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Abstract 

Shapes are generally used to convey meaning. They are used in video games, films and 

other multimedia, in diverse ways. 3D shapes may be destined for virtual scenes or 

represent objects to be constructed in the real-world. Fonts add character to an otherwise 

plain block of text, allowing the writer to make important points more visually 

prominent or distinct from other text. They can indicate the structure of a document, at 

a glance. 

Rather than studying shapes through traditional geometric shape descriptors, we 

provide alternative methods to describe and analyse shapes, from a lens of human 

perception. This is done via the concepts of Schelling Points and Image Specificity. 

Schelling Points are choices people make when they aim to match with what they expect 

others to choose but cannot communicate with others to determine an answer. We study 

whole mesh selections in this setting, where Schelling Meshes are the most frequently 

selected shapes. The key idea behind image Specificity is that different images evoke 

different descriptions; but ‘Specific’ images yield more consistent descriptions than 

others. We apply Specificity to 2D fonts. 

We show that each concept can be learned and predict them for fonts and 3D shapes, 

respectively, using a depth image-based convolutional neural network. Results are 

shown for a range of fonts and 3D shapes and we demonstrate that font Specificity and 

the Schelling meshes concept are useful for visualisation, clustering, and search 

applications. Overall, we find that each concept represents similarities between their 

respective type of shape, even when there are discontinuities between the shape 

geometries themselves. The ‘context’ of these similarities is in some kind of abstract or 

subjective meaning which is consistent among different people.
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1 Introduction 

Shapes in general, are used to convey meaning. 3D shapes are used in video games, 

films and other multimedia, in diverse ways. Fonts are the most common 2D shapes 

seen every day. But, understanding how users perceive and interact with shapes is a 

relatively new area of work. This could allow software to be more adaptable to a user’s 

wants or needs. Examples could include visualisation of shapes according to aspects of 

human perception, and prediction of shapes which most exhibit these properties. 

Eventually, people’s ideals could be in some way expressed in the software which they 

use, guiding and supporting further development of these ideas. 

The field of 3D modelling focuses on the creation of tools and techniques for computer-

aided design of 3D shapes. These shapes may be destined for virtual scenes, such as 

those of a videogame, or instead represent objects to be constructed in the real-world. 

3D shapes designed for physical construction have varied complexity in their geometry. 

They may exude the simplicity of a ceramic bowl or reach the detailed intricacy of a 

sports car. Computer-generated animations use 3D shapes to produce majestic 

environments and the characters within them, expressing a story from the characters’ 

point of view. Sometimes, this can be done simply through a character’s facial 
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expressions and gestures, expressing their emotion as the story progresses. 3D shapes 

can additionally be used for data visualisation, allowing one to look at slice of a set of 

high-dimensional data. For a more concrete example, we can visualise tissue samples 

via MRI (Magnetic Resonance Imaging) scans. 

Fonts can be interpreted as additional properties or transformations of a baseline 

alphabet, which enable different visual expressions of text. Examples include size/scale, 

font weight and kerning (adjustment of space between characters). Fonts are used across 

many written and typed works, from letters and notes, to film scripts or posters. They 

can indicate the structure of a document, at a glance. They add character to an otherwise 

plain block of text, allowing the writer to make important points more visually 

prominent or distinct from other text. Through computers, more varied font geometries 

can be expressed in webpages and typed documents created with word processing 

packages. These can be changed on a whim, as the user prefers. Typography is a related 

field of work which aims to discover techniques to style, arrange and change the 

appearance of text, to make it more legible and visually appealing to a reader. This can 

be done via modification of font sizes, kerning, character width/length, and the lengths 

of edges/lines within characters. 

1.1 Problem Space 

In general, there is a lot of data available from many different sources of multimedia, 

comprised of many categories. Sources include social media sites such as: Instagram, 

Flickr, Facebook, and Twitter – which predominantly provide images and text. Game 

asset stores associated with Unity and Unreal Engine, provide animation data, 3D 

shapes, textures and more. Trimble 3D Warehouse [2] could also be included under this 

category, for provision of 3D shapes. Audio can be freely obtained and streamed via 
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Soundcloud. Many wallpapers and fonts are freely available under creative commons 

licensing. Every day, photographs of moments in people’s lives are captured, videos are 

uploaded, audio tracks created, and 3D shapes modelled, adding to these vast databases 

of multimedia. There are many types of media and data, from many sources… But how 

can we organise this data? We may be able to organise it geometrically, but is this what 

people choose or prefer? 

If we wish to organise data from a view of human perception or user preference, it 

becomes increasingly difficult to organise and interpret this data in a multi-modal 

manner, so we tried to understand at least a subset of it, in this way. We focused on 3D 

shapes and 2D fonts, as they are forms of geometry independent of colour, lighting and 

other attributes, such as colour images. Restricting ourselves in this way would help to 

narrow down potential variables in our studies. Figure 1.1 provides some examples of 

the data that we collected and used. 

When people study 3D shapes and 2D fonts, they typically use traditional geometric 

shape descriptors. These are an approximate description of some aspect of a shape’s 

geometry, such as its curvature (see sections 2.1.3, 2.2.2 and 2.3.2 of the Background 

chapter for more details). Curvature has been related to shape aesthetics or beauty in 

architecture [3]. It has been shown that when people contemplate beauty, viewing 

contours exclusively activates a region of the brain “strongly responsive to the reward 

properties and emotional salience of objects” [3]. 
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Figure 1.1 – Examples of 3D shapes and 2D fonts used as part of the thesis’ 

Schelling meshes and font Specificity work. 

But, are shape descriptors necessarily enough to understand how people interact with 

and want to organise 3D shapes and 2D fonts? People have different preferences and 

provide different interpretations of the same objects, but nevertheless, it has been shown 

that there can be some level of agreement between our perceptions of geometry [4], 

which we believe can be exploited for creative applications, such as product design or 

advertising. More generally, we may be able to use this understanding for search or 

visualisation applications based on perceived attributes of some geometry, with respect 

to other geometry of similar function. For example, a single armchair vs. other chairs, 

or a creative font vs a group of simpler, more legible fonts. 

Some typical geometric representations of 2D images and 3D shapes are described in 

sections 2.2.1 and 2.3.1 of the Background chapter, respectively. 
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1.2 Theme 

In this thesis, we introduce new ways to understand 2D fonts and 3D shapes, by 

measuring and discovering human-perceptual aspects of their geometry, via the 

concepts of Schelling Points [5, 6] and Specificity [7]. 

We define a human interpretation of shape as a subjective response to some visual 

stimuli in the form of a shape, based on the visible geometric structure and/or topology 

of that shape. 

Our approach differs from the traditional approach of saliency detection on individual 

shapes or fonts, as a basis for understanding them. We instead use a data-driven 

approach where we collect data based on a human interpretation of their geometry 

relative to other shapes and use this data to better understand them. 

1.3 Methodology 

Here we provide our methodology for studying and understanding 3D shapes and 2D 

fonts, which focuses on human perception. We use the concepts of Schelling points or 

Specificity as tools for this purpose. 

1.3.1 Concepts 

Schelling Points 

An example of human interpretation that we focused on, is the notion of a Schelling 

Point. Schelling Points (or focal points) are a concept invented by Thomas Schelling 

[5]. They are choices that people make when they aim to match with what they expect 

others to choose but cannot communicate with others to determine an answer (see 

section 2.1.1 of the Background chapter for more details). Previous work has studied 

points on 3D meshes selected by people due to their salience in this coordination game 
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setting [6]. Participants aimed to select vertices that they believed others would also 

pick. 

Existing work had not collected data on whole shape selections from a set of shapes, so 

we took this approach. When participants are given the task of matching other people’s 

shape selections, we name the most selected shapes under this setting, ‘Schelling 

meshes’ (as we intend them to be in the form of polygon meshes). These could be 

described as the most salient meshes within that set, given the task. Examples of 

Schelling point distributions on meshes are shown in Figure 1.2, in addition to examples 

of Schelling mesh selections in Figure 1.3, the latter of which, we collected in our work. 

 

Figure 1.2 – User-chosen Schelling point distributions on polygon meshes [6]. 
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Figure 1.3 – Schelling mesh selections. An example of user-chosen Schelling 

meshes out of a class of shapes. 

Specificity 

Another example of human interpretation is the notion of Specificity. The origin of the 

term is from the Image Specificity work [7], where the authors asked people to describe 

images via sentences of text. Each image consisted of a scene of objects and was 

associated with multiple sentences. 

The key idea behind Specificity is that different images evoke different descriptions, but 

‘Specific’ images yield more consistent descriptions than others. These images could be 

photographs, each depicting a real-world scene, as in the original Image Specificity 

work, or images of individual objects with unique details (see section 2.1.2 of the 

Background chapter for more details). 
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Existing work had only studied the Specificity of photographic images. Inspired by this, 

we focused on applying the concept of Specificity to 2D fonts. An example image 

description from the Image Specificity paper is provided in Figure 1.4, along with an 

example from the work in this thesis, in Figure 1.5. 

Figure 1.4 – Sentence-level image descriptions from Image Specificity paper [7].  

Orange indicates a subject, blue indicates the action, pink indicates nouns and 

and red, a place. 

Figure 1.5 – Word-level descriptions of fonts and associated font images.These 

were collected as part of the thesis’ font Specificity work.  
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Group-level Saliency 

These two measures share some common concepts. Firstly, they require some notion of 

relative comparison between objects within a group. They also treat shapes as discrete 

objects (rather than continuous ones). Schelling Points reflect how distinctive an 

element of a group is, with respect to the other elements of the group. In some way, a 

Schelling point is a quintessential element of that group. A Specific element of a group 

is likely to be one which can be represented using the least amount of information, with 

respect to the other elements of the group. Each measure therefore depends on the 

distribution of the group’s objects. For example, if the group is a class of 3D shapes, 

the class’ distribution could be represented through many potential factors: how varied 

each shape’s surface geometry is; the intended function of each shape, or the familiarity 

of an observer with each shape’s structure. Overall, these approaches allow you to 

measure complementary aspects of the shapes within a group, that are different to the 

underlying geometry – e.g. perceived creativity, memorability. 

These are Group-level saliency approaches. Unit-level saliency approaches describe or 

focus on an individual object at a time, with a goal of understanding which sub-

components of a single object are salient. Group-level saliency involves the comparison 

of whole, discrete objects (a raster image; a polygon mesh) – possibly via derived 

information such as textual descriptions, whereas unit-level saliency uses 

approximations to continuous elements (pixels, polygons, voxels, superpixels etc) to 

describe a single object. 

For a group-level saliency example, we might develop a measure of ‘distinctiveness’ 

for 3D shapes, which for a chair might suggest how extreme it is relative to traditional 

designs (armchairs, wooden chairs, stools etc.). By keeping track of this measure over 

time, we can see how well the individual chairs within a group can be distinguished 
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from the rest of the group, at regular time periods. It may be possible to make long-term 

predictions about the group. If we try to predict the ‘distinctiveness’ of new chairs, via 

a regression model, it can be treated as a population-level statistic for the chairs. 

1.3.2 Research Questions 

Schelling Meshes 

Based on the Schelling Points concept, we tried to understand which 3D shapes are 

selected by people when they want to match shapes that others will pick. 

The assumption was that there existed some level of agreement between the shapes that 

people would select, either exact (‘as-a-whole’ shape choice), or correlational (based 

on the properties of a subset of the shape collection shown to them), that we could 

exploit. Overall, we aimed to determine the degree of this agreement, across different 

classes of 3D shape. 

Research Question: Can we understand more about the Schelling concept, in the 

context of 3D shapes, and apply this concept in a useful manner? 

Importance: We believed this could be a basis for a group-level saliency of 3D shapes, 

allowing for relative comparison between shapes, via complementary subjective factors 

to that of the shape geometry – e.g. creativity, memorability. From this, group-level 

saliency predictions could then be possible for new meshes in a class, via a machine 

learning model based on collected data. A measure like this could be used to organise 

shapes using perceptual information, to attract attention to safety indicators or potential 

advertising. 

Aims: The aim of our work was to understand 3D shapes in the specific "Schelling" 

context. We wanted to understand Schelling meshes by collecting data on the concept. 
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We aimed to characterise the notion of Schelling meshes and determine whether it could 

help us further understand 3D shapes, for applications in search, visualisation and/or 

clustering. 

Potential Applications 

If Schelling meshes are consistent among a class, there is likely at least one 

complementary aspect to those shapes which causes them to be selected. This perceived 

factor could for example, be a notion of creativity among the shapes. Other potential 

candidates may include: uniqueness, memorability, and so-on… 

This knowledge could enable new methods of shape visualisation which adapt how 

shapes are viewed, based on some complementary aspect of their geometry. For 

example, less creative shapes could be given contrasting colours compared to more 

creative shapes, when compared in a uniform colour case (e.g. all shapes are grey). 

Additionally, 3D products and packaging could be designed around automatically 

generated shapes which exhibit geometry considered to be most memorable, for more 

effective advertising. 

Font Specificity 

Using the concept of Specificity, we attempted to understand whether 2D fonts can be 

consistently described, when done in a subjective manner. 

