospace and Electronic Systems, 20 500-504.

Development
State Space models are used to look for shifts in the seasonal pattern.

Penzer, J. (2006), Diagnosing seasonal shifts in time series using state space models, Statistical
Methodology, 3.3 193-210.

Software available as part of STAMP http://stamp-software.com/
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General Linear Abstraction of Seasonality 1990
Young, T. & Young, J. (1990), The Bank’s seasonal adjustment method: GLAS.

Non-parametric Keywords: Moving Averages, Multivariate, Component Series, Cumulative.
Strengths
• The procedure is believed to be flexible to all expected variations in a seasonal series.

• Linearity of the procedure allows for explanation and reconstruction.

Weaknesses
• Assuming that the series used within adjustment explain all seasonal variations.

• Only a additive model can be used.

• Asymmetrical weights are used when filtering endpoints.

Description
A multivariate seasonal adjustment procedure in the context of monetary statistics is outlined and
described, using a common linear filter across a number of series with the aim of balance.

Pre-Adjustments
Series which are deemed multiplicative are modelled in an additive approach, logarithmic transformation
is not suggested. Manual modifications are made for detected outliers.

Method
1. Given a system of m time series all of length n with month and yearly indexes i, j, denote their matrix

by Y. Assume that each row (denoting a component series now as yt, t = 1, 2, . . . , n) can be modelled by
the additive seasonal decomposition yt = τt + st + εt, where τt is the trend, st is the seasonal component
and εt is the irregular or residual component. Now for each row complete steps 2-5.

2. Calculate a simple 12x12 (23-point) triangular moving average to estimate trend. This has weights:

(0.0069, 0.0139, 0.0208, 0.0278, 0.0347, 0.0417, 0.0486, 0.0556, 0.625, 0.0694, 0.0764, 0.0833).

Asymmetric weights are used on a filter of the same length for endpoints.

3. Subtract this trend estimate from the original series, yt − τ̂t. Decompose this series into yearly observa-
tions for each month, y∗i,j

4. Now calculate a 3x3 (5-point) triangular moving average applied to the y∗i,j . This is weighted as:

(0.1111, 0.2222, 0.3333, 0.2222, 0.1111).

At endpoints, the size of the filter is decreased sequentially towards the end but maintains a simple
moving average.

5. This can be then composed back into a seasonal estimate ŝt, which can be subtracted from the original
series to give the seasonally adjusted series ySt = yt − ŝt with irregular ε̂t = ySt − τ̂t.

6. Denoting each series component with a subscript k = 1, 2, . . . ,m, the cumulative seasonal, trend, irreg-
ular and seasonally adjusted series are estimated simply as:

s̄t =
1

m

m∑
k=1

ŝt,k, τ̄t =
1

m

m∑
k=1

τ̂t,k, ε̄t =
1

m

m∑
k=1

ε̂t,k, ȳSt =
1

m

m∑
k=1

yt,k − ŝt

Derivation
Weights of the asymmetrical filters are derived using the ‘minimum revision’ technique.

Lane, R. O. D. (1972), Minimal revision trend estimates, Technical Report Research Exercise Note
8/72, Central Statistical Office, London.

Development
The Bank compares X-12-ARIMA to GLAS.

Thorp, J. (2003), Change of seasonal adjustment method to X-12-ARIMA, Monetary and Financial
Statistics, 4-8.

Software not publicly available.
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Local Regression Smoothing 1990
Cleveland, R. B. & Cleveland, W. S. & McRae, J. E. & Terpenning, I. (1990), STL: A seasonal-trend decomposition procedure
based on loess, Journal of Official Statistics, 6.1 3-73.

Parametric Keywords: Local Regression, Moving Average, Decomposition, Iterative.
Strengths
• Level of variation within each component can be set by user.

• Adaptable algorithm which can handle different types of evolution within each component.

Weaknesses
• Large amount of parameters to choose, poor choice can lead to poor estimation.

• It has been shown that there is heavier than expected smoothing at the ends of a series.

Description
STL is a seasonal trend decomposition using Local Regression with moving averages. Choice of the
parameters allows allocation of variance amongst each component, methods for selecting them are given
in the work.

Pre-Adjustments
No pre-adjustments for calendar effects are given (though a method is suggested), outliers are dealt
with using weights to remove their impact on estimation. Logarithms should be taken for multiplicative
series.

Method
Given a series yt, assume the basic structural model yt = Tt + St + It, t = 1, 2, . . . , N with periodicity s

(s = 12 for monthly data). Choose smoothing parameters q for the seasonal, nl for the low-pass filter and
nt for the trend. Also choose the degree of the fitted seasonal polynomials d, dependent on the level of
variation. Lastly choose p the moving average parameter when smoothing for the low-pass filter. Initialise
Tt = 0, ρt = 1 ∀t .

1. Remove the trend from the series, giving y−Tt = yt − Tt.

2. For each cycles subseries (each month for example) smooth these by Local Regression. Given a subseries
of the de-trended values for each period (j = 1, 2, . . . s); xi,j , (i = 1, 2, . . . , Nj ≤ N/s) for each data point
{x∗0,j , x1,j , . . . xNj ,j , x

∗
Nj+1,j} (where * denotes an unobserved but still estimated observation):

(a) Take q values around xi,j as the subset {xk,j}, k = i − q/2, (i + 1) − q/2, . . . , i, . . . i + q/2. Let
λq(xi,j) be the distance of the qth farthest xk,j from xi,j , and calculate weights vk,j :

vk,j(xk,j) = W

(
|xk,j − xi,j |
λq(xi,j)

)
ρ(j−1)s+k, W (u) =

{
(1− u3)3 0 ≤ u < 1

0 u ≥ 1

Note if k /∈ {i} then λq(xi,j) = λNj
(xi,j)

q
Nj

.

(b) Fit a polynomial g of degree d to the set of points {vk,j(xk,j) · xk,j : i = 1, 2, . . . , Nj .}. Evaluate
g(xi,j) and record as Sa, where a = (j − 1)s+ i = −s,−s+ 1, . . . , 0, 1, . . . , N,N + 1, . . . N + s.

3. Given initial seasonal estimates {Sa}, apply a p x p x 3 moving average to the series, and apply the loess
smoothing described in (a) and (b) on the new series, with d = 1 and q = nl. Define the output as Lt.

4. Re-estimate the seasonal components now as S∗t = St−Lt and obtain a deseasonalised series, y∗t = yt−S∗t .
Use the loess smoothing above on y∗t with d = 1 and q = nt to obtain a new estimate of the trend τ∗t .

5. Calculate robustness weights ρt:

ρt = B

(
|y∗t − T ∗t |

6median(|y∗t − T ∗t |)

)
, B(u) =

{
(1− u2)2 for 0 ≤ u < 1

0 for u ≥ 1.

Step 5 is the outer loop and is optional. Steps 1-4 are the inner loop. Both can be reiterated.

Derivation
Local Regression is introduced looking at scatterplots.

Cleveland, W. S. (1979), Robust Locally Weighted Regression and Smoothing Scatterplots, Journal
of the American Statistical Association, 74.368 829-836.

The robustness procedure in Step 5 is dervied.
Andrews, D. F. (1974), A Robust Method for Multiple Linear Regression, Technometrics, 16.4 523-
531.

Development
Linear combinations after using STL for decomposition are used for prediction.

Theodosiou, M. (2010), Forecasting Issues: Ideas of Decomposition and Combination, Working Pa-
pers 2010-4, Central Bank of Cyprus.

Software available through the STL function in R
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html
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Periodic Structural Model 2004
Tripodis, Y. & Penzer, J. (2004), Periodic time series models: a structural approach, Technical report, London School of
Economics.

Parametric Keywords: Structural Model, Periodic, Multivariate, Kalman Filter.
Strengths
• Allows for changing seasonality over each period.

• Gives direct interpretation of the components through the structural model.

Weaknesses
• Multiple tests must be used to arrive at the most appropriate model.

Description
The periodic structural model breaks a series into sub-periods (such as years) and models each year
using the basic structural decomposition represented in state space form. This is then passed into the
Kalman Filter for estimation.

Pre-Adjustments
No pre-adjustments are given in the work. For multiplicative series, logarithms should be taken.

Method
1. Given a series yp,t where t = 1, 2, . . . , N represents the year and N the amount of years in the series,

p = 1, 2, . . . , s represents the current season (or month for example) and s is the amount of periods in a
year, we represent each years observations by yn = (y1,n, y2,n, . . . , yp,n).

2. Assume that

(Basic Structural Decomposition): yp,t = µp,t + γp,t + εp,t, εp,t ∼ NID(0, σ2
ε,p)

(Trend Component): µp,t = µ−1,t + ηp,t, ηp,t ∼ NID(0, σ2
η,p)

For the seasonal component γp,t there are two choices.

(a) The first is γp,t = γp,t−1 + ωp,t, such that if D = diag{σ2
ω,1, . . . , σ

2
ω,s) and 1s = [1, . . . , 1] then

vectorising as in yn earlier, the following condition constrains the seasonal such that it sums to
zero over each year:

Var(ωt) = D −
D1p1

′

pD

1′pD1p

(b) The second is a dummy variable approach, which can be expressed as:
1 0 . . . 0

1 1
. . . 0

...
...

. . . 0
0 0 . . . 1



γ1,t

γ2,t

...
γs,t

 =


0 −1 . . . −1

0 0
. . .

...
...

...
. . . −1

0 0 . . . 0



γ1,t−1

γ2,t−1

...
γs,t−1

+


ω1,t

ω2,t

...
ωs,t


3. The Kalman filter can be applied to the appropriate decomposition using likelihood inference to conduct

likelihood ratio tests on the seasonal heteroscedasticity

4. Aikaike’s Information Criterion is then used to determine the significant periodic variances.

5. Tests for normality and independence of residuals are conducted using methods such as the Ljung-Box.

Derivation
State space models and described in detail.

Harvey, A. (1990), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge
University Press.

Periodic models are used with economic series and forecasts are compared.
Novales, A. & de Fruto, R. F. (1997), Forecasting with periodic models. A comparison with time
invariant coefficient models, International Journal of Forecasting, 13.3 393-405.

Development
Periodic structural models are used as part of wavelet benchamrking.

Sayal, H. & Aston, J. A. D. & Elliott, D. & Ombao, H. (2016). An introduction to applications of
wavelet benchmarking with seasonal adjustment. Journal of the Royal Statistical Society: Series A
(Statistics in Society), 180(3), 863-889. doi: 10.1111/rssa.12241

Software referenced in work: SSFPack in Ox http://www.ssfpack.com/
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DAINTIES 2007
Ladiray, D., (2007), The DAINTIES Method, Eurostat.

Parametric Keywords: Linear Regression, Moving Average, Asymmetric, Weighted Filters.
Strengths
• The range of filters when weighted can capture both additive and multiplicative seasonality simultane-

ously.

Weaknesses
• Only returns the seasonally adjusted series, not returning trend.

Description
A weighted composite of numerous filters applied to the data result in a seasonally adjusted series. The
filters are applied according to conditions on length and the range of the series.

Pre-Adjustments
Filters are applied assuming that the series is multiplicative/additive and are weighted afterwards.
Modification of extreme values is given with the work.

Method
1. Assume a series yt (for t = 1, 2, . . . , n and periodicity p) can be decomposed such that yt = τt + st + εt

where τt is the trend, st is the seasonal and εt is the irregular. Model this series, with constraint as:

yt = a0 + a1t+ a2t
2 + a3t

3 +

p∑
i=1

αiI[t≡i−1 mod p] + εt,

p∑
i=1

αi = 0.

Here the cubic polynomial represents trend τt and αt are the seasonal estimated factors for st.

2. Using least squares regression, an estimate of the seasonal part of the model above is calculated on blocks
of m observations. For the first m observations, those calculated by regression are kept as the component
estimated st for t = 1, 2, . . . ,m, then for the next block from 2 to m only the components estimated in
position m+ 1 are kept, and similarly until the components are estimated till n−m, denoted as ySAt for
t = 1, 2, . . . , n−m.

3. For the endpoints, a number of asymmetric moving averages are applied to the series to estimate each
point. These filters are given in the work and not detailed here, but they are used based on the following
conditions:

Length of series yt > 0 ∀t ∃t : yt ≤ 0
n < 3p+ 1 No filters applied No filters applied

3p+ 1 ≤ n < 4p+ 1 AS AS ,MS

4p+ 1 ≤ n < 5p+ 1 AS , AM AS , AM ,MS ,MM

5p+ 1 ≤ n AS , AM , AL AS , AM , AL,MS ,MM ,ML

Where AS , AM , AL are small, medium and long filters with coefficients given within the work, and
MS ,MM ,ML are the same filters applied to the logarithm of the original series yt.

4. Let the results of result of each filter applied to the series as y∗t,k for k estimations. At time t we consider
the observations yt−p+1,k, yt−p+2,k, . . . , yt,k and fit a straight line, computing the residual sum of squares

at each point giving δt,k (where δt,k = δp,k for t < p). Then calculate for all t: δ̄addt = 1
3

∑k/2
l=1 δ

add
t,l such

that only additive estimations are used.

5. Calculate weights, and calculate endpoint seasonally adjusted values:

λt,k =


0 if k is multiplicative and δt,k > 0.8δ̄addt

1 if δp,k = 0 (Note: All other weights = 0)

1/δp,k else

ySAt =

∑k
l=1 λt,ky

∗
t,k∑k

l=1 λt,k
(t = n−m+1, . . . , n)

Derivation
DAINTIES was preceeded by an algorithm named SEABIRD

Mesnage, M. (1968), Elimination des variations saisonnires: La nouvelle mthode de l’OSCE, Statis-
tische Studien und Erhebungen / Statistisches Amt der Europischen Gemeinschaften, 1.

Development
A number of seasonal adjustment procedures are compared including DAINTIES.

Franses, P. H. & Paap, R. & Fok, D. (2005), Performance of seasonal adjustment procedures: Simu-
lation and empirical results. Erasmus University Rotterdam, Econometric Institute.

Software not publicly available.
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Model Based X-11 2010
McElroy, T. (2010), A Nonlinear Algorithm for Seasonal Adjustment in Multiplicative Component Decompositions, Studies in
Nonlinear Dynamics & Econometrics, 14.4 1-23.

Parametric Keywords: State Space, X-11, Filter, Model Based, Developing Method.
Strengths
• The additive algorithm has been shown to converge to true expectations.

• Removes trend bias shown to be in multiplicative series.

Weaknesses
• The multiplicative algorithm does not always converge.

• Relies on a previously fitted ARIMA model which could be misspecified.

Description
The method is a model based approach to an adaptation of the X-11 algorithm. The aim is to reduce
the bias caused by taking logarithms of multiplicative series and using ARIMA models on the new series.
The procedure is outlined for both additive and multiplicative versions of the X-11 algorithm.

Pre-Adjustments
No pre-adjustments are given in the work.

Method
1. Given a series yt, assume it can be decomposed into the basic structural model such that yt = Tt+St+It,

where st is the seasonal, Tt the trend, and It the irregular. If the series is multiplicative, replace addition
(subtraction) with multiplication (division) where necessary throughout. Begin by fitting an ARIMA
model.

2. Fit the stationary process xt = δ(B)yt, where B is the Backward Shift Operator. Here δ(B) has roots
only on the unit circle and δ(0) = 1, representing the seasonal and non-seasonal differencing. Factorise
δ(B) = δS(B)δT (B) for the seasonal and trend, with no common zeros and deg(δS) + deg(δT ) = deg(δ).

3. Construct matrices ∆S , where dS = deg(δS) (with a similar construction for ∆T ):

∆S =


δSdS δSdS−1 . . . δS1 1 0 . . . 0

0 δSdS δSdS−1 . . . δs1 1 0 . . .
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 δSdS δSdS−1 . . . δS1 1

 ,∆S
i,j =

{
δi−j+dS 0 ≤ i− j + dS ≤ dS

0 otherwise

where each δi are the coefficients of the appropriate differencing operator.

4. Let ySt = St + It such that the trend has been removed, and similarly for yTt and construct row vectors
from them. These can be calculated using the model fitted in Step (1). Calculate covariance matrices
ΣI ,Σ∆S(yS)′ ,Σ∆T (yT )′ of each row vector I, yS , tT respectively.

5. Given that I is the (n x n) identity matrix, construct filters:

FS = I− ΣI∆
′

SΣ−1
∆S(yS)′

∆S , FT = I− ΣI∆
′

TΣ−1
∆T (yT )′

∆T

6. Iteratively apply the filters to the data following the appropriate algorithm:

Additive

Initialise Ŝ(0) as any given vector

For i = 1 to sufficient convergence

T̂ (i) = FT (y − Ŝ(i−1)),

Ŝ(i) = FS(y − T̂ (i))

end

Multiplicative

Initialise Ŝ(0) = 1n = (1, 1, . . . , 1)

For i = 1 to sufficient convergence

T̂ (i) = FT (y ÷ Ŝ(i−1)),

Ŝ(i) = 1n + FS(y ÷ T̂ (i) − 1n)

end

7. A seasonally adjusted series can then be achieved by subtracting (dividing) Ŝconv from yt.

Derivation
Proof of the algorithm converging to true expectations.

Mc Elroy, T. & Sutcliffe, A. (2004), An Iterated Parametric Approach to Nonstationary Signal
Extraction, Statistical Research Division, U.S. Bureau of the Census.

Original X-11 Algorithm detailed.
Shiskin, J. & Young, A. H. & Musgrave, J. C. (1965), The X-11 Variant of the Census Method II
Seasonal Adjustment Program, U.S. Department of Commerce, Bureau of the Census.

Software available in supplementary materials: http://www.degruyter.com/view/j/snde.2010.14.4/
snde.2010.14.4.1756/snde1756_supplementary_5.zip
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Singular Spectrum Analysis 2013
Chen Q. & van Dam, T. & Sneeuw, N. & Collilieux X. & Weigelt M. & Rebischung, P. (2013), Singular spectrum analysis for
modeling seasonal signals from GPS time series, Journal of Geodynamics, 72 25-35.

Non-Parametric Keywords: Developing Method, Spectrum Analysis, Eigenvalue Decomposition.
Strengths
• Cyclic behaviour can be analysed over a number of scales simultaneously.

• Can account for changing patterns in seasonality.

Weaknesses
• Analysis of which components are seasonal or trend can be subjective.

• No analysis of error is made through the method.

Description
SSA decomposes a series into components by considering their cyclical behaviour through eigenvector
analysis over a moving window. Selection of the length of window M is not given with the work, but it
should be greater than all lengths of expected periodicities.

Pre-Adjustments
No details are given of any pre-adjustments. For a multiplicative series, logarithms should be taken.

Method
1. Given a time series yt, t = 1, 2, . . . N embed it into a trajectory matrix D through a sliding

window of length M , such that N ′ = N − M + 1, and calculate the covariance matrix C:

D =


y1 y2 . . . yM
y2 y3 . . . yM+1

...
...

...
...

yN ′ yN ′+1 . . . yN

 , C =


c0 c1 . . . cM−1

c1 c0 . . . cM−2

...
...

...
...

cM−1 cM−2 . . . c0

 ,
cj =

∑N−j
i=1 xixi+j
N − j

,

0 ≤ j ≤M − 1

2. Apply an eigenvalue decomposition to the matrix C to obtain eigenvalues λk and eigenvectors Ek, sort
the vectors into descending order of λk for k = 1, 2, . . . ,M .

3. Define the principal components as aik and reconstructed components yki as:

aki =

M∑
j=1

yi+jE
k
j , 0 ≤ i ≤ N −M yki =


∑i
j=1

aki−jE
k
j

i 1 ≤ i ≤M − 1∑M
j=1

aki−jE
k
j

M M ≤ i ≤ N −M + 1∑M
j=i−N+M

aki−jE
k
j

N−i+1 N −M + 2 ≤ i ≤ N

4. Seasonal behaviour can then be identified by comparing neighbouring eigenvalues and eigenvectors,
following three criteria:
- consecutive eigenvalues λk and λk+1 are approximately equal;
- the sequences given by eigenvectors Ek and Ek+1 are periodic and approximately phase shifted by π/2;
- their principal components aki and ak+1

i are approximately phase shifted by π/2. For all ks considered
part of the seasonal component, group together: st =

∑
ks y

ks

t .

5. Those with long running cycles are the trend estimates, and should be grouped similarly: τt =
∑
kt y

kt

t .

6. A seasonally adjusted series can then be obtained by y∗t = yt − st.
Derivation

The criteria for selection of each component is discussed.
Plaut, G. & Vautard, R. (1994), Spells of Low-Frequency Oscillations and Weather Regimes in the
Northern Hemisphere, Journal of the Atmospheric Sciences, 51.2 210-236.

A more thorough description of SSA is given.
Broomhead, D. S. & King, G. P. (1986), Extracting qualitative dynamics from experimental data,
Physica D: Nonlinear Phenomena, 20.2 217-236.

Development
Different variations of SSA are presented and implemented on seasonal series.

Golyandina, N., & Shlemov, A. (2015). Variations of singular spectrum analysis for separability
improvement: non-orthogonal decompositions of time series. Statistics and Its Interface, 8(3), 277-
294. doi: 10.4310/sii.2015.v8.n3.a3

Software available within the RSSA package in R
https://cran.r-project.org/web/packages/Rssa/index.html
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Wavelet Analysis 2014
Stachura, M. (2014), Detecting Seasonality via Wavelet Methods, Studia Ekonomiczne, 207 223-232.

Non-Parametric Keywords: Wavelet, Multi-Resolution Analysis, Filter, Devleoping Method.
Strengths
• Analysis at multiple scales allows different length cycles to be analysed.

• Seasonal and trend are decomposed simultaneously, not iteratively.

Weaknesses
• Choice of wavelet used based on experimentation.

• An irregular is not described in the work.

• Discrete Wavelet Transform is not rotation invariant.

Description
Using a wavelet decomposition, a series can be reduced into the sum of the wavelet transformation across
different scales. Each scale represents a different length of cycle and thus can be used to extract trend
(very short cycles) and seasonal components (longer cycles) simultaneously.

Pre-Adjustments
No pre-adjustments are given in the work, logarithms should be taken for multiplicative series.

Method
1. Given a series Y = (y1, y2, . . . , yn)T , scales j = 1, 2, . . . J each at locations k = 1, 2, . . . 2j , define the

wavelet coefficients as

Wj,k =

T∑
t=1

ytψj,k

(
t

n

)
, ψj,k(s) = 2−

j
2ψ(2−js− k),

where ψ is the chosen mother wavelet, and ψj,k form an orthonormal basis.

2. Collect the coefficients such that Wj = (Wj,1,Wj,2, . . . ,Wj,2J−j ) and W = (W1,W2, . . . ,WJ ,VJ)T

where W is the discrete wavelet transform of Y and V is the residual vector. Note that the calculation
of the coefficients can be done recursively:

(a) The chosen wavelet has associated scaling filter {hl}l=0,1,...,L−1 and conjugate filter {gl}l=0,1,...,L−1

such that gl = (−1)l+1hL−l−1.

(b) Apply {hl}, {gl} to Y to get W1, V1 respectively.

(c) Repeat previous step, but apply {hl}, {gl} to V1 to get W2, V2 respectively.

(d) Repeat until Vn−2J+1 is obtained.

Then VJ = (V1, . . . , Vn−2J+1).

3. With residual vector and wavelet coefficients, it can be seen that W = ΨY and thus, Y = ΨTW where
the orthonormal matrix Ψ is determined by the wavelet used ψ. As such Y can now be expressed:

Y = ΨT
1 W1 + ΨT

2 W2 + · · ·+ ΨT
JWJ + ΦT

JVJ = D1 + D2 + · · ·+ DJ + TJ .

Where Ψ1, . . . ,ΨJ ,ΦJ are submatrices of Ψ that partition W.

4. The Dj represent the cycles over scales j and the TJ represents the trend throughout the series. There-
fore the series can then be represented by seasonal S and trend T and can thus be removed:

Y = D1 + D2 + · · ·+ DJ + TJ = S + T

Derivation
Multi resolution analysis using a bi-orthogonal wavelet filter is used on GDP.

Yogo, M. (2008), Measuring business cycles: A wavelet analysis of economic time series, Economics
Letters, 100.2 208-212.

Calculation of the wavelet coefficients using the recursive scheme and filters is outlined.
Percival, D. B. & Walden, A. T. (2006), Wavelet methods for time series analysis, C. U. P.

Development
Wavelet filtering is used for forecasting after decomposing a series into trend variations.

Joo, T. W. & Kim, S. B. (2015), Time series forecasting based on wavelet filtering, Expert Systems
with Applications, 42.8 3868-3874.

Software available within R using packages such as Wavethresh:
https://cran.r-project.org/web/packages/wavethresh/index.html
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Chapter 5

Wavelet Frequency Detection

Abstract Detecting the presence of a periodic component in a series can have sig-

nificant impact upon both modelling and prediction. Common methods for detec-

tion and prediction of these components often use Fourier analysis and spectrum

decomposition, or require information a priori about the periodicity expected.

Here we present an alternative based upon Wavelet Decompositions, showing how

a ‘Variance Profile’ of a periodic series can be seen from the wavelet spectrum.

We present results on theoretical distributions and an empirical analysis of the

effectiveness of a proposed algorithm. This is followed by an application upon

daily data which contains a low frequency component within it.

5.1 Introduction

Detection of any repeating components within a series, such as seasonality, is an

important step in understanding and predicting data. Often a series of interest is

studied carefully to determine the most likely component relative to its context.

This allows for careful consideration to be made between a number of components

including (but not limited to) seasonality/periodicity. This is such that a part of

the series of interest will reoccur within p points of the series. As a motivating

example consider the series of French births given in Figure 5.1. There are different

levels of seasonality occuring within the series, some on a smaller scale perhaps of
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Figure 5.1: Daily published figures on French Births from January 1968 to August
1973.

weekly/monthly, but also on a larger scale of yearly. However to determine and

test for these components, particularly those who do not show as often such as

weekly, is no straightforward task task.

Typical seasonal adjustment software such as X-12-ARIMA-SEATS and JDeme-

tra+ have a suite of tests available for testing such expected components. For ex-

ample, aggregating the data across its expected period leads to the Kruskal-Wallis

Test (Kruskal and Wallis, 1952) which tests the period specific mean ranks of a

series for significant differences. Similarly an F-test can be computed on monthly

means to determine seasonality (Ladiray and Quenneville, 2012). Monitoring the

autocorrelation function and looking for significantly positive values at seasonal

lags forms the QS test, transforming the same diagnostic into a periodogram and

taking a weighted sum at seasonal periods can also be used to test for seasonality

(Grudkowska, 2016). Further, one can visually inspect the periodogram at known

seasonal frequencies also (Soukup and Findley, 1999). Model based approaches

can also be taken, such as testing the significance of monthly variables fitted in a

RegARIMA model. A number of these tests are further detailed and compared in

Lytras et al. (2007) in a review of statistical software X12-ARIMA-SEATS, and

similarly a discussion and combination of tests used in the software JDemetra+ is
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given in Webel and Ollech (2018) where a random forest test is constructed from

those described.

However, these tests require a priori knowledge of the periodicity p to be

expected, but with the cost of data collection decreasing, the amount of series

collected is growing exponentially. This is such that giving careful attention to

any series becomes relatively expensive in comparison to an automatic procedure

which comprises of two main steps: firstly the detection of a periodicity, and

secondly estimating the value of p.

Detection of periodic components is often based on the use of diagnostic mea-

sures such as the periodogram, which measures the amplitude of a set of frequencies

within a series, and the autocorrelation function, which measures the dependence

of a time point to another in the future/past. As such often they test against the

alternative that there is no periodicity present within a series. Such a test was

developed in Fisher (1929) to determine if there were any significant peaks within

the periodogram by comparing values different from the average under normal dis-

tributed data. Further tests for white noise can be conducted on the periodogram

using the Bartlett B test (Bartlett, 1967) which compares against an expected Ex-

ponential distribution for points within the periodogram under the null. Similarly

a test of independence can be used such as the Ljung-Box test (Ljung and Box,

1978), which tests the departure of autocorrelations from zero. Further, a test

based on the haar wavelet transform (termed HWWN for Haar Wavelet White

Noise), of which we discuss further in this work, looks to identify white noise by

comparing against an expected flat spectrum (Nason and Savchev, 2014).

Combining these two aspects, detection and prediction of periodicity, has been a

key research area known as ‘periodicity mining’ particularly prevalent for symbolic

time series data, such that yt = aab, aba, baa, ... . Key works include the use of

‘sketches’ which transformed the data into a different form to compare distances

more efficiently was used in Indyk et al. (2000). Further, convolution over a number

of proposed periodicities to determine rate and patterns was applied in Elfeky et al.
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(2005). The literature is rich for periodicity mining of symbolic data and provides

many motivating methodologies, but it is not our focus here and we refer the reader

to Fournier-Viger et al. (2017) for a comprehensive review of their applications.

The use of decomposition was also applied in a semi-automatic procedure

within Kanjilal et al. (1999) which applied a singular value decomposition to a

numeric time series, such that each period becomes a row, to determine period-

icity. However, at least two cycles were required and it becomes computationally

expensive when used as an exhaustive search. Collection over a period is also

featured in Schaidnagel and Laux (2013) where each period is summed appropri-

ately and the pearson correlations are calculated to determine the likely period,

given a pre-defined range however. However, not all methodology requires prior

information, such as the fully automatic ‘Autoperiod’ algorithm (Vlachos et al.,

2005) which combines the aforementioned periodogram and autocorrelation infor-

mation to confirm ‘hints’ of periodicities within a series, however as noted within

Puech and Boussard (2019) the algorithm can suffer under noise and they combine

clustering and filtering techniques to aid this in a trade off with computational effi-

ciency. Additional methodology was given within the forecast package (Hyndman,

2017) under the function find.frequency which detects local peaks within a spec-

trum and returns a proposed frequency, though there is no formal test. Yang and

Su (2010) determine periodicities from peaks which are picked from a smoothed

periodogram, and models an increasing amount of hamronics against the series of

interest to model possible periodic effects (termed ARSER).

Our work introduces a new automatic procedure for detection and prediction

of a periodic component by combining many of the features described in these

works to aid in the case of low frequency and high noise environments. Through

the use of Wavelets, which can be seen as a filtering or convolution process, we

similarly decompose a series onto an efficient scale and compare distances between

proposed periodicities expressed in the same domain. However, through the use of

the information gained during this decomposition, we are able to determine a viable
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search region without prior knowledge and reduce our computation significantly.

Wavelets have been used often within periodicity detection due to their ability

to decompose a series across both time and frequency. There have been many

previous applications of wavelets for periodicity detection with particular usage

in Astronomy. In Szatmary et al. (1994) and Szatmary et al. (1996) wavelets

were applied to a number of different occurances of periodicity and the resulting

coefficients were studied widely. Periodic aggregation of generalised haar wavelet

transforms to detect periodicities over a known range was used in Benedetto and

Pfander (2002). Wavelets were used alongside autocorrelation and peak analy-

sis for the determination of heart rate through non-contact in Sekine and Maeno

(2011). Reconstruction from a wavelet transform was also used to remove low

frequency components in head accelerometry measures in Sani et al. (2013). Fur-

ther investigation into the behaviour of different wavelet coefficients was studied

for critical time interval identification related to posture control in Zhang et al.

(2015). Similarly, sign sequences of wavelet coefficients were used by Park and

Kim (2018) within a search region to analyze repetitive tasks. Each of these stud-

ies looks to employ the unique properties of a wavelet decomposition, but none

apply them in a fully automatic way, always requiring precursor knowledge of the

behaviour expected, which is a particular strength of our work which we describe

fully in the sections to follow.

Our work is structured as follows. Section 5.2 describes the discrete wavelet

transform that we use, the findings on periodicity detection and proofs therein,

discusses the creation of ‘variance profiles’ and a formal test before presenting

the final algorithm. Section 5.3 then tests the algorithm over a number of cases

and provides commentary on the results found. We then provide our motivating

application of Daily French Birth data in Section 5.4. Finally we give concluding

remarks overviewing the paper and proposing next steps in Section 5.5. Within

the Appendix proofs can be found for results stated, and additional graphs not

given in Section 5.2.

108



5.2 Methodology

5.2.1 Wavelet Tranforms

We review the methodology used in our work by introducting wavelets. Seminally

described in Daubechies (1992), they allow the decomposition of a time series in

two dimensions, scale and position. Scale is the resolution of the data that you

view at a point; going from ‘fine’ where you view only a small amount of detail,

to ‘coarse’ where you review a large portion of the data. Position then represents

the point within the series where you view this. These two dimensions allow for

identification of components within a series on both large and small scales, and

over time. For the work conducted here we use the discrete version of wavelets of

a time series yt for t = 1, 2, . . . , n where each point is regularly spaced. This is

such that wavelet coefficients (in respect to a wavelet basis ψ) are calculated by

dj,k =
n∑
t=0

ytψj,k(t), (5.1)

where ψj,k(t) = 2−
j
2ψ(2jt − k) is the relationship of each wavelet to the mother

wavelet ψ(x). The simplest wavelet is the Haar (Haar, 1910) given as:

ψ(x) =


1 when 0 ≤ x < 1

2

−1 when 1
2
≤ x < 1

0 else

.

Within our work we proceed with the ‘non-decimated’ wavelet transform. This

is such that we allow each individually calculated wavelet coefficient dj,k to possibly

have overlapping supports. This can be seen as an overcomplete transformation,

but we use the additional information gained from this to bolster our methodology.

For further information on the different transformations and the benefits to each,

we direct the reader to Nason (2010).

Continuing our example, the non-decimated Haar Wavelet Coefficients for scale
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j and position k can be calculated by

dj,k =
1
√

2
j

2j−1−1∑
i=0

yk+i −
2j−1∑
i=2j−1

yk+i

 .

This can be seen as a centered moving average filter with weights 1√
2
j for the first

half of point considered and − 1√
2
j for the second half.

5.2.2 Transforms of periodicity

For the purpose of identifying periodicity, we focus on a periodic signal generated

by a sinusoid with noise. This is a common component used in harmonic analysis

where periodicities are explained by a combination of sine and cosine waves, and

we begin with this component as we explore the effectiveness of our work. It is

this model which we assume in our work now going forward, formally defined as:

yt = sin

(
2πt

p

)
+ εt where εt ∼ N (0, σ2

ε ), t = 1, 2, . . . , n (5.2)

where p is the periodicity of the sinusoid and t is the time index. This model

represents a simple repeating pattern over p points plus a level of noise which ob-

scures it. We can decompose this series under a non-decimated wavelet transform

and square the coefficients to get a wavelet spectrum, which shows the magnitude

of each coefficient on each scale. This spectrum is useful for the identification of

features of series. Such spectra of series which follow our model are given in Figure

5.2.

It is clear to see from the spectra that the periodicity of the sinusoid has a

significant impact upon coefficients. For example, it can be seen that in Figure

5.2a that scales 3 and 4 show more variation than that of any other scale. Whilst

scales 5 and 6 show the most in Figure 5.2b. Note that the periodic behaviour can

be seen within the prominent scales as the periodicity is smaller than the wavelet

length, such that even shifting the series would not remove this effect.
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Figure 5.2: Averaged Wavelet spectra of sinusoid with noise where σ = 0.1.
We do not calculate the coefficients that would require points beyond the length
of the series. To the right of each scale is the average magnitude. Within the
transformation a Haar Wavelet is used.

5.2.3 Variance Profiles

The level of periodic behaviour presented within each scale of a wavelet transform

can be measured by monitoring the variance of the scale. We can calculate this

for each scale by

σ̂2
dj

=
1

2J − 2j−1 − 1

2J−2j−1−1∑
k=0

d2
j,k,

which can be compared across all scales. This is calculated and shown on the right

hand side of Figure 5.2 for the average spectra. This calculation allows the quan-

tification of the difference between the scales and periodicities, which we study

further. By varying the periodicity we can study the changes in this variance

through simulation to explore this relationship between periodicity and wavelet

transform. To do this we simulate from a sinusoid with no noise, vary the peri-

odicity over a range and use a number of wavelets chosen from the Daubechies

Extremal Phase family. We do not go into detail regarding the differences be-

tween these wavelets as they are not our focus, but more detail can be found in

Daubechies (1992). The results of this exploration are shown in Figure 5.3.

Notice that as before, regardless of the wavelet chosen, each scale becomes

the most varying at a point before declining to zero as the periodicity increases.

This behaviour is of particular interest as it can be used to distinguish between

other periodicities. Going forward we analyse the effect of using the Haar Wavelet

exclusively, as although the differences are less distinct in comparison to other
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(b) Daubechies Extremal Phase
wavelet 2
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(c) Daubechies Extremal Phase wavelet
3
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(d) Daubechies Extremal Phase
wavelet 4
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(e) Daubechies Extremal Phase wavelet
5

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Periodicity

V
ar

ia
nc

e

1 2 3 4 5 6 7 8 9 10 11

(f) Daubechies Extremal Phase wavelet
6
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(g) Daubechies Extremal Phase wavelet
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(h) Daubechies Extremal Phase
wavelet 8
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(i) Daubechies Extremal Phase wavelet
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(j) Daubechies Extremal Phase wavelet
10

Figure 5.3: Proportional Variance of each scale of a wavelet transform for a si-
nusoid as periodicity varies and the wavelet chosen varies. Note that we have
standardised the variances such that they are scaled by their sum for each peri-
odicity to show where the majority of variance lies. Simulated series are of length
n = 2048.
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wavelets, there is still clearly distinguishable behaviour and the formulation shown

in Equation (5.2.1) is favourable when determining the theoretical properties.

Focusing now on Figure 5.3a each of these curves can be quantified using the

following theorem:

Theorem 5.1. Given a time series follows the model described in Equation (5.2),

the variance of the discrete Non-Decimated Haar Wavelet Transform coefficients

dj,k (as calculated in Equation (5.1)) have variance σ2
dj

where

E

 1

2J − 2j + 1

2J−2j+1∑
k=1

d2
j,k

 = σ2
dj

=
sin4

(
2j−1π
p

)
2j−1 sin2

(
π
p

) + σ2
ε + o(1)

such that o(1)→ 0 as n→∞, where n = 2J .

Proof: See Appendix A, where the term o(1) is also detailed.

It is this particularly interesting relationship which forms the basis for our

work. Using the evolution of the wavelet variances across scales we can calculate

the variance of each scale to create a ‘variance profile’. Examples of such are

given in Figure 5.4 for our sinusoidal model in Equation (5.2). Using the formula

from Theorem 1 we can deduce the predicted variance profile and we plot these

alongside those simulated. Note that despite an increase in noise, the structure of

the variance profile is still prevalant, particularly at coarser scales.
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Figure 5.4: Variance profiles over different periodicities and noise levels. Note
each has been normalised by their sum.

As should be expected, these profiles align nicely with the usual Fourier spec-

trum. Using the MATLAB function centfreq (Misiti et al., 2018) we can calculate
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the frequency each scale corresponds to for the Haar wavelet. In Figure 5.5 we

overlay the variance profiles in this form above a Fourier spectrum. There it can

be clearly seen that the peaks in the profile also overlay the peaks in the Fourier

spectrum, however they are not as pronounced.
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Figure 5.5: Fourier spectra overlaid with a corresponding variance profile. Noise
level of σ2 = 1. Scale indices for the wavelet transform are such that 1 is on the
right, J is on the left. Note both the red and black lines are on equal y scales.

5.2.4 Test statistic

These variance profiles allow us to make an estimation on the periodicity present

within a series, but we must also consider the possibility that there is no periodicity.

Note that in Figure 5.3 we did not show the behaviour of no periodicity, where

in our model form (Equation (5.2)) p = 1, such that we are only dealing with

a gaussian white noise series. Following Theorem 1 this means that the wavelet

variance across scales would be a constant σ2
ε . However, this is in the case where

n → ∞ and as we can see in Figure 5.6 that although the expected values are

constant, the variance of the simulated profiles grows significantly towards the

higher scales. As such we must characterise this behaviour to determine a test for

the presence of periodicity in our data.

Theorem 5.2. Given a gaussian white noise series yt = εt for t = 1, . . . , n = 2J

the sum of the square of Non-Decimated Haar Wavelet Coefficients calculated by
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Figure 5.6: Exploration of variance profiles under gaussian white noise.

Equation (5.2.1) is distributed as:

2J−2j+1∑
k=1

d2
j,k ∼


Gamma

(
1
2
, 2σ2

ε

)
if J = j

Gamma
(

(2J−2j+1)2

rj
,

rjσ
2
ε

2J−2j+1

)
if J > j

where rj = 3−1 · 2−j−1
(
20− 11(2j+1) + 5(22+J) + 22+2j+J + 4j−1 − 5(8j)

)
.

Proof: See Appendix B.

With this information, we can then construct a multiple hypothesis test using

the Bonferroni approach (Bonferroni, 1936). This is such that we create a com-

posite hypothesis test for which we do not reject the null of no periodicity if the

following is satisfied:

αj
2
< P

2J−2j+1∑
k=1

d2
j,k <

2J−2j+1∑
k=1

d̂2
j,k

 < 1− αj
2
, ∀j.

Determination of the αj is open so long as they satisfy
∑J−1

j=1 αj = α where α is

the pre-determined power level. Note that we only test up to scale J − 1, which

has 2J−1 + 1 coefficients, as the scale J has only 1 coefficient.

5.2.5 Algorithm

Given that we are now have the methodology to test for periodicity and generate

variance profiles for series and their expected values, we now look to match them
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to the correct profile. If we have an observed profile σ̂2
dj

we have to measure its

distance from a true profile at periodicity p, σ2
p,dj

. As such there are a number

of distance metrics we could employ, however here we use an absolute difference

which weights according to the amount of coefficients in the scale. This is such

that our observed difference is calculated as

d̂p = δ
(
σ̂2
dj
, σ2

p,dj

)
=

J−1∑
j=1

1

2J − 2j + 1

∣∣∣σ̂2
dj
− σ2

p,dj

∣∣∣ ,
thus we estimate the periodicity of a series as

p̂ = arg min
p=2,...,2J

d̂p.

However, dependent on the value of J we may have a large and computationally

inefficient set of p to explore. To resolve this problem we return to our original

exploration into the evolution of power within the scales seen in Figure 5.3a. There

it can be seen that for each periodicity there is at most two dominant scales for each

value of p. We can use this information to reduce the search region significantly by

determining the region where the absolute power of a scale crosses with another.

Lemma 5.3. Given that a series is generated by the model in Equation (5.2) as

n→∞,
2J−2j+1∑
k=1

d2
j,k =

2J−2j+1+1∑
k=1

d2
j+1,k ⇐⇒ p =

2j−1π

cos−1
(

2−
3
4

) .
Proof: See Appendix C.

A representation of this is given in Figure 5.7 where we have calculated the

cross over points and overlayed them onto Figure 5.3a. Note that due to the finite

sample size, we begin to see an error in the approximation in the latter scales.

We now construct an algorithm to detect and predict the periodicity within a

series based upon the methodology discovered. This is Algorithm 2 and we name
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Figure 5.7: The calculated cross over points between the scales as per Lemma 1.
Note we have emphasised the cross over lines rather than the Variance.

it coloquially the ‘WavePer Algorithm’.

Data: yt for t = 1, 2, . . . n = 2J : Series of interest;

Data: σ̂dj for j = 1, . . . , J : Variance Profile;

input : d̂p =∞ ∀p = 2, . . . 2J ;

input : p̂ = NA;

1 Test the presence of periodicity ;

2 if Periodicity Found then

3 Determine Search Region (p̂low, p̂high) ;

4 i = p̂high ;

5 while i ≤ p̂high do

6 Calculate profile distance d̂i = δ
(
σ̂2
dj
, σ2

i,dj

)
;

7 end

8 Choose p̂ = arg minp=2,...,2J d̂p.

9 end

Result: p̂ estimated periodicity.

Algorithm 2: WavePer Algorithm.
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5.3 Empirical Analysis

We now look to apply the methodology discussed in Section 5.2 in an empirical

analysis to detail its effectiveness. Focus lies on two areas on interest: power of

detection, and accuracy in prediction. As such we construct a simulation study

which also compares to other methods in the field. These include many of those

introduced in Section 5.1, where specicifally we compare against those presented

in Table 5.1 in two areas. Firstly the detection of a periodic component in a series,

and secondly given the component is present a prediction on p. Note in the case

of FindFrequency and ARSER, their source code was modified to not identify any

linear trends as we do not expect them to be present.

Detect if
Method p = 1 or p > 1 Estimate p
WavePer X X
HWWN X
BartlettB X
Ljung-Box X
Fisher X
FindFrequency X X
ARSER X X

Table 5.1: Methodology compared against within the simulation study.

Regarding implementation, all simulations where run within the R statistical

software (R Core Team, 2018) where the WavePer algorithms have been developed.

The HWWN and BartlettB tests are taken from the hwwntest package (Savchev

and Nason, 2018). The Ljung-Box is from the core R stats package. Fisher’s test

comes from the GeneCycle package (Ahdesmaki et al., 2019). FindFrequency is

given in the forecast package (Hyndman, 2017). Finally, the R implementation

of ARSER can be found through Github (Yang, 2019).

5.3.1 Test Power

As previously mentioned in Section 5.2 we use a composite hypothesis test to

determine if there is evidence of periodicity in a series. To do this we use the
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Bonferroni approach which allows flexibility in the individual bounds of each test

performed under the composite. Here we present two proposals on these bounds

and show the results. The first is simply that at each bound we have αj = α
J−1

so that each bound is exactly the same. The second we propose uses the variance

calculated under Theorem 2. This is such that

αj =
αr−2

j∑J−1
l=1 (r2

l )
−1 .

Given that each scale has a decreasing amount of coefficients and therefore infor-

mation than the previous scale, the high increase in variability causes the αj to

become very small for the higher scales. This is such that we are less likely to reject

on these scales, but more on those which have more information and coefficients.

We will refer to the second set of αj as ‘Decay’ for clarity in the results.

We test at the standard α = 0.05 level, performing 1000 iterations under

a number of different lengths and noise levels. We vary the length from n =

128, 256, 512, 1024 and vary the noise levels as σ2
ε = 1, 3, 5. We compare against

the methods introduced in Section 5.1 and outlined in Table 5.1. We present the

results of no periodicity (such that p = 1 in Equation (5.2)) in Table 5.2. The

table outlines the power of these tests, where ‘WavePer (Decay)’ uses the decaying

αj and ‘WavePer’ is using the unmodified version.

All the formal tests (thus not including FindFrequency or ARSER) performed

are below or near to the expected 5%, with our algorithm under decaying weights

performing the best. This is then followed by the same procedure with non-

decaying weights. Both the HWWN and BatlettB are consistently below or equal

to 5% whereas the Ljung-Box and Fisher tests show a greater reliance on sample

size before converging to 0.05, but it is a neglible difference. Of note is that it

would appear that smaller sample sizes perform better than larger for increasing

variability in the non-decaying WavePer algorithm, but this effect cannot be seen

in the decaying case. In the case of the prediction methods FindFrequency and

ARSER, FindFrequency has a much greater power in the lower variance cases, but
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is troubled when there is a small sample with large variance. ARSER however

attempts to fit a harmonic, and thus estimate a periodicity, from almost any peak

it can find in the periodogram, making it especially weak in the case of Gaussian

white noise.

5.3.2 Detection Rates

Further exploring our algorithm’s effectiveness, we now look to its ability to detect

periodicities where they are present. As we have previously mentioned in Section

5.1 we are not aiming for detection of high frequency components as this is not our

aim, instead looking at components at lower frequencies which are often overlooked.

As such we simulate for p = n
5
, n

5
+ 1 . . . , 2n

3
so that we are studying a periodicity

that goes from appearing 5 times in a series to only once and a half. The results

for n = 128, 256 can be seen in Figure 5.8.

Though there is varying sample size n and signal-to-noise ratio through σ, a

similar story can be seen across these plots. Firstly we can see that FindFrequency

is consistently below the 95% level across all scenarios given. In both cases where

σ = 1 we can see that most tests detect periodicity 95% of the time, with AR-

SER often being the lowest. However as we increase the variance of the noise,

ARSER begins to become the strongest to detect any periodicity, a result that

may be expected given the level of false positives in Table 5.2. It can be seen that

most often the FindFrequency, Ljung-Box and BartlettB often share the lowest

rates. Most interestingly is that the HWWN and Fisher tests show a increas-

ingly periodic pattern in their detection rates. This leads to them alternating as

the next strongest result (after ARSER). Where they are at a trough WavePer

shows increasing strength as periodicity increases to a lower frequency component,

with no obvious signs of periodic behaviour affecting their detection rates. Indeed

as the noise increases WavePer shows greater strength and resilience against its

competitors.

Note that we do not include the results for n = 512, 1024 here as most results
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(b) n = 256, σ2 = 1.

30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Periodicity

R
ej

ec
tio

n 
R

at
e

WavePer
WavePerDecay

HWWN
BartlettB

Ljungbox
Fisher

FindFrequency
ARSER

95%

(c) n = 128, σ2 = 3.
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(d) n = 256, σ2 = 3.
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(e) n = 128, σ2 = 5.
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(f) n = 256, σ2 = 5.

Figure 5.8: Probability of detecting periodicity over a number of sizes and noise
levels.
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converged to 1 rapidly and exhibit similar behaviour to that of n = 128, 256 as

shown in Figure 5.8, but they can be found in Appendix 5.6.4. Two points are

noteworthy from those plots, the decline of ARSER for detection as the sample

size increases, and that as noise increases, Ljung-Box is the first test to drop below

the expected level.

5.3.3 Estimation of p

We now turn our attention to the final part of our algorithm, which predicts the

periodicity present. Looking upon the same range of p as in Section 5.3.2, the

results are shown in terms of their Mean Absolute Difference, calculated by:

MADj =
1

|ñj|
∑
i∈ñj

|p̂i − p|

where j is the index for the method used (as given in Table 5.1), nj is the set

of indexes where the method found evidence of periodicity, p̂i is the periodicity

estimated in simulation i = 1, 2, . . . , 1000 and p is the true periodicity. Thus we

only consider those results which indicated periodicity initially. Additionally we

study the standard deviation of our results σ̂MAD j
by banding them with ±σ̂MAD j

.

The results of this part of the simulation study are presented in Figure 5.9.

Looking closely at the plots there are a number of features to note. Firstly in

the lower n case, the level of noise causes the FindFrequency to diverge more

initially from the results of WavePer and ARSER, before continuing to diverge at

a greater magnitude. Noise similarly effects ARSER such that it does not follow

WavePer’s results as closely as the signal becomes more obscure. This occurs

to the point that WavePer has a clear advantage in high noise cases at lower

frequencies. Increasing the sample size causes these issues to become greater as

both FindFrequency and ARSER attempt to fit a higher frequency component

than WavePer. Noise continues to affect both and cause them to diverae much

more substantially as the periodicity increases whereas WavePer shows no clear
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(b) n = 256, σ2 = 1
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(c) n = 128, σ2 = 3
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(d) n = 256, σ2 = 3
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(e) n = 128, σ2 = 5
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Figure 5.9: Mean Absolute Difference from Truth. Shaded areas are the Mean
Absolute Difference plus or minus the standard deviation of the estimate.
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sign of this.

Studying the bands around the estimate, we can see that the highest widths

occur from the ARSER procedure, with the narrowest occurring from FindFre-

quency as it continues to diverge from the expected value. However in compari-

son to WavePer both methods show inconsistent widths as periodicity increases,

whereas WavePer stays approximately consistent. Note that as the sample size

increases that the bands for WavePer increase unlike other methods, but this is

due to the other methods consistently approximating very distant results.

As before we show the results for n = 512, 1024 in Appendix 5.6.5, where the

divergence between FindFrequency and WavePer continues.

5.4 Application: Live Births in Metropolitan

France

It can be anticipated that for daily birth we would expect to find a yearly peri-

odicity and as such we provide this as an application for our methodology. Here

we study a dataset produced by National Institute of Statistics and Economic

Studies (INSEE), the national statistics bureau of France. In particular we focus

our attention on a daily series of Live Births for Metropolitan France (excluding

Mayotte) which spans from 1st January 1968 to 10th August 1973 (INSEE, 2017).

A large and insightful analysis of this data can be found in Regnier-Loilier and

Divinagracia (2010). The series which we study is shown in Figure 5.10.

We focus on different parts of the series in our application here, in the absence

of a confidence interval we take an increasing amount of data to show how our pro-

cedure encloses upon the yearly periodicity, given an increasingly limited amount

of full cycles completed. Currently our algorithm can only support series which

are of dyadic length, such that they are of length 2J for some J . However there

are many processes which could be appended to our algorithm to account for a

non-dyadic sample size, such as maximal overlap and periodic bounding, for more
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Figure 5.10: Live Births in France, from 1st January 1968 to 9th August 1973.

details of which we refer the reader to Nason (2010).

Continuing, we apply our methodology to the series beginning at 1st January

1968 and taking 2J points for J = 9, 10, 11 and does not include a potential non-

stationarity that appears shortly after. The cut off point for each series is shown

in Figure 5.10. In the each segment we are analysing a year and 5 months, 2 years

and 10 monts in the second, 5 years and 7 months in the third and 11 years and

3 months respectively. To best replicate the model we assume in Equation (5.2),

we standardise each segment by subtracting the sample mean and dividing by the

sample standard deviation, as we assume a amplitude of 1 on the sinusoid. Further,

from Figure 5.10 it is possible that there may be an increasing trend present in the

data, as such we attempt to find and remove a linear trend through simple linear

modelling, as trend estimation is not our focus.