We took a similar approach to that of Image Specificity [7], in that we asked people to 

describe images of fonts via text, but we requested that words be provided, instead of 

sentences. We showed only one font per image, which lacked the scene-level 

complexity of images being described in the Image Specificity work. Each image 

consisted of a single font and was associated with multiple words. As these words each 
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conveyed different meanings (word senses), different words influenced the overall 

subjective response from participants, in different ways. Overall, ‘Specific’ fonts 

yielded more consistent descriptions than others – from measurement based on word 

frequency, or word co-occurrence probabilities (word embeddings). 

Research Question: Can we understand more about the concept of Specificity, in the 

context of 2D fonts, and apply this concept in a useful manner? 

Importance: We believed this could be a basis for a group-level saliency of 2D fonts, 

allowing for relative comparison between fonts, via complementary subjective factors 

to that of the fonts’ geometry – e.g. legibility, creativity, elegance. Given some measure 

of Specificity, group-level saliency predictions could then be possible for new fonts 

relative to the original set, via a machine learning model based on collected data. These 

could be used to organise fonts using perceptual information in a way that is closer to 

that of natural language concepts which a user of some software may intend to filter or 

process by. From this, we imagined that applications in search, visualisation and/or 

clustering could exist, and possibly other areas such as word-processing or syntax 

highlighting. 

Aims: The aim of our work was to understand 2D fonts under the context of Specificity. 

We wanted to understand font Specificity by collecting data on the concept. We aimed 

to characterise font Specificity and determine whether it could help us further 

understand fonts, for applications in search and visualisation. 

Potential Applications 

Specific fonts are likely to be those that look the most geometrically simple, since 

people find fewer ways to describe them. These may be the most legible fonts, but least 

creative fonts. Assuming this is true, Specificity could be helpful in situations where a 



Chapter 1: Introduction 

13 

user may want to select fonts which complement and contrast text, or possibly fonts 

which aid in memorability and clarity of text. 

Search applications could for example, rank a selection of fonts according to their 

Specificity, with fonts high in value being used to emphasise important text within a 

document – and vice-versa. This could be a helpful extension to a word processing 

package, as it is easy to select a font and never change it – simply due to its common 

use, or choice as a social standard. A word processor could use this information to 

automatically find combinations of fonts for a title, document headings and body text, 

providing potential style suggestions. Additionally, in a programming development 

environment, we might want to automatically choose more creative fonts for syntax 

highlighting, relative to the main body of code. 

1.3.3 Data Collection 

As a basis for measuring which 3D shapes were most likely to be Schelling meshes, and 

fonts, most Specific, we collected data on 3D shapes and 2D fonts using the Amazon 

Mechanical Turk crowdsourcing platform. Shapes were shown as gif images 

undergoing looped 360° rotation, and fonts were shown as static png images. 

Cylindrical rotation was provided, as most objects people come across are placed in an 

upright orientation. Additionally, a single axis of rotation was used to encourage 

continuity in the rotation, avoiding sudden changes attracting attention. We firstly 

obtained a dataset of 3D polygon meshes, split into various classes (e.g. tables, chairs, 

lamps etc.) and additionally, a collection of greyscale fonts. We then collected shape 

selections made under the Schelling context, for separate classes of 3D shape, in 

addition to textual data for fonts. Examples are shown in Figure 1.6 and Figure 1.7. 

Shapes were collected from the ShapeNet dataset [8], and fonts from fontlibrary.org. 
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Figure 1.6 – Example shape selections (‘4-choose-1’ approach). Each row is a 

question, with an example answer highlighted (selected shape out of four). 

No examples were shown to participants prior to completing a survey.  

A qualification survey was used to filter participants. 

 

 

 

 

 

Figure 1.7 – Example shape selections (‘Many-Within-Class’ approach). An 

example question with example answers highlighted (4 out of 15 abstract shapes).  

No examples were shown to participants prior to completing a survey. 

For the ‘4-choose-1’ case, selection data consisted of one chosen shape out of four 

shapes. People selected each shape with the aim of matching with what they expected 

others to choose, given that permutation of four shapes. Group-level saliency should be 
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measured across an entire class, but through many permutations of four shapes being 

shown, relative selection frequencies can be obtained per shape, within the class. In 

studying these frequencies, we assumed that studying permutations of 4 shapes could 

lead to the discovery of class-level properties of the shapes. A simple qualification test 

was carried out, showing questions consisting of four shapes, where was one was unique 

and the other three were the same. The unique shape was required to be selected across 

70% of all questions, for the participant to be allowed to complete a full survey. For the 

‘Many-Within-Class’ case, selections consisted of one or more chosen shapes from a 

class of shapes, where people selected shapes with the aim of matching with what they 

expected others to choose. We reiterated this point, with a reminder before each 

question. We found that this was enough to achieve good results across shape classes, 

without a qualification test. 

For each of the fonts, we collected human descriptions in the form of words. We focused 

on the consistency of the descriptions, to determine font Specificity. Due to this, we 

studied per-font word distributions (see sections 6.4.4 and 6.4.5). Figure 1.8 shows a 

selection of fonts varied in Specificity, grouped with the words used to describe them. 

These words were collected from people as part of the thesis’ font Specificity work. 

Lines in blue are ambiguous due to overlap with other elements of the diagram, so 

connections are shown via the terminating circles at the ends of those lines.
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Figure 1.8 – Graph-like diagram of a subset of words used to describe fonts. 

Fonts are linked to words used to describe them, collected as part of the thesis’ 

font Specificity work. Words unique to each font are placed nearby the font, 

without any connection. Blue lines are connected at their circular end-points to 

avoid ambiguity. 

1.3.4 Analysis 

Using the collected shape selection data, we calculated Schelling frequencies, or the 

frequency of a shape’s selection made under the Schelling context, given how many 

times it was visible (unless stated, all participants could see all shapes). We could then 

order the shapes according to these frequencies, allowing us to visualise them and look 

for initial patterns. We also held separate surveys to determine whether Schelling 

frequencies correlated with other subjective terms (e.g. ‘visual appeal’, 

‘memorability’), and to what degree (these were determined via comments from a small 

initial survey). Additionally, we determined via statistical tests whether selection 

frequencies were consistently distributed among different groups of participants, given 

the same questions (see sections 4.4.4 and 5.4.1). The Background chapter summarises 

a range of statistical tests used throughout the thesis (see section 2.5.2). 
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Using the collected word-level descriptions of fonts, we computed word frequency-

based Specificity scores for each font. Statistical testing was employed to check for 

consistency in word frequency distributions obtained from different groups of 

participants (see section 6.4.5). In subjective terms, we held surveys via Amazon 

Mechanical Turk, to determine whether Specific fonts were considered to be visually 

appealing, creative, or more legible etc, via Likert score ratings of individual fonts, for 

each of the terms. The chosen terms for the Likert surveys were sampled from the top-

50 most frequent words provided by participants (see Figure 6.3), and topics/subjects 

associated with those words. We also produced an automated approach to compute font 

Specificity scores, by representing words assigned to fonts as vectors in a word 

embedding (see section 2.6.5 of the Background chapter for more details). Using these 

automated scores, we determined the properties of the most Specific fonts – for 

example, were they mostly bold, italic or of simple geometry? We conducted additional 

surveys via Amazon Mechanical Turk, to determine whether Specific fonts from a view 

of the automated approach, were considered to be visually appealing, creative, or more 

legible etc. 

1.3.5 Learning 

Using our collected data, we aimed to create models to predict some human-perceptual 

aspects of our collected 3D shape and 2D font datasets, based on the concepts of 

Schelling meshes and font Specificity. 

To predict Schelling meshes and Specific fonts, we predominately used convolutional 

neural networks. Regarding Schelling meshes, we created two approaches: 1) a voxel-

based convolutional neural network which predicts the relative selection probability of 

a shape given three other shapes in its class, and 2) a depth image-based convolutional 
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neural network which predicts a shape’s Schelling frequency relative to its class of 

shape, given a triplet of orthogonal depth images each representing a shape. Data 

augmentation was employed by sampling different triplets from different initial 

positions around a shape (via rotations). In comparison to the latter approach, we also 

tested if geometric descriptions of 3D shapes (represented as individual vectors, or more 

precisely, histograms over per-vertex shape descriptor values), could be used to predict 

Schelling frequencies, using a fully-connected neural network. We additionally tested 

a voxel-based convolutional neural network for Schelling frequency prediction.  

Regarding 2D fonts, we created a depth image-based convolutional neural network to 

predict how Specific a font is. As input, it takes an image representation of a font, 

mapping it to a single Specificity score, expressing the consistency of words associated 

with that font. We also tested if geometric descriptions of fonts (represented as 

individual vectors), could be used to predict font Specificity scores, using a fully-

connected neural network. 

1.4 Thesis Organisation 

1.4.1 Layout and Structure 

Following the Introduction is a Background chapter, covering key concepts needed to 

understand the work in this thesis, such as information on geometry representations, 

data collection, statistical tests / analysis, and relevant topics in machine learning. 

Afterwards is the Related Work chapter, which provides an overview of previous 

research that is related to the theme of the thesis. It covers four main topics: 1) Saliency 

+ Shape Perception, 2) Understanding of Geometry, 3) Machine Learning, and 4) 

Crowdsourcing. A summary is provided for each topic. In the conclusion section of the 
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chapter, research gaps are indicated which are most relevant to the thesis research, 

highlighting the contributions we provide that complement the existing literature. 

In the Schelling Meshes: ‘4-choose-1’ chapter, we introduce the notion of ‘Schelling 

meshes’, an approach to understanding 3D shapes via a basis of human preference. We 

study the agreement between participants when they select one out of four shapes, 

aiming to match other people’s selections. We detail our data collection method, 

interpret and analyse the results, and describe our approach to learning and predicting 

which shape is most likely to be a Schelling mesh out of a group of four shapes. We 

also provide potential applications in search and visualisation, using shape selection 

frequencies given shape visibility by participants. To conclude the chapter, we discuss 

the approach and report our main findings. 

The next chapter (Schelling Meshes: ‘Many-Within-Class’) introduces an approach to 

collecting data on Schelling meshes where participants can select multiple shapes within 

a class, aiming to match others’ selections, as before. We interpret and analyse our 

results and provide a method to predict how likely a shape is to be a Schelling mesh out 

of a shape class. This is our ‘Many-Within-Class’ approach. To conclude the chapter, 

we report and discuss our main findings. 

To follow, we study 2D shapes in the Font Specificity chapter. This covers our approach 

to understanding 2D fonts via the concept of Specificity. We detail our data collection 

approach and show the results of our analysis. Based on these results, we show how 

per-font word distributions can be used to create a Specificity score and detail an 

approach to automatically compute Specificity scores with similar properties. We also 

provide a method to predict font Specificity and introduce potential applications in 
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search, visualisation and clustering. To conclude, we report and discuss our main 

findings. 

We end the thesis with a Conclusions chapter, discussing how the topics of Schelling 

meshes and font Specificity relate to the thesis’ theme of understanding 3D shapes and 

2D fonts via human-perceptual aspects of their geometry. We provide potential future 

applications, and areas of research that could follow from this work. 

1.5 List of Main Contributions 

• Data Collection: Via crowdsourcing, we study what makes a shape more 

Schelling than others, and a font more Specific than others. 

• Analysis: We create a scoring approach for meshes, by treating them as 

Schelling points, and create measures of Specificity for fonts. We determine 

subjective properties common to Schelling meshes or Specific fonts. 

• Learning: We show that a function to predict which shapes are likely to be 

Schelling meshes can be learned for different classes of shape. Such a learned 

function can then be used to make predictions for any new shape, within the 

same class. We also show that Specificity can be learned for fonts, which 

similarly can be used to predict Specificity for any new font. 

• Applications: We show that 3D shape or 2D font datasets can be clustered or 

directly visualised using the concept of Schelling meshes, or Specificity for 

fonts. This data can also be used to search for the most legible fonts, or shapes 

that stand out most, in a collection. 
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2 Background 

2.1 Concepts 

2.1.1 Schelling Points 

Schelling Points are those choices people make when they aim to maximise their 

payoff/reward in a hypothetical game but cannot communicate with others to determine 

an answer – in other words, they may have imperfect information. When the goal of this 

game is to “be in agreement with others, as much as possible” (an example of a co-

ordination game), they are choices selected by people when they choose to match each 

other’s selections, with no communication beforehand [5]. For example, if two people 

are driving down a single path, one car travelling down from either end, but they wish 

to avoid a collision, they need to choose a convention to avoid that collision. If there is 

enough space to overtake each other’s car, they might both signal to only turn left, or 

only turn right, keeping themselves safe. Without the necessary space, they would likely 

slow their car down as soon as possible! The Schelling points are either to press the 

brake or turn in the same direction. 

We can take colour selection as another example (see Figure 2.1). When people are 

asked to select from four colours, three of which are blue and one, red, they are more 

likely to select red. Given four numbers, three of which are ‘1’ and one, ‘3’, they are 

more likely to select ‘3’. In the former case, there is some psychological basis or 

consistency behind the selection of the red colour. In the latter case, the relative change 

in the geometry of the fonts representing each number is the stimuli behind the selection 

of the number ‘3’. This implies that studying these selections can help to study some 
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aspect of human visual perception, as a top-down approach. Humans are adept at 

detecting patterns in a visual scene, due to the accuracy and speed of the human visual 

system (HVS), so aspects of these patterns should contribute to their selection decisions. 