Results of our algorithm can be found in Table 5.3 for each segment. We also

show if a linear trend was removed for clarity. Note that for each of the samples

both forms of our test reject the null hypothesis of white noise as expected. Further

the estimated periodicities indicate a yearly pattern in the data. For visual results

from n = 512, 1024, 2048 we refer the reader to Figure 5.11 where we review the

distance metric’s over the search regions and the variance profiles observed and

those expected. For n = 512 it can be seen in Figure 5.11a that although 233 was

chosen as the minimum, there is a noticeable dip in the function around 360, but

there was not enough information at that point to weight it appropriately. This
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is due to lack of information in the eighth scale which is calculated and presented

in the next larger subset in Figure 5.11d. This allows us to get much closer to

the expected periodicity. Further information is then gathered in our final subset

which moves our estimate just beyond our expected value, seemingly due to a large

amount of noise in the 10th scale which reduces the peak structure. This coincides

with the statistical evidence of a trend appearing in the data which may obfuscate

the low frequency components we are searching for.

Segment Test Test Estimated Linear
Length result result (Decay) Periodicity Trend
512 True True 233 No
1024 True True 359 No
2048 True True 377 Yes

Table 5.3: Estimation of periodicity in Daily Births

5.5 Conclusion

Within this paper we have shown the validity of a wavelet based periodicity detec-

tion algorithm. Using the unique representation of each periodicity in a ‘Variance

Profile’ we note a number of observations. Firstly we can determine if there is

periodicity present within the series, with the required power. Secondly we are

able to calculate that if such a periodicity exists, the likely value it holds. We

have shown this through an extensive empirical study and presented an example

of Daily Birth data from France, showing the efficacy of our work.

We find that our work has particular strength in the detection of lower fre-

quency components with only a small amount of full cycles within a series, at a

more competitive rate than those of other methods. The unique representation of

each periodicity allows lower frequency components to be more prominent than

those of more traditional methods such as the Fourier spectrum. It has been shown

that in contradiction to other methods our work does not prefer to determine a

higher frequency component where it is not present, but infact detects an often

over looked lower frequency component instead. With strong detection rates and
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Figure 5.11: Distance metric over the search region (Left) and variance profile
comparisons (Right) for each sample.
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a non-diverging distance from the true value of the periodicity present, our work

is a promising step to automatic modelling of such components.

However, we must draw attention to further work that is required to further

validate this method for extensive use. We have restricted our potential model

to only that of a sinusoid with noise as a proof of concept, however there are few

series which conform so nicely. Furthermore, more work needs to be conducted to

explore the application of this work to higher frequency components. As the study

of the unique profiles show in Figure 5.3, as we progress to lower values of p (high

frequency components), there is much more movement in the variance profiles and

thus we expected it would be difficult to distinguish between them in large noise

cases. However, the slower movement in the low frequency components is where

we draw our strength.

This leaves many avenues to explore in the future. As in Benedetto and Pfan-

der (2002) where they use a generalisation of the Haar Wavelet to suitable fit

their problem, we could explore the effect of alternative wavelets on this process.

Indeed, given the plots given in Figure 5.3, of interest would be similar wavelets

performance and theory in the ‘Daubechies Extremal Phase Family’, of which the

Haar wavelet belongs, and more wavelets beyond this. Furthermore the resilience

of this methodology under different model structures would require further study

to determine the convergent behaviour and improve the algorithm. What we have

found however is a method of detection for a component which would often be

overlooked, which can not only have a significant impact upon prediction, but

could be used unsupervised on a larger scale across the bigger data we encounter

today.
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5.6 Appendix

5.6.1 Proof of Theorem 1

Before directly determining the functional form of the Haar Non-Decimated Wavelet

Variance for scales j we first calculate the first two moments and covariance struc-

ture of the assumed model for calculations further ahead.

Consider the model described in Equation (5.2) which is periodic in p ∈ R can

be described also by

YT = sin
2πT

p
+ εT , εT ∼ N(0, σ2

ε )

where T ∈ {1, 2, . . . , n}. We can model this without knowledge of the current time

T by:

Yt|T = t ∼ N

(
sin

2πt

p
, σ2

ε

)
, T ∼Discrete U(1, n).

We can then calculate expectation of the series:

E(Yt) =
n∑
t=1

E(YT |T = t)P(T = t) =
1

n

n∑
t=1

sin
2πt

p
=

1

n

1

sin π
p

sin
nπ

p
sin

(1 + n)π

p
.

Now consider

E(Y 2
t ) = E(E(Y 2

t |T = t))

=
n∑
t=1

E(Y 2
t |T = t)P(T = t)

=
1

n

n∑
t=1

E(sin2 2πt

p
+ 2εt sin

2πt

p
+ ε2t )

=
1

n

n∑
t=1

(sin2 2πt

p
+ 0 + σ2

ε )

= σ2
ε +

1

n

n∑
t=1

sin2 2πt

p
σ2
ε +

1 + 2n− sin
2(π+2nπ)

p

sin 2π
p

4n
.
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Now we consider the covariance at lag s:

Cov(Yt, Yt+s) = E(YtYt+s)− E(Yt)E(Yt+s)

Firstly consider:

E(YtYt+s) = E(E(YtYt+s|T = t)) =
n∑
t=1

E(YtYt+s|T = t)P(T = t)

=
1

n

n−s∑
t=1

E

[
(sin

2πt

p
+ εt)(sin

2π(t+ s)

p
+ εt+s)

]

=
1

n

n−s∑
t=1

E(sin
2πt

p
sin

2π(t+ s)

p
+ εt+s sin

2πt

p
+ εt sin

2π(t+ s)

p
+ εtεt+s)

=
1

n

[
n−s∑
t=1

sin
2πt

p
sin

2π(t+ s)

p

]
+ δ0,sσ

2
ε

n− s
n

=
2(n− s) cos 2πs

p
+ csc 2π

p
(− sin 2π(1+2n−s)

p
+ sin 2π(1+s)

p
)

4n
+ δ0,sσ

2
ε

n− s
n

=
1

2
cos

2πs

p
− s

2n
cos

2πs

p
+

sin 2π(1+s)
p
− sin 2π(1+2n−s)

p

4n sin 2π
p

+ δ0,sσ
2
ε

n− s
n

.
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Where δi,j is the Kronecker Delta. We can now solve:

Cov(Yt, Yt+s) = E(YtYt+s)− E(Yt)E(Yt+s)

=
1

2
cos

2πs

p
− s

2n
cos

2πs

p
+

sin 2π(1+s)
p
− sin 2π(1+2n−s)

p

4n sin 2π
p

+ δ0,sσ
2
ε

n− s
n

−

(
1

n

1

sin π
p

sin
nπ

p
sin

(1 + n)π

p

)2

= σ2
ε δ0,s +

2n(n− s) cos
(

2πs
p

)
4n2

+
n csc

(
2π
p

)(
sin
(

2π(s+1)
p

)
− sin

(
2π(2n−s+1)

p

))
4n2

−
4 csc2

(
π
p

)
sin2

(
πn
p

)
sin2

(
π(n+1)

p

)
4n2

=
1

2
cos

(
2πs

p

)(
1− s

n

)
+ σ2

ε δ0,s

+
1

n

sin
(

2π(s+1)
p

)
− sin

(
2π(2n−s+1)

p

)
sin
(

2π
p

)


− 1

n2

sin
(
πn
p

)
sin
(
π(n+1)

p

)
sin
(
π
p

)
2

Now we take the Haar Non-Decimated Wavelet Transformation of this series across

scale j and position T shown in Equation (5.2.1). We now consider the first two

moments, then the covariance which leads ultimately to the variance formula.

E(dj,t) = E(
1
√

2
j


2j−1−1∑
i=0

Yt+i

−


2j−1∑
i=2j−1

Yt+i


)

=
1
√

2
j


2j−1−1∑
i=0

E(Yt+i)

−


2j−1∑
i=2j−1

E(Yt+i)


 = 0

Consider next the covariance, we need only to solve:
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E(dj,tdj,t+s) = E(E(dj,Tdj,T+s|T = t)) =
n∑
t=1

E(dj,Tdj,T+s|T = t)P(T = t)

=
1

n

n∑
t=1

E

 1
√

2
j

2j−1−1∑
i=0

YT+i −
2j−1∑
i=2j−1

YT+i


· 1
√

2
j

2j−1−1∑
i=0

YT+s+i −
2j−1∑
i=2j−1

YT+s+i

∣∣∣∣∣∣T = t


=

1

2jn

n∑
t=1

E

2j−1−1∑
i=0

YT+i

2j−1−1∑
i=0

YT+s+i −
2j−1∑
i=2j−1

YT+i

2j−1−1∑
i=0

YT+s+i

−
2j−1−1∑
i=0

YT+i

2j−1∑
i=2j−1

YT+s+i +
2j−1∑
i=2j−1

YT+i

2j−1∑
i=2j−1

YT+s+i

∣∣∣∣∣∣T = t


=

1

2jn

n∑
t=1

E [Aj,T −Bj,T − Cj,T +Dj,T |T = t]
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We break the sum into four parts and solve each individually. The first part is:

1

n

n∑
t=1

E[Aj,T |T = t] =
1

n

n∑
t=1

E

2j−1−1∑
i=0

YT+i

2j−1−1∑
i=0

YT+s+i

∣∣∣∣∣∣T = t


=

1

n

n∑
t=1

2j−1−1∑
i=0

2j−1−1∑
l=0

E (YT+iYT+s+l|T = t)

=
2j−1−1∑
i=0

2j−1−1∑
l=0

E (Yt+iYt+s+l)

=
2j−1−1∑
i=0

2j−1−1∑
l=0

1

2
cos

2π(s+ l − i)
p

− s+ l − i
2n

cos
2π(s+ l − i)

p

+
sin 2π(1+s+l−i)

p
− sin 2π(1+2n−(s+l−i))

p

4n sin 2π
p

+ δ0,s+l−iσ
2
ε

n− (s+ l − i)
n

=

−2(n− s)
(

cos

(
π(2j+2s)

p

)
+ cos

(
π(2j−2s)

p

)
− 2 cos

(
2πs
p

))
16n sin2 π

p

+

− sin

(
π(2j−4n+2s−2)

p

)
+ sin

(
π(2j+4n−2s+2)

p

)
16n sin2 π

p

+

− sin

(
π(2j+2s+2)

p

)
+ sin

(
π(2j−2s−2)

p

)
16n sin2 π

p
sin 2π

p

+
−2 sin

(
2π(2n−s+1)

p

)
+ 2 sin

(
2π(s+1)

p

)
16n sin2 π

p
sin 2π

p

+
2 sin

(
2πs
p

)(
4 cot

(
π
p

)
sin2

(
π2j−1

p

)
− 2j sin

(
π2j

p

))
16n sin2 π

p

+ σ2
ε (2

j−1 − s)
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Rearranging into powers of n:

= −
cos

(
π(2j+2s)

p

)
+ cos

(
π(2j−2s)

p

)
− 2 cos

(
2πs
p

)
8 sin2 π

p

+ σ2
ε (2

j−1 − s)

+
1

n

s
(

cos

(
π(2j+2s)

p

)
+ cos

(
π(2j−2s)

p

)
− 2 cos

(
2πs
p

))
8 sin2 π

p

−
sin

(
π(2j−4n+2s−2)

p

)
+ sin

(
π(2j+4n−2s+2)

p

)
− sin

(
π(2j+2s+2)

p

)
16 sin2 π

p
sin 2π

p

+

sin

(
π(2j−2s−2)

p

)
− 2 sin

(
2π(2n−s+1)

p

)
+ 2 sin

(
2π(s+1)

p

)
16 sin2 π

p
sin 2π

p

+
2 sin

(
2πs
p

)(
4 cot

(
π
p

)
sin2

(
π2j−1

p

)
− 2j sin

(
π2j

p

))
16 sin2 π

p


Note that:

lim
n→∞

sin f(n)

n
→ 0 ⇐⇒ degf(n) < 2
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by L’Hopitals Rule. The second part is therefore:

1

n

n∑
t=1

E[Bj,T |T = t] =
1

n

n∑
t=1

E

 2j−1∑
i=2j−1

YT+i

2j−1−1∑
i=0

YT+s+i

∣∣∣∣∣∣T = t


=

1

n

n∑
t=1

2j−1∑
i=2j−1

2j−1−1∑
l=0

E (YT+iYT+s+l|T = t)

=
2j−1∑
i=2j−1

2j−1−1∑
l=0

E (Yt+iYt+s+l)

=
2j−1∑
i=2j−1

2j−1−1∑
l=0

1

2
cos

2π(s+ l − i)
p

− s+ l − i
2n

cos
2π(s+ l − i)

p

+
sin 2π(1+s+l−i)

p
− sin 2π(1+2n−(s+l−i))

p

4n sin 2π
p

+ δ0,s+l−iσ
2
ε

n− (s+ l − i)
n s=s+l−i

=

−2 (2j + n− s) cos

(
2π(2j−s)

p

)
16n sin2 π

p

+

2 (2j + 2n− 2s) cos

(
π(2j−2s)

p

)
16n sin2 π

p

+

sin

(
2π(2j+2n−s+1)

p

)
− 2 sin

(
π(2j+4n−2s+2)

p

)
16n sin2 π

p
sin 2π

p

+

sin

(
2π(2j−s−1)

p

)
− 2 sin

(
π(2j−2s−2)

p

)
16n sin2 π

p
sin 2π

p

+
sin
(

2π(2n−s+1)
p

)
− sin

(
2π(s+1)

p

)
16n sin2 π

p
sin 2π

p

+

−2 sin

(
π(2j−2s−1)

p

)
− 2 sin

(
π(2j−2s+1)

p

)
16n sin3 π

p

+

sin

(
π(2j+1−2s−1)

p

)
+ sin

(
π(2j+1−2s+1)

p

)
16n sin3 π

p

+
−2 cos

(
π
p

)
sin
(

2πs
p

)
16n sin3 π

p

+
2(s− n) cos

(
2πs
p

)
16n sin2 π

p

+ sσ2
ε
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Collecting terms in powers of n:

=
1

16 sin2 π
p

(
−2 cos

2π(2j − s)
p

+ 4 cos
π(2j − 2s)

p
− 2 cos

2πs

p

)
+ σ2

ε (2
j−1 − s)

− 1

n

2 (2j − s) cos

(
2π(2j−s)

p

)
− 2 (2j − 2s) cos

(
π(2j−2s)

p

)
− 2s cos

(
2πs
p

)
16 sin2 π

p

−
sin

(
2π(2j+2n−s+1)

p

)
− 2 sin

(
π(2j+4n−2s+2)

p

)
+ sin

(
2π(2j−s−1)

p

)
16 sin2 π

p
sin 2π

p

+

2 sin

(
π(2j−2s−2)

p

)
+ sin

(
2π(2n−s+1)

p

)
− sin

(
2π(s+1)

p

)
16 sin2 π

p
sin 2π

p

−
sin

(
π(2j+1−2s+1)

p

)
− 2 cos

(
π
p

)
sin
(

2πs
p

)
16 sin3 π

p

+ sσ2
ε
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Considering next the third part

1

n

n∑
t=1

E[Cj,T |T = t] =
1

n

n∑
t=1

E

2j−1−1∑
i=0

YT+i

2j−1∑
i=2j−1

YT+s+i

∣∣∣∣∣∣T = t


=

1

n

n∑
t=1

2j−1−1∑
i=0

2j−1∑
l=2j−1

E (YT+iYT+s+l|T = t)

=
n∑
t=1

2j−1−1∑
i=0

2j−1∑
l=2j−1

E (Yt+iYt+s+l)

=
n∑
t=1

2j−1−1∑
i=0

2j−1∑
l=2j−1

1

2
cos

2π(s+ l − i)
p

− s+ l − i
2n

cos
2π(s+ l − i)

p

+
sin 2π(1+s+l−i)

p
− sin 2π(1+2n−(s+l−i))

p

4n sin 2π
p

+ δ0,s+l−iσ
2
ε

n− (s+ l − i)
n s=s+l−i

=

2 (2j − n+ s) cos

(
2π(2j+s)

p

)
16n sin2 π

p

−
2 (2j − 2n+ 2s) cos

(
π(2j+2s)

p

)
16n sin2 π

p

−
sin

(
2π(2j−2n+s−1)

p

)
16n sin2 π

p
sin 2π

p

+

2

(
sin

(
π(2j−4n+2s−2)

p

)
+ sin

(
π(2j+2s+2)

p

))
16n sin2 π

p
sin 2π

p

−
sin

(
2π(2j+s+1)

p

)
− sin

(
2π(2n−s+1)

p

)
+ sin

(
2π(s+1)

p

)
16n sin2 π

p
sin 2π

p

+

2 sin

(
π(2j+2s−1)

p

)
+ 2 sin

(
π(2j+2s+1)

p

)
16n sin3 π

p

−
sin

(
π(2j+1+2s−1)

p

)
+ sin

(
π(2j+1+2s+1)

p

)
+ sin

(
π(2s−1)

p

)
16n sin3 π

p

−
sin
(

2πs+π
p

)
16n sin3 π

p

−
2(n− s) cos

(
2πs
p

)
16n sin2 π

p

Note that there is no overlap between the ranges of i and l such that σ2
ε exists.
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Collecting these terms in powers of n:

=
1

16 sin2 π
p

(
2 cos

2π(2j + s)

p
− 4 cos

π(2j + 2s)

p
+ 2 cos

2πs

p

)

+
1

n

2 (2j + 2s) cos

(
π(2j+2s)

p

)
− 2 (2j + s) cos

(
2π(2j+s)

p

)
− 2s cos

(
2πs
p

)
16 sin2 π

p

+

sin

(
2π(2j−2n+s−1)

p

)
− 2 sin

(
π(2j−4n+2s−2)

p

)
+ sin

(
2π(2j+s+1)

p

)
16 sin2 π

p
sin 2π

p

−
2 sin

(
π(2j+2s+2)

p

)
− sin

(
2π(2n−s+1)

p

)
+ sin

(
2π(s+1)

p

)
16 sin2 π

p
sin 2π

p

+

sin

(
π(2j+1+2s+1)

p

)
+ sin

(
π(2s−1)

p

)
+ sin

(
2πs+π
p

)
16 sin3 π

p


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Finally the fourth part:

1

n

n∑
t=1

E[Dj,T |T = t] =
1

n

n∑
t=1

E

 2j−1∑
i=2j−1

YT+i

2j−1∑
i=2j−1

YT+s+i

∣∣∣∣∣∣T = t


=

1

n

n∑
t=1

2j−1∑
i=2j−1

2j−1∑
l=2j−1

E (YT+iYT+s+l|T = t)

=
2j−1∑
i=2j−1

2j−1∑
l=2j−1

E (Yt+iYt+s+l)

=
2j−1∑
i=2j−1

2j−1∑
l=2j−1

1

2
cos

2π(s+ l − i)
p

− s+ l − i
2n

cos
2π(s+ l − i)

p

+
sin 2π(1+s+l−i)

p
− sin 2π(1+2n−(s+l−i))

p

4n sin 2π
p

+ δ0,s+l−iσ
2
ε

n− (s+ l − i)
n s=s+l−i

=

2(n− s)
(

cos

(
π(2j+2s)

p

)
− cos

(
π(2j−2s)

p

)
+ 2 cos

(
2πs
p

))
16n sin2 π

p

+

− sin

(
π(2j−4n+2s−2)

p

)
+ sin

(
π(2j+4n−2s+2)

p

)
16n sin2 π

p
sin 2π

p

−
sin

(
π(2j+2s+2)

p

)
− sin

(
π(2j−2s−2)

p

)
16n sin2 π

p
sin 2π

p

+
−2 sin

(
2π(2n−s+1)

p

)
+ 2 sin

(
2π(s+1)

p

)
16n sin2 π

p
sin 2π

p

+
2 sin

(
2πs
p

)(
4 cot

(
π
p

)
sin2

(
π2j−1

p

)
− 2j sin

(
π2j

p

))
16n sin2 π

p

+ σ2
ε (2

j−1 − s)
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Rearranging into powers of n:

= −
cos

(
π(2j+2s)

p

)
+ cos

(
π(2j−2s)

p

)
− 2 cos

(
2πs
p

)
8 sin2 π

p

+ σ2
ε (2

j−1 − s)

+
1

n

s
(

cos

(
π(2j+2s)

p

)
+ cos

(
π(2j−2s)

p

)
− 2 cos

(
2πs
p

))
8 sin2 π

p

−
sin

(
π(2j−4n+2s−2)

p

)
+ sin

(
π(2j+4n−2s+2)

p

)
− sin

(
π(2j+2s+2)

p

)
16 sin2 π

p
sin 2π

p

+

sin

(
π(2j−2s−2)

p

)
− 2 sin

(
2π(2n−s+1)

p

)
+ 2 sin

(
2π(s+1)

p

)
16 sin2 π

p
sin 2π

p

+
2 sin

(
2πs
p

)(
4 cot

(
π
p

)
sin2

(
π2j−1

p

)
− 2j sin

(
π2j

p

))
16 sin2 π

p


Note that the fourth part is equivalent to the first part.
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Combining all this together we get:

E(dj,tdj,t+s) =
1

2jn

n∑
t=1

E[Aj,T |T = t]− E[Bj,T |T = t]

− E[Cj,T |T = t] + E[Dj,T |T = t]

=

2 (2j + n− s) cos

(
2π(2j−s)

p

)
+ 2n cos

(
2π(2j+s)

p

)
2j+4n sin

π
p

+

−8n cos

(
π(2j+2s)

p

)
− 2 (2j + 4n− 4s) cos

(
π(2j−2s)

p

)
2j+4n sin

π
p

+

− csc
(

2π
p

)
sin

(
2π(2j+2n−s+1)

p

)
+ csc

(
2π
p

)
sin

(
2π(2j−2n+s−1)

p

)
2j+4n sin

π
p

−
4 csc

(
2π
p

)
sin

(
π(2j−4n+2s−2)

p

)
− 4 csc

(
2π
p

)
sin

(
π(2j+4n−2s+2)

p

)
2j+4n sin

π
p

−
2j+2 sin

(
π2j

p

)
sin
(

2πs
p

)
+ 2j+1 cos

(
2π(2j+s)

p

)
2j+4n sin

π
p

+

−2s cos

(
2π(2j+s)

p

)
+ 2j+1 cos

(
π(2j+2s)

p

)
+ 8s cos

(
π(2j+2s)

p

)
2j+4n sin

π
p

+

16 cot
(
π
p

)
sin2

(
π2j−1

p

)
sin
(

2πs
p

)
− csc

(
2π
p

)
sin

(
2π(2j−s−1)

p

)
2j+4n sin

π
p

+

csc
(

2π
p

)
sin

(
2π(2j+s+1)

p

)
− 2 csc

(
π
p

)
sin

(
π(2j+2s−1)

p

)
2j+4n sin

π
p

+

−2 csc
(
π
p

)
sin

(
π(2j+2s+1)

p

)
− 4 csc

(
2π
p

)
sin

(
π(2j+2s+2)

p

)
2j+4n sin

π
p

+

csc
(
π
p

)
sin

(
π(2j+1+2s−1)

p

)
+ csc

(
π
p

)
sin

(
π(2j+1+2s+1)

p

)
2j+4n sin

π
p

+

4 csc
(

2π
p

)
sin

(
π(2j−2s−2)

p

)
+ 2 csc

(
π
p

)
sin

(
π(2j−2s−1)

p

)
2j+4n sin

π
p

+

2 csc
(
π
p

)
sin

(
π(2j−2s+1)

p

)
− csc

(
π
p

)
sin

(
π(2j+1−2s−1)

p

)
2j+4n sin

π
p

+ . . . (continued overleaf)
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E(dj,tdj,t+s) = · · ·+

+

− csc
(
π
p

)
sin

(
π(2j+1−2s+1)

p

)
+ 12n cos

(
2πs
p

)
2j+4n sin

π
p

−
6 csc

(
2π
p

)
sin
(

2π(2n−s+1)
p

)
+ 12s cos

(
2πs
p

)
2j+4n sin

π
p

+
2 cot

(
π
p

)
sin
(

2πs
p

)
+ 6 csc

(
2π
p

)
sin
(

2π(s+1)
p

)
2j+4n sin

π
p

+
csc
(
π
p

)
sin
(
π(2s−1)

p

)
+ csc

(
π
p

)
sin
(

2πs+π
p

)
2j+4n sin

π
p

+ σ2
ε −

3s

2j
σ2
ε

= Cov(dj,t, dj,t+s)
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Collecting into terms of n:

Cov(dj,t, dj,t+s) =

2 cos

(
2π(2j−s)

p

)
+ 12 cos

(
2πs
p

)
+ 2 cos

(
2π(s+2j)

p

)
2j+4 sin2 π

p

−
8 cos

(
π(2j−2s)

p

)
+ 8 cos

(
π(2s+2j)

p

)
2j+4 sin2 π

p

+ σ2
ε −

3s

2j
σ2
ε

+
1

n

[
1

2j+4 sin π
p

(
16 cot

(
π

p

)
sin

(
2πs

p

)
sin2

(
2j−1π

p

)
+ 2j+1 cos

(
2π (2j − s)

p

)
− 2s cos

(
2π (2j − s)

p

)
− 12s cos

(
2πs

p

)
− 2j+1 cos

(
2π (s+ 2j)

p

)
− 2s cos

(
2π (s+ 2j)

p

)
+ 2j+1 cos

(
π (2s+ 2j)

p

)
+ 8s cos

(
π (2s+ 2j)

p

)
− 2j+1 cos

(
π (2j − 2s)

p

)
+ 8s cos

(
π (2j − 2s)

p

)
− csc

(
2π

p

)
sin

(
2π (−s+ 2j − 1)

p

)
− 6 csc

(
2π

p

)
sin

(
2π(2n− s+ 1)

p

)
− csc

(
2π

p

)
sin

(
2π (2n+ 2j − s+ 1)

p

)
+ 2 cot

(
π

p

)
sin

(
2πs

p

)
− 2j+2 sin

(
2jπ

p

)
sin

(
2πs

p

)
+ 6 csc

(
2π

p

)
sin

(
2π(s+ 1)

p

)
+ csc

(
2π

p

)
sin

(
2π (s+ 2j + 1)

p

)
+ csc

(
2π

p

)
sin

(
2π (−2n+ 2j + s− 1)

p

)
+ csc

(
π

p

)
sin

(
π(2s− 1)

p

)
− 2 csc

(
π

p

)
sin

(
π (2s+ 2j − 1)

p

)
− 2 csc

(
π

p

)
sin

(
π (2s+ 2j + 1)

p

)
− 4 csc

(
2π

p

)
sin

(
π (2s+ 2j + 2)

p

)
+ . . . (continued overleaf)
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Cov(dj,t, dj,t+s) = . . .

+ csc

(
π

p

)
sin

(
π (2s+ 2j+1 − 1)

p

)
+ csc

(
π

p

)
sin

(
π (2s+ 2j+1 + 1)

p

)
− 4 csc

(
2π

p

)
sin

(
π (−4n+ 2j + 2s− 2)

p

)
+ csc

(
π

p

)
sin

(
2πs+ π

p

)
+ 4 csc

(
2π

p

)
sin

(
π (−2s+ 2j − 2)

p

)
+ 2 csc

(
π

p

)
sin

(
π (−2s+ 2j − 1)

p

)
+ 2 csc

(
π

p

)
sin

(
π (−2s+ 2j + 1)

p

)
− csc

(
π

p

)
sin

(
π (−2s+ 2j+1 − 1)

p

)
− csc

(
π

p

)
sin

(
π (−2s+ 2j+1 + 1)

p

)
+4 csc

(
2π

p

)
sin

(
π (4n+ 2j − 2s+ 2)

p

))]
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Thus we finally have:

Cov(dj,t, dj,t+s) =

2 cos

(
2π(2j−s)

p

)
+ 12 cos

(
2πs
p

)
+ 2 cos

(
2π(s+2j)

p

)
2j+4 sin2 π

p

+

−8 cos

(
π(2s+2j)

p

)
− 8 cos

(
π(2j−2s)

p

)
2j+4 sin2 π

p

+ σ2
ε −

3s

2j
σ2
ε + o(1)s,j,p

Var(dj,t) =
2 cos

(
2π2j

p

)
+ 12 + 2 cos

(
2π2j

p

)
− 8 cos

(
π2j

p

)
− 8 cos

(
π2j

p

)
2j+4 sin2 π

p

+ σ2
ε + o(1)0,j,p

=
4 cos

(
2j+1π
p

)
− 16 cos

(
2jπ
p

)
+ 12

2j+4 sin2 π
p

+ σ2
ε + o(1)0,j,p

=
32 sin4

(
2j−1π
p

)
2j+4 sin2

(
π
p

) + σ2
ε + o(1)0,j,p

Thus finally:

Var(dj,t) =
sin4

(
2j−1π
p

)
2j−1 sin2 π

p

+ σ2
ε + o(1)s=0

as expected.

5.6.2 Proof of Theorem 2

Here we prove the the distribution of the square of Non-Decimated Haar Wavelet

cofficients summed across each scale as described in Theorem 5.2. First we de-

termine the distribution of the squared coefficients, then the correlation structure

between each coefficient within a scale, before determining the distribution of the

sum.

First we begin by considering the distribution of the squared coefficient. We

begin by detailing the distribution of our white noise series Yt as normal and
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considering the Non-Decimated Haar Wavelet transform as a linear combination:

Yt ∼ N(0, σ2
ε )

⇒dj,t =
1
√

2
j

2j−1−1∑
i=0

Yt+i −
2j−1∑
i=2j−1

Yt+i

 ∼ N
(
0, σ2

ε

)
⇒
d2
j,t

σ2
ε

∼ X 2
1 ⇒ d2

j,t ∼ Γ

(
1

2
, 2σ2

ε

)

Now we look to study the correlation structure of the squared coefficients d2
j,k,

Corr(d2
j,s, d

2
j,v) =

Cov(d2
j,s, d

2
j,v)√

Var(d2
j,s)Var(d2

j,v)
.

We begin by studying the covariance:

Cov(d2
j,s, d

2
j,v) = E(d2

j,sd
2
j,v)− E(d2

j,s)E(d2
j,v)

Note that if |v− s| ≥ 2j then d2
j,s and d2

j,v are independent, making the covariance

zero. Thus we study the range |v − s| < 2j, beginning with:

E(d2
j,s) = E

 1

2j

2j−1−1∑
i=0

εs+i −
2j−1∑
i=2j−1

εs+i

2
= E

 1

2j

2j−1−1∑
i=0

2j−1−1∑
k=0

εs+iεs+k − 2
2j−1−1∑
i=0

2j−1∑
k=2j−1

εs+iεs+k

+
2j−1∑
i=2j−1

2j−1∑
k=2j−1

εs+iεs+k


=

1

2j
[
2j−1σ2

ε + 0 + 2j−1σ2
ε

]
= σ2

ε .
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Next we consider the joint expectation,

E(d2
j,sd

2
j,v) = E

 1

22j

2j−1−1∑
i=0

εs+i −
2j−1∑
i=2j−1

εs+i

2 2j−1−1∑
i=0

εv+i −
2j−1∑
i=2j−1

εv+i

2
=

1

22j
E

2j−1−2∑
i=0

2j−1−1∑
l=0

εs+iεs+l − 2
2j−1−2∑
i=0

2j−1∑
l=2j−1

εs+iεs+l

+
2j−1∑
i=2j−1

2j−1∑
l=2j−1

εs+iεs+l

2j−1−2∑
i=0

2j−1−1∑
l=0

εv+iεv+l

−2
2j−1−2∑
i=0

2j−1∑
l=2j−1

εv+iεv+l +
2j−1∑
i=2j−1

2j−1∑
l=2j−1

εv+iεv+l


=

1

22j

2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1−1∑
n=0

E(εs+iεs+lεv+nεv+m)

− 2
2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1∑
n=2j−1

E(εs+iεs+lεv+nεv+m)

+
2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1∑
m=2j−1

2j−1∑
n=2j−1

E(εs+iεs+lεv+nεv+m)

− 2
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

E(εs+iεs+lεv+nεv+m)

+ 4
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

E(εs+iεs+lεv+nεv+m)

− 2
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

E(εs+iεs+lεv+nεv+m)

+
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

E(εs+iεs+lεv+nεv+m)

− 2
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

E(εs+iεs+lεv+nεv+m)

+
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

E(εs+iεs+lεv+nεv+m)


= λs,v
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Note that by Isserli’s Theorem:

E(εs+iεs+lεv+nεv+m) = E(εs+iεs+l)E(εv+nεv+m) + E(εs+iεv+n)E(εs+lεv+m)+

E(εs+iεv+m)E(εv+nεs+l)

= [δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l]σ
4
ε

Thus we continue:

λs,v =
σ4
ε

22j

2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1−1∑
n=0

δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l

− 2
2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1∑
n=2j−1

δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l

+
2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l

− 2
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l

+ 4
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l

− 2
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l

+
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l

− 2
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l

+
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δi,lδn,m + δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


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The first column of sums can be easily calculated to give,

λs,v =
σ4
ε

22j

4j−1 +
2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1−1∑
n=0

δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


− 2

0 +
2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1∑
n=2j−1

δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


+

4j−1 +
2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


− 2

0 +
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


+ 4

0 +
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


− 2

0 +
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


+

4j−1 +
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


− 2

0 +
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


+

4j−1 +
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δs+i,v+nδs+l,v+m + δs+i,v+mδv+n,s+l


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Reducing the second column we get,

λs,v = σ4
ε +

σ4
ε

22j

I{1 ≤ |s− v| ≤ 2j−1}(2j−1 − |s− v|)2

+
2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1−1∑
n=0

δs+i,v+mδv+n,s+l


− 2

I{1 ≤ s− v ≤ 2j−1}(s− v)(2j−1 − (s− v))

+
2j−1−1∑
i=0

2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


+

I{1 ≤ s− v ≤ 2j}(2j−1 − |s− v − 2j−1|)2

+
2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


− 2

I{1 ≤ v − s ≤ 2j−1}(v − s)(2j−1 − (v − s))

+
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

δs+i,v+mδv+n,s+l


+ 4

0 +
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


− 2

I{1 ≤ s− v ≤ 2j−1}(s− v)(2j−1 − (s− v))

+
2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


+

I{1 ≤ v − s ≤ 2j}(2j−1 − |v − s− 2j−1|)2

+
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

δs+i,v+mδv+n,s+l


+ . . . (continued overleaf)
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λs,v = . . .

− 2

I{1 ≤ v − s ≤ 2j−1}(v − s)(2j−1 − (v − s))

+
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


+

I{1 ≤ |s− v| ≤ 2j−1}(2j−1 − |s− v|)2

+
2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


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Noting the reflections we combine to get:

λs,v =
σ4
ε

22j

2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1−1∑
n=0

δs+i,v+mδv+n,s+l


− 2

2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1−1∑
m=0

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


+

2j−1−1∑
i=0

2j−1−1∑
l=0

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


− 2

2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

δs+i,v+mδv+n,s+l


+ 4

2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


− 2

2j−1−1∑
i=0

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


+

 2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1−1∑
n=0

δs+i,v+mδv+n,s+l


− 2

 2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1−1∑
m=0

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l


+

 2j−1∑
i=2j−1

2j−1∑
l=2j−1

2j−1∑
m=2j−1

2j−1∑
n=2j−1

δs+i,v+mδv+n,s+l



+ σ4
ε


1− |s−v|(2

j−1−|s−v|)
22j−2 + (2j−1−|s−v|)2

22j−1

+ (2j−1−||s−v|−2j−1|)2
22j

if 1 ≤ |s− v| ≤ 2j−1

1 + (2j−1−||s−v|−2j−1|)2
22j

if 2j−1 + 1 ≤ |s− v| ≤ 2j
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Finally we solve the sums to get:

λs,v =
σ4
ε

22j

[
I{1 ≤ |s− v| ≤ 2j−1}(2j−1 − |s− v|)2

− 2
(
I{1 ≤ s− v ≤ 2j−1}(s− v)(2j−1 − (s− v))

)
+ I{1 ≤ s− v ≤ 2j}(2j−1 − |s− v − 2j−1|)2

− 2
(
I{1 ≤ v − s ≤ 2j−1}(v − s)(2j−1 − (v − s))

)
+ 4

(
I{1 ≤ |s− v| ≤ 2j−1}(2j−1 − |s− v|)2

)
− 2

(
I{1 ≤ s− v ≤ 2j−1}(s− v)(2j−1 − (s− v))

)
+
(
I{1 ≤ v − s ≤ 2j}(2j−1 − |v − s− 2j−1|)2

)
− 2

(
I{1 ≤ v − s ≤ 2j−1}(v − s)(2j−1 − (v − s))

)
+
(
I{1 ≤ |s− v| ≤ 2j−1}(2j−1 − |s− v|)2

)]

+ σ4
ε


1− |s−v|(2

j−1−|s−v|)
22j−2 + (2j−1−|s−v|)2

22j−1

+ (2j−1−||s−v|−2j−1|)2
22j

if 1 ≤ |s− v| ≤ 2j−1

1 + (2j−1−||s−v|−2j−1|)2
22j

if 2j−1 + 1 ≤ |s− v| ≤ 2j
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Again noting the symmetry we reduce to:

λs,v = σ4
ε


1− |s−v|(2

j−1−|s−v|)
22j−2 + (2j−1−|s−v|)2

22j−1

+ (2j−1−||s−v|−2j−1|)2
22j

if 1 ≤ |s− v| ≤ 2j−1

1 + (2j−1−||s−v|−2j−1|)2
22j

if 2j−1 + 1 ≤ |s− v| ≤ 2j

+ σ4
ε


− |s−v|(2

j−1−|s−v|)
22j−2 + 3(2j−1−|s−v|)2

22j−1

+ (2j−1−||s−v|−2j−1|)2
22j

if 1 ≤ |s− v| ≤ 2j−1

(2j−1−||s−v|−2j−1|)2
22j

if 2j−1 + 1 ≤ |s− v| ≤ 2j

= σ4
ε


1− |s−v|(2

j−1−|s−v|)
22j−3 + (2j−1−|s−v|)2

22j−3

+ (2j−1−||s−v|−2j−1|)2
22j−1 if 1 ≤ |s− v| ≤ 2j−1

1 + (2j−1−||s−v|−2j−1|)2
22j−1 if 2j−1 + 1 ≤ |s− v| ≤ 2j

= σ4
ε


4 + 9(s−v)2

22j−1 − 14|s−v|+|2j−2|s−v||
2j

if 1 ≤ |s− v| ≤ 2j−1

1 + (2j−1−||s−v|−2j−1|)2
22j−1 if 2j−1 + 1 ≤ |s− v| ≤ 2j

Recall from earlier that d2
j,k ∼ Gamma(1

2
, 2σ2

ε ). We can now combine this

information to get:

Corr(d2
j,s, d

2
j,v) =

Cov(d2
j,s, d

2
j,v)√

Var(d2
j,s)Var(d2

j,v)

=


[
4+

9(s−v)2

22j−1 −
14|s−v|+|2j−2|s−v||

2j

]
σ4
ε−σ4

ε

2σ4
ε

if 1 ≤ |s− v| ≤ 2j−1[
1+

(2j−1−||s−v|−2j−1|)2

22j−1

]
σ4
ε−σ4

ε

2σ4
ε

if 2j−1 + 1 ≤ |s− v| ≤ 2j

=


3
2

+
(

3(s−v)
2j

)2

− 7|s−v|+|2j−1−|s−v||
2j

if 1 ≤ |s− v| ≤ 2j−1(
(2j−1−||s−v|−2j−1|)

2j

)2

if 2j−1 + 1 ≤ |s− v| ≤ 2j
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Now that we have the covariance and correlation of the d2
j,k we follow the

approach of (Feng et al., 2016) which says that if we have correlated gamma

random variables

γn ∼ Γ

(
mn,

Ωn

mn

)
n = 1, 2, . . . , N.

With covariance Cov(γi, γj) = Rγ(i, j) then the sum of these variables
∑N

n=1 γn =

γ can be approximately distributed as

γ ∼ Gamma


(∑N

n=1 Ωn

)2

∑N
i=1

∑N
j=1 Rγ(i, j)

,

∑N
i=1

∑N
j=1 Rγ(i, j)∑N
n=1 Ωn

 .

Given we know that mn = 1
2

and thus Ωn = σ2
ε , we need to determine:

N∑
s=1

N∑
v=1

Rd2j
(s, v) =

N∑
s=1

N∑
v=1

Cov(d2
j,s, d

2
j,v)

Note that we let N = 2J − 2j + 1 as this captures the non-decimated wavelet

coefficients which do not overlap the end of the series on scale j. Thus we continue

2J−2j+1∑
s=1

2J−2j+1∑
v=1

Rd2j
(s, v)

=
2J−2j+1∑
s=1

2J−2j+1∑
v=1

σ4
ε


3 + 9(s−v)2

22j−1 − 14|s−v|+|2j−2|s−v||
2j

if 0 ≤ |s− v| ≤ 2j−1

(2j−1−||s−v|−2j−1|)2
22j−1 if 2j−1 + 1 ≤ |s− v| ≤ 2j

= σ4
ε

2J−2j+1∑
s=1

2J−2j+1∑
v=1


f1(s− v) if 0 ≤ |s− v| ≤ 2j−1

f2(s− v) if 2j−1 + 1 ≤ |s− v| ≤ 2j

This can split into two cases: J = j and J > j. In the first case we are left with:

Rd2j
(1, 1) = σ4

ε f1(0) = 2σ4
ε
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Considering the second case we continue with:

2J−2j+1∑
s=1

2J−2j+1∑
v=1

Rd2j
(s, v)

= σ4
ε

2J−2j+1∑
s=1

2J−2j+1∑
v=1


f1(s− v) if 0 ≤ |s− v| ≤ 2j−1

f2(s− v) if 2j−1 + 1 ≤ |s− v| ≤ 2j

= (2J − 2j + 1)f1(0) + 2(2J − 2j + 1− 1)f1(1) + . . .

· · ·+ 2(2J − 2j + 1− 2j−1)f1(2j−1)

+ 2(2J − 2j + 1− (2j−1 + 1))f2(2j−1 + 1) + . . .

· · ·+ f2(2j)(2J − 2j + 1− 2j)

= (2J − 2j + 1)2σ4
ε + 2

2j−1∑
i=1

(2J − 2j + 1− i)f1(i)

+ 2
2j−1∑

i=2j−1+1

(2J − 2j + 1− i)f2(i)

= (2J − 2j + 1)2σ4
ε + 2(2J − 2j + 1)

2j−1∑
i=1

f1(i)− 2
2j−1∑
i=1

if1(i)

+ 2(2J − 2j + 1)
2j−1∑

i=2j−1+1

f2(i)− 2
2j−1∑

i=2j−1+1

if2(i)

= 2(2J − 2j + 1)

σ4
ε +

2j−1∑
i=1

f1(i) +
2j−1∑

i=2j−1+1

f2(i)

−
2j−1∑
i=1

if1(i) +
2j−1∑

i=2j−1+1

if2(i)


= 2(2J − 2j + 1)

[
σ4
ε +

σ4
ε

2j+2

(
6− 3 · 2j + 4j

)
+

σ4
ε

3 · 2j+2

(
2− 3 · 2j + 4j

)]
−
[
σ4
ε

32

(
2 + 2j

)2
+
σ4
ε

96

(
−2 + 2j

) (
−2 + 5 · 2j

)]

The final results resolves to:

2J−2j+1∑
s=1

2J−2j+1∑
v=1

Rd2j
(s, v) =


2σ4

ε if J = j

rjσ
4
ε if J > j
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where rj = 3−1 · 2−j−1
(
20− 11(2j+1) + 5(22+J) + 22+2j+J + 4j−1 − 5(8j)

)
.

With this we know that:

2J−2j+1∑
k=1

d2
j,k ∼


Gamma

(
(σ2
ε )2

2σ4
ε
, 2σ4

ε

σ2
ε

)
if J = j

Gamma
(

((2J−2j+1)σ2
ε )2

rjσ4
ε

,
rjσ

4
ε

(2J−2j+1)σ2
ε

)
if J > j

∼


Gamma

(
1
2
, 2σ2

ε

)
if J = j

Gamma
(

(2J−2j+1)2

rj
,

rjσ
2
ε

2J−2j+1

)
if J > j

5.6.3 Proof of Theorem 3

This proof shows the quick calculation necessary to determine the periodicity where

two scales cross by having the same absolute power.

We consider this in the case where n→∞ such that following Theorem 2 if

2J−2j+1∑
k=1

d2
j,k =

2J−2j+1+1∑
k=1

d2
j+1,k

⇐⇒
sin4

(
2j−1π
p

)
2j−1 sin2

(
π
p

) =
sin4

(
2jπ
p

)
2j sin2

(
π
p

)
⇐⇒ 2 sin4

(
2j−1π

p

)
= sin4

(
2jπ

p

)
⇐⇒ 2 sin4

(
2j−1π

p

)
= 24 sin4

(
2j−1π

p

)
cos4

(
2j−1π

p

)
⇐⇒ 1 = 23 cos4

(
2j−1π

p

)
⇐⇒ 2−

3
4 = cos

(
2j−1π

p

)
⇐⇒ p =

2j−1π

cos−1
(

2−
3
4

)
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5.6.4 Detection Graphs n = 512, 1024
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(a) n = 512, σ2 = 1.
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(b) n = 1024, σ2 = 1.
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(c) n = 512, σ2 = 3.
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(d) n = 1024, σ2 = 3.
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(e) n = 512, σ2 = 5.
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(f) n = 1024, σ2 = 5.

Figure 5.12: Probability of Detecting Periodicity over a number of sizes and noise
levels.
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5.6.5 Estimation Graphs n = 512, 1024
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(a) n = 512, σ2 = 1
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(b) n = 1024, σ2 = 1
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(c) n = 512, σ2 = 3
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(d) n = 1024, σ2 = 3
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(e) n = 512, σ2 = 5
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(f) n = 1024, σ2 = 5

Figure 5.13: Mean Absolute Difference from Truth (Left) and amount of series
considered (Right). Shaded areas are the Mean Absolute Difference plus or minus
the standard deviation of the estimate.
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Chapter 6

Automatic Dynamic Factor Model

6.1 Introduction

In comparison to the usual forecasting, which looks into the future, Nowcasting is

the prediction of a series right now. This is particularly important for European

Area Gross Domestic Product (EAGDP), a key measure of the output of the

European Area (a full defintion provided by OECD can be found in OECD (2018)).

Whilst this may seem unusual for such a key quantity, there are a significant

number of series forming this measure for which the truth is often very hard

to determine. Given the time taken for data collection and processing, coupled

with an asynchronous schedule of publication, the truth of EAGDP is difficult to

determine quickly. Nowcasting methodology allows for a prediction of a complex

system such as GDP to be made, despite a revision schedule which suggests the

true figure will not be determined till much after the fact. It is this problem

which is of particular interest to us, more specifically for the European Area Gross

Domestic Product (EAGDP) which we focus on here.

Nowcasting EAGDP is a complex and large task to undertake, given the actual

values are created from an aggregation of a number of countries (of which their

GDP will be nowcasted) which make up its final figure. However there are many

models in existance which attempt to provide a guidance of the value, such as the

well known Eurostat Flash Estimate (Eurostat, 2016), a weighted aggregate of the
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member countries estimates upon their own GDP. Many other methodology exists

such as: Grasmann and Keereman (2001) using linear regression with a moving

average error term; Marcellino et al. (2003) combining univariate autoregressions

of each country; Rünstler and Sédillot (2003) and Baffigi et al. (2004) with bridge

equations; Banerjee et al. (2005) employing leading indicators in a number of

models including a dynamic factor model; Diron (2008) explores the use of vintages

(non-revised data) with bridge equations; Angelini et al. (2011) combining bridge

equations with factor models, to name but a few.

As can be seen by the brief highlight of literature, there are many approaches

that can be taken to model such a complex system, using many different datasets

and components. Given the changing nature of EAGDP, such that there are

recessions and booms in the business cycle, and that certain industries become

more prevalent through time, it can be expected that measuring any such value

must account for changing conditions. Much methodology attempts to do this by

using a large and vast dataset covering many areas from Industrial Production to

consumer expectations. However, this still relies upon a wealth of prior knowledge

of series which are currently relevant to the estimation being made, which may

not always be the case or may change on too frequent of a basis.

Here we approach this modelling problem from a naive perspective. Rather

than determine the necessary relationships at any one time point, we employ a

stepwise algorithm which selects the necessary components based upon a predictive

measure fitted by a Dynamic Factor Model. These models are a common approach

in Nowcasting, being widely used across the literature worldwide. This is such

that we do not model directly against the datasets we are given, but instead

upon hidden factors shared amongst coincident series. This provides strength to

our particular problem as the dataset, which we describe further in Section 6.2.1,

we use is based upon quickly produced figures from surveys and exchange rate

indicators, which may not best directly represent EAGDP, however their shared

behaviour between them may be more indicative. This therefore aims to account
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for the naive approach we take alongside the varied publication scehdule of data.

Our work is structured as follows. We begin by exploring our motivation of

EAGDP in Section 6.2 reviewing the data used and the previous methodology

employed. Section 6.3 introduces the Dynamic Factor Model, used to measure the

different movements and review the literature of these models and their usage in

different fields. Further, we detail the algorithm constructed around these models

to estimate the EAGDP data naively. We experiment with the algorithm through

an empirical study in Section 6.4. Following this we then generalise our approach

and explore additional options in our selection process in Section 6.5. Finally we

conclude with closing remarks in Section 6.6.

6.2 European Area GDP

Our original motivation behind the work conducted in this Chapter comes from

Nowcasting European Area Gross Domestic Product (EAGDP), and improving

upon the Nowcasting generated by competing models. It is this problem we focus

upon here in this section. Firstly we outline the data to be used within Section

6.2.1. Following this we outline the previous models used in this problem in Section

6.2.2.

6.2.1 Data

Within the context of nowcasting, the availability of information is a key consid-

eration when it comes to selection of the correct variables. In our investigation we

work with data which is published quickly due to its nature. These variables are

assumed to have a relevance to our problem, but no formal testing or explorative

analysis has been conducted and we leave this to our work that follows. Further,

due to there being no investigation into these variables in this context, we are

given no information a priori regarding the structure of any model we may wish

to fit.
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Our work was motivated from a problem presented by Eurostat, and it is from

them that we acquire our data, listed in Table 6.1. Their original implementation

used proprietary data whereas the new implementation is based on open source

data. We apply transformations to each variable in an attempt to normalise them

for fitting a DFM. Each of these datasets has been classified as ‘soft’ or ’hard’

as a representation of their qualitative nature, note that we do not use this clas-

sification within the modelling. For example, the Euro/Dollar Exchange Rate is

non-subjective and is thus classified ‘hard’ whereas industrial production expec-

tations is collected via a survey of companies where they predict their outputs,

which can be seen as subjective and thus classified as ‘soft’. However, this data is

particularly useful as they can be published quickly and thus aid in nowcasting as

whilst we may suspect they are not the most indicative of EAGDP, they may still

provide insight. This data is given over the range of February 1985 - August 2017.

Our variable of interest for modelling is the quarterly European Area Gross

Domestic Product. This quantity is revised throughout the quarter as more data

becomes available, but it remains quarterly. Therefore, as our indicator variables

are on a monthly frequency we must employ a form of temporal disaggregation

to calculate the data on a monthly frequency. We use the Litterman (Litterman,

1983) method as is commonly employed within Eurostat, using a sum disaggre-

gation such that the sum of three months would equal a quarter. Note that as is

standard within the industry, we do not estimate the actual figure of EAGDP, but

instead its growth rate.

As will be seen in Section 6.3.4 we use both the monthly and quarterly versions

of EAGDP separately to see which provides the most accurate nowcasts when

measuring our estimates.
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6.2.2 Previous Models

As part of our investigations we compare the estimates we create for EAGDP

against previous methodologies. We do not run these models but instead compare

the values we would have created historically to those generated by these previous

models. An earlier model is not detailed beyond the estimates created, however

estimates from a Vector Autoregressive Model is given. This is such that the full

dataset is used in the model VAR(β) with β lags:

{Y,X}t = µ+α1{Y,X}t−1 + · · ·+αβ{Y,X}t−β + et,

Yt

X1,t

...

X9,t


=



µ1

µ2

...

µ1


+



α1,1,1 . . . α1,1,9

α1,2,1 . . . α1,2,9

...
. . .

...

α1,9,1 . . . α1,9,9





Yt−1

X1,t−1

...

X9,t−1


+ . . .

· · ·+



αβ,1,1 . . . αβ,1,9

αβ,2,1 . . . αβ,2,9
...

. . .
...

αβ,9,1 . . . αβ,9,9





Yt−β

X1,t−β

...

X9,t−β


+



e0,t

e1,t

...

e9,t


,

where α are the estimated coefficients, et is the estimation error which satisfies

E(et) = 0, E(ete
′

t−k)(∀k ∈ Z : k 6= 0) and E(ete
′
t) = Ω where Ω is a covariance

matrix.

6.3 Dynamic Factor Models

Here we explore the model which we focus on throughout this Chapter. Firstly we

introduce the model formally and review the literature in Section 6.3.1. Following

this we detail the considerations that need to be made regarding the structure of

a Dynamic Factor Model in Section 6.3.2. Next we propose new methodology for

detection of the structure of EAGDP and detail the steps taken in the constructed

algorithm in Section 6.3.3. Following this in Section 6.3.4 we present the results

166



of our algorithm and the structures it finds. This is followed by a discussion of

these results and their interpretation in Section 6.3.5. The testing of this approach

through simulation is then reserved for Section 6.4.