Figure 2.1 – Depiction of a colour or number-based Schelling game. 

Works which involve Schelling Points aim to define some unit of selection, which in 

the most abstract sense is of a collection of objects. A special case of this could be a 

class of 3D shapes. From these, we may want to refine the selection unit down to a 

single shape, a region of a shape, or its base elements, such as vertices or voxels (which 

would be analogous to pixels in 2D images). 

Previous work has studied points on 3D meshes selected by people due to their salience 

in this coordination game setting [6]. Participants of a crowdsourced survey aimed to 

select vertices on a mesh that they believed others would also pick. These could then be 

treated as Schelling points. Using the obtained data, a regression model was learned to 

predict where Schelling points would mostly likely be on a new mesh. 

2.1.2 Specificity 

Specificity stems from the consistency of descriptions associated with an object [7]. 

These descriptions might be phrases or sentences made up of unit words, or textural or 

colour-based symbols representing concepts of the object. If we ask people to describe 

an object, we expect can varied precision, from precise mathematical definitions or 
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statements to subjective terminology. But, since people want interpretability with little 

cost, they describe objects with some accuracy in-between this spectrum. Therefore, 

humans informally communicate via some natural language, where there is agreement 

on how to represent common concepts via words and punctuation, structured via a set 

of grammar rules. 

Determining the Specificity of an object requires a set of words which are descriptive 

of the object, where each word is compared relative to one another within the set. Some 

value is obtained for each comparison, which for example, might be some occurrence 

frequency or ratio of occurrence frequencies, but overall it represents how common 

each element is, with respect to the others in the set. The average or a weighted average 

of these values results in a measure of Specificity for the object. 

The origin of the term ‘Specificity’ comes from the Image Specificity work [7], where 

the authors asked people to describe images via sentences of text. Each image consisted 

of a scene of objects and was associated with multiple sentences. The key idea behind 

Specificity is that different images evoke different descriptions, but ‘Specific’ images 

yield more consistent descriptions than others. These images could be photographs, 

each depicting a real-world scene, as in the original Image Specificity work (see Figure 

1.4, in the Introduction chapter, for examples), or images of individual objects with 

unique details. 

The authors introduced two methods for measuring Specificity. One was based on 

human judgements, where participants rated the similarity of pairs of sentences without 

being shown the source image. Each sentence corresponded to the same source image. 

Participants therefore made ratings only on the textual content of each sentence. 
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The second method was an automated measure of Specificity based on the comparison 

of word synonyms between pairs of sentences used to describe an image. The 

similarities between word synsets (sets of word synonyms of the same meaning) 

between sentence pairs, contributed to the final Specificity score for an image. 

The authors created a model to predict image Specificity scores, using ground-truth 

pairs of sentences from humans in the form of ‘positive’ examples, where both 

sentences came from the same source image. Pairs which were ‘negative’, did not come 

from the same image. The parameters of this prediction model were used to generate 

Specificity predictions for images not seen in their image database. 

2.1.3 Shape Descriptors 

Shape descriptors are designed to represent a shape’s useful information, reducing the 

amount of space used to represent its geometry, for a specific task. This can help 

minimise the amount of computation required to compare or analyse shapes. 

For example, we can measure the curvature of the edges/contours of objects in an image, 

or intensity/colour gradients across an image or texture. Specific to a 3D shape, the 

distribution of face normals across a polygon mesh can be obtained, or the distances 

between random pairs of points on a shape’s surface, given by the D2 Distribution [9, 

10]. 

Shape descriptors are designed to represent at least one property of a shape well, in a 

geometric or topological sense. This could be scale-invariance, where the values of the 

descriptor are unaffected by the source shape’s size in each dimension. Other properties 

include translation-invariance, rotation-invariance, or sometimes, invariance to 

different types of symmetry: extrinsic (dependent on the units/co-ordinate system to 
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measure the shape; has invariance under rigid transformations) or intrinsic (inherent to 

the shape, regardless of co-ordinate system). 

We assume that the resolution of the shape’s representation that is processed (e.g. a 

polygon mesh), is high enough to consistently obtain properties of the shape which are 

close to what an ideal (usually continuous) representation would provide. 

Comparison of shape descriptors usually involves a notion of distance, and so in many 

cases, each descriptor will be a vector of elements. These vectors can be compared using 

some linear algebraic distance measure, such as Euclidean Distance. Another candidate 

could be Mahalanobis Distance, if some notion of probability is involved in the creation 

of the shape descriptor, and you may want to compare the variance between its 

elements. A distance measure allows one to measure the (dis-)similarity of shapes, 

through their descriptors. 

Shape descriptors are commonly used for further high-level applications, such as 

classification. In summary, across all shape representations, many methods of shape 

comparison involve the use of shape descriptors. 

2.2 Understanding 2D Geometry 

2.2.1 Typical Representations  

2D Images 

A 2D image is a contiguous structure of regions placed along two dimensions, known 

as pixels, which are each assigned values. If we index into the image using integer 

locations, we call the image discrete. But, if we use real-valued locations, we call the 

image continuous, as any index into the image is valid that lies within (and includes) 

the intervals used to define its boundary (width and height). 
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Scalar images 

Pixels in scalar images are assigned a single value. For an intensity image, this indicates 

brightness at the pixel. A depth image is another example, where single depth value is 

assigned to each pixel. 

Colour Images (RGB) 

Instead of a single intensity/brightness value per pixel, we now associate three primary 

colour values (e.g. red, green and blue) with each pixel, which can be combined or 

interpolated via barycentric co-ordinates, to produce many different colours. 

2.2.2 2D Shape Descriptors 

Many shape descriptors exist for 2D shapes. We discuss relevant ones here. 

Histogram of Oriented Gradients (HoG) 

These are histograms which represent frequencies of gradient orientation across local 

regions of a 2D image. Images are split into smaller ‘cells’, by which each pixel 

votes/contributes its gradient direction (change in angle from a fixed initial direction 

vector), weighted by its magnitude [11]. Pixels in 2D are analogous to voxels in 3D, so 

the approach can similarly be applied to 3D shapes, after voxelisation. HoG is designed 

to describe variation throughout an image for example, in terms of intensity/colour 

change of a 2D image, or surface variation in a 3D voxel grid. 

Since gradients have influence in each dimension/axis, we obtain a histogram for each 

axis. For an image, the resulting descriptor has two histogram dimensions and can be 

represented via 2D vectors, based on an ideal 2D gradient vector at each image pixel. 

Similarly, 3D shapes have 3D gradients, leading to a 3D histogram. In both cases, these 

can be treated as a single vector, via consistently ordered concatenation. See Figure 2.2 

for a visualisation based on an image. 
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Figure 2.2 – Visualisation of Histogram of Oriented Gradients as applied to an 

image of Lena. (Left) Test image (Right) Dominant gradient orientations of cells 

throughout the image [12, 11]. 

Contour Curvatures 

Taking the contour curves around objects in an image (indicating change in 

intensity/colour, analogous to level sets of a geographical map), the curvature of each 

contour can be computed via derivatives at each point on each contour. This can 

possibly be done via a forward-backward difference calculation of the derivative, as a 

discrete approach. 

SIFT 

SIFT is an algorithm to detect key points within an image at different scales, via a 

Difference of Gaussian approach [13, 14]. See Figure 2.3 for a visual representation. 

Figure 2.3 – SIFT descriptor representation for a single key point [13, 14]. 
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At each scale/octave, images are blurred at two different values of 𝜎. Across each of 

these blurred images, local extrema (pixel locations 0 of gradient) are searched for. SIFT 

scales down the image further and uses larger Gaussian kernels, at each octave. These 

are potential key points, which are filtered according to an intensity threshold, to remove 

edges. For each key point, a SIFT descriptor is produced based on the image gradients 

of a 16 × 16 window centred on the key point, split into 4x4 cells of 8 orientation bins 

each. This gives a 4 × 4 × 8 = 128 dimensional descriptor. Since a variable amount of 

key points can be detected per image, a method to constrain the output descriptor vector 

to a fixed size is required. This can be done via vector quantization of SIFT keypoint 

descriptors, by clustering them via k-means. Taking the closest cluster centre to each 

descriptor as a substitute (also 128 dimensions each) and binning each position into a 

histogram of 𝑛  bins, this provides a fixed sized descriptor for classification or 

regression. The number of bins tends to be high (e.g. 1024), to ensure data is sparsely 

located throughout each of the resulting descriptors. 

SURF 

This is a faster method of detecting and describing image key points, than SIFT [15, 

14]. Instead of a Difference of Gaussian approach, SURF uses the determinant of the 

Hessian matrix to detect key points, where convolution of the image via second-

derivative Gaussian kernels, is approximated using box filters (which can be calculated 

using integral images). Larger filters are used with each octave. Key points are searched 

for using extrema throughout the image at multiple scales. 

A descriptor is produced using Haar wavelet responses which can also be calculated 

using integral images (an algorithm for determining sums of values in a rectangular 

subset of a grid). For each keypoint, a dominant orientation is determined and the area 
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surrounding the keypoint is rotated to match its direction. This is set to 20𝑠 × 20𝑠, 

where 𝑠 is the current scale. The area is split into 4x4 sub-regions, for which Haar 

wavelet responses are taken in the horizontal 𝑑𝑥 and vertical directions 𝑑𝑦, weighted by 

a Gaussian kernel centred at the keypoint, to introduce some robustness to deformations 

and translations. For each sub-region, a vector: 𝑣 = (∑ 𝑑𝑥 , ∑ 𝑑𝑦 , ∑|𝑑𝑥| , ∑|𝑑𝑦|) giving 

a descriptor of 4 × 4 × 4 = 64 dimensions. 

An extended 128-dimension version exists, where the sums of 𝑑𝑥  and |𝑑𝑥|  are 

computed separately for 𝑑𝑦 < 0 and 𝑑𝑦 ≥ 0. This is similarly done for 𝑑𝑦 and |𝑑𝑦|, 

according to whether 𝑑𝑥 is negative or non-negative. This doubles the total number of 

features, per descriptor. 

FREAK 

FREAK is a shape descriptor based on existing key points (e.g. those extracted via SIFT 

or BRISK), using overlapping windows around each keypoint [16]. These are structured 

as multiple concentric circles and are used to detect objects, in a loosely analogous 

manner to how the human retina works. See Figure 2.4 for a visual representation. 

 

 

 

 

Figure 2.4 – Representation of the retinal-like sampling pattern of the FREAK 

descriptor [16]. 
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Sobel Filter 

The Sobel filter calculates approximations of derivatives/gradient vectors for an image. 

A filter is computed for each axis, vertical or horizontal [17]. This can be generalised 

to 3D shapes by treating them as the cells of a 3D cartesian grid (voxel grid). Since 

these shape representations are discrete, we cannot obtain a derivative at each point, but 

we can generate a useful approximation based on 3x3 sized regions of an image or 

3x3x3 sized volumes of a 3D grid. Convolving an image or 3D grid with a Sobel filter 

(a weighted average) performs two operations, which can be separately computed: 1) a 

smoothing/averaging operation, and 2) a central-difference operation as an approximate 

derivative. See Figure 2.5 for an application of a 2D Sobel filter to an image. 

Figure 2.5 – Sobel operator applied to a picture of a landscape (original image 

overlaid). 
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2.3 Understanding 3D Geometry 

2.3.1 Typical Representations  

Multi-view Depth Images 

For each pixel in an image (e.g. an image of 3D graphics render), we obtain a different 

value representing how far away each polygon that is visible on screen, is from the near-

projection plane of a 3D scene (objects are culled/not drawn behind this plane, and 

similarly, objects are culled if they are in front of the far plane). 

We do this by shooting out a ray perpendicular to the plane, at the location of each pixel 

location shown on screen (inverted back from the screen’s 𝑥, 𝑦 pixel locations). If the 

ray hits a polygon, the ‘depth’ or distance is some value between the near-plane, and 

far-plane of the scene. We can then squash the depth to lie between 0 and 1 (including) 

and quantise these depth values per pixel as 8bit integers – values between 0 and 255 

(including). Each pixel in the image is represented by an 8bit value. Taking multiple 

depth images from different positions and orientations between the near and far planes, 

gives you different views of a shape. 

Figure 2.6 – Diagrammatic representation of depth images of a chair, taken by a 

virtual camera. [18] 
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Usually a depth image is taken at fixed rotation intervals around the object of interest, 

around a given axis – e.g. every 30° horizontally via the y-axis. See Figure 2.6 for a 

visual representation. 

Polygon Meshes 

A polygon mesh is a collection of vertices, faces and edges that represent a polyhedral 

3D shape. Faces commonly consist of triangles and quadrilaterals. The mesh itself 

representing an embedding of a graph in ℝ3 , and so with small enough faces (e.g. 

repeated face subdivision), it can approximate a manifold in ℝ3. See Figure 2.7 for an 

example render. A polygon mesh can be represented in many ways, including: 

• Vertex list and face vertex indices, which each point to a vertex. 