6.3.1 Overview

Highly prevalent within the Nowcasting literature, the general Dynamic Factor

Model (DFM) looks to determine and use hidden trends between correlated datasets

to make inference on a series of interest. This representation is particularly coveted

in econometric literature through Real Business Cycle theory and models such as

the Dynamic Stochastic General Equilibrium (Fernandez-Villaverde, 2009) which

look for ‘common forces’ amongst a plethora of available information. This may

come from a very large and populated dataset in both time and dimension. The

general Dynamic Factor Model can be represented as

Zt = λ(L)Ft + εt εt ∼ N(0, V ) (6.1)

Ft = ψ(L)Ft−1 + υt υt ∼ N(0,W ). (6.2)

where all data is presented as the [(m+ 1) x 1] column matrix Zt, which we model

using the ‘hidden’ factor [p x (m+1)] matrix Ft, where p < (m+1). Both λ(L) and

ψ(L) are polynomial matrices, of dimensions [(m+ 1) x p] and [p x p] respectively,

acting upon the lag operator L. The idiosyncratic error εt and υt are assumed

to be uncorrelated at all lags such that E(εtυ
T
t+τ ) = 0 ∀τ ∈ Z and in the exact

Dynamic Factor Model it is assumed that E(εi,tυj,t+τ ) = 0 ∀τ ∈ Z ⇐⇒ i 6= j.

Finally both Zt and Ft are assumed to be stationary. Given the large amount of

parameters which may need to be estimated at fitting, often the matrix λ(L) is

reduced to A by excluding lags, similarly for ψ(L). However, as noted in Stock

and Watson (2009), this is a rearrangement of the Dynamic Factor Model as the
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factors are still related to their past values. This is represented by

Zt = AFt + εt εt ∼ N(0, V ) (6.3)

Ft = Ft−1 + υt υt ∼ N(0,W ). (6.4)

such that there are no longer any lag polynomials to estimate, but instead a

[(m+ 1) x p] factor loadings matrix. With the reduction in free parameters these

models lend themselves particularly to those with a smaller dataset. It is this

particular model which of interest to our investigations. It should be noted that

the re-arrangement of Ft causes non-stationarity. However this model is noted as

an extension to the Dynamic Factor Model in Stock and Watson (2009).

Dynamic Factor Models have been used in forecasting since Geweke (1977)

proposed them as an extension of a cross-sectional data model. In the same year

Sargent and Sims (1977) applied the methods to macroeconomic variables in the

US. Stock and Watson (1988) then model the state of the economy using the

dynamic factor models to create an economic indicator. More recently forecasts

on GDP specifically have been done for the US (Banerjee and Marcellino, 2006)

and the Eurozone (Angelini et al., 2011).

Outside of economics, dynamic factor models have been used in many fore-

casting applications. A variety of information at different scales and timings were

used to model credit risk in Creal et al. (2014). Within psychology, dynamic factor

models have been used to represent changes in behaviour from one timepoint to

another and the differences between individuals in Ram et al. (2013). Air quality

assessments have also been conducted using dynamic factor models to reduce the

dimensionality of data within Calder (2007). Investigation has also been done into

the major climate event El Nino in Li et al.(2019+).

Extensive work has been conducted on adapting the Dynamic Factor Model

into a number of extensions. Given the changing conditions that can be expected

within such a complex system as GDP, much work has been done to explore adap-

tation to the DFM framework. Diebold and Rudebusch (1994) looked to use a
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Markov Regime Switching approach in collaboration with a DFM to model a sys-

tem separately dependent upon the current phase of an economy. The idea of

a sudden change in modelling was continued in Stock and Watson (2009) where

investigations which conducted into the effect of a sudden change in the factor

relationships. A slowly varying approach to these changes was taken in Negro and

Otrok (2008), studying the changes which occurred in the post Bretton-Woods

period. Beyond structural considerations, work has been done in the use of the

estimated factors as tools in other modelling approaches such as the Vector Autore-

gression Model (VAR) to create a factor augmented version (FAVAR) in Bernanke

et al. (2005) and a Factor Augmented Error Correction Model in Banerjee and

Marcellino (2009).

Fitting and Identifiability

There are a number of methods available which can be used to determine the

parameters of a Dynamic Factor Model. These can be split into a number of

methodological approaches. Firstly is that of cross-sectional averaging, such that

cross-section averages of a dataset are regressed against augmented variables, more

concisely explained in Pesaran (2006). Secondly principal component analysis can

be used to estimate the unobservable factors Ft as described in Forni et al. (2000).

A further methodology is that of the Kalman Filter using a Maximum Likelihood

Estimator (Watson and Engle, 1983) by rewriting Equations (6.1) and (6.2) in

State Space Form, of which Equations (6.3) and (6.4) are already. There is also

further work in using both Principal Components Analysis and the Kalman Filter

together (Giannone et al., 2008) and Bayesian Analysis using Monte Carlo Markov

Chains (Otrok and Whiteman, 1996).

Our work proceeds through usage of the Kalman Filter, given the relatively

small number of series we will be investigating and the optimal estimates we can

gain under our assumptions. Using available methods in the dlm package (Petris,

2010) within R and modifications to represent the DFM of Equations (6.3) and
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(6.4) our work fits a DFM giving fitted values as the one-step-ahead forecasts.

However, as there are numerous versions of one factor model, we must parameterise

it according to the alternative parameterisation mentioned within Petris (2010).

This is such that A is an upper triangular matrix with diagonal entries of 1, and

coefficients ai,j ∈ R. Further, W is a diagonal matrix with positive coefficients

wi ∈ R+ as such

A =



1 0 0 · · · 0

a2,1 1 0 · · · 0

a3,1 a3,2 1 · · · 0

...
...

...
. . .

...

ap,1 ap,2 ap,3 · · · 1

ap+1,1 ap+1,2 ap+1,3 · · · ap+1,p

...
...

...
...

...

am+1,1 am+1,2 am+1,4 · · · am+1,p



, W =



w1 0 0 · · · 0

0 w2 0 · · · 0

0 0 w3 · · · 0

...
...

...
. . .

...

0 0 0 · · · wp


.

(6.5)

6.3.2 Structural Considerations

Given the identifiability of our factor loadings in Equation (6.5) there are two main

considerations that can be seen, the selections of the parameters p and m. These

are the number of factors to estimate, and the amount of series (excluding the

series of interest) to model concurrently. Further, there is also the consideration

that such components may change throughout time, given the dynamic conditions

of the systems we study, as mentioned previously. These considerations have a

large impact upon the resultant modelling and thus forecasting, and as such have

been a point of interest for research.

Choice of the amount of dynamic factors has received particular attention, here

we mention a few. Often used is a prioiri information, provided perhaps by experts

in the field or a continuation of modelling performed previously. This may be
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consulted alongside a Scree Plot (Cattell, 1966) often used in Principal Component

Analysis for the selection of the optimal amount of components, done through a

visual inspection of the eigenvalues of the dataset against their corresponding

index, and picking the ‘elbow’ of the plot. This procedure can be formalised into

a test as in the work of Onatski (2009), which considered a range of values for p

in high dimensions. Further, there are a number of information criterion given in

Bai and Ng (2002) which combine information on the scale and size of the dataset

with a mean squared error approach. A number of other methodologies have been

studied, of which there is a strong review to be found in Hoyle and Duvall (2004)

which looked at this issue regarding a general factor analysis problem.

The selection of datasets however, has received less attention. Often it is the

case that large datasets are used and the effects of potential weakly correlated

information is not explored due to the gains of a larger dataset. However, work

completed in Boivin and Ng (2006) showed that reduction from a large dataset to

a dataset of key variables can enhance estimation of the factors Ft. Further, in a

meta analysis Eickmeier and Ziegler (2008) find a reduction in Root Mean Squared

Error when studies have specified they performed a preselection of variables. In

particular Bai and Ng (2008) use Least Angle Regression techniques such as Elastic

Net and LASSO ( of which the soft-thresholding rules are special cases) to reduce

their dataset to targeted predictors, by measuring their predictive capabilities.

Further Rünstler (2016) uses the marginal predictive gains of the addition of a

dataset as a measure of the effectiveness of a variable to determine dataset size. In

specific relation to EAGDP, Girardi et al. (2016) find that softer data (surverys)

are often of use within a certain period of a nowcast in comparison to other data.

For a review of papers which consider the variable problem, the meta analysis

conducted in Eickmeier and Ziegler (2008) is recommended.

Considering these aspects throughout time, and how they may change is of

particular interest for the factor loadings matrix A. Negro and Otrok (2008)

highlighted potential changes in the structure of business cycles over a changing

171



economy. Determining and accounting for these changes was considered highly

relevant to the performance of a factor model in Banerjee et al. (2008) where a

simulation study investigated the effect of factor changes and how the amount

of factors impacted upon forecasts. Further investigation is conducted within

Su and Wang (2017) where time varying factors were fitted using local Principal

Component Analysis and an information criterion to determine the number of

factors. Considering further changes to these factors, Pelger and Xiong (2018)

estimate the model under two switching states to represent differing periods within

an economy, allowing the factor loadings and number of factors to potentially

change. Beyond this Cheung (2018) consider the case of changing the number of

factors alongside the factor loadings using a sieve estimator.

It is clear that there are several factors at play here in our model; the number

of factors, the number of variables, parameter estimation technique, should time

varying factor structure or variable inclusion be considered. The current literature

selects from these problems and considers it in isolation to the rest. It is likely this

affects the final model form and thus interpretation and forecasts. In contrast, we

create an approach that acknowledges these interdependencies and simultaneously

selects the number of factors and variables.

6.3.3 Methodology For EAGDP

As discussed, the use of the Dynamic Factor Model for nowcasting comes with a

number of considerations which must be taken into account. Often the selection of

the best fitting Dynamic Factor Model is made from a number of approaches, but

to the best of our knowledge no one has considered the estimation of the variable

and factor selection simultaneously, and it is this approach we take.

Before continuing it is important to clarify the notation which is used going

forward. We now split the data Zt shown in Equation (6.1) into two components.

The data which we are modelling is termed the ‘reference series’ Yt (with estimated

values Ŷt) and those which we believe are related are termed the ‘explanatory series’
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Xt,j (with estimated values X̂t,j). Note that we index the exploratory series by

j = 1, . . . ,m, and both series time points by t = 1, . . . , n. The number of factors

we model this data with is p. When referring to n∗ recent points, we are referring

the data points at time points n− n∗, n− n∗ + 1, . . . , n.

Exploration of all potential models would require (for a given amount of factors

p) that 2m−
∑p

i=1

(
m
i

)
models to be computed. This becomes a very computation-

ally expensive process, particularly when fitting with a large amount of variables

or factors. To mitigate this, we apply a forward selection algorithm which reviews

each nearby model (in terms of variables or factors) using a Mean Squared Error

(MSE) estimated on the most recent n∗ points,

m
(
Y, Ŷ, n, n∗

)
=

n∑
t=n−n∗

(
Yt − Ŷt

)2

. (6.6)

similar to that of Rünstler (2016). By taking a forward rather than backward

approach, we look to be prudent in our inclusion of variables/factors. Further,

we use n∗ to restrict our fitting to the most recent points in our estimation as for

nowcasting we are not necessarily looking to explain behaviour which has happened

in the past, which may have been revised a number of times, but we are more

concerned with recent data which is still due revision or has been revised only

recently.

We fit these models through the use of the state space representation given in

Equations (6.3) and (6.4) where we optimise over the unknown components A, V

and W to fully specify the model. Following this we apply the Kalman Filter

(Kalman, 1960) to estimate the unobserved factors, implemented through the dlm

R package. This then means that we can easily generate one-step ahead forecasts

for all time points due to the nature of the Kalman Filter, which we use in our

MSE calculations. Further details of this process can be found in Beck (1989). As

part of this fitting process, we pre-process the series through a mean and variance

changepoint detection algorithm from the changepoint package in R (Killick and

Eckley, 2014) to standardise each series to mean 0 and standard deviation 1, and

173



removing sudden structural changes which may have occurred.

Combining these elements of methodology together leads to our proposed work,

given as a pseudo-algorithm in Algorithm 3. Here we initialise with a reference

series Yt and potential indicator series Xt,j, and begin by fitting each separately

with the reference series and a single dynamic factor. Following this, we then at-

tempt to continue adding additional variables until we find no decrease in MSE. At

this point we shift our attention to the number of dynamic factors and attempt to

increase them alongside adding an additional variable. If this is successful in reduc-

ing the MSE, we continue only searching for more variables. If it is unsuccessful,

we consider the algorithm to have converged upon a structure.

6.3.4 Results of Application

We explore the applicability of our algorithm to the EAGDP task by varying two

dimensions. Firstly, we consider the calculation of our model fit (by recent MSE)

on the monthly or quarterly series. This is such that we can predict the growth

rate of the EAGDP after our model is fit, then choose to compare it directly to the

disaggregated series or instead transform it back to a quarterly series and compare

it against the actual values (though they are still under revision). Comparing on a

monthly level allows for a direct comparison without a loss in information during

transformation, however only the quarterly values are actual observations. Our

second dimension is time, such that we restrict the data to end a certain number

of months earlier. This allows us to monitor the change in the structure selected

by our algorithm through time. We vary this by up to 3 and a half years, or 42

months.

Results are presented on two main areas. Firstly we review the models chosen

by the algorithm in their primary endpoint, nowcasting efficiency. This is done

by a comparison of estimated growth rates against competing models, the actual

observed and the Eurostat t+30 flash estimate produced 30 days after the quarter

ends. Similarly a comparison of the squared errors is presented for clarity. Our
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Data: Yt, Euro Area Gross Domestic Product Monthly for t = 1, . . . n ;
Data: Xt,j For j = 1, . . . ,m indicator series over timepoints t = 1, . . . n ;
input : n∗, The amount of recent points to consider in MSE calculation ;

1 δ̂ =∞− ε, ε > 0 The minimum MSE of the current stage ;
2 δ =∞ The minimum MSE of fitted models in all previous stages ;
3 δ∗i =∞ ∀i ∈ N The current MSE of fitted models ;
4 p̂ = 1 The current amount of dynamic factors ;

5 while δ̂ ≤ δ and m > 0 do
6 for j in 1 : m do
7 Fit DFM using data {Y,Xj} with p̂ dynamic factors. ;
8 Calculate MSE δ∗i over n∗ recent points (Equation (6.6)) ;

9 end

10 Let δ̂ = min({δ∗j : j = 1, . . . ,m}) ;

11 if δ̂ < δ then
12 Reset δ∗j =∞ ∀j ∈ N ;

13 Re-assign δ = δ̂ ;
14 Expand the forecasting dataset: {Y} = {Y, {Xj:δ∗j=min(δ∗)}};
15 Remove that variable from the indicators dataset:

{X} = {X\{Xj:δ∗j=min(δ∗)}};
16 else
17 if p̂ ≤ m then
18 Let p̂ = p̂+ 1 ;
19 for j in 1 : m do
20 Fit DFM using data {Y,Xj} with p̂ dynamic factors ;
21 Calculate MSE δ∗j over n∗ recent points (Equation (6.6)) ;

22 end

23 Let δ̂ = min({δ∗j : j = 1, . . . ,m}) ;

24 if δ̂ < δ then

25 Re-assign δ = δ̂ ;
26 Reset δ∗j =∞ ∀j ∈ N ;

27 Expand the forecasting dataset: {Y} = {Y,Xj:δ∗j=min(δ∗)};
28 Remove that variable from the indicators dataset:

{X} = {X\{Xj:δ∗j=min(δ∗)}} ;

29 end

30 end
31 Recalculate the amount of explanatory series still unselected

m = |X|. ;

32 end

33 end
output: Best dataset {Y} and best number of dynamic factors p. ;

Algorithm 3: Proposed Model Selection: Variable Selection and Number

of Dynamic Factors.
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second area of interest is the chosen structure of the models from our algorithm.

We explore the datasets chosen at each of the given time points and the amount

of factors chosen.

Forecast Efficiency

To begin our comparison of results, we look at Quarterly GDP growth against our

estimated growth rates and those given by competing models. As we estimate a

monthly growth rate we have to consider how we transform this into a comparable

quarterly rate given which month we are in. For comparison we present the Eu-

rostat t + 30 estimate, which we extend two months previous to their generation

for comparison. Thus when we are in the first month of a new quarter, we use

the fitted monthly growth rates from the prior three months to create a quarterly

growth rate of the previous quarter. However, if we are in the second month of a

quarter, we then look to nowcast the current quarter we are in, thus we require a

one step ahead forecast alongside the fitted values. For the third month, we use

the current and previous two values of the fitted series to compute a nowcast for

the current quarter’s GDP. Table 6.3 shows how the months and the predicted

quarter line up more succinctly.

A comparison of these calculated quarterly growth rates is given in Figure 6.1a

alongside competing models. Note that the graph separates out the estimations

made by a previous model and those under consideration. These are the estimates

from a newly proposed VAR model implemented within Matlab with the full data

set (unknown for the previous model). Additionally we include the Eurostat Flash

Estimate of GDP for that quarter. Note the discontinuous nature of the actual

growth rate and the flash estimate is such that we are comparing the actual quarter

at month T with that which would be predicted at that time.

It can be seen that the DFM with quarterly variable selection is not as smooth

as the monthly variable selection to begin, but smooths out throughout the period.

Overall it appears to follow closely to the truth and the flash estimate. Most
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notably in comparison to the currently implemented model the proposed model

predicts a higher level, following more closely with the flash estimates and truth.

The fit generally follows consistently the growth rate over the period 2014-2017

except for the jump and correction in early 2015. Numerically, in comparison to

the VAR model estimates given towards the end, the DFM reduces the MSE over

the period by 67.45%.

When using a monthly MSE the predictions can be more erratic on a month by

month basis. However this allows for quick adaptation to the movements within

the true growth rate such as in 2016 and the placement between the truth and

the flash estimate in late 2014. However, as in the quarterly case, the level of

the series follows that of the truth without deviating too much and in the very

recent past draws closest to the truth. Here also there is a reduction in the MSE

in comparison to VAR by 82.23%.

Figure 6.1b depicts the point wise squared error (SE) of the predictions from

Figure 6.1a. The large departures prior to 2015 can be seen to be an overestimate

of the jump to come in the truth, before recalculating a much lower estimate in the

following monthly as the Eurostat Flash Estimate had. Beyond 2015 the jumps

are much less erratic for both comparisons and often below that of the previous

contractor until an underprediction of a large jump, which the previous model

consistently overestimated. However, in comparison to the newly proposed VAR

model, we see large reductions in error for both the monthly and quarterly variable

selection procedures.

Choice of Structure

As detailed in Algorithm 3, a selection process was put in place such that only the

most favourable data is used and most predictive factor structure is selected in the

prediction for time period which we restrict to. Here we present which variables

were being used throughout the previous 42 month period and the amount of

factors that were selected. The results in Figure 6.2a show variable selection
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Variable 1 2 3 4 5 6 7 8 9
Quarterly 0 27.91 0 65.12 100 32.56 6.98 53.49 16.28
Monthly 46.51 34.88 11.63 25.58 41.86 48.84 37.21 58.14 20.93

Table 6.2: Inclusion rate (%) of variable within each comparison methodology.

Month 1 2 3 4 5 6 7 8 9 10 11 12
Actual Quarter 1 2 3 4
Predicted Quarter 4 1 2 3 4

Table 6.3: How each calendar month corresponds to the actual quarter and the
quarter predicted at that time.

throughout the period, where as Figure 6.2c shows the amount of factors selected.

The index on the y axis corresponds to the ID within Table 6.1, but also to the

amount of variables selected in total. Further we show the rate of inclusion as a

percentage of each variable in Table 6.2.

Reviewing the variable selection it can be seen that this is a highly variable

process which selects a diferent number and selection at each time point. Most

prevalent is the complete inclusion of Variable 5 for the quarterly predictions.

Further, there are some continuous streaks of variable usage, such as variable 8

during 2014 and partly 2015. An interesting trend is the inclusion of variable 1

towards the end of 2015 within the monthly comparison, and variable 4 similarly

for the quarterly. However the other variables are only chosen for short periods

of time before being removed. There is evidence of indicative behaviour here, but

it is not necessarily consistent between the two comparisons, potentially reflecting

the quick changes that can be expected in a monthly comparison rather than a

quarterly. Certainly there appears to be a change in behaviour around the end of

2015.

Figure 6.2c shows how the behaviour of the comparisons differ greatly. Prior

to 2015 it would appear that the quarterly comparison was changing the amount

of factors it was using to predict very frequently, before returning to 1 and holding

consistent as 2015 began. However, the monthly comparison shows little change

in the amount of factors, choosing only to depart from 1 sporadically in 2016.
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Figure 6.1: Rolling forecasts and errors for quarterly Euro-area GDP. n∗ = 24.
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Figure 6.2: Structure of dataset selected throughout the 42 months.

6.3.5 Discussion of Application

The results shown in Section 6.3.4 are both promising and puzzling. We can see

that gains in predictions of the EAGDP can be successful through this method-

ology, with reduced errors in particularly tumultuous times, but structure of the

models chosen is not consistent. There are a number of variables which appear to

be consistent in usage, but only through a particular time period or varying by

comparison metric. The differing variability of the factors chosen indicates that

aggregation of a series can potentially hide changing behaviour through time.

Regardless of the changing structure, the gains in forecasting are particularly

strong. Both Monthly and Quarterly comparisons follow closely to the truth and
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flash estimate, particularly so throughout 2016 and 2017 when growth becomes

less erratic. Our comparison to a previous model shows that whilst we are not as

stable as we would like in 2014/2015, we are capable of predicting closer to the

truth than the flash estimate. Changes in behaviour of variables and, in the case

of a quarterly comparison, appear to aid this.

However, whilst we can compare to a truth on our forecasting efficiency, there

is no such truth for structure. Given the nature of the Dynamic Factor Model, the

states we wish to know will always be unobservable and we cannot know for certain

if we are close to matching the true structure at any time within our application.

Through empirical observations however, we can measure the effectiveness of such

methodology in Section 6.4.

6.4 Structural Recovery Simulations

Following on from Section 6.3.5 we look to determine the capability of our algo-

rithm not in forecasting efficiency, but in structural selection. Whilst we cannot

know the truth in the case of our application to European Area Gross Domestic

Product, we can instead simulate from a known truth and compare the results of

our algorithm to our expected values. It is this approach that we take to measure

the effectiveness of our algorithm in three areas: the selection of correlated vari-

ables (termed dependent variables here); the removal of variables uncorrelated to

the reference series (independent series); and the selection of the true amount of

factors.

We choose to simulate from a number of dependent structures using a small

amount of series with a single independent series chosen from Table 6.4. To do this

we define a number of rules we wish to satisfy such that we are equally monitoring

the structural recovery in each case. These rules are such that

1. We have twice as many variables as we do factors,

m− 1 = 2p; (6.7)
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2. Each series contributes to the overall system equally,

p∑
i=1

|ai,j| =
p

m
; (6.8)

3. Each factor is contributed to equally,

m∑
j=1

|ai,j| = p. (6.9)

We define these dependency structures following Equations (6.3) and (6.4).

We keep the variances of the simulated data as unit diagonal matrices such that

V = Im and W = Ip and define further A, the factor loadings matrix as

Model 1: p = 1, m = 3, A =

[
1 0.5 −0.5

]T
,

Model 2: p = 2, m = 5, A =

1 0.8 −0.6 0.4 −0.2

1 0.2 0.4 0.6 0.8


T

, (6.10)

Model 3: p = 2, m = 5, A =

1 0.7 −0.1 0.9 −0.3

1 0.3 0.9 0.1 0.7


T

, (6.11)

Model 4: p = 2, m = 5, A =

1 0.66 0.1 0.2 −0.285

1 0.33 −0.4 0.3 0.215


T

.(6.12)

Series AR MA
1 0.7, 0.2
2 0.7, 0.2
3 0.8 0.7
4

Table 6.4: Independent models considered in the simulation study.

Note that Model 4 has been constructed such that it applies to all rules but

Equation (6.8). This is such that the second series has twice as much contribution
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to the overall system than other series. We can then monitor if this affects the

amount of times the series is selected by the algorithm.

An example plot of a series generated from Model 3 and 4 (Equations (6.11)

and (6.12)) are given in Figures 6.3 and 6.4. The dependence of each factor within

each series can be seen by how each series follows similar patterns but take different

turns, such as how Explanatory Variables 1 and 3 more closely followed factor 1

than 2 in Figure 6.3b due to their higher depedendence. More so the relationship

between the variables can be seen more clearly in Figure 6.4b as Explanatory

Variable 1 mimics the similar pattern of movement (to a lesser magnitude) than

the other explanatory variables. As such we hope to detect this type of variable

more frequently in our investigations.
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(b) Simulated variables.

Figure 6.3: Example simulated factors and variables from Model 3 (Equation
(6.11)).

6.4.1 Results of Simulations

The results of these empirical simulations are displayed within Table 6.5 with fur-

ther details about variable and factor selection in Tables 6.6a, 6.6b and 6.6c. Table

6.5 shows the selection of the correct structure in three different areas; removal of

the independent series, inclusion of all dependent series, and inclusion of the cor-

rect amount of factors. Tables 6.6a, 6.6b and 6.6c show the number of dependent
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(b) Simulated variables.

Figure 6.4: Example simulated factors and variables from Model 4 (Equation
(6.12)).

series selected per dependent model, the number of factors selected per dependent

model and the dependent series selected per dependent model respectively.

Reviewing the correct structure selection, it can be seen that certain structural

considerations are more difficult to converge upon than others. It would appear

that the algorithm is consistently able to remove the independent series approx-

imately 80% of the time on average regardless of the dependent or independent

models. There appears to be particular strength under dependent model 4 with a

93% removal rate of independent model 1. Whilst some results appear to increase

with sample size, this is not consistent across all model combinations. However it

does not appear to be linked to any particular selection of models and may be due

to simulation size constraints.