• A ‘winged-edge’ structure: Each edge points to two vertices, faces and the four 

edges that touch each vertex and face. 

Figure 2.7 – Render of a polygon mesh teapot. [19] 

Point Clouds 

Point clouds are sets of points in ℝ3, without topological information. For the purposes 

of shape representation, they are usually taken as the vertices of a polygon mesh, and 

so represent the surface of a 3D shape. In other cases, they can represent scenes of dense 
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geometry, potentially obtained via 3D scanners (e.g. time-of-flight, laser triangulation). 

They are often aligned with other point clouds or existing 3D shapes, in a process called 

point set registration – for example via the Iterative Closest Point algorithm, which 

finds a translation and rotation matrix to move the source point cloud/3D shape to a 

target 3D shape, or vice-versa. Figure 2.8 provides an example point cloud scan. 

For the purposes of processing, point clouds are converted to other shape 

representations like polygon meshes or NURBS (Non-Uniform Rational Basis-Spline) 

surfaces. 

Figure 2.8 – Point cloud scan of a church. [20] 

Voxel 

A voxel is an element of a 3D regular grid. Each grid element is often represented via a 

unit cube. These cubes (or parallelotopes, in general) are tessellated together to form 

the grid. In the case where the grid elements are cubes, the grid is Cartesian. At other 

times, you may want to use a rectilinear grid, where each element is not necessarily 

congruent (i.e. not all the same shape). A binary voxel grid is most commonly used, 

where a value of 1 is stored with a voxel, to denote it occupies a point (e.g. a vertex of 

a polygon mesh), and 0 otherwise. 
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Figure 2.9 – Voxelised form of the Stanford Bunny mesh. [21] 

Fixed size voxel grids are often used in discriminative and generative models of 3D 

shapes, to avoid one having to remodel a shape dataset each time the voxel grid 

resolution changes. This can be time consuming if training a neural network. Instead, 

you can anisotropically scale the voxel grid along each of its dimensions (scale each 

axis differently based on the bounding box of the original shape), to fit it within the 

target voxel grid dimensions for the network. But, re-sizing a voxel grid to smaller 

dimensions can result in a loss of information, due to the loss of resolution used to 

define it. See Figure 2.9 for an example voxelisation of a mesh. 

Marching Cubes Algorithm 

Marching cubes is an algorithm to extract a polygon mesh representation of an 

isosurface that lies within a scalar field [22]. A scalar field associates a value to every 

point in space. A binary voxel grid is a discrete 3D scalar field, which might represent 

some shape. We can use the algorithm to approximate a shape’s surface (isosurface) 

from a voxel grid, by iteratively constructing a triangular polygon mesh. This is done 
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by partitioning space into a cube grid, then for each cube’s vertices (8 in total), 

evaluating whether each vertex is above or below a threshold. 

The vertices of each cube correspond to 8 neighbour voxels (sample values from the 

scalar field). If all neighbour voxels are occupied (assigned a value of 1), they are all 

contained within the surface. This means that no polygons will intersect this cube. 

Similarly, if all voxels are assigned a value of 0, they are all placed outside of the surface 

(assigned a value of 0), again indicating that no polygons will intersect the cube. The 

possible cases where the surface intersects a cube, exist when a cube has some vertices 

with a value of 1, and some vertices with a value of 0 (some voxels are occupied, and 

some are unoccupied). The isosurface in some way can be defined via the statement: 

“all positions of the scalar field with a value greater than some threshold”. If we set this 

threshold to be between the possible cases of 0 or 1, it clearly distinguishes whether a 

vertex is inside the surface (voxel is occupied as it has a value of 1), or otherwise. For 

each cube, there are 28 = 256  possible combinations of these vertex assignments 

(indicating whether vertices are above or below the threshold), which determine how to 

place polygons within each cube (or not). With certain symmetries, this can be reduced 

to 15 cases [22]. 

Hierarchical Structures 

More recent neural network structures have been designed to allow prediction using 

dynamic/hierarchical voxel-space structures as input, either tree or graph-like in 

structure. These overcome the resolution limitations of having a fixed-size voxel grid, 

depending on the detail of the generating 3D shape, or method used to produce the 

structure (e.g. polygon mesh, or point cloud). 
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Figure 2.10 - Diagrammatic representation of a voxel octree. 

Voxel Octrees are data structures that reduce the memory required to represent 3D 

shapes, by not storing empty space. A region of 3D space is divided into 8 blocks. If a 

point exists in one of these regions, then that voxel information is created, and the region 

is further subdivided into 8 blocks. This process can go on, recursively, if there is 

available memory. If a point does not exist in a region, further memory is not used up, 

and processing doesn’t take place. Therefore, 3D surfaces can be represented more 

efficiently and with greater effective resolution via voxel octrees, as most voxels are 

empty in the fixed-grid case. Volumetric data can be represented efficiently via Sparse 

Voxel Octrees (SVOs) [23]. See Figure 2.10 for a diagrammatic representation of a 

voxel octree. 

Voxel DAGs (Directed Acyclic Graphs) are an extension of voxel octrees, which also 

allow more efficient encoding of identical regions of space, since nodes in the graph 

can share pointers to identical subtrees. In one example of this work, a bottom-up 

(voxel-wise) algorithm was also produced that reduces an SVO to a minimal DAG [24]. 

Shape ‘material’ data can also be attached to these DAG structures, via an external data 

structure [25, 26]. Using reflective symmetries (mirror transformations along the voxel 

grid dimensions), the required memory to store a Voxel DAG is reduced further [27]. 
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2.3.2 3D Shape Descriptors 

Just as 2D shapes have descriptors, 3D shapes also have them. We discuss relevant ones 

here. 

D2 Distribution 

The D2 distribution is a distribution over distances between randomly sampled pairs of 

points in a 3D shape (can be calculated from points sampled on a polygon mesh, 

manifold, or point cloud) [9]. 

Curvature 

Principal curvatures are the minimum and maximum curvatures of the curve obtained 

by intersecting the plane containing a surface’s normal vector at a point on the surface, 

and the surface itself. They each measure how curved local regions of a 3D shape are. 

The directions of the normal vector at this minimum and maximum are known as 

principal directions. See Figure 2.11 for a representation of these directions on a saddle 

surface. 

Gaussian curvature is the product of the principal curvatures at a point on a 3D surface. 

If the surface is saddle-shaped, the principal curvatures are both maxima, and the 

Gaussian curvature is negative. Mean curvature is computed as the average of the 

principal curvatures. 

In a discrete or polygon mesh setting, we approximate local or differential properties at 

some vertex, 𝑣𝑖 , as an average over nearby connected vertices, 𝑣𝑗. To do this, we can 

use connectivity information between the vertices of a mesh (differences between 

positions), but this alone isn’t accurate enough for meshes with irregular triangulations 

(a triangulated mesh is one where all polygon faces are triangles). See Figure 2.12 for a 

visual representation. 
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Figure 2.11 – Diagram showing principal curvature directions at a point of a 

hyperbolic paraboloid (saddle surface). These are obtained by the intersection of 

normal planes that contain the point’s normal vector and the tangent plane 

perpendicular to them [28]. 

Figure 2.12 – Two views of a triangular polygon mesh and co-tangent angles used 

to compute discrete curvatures [29]. 

We augment this connectivity information with the angles between 𝑣𝑖  and three other 

adjacent vertices 𝑣𝑗 , given as 𝛼𝑖𝑗  and 𝛽𝑖𝑗 , to get a more accurate measurement (see 

Figure 2.12). This is reflected in the co-tangent formulation of the discrete Laplace-

Beltrami operator, 𝐿𝑐(𝒗𝑖) [30], where 𝑁(𝑖) is the set of vertices adjacent to 𝑣𝑖 , or its 

neighbourhood: 
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𝐿𝑐(𝒗𝑖) =
1

𝐴𝑖

∑
1

2
(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)

𝑗 ∈𝑁(𝑖)

(𝒗𝑗 − 𝒗𝑖) 

From this, we can compute per-vertex mean curvature (see Equation 2.2) and Gaussian 

curvature values (see Equation 2.3), in addition to the mesh’s principal curvatures (see 

Equation 2.4): 

𝐻(𝒗𝑖) =
‖ 𝐿𝑐(𝒗𝑖)‖

2
 

Equation 2.2 – Discrete mean curvature (sign defined by vertex normal) 

𝐾(𝒗𝑖) =
1

𝐴𝑖
(2𝜋 − ∑ 𝜃𝑗

𝑗

) 

Equation 2.3 – Discrete Gaussian curvature 

𝜅1 =  𝐻 + √𝐻2 − 𝐾, 𝜅2 = 𝐻 − √𝐻2 − 𝐾 

Equation 2.4 – Principal curvatures 

Repeated subdivision of a polygon mesh’s faces creates a more accurate approximation 

of a smooth surface and more accurate curvature calculations. 

Shape Diameter Function (SDF) 

The shape diameter function is a measure which links a 3D shape’s volume to its 

surface/boundary when the shape is represented as a polygon mesh [31]. 

The function measures the intersections of rays shot from a vertex of the polygon mesh, 

through a cone centred at the opposite/inward-facing direction of the vertex’s normal 

(directs rays inside of the shape), towards the opposite side of the mesh. Intersections 

where the normal at that point is too close to the original vertex’s direction are ignored 
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(< 90 degrees difference in angle). The SDF is the weighted average of ray lengths 

which are within one standard deviation away from the median ray length. Rays with 

lengths greater than this, are treated as outliers. See Figure 2.13 for a visual 

representation of these rays. Computing SDF values for each vertex in a mesh gives a 

measure of the diameter of the 3D shape’s volume in the neighbourhood of each point, 

on its surface. The SDF is invariant to rigid body transformation of the original polygon 

mesh; it is “largely pose-oblivious”. 

Figure 2.13 - Distribution of cones of rays shot from a mesh vertex. Valid rays 

used to compute the Shape Diameter Function (SDF) are shown in green. These 

are rays of length within one standard deviation away from the median ray 

length [31].  

Per-vertex Normal Binning 

We can obtain a histogram representing the per-vertex differences in angles of normal 

directions, throughout a polygon mesh, according to deviation from a fixed direction. 

This acts as a measure of how curved a surface is. 
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2.4 Data Collection 

2.4.1 5-Point Scale (Likert) 

A scale that is commonly used in research questionnaires, for participants to rate their 

level of agreement of a given question that applies to some stimuli. For example, if we 

were to ask people to rate book covers, we could ask: 

“In your opinion, how interesting is the following book cover?” 

Least 

Interesting 

-2 -1 0 +1 +2 Most 

Interesting 

Figure 2.14 – Example numerical Likert item 

Participants would assign a numerical value to this question (or Likert item), as their 

response (see Figure 2.14). This numerical value would lie within a fixed range for all 

questions. A Likert scale is the sum of responses across many Likert items (can also be 

averaged after data collection). Likert items should also employ symmetry to have equal 

numbers of potential positive and negative responses, centred at a zero point. 5 or 7 

options per scale is reasonable. A numerical value can be implied by some text of similar 

meaning (see Figure 2.15). 

Figure 2.15 – Example text-based Likert item 

Least Interesting 

(-2) 

Slightly Interesting 

(-1) 

Neutral 

(0) 

Very Interesting 

(1) 

Most Interesting 

(2) 
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2.5 Analysis 

2.5.1 Pearson Correlation Coefficient 

The Pearson Correlation coefficient, 𝜌, measures the linear correlation between two 

random variables, X and Y. It takes a value between -1 and 1 indicating the degree and 

direction of the correlation. -1 indicates a completely negative correlation, +1 a 

completely positive correlation, and 0 means no linear correlation. The formulation of 

𝜌  depends on the co-variance between 𝑋  and 𝑌 , 𝑐𝑜𝑣(𝑋, 𝑌) , and their standard 

deviations,  𝜎𝑋 and 𝜎𝑌 (see Equation 2.5). The co-variance of 𝑋 and 𝑌 is the expectation 

of the product of the differences between 𝑋 and its mean, 𝜇𝑋, and 𝑌 and its mean, 𝜇𝑌. 

Expectation in this case represents the average of a large number of measurements of a 

random variable, as the number of measurements tends to infinity (so here this implies 

that the earlier mentioned product is also a random variable). In the discrete case, 

expectation is the weighted average over all states (possible observations) of a random 

variable, by their probability of occurrence. 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

 , 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] 

Equation 2.5 – Pearson correlation coefficient general formula 

If we imagine that we have recorded sensor measurements, corresponding to 

temperature and pressure over some time period, these two lists of observations can be 

represented via a pair of vectors 𝑥 and 𝑦. We can compute a correlation coefficient 

showing how linearly correlated they are to one another. As these observations would 

be samples (finite data), we compute the sample correlation coefficient, 𝑟, as shown in 

Equation 2.6: 
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𝑟𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 

Equation 2.6 – Pearson correlation coefficient sample-specific formula 

Within the equation, 𝑛 is the number of observations, and 𝑥̅ and 𝑦̅ correspond to the 

sample mean for x and y, respectively (𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 ). Throughout this thesis, we refer 

to Equation 2.6, when discussing correlations. 