With respect to selection of the dependent series, it would appear to be very

difficult to truly select the correct amount of variables. Model 1, the simplest

model, holds the highest results at an average of 25%, but all other models have

very low selection rates. As in the case of independent removal, whilst some

inclusion rates increase with sample size, not all do. Of particular interest is that

no iteration selected the correct amount of variables when independent model 4

was present. We can break this down further by reviewing Table 6.6a, noticing
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Dep. Indep. Independent (n=) Dependent (n=) Factors (n=)
Model Model 100 200 500 100 200 500 100 200 500

1 1 0.78 0.81 0.83 0.24 0.20 0.26 0.91 0.90 0.95
1 2 0.73 0.75 0.83 0.25 0.25 0.25 0.90 0.92 0.95
1 3 0.75 0.86 0.78 0.27 0.23 0.24 0.86 0.95 0.94
1 4 0.76 0.72 0.81 0.00 0.00 0.00 0.91 0.90 0.93
2 1 0.80 0.84 0.75 0.02 0.04 0.04 0.07 0.09 0.10
2 2 0.75 0.82 0.74 0.02 0.02 0.01 0.10 0.04 0.07
2 3 0.80 0.78 0.74 0.02 0.04 0.02 0.10 0.08 0.07
2 4 0.77 0.82 0.75 0.00 0.00 0.00 0.08 0.05 0.09
3 1 0.83 0.88 0.86 0.01 0.03 0.03 0.08 0.10 0.03
3 2 0.76 0.83 0.80 0.02 0.03 0.02 0.12 0.08 0.08
3 3 0.85 0.81 0.80 0.02 0.03 0.05 0.06 0.09 0.09
3 4 0.80 0.84 0.79 0.00 0.00 0.00 0.09 0.10 0.06
4 1 0.81 0.80 0.93 0.04 0.05 0.02 0.11 0.16 0.04
4 2 0.84 0.71 0.85 0.04 0.07 0.01 0.11 0.13 0.06
4 3 0.84 0.75 0.81 0.04 0.07 0.01 0.11 0.17 0.08
4 4 0.83 0.71 0.83 0.00 0.00 0.00 0.12 0.14 0.05

Table 6.5: Proportion of structural components successfully selected in the simula-
tion performed. Independent refers to the proportion of simulations which removed
the independent series from the final model. Dependent refers to the number of
simulations that successfully selected the correct amount of dependent series in
the final model. Factors refers to the number of simulations that successfully se-
lect the correct amount of factors in the final model. Results closest to 1 are
favourable in all cases.

that often we only select 1 dependent variable in total. It would appear that the

next option is to include only the independent variable beyond this. It is unusual

to select more than 1 variable. This is further shown in Table 6.6b which shows

that there appears to be a particular series of interest. This is contrary to the

way we have set up our dependent models following rules in Equation (6.7), (6.8)

and (6.9), particularly in the case of dependent model 4 which has been set up to

prefer series 1.

Looking next to factor selection, the results are very similar to that of depen-

dent variable inclusion. Model 1 holds the highest rates, such that it appears rare

for the algorithm to select any more factors than 1. Beyond this, it is particularly

difficult to select the correct amount of factors for any of the more complex models

with rates as low as 3% up to 17%. As in the previous structural considerations,

there does not appear to be a clear effect of increasing sample size upon this.
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Dep. Variables
Model 0 1 2 3 4

1 0.30 0.52 0.18
2 0.34 0.45 0.13 0.07 0.02
3 0.30 0.49 0.12 0.07 0.02
4 0.28 0.43 0.15 0.10 0.03

(a) Number of dependent variables chosen across all simulations generated from each
dependent model.

Dep. Dependent Series
Model 1 2 3 4

1 54 66
2 55 25 26 24
3 32 12 59 22
4 38 18 55 23

(b) Selection of each variable (%) by dependent model.

Dep. Factors
Model 1 2 3 4

1 0.92 0.08
2 0.91 0.08 0.01 0.00
3 0.91 0.08 0.01 0.00
4 0.88 0.11 0.01 0.00

(c) Number of factors chosen across all simulations generated from each dependent
model.

Table 6.6: Specific components chosen within simulations for each dependence
structure. Blank values appear where result is not possible.

185



Reviewing the amount of factors in more detail in Table 6.6c it can be seen that

regardless of model, a single factor is most preferred overall.

6.4.2 Discussion of Simulations

It is clear from these simulations that it is very difficult to converge upon a true

structure of a Dynamic Factor Model. As there are a number of considerations to

be made at any one time, it is not suprising. The relationships between each of

the variables and the reference series, of which we look to model and use to our

benefit, would appear to be the very difficulty.

Overall in the results it would appear that one truth holds, a simpler model

is almost always chosen. Unfortunately this is often in the case of the amount of

dynamic factors. It can be suspected that this will then affect variable selection

as we are not seeing the true correlation of each variable to the reference series.

There is particular evidence of this through the preferred dependent series in Table

6.6b. It can be seen that the series which is preferred for dependent model 2 and

3 is that which has the highest coefficient in first column (which represents the

reference series relationship to the first dynamic factor) in their corresponding

factor loadings matrix A in Equation (6.10) and (6.11). However, this does not

hold true for dependent model 4, which should prefer Series 1, however there was

small increase in preference for this series.

It is therefore appropriate to study these effects further, by varying more the

parameters and structure of Algorithm 3 to attempt to remove the tendency to

choose a simpler model and missing key relationships between variables.

6.5 Generalised Algorithm Approach

Given the results shown in Section 6.4 we now look to generalise our approach

to further aid in the recovery of the correct structure of a fitted Dynamic Factor

Model. To do this we make changes in two significant areas of Algorithm 3.
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Firstly, we approach the exploration of the potential model structures differently,

such that we are reviewing changes to variables selected and the amount of factors

concurrently. Secondly, we extend our comparison metric into a number of different

functions found within the literature. As we go into the details of these changes,

the reader should note that a new pseudo-algorithm has been given for reference

in Algorithm 4.

6.5.1 Exploration of Models

Before evaluating the feasibility of a fit, we must explore the space of possible

fits. Such exploration must be approached in an efficient manner, as we now move

through two dimensions of exploration. These are the amount of dynamic factors

p, and the subset of data required for modelling X. As a consideration towards

the computing time required for either of these approaches, we look to explore the

space of both structural considerations simultaneously and outline that here.

We begin with a notational setup. As before, let Xj be a time series for an

indicator variable j such that 1 ≤ j ≤ m, where m is the total amount of indicator

variables provided to the algorithm for selection. Define the set S = {s1, . . . , sm}

such that si ∈ {1, 0} where each si is an indicator, such that sj = 1 represents

whether the variable is in the subset. From this we can then define a subset of

indicator variables as X̂ = {Xj : sj = 1}. Further we can define the amount of

indicators in this subset as m̂ =
∑m

j=1 sj. We can also split this set into two sets,

S+ = {sj : sj = 1} and S− = {sj : sj = 0}, corresponding to the sets of variable

being kept and removed respectively. Now we must restrict our exploration of p̂

such that p̂ ≤ m̂ at all times. Note that due to the presence of a reference series

which we are fitting against, whilst we choose m̂ indicator series, the system is

fitted with m̂+ 1 total time series.

As with model exploration in linear modelling, there are also directional con-

siderations. Firstly we could start from a full model, such that m̂ = m and p̂ = m,

where we remove variables and reduce the value of p̂. Secondly, we could begin
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p̂ s1 s2 s3 . . . sm
∑
si

1 1 0 0 . . . 0 1
1 0 1 0 . . . 0 1
1 0 0 1 . . . 0 1
...

...
...

...
. . .

...
...

1 0 0 0 . . . 1 1

(a) Beginning from a null model.

p̂ s1 s2 s3 . . . sm
∑
si

m 1 1 1 . . . 1 m
m− 1 1 1 1 . . . 1 m
m− 2 1 1 1 . . . 1 m

...
...

...
...

. . .
...

...
1 1 1 1 . . . 1 m

m− 1 0 1 1 . . . 1 m− 1
m− 1 1 0 1 . . . 1 m− 1
m− 1 1 1 0 . . . 1 m− 1

...
...

...
...

. . .
...

...
m− 1 1 1 1 . . . 0 m− 1

(b) Beginning from a full model.

Table 6.7: Initial set of models chosen within the algorithm.

from a null model, such that p̂ = 1 and m̂ = 0. These two directions lead to a

different first step due to the constraint p̂ ≤ m̂ such that we must first explore

reducing p̂ in the full model, but increasing m̂ in the null. A representation of

these steps is given in Tables 6.7a and 6.7b. To denote this difference we set a

variable, η = 1, for forward selection; and similarly η = 0 for backward selection.

Following on from this, we explore three possible options for models concur-

rently. Firstly, we explore the current subset of variables across all possible values

of p̂. Secondly, we consider the current subset with a new variable and (where

possible) explore the values of p̂ as the current value, one below and one above.

Similarly we explore the same values of p whilst removing a variable also, shown

in Table 6.8.

6.5.2 Scoring Functions

Once models have been proposed within the algorithm, a determination of the most

optimal (at that point) must be made, before moving onto the next iteration of the

algorithm. As mentioned previously in Section 6.3, there have been investigations

into measures of a dynamic factor models performance in terms of variable selection

and selection of the amount of dynamic factors. The first measures used mean

squared error (MSE), whilst the second used information criterion. It is these
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p̂ s+
1 s+

2 . . . s+
m̂ s−1 s−2 . . . s−m−m̂

∑
si

p̂− 1 1 1 . . . 1 0 0 . . . 0 m̂
p̂− 2 1 1 . . . 1 0 0 . . . 0 m̂
p̂− 3 1 1 . . . 1 0 0 . . . 0 m̂

...
...

...
. . .

...
...

...
. . .

...
...

1 1 1 . . . 1 0 0 . . . 0 m̂
p̂+ 1 1 1 . . . 1 1 0 . . . 0 m̂+ 1
p̂+ 1 1 1 . . . 1 0 1 . . . 0 m̂+ 1
p̂+ 1 1 1 . . . 1 0 0 . . . 0 m̂+ 1

...
...

...
. . .

...
...

...
. . .

...
...

p̂+ 1 1 1 . . . 1 0 0 . . . 1 m̂+ 1
p̂ 1 1 . . . 1 1 0 . . . 0 m̂+ 1
p̂ 1 1 . . . 1 0 1 . . . 0 m̂+ 1
p̂ 1 1 . . . 1 0 0 . . . 0 m̂+ 1
...

...
...

. . .
...

...
...

. . .
...

...
p̂ 1 1 . . . 1 0 0 . . . 1 m̂+ 1

p̂− 1 1 1 . . . 1 1 0 . . . 0 m̂+ 1
p̂− 1 1 1 . . . 1 0 1 . . . 0 m̂+ 1
p̂− 1 1 1 . . . 1 0 0 . . . 0 m̂+ 1

...
...

...
. . .

...
...

...
. . .

...
...

p̂− 1 1 1 . . . 1 0 0 . . . 1 m̂+ 1
p̂+ 1 0 1 . . . 1 0 0 . . . 0 m̂− 1
p̂+ 1 1 0 . . . 1 0 0 . . . 0 m̂− 1
p̂+ 1 1 1 . . . 1 0 0 . . . 0 m̂− 1

...
...

...
. . .

...
...

...
. . .

...
...

p̂+ 1 1 1 . . . 0 0 0 . . . 0 m̂− 1
p̂ 0 1 . . . 1 0 0 . . . 0 m̂− 1
p̂ 1 0 . . . 1 0 0 . . . 0 m̂− 1
p̂ 1 1 . . . 1 0 0 . . . 0 m̂− 1
...

...
...

. . .
...

...
...

. . .
...

...
p̂ 1 1 . . . 0 0 0 . . . 0 m̂− 1

p̂− 1 0 1 . . . 1 0 0 . . . 0 m̂− 1
p̂− 1 1 0 . . . 1 0 0 . . . 0 m̂− 1
p̂− 1 1 1 . . . 1 0 0 . . . 0 m̂− 1

...
...

...
. . .

...
...

...
. . .

...
...

p̂− 1 1 1 . . . 0 0 0 . . . 0 m̂− 1

Table 6.8: Set of models considered at a non inital step.
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measures which we adapt to our algorithm.

Each of these methods will be used to apply a score to a model fit, thus we

refer to them as scoring functions, which we denote generically as the function

Λ but specify them specifically here. Firstly we use the existing Mean Squared

Error function defined by Equation (6.6). Following on from this we extend this

application of MSE to the m indicator series fitted giving

m̄(Y, Ŷ,X, X̂, n, n∗,m) = m
(
Y, Ŷ, n, n∗

)
+

m∑
j=1

m
(
Xj, X̂j, n, n

∗
)
. (6.13)

Moving beyond the MSE functions, we also apply information criterion proposed

in Bai and Ng (2002), given by:

IC1

(
Y, Ŷ, p̂, n, n∗,m

)
= log

(
m
(
Y, Ŷ, n, n∗

))
+ p̂

n+m+ 1

n(m+ 1)
log

(
n(m+ 1)

n+m+ 1

)
, (6.14)

IC2

(
Y, Ŷ, p̂, n, n∗,m

)
= log

(
m
(
Y, Ŷ, n, n∗

))
+ p̂

n+m+ 1

n(m+ 1)
log

(
min

(√
n,
√
m+ 1

)2
)
,(6.15)

IC3

(
Y, Ŷ, p̂, n, n∗,m

)
= log

(
m
(
Y, Ŷ, n, n∗

))
+ p̂

log
(

min
(√

n,
√
m+ 1

)2
)

min
(√

n,
√
m+ 1

)2 . (6.16)

6.5.3 Results of Simulations

We focus our analysis by measuring the algorithm in its success in 8 outcomes:

1. Removal of an independent series;

2. Selection of the correct amount of dependent series;

3. Selection of the correct amount of dynamic factors;

4. Determination of the correct model (combination of outcomes 1, 2 and 3);
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Data: Yt, Reference Series for t = 1, . . . n ;
Data: Xt,j For j = 1, . . . ,m: Explanatory series over time t = 1, . . . n ;
input : n∗, Amount of recent points to consider in a MSE calculation ;

1 η = 1 (or 0). Variable signifying forward/backward selection. ;
2 Λ: Scoring function. ;

3 δ̂ =∞− ε, ε > 0 The minimum Score of the current stage ;
4 δ =∞ The minimum score from all previous stages ;
5 δ∗i =∞ ∀i The score of the fitted models in the current stage ;
6 p̂: The current amount of dynamic factors ;
7 ŝ = {ŝ1, . . . , ŝm}. Variables to signify current inclusion of

explanatory variables. ;

8 if τ = 1 then
9 Set p = 1 and sj = 0 for j = 1, . . . ,m. ;

10 Propose initial k models as per Table (6.7a) with variable selection
s1, . . . , sk and dynamic factors p1, . . . , pk.

11 else
12 Set p = m and sj = 1 for j = 1, . . . ,m. ;
13 Propose initial k models as per Table (6.7b) with variable selection

s1, . . . , sk and dynamic factors p1, . . . , pk.
14 end

15 while δ̂ ≤ δ and k > 0 do
16 for l in 1 : k do
17 Fit Dynamic Factor Model Ml using data {Y, {Xj:ŝl,j=1}} with p̂l

dynamic factors. ;

18 Calculate Score for fitted model, δ∗l = Λ(M̂l, n
∗, p̂l) ;

19 end

20 Let δ̂ = min({δ∗i : i = 1, . . . , k}) ;

21 if δ̂ < δ then

22 Re-assign δ = δ̂ ;
23 Reset δ∗i =∞ ∀i ∈ N ;
24 Set the current best variable selection, ŝ = si:δ∗i =min(δ∗);

25 Set the current best amount of factors selection, p̂ = pi:δ∗i =min(δ∗);

26 Set the current best Model, M̂ =Mi:δ∗i =min(δ∗);

27 Propose new k models to test as per Table (6.8) with variable
selection s1, . . . , sk and dynamic factors p1, . . . , pk.

28 end

29 end

output: Best Model M̂, Best Variable Selection ŝ and best number of
dynamic factors p̂. ;

Algorithm 4: Generic Algorithm extension for choosing the optimal se-

lection of variables and dynamic factors based upon a scoring function.
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5. Consideration rates of the true model;

6. Mean squared error for the reference series over the most recent 24 points;

7. Mean squared error for the reference series over all points;

8. Ability to isolate correct components for dependency structure 4 (given the

differing structure).

The results of each outcome is given in the tables that follow. Note that for

comparison we computed the simulations over n∗ = 24, 500 but found the results

to be very similar. As such we present the tables for n∗ = 24 here, but move the

tables for n∗ = 500 to Appendix 6.7.1 and highlight any differences.

We begin by reviewing the results in Table 6.9 where we consider the amount

of simulations which successfully removed the independent seies. Note that for

comparison with other tables we have kept in the column ‘No Series’ representing

no independent series was present to begin with, but thus these results automati-

cally default to 1. It can be seen that there is more strength in this outcome when

using forward selection, where we do not begin with the assumption that the series

should be included. However, when models with higher complexity are involved

(dependent models 2, 3 and 4) the information criterion scoring functions are more

robust than that of the Mean Squared Error measures. There does not appear to

be any significant variability between the information criterion results, but it can

be seen that using the indicator series additionally in the MSE measures increases

the removal rates when using a forward selection approach. In comparison to the

results for n∗ = 500 in Table 6.19, increasing the comparison region used in the

scoring function appeared to only benefit the simpler dependent model 1 for MSE

measures, and more so when the indicators series are used.

Moving next to Table 6.10 we consider here the amount of time we successfully

selected the correct amount of dependent variables. It can be seen that this partic-

ular aspect of the model is very difficult to attain, with very low success rates. It

most often occurs in a forward selection approach for Model 1, however this is not
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.46 0.41 0.43 0.40 1.00
Error using 1 F 0.94 0.89 0.90 0.88 1.00
Reference 2 T 0.36 0.32 0.21 0.34 1.00
Series 2 F 0.84 0.79 0.80 0.80 1.00
(Equation (6.6)) 3 T 0.22 0.18 0.18 0.17 1.00

3 F 0.90 0.86 0.87 0.86 1.00
4 T 0.25 0.23 0.17 0.25 1.00
4 F 0.94 0.92 0.91 0.90 1.00

Mean Squared 1 T 0.51 0.50 0.52 0.71 1.00
Error using 1 F 0.99 0.98 0.99 0.98 1.00
Reference 2 T 0.53 0.50 0.48 0.82 1.00
Series and 2 F 0.83 0.79 0.79 0.80 1.00
Indicator 3 T 0.51 0.52 0.47 0.76 1.00
Series 3 F 0.90 0.89 0.90 0.88 1.00
(Equation (6.13)) 4 T 0.42 0.46 0.41 0.69 1.00

4 F 0.96 0.94 0.96 0.94 1.00
Information 1 T 0.93 0.86 0.84 0.86 1.00
Criterion 1 F 0.95 0.89 0.90 0.87 1.00
1 2 T 0.80 0.71 0.59 0.70 1.00
(Equation (6.14)) 2 F 0.85 0.80 0.80 0.80 1.00

3 T 0.78 0.71 0.56 0.75 1.00
3 F 0.91 0.88 0.88 0.87 1.00
4 T 0.68 0.55 0.48 0.67 1.00
4 F 0.94 0.93 0.91 0.92 1.00

Information 1 T 0.93 0.87 0.83 0.86 1.00
Criterion 1 F 0.95 0.89 0.90 0.87 1.00
2 2 T 0.78 0.72 0.64 0.69 1.00
(Equation (6.15)) 2 F 0.85 0.80 0.80 0.80 1.00

3 T 0.78 0.70 0.56 0.74 1.00
3 F 0.90 0.88 0.88 0.87 1.00
4 T 0.66 0.57 0.51 0.66 1.00
4 F 0.95 0.93 0.91 0.92 1.00

Information 1 T 0.93 0.88 0.83 0.86 1.00
Criterion 1 F 0.95 0.89 0.90 0.87 1.00
3 2 T 0.80 0.71 0.57 0.70 1.00
(Equation (6.16)) 2 F 0.85 0.80 0.80 0.80 1.00

3 T 0.77 0.72 0.54 0.73 1.00
3 F 0.91 0.87 0.88 0.87 1.00
4 T 0.67 0.57 0.46 0.66 1.00
4 F 0.94 0.92 0.91 0.92 1.00

Table 6.9: The proportion of models which converged upon the removal of an
independent series. Separated by the information criterion used, the dependence
model, usage of a backward or forward selection procedure, and the type of inde-
pendent series included. Results closest to 1 and favourable in all cases.
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.42 0.35 0.32 0.46 0.05
Error using 1 F 0.01 0.01 0.01 0.01 0.02
Reference 2 T 0.04 0.05 0.09 0.06 0.00
Series 2 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.6)) 3 T 0.03 0.03 0.10 0.04 0.01

3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.05 0.08 0.13 0.01 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Mean Squared 1 T 0.17 0.12 0.12 0.10 0.01
Error using 1 F 0.00 0.00 0.00 0.00 0.00
Reference 2 T 0.01 0.02 0.03 0.01 0.00
Series and 2 F 0.00 0.00 0.00 0.00 0.00
Indicator 3 T 0.00 0.01 0.02 0.00 0.00
Series 3 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.13)) 4 T 0.00 0.00 0.01 0.00 0.00

4 F 0.00 0.00 0.00 0.00 0.00
Information 1 T 0.04 0.03 0.04 0.03 0.02
Criterion 1 F 0.02 0.02 0.02 0.02 0.02
1 2 T 0.05 0.04 0.05 0.03 0.06
(Equation (6.14)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.04 0.05 0.07 0.04 0.03
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.07 0.10 0.11 0.05 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.04 0.03 0.05 0.03 0.02
Criterion 1 F 0.02 0.02 0.02 0.02 0.03
2 2 T 0.06 0.04 0.07 0.04 0.07
(Equation (6.15)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.04 0.05 0.08 0.05 0.03
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.06 0.09 0.10 0.05 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.04 0.03 0.05 0.04 0.02
Criterion 1 F 0.02 0.02 0.02 0.02 0.03
3 2 T 0.06 0.04 0.07 0.04 0.07
(Equation (6.16)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.04 0.04 0.06 0.04 0.03
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.06 0.09 0.10 0.05 0.03
4 F 0.00 0.00 0.00 0.00 0.00

Table 6.10: The proportion of models converged upon the correct selection in
the amount of dependent series. Separated by the information criterion used, the
dependence model, usage of a backward or forward selection procedure, and the
type of independent series included. Results closest to 1 are favourable in
all cases.
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the case for the more complex models. There we find greater strength through a

backward selection approach, but this is still a sparse amount of times. Whilst the

MSE approaches have the highest results, particularly for model 1, the Informa-

tion Criterion appear to be consistent across all models. Of note however is that

not including an independent series appears to hamper the MSE approaches, but

this effect is not present for the information criterion approaches. Otherwise there

is no other significant difference between the independent series used. Comparing

to Table 6.20 we can only see one signficant difference, such that the shorter com-

parison region (n∗ = 24) is an improvement on the results for Model 1, using a

backward approach with just the reference series MSE comparison.

Selection rates for the amount of dynamic factors, given in Table 6.11, show

more promise. The most strength can be found in a forward based approach for

model 1, however this seems likely given this would begin the algorithm with the

correct amount of factors. Beyond this, a backward approach is more reasonable,

showing consistent gains in strength across all scoring functions. Information Cri-

terion hold the greatest strength across all models however, but have very similar

results to one another. Looking to the independent series there appears to be

evidence that using the ARMA series specified reduces the success rate, but this

could be a negligible difference. In comparison to Table 6.21 we find increasing

strength for the simple model 1, using backward selection for n∗ = 500.

Table 6.12 shows the results of considering the success of all three previous

components simultaneously, where we consider the amount of simulations where

the model structure was exactly specified. It can be seen that as expected from the

previous tables, selection of the correct model is a very rare event. The strongest

results are through the use of an Information Criterion, but these are still weak.

Similar to previous analysis, using a backward approach aids in strength for more

complex models. The results appear to be agnostic to independent series, but it is

difficult to truly determine given the low results. Comparing to the same results

for n∗ = 500 in Table 6.18 most results are consistent with some being marginally
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.48 0.48 0.48 0.47 0.96
Error using 1 F 0.99 0.98 0.98 0.98 0.99
Reference 2 T 0.44 0.39 0.27 0.45 0.88
Series 2 F 0.10 0.08 0.08 0.08 0.13
(Equation (6.6)) 3 T 0.26 0.28 0.22 0.25 0.82

3 F 0.11 0.10 0.08 0.10 0.11
4 T 0.36 0.32 0.18 0.39 0.63
4 F 0.05 0.05 0.05 0.05 0.04

Mean Squared 1 T 0.51 0.51 0.52 0.72 1.00
Error using 1 F 1.00 1.00 1.00 1.00 1.00
Reference 2 T 0.54 0.49 0.48 0.79 0.96
Series and 2 F 0.03 0.03 0.03 0.03 0.06
Indicator 3 T 0.54 0.54 0.48 0.74 0.92
Series 3 F 0.03 0.03 0.02 0.03 0.04
(Equation (6.13)) 4 T 0.42 0.45 0.39 0.61 0.71

4 F 0.01 0.01 0.01 0.01 0.01
Information 1 T 0.99 0.97 0.94 0.99 1.00
Criterion 1 F 1.00 1.00 1.00 1.00 1.00
1 2 T 0.73 0.68 0.59 0.73 0.75
(Equation (6.14)) 2 F 0.05 0.05 0.04 0.04 0.09

3 T 0.66 0.62 0.54 0.67 0.70
3 F 0.04 0.05 0.04 0.05 0.04
4 T 0.44 0.45 0.30 0.50 0.50
4 F 0.02 0.01 0.02 0.01 0.01

Information 1 T 0.99 0.98 0.93 0.99 1.00
Criterion 1 F 1.00 1.00 1.00 1.00 1.00
2 2 T 0.73 0.69 0.58 0.74 0.74
(Equation (6.15)) 2 F 0.05 0.05 0.04 0.04 0.08

3 T 0.66 0.60 0.54 0.67 0.70
3 F 0.05 0.05 0.04 0.05 0.05
4 T 0.44 0.45 0.33 0.50 0.50
4 F 0.01 0.01 0.02 0.01 0.01

Information 1 T 0.99 0.98 0.93 0.99 1.00
Criterion 1 F 1.00 1.00 1.00 1.00 1.00
3 2 T 0.72 0.66 0.56 0.74 0.76
(Equation (6.16)) 2 F 0.05 0.05 0.04 0.04 0.08

3 T 0.67 0.63 0.52 0.67 0.70
3 F 0.04 0.05 0.04 0.05 0.05
4 T 0.44 0.47 0.30 0.50 0.50
4 F 0.02 0.01 0.02 0.01 0.01

Table 6.11: The proportion of models converged upon the correct amount of dy-
namic factors. Separated by the information criterion used, the dependence model,
usage of a backward or forward selection procedure, and the type of independent
series included. Results closest to 1 are favourable in all cases.
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.00 0.00 0.00 0.00 0.01
Error using 1 F 0.00 0.00 0.00 0.00 0.01
Reference 2 T 0.00 0.00 0.00 0.00 0.00
Series 2 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.6)) 3 T 0.00 0.00 0.00 0.00 0.00

3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.00 0.00 0.00 0.00 0.01
4 F 0.00 0.00 0.00 0.00 0.00

Mean Squared 1 T 0.00 0.00 0.00 0.00 0.00
Error using 1 F 0.00 0.00 0.00 0.00 0.00
Reference 2 T 0.00 0.00 0.00 0.00 0.00
Series and 2 F 0.00 0.00 0.00 0.00 0.00
Indicator 3 T 0.00 0.00 0.00 0.00 0.00
Series 3 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.13)) 4 T 0.00 0.00 0.00 0.00 0.00

4 F 0.00 0.00 0.00 0.00 0.00
Information 1 T 0.02 0.02 0.02 0.02 0.02
Criterion 1 F 0.02 0.02 0.02 0.02 0.02
1 2 T 0.03 0.03 0.02 0.02 0.06
(Equation (6.14)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.01 0.01 0.01 0.02 0.03
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.02 0.01 0.01 0.01 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.02 0.02 0.02 0.02 0.02
Criterion 1 F 0.02 0.02 0.02 0.02 0.03
2 2 T 0.03 0.03 0.04 0.02 0.06
(Equation (6.15)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.02 0.01 0.02 0.02 0.03
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.01 0.01 0.01 0.01 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.02 0.02 0.02 0.02 0.02
Criterion 1 F 0.02 0.02 0.02 0.02 0.03
3 2 T 0.03 0.03 0.02 0.02 0.06
(Equation (6.16)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.02 0.01 0.01 0.01 0.03
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.02 0.02 0.01 0.01 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Table 6.12: The proportion of models converged upon that were exactly correct
in three aspects: selection of the amount of dynamic factors, selection in the
amount of dependent series and removal of an independent series. Separated by
the information criterion used, the dependence model, usage of a backward or
forward selection procedure, and the type of independent series included. Results
closest to 1 are favourable in all cases.
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lower, but this is a negligible amount.

Following these results it is important that we put them in the correct context,

as due to the nature of the algorithm, whilst certain components may have been

difficult to detect there is also the possibility that we did not consider the correct

model in our process. As such we present the results in Table 6.13 to study the

amount of time we considered the true model in our simulations. Note that in

the case of no independent series and a backward selection process, we will always

consider the true model. We find we most often consider the true structure for

model 1 with a forward selection process when there is an independent series

present. However it appears that the strength found in a forward selection does

not transfer to more complex model structures, where backward selection appears

to be the most viable option. For these more complex models we find that the

information criterion hold a greater strength than the MSE scoring functions. As

with other results, it does not appear that the choice of independent series has

a significant impact upon consideration rates. In comparison to the results for

n∗ = 500 we find there is a small increase in strength for the MSE scoring function

which also considers the indicator series, with potential minor differences in the

Information Criterion scoring functions, but these appear negligible.

The previous results have focussed primarily on the structure selection of the

model, but of most interest to a practitioner is the efficiency in forecasting. As

such we present results on the average MSE of the fits simulated in Table 6.14, as

discussed in Section 6.3. As we use one-step ahead forecasts for all time points

(through use of the Kalman Filter), this can be seen as a measure of forecasting

efficiency. We begin by reviewing the average mean squared error of the reference

series over the past 24 points, measuring its accuracy at predicting the series at

its most recent activity. It can be seen that the complex dependent structure of

model 2 gives the highest MSE when using forward selection but this is countered

by the low results which occur through backward selection.

This is the case for all dependent structures except model 1 which appears to
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.79 0.71 0.67 0.79 1.00
Error using 1 F 0.95 0.91 0.92 0.89 1.00
Reference 2 T 0.05 0.06 0.09 0.07 1.00
Series 2 F 0.00 0.00 0.00 0.00 0.01
(Equation (6.6)) 3 T 0.07 0.07 0.11 0.05 1.00

3 F 0.05 0.05 0.04 0.05 0.06
4 T 0.14 0.16 0.18 0.11 1.00
4 F 0.01 0.02 0.02 0.01 0.02

Mean Squared 1 T 0.60 0.59 0.60 0.80 1.00
Error using 1 F 0.99 0.98 0.99 0.98 1.00
Reference 2 T 0.04 0.03 0.05 0.30 1.00
Series and 2 F 0.00 0.00 0.00 0.00 0.00
Indicator 3 T 0.03 0.02 0.04 0.28 1.00
Series 3 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.13)) 4 T 0.02 0.02 0.04 0.17 1.00

4 F 0.00 0.00 0.00 0.00 0.00
Information 1 T 0.99 0.97 0.93 0.99 1.00
Criterion 1 F 0.95 0.91 0.92 0.89 1.00
1 2 T 0.52 0.61 0.57 0.51 1.00
(Equation (6.14)) 2 F 0.02 0.02 0.01 0.01 0.02

3 T 0.58 0.63 0.58 0.56 1.00
3 F 0.04 0.04 0.04 0.04 0.05
4 T 0.57 0.59 0.58 0.54 1.00
4 F 0.01 0.01 0.01 0.01 0.01

Information 1 T 0.99 0.97 0.93 0.99 1.00
Criterion 1 F 0.95 0.91 0.92 0.89 1.00
2 2 T 0.55 0.64 0.59 0.50 1.00
(Equation (6.15)) 2 F 0.02 0.02 0.01 0.02 0.03

3 T 0.59 0.63 0.54 0.57 1.00
3 F 0.04 0.04 0.04 0.04 0.05
4 T 0.58 0.61 0.61 0.54 1.00
4 F 0.01 0.01 0.01 0.01 0.01

Information 1 T 0.99 0.97 0.93 0.99 1.00
Criterion 1 F 0.95 0.91 0.92 0.89 1.00
3 2 T 0.54 0.60 0.56 0.50 1.00
(Equation (6.16)) 2 F 0.02 0.01 0.01 0.01 0.03

3 T 0.58 0.63 0.60 0.56 1.00
3 F 0.04 0.04 0.04 0.04 0.05
4 T 0.56 0.61 0.55 0.53 1.00
4 F 0.01 0.01 0.01 0.01 0.01

Table 6.13: The proportion of models which considered the true model as part
of their exploration. Separated by the information criterion used, the dependence
model, usage of a backward or forward selection procedure, and the type of inde-
pendent series included. Results closest to 1 are favourable in all cases.
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.45 0.44 0.43 0.45 0.44
Error using 1 F 0.44 0.44 0.44 0.44 0.44
Reference 2 T 0.29 0.28 0.29 0.30 0.30
Series 2 F 2.70 2.96 3.07 2.81 3.37
(Equation (6.6)) 3 T 0.28 0.28 0.28 0.28 0.29

3 F 0.84 0.80 0.82 0.79 1.02
4 T 0.26 0.25 0.24 0.26 0.27
4 F 0.36 0.35 0.35 0.35 0.37

Mean Squared 1 T 0.50 0.50 0.49 0.50 0.48
Error using 1 F 0.50 0.49 0.49 0.50 0.48
Reference 2 T 0.41 0.42 0.40 0.43 0.44
Series and 2 F 3.46 3.64 3.90 3.45 3.82
Indicator 3 T 0.41 0.42 0.40 0.42 0.42
Series 3 F 1.33 1.20 1.30 1.27 1.35
(Equation (6.13)) 4 T 0.41 0.38 0.38 0.39 0.39

4 F 0.54 0.51 0.54 0.51 0.51
Information 1 T 0.44 0.43 0.43 0.44 0.44
Criterion 1 F 0.44 0.44 0.44 0.44 0.44
1 2 T 0.31 0.30 0.29 0.31 0.32
(Equation (6.14)) 2 F 2.71 2.96 3.06 2.82 3.33

3 T 0.30 0.30 0.30 0.30 0.31
3 F 0.84 0.80 0.83 0.79 1.03
4 T 0.28 0.27 0.24 0.29 0.28
4 F 0.36 0.35 0.35 0.35 0.38

Information 1 T 0.44 0.43 0.43 0.44 0.44
Criterion 1 F 0.44 0.44 0.44 0.44 0.44
2 2 T 0.31 0.30 0.30 0.31 0.32
(Equation (6.15)) 2 F 2.71 2.96 3.06 2.82 3.34

3 T 0.30 0.30 0.29 0.30 0.31
3 F 0.84 0.80 0.83 0.79 1.03
4 T 0.28 0.27 0.23 0.28 0.28
4 F 0.36 0.35 0.35 0.35 0.38

Information 1 T 0.44 0.44 0.43 0.44 0.44
Criterion 1 F 0.44 0.44 0.44 0.44 0.44
3 2 T 0.31 0.30 0.29 0.31 0.31
(Equation (6.16)) 2 F 2.71 2.96 3.06 2.82 3.34

3 T 0.30 0.30 0.29 0.30 0.31
3 F 0.84 0.80 0.83 0.79 1.03
4 T 0.28 0.27 0.24 0.29 0.28
4 F 0.36 0.35 0.35 0.35 0.38

Table 6.14: Mean squared error of the model fits over the most recent 24 points
in the reference series. Separated by the information criterion used, the depen-
dence model, usage of a backward or forward selection procedure, and the type of
independent series included. Results closest to 0 are favourable in all cases.
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be agnostic to this, given its simpler structure. The lowest MSE occur consistently

(unsuprisingly) for the MSE scoring function which only considers the reference

series, but there are only minor differences between those of the information crite-

rion. Similarly we find the highest results occur when also considering the indicator

series as part of the MSE scoring function rather than focusing on the reference

series. Beyond this there does not appear to be any significant difference between

the independent series when using a backward selection, but it appears to have an

adverse affect in the forward selection approach.

If we compare these results to that similarly of n∗ = 500 in Table 6.23 most

results change negligibly. However we see that the unique behaviour of model 2

grows with higher MSE results for the forward selection approaches. There also

appears to be similar effects on model 3 and (to a lesser extent) model 4 when

considering them using the reference series also. Similarly the effect of having no

independent series with a forward selection grows.

If we now consider, as a measure of model fit rather than forecasting efficiency,

the MSE of the reference series across all points, the average of this outcome is

given in Table 6.15. We find that much of the results discussed similarly over

the most recent 24 points hold true also across all the points. Of note however is

that now the MSE scoring function which also considers the indicator series now

decreases (rather than increasing in the previous case) the MSE as we proceed

from n∗ = 24 to the results of n∗ = 500 in Table 6.24. This happens aross all

results with that scoring function except those of dependent structure 2 and 3

with forward selection, where similarly we see the largest increases in MSE in the

previous Tables 6.14 and 6.23.

As a particular example of component selection, we now refer back to our

simulated dependency structure of model 4 given in Equation (6.12). Here we

structured the matrix A such that Series 2 would have double the dependency

as the other series by using higher weights within the matrix. Table 6.16 shows

the selection of the series and amount of dynamic factors across the different
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.51 0.49 0.49 0.50 0.48
Error using 1 F 0.49 0.47 0.48 0.47 0.48
Reference 2 T 0.35 0.35 0.35 0.36 0.35
Series 2 F 4.17 3.29 4.07 3.99 4.35
(Equation (6.6)) 3 T 0.35 0.34 0.33 0.35 0.35

3 F 0.70 0.78 0.83 0.62 1.02
4 T 0.30 0.29 0.27 0.30 0.31
4 F 0.35 0.34 0.36 0.34 0.35

Mean Squared 1 T 0.69 0.62 0.53 0.62 0.48
Error using 1 F 0.89 0.66 0.53 0.67 0.48
Reference 2 T 0.60 0.74 0.49 0.71 0.78
Series and 2 F 9.10 8.92 8.72 8.38 6.54
Indicator 3 T 0.55 0.79 0.56 0.73 0.67
Series 3 F 3.65 3.14 4.24 4.20 2.52
(Equation (6.13)) 4 T 0.78 0.58 0.80 0.74 0.62

4 F 1.12 1.30 1.71 1.24 0.83
Information 1 T 0.49 0.47 0.47 0.47 0.48
Criterion 1 F 0.49 0.47 0.48 0.47 0.48
1 2 T 0.39 0.38 0.38 0.39 0.39
(Equation (6.14)) 2 F 4.22 3.29 4.02 4.00 4.06

3 T 0.39 0.38 0.35 0.38 0.38
3 F 0.71 1.14 0.83 0.63 1.03
4 T 0.32 0.31 0.29 0.33 0.33
4 F 0.35 0.35 0.36 0.34 0.35

Information 1 T 0.49 0.47 0.47 0.47 0.48
Criterion 1 F 0.49 0.47 0.48 0.47 0.48
2 2 T 0.39 0.39 0.36 0.39 0.39
(Equation (6.15)) 2 F 4.22 3.29 4.02 3.99 4.18

3 T 0.39 0.38 0.35 0.39 0.38
3 F 0.70 1.14 0.83 0.63 1.02
4 T 0.32 0.32 0.29 0.33 0.33
4 F 0.35 0.35 0.36 0.34 0.35

Information 1 T 0.49 0.47 0.47 0.47 0.48
Criterion 1 F 0.49 0.47 0.48 0.47 0.48
3 2 T 0.40 0.38 0.37 0.39 0.40
(Equation (6.16)) 2 F 4.22 3.30 4.02 4.00 4.18

3 T 0.39 0.38 0.35 0.39 0.37
3 F 0.71 1.14 0.83 0.63 1.02
4 T 0.32 0.32 0.29 0.34 0.33
4 F 0.35 0.35 0.36 0.34 0.35

Table 6.15: Mean squared error of the model fits over all points in the reference
series. Separated by the scoring function used, the dependence model, usage of
a backward or forward selection procedure, and the type of independent series
included. Results closest to 0 are favourable in all cases.
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Score Backward Series Series Series Series Independent p = 1 p = 2 p = 3 p = 4
Function Selection 2 3 4 5 Model Incl.
Mean Squared T 0.21 0.63 0.62 0.69 1 0.75 0.04 0.36 0.42 0.17
Error using T 0.25 0.64 0.61 0.73 2 0.77 0.05 0.32 0.42 0.20
Reference T 0.33 0.71 0.64 0.76 3 0.83 0.04 0.18 0.49 0.24
Series T 0.16 0.59 0.64 0.63 4 0.75 0.05 0.39 0.40 0.15
(Equation (6.6)) T 0.20 0.63 0.53 0.71 5 0.00 0.21 0.63 0.14 0.01

F 0.15 0.14 0.63 0.15 1 0.06 0.94 0.05 0.01 0.00
F 0.15 0.13 0.62 0.15 2 0.08 0.94 0.05 0.01 0.00
F 0.16 0.14 0.61 0.15 3 0.09 0.93 0.05 0.01 0.00
F 0.15 0.14 0.62 0.15 4 0.10 0.94 0.05 0.01 0.00
F 0.16 0.14 0.67 0.16 5 0.00 0.95 0.04 0.01 0.00

Mean Squared T 0.46 0.41 0.45 0.42 1 0.58 0.17 0.42 0.33 0.08
Error using T 0.44 0.46 0.44 0.44 2 0.54 0.15 0.45 0.32 0.08
Reference T 0.46 0.45 0.48 0.43 3 0.59 0.15 0.39 0.37 0.08
Series and T 0.42 0.43 0.43 0.39 4 0.31 0.21 0.61 0.15 0.03
Indicator T 0.50 0.34 0.46 0.41 5 0.00 0.29 0.71 0.00 0.00
Series F 0.06 0.01 0.87 0.02 1 0.04 0.99 0.01 0.00 0.00
(Equation (6.13)) F 0.06 0.01 0.85 0.02 2 0.06 0.99 0.01 0.00 0.00

F 0.06 0.02 0.87 0.02 3 0.04 0.99 0.01 0.00 0.00
F 0.06 0.01 0.85 0.02 4 0.06 0.99 0.01 0.00 0.00
F 0.06 0.02 0.91 0.02 5 0.00 0.99 0.01 0.00 0.00

Information T 0.25 0.54 0.56 0.61 1 0.32 0.43 0.44 0.12 0.01
Criterion T 0.28 0.61 0.54 0.61 2 0.45 0.35 0.45 0.17 0.03
(Equation (6.14)) T 0.29 0.64 0.55 0.67 3 0.52 0.31 0.30 0.34 0.05

T 0.25 0.51 0.56 0.54 4 0.33 0.46 0.50 0.04 0.00
T 0.22 0.60 0.53 0.60 5 0.00 0.50 0.50 0.00 0.00
F 0.16 0.15 0.65 0.15 1 0.06 0.98 0.02 0.00 0.00
F 0.16 0.14 0.63 0.15 2 0.07 0.99 0.01 0.00 0.00
F 0.17 0.14 0.62 0.15 3 0.09 0.98 0.02 0.00 0.00
F 0.16 0.14 0.64 0.14 4 0.08 0.99 0.01 0.00 0.00
F 0.17 0.15 0.68 0.15 5 0.00 0.99 0.01 0.00 0.00

Information T 0.26 0.54 0.56 0.61 1 0.34 0.42 0.44 0.13 0.01
Criterion T 0.29 0.61 0.51 0.60 2 0.43 0.37 0.45 0.15 0.03
2 T 0.29 0.65 0.53 0.67 3 0.49 0.31 0.33 0.33 0.04
(Equation (6.15)) T 0.24 0.51 0.56 0.53 4 0.34 0.45 0.50 0.04 0.00

T 0.22 0.59 0.53 0.60 5 0.00 0.50 0.50 0.00 0.00
F 0.16 0.14 0.65 0.15 1 0.05 0.99 0.01 0.00 0.00
F 0.16 0.14 0.63 0.15 2 0.07 0.99 0.01 0.00 0.00
F 0.17 0.14 0.62 0.15 3 0.09 0.98 0.02 0.00 0.00
F 0.16 0.14 0.63 0.15 4 0.08 0.99 0.01 0.00 0.00
F 0.17 0.14 0.68 0.15 5 0.00 0.99 0.01 0.00 0.00

Information T 0.26 0.55 0.56 0.61 1 0.33 0.42 0.44 0.13 0.01
Criterion T 0.28 0.63 0.55 0.59 2 0.43 0.34 0.47 0.17 0.01
3 T 0.29 0.67 0.55 0.65 3 0.54 0.29 0.30 0.36 0.05
(Equation (6.16)) T 0.24 0.52 0.56 0.55 4 0.34 0.46 0.50 0.04 0.00

T 0.23 0.61 0.53 0.60 5 0.00 0.50 0.50 0.00 0.00
F 0.16 0.15 0.65 0.15 1 0.06 0.98 0.02 0.00 0.00
F 0.16 0.15 0.64 0.14 2 0.08 0.99 0.01 0.00 0.00
F 0.17 0.14 0.62 0.15 3 0.09 0.98 0.02 0.00 0.00
F 0.16 0.15 0.64 0.14 4 0.08 0.99 0.01 0.00 0.00
F 0.17 0.14 0.68 0.15 5 0.00 0.99 0.01 0.00 0.00

Table 6.16: Selection rates for each dependent and independent series and the
amount of dynamic factors selected in Model 4 using n∗ = 24. Separated by the
scoring function used, usage of a backward of forward selection procedure. Results
closest to 1 for Series 2-5, closest to 0 for independent series, closest to
1 for p = 2 and closest 0 for all other p are favourable.
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algorithm setups for n∗ = 24. Additionally we present the results for n∗ = 500 in

the Appendix within Table 6.25 but find no significant departures in the analysis

that follows.

It can be immediately seen that the opposite effect has occurred in relation to

Series 2. It is not the most included series as expected, in fact it is often the most

excluded series particularly when using a MSE approach with only the reference

series or an information criterion. It does however show a marginally higher than

fair selection rate when using the MSE approach which incorporates the indicator

series with backward selection. Additionally we can study the inclusion of an

independent series here (note model 5 is always 0 as there is no series present),

and find that backward selection provided the greatest strength, particularly when

considering only the reference series in an MSE approach. Finally we review the

selection for the amount of dynamic factors, where 2 is the true amount. It can be

seen that a backward selection is the most accurate, with varying degrees across the

choice of indepenent series. Particular weakness can be found from independent

series 3, however the greatest strength occurs with model 5 as can be expected,

where using a MSE approach with reference and indicator series provides the best

results.

6.5.4 Discussion of Results

Given the extent of the results given in the previous tables, it would be prudent

to summarise what results we have found. As such we present such a summary

in Table 6.17 for n∗ = 24 (in the Appendix we present Table 6.26 for n∗ = 500).

Here we review each of the desired outcomes stated in Section 6.5.3 (minus the

last which was a specific investigation) and review which approach would be most

suitable. We present that which has the most favourable result, the margin by

which that occurs, and the standard deviation to consider this result with.

It can quickly be seen that there is no one approach to cover all of these

outcomes. This has been clearly present throughout the previous tables, where
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Scoring Backward Difference Standard
Strategy Function or Forward from Mean Deviation

Mean Squared Error
using Reference Series

Removal of and Indicator Series
Independent Series* (Equation (6.13)) Forward 0.17 0.07

Mean Squared Error
Selection of correct using Reference Series
Dependent Series (Equation (6.6)) Backward 0.08 0.14

Selection of
correct amount Information Criterion 2
of Dynamic Factors (Equation (6.15)) Backward 0.23 0.20

Consideration of correct Information Criterion 2
model structure (Equation (6.15)) Backward 0.32 0.21

Selection of correct Information Criterion 2
model structure (Equation (6.15)) Backward 0.01 0.01
Minimisation of
Mean Squared Error Mean Squared Error
over previous 24 points using Reference Series
in Reference Series (Equation (6.6)) Backward -0.47 0.08
Minimisation of
Mean Squared Mean Squared Error
Error over all points using Reference Series
in Reference Series (Equation (6.6)) Backward -0.75 0.08

Table 6.17: Optimal algorithmic approaches for desired outcome for n∗ = 24.
Results are averaged across all dependent and independent model choices and
the most optimal is selected as that which departs from the mean of the results
the most in the favourable direction. The standard deviation of these results is
presented for context also. *We remove the case of no independent series here as
to not skew the results.
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certain algorithm approaches hold strength in different areas. When considering

the dataset to model with, MSE approaches hold best in general. To remove an

independent series it is best to consider the MSE also of the indicator series being

used, as we can expect the independent series to be poorly modelled. Similarly

selection of the correct dependent series is best represented in the MSE of the

reference series only. However, to identify the correct amount of dynamic factors,

it is recommended that an Information Criterion approach is best. Note that

although we recommend Information Criterion 2, we have seen little difference

between the three studied. This similarly holds true for reviewing and selecting the

correct structure, but these results are particularly inconclusive in their difference.

As can be expected, focussing on reducing the MSE of the reference series is best

approached by that of the MSE itself. Note that unlike the other results, we find

that the reduction is outside of twice the standard deviation of the aggregated

results we studied, giving more weight to this finding.

6.6 Conclusion

Within this work we have looked to approach to the task of Nowcasting from a po-

sition of naiviety. We began by first exploring the Dynamic Factor Model which is

often used in such a task, reviewing and highlighting the issues and considerations

that must be made. We found that in the design of such an approach there are two

main areas of interest, firstly that of the construction of the dataset used, ensuring

that we are using series which indicate correctly the movement of our reference

series, and disregarding any which are independent of our interest. Secondly we

must review the structure of these resulting relationships to determine how many

correlated walks, or dynamic factors, they follow. Each of these considerations

must be made in best respect to determining the future behaviour of our series of

interest, the European Area Gross Domestic Product.

Designing an initial algorithm to search through the possible combinations of

data and factors, we discovered our approach can reduce the Mean Squared Error of
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the resulting fit, and with greater predictive power (seen in Figure 6.1b). Studying

the results further we found that the variables and factors used at each stage where

highly dynamic and unexpected. This prompted a further investigation into the

structural recovery properties of the inital algorithm to discover that determining

the correct data and factors was a task not easily covered by the algorithm (as

seen in Table 6.5), despite appealing results from a predictive perspective. Looking

to understand and explore possible solutions to exploring both of these structural

issues, we extended the algorithm further with scoring functions found within the

literature, and different approaches to exploration akin to linear modelling. The

large scale simulation study which followed concluded in results best aggregated

within Table 6.17 where we found that there is no one direct approach to resolving

all of the considerations concurrently, but that some approaches are best for certain

situations.

Indeed this work has made clear that approaching these issues from a position

of naivety is a difficult task. We have found throughout the literature that often

these are considered separately either using prior knowledge of the system or pre-

vious studies to form one part of the structure before studying the second part

independently. By considering these together, we have found the construction of a

dynamic factor model which may have appealing predictive powers, but this does

not conclude that the correct model has been selected. This aligns particularly

with recent results given in Gao and Tsay (2018) where it was found that infor-

mation criterion methods would often capture white noise as a factor. Further,

the results here show that it most often not the case that the true model is in use,

but that some structure has been found to be useful despite not being the most

optimal.

Perhaps expanding the scope of the study here may shed further light on this

situation. Often Dynamic Factor Models are used with significantly more series

than presented here, however we restricted ours due to the computational time

required to explore the possible models that could be constructed. Further work
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could be done to investigate if a larger dataset would facilitate a greater structural

recovery, but considerable time and computing resources would be necessary. It

would be interesting to determine more closely the magntiude of difference in

predictive power given the encouraging results found within our motivation of

EAGDP here. Further, the selections which led to the most encouraging results in

Section 6.2 showed great variation between the variables selected and the factors

through time, where further study would be necessary to determine if our algorithm

can successfully recover a changing state of variables and factors. However, what

we have shown is that the correct selection of structure for such a Nowcasting

motivation is a perilous task, one which must be approached carefully, but that a

naive approach may still approximate the system sufficiently. As in the popular

quote from Box (1976), “all models are wrong, some are useful”.