2.5.2 Statistical Hypothesis Testing 

Statistical hypothesis testing can be used to determine whether some sample of data 

either conforms to or differs from some distribution. A decision is made according to 

some confidence threshold, representing how likely it is that the data observed occurred 

due to chance. We start with a null hypothesis (𝐻0) and the opposite statement (𝐻1). For 

example: 

𝐻0: the mean of a sample is equal to another known mean. 

𝐻1: the mean of a sample is different from another known mean. 

Here, ‘different’ indicates less than or greater than as possibilities, indicating a two-

tailed test will be performed. It is standard to perform a two-tailed test when first 

checking for differences as it is unlikely that any prior information is known about 

which direction to test for. 

On selecting a suitable test for our data sample, we choose a significance level, 𝛼, to 

denote the probability of incorrectly rejecting 𝐻0  (a type 1 error). Some common 

examples are: 0.05 (1/20 chance) or 0.01 (1/100 chance). So, you can see that the lower 

the significance level, the more confidence you have in your result. Each test involves 
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computing some test statistic in order to produce a p-value, which represents the chance 

of obtaining a sample that is at least as extreme as has been observed, given 𝐻0. This p-

value is compared to the chosen significance level, to determine whether we agree with 

or disprove 𝐻0. If there is a difference more extreme than our chosen alpha (p-value < 

𝛼), we can reject 𝐻0 (accept 𝐻1) and say that the data follows a different distribution to 

that of 𝐻0. Otherwise, we accept 𝐻0 (reject 𝐻1). 

Fisher’s Exact Test 

Fisher’s exact test is useful for determining whether two groups of categorical data 

differ by more than chance and is valid even for small sample sizes (e.g. at least one of 

occurrence of less than 5 examples across measured attributes). It is an exact test, as the 

p-value can be computed exactly [32, 33]. The hypotheses are as follows: 

𝐻0 : There are no associations between two categorical variables that do not occur 

according to chance. 

𝐻1: At least one association exists between two categorical variables which did not 

occur according to chance. 

 Current year Previous year Row total 

Geography 4 11 15 

Maths 10 3 13 

Column Total 14 14 28 

Table 2.1 – Example 2x2 contingency table 
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For example, for a new class of 14 students, we might obtain sign-up counts for two 

subjects – geography and maths, vs. that of the previous year. We can tally up the results 

to form a contingency table, like that of Table 2.1. 

Assuming that students are free to study either of the subjects for their starting year, and 

choose independently, there should be no deviation from the null hypothesis that across 

each year, students are equally likely to choose geography or maths as any other year. 

Algebraically, this can be expressed via the following contingency table: 

 Current year Previous year Row total 

Geography 𝑎 𝑏 𝑎 +  𝑏 

Maths 𝑐 𝑑 𝑐 +  𝑑 

Column Total 𝑎 +  𝑐 𝑏 +  𝑑 𝑎 +  𝑏 +  𝑐 +  𝑑 

Table 2.2 – Generalised form of a 2x2 contingency table 

Fisher showed that the probability, 𝑝, of obtaining a set of values such as this, is given 

by the hypergeometric distribution. This probability is given in Equation 2.7.  

𝑝 =
(

𝑎 + 𝑏
𝑎

) (
𝑐 + 𝑑

𝑐
)

(
𝑛

𝑎 + 𝑐
)

=
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑎! 𝑏! 𝑐! 𝑑! 𝑛!
 , 

Equation 2.7 – Conditional probability of obtaining a set of values in a 2x2 

contingency table, given the null hypothesis and row/column sums. 

Within the equation, (
𝑛
𝑘

) is the binomial coefficient and ! denotes the factorial operator. 

If the column and row totals in the table are known, only 𝑎, 𝑏, 𝑐 or 𝑑 respectively are 

needed to determine other values. We can calculate the probability of observing each of 
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these 4 values, conditional on the year and subject, with the formula above. We assume 

that student counts for each subject should be equally likely across years. 

To determine how extreme the probability, 𝑝, is, we can modify the values of 𝑎, 𝑏, 𝑐 

and 𝑑, while keeping the marginal totals fixed (row and column totals), computing 𝑝 

each time. If we sum together the computed probabilities of all combinations of 𝑎, 𝑏, 𝑐 

and 𝑑 which are lower than or equal to what was calculated for the original table – 

according to 𝐻0 – this produces a p-value for the two-tailed variant of this test. If the p-

value is less than some defined threshold such as 𝛼 = 0.05 (for a 95% confidence 

interval), then we reject 𝐻0. For contingency tables of size greater than 2 × 2, Pearson’s 

chi-squared test of independence can be employed. 

Chi-Squared Goodness-of-Fit Test 

This test determines whether a sample of data is derived from a given probability 

distribution (e.g. Gaussian), by estimating the distribution's parameters from the data 

[34, 35]. It is suitable for categorical data, where the expected amount of responses per 

category is at least 5. 

𝐻0: A given frequency distribution does not differ from a specified distribution. 

𝐻1: A given frequency distribution does differ from a specified distribution. 

The test involves binning the data, obtaining observed counts from the data, 𝑂𝑖 

(obtaining the frequency distribution), and expected counts, 𝐸𝑖, based on the specified 

distribution. These are used to compute a test statistic which is distributed similarly to 

a chi-square distribution, when the counts become large enough (see Equation 2.8). A 

p-value is obtained for the provided data, indicating how extreme it would be to observe 

the test statistic value under the specified distribution. 
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𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

 

Equation 2.8 – Chi-Squared test statistic 

Using the degrees of freedom of the data (number of possible categories to be counted 

- 1) and our chosen significance level, 𝛼 , a critical value, 𝜒𝛼
2 , is computed which 

indicates the threshold for acceptance of 𝐻0, or rejection. It falls in the right tail of the 

chi-square distribution. If 𝜒2 > 𝜒𝛼
2, we reject 𝐻0. 

Kolmogorov-Smirnov Test (two-sample) 

This is a non-parametric hypothesis test to determine whether two datasets are sampled 

from the same underlying distribution. This distribution is not assumed, so it is valid 

for the test to be used when the data’s distribution is unknown [36]. 

𝐻0: A given dataset was sampled from the same distribution as another dataset. 

𝐻1: A given dataset’s distribution differs from the distribution of another dataset. 

The test statistic, 𝐷𝑛,𝑚, can be computed via the absolute difference between the CDFs 

(cumulative density function) of the two samples, or otherwise through estimates of 

each CDF, via the empirical cumulative distribution function (ECDF), where 𝑛 and 𝑚 

are the sizes of the first and second sample, respectively. A formulation is described in 

Equation 2.9. 

𝐷𝑛,𝑚 =
sup

𝑥
|𝐹1,𝑛(𝑥) − 𝐹2,𝑚(𝑥)| 

Equation 2.9 – Test statistic for the two-sample Kolmogorov-Smirnov test 
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Within this equation, sup is the supremum function (least upper bound) and 𝐹1,𝑛 and 

𝐹2,𝑚 are the ECDFs of the first and second data sample, respectively. The computed test 

statistic, 𝐷𝑛,𝑚, is used to determine how extreme the data are compared to one another, 

under 𝐻0. At a given significance level, 𝛼, the rejection threshold for 𝐻0 is determined 

by a critical value, 𝐷𝑛,𝑚,𝛼: 

𝐷𝑛,𝑚,𝛼 = 𝑐(𝛼)√
𝑚 + 𝑛

𝑚𝑛
 , 

where 𝑐(𝛼) is the inverse of the Kolmogorov distribution, evaluated at 𝛼. 

Equation 2.10 – Critical value for the two-sample Kolomogorov-Smirnov test 

If 𝐷𝑛,𝑚 > 𝐷𝑛,𝑚,𝛼, we reject 𝐻0. 

One-Way ANOVA Test 

ANOVA (Analysis of Variance), is a method to determine whether data obtained from 

different groups (or levels) of an independent variable have the same mean [37]. This 

allows you to determine whether different groups of data have different effects on some 

response variable. The test assumes that the population of each data sample is normally 

distributed. 

𝐻0: All group means are equal. 

𝐻1: At least one group mean is not equal to the others. 

Now for a short scenario: clustering some photographs of landscapes could yield 7 

disjoint groups. Images within a cluster might have similar colour intensity, due to being 

taken at similar locations or times (desert vs meadow, morning vs sunset)? Images 

between clusters might differ on these aspects. We could collect subjective ratings on 
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the visual appeal of each photograph. A candidate response variable for each cluster 

could be the mean visual appeal rating per cluster. As the clustering would be implicitly 

performed based on pixel intensities, we would be testing whether different 

distributions of pixel intensities influence the mean visual appeal of photographs, 

differently. 

ANOVA is formulated as a special case of a linear regression model. It is the sum of a 

group mean and an error term. Firstly, an independently measured attribute of each 

image, 𝑥𝑖, is needed. These could be our visual appeal ratings from earlier. 𝛼𝑗 would be 

the mean of visual appeal ratings across all images, 𝑥𝑖 , assigned to cluster, 𝑐𝑗 . The 

model is formulated according to Equation 2.11. 

𝑦𝑖𝑗 = 𝛼𝑗 + 𝜀𝑖𝑗  , 

Equation 2.11 – One-way ANOVA model formulation 

In this model, 𝑦𝑖𝑗  is an observation, 𝑖 is the observation index, 𝑗 is the group index and 

𝜀𝑖𝑗  is a normally distributed error term with zero mean and constant variance: 

𝜀𝑖𝑗  ~𝑁(0, 𝜎2). In order for 𝐻0 to be disproved, we can find any pair of groups’ means 

that are not equal. This can be done via an F-test, which uses the F-statistic. The F-

statistic is formulated according to Equation 2.12. 

𝐹 =
variation between group means

variation within group
 

Equation 2.12 – F-statistic formulation 

Using a precomputed distribution of 𝐹 values based on data where 𝐻0 is true (the 𝐹-

distribution), we can determine how extreme a certain value of 𝐹 is, given 𝐻0. As 𝐹 is 

more extreme under 𝐻0  as it increases, there is a threshold or critical value 
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(corresponding to a significance level) which when passed, we can reject 𝐻0. For our 

earlier example, accepting 𝐻0  would indicate it is below the threshold and would 

indicate that per-cluster mean visual appeal is equal among all clusters. 

2.5.3 Clustering 

K-Means 

K-Means is a clustering method which partitions data into a k clusters without overlap. 

Usually, this data is a set of vectors. On completion, each vector is assigned an index 

representing cluster membership. The k-means++ algorithm was used in our work [38]. 

It begins by randomly assigning a vector to a cluster. It becomes the first centroid, 𝑐1, 

(centre of the new cluster). 

k-means aims to minimise the sum of distances between a cluster centroid, 𝑐𝑗, and all 

vectors that are members of the cluster. This implies different distance measures can be 

used, depending on the data. A common metric is Euclidean distance. 

After the first centroid is selected, distances from all other vectors, 𝑥𝑖 , to 𝑐1 , are 

computed, and a new centroid, 𝑐2 , is chosen with probability 𝑝initial  (see Equation 

2.13), creating a new cluster. 𝑝initial is proportional to the squared distance between 𝑐1 

and the candidate vector, 𝑥𝑖. 

𝑝initial =
𝑑2(𝑥𝑖 , 𝑐1) 

∑ 𝑑2(𝑥𝑗 , 𝑐1)𝑛
𝑗=1

 

Equation 2.13 – Probability of selecting a 2nd centroid in k-means++ algorithm 

From now on, the centroid of each new cluster is computed via the distances between 

each vector and each centroid. Each vector, or observation is firstly assigned to its 

closest centroid. Next, a new centroid is selected with a probability proportional to the 
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squared distance between the closest centroid, 𝑐𝑝, to a candidate vector and that vector, 

𝑥𝑚 (see Equation 2.14). 

𝑝 =
𝑑2(𝑥𝑚, 𝑐𝑝) 

∑ 𝑑2(𝑥𝑘 , 𝑐𝑝){𝑘;𝑥𝑘∈𝐶𝑝}

, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑚 ∈ 𝐶𝑝 

Equation 2.14 – Probability of selecting later centroids in kmeans++ algorithm 

The previous step is repeated until 𝑘  centroids have been selected. This involves 

reassigning observations to their nearest centroid with each iteration, recalculating 

cluster centroids each time. 

The key point is that k-means is non-deterministic, and so not every clustering will be 

the same. As k-means may also get stuck in a local minimum, it is good to obtain 

multiple cluster assignments by running the algorithm multiple times, taking the 

clustering which yields the lowest total sum of distances between observations and 

cluster centroids. This increases the chance that a clustering will be a global minimum. 

2.5.4 Dimensionality Reduction 

Principle Components Analysis (PCA) 

PCA is a procedure to reduce the number of variables / dimensions used to represent 

some data, to principal components, or those which explain the most variance in the 

data [39, 40]. The procedure can be applied to linearly related data. This means that 

each observation (or vector) can be treated as a linear combination (sum and/or scaling) 

of a subset of the variables that form the observation. 

Principal components are linear combinations of the original variables of each 

observation and are orthogonal to one another. The components are ordered according 

to decreasing contribution to variance in the original data. These form a set of basis 
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vectors with which to represent the data. For example, given a dataset of 15-dimensional 

observations, it may be that the first 5 principal components explain 85% of the variance 

in the data, while reducing the dimensionality of the data by 2/3. The transformation is 

not lossless however, as 15% of the variance is unexplained. Increasing the number of 

components would increase the variance explained. This is a trade-off to be made, 

dependent on your accuracy requirements. 

t-SNE 

If we have observations, 𝑋, which are high-dimensional and non-linearly related to one 

another (e.g. spiral-like or circular trends in a plot), we can use t-SNE to find an 

embedding or representation of the data within a lower number of dimensions which 

tries to retain relative distances between observations [41]. Observations are usually 

represented as vectors. Nearby vectors in the original, high-dimensional space are 

nearby in the low-dimensional space, and vice-versa. This allows one to visualise trends 

in the data via a 2D or 3D embedding that is produced. 

The algorithm to find a t-SNE embedding takes multiple steps. Firstly, pairwise 

distances between each vector are computed (e.g. via Euclidean distance). The 

similarity of each vector, 𝑥𝑖, to other vectors, 𝑥𝑗 (𝑗 not equal to 𝑖), is computed based on 

𝑃𝑖, the conditional probability of 𝑥𝑖 selecting each 𝑥𝑗, as its neighbour (see Equation 

2.15). 

𝑝𝑗|𝑖 =
exp (− 𝑑(𝑥𝑖 , 𝑥𝑗)

2
 (2𝜎𝑖

2)⁄ )

∑ exp(− 𝑑(𝑥𝑖 , 𝑥𝑘)2 (2𝜎𝑖
2)⁄ )𝑘≠𝑖

, 𝑝𝑖|𝑖 = 0 

Equation 2.15 – Conditional probability of a point selecting another as its 

neighbour in t-SNE algorithm 
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This is represented via a Gaussian distribution placed at 𝑥𝑖 , so if 𝑥𝑗  is further away 

according to the distance measure, it is less likely to be picked as a neighbour, and vice-

versa. The perplexity of 𝑃𝑖, represents the number of neighbours of 𝑥𝑖. It is based on the 

Shannon entropy of 𝑃𝑖, 𝐻(𝑃𝑖) (see Equation 2.16). As perplexity increases, the number 

of neighbours considered nearest to each 𝑥𝑖 increases. This may reduce detail in the 

final embedding, as selecting more neighbours increases the probability of selecting 

candidates with more varied positions. If the perplexity is too low however, local 

changes in neighbour position most influence the overall embedding. It is therefore 

good to repeat of runs of t-SNE and check for consistency between embeddings. 

Adjusting perplexity for a given dataset can be helpful when locating global patterns. 

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2𝐻(𝑃𝑖) 

Equation 2.16 – t-SNE perplexity formulation 

How are the vectors shifted into lower dimensions? t-SNE tries to minimise the 

difference between the Gaussian distributed points in 𝑋, and a randomly sampled set of 

points, 𝑌, that are Student-t distributed in a lower number of dimensions. This is done 

via gradient descent with respect to the points in 𝑌. Student-t distributions have a fatter 

tail than that of Gaussian distributions, so close points in 𝑋 can be closer in 𝑌, and vice-

versa. The resulting embedding is produced in a non-linear fashion and is dependent on 

the initial data, so it may be difficult to analyse further (e.g. finding a shared basis with 

other data, for regression or classification etc.), but it is useful for visualisation. 
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2.6 Machine Learning 

2.6.1 Artificial Neural Networks (ANNs) 

ANNs are computing systems made up of a number of simple, highly interconnected 

processing elements (neurons), which process information by their dynamic state 

response to external inputs [42, 43]. 

These processing elements or neurons are mathematical functions, which output a value 

according to an input value, which can be a simply binary value in {0,1}, using a 

threshold, otherwise a rational or real-valued output. 

Figure 2.16 – Diagram of a fully-connected artificial neural network 

As an example, in a fully-connected network (see Figure 2.16 for a diagram), the input 

may consist of a vector of 5 numbers, 𝑎 (corresponding to the frequency of 5 keywords 

found in a section of text), which we call layer 𝑗 = 1. Each element of 𝑎 is provided to 

every neuron, 𝑖, in layer j=2. Each neuron multiplies the elements of 𝑎 by individual 

weights (a vector of real-valued numbers 𝑤𝑖
(𝑗)

), one corresponding to each element and 
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then sums the values together (a dot product). The neuron then shifts the resulting sum 

by some real-valued number 𝑏𝑖
(𝑗)

 (a bias), and transforms it by an activation function, 

𝑓. This is the output value 𝑜𝑖
(𝑗)

 of the neuron 𝑖 in layer 𝑗. Each layer after the input can 

consist of multiple neurons, each having their own weights and biases, taking all outputs 

of the previous layer (it is symmetric), processing them to potentially output different 

values to the next layer. Applying each neuron of layer 𝑗 to the inputs, gives us a vector 

of new values 𝑜(𝑗) = 𝑓(𝑤(𝑗)𝑥(𝑗) + 𝑏(𝑗)), or outputs for the neurons of the next layer. 

The number of values output is equal to the number of neurons for that layer. More 

precisely, the values of 𝑎 have been transformed into the inputs for the next layer 𝑗 + 1 

where the outputs of layer 𝑗 are the inputs of layer 𝑗 + 1: 𝑜(𝑗) = 𝑥(𝑗+1). As this can 

happen in a recursive manner, memory and processing time permitting, a network can 

consist of more than 2 layers. 

An ANN acts as a function mapping a representation of input data, to an output value. 

Many ANNs have a learning rule or method by which to update the weights or train the 

network to predict existing outputs/responses which correspond to existing inputs – e.g. 

inputs are instances of the “10 keyword frequencies”, and outputs are some “importance 

score” associated with the text that the frequencies were obtained from. 

This learning method is usually the Backpropagation approach, which adjusts weights 

according to derivatives of activation functions with respect to their inputs, starting from 

the output neuron, multiplied by a learning rate, to control the magnitude of weight 

modification. Since these activation functions must be differentiable, examples are 

commonly: tanh, sigmoid or softmax. Sometimes, partially differentiable functions can 

be used, like ReLU (Rectified linear unit). This is not differentiable at 0, and so 

conventionally just outputs a gradient of 0 at that input. 
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The network should aim for generalisation: it should output a value close to a 

true/existing output, given by the input data, but also not be so specific that new data is 

classified incorrectly, or is associated with an output value that deviates too much from 

a target, in regression (overfitting = high bias; low variance). A regularisation method 

is used to do this, like was mentioned for metric learning. After training, given a new 

instance of data, neural networks can be used to classify data into one of many discrete 

options, or a regression model can be determined. 

2.6.2 Convolutional Neural Networks 

These are biologically-inspired variants of the multi-layer perceptron (MLP). These are 

neural networks with many hidden layers. A perceptron is only a classifier (it uses a 

threshold function to distinguish between classes), but a multi-layer perceptron can be 

used for regression (uses smoother functions, like sigmoid, or softmax). But, this is 

unrelated to the number of layers, and instead the activation function of an artificial 

neuron (what tells it to ‘fire’ or send a result to further layers). 

The difference between an MLP and convolutional neural network stems from early 

work in the 1960s, on the cat’s visual cortex, by Hubel and Wiesel [44]. The cat’s visual 

cortex contains a complex arrangement of cells, which are sensitive to small sub-regions 

of the visual field – called a receptive field. These sub-regions tile the entire visual field 

(in sensors, this is known as the field of view, or FOV), and they act as filters local to 

each tile. Hence, they are well-placed to exploit spatially local correlation found within 

natural images [45]. At this time, two cell types were identified: simple cells which 

respond most to specific edge-like patterns within their receptive field. And complex 

cells which have larger receptive fields that are locally invariant to the exact position of 

the detected pattern (they are translation invariant). Spatially local correlation is 
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enforced by keeping a ‘local connectivity pattern’ between neurons of adjacent layers. 

i.e. the inputs of hidden units in layer 𝑗 are from a subset of units in layer 𝑗 − 1. Each 

node in the layer acts as a filter. To ensure translation invariance, each layer uses the 

same parameters: weights (multiple/scale), and biases (addition/translation) for the 

activation functions. Many previous works have used convolutional neural networks 

[46, 47, 48, 49]. 

2.6.3 Other Types of ANN 

Other types of neural network exist, such as Autoencoders [50, 51] and Recurrent 

Neural Networks (RNNs) [52, 53], which each have their advantages and disadvantages. 

If we use a certain type of neural network, it will depend on the source of the data.  

Restricted Boltzmann Machines (RBMs) [54, 55] are another type of neural network 

formed of two layers, one visible and one hidden. Communication only exists between 

layers. The hidden layer is stochastic, or uses some element of randomness per neuron, 

to determine how inputs are transmitted. Weights are randomly initialised to provide 

this effect. Inputs to the network can be reconstructed in an unsupervised manner, by 

passing data forwards (computing the probability of neuron activations given weighted 

inputs) and backwards (estimating the probability of some inputs, given hidden layer 

neuron activations, also dependent on their weights) between layers. Since the weights 

are shared between layers, this provides a joint probability distribution over the inputs 

and neuron activations. We can adjust the network weights and therefore neuron 

activations to minimise the difference between the distribution of inputs vs. network 

reconstructed inputs. Stacks of RBMs form Deep Belief Networks [56, 57]. These 

generative models have mostly been superseded by variational autoencoders and 

generative adversarial networks. 
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Autoencoders are used to compress (encode) an input representation, then reconstruct 

(decode) it, using a number of hidden layers with less parameters (e.g. weights, biases), 

than the input size. These are also known as latent variables. But this can be done by 

just ignoring the parameters, and returning the identity function (doing nothing), still 

resulting in a perfect reconstruction. To avoid this, a denoising autoencoder introduces 

noise into the network at the input stage, forcing it to reconstruct a corrupted, or noisy 

form of its inputs. This acts as a regularisation on the network representation. Using 3D 

shapes as an example, regularisation causes the autoencoder to not exactly produce the 

original input shapes, but instead slightly varied versions. This should encourage it to 

represent a greater population of 3D shapes than its inputs, as it tries to undo the effect 

of noise on the input shapes, by learning statistical dependencies between them. These 

occur due to missing, or overcomplete input data, caused by the introduction of 

randomness. Too much noise can yield inconsistent and unhelpful results, however. If 

we want to generate new instances of a medium (e.g. images, 3D shapes), we may use 

an autoencoder to compress the input, and then provide that encoding to another neural 

network for decoding, classification or regression. Variational autoencoders inherit this 

structure but make normality assumptions on the distribution of the latent variables. 

Generative Adversarial Networks (GANs) can learn to mimic distributions of data. Via 

a generator network, 𝐺, new data instances are generated. A discriminator network, 𝐷, 

is trained to classify/distinguish between ‘fake’ vs. ’real’ instances. The weights of the 

generator network are adjusted, to make its output match what the discriminator 

network thinks is valid. Or in other words, fool it into classifying a generated data 

instance as belonging to the correct class. The final output is achieved via multiple 

iterations of generation, starting with random noise and comparison to actual input (e.g. 

images) via a discriminator network’s classification. The representation the generator 
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uses to create images/examples is called the latent space, 𝑧. This competition acts as 

zero-sum game, as the goals of each network differ in an opposing manner. 

RNNs are used to learn sequences of data, based on the previous 𝑛 − 1 elements in the 

sequence. If we want to analyse the frames of a video, we may use an RNN, since 

previous frames may help to determine later ones. We may similarly do so to predict 

the most probable future words or sentences given previous text. Earlier approaches 

were difficult to train using Backpropagation, as a sequence’s length increases, due to 

vanishing gradients. So, the Long-term Short-term memory (LSTM) network was 

introduced [52]. The learning rate is fixed to 1, but this limits control over gradient 

propagation, so an addition to existing neurons was made to produce an LSTM unit, 

which uses gating mechanics (input, forget, output) to introduce a notion of memory. 

The neuron activations of the previous layer are summed with the activations of the 

current layer. Together with the inner activation of the LSTM unit, the resulting values 

are provided to a sigmoid function, to make sure values lie in [0, 1]. This value is set to 

be forgotten, used as future internal input, or set to be an output. Encoding input words 

according to their location in a vocabulary using 1-of-K coding (e.g. 1:written, 

2:tomato, 3:envelop …) and using a softmax function for the output layer, provides the 

conditional probability values of each word given the LSTM network 

model/hypothesis. Training an LSTM network using a cross entropy loss, is equivalent 

to maximum likelihood estimation of the model. 

2.6.4 Metric Learning 

This is a type of learning method that computes a metric to measure distances between 

pairs of items (e.g. between photos, or between points on a 3D mesh). Some examples 

are: a similarity measure for fonts [58] and illustration style [59]. 
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Formulation 

Given a representation of some data, 𝑥, in the form of features or attributes, 𝑥𝑖, we can 

try to automatically find a metric, dependent on a matrix of weights, 𝑊 , which 

determine the importance of descriptive or explanatory attributes of the representation 

[60]. 𝑊  must be positive semi-definite. This means that the scalar resulting from 

𝑥𝑇𝑊𝑥 ≥ 0. 