6.7 Appendix

6.7.1 Simulation results where n∗ = 500
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.00 0.00 0.00 0.00 0.00
Error using 1 F 0.00 0.00 0.00 0.00 0.00
Reference 2 T 0.00 0.00 0.00 0.00 0.00
Series 2 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.6)) 3 T 0.00 0.00 0.00 0.00 0.00

3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.00 0.00 0.00 0.00 0.00
4 F 0.00 0.00 0.00 0.00 0.00

Mean Squared 1 T 0.00 0.00 0.00 0.00 0.00
Error using 1 F 0.00 0.00 0.00 0.00 0.00
Reference 2 T 0.00 0.00 0.00 0.00 0.00
Series and 2 F 0.00 0.00 0.00 0.00 0.00
Indicator 3 T 0.00 0.00 0.00 0.00 0.00
Series 3 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.13)) 4 T 0.00 0.00 0.00 0.00 0.00

4 F 0.00 0.00 0.00 0.00 0.00
Information 1 T 0.00 0.00 0.00 0.00 0.00
Criterion 1 F 0.00 0.00 0.00 0.00 0.00
1 2 T 0.01 0.01 0.01 0.00 0.03
(Equation (6.14)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.01 0.01 0.00 0.01 0.01
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.01 0.01 0.01 0.01 0.01
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.00 0.00 0.00 0.00 0.00
Criterion 1 F 0.00 0.00 0.00 0.00 0.00
2 2 T 0.01 0.01 0.01 0.00 0.03
(Equation (6.15)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.01 0.00 0.00 0.01 0.01
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.01 0.01 0.01 0.01 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.00 0.00 0.00 0.00 0.00
Criterion 1 F 0.00 0.00 0.00 0.00 0.00
3 2 T 0.01 0.01 0.01 0.00 0.03
(Equation (6.16)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.01 0.01 0.00 0.01 0.01
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.01 0.01 0.01 0.01 0.01
4 F 0.00 0.00 0.00 0.00 0.00

Table 6.18: The proportion of models converged upon that were exactly correct
in three aspects: selection of the amount of dynamic factors, selection in the
amount of dependent series and removal of an independent series. Separated by
the information criterion used, the dependence model, usage of a backward or
forward selection procedure, and the type of independent series included. Results
closest to 1 are favourable in all cases.
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.63 0.54 0.53 0.58 1.00
Error using 1 F 0.94 0.88 0.91 0.88 1.00
Reference 2 T 0.45 0.38 0.27 0.33 1.00
Series 2 F 0.88 0.84 0.84 0.84 1.00
(Equation (6.6)) 3 T 0.28 0.22 0.17 0.23 1.00

3 F 0.90 0.87 0.86 0.87 1.00
4 T 0.24 0.21 0.14 0.20 1.00
4 F 0.95 0.92 0.94 0.90 1.00

Mean Squared 1 T 0.80 0.79 0.73 0.97 1.00
Error using 1 F 1.00 1.00 1.00 0.99 1.00
Reference 2 T 0.51 0.48 0.45 0.85 1.00
Series and 2 F 0.88 0.88 0.87 0.85 1.00
Indicator 3 T 0.49 0.47 0.46 0.87 1.00
Series 3 F 0.92 0.90 0.90 0.89 1.00
(Equation (6.13)) 4 T 0.57 0.47 0.49 0.84 1.00

4 F 0.96 0.95 0.96 0.93 1.00
Information 1 T 0.94 0.87 0.86 0.88 1.00
Criterion 1 F 0.94 0.88 0.91 0.88 1.00
1 2 T 0.82 0.78 0.66 0.75 1.00
(Equation (6.14)) 2 F 0.88 0.84 0.84 0.85 1.00

3 T 0.83 0.77 0.61 0.80 1.00
3 F 0.91 0.88 0.88 0.88 1.00
4 T 0.70 0.64 0.50 0.71 1.00
4 F 0.96 0.93 0.94 0.91 1.00

Information 1 T 0.94 0.87 0.88 0.88 1.00
Criterion 1 F 0.94 0.88 0.91 0.88 1.00
2 2 T 0.81 0.78 0.63 0.75 1.00
(Equation (6.15)) 2 F 0.88 0.84 0.84 0.84 1.00

3 T 0.83 0.76 0.67 0.80 1.00
3 F 0.91 0.88 0.88 0.88 1.00
4 T 0.69 0.59 0.48 0.71 1.00
4 F 0.96 0.92 0.94 0.91 1.00

Information 1 T 0.94 0.87 0.86 0.88 1.00
Criterion 1 F 0.94 0.88 0.91 0.88 1.00
3 2 T 0.82 0.75 0.65 0.74 1.00
(Equation (6.16)) 2 F 0.88 0.84 0.84 0.84 1.00

3 T 0.86 0.74 0.66 0.80 1.00
3 F 0.91 0.88 0.88 0.88 1.00
4 T 0.73 0.63 0.48 0.71 1.00
4 F 0.96 0.92 0.94 0.91 1.00

Table 6.19: The proportion of models which converged upon the removal of an
independent series. Separated by the information criterion used, the dependence
model, usage of a backward or forward selection procedure, and the type of inde-
pendent series included. Results closest to 1 are favourable in all cases.
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.24 0.19 0.20 0.24 0.00
Error using 1 F 0.00 0.00 0.00 0.00 0.00
Reference 2 T 0.01 0.02 0.05 0.02 0.00
Series 2 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.6)) 3 T 0.02 0.04 0.07 0.01 0.00

3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.01 0.02 0.10 0.00 0.00
4 F 0.00 0.00 0.00 0.00 0.00

Mean Squared 1 T 0.16 0.16 0.17 0.03 0.01
Error using 1 F 0.00 0.00 0.00 0.00 0.00
Reference 2 T 0.00 0.00 0.00 0.00 0.00
Series and 2 F 0.00 0.00 0.00 0.00 0.00
Indicator 3 T 0.00 0.01 0.01 0.00 0.00
Series 3 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.13)) 4 T 0.01 0.02 0.02 0.00 0.00

4 F 0.00 0.00 0.00 0.00 0.00
Information 1 T 0.00 0.01 0.01 0.00 0.00
Criterion 1 F 0.00 0.00 0.00 0.00 0.00
1 2 T 0.03 0.03 0.03 0.01 0.03
(Equation (6.14)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.03 0.02 0.05 0.03 0.01
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.07 0.06 0.08 0.04 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.00 0.01 0.00 0.00 0.00
Criterion 1 F 0.00 0.00 0.00 0.00 0.00
2 2 T 0.04 0.03 0.04 0.01 0.04
(Equation (6.15)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.03 0.04 0.04 0.03 0.01
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.08 0.07 0.09 0.03 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.00 0.01 0.01 0.00 0.00
Criterion 1 F 0.00 0.00 0.00 0.00 0.00
3 2 T 0.03 0.04 0.04 0.01 0.03
(Equation (6.16)) 2 F 0.00 0.00 0.00 0.00 0.00

3 T 0.02 0.04 0.05 0.03 0.01
3 F 0.00 0.00 0.00 0.00 0.00
4 T 0.05 0.08 0.11 0.04 0.02
4 F 0.00 0.00 0.00 0.00 0.00

Table 6.20: The proportion of models converged upon the correct selection in
the amount of dependent series. Separated by the information criterion used, the
dependence model, usage of a backward or forward selection procedure, and the
type of independent series included. Results closest to 1 are favourable in
all cases.
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.68 0.64 0.59 0.70 1.00
Error using 1 F 1.00 1.00 1.00 1.00 1.00
Reference 2 T 0.52 0.44 0.32 0.47 0.90
Series 2 F 0.09 0.09 0.08 0.09 0.10
(Equation (6.6)) 3 T 0.35 0.31 0.24 0.34 0.90

3 F 0.11 0.11 0.09 0.10 0.10
4 T 0.40 0.36 0.19 0.46 0.66
4 F 0.03 0.03 0.02 0.03 0.02

Mean Squared 1 T 0.80 0.79 0.72 0.97 0.99
Error using 1 F 1.00 1.00 1.00 1.00 1.00
Reference 2 T 0.52 0.48 0.45 0.84 0.99
Series and 2 F 0.11 0.10 0.10 0.11 0.11
Indicator 3 T 0.49 0.47 0.46 0.86 0.98
Series 3 F 0.08 0.07 0.07 0.07 0.07
(Equation (6.13)) 4 T 0.48 0.44 0.45 0.70 0.87

4 F 0.03 0.03 0.02 0.03 0.02
Information 1 T 1.00 0.99 0.95 1.00 1.00
Criterion 1 F 1.00 1.00 1.00 1.00 1.00
1 2 T 0.77 0.72 0.64 0.73 0.76
(Equation (6.14)) 2 F 0.02 0.02 0.01 0.02 0.03

3 T 0.73 0.68 0.57 0.69 0.73
3 F 0.02 0.03 0.02 0.02 0.02
4 T 0.42 0.43 0.35 0.43 0.51
4 F 0.00 0.00 0.01 0.00 0.00

Information 1 T 1.00 0.98 0.96 1.00 1.00
Criterion 1 F 1.00 1.00 1.00 1.00 1.00
2 2 T 0.77 0.71 0.64 0.72 0.76
(Equation (6.15)) 2 F 0.02 0.02 0.01 0.02 0.03

3 T 0.73 0.68 0.60 0.69 0.73
3 F 0.02 0.02 0.02 0.02 0.02
4 T 0.41 0.44 0.31 0.43 0.50
4 F 0.00 0.00 0.01 0.00 0.00

Information 1 T 1.00 0.98 0.95 1.00 1.00
Criterion 1 F 1.00 1.00 1.00 1.00 1.00
3 2 T 0.77 0.71 0.67 0.73 0.77
(Equation (6.16)) 2 F 0.02 0.02 0.01 0.02 0.03

3 T 0.73 0.64 0.59 0.69 0.73
3 F 0.02 0.02 0.02 0.02 0.02
4 T 0.42 0.39 0.36 0.43 0.50
4 F 0.00 0.00 0.01 0.00 0.00

Table 6.21: The proportion of models converged upon the correct amount of dy-
namic factors. Separated by the information criterion used, the dependence model,
usage of a backward or forward selection procedure, and the type of independent
series included. Results closest to 1 are favourable in all cases.
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.80 0.69 0.65 0.81 1.00
Error using 1 F 0.94 0.88 0.91 0.88 1.00
Reference 2 T 0.01 0.04 0.07 0.01 1.00
Series 2 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.6)) 3 T 0.04 0.06 0.09 0.05 1.00

3 F 0.03 0.03 0.02 0.03 0.03
4 T 0.05 0.07 0.11 0.03 1.00
4 F 0.01 0.00 0.00 0.00 0.01

Mean Squared 1 T 0.80 0.79 0.73 0.97 1.00
Error using 1 F 1.00 1.00 1.00 0.99 1.00
Reference 2 T 0.18 0.11 0.11 0.76 1.00
Series and 2 F 0.01 0.01 0.01 0.01 0.01
Indicator 3 T 0.22 0.17 0.18 0.85 1.00
Series 3 F 0.00 0.00 0.00 0.00 0.00
(Equation (6.13)) 4 T 0.12 0.08 0.11 0.60 1.00

4 F 0.00 0.00 0.00 0.00 0.00
Information 1 T 0.99 0.99 0.95 1.00 1.00
Criterion 1 F 0.94 0.88 0.91 0.88 1.00
1 2 T 0.63 0.72 0.61 0.52 1.00
(Equation (6.14)) 2 F 0.02 0.02 0.02 0.02 0.03

3 T 0.66 0.69 0.60 0.64 1.00
3 F 0.02 0.02 0.02 0.02 0.03
4 T 0.50 0.58 0.65 0.43 1.00
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.99 0.98 0.96 1.00 1.00
Criterion 1 F 0.94 0.88 0.91 0.88 1.00
2 2 T 0.64 0.71 0.65 0.53 1.00
(Equation (6.15)) 2 F 0.02 0.02 0.02 0.02 0.03

3 T 0.68 0.66 0.63 0.63 1.00
3 F 0.02 0.02 0.02 0.02 0.03
4 T 0.52 0.59 0.59 0.43 1.00
4 F 0.00 0.00 0.00 0.00 0.00

Information 1 T 0.99 0.98 0.95 1.00 1.00
Criterion 1 F 0.94 0.88 0.91 0.88 1.00
3 2 T 0.64 0.68 0.59 0.52 1.00
(Equation (6.16)) 2 F 0.02 0.02 0.02 0.02 0.03

3 T 0.69 0.67 0.65 0.63 1.00
3 F 0.02 0.02 0.02 0.02 0.03
4 T 0.51 0.60 0.61 0.43 1.00
4 F 0.00 0.00 0.00 0.00 0.00

Table 6.22: The proportion of models which considered the true model as part
of their exploration. Separated by the information criterion used, the dependence
model, usage of a backward or forward selection procedure, and the type of inde-
pendent series included. Results closest to 1 are favourable in all cases.
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.48 0.47 0.46 0.47 0.47
Error using 1 F 0.47 0.46 0.47 0.46 0.47
Reference 2 T 0.32 0.32 0.31 0.33 0.31
Series 2 F 4.73 4.28 4.44 4.27 6.87
(Equation (6.6)) 3 T 0.31 0.30 0.32 0.31 0.32

3 F 0.97 0.86 0.89 0.85 1.15
4 T 0.28 0.26 0.25 0.28 0.29
4 F 0.38 0.37 0.38 0.36 0.39

Mean Squared 1 T 0.52 0.51 0.52 0.50 0.49
Error using 1 F 0.49 0.49 0.49 0.49 0.49
Reference 2 T 0.42 0.41 0.49 0.43 0.43
Series and 2 F 7.98 8.73 8.59 8.01 12.89
Indicator 3 T 0.42 0.42 0.43 0.42 0.49
Series 3 F 7.55 7.86 6.09 6.23 9.66
(Equation (6.13)) 4 T 0.37 0.37 0.38 0.39 0.40

4 F 0.84 0.83 0.80 0.79 1.23
Information 1 T 0.47 0.47 0.46 0.47 0.47
Criterion 1 F 0.47 0.46 0.47 0.46 0.47
1 2 T 0.34 0.34 0.33 0.35 0.34
(Equation (6.14)) 2 F 4.74 4.29 4.45 4.27 6.84

3 T 0.33 0.33 0.32 0.33 0.33
3 F 0.98 0.85 0.89 0.86 1.16
4 T 0.31 0.29 0.27 0.31 0.31
4 F 0.38 0.37 0.38 0.36 0.39

Information 1 T 0.47 0.46 0.46 0.47 0.47
Criterion 1 F 0.47 0.46 0.47 0.46 0.47
2 2 T 0.35 0.34 0.33 0.35 0.34
(Equation (6.15)) 2 F 4.74 4.29 4.45 4.27 6.84

3 T 0.34 0.33 0.32 0.34 0.33
3 F 0.98 0.85 0.89 0.85 1.15
4 T 0.31 0.29 0.25 0.31 0.31
4 F 0.38 0.37 0.38 0.36 0.39

Information 1 T 0.47 0.46 0.46 0.47 0.47
Criterion 1 F 0.47 0.46 0.47 0.46 0.47
3 2 T 0.35 0.34 0.33 0.35 0.34
(Equation (6.16)) 2 F 4.74 4.29 4.45 4.27 6.84

3 T 0.34 0.32 0.31 0.33 0.33
3 F 0.98 0.85 0.89 0.85 1.16
4 T 0.30 0.29 0.27 0.31 0.31
4 F 0.38 0.37 0.38 0.36 0.39

Table 6.23: Mean squared error of the model fits over the most recent 24 points
in the reference series. Separated by the information criterion used, the depen-
dence model, usage of a backward or forward selection procedure, and the type of
independent series included. Results closest to 0 are favourable in all cases.
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Score Dep. Back Indep. Indep. Indep. Indep. No
Function Model 1 2 3 4 Series
Mean Squared 1 T 0.47 0.46 0.46 0.47 0.46
Error using 1 F 0.46 0.46 0.46 0.46 0.47
Reference 2 T 0.32 0.31 0.31 0.33 0.31
Series 2 F 2.57 2.26 2.44 2.26 3.67
(Equation (6.6)) 3 T 0.31 0.30 0.31 0.31 0.31

3 F 0.66 0.60 0.64 0.59 0.78
4 T 0.28 0.26 0.25 0.28 0.29
4 F 0.33 0.33 0.33 0.33 0.34

Mean Squared 1 T 0.50 0.50 0.50 0.49 0.48
Error using 1 F 0.48 0.48 0.48 0.48 0.48
Reference 2 T 0.42 0.40 0.47 0.42 0.43
Series and 2 F 5.35 5.79 5.79 5.36 8.15
Indicator 3 T 0.43 0.43 0.41 0.43 0.45
Series 3 F 3.14 3.24 3.07 3.14 4.61
(Equation (6.13)) 4 T 0.36 0.37 0.37 0.36 0.37

4 F 0.61 0.61 0.54 0.54 0.73
Information 1 T 0.46 0.46 0.46 0.46 0.47
Criterion 1 F 0.46 0.46 0.46 0.46 0.46
1 2 T 0.33 0.33 0.32 0.34 0.33
(Equation (6.14)) 2 F 2.57 2.26 2.45 2.26 3.57

3 T 0.33 0.32 0.31 0.33 0.33
3 F 0.67 0.60 0.64 0.59 0.78
4 T 0.30 0.28 0.26 0.30 0.30
4 F 0.33 0.33 0.33 0.33 0.34

Information 1 T 0.46 0.46 0.46 0.46 0.47
Criterion 1 F 0.46 0.46 0.46 0.46 0.47
2 2 T 0.33 0.33 0.32 0.34 0.33
(Equation (6.15)) 2 F 2.57 2.26 2.45 2.26 3.57

3 T 0.33 0.32 0.31 0.33 0.33
3 F 0.67 0.60 0.64 0.59 0.78
4 T 0.30 0.28 0.26 0.30 0.30
4 F 0.33 0.33 0.33 0.33 0.34

Information 1 T 0.46 0.46 0.46 0.46 0.47
Criterion 1 F 0.46 0.46 0.46 0.46 0.47
3 2 T 0.33 0.33 0.32 0.34 0.33
(Equation (6.16)) 2 F 2.57 2.26 2.45 2.26 3.57

3 T 0.33 0.32 0.31 0.33 0.33
3 F 0.67 0.60 0.64 0.59 0.78
4 T 0.30 0.29 0.27 0.30 0.30
4 F 0.33 0.33 0.33 0.33 0.34

Table 6.24: Mean squared error of the model fits over all points in the reference
series. Separated by the information criterion used, the dependence model, usage
of a backward or forward selection procedure, and the type of independent series
included. Results closest to 0 are favourable in all cases.
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Score Backward Series Series Series Series Independent p = 1 p = 2 p = 3 p = 4
Function Selection 2 3 4 5 Model Incl.
Mean Squared T 0.05 0.60 0.63 0.60 1 0.76 0.05 0.40 0.43 0.11
Error using T 0.11 0.60 0.58 0.65 2 0.79 0.07 0.36 0.42 0.15
Reference T 0.25 0.70 0.62 0.78 3 0.86 0.03 0.19 0.49 0.26
Series T 0.02 0.56 0.62 0.53 4 0.80 0.07 0.46 0.37 0.10
(Equation (6.6)) T 0.03 0.67 0.50 0.72 5 0.00 0.23 0.66 0.11 0.00

F 0.13 0.12 0.65 0.14 1 0.05 0.97 0.03 0.00 0.00
F 0.12 0.12 0.62 0.15 2 0.08 0.97 0.03 0.00 0.00
F 0.14 0.11 0.62 0.14 3 0.06 0.98 0.02 0.00 0.00
F 0.13 0.11 0.62 0.13 4 0.10 0.97 0.03 0.00 0.00
F 0.14 0.12 0.68 0.14 5 0.00 0.98 0.02 0.00 0.00

Mean Squared T 0.47 0.54 0.44 0.53 1 0.43 0.13 0.48 0.25 0.13
Error using T 0.51 0.58 0.40 0.51 2 0.53 0.10 0.44 0.33 0.12
Reference T 0.58 0.56 0.43 0.50 3 0.51 0.09 0.45 0.30 0.15
Series and T 0.47 0.45 0.42 0.54 4 0.16 0.15 0.70 0.11 0.04
Indicator T 0.61 0.38 0.37 0.52 5 0.00 0.13 0.87 0.00 0.00
Series F 0.07 0.01 0.89 0.01 1 0.04 0.97 0.03 0.00 0.00
(Equation (6.13)) F 0.06 0.01 0.89 0.01 2 0.05 0.97 0.03 0.00 0.00

F 0.07 0.01 0.89 0.01 3 0.04 0.97 0.02 0.00 0.00
F 0.07 0.01 0.87 0.01 4 0.07 0.97 0.03 0.00 0.00
F 0.07 0.01 0.93 0.01 5 0.00 0.98 0.02 0.00 0.00

Information T 0.20 0.56 0.55 0.58 1 0.30 0.47 0.42 0.11 0.01
Criterion T 0.19 0.61 0.46 0.63 2 0.36 0.42 0.43 0.13 0.02
1 T 0.27 0.67 0.51 0.67 3 0.50 0.30 0.35 0.33 0.02
(Equation (6.14)) T 0.15 0.52 0.52 0.50 4 0.29 0.54 0.43 0.03 0.00

T 0.14 0.69 0.48 0.69 5 0.00 0.49 0.51 0.00 0.00
F 0.14 0.14 0.66 0.15 1 0.04 1.00 0.00 0.00 0.00
F 0.14 0.13 0.64 0.15 2 0.07 1.00 0.00 0.00 0.00
F 0.15 0.13 0.64 0.15 3 0.06 0.99 0.01 0.00 0.00
F 0.14 0.13 0.63 0.14 4 0.09 1.00 0.00 0.00 0.00
F 0.15 0.14 0.68 0.15 5 0.00 1.00 0.00 0.00 0.00

Information T 0.20 0.56 0.56 0.58 1 0.31 0.47 0.41 0.11 0.01
Criterion T 0.21 0.64 0.50 0.63 2 0.41 0.39 0.44 0.16 0.02
2 T 0.26 0.65 0.53 0.69 3 0.52 0.30 0.31 0.35 0.04
(Equation (6.15)) T 0.15 0.50 0.53 0.49 4 0.29 0.54 0.43 0.02 0.00

T 0.15 0.68 0.48 0.68 5 0.00 0.50 0.50 0.00 0.00
F 0.14 0.14 0.66 0.15 1 0.04 1.00 0.00 0.00 0.00
F 0.14 0.13 0.64 0.15 2 0.08 1.00 0.00 0.00 0.00
F 0.15 0.13 0.64 0.15 3 0.06 0.99 0.01 0.00 0.00
F 0.14 0.13 0.63 0.14 4 0.09 1.00 0.00 0.00 0.00
F 0.15 0.14 0.68 0.15 5 0.00 1.00 0.00 0.00 0.00

Information T 0.16 0.55 0.55 0.60 1 0.27 0.47 0.42 0.11 0.01
Criterion T 0.22 0.60 0.53 0.63 2 0.37 0.43 0.39 0.15 0.02
3 T 0.26 0.68 0.55 0.71 3 0.52 0.27 0.36 0.32 0.05
(Equation (6.16)) T 0.15 0.51 0.54 0.49 4 0.29 0.55 0.43 0.03 0.00

T 0.14 0.68 0.48 0.69 5 0.00 0.50 0.50 0.00 0.00
F 0.14 0.14 0.66 0.15 1 0.04 1.00 0.00 0.00 0.00
F 0.14 0.13 0.64 0.15 2 0.08 1.00 0.00 0.00 0.00
F 0.15 0.13 0.64 0.15 3 0.06 0.99 0.01 0.00 0.00
F 0.14 0.13 0.63 0.14 4 0.09 1.00 0.00 0.00 0.00
F 0.15 0.14 0.68 0.15 5 0.00 1.00 0.00 0.00 0.00

Table 6.25: Selection rates for each dependent and independent series and the
amount of dynamic factors selected in model 4 using n∗ = 500. Separated by
the scoring function used, usage of a backward of forward selection procedure.
Results closest to 1 for Series 2-5, closest to 0 for independent series,
closest to 1 for p = 2 and closest 0 for all other p are favourable.
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Scoring Backward Difference Standard
Strategy Function or Forward from Mean Deviation

Mean Squared Error
using Reference Series

Removal of and Indicator Series
Independent Series* (Equation (6.13)) Forward 0.15 0.05

Mean Squared Error
Selection of correct using Reference Series
Dependent Series (Equation (6.6)) Backward 0.04 0.08

Selection of
correct amount Information Criterion 1
of Dynamic Factors (Equation (6.14)) Backward 0.23 0.21

Consideration of correct Information Criterion 2
model structure (Equation (6.15)) Backward 0.32 0.20

Selection of correct Information Criterion 1
model structure (Equation (6.14)) Backward 0.01 0.01
Minimisation of
Mean Squared Error Mean Squared Error
over previous 24 points using Reference Series
in Reference Series (Equation (6.6)) Backward -0.97 0.08
Minimisation of
Mean Squared Mean Squared Error
Error over all points using Reference Series
in Reference Series (Equation (6.6)) Backward -0.52 0.08

Table 6.26: Optimal algorithmic approaches for each desired outcome for n∗ =
500. Results are averaged across all dependent and independent model choices and
the most optimal is selected as that which departs from the mean of the results
the most in the favourable direction. The standard deviation of these results is
presented for context also. *We remove the case of no independent series here as
to not skew the results.
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Chapter 7

Conclusion

Within this thesis we presented work which considered issues of automatically

detecting components and structure within data. Chapter 3 used the Evolution-

ary Wavelet Spectrum as a tool to distinguish between Long Memory and Short

Memory with changepoints. The unique properties of this time varying spectrum

allowed us to distinguish particular behaviour which is not present in standard

spectra. Results were promising in selecting between both models, with particu-

lar strength in identifying short memory structures. This work was then applied

to Price Inflation and Stock Correlation data to show how different models give

varying interpretations.

It is the recovery of hidden components, such as seasonality, which drove the

work given in Chapter 5. Here we explored the use of wavelets in the detection

and estimation of lower frequency components within high frequency data, which

is often identified as trend. Using the unique properties of a wavelet decomposi-

tion, and theoretical results found for a particular form of seasonality, we showed

that in comparison to the traditional methods for detecting seasonality, we more

accurately recover the periodicity within the data.

Following this we studied the use of Dynamic Factor Models in an automatic

procedure to select the appropriate predictors and amount of dynamic factors in

Chapter 6. With the European Area Gross Domestic Product motivating dataset,

we developed an algorithm which would explore the space of factors and predictors
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to determine the most suitable combination at each time point. We found encour-

aging results in terms of lower forecasting errors than a static combination across

time. Extending our work further we explored the effectiveness of the algorithm

in recovering the true predictors and factors. We found that whilst the algorithm

performed well practically, it did not perform well in simulations.

7.0.1 Further Work

To conclude this thesis, we remark on areas of work which could develop what has

been achieved here further. Considering the long-memory / changepoint classifica-

tion, we could explore the effectiveness of the algorithm for different model types.

Often there are numerous components additional to those we have studied (sta-

tionary mean) which may appear within the data, such as trends or seasonality.

We have completed initial work in this direction (Beaulieu et al., 2019) where the

models are extended to include trend in the context of sea surface temperatures.

This could then be extended further into seasonal components such as those we

have studied in other parts of this thesis.

The following chapter identified a low frequency seasonal component within

high frequency data. In Official Statistics data, it would be unrealistic to expect a

single low frequency seasonal component as there are often several periodicities -

daily, weekly, monthly, quarterly, yearly. Thus an area of extension to our period-

icity detection would be to include multiple sinusoids as in the case of Harmonic

Regression seen in Chapter 4. Indeed this work could be conducted through the

use of Wavelet Packets, as mentioned in Chapter 2, which would provide a more

overcomplete decomposition which may aid in the discovery of multiple seasonal-

ities. A further avenue that could be explored would be look at minimising the

number of components needing to be tested. Reducing the aggregated Bonferroni

test down to analysing the single greatest component could be a quicker indication

of whether periodicity is present before exploring further.

As has already been seen, the work on automatic selection of components for
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a Dynamic Factor Model has much scope for further exploration. Indeed the

primary direction to investigate would be to find a scoring function which has

been theoretically designed for the problem of simultaneous predictor and factor

selection. It would then be beneficial to increase the scope of the simulations

conducted. This would allow further investigation into the issues which stymie the

current selection procedure, but retain the encouraging results for nowcasting.
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