Given two data instances’ representations 𝑥 and 𝑥′, the metric looks like the following: 

𝑑(𝑥, 𝑥′) = √(𝑥 − 𝑥′)𝑇𝑊(𝑥 − 𝑥′) 

Equation 2.17 – Weight-based Distance Metric 

Equation 2.17 is a weighted distance measure/function, e.g. Euclidean distance (where 

𝑊 is the identity matrix), or Mahalonobis distance. The latter takes into account the 

covariance between the features of the data instance (In this case, 𝑊 = Σ , the 

covariance matrix). Metric learning approaches aim to adjust the weights to represent 

the differences between the input data. 

We can learn the weights, 𝑊, to determine a custom distance measure, using pairs or 

triplets of constraints of the following form, for each instance of data, 𝑥: 

• Must-link (𝒮) / Cannot-link (𝒟) constraints 

𝒮 = {(𝑥𝑖 , 𝑥𝑗) ∶ 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗  𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟} 

𝒟 = {(𝑥𝑖 , 𝑥𝑗) ∶ 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗  𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟} 

• Relative/Training constraints (ℛ) 

{ℛ = (𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) ∶ 𝑥𝑖  𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑚𝑜𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝑥𝑗  𝑡ℎ𝑎𝑛 𝑥𝑘} 
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The metric learning algorithm therefore tries to find the parameters of the metric, such 

that they best agree with the above constraints, in a weakly-supervised manner. This 

means that the algorithm has no access to the labels (classification/regression) of 

individual training instances: “it is only provided with side information in the form of 

sets of constraints, 𝒮, 𝒟, ℛ” [60]. 

This is usually formulated as a minimisation problem, with regularisation to avoid 

overfitting to the data provided. Regularisation aims to ensure that the learned 

dissimilarity/distance function doesn’t exactly represent the data but has less variation 

(or is less complex), allowing for breathing room when new data is to be incorporated 

into the metric. This increases its utility in the real world, as the data provided to it is 

very likely to be only a subset of the real population’s responses (all possible 

combinations). 

The formulation is below [60]: 

min
𝑊

𝑙(𝑊, 𝒮, 𝒟, ℛ) + 𝜆𝑅(𝑊), 

Equation 2.18 – Loss function over weights and constraints with a regularisation 

penalty, scaled according to a parameter, 𝝀. 

Where 𝑙(𝑀, 𝒮, 𝒟, ℛ) is the loss function (see Equation 2.18), which provides a penalty 

when training constraints are violated, 𝑅(𝑀) is a function of the weights, 𝑊, which 

provides the regularisation, and 𝜆 is the regularisation parameter (determines the scale 

of regularisation). 

2.6.5 Vector Space Models 

Approaches which use textual descriptions to understand shapes tend to use some 

method of word sense disambiguation, either using a database of word synonyms or a 
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vector space model of word semantics. Vector space models represent words as 

embeddings in a vector space, where words of similar semantics are mapped to nearby 

points [61]. See Figure 2.17 for a visualisation of a vector space model. 

Vector space models can be count-based or context-based. Count-based models tally 

frequencies of word co-occurrence throughout a large corpus of text, typically with 

some matrix factorisation of these counts (e.g. Latent Semantic Analysis [62], GLoVE 

[63]). Context-based models employ the use of a word context or sliding window of 

words in a sentence, where words occurring in the same contexts have similar meaning 

(Skip-gram, Continuous Bag-of-Words). These can predict the most likely words to fit 

or follow the context, or vice-versa. word2vec is an example [64, 65]. Figure 2.18 

provides a visualisation of these methods. 

Figure 2.17 – Visualisation of a word vector space model, via t-SNE. 

Figure 2.18 - A visual representation of the CBOW and Skip-gram vector space 

models, from a survey of vector-space representations of word meaning, by 

Camacho-Collado et al. [61] 
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The word2vec architecture uses a Skip-gram or Continuous Bag-Of-Words (CBOW) 

model [64, 65]. The CBOW model is based on a feedforward neural network language 

model, which aims to “predict the current word using its surrounding context”, or the 

collection of words before and after the current word in the sequence (also including it), 

by minimising the negative log probability of a target word given the context. The skip-

gram model is similar, but the goal changes to predicting words in the surrounding 

context of a given word, rather than predicting the word from a given context. GLoVE 

performs global matrix factorisation of word and context co-occurrence statistics, given 

large corpora of text. 

Since there are many combinations of contexts (word n-gram windows), to be compared 

against each word, a lower-dimensional representation of the context statistics is 

obtained by minimizing a "reconstruction loss", which can explain most of the variance 

in the high-dimensional data. The features of each row are lower-dimensional 

representations of the statistics, where each row is a vector representing each word in 

the corpora. 
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3  Related Work 

This chapter provides a review of several works related to human perception of 3D 

shapes and 2D fonts, and other related fields. It provides potential questions to answer, 

based on research gaps in these works. 

3.1 Overview 

• Saliency + Shape Perception: The concept of Schelling meshes introduces the 

idea of an underlying subjective space of agreement between people, indicating 

which meshes attract attention within a group, given an abstract goal of 

agreement with others. In this sense, it is a form of task/goal-based saliency for 

discrete objects, which we call Group-level saliency. This section covers 

previous approaches in discovering and understanding properties of salient 2D 

images and 3D shapes, and methods for automatically determining these 

properties. 

• Understanding of Geometry: We aimed to understand how people interact 

with and want to organise 3D shapes and 2D fonts, so we needed an 

understanding of how 2D images and 3D shapes are represented and processed. 

This section provides an overview of traditional techniques which compare one 

object to another, via explicit geometry processing approaches (approx. < 100 

models), in addition to Data-Driven Shape Analysis and Processing [66]. The 

latter approach tends to involve the use of machine learning techniques that use 

implicit descriptions of shapes defined within the learning process and can be 

scaled to compare 1000s of models. 
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• Machine Learning: To predict which shapes are Schelling meshes, or 

otherwise, Specific fonts, we used regression models based on neural-networks. 

This section provides a summary of works which use machine learning for 

classification, regression and generation of 2D images and 3D shapes. 

• Crowdsourcing: Crowd-sourcing was our primary method for collection of 

data on Schelling meshes and font Specificity, so we provide examples of 

previous crowdsourcing approaches for collecting data on 2D images, 3D 

shapes and some related topics. 

3.2 Problem Statement 

In the case where a single 3D shape is studied, 3D shape descriptors can indicate 

geometric properties of that shape, such as its curvature [67], or a notion of volume 

[31]. Image descriptors similarly indicate geometric properties of a 2D shape [13, 15]. 

Traditional saliency methods for images focus on mapping out objects in a scene (such 

as a photograph) which are most likely to be attended to or focused on. Ground truth 

data can be obtained by annotation via bounding boxes. Otherwise, regions indicating 

potential objects can be automatically proposed using convolutional neural networks 

[68]. Networks like these can classify new objects within an image [69] or indicate 

salient regions of an image, while simultaneously outlining detected objects [70]. 

But most existing shape descriptors or methods of saliency detection do not measure 

properties of shapes which are perceived relative to other shapes within a group (or 

Group-level saliency). So firstly, we wanted to determine how a group-level saliency 

measure of shape, could be defined. Overall, we aimed for better results in applications 

such as: search, visualisation or clustering, or to introduce new applications, via such a 

measure. 
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We therefore needed to survey current works and subject areas to determine if existing 

research could provide answers to these problems. Conversely, we also aimed to locate 

any relevant research gaps which could be investigated. Some of these would form the 

basis of the studies in this thesis. 

3.3 Related Literature 

3.3.1 Saliency + Shape Perception 

This is a summary of works which have studied how humans perceive shape, with a 

focus on image and mesh saliency. We highlight existing results and potential research 

gaps. 

Visual Saliency 

Saliency is "the quality or fact of being more prominent in a person’s awareness or in 

his memory of past experience" [71]. This is a very broad definition, and so what 

constitutes a salient element or object in a visual sense, has been a focus in computer 

vision for many years. Visually, saliency characterises parts of a scene (objects or 

regions) which appear to stand out relative to neighbouring parts, from an observer's 

point of view [72]. From now on, we refer to saliency by its visual interpretation. 

Attention is a concept related to saliency. It covers all factors which guide or influence 

visual selection mechanisms from anatomical or computational viewpoints, whether 

they are 1) bottom-up, scene or data-driven or 2) top-down, goal-based or expectation-

driven [72]. The former leads to saliency detection approaches based on differences 

between local elements of a shape, or local contrast methods. The latter leads to 

saliency methods based on structures located within a shape, or statistics obtained with 

respect to the whole shape. These are global contrast methods. 



Chapter 3: Related Work 

67 

Local contrast: The greater the difference in intensity/position of a small element (e.g. 

pixel, patch, vertex, polygon) of a shape from neighbouring small elements, the greater 

the contrast between them. High contrast indicates a high saliency in the associated 

region where those elements belong. The concept of 'Centre-surround' differences in 

response, obtained at multiple scales/resolutions is a general approach to determining 

local contrast across a shape [73], in a manner similar to that of receptive fields in the 

human visual system. See Figure 3.1 for a visualisation of local contrast enhancement. 

Global contrast: Global contrast methods predominately apply statistical methods 

across a shape to determine the contrast of regions or structures of a shape, with respect 

to the entire shape. For an image, this could be pixel intensity/colour deviation from the 

mean. In general, some distribution over the shape is analysed - e.g. a colour histogram. 

Figure 3.1 – Image of interior surface of the eye with and with contrast 

enhancement. (Left) original image (Right) enhanced image, showing greater 

image intensity at regions of higher colour gradient (e.g. veins) [74]. 
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Figure 3.2 – Diagram of the ITTI98 model [73]. 

Processes of attention affect the responses of neurons within the visual cortex. For 

example, it is generally believed that cortical cells each respond preferentially to the 

highest contrast stimulus in their receptive field. Neural systems for attention take 

advantage of this mechanism, by effectively increasing the contrast of an attended 

stimulus [75]. 

Many works have attempted the creation of computational frameworks for visual 

attention or saliency prediction. A seminal example is ITTI98 [73] (see Figure 3.2 for a 

diagram of the model). It is based on the premise that visual attention is dependent on 

many local features of an image, compared via centre-surround differences, and at 

multiple scales. The framework was based on the physiologically inspired model of 

visual attention by Koch and Ullman [76]. This hierarchical, centre-surround structure 

has been a basis for modern convolutional neural networks, which are used regularly in 
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computer vision (see Machine Learning section) for classification and regression based 

on shape. 

A recent survey summarises the history of visual saliency models starting from early 

attempts at modelling saliency in a computational manner with the ITTI98 model [73], 

followed by approaches based on binary image segmentation, and the automatic 

creation of saliency maps based on hand-crafted image features [77], leading to more 

modern deep learning approaches based on artificial neural networks [70, 78]. 

Datasets 

Along the way, work has produced a benchmark [79], dataset and baseline model for 

salient object detection [80]. The authors noted that there was not a standard definition 

of saliency, and that many datasets were biased, in that pictures: 1) contained only one 

object of interest, and 2) the object(s) was usually located at the centre of the image. 

Their focus was on “the relationship between where people look in scenes and what 

they choose as the most salient object when they are explicitly asked”, in scenes with 

many possible objects of interest.  

As a basis for creating a dataset with reduced elements of bias, a larger scale annotation 

of images was done using the Judd dataset (2009) [81]. The resulting dataset was 

named: Judd-A [80]. It contains “eye movements of 15 observers freely viewing 1003 

scenes from variety of topics”. Approx. 900 images were used. Although larger, the 

Judd-A dataset was more biased towards salient objects placed at image centres, than a 

dataset created by the authors (Bruce-A, 120 images). 

Ideally, a large dataset on the scale of Judd-A, without this ‘centre-bias’, would be 

useful for testing saliency models. As a reasonable compromise, the Judd-A dataset was 

segmented into 667 and 223 on-centred and off-centred scenes, where the off-centred 
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scenes had a more varied distribution of salient objects throughout them, but with an 

empty centre. Bruce-A, and the off-centred images from Judd-A were found to have 

reduced centre-bias compared to two other existing datasets: MSRA-5K and CSSD. 

Figure 3.3 – Saliency annotation heatmaps for six image datasets (blue=low 

density to red=high density) [80]. 

Object sizes were also smaller for Bruce-A, and Judd-A, making saliency detection more 

challenging. The majority of salient objects in those datasets occupied less than 10% of 

the image. Figure 3.3 provides object annotation heatmaps for each dataset. 

On average, the most salient object in Judd-A images, contained more superpixels (See 

Image Saliency section for a definition) than salient objects of images in the MSRA-5K 

and CSSD datasets, even as objects are smaller. The greater the number of superpixels 

in an image, or by analogy those of an object in an image, the more complex it was 

considered to be. 

To measure and compare the bias and complexity of saliency datasets (including those 

mentioned above), Borji created a saliency model, which rewarded 1) high detection 
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rate, 2) high resolution, and 3) high computational efficiency [80]. It was designed to 

generate a saliency map based on an eye fixation prediction model (which provides a 

quick estimate of locations people may look at), and an oversegmented map of image 

regions (which refines the region level estimates of the saliency map). The model was 

on par with eight existing models on the MSRA-5K dataset but provided better 

performance over those models using the Bruce-A, and Judd-A datasets, which had 

reduced centre-bias. A large drop in performance was noted on eight existing models, 

given these datasets (40%-70%). One potential reason given was that although humans 

might sometimes have looked at an object more frequently, the image annotators may 

have instead chosen a different object, causing increased false positive results. 

Properties of Salient Objects 

Many properties of salient objects in images have been discovered. Elazary and Itti 

showed that locations most salient to human observers are likely to fall within the 

outline of an object (in 76% of the images, “one or more of the top three salient locations 

fell on an outlined object”) [82]. Kathryn et al. discovered that when observers are 

explicitly asked to click on salient locations in natural scenes, standard saliency models 

most accurately predict the “explicit saliency selections and eye movements made while 

performing saliency judgments” [83], but not “eye movements made during image 

viewing without a specified task (free viewing)”. 

Borji et al. attempted to determine whether explicit saliency selections could explain 

free-viewing eye fixations. They asked 70 undergraduate students to draw polygons 

around the object which stood out most in an image. Through this annotation process, 

the authors concluded that saliency judgements agree with free-viewing eye fixations, 

significantly above chance [80, 84]. This result is an empirical reason for the collection 

of explicit shape selections in our Schelling Meshes work, where we treat them as 
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saliency judgements. This matched the predictive power of ITTI98, a standard saliency 

model [73]. An annotated dataset of 120 images (Bruce-A dataset) was produced as a 

result. From this conclusion, the authors suggested that the most salient object in a scene 

attracts the highest fraction of fixations [80]. Are the most salient objects in this sense, 

Schelling Points? If the objects were 3D shapes in a collection, would this apply? As a 

distinction, we could term these objects as Schelling salient, i.e. those objects which 

attract the highest fraction of fixations relative to other objects in the scene, when a 

person is given the task of matching objects that they expect others to focus on (with no 

communication allowed between participants). If we collect each object’s fixation 

frequencies (or selection frequencies), we can treat Schelling saliency as a form of 

group-level saliency. 

Image Saliency 

Image saliency methods aim to automatically determine which are the most prominent 

or salient regions within 2D images. Traditionally, they were split into local contrast 

(focus on sub-regions of the image – e.g. at a pixel or patch-level) or global contrast 

(process the whole image at a time, based on finding salient structures throughout the 

image). Sometimes they are a combination of these local/bottom-up, or global/top-down 

approaches.  

Image saliency methods work at a single scale or multiple scales. Some multiple-scale 

approaches are based on Scale-space theory as a basis for image representation at 

varying scales, by representing the image as a collection of smoothed images, 

parametrised by a smoothing kernel, which reduces high frequency / finer-scale 

components of the image. A Gaussian kernel is commonly used in a pyramid 

construction, where the image is repeatedly blurred (convolved with the kernel) and 

sub-sampled to a certain level. An approximate reconstruction of the source image can 
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be obtained by reversing this process, up-sampling and blurring an image from a higher 

pyramid level. The SIFT keypoint extractor and image descriptor uses this concept [13, 

14]. See Figure 3.4 for a visualisation of the process. 

Figure 3.4 - Gaussian and Laplacian Pyramids obtained via a test image of Lena. 

(Top) Gaussian pyramid obtained by blurring and down-sampling (Bottom) 

Laplacian pyramid obtained from subtraction of the Gaussian pyramid image at 

the current level, from the previous image. 

An example of a local contrast approach ranks the similarity of image elements (pixels 

or regions) with foreground or background cues via a graph-based manifold ranking. 

Each image is represented as a closed-loop graph, with superpixels as nodes. Superpixel 

algorithms over-segment an image by grouping pixels that belong to the same object 

within it. Given a node as a query, the remaining nodes are each ranked based on their 

relevance to the given query, via a function that defines the relevance between 

unlabelled nodes and queries. This provides the saliency measure [85]. Another 

approach uses multi-level image segmentation, with over-segmentation being employed 

to produce superpixels. These superpixels are treated as image regions. A supervised 

learning method maps per-region feature vectors based on colour and texture 

information, to a saliency score, then combines the saliency scores across multiple 
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levels, producing a saliency map (an intensity image denoting salient parts of a source 

image) [86]. 

Another global contrast approach uses histograms based on pixel colour separation from 

other image pixels. Colour smoothing is applied to the histograms, to remove noise in 

distribution of colour across the image (to create smoother colour gradients), while 

retaining overall image resolution. The smoothed histograms are then normalised and 

combined with region-level saliency comparisons, to produce saliency maps and 

saliency cuts denoting the most salient objects in an image [87]. 

In the 2012 ImageNet large scale visual recognition challenge [88], results in many 

computer vision problems were greatly improved beyond the state-of-the-art – largely 

due to trainable convolutional neural networks. Since then, there has been a large shift 

towards using artificial neural networks for many purposes, including classification or 

object detection [89, 69, 90], region proposals [68], and image segmentation [91]. 

Convolutional neural networks or more generally, methods based on centre-surround 

differences at multiple scales, have become the predominant method of saliency 

detection and saliency map generation, spanning a continuum from local contrast to 

global contrast. 

DeepSaliency is an artificial neural network-based model of object saliency in images 

[70]. The authors focused on modelling the semantic (type/category) properties of 

salient objects, via a multi-task learning approach, which aims to perform saliency 

detection and pixel-wise object segmentation (in conjunction) using a convolutional 

neural network. Weights and layers are shared for each task, allowing correlations 

between the two tasks to jointly produce features for object perception in images. 

Saliency maps are output, along with object segmentation maps (pixel-wise outlines of 
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objects in an image). To help preserve object boundaries in the saliency map, a 

superpixel representation of the original image is formed. Its adjacency graph is then 

used to minimise a Laplacian regularised objective function, to smooth over object 

boundaries in the saliency map. 

Another approach aggregates multi-level feature maps captured at multiple resolutions, 

using a convolutional neural network. The network learns to combine these feature 

maps at each resolution and predicts saliency maps using them [92]. 

Other work has attempted to combine higher-level semantic features of images with 

low-level detail (object structure, with simpler geometric primitives). A feed-forward 

neural network is augmented with a pyramid-like pooling extension, and a multi-stage 

refinement mechanism for saliency detection. At first, a coarse prediction map is 

obtained via the feed-forward network. Another network is then provided with local 

information to refine the prediction maps, in stages. A pyramid pooling module is later 

used for aggregation of region-level features [93]. 

Moving closer to the philosophy of early attempts at visual attention modelling, 

convolutional neural networks have begun to be trained to predict visual saliency maps 

[94, 95] and eye fixations [96, 97]. Methods for saliency prediction of 360-degree 

images have been introduced, which use weighted centre-surround differences of image 

patches and image features via a colour dictionary representation [98], including eye 

scan-paths [99, 100] and head and eye movements [101].  

More recently, a human fixation dataset has been built using multiple views of 3D 

printed shapes [102]. The authors tracked binocular movements, mapping pupil 

positions (4D) to eye fixation positions on 3D shapes. All fixations were modelled as a 

saliency probability distribution on the surface of each 3D shape – called a gaze density 
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map. Two prediction models were created using convolutional neural networks. The 

first model could predict gaze density maps for previously unseen viewing directions of 

each shape. The second model was trained on data from only a subset of the shapes and 

was able to predict gaze density maps for the unseen shapes (via cross-validation). In 

the latter case, using one of the unseen shapes to train the model for new views, 

improved the prediction accuracy of the model overall, suggesting that “certain shape 

features cannot be learned from the geometry alone”, indicating that they are “higher-

level” features of the shapes. They additionally find that stable features across different 

viewing directions tend to be associated with “semantically meaningful parts”. 

Some applications of image saliency include: photo composition optimisation, by 

cropping and re-centring an image to include one or more salient targets [103] and 

image manipulation, using previous work on ‘patch distinctness’ (regions of nearby 

pixels), combined with an object probability map [104]. The object probability map 

infers the most probable locations of the subjects of the photograph, according to 

distinct cues. 

Co-saliency 

Co-saliency methods aim to define where people look when comparing multiple images 

[105]. One method models co-saliency between an image pair, as a linear combination 

of a single-image and multi-image saliency map. The single image saliency map was 

produced using three existing methods in the literature, at that time. The multi-image 

map is computed using a multi-layer graph across the pair of images, in a pyramid 

representation. Each node of the graph is described by two types of visual descriptor 

based on local image appearance – e.g. colour and texture properties. Similarity between 

nodes is measured via a normalized single-pair SimRank algorithm, to compute a final 
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similarity score [106]. Clustering techniques have been produced to detect co-saliency 

[107], in addition to methods which perform hierarchical segmentation of images [108]. 

More recent works on co-saliency detection have been produced, which employ 

convolutional neural networks [109]. A metric-learning based framework for co-

saliency detection has been introduced [110], in addition to a method to segment objects 

common to a set of images [111]. A notion of group saliency has been introduced, with 

an algorithm to locate and segment salient objects within image collections, by 

maximising similarities between images and distinctness within images [112]. 

Schelling saliency in images could be interpreted as a task-based measure of co-saliency 

between the objects of an individual image, since objects must be selected relative to 

others in view. Differently to the group saliency approach mentioned earlier [112], there 

would be no direct, between-image comparisons. To account for this, we could extract 

the objects from every image, treating them as if they were sampled from the same 

image. In the 3D shape case, this would be like combining shapes from different classes 

into one overall class (e.g. combining chairs, tables, plants, bottles etc. into one class). 

Here, object selections may reflect a form of group-level saliency. In the most general 

case, a 3D scene or arranged collection of 3D shapes would be analogous to a 2D image, 

where whole shape selections would be made within the collection. This collection 

would be representative of a shape population similar in geometry. For example, the 

population might be a class of 3D shapes which have similar surface detail and 

volumetric structure relative to each other (e.g. similar curvature distribution, or per-

vertex SDF distribution across all shapes), when compared to other classes. 

To reduce non-geometric factors from influencing selections however, this requires 

shapes to be presented with consistent colour and lighting. Without colour or lighting 
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changes being factors, global rarity could be the main distinguishing factor behind 

Schelling saliency in shape. Global rarity is a concept in visual saliency which states 

that the rarer, or more unique objects or regions are across an entire scene, the greater 

overall attention on the scene, and the higher the saliency [113]. 

Mesh Saliency 

Mesh saliency has been defined as: "enabling a machine system to automatically reason 

about which points, or regions of a 3D polygonal mesh are perceptually important" 

[114]. 

As polygon meshes can approximate any 3D shape, this definition can be extended to 

other 3D shape representations. Approaches include: spectral methods [115, 116, 117, 

114]; curvature-based methods [118, 119, 120]; heat diffusion inspired approaches such 

as the Heat-Kernel Signature [121, 122] and other methods, such as the Shape Diameter 

Function [31]. Although not necessarily a cause of saliency in meshes, symmetry 

detection can inform it, and is a related topic [123, 124, 125] – whether intrinsic 

(preserves geodesic/curved distances over a 3D surface) [126, 127, 128, 129] or 

extrinsic (dependent on the units/co-ordinate system to measure the shape; has 

invariance under rigid transformations) [130]. 

Liu et al. have introduced a survey on mesh saliency algorithms and their applications 

[131]. They defined saliency as the portion of visual information "that is visually 

interesting" and "filtered", from the remaining superfluous information. They describe 

‘saliency detection’ as imitating “ways of seeing", based on scientific studies of 

theoretical computer science and human perception. 

Approaches were categorised into local contrast and global contrast methods, as with 

image saliency methods. Approaches of the former category focus on determining the 
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"most representative salient elements" of a surface based on differences between 

neighbouring primitive/small elements, whereas approaches of the latter category aim 

to determine the most salient structures or components (constituted by local elements 

such as vertices, pixels), via statistics found across a shape. 

They noted that most current approaches are local contrast based - some of which 

include: single scale approaches or multi-scale/hierarchical approaches, which are 

point-wise, based on clusters, or are based on frequency spectra. Global contrast 

methods can involve clustering [132] or the use of conditional random fields [133]. 

Other methods use a combination of local and global aspects of shape [134]. 

There has been much work in computing the visual saliency of meshes, originating with 

the “Mesh Saliency” work [135]. Examples include the use of salient geometric features 

for the purpose of partial shape matching [136], the identification of distinctive regions 

of a mesh’s surface [137] and the consideration of global information from the spectral 

attributes of a mesh [114]. Related to this topic is the subject of mesh segmentation, as 

in some cases a mesh must be segmented approximately uniformly for a saliency 

detection algorithm to be used [138, 139, 140, 141]. Mesh saliency can assist with shape 

correspondence [142], where the task is to match points/regions on one shape to 

points/regions on another, even as its pose changes. 

We now detail some examples of local and global contrast mesh saliency methods. 

Shtrom et al. have produced an algorithm for detecting salient-regions in 3D point sets 

[143], using a distinctness measure applied at multiple-levels of abstraction in the point 

set. Their work aimed to take into account the hierarchical nature of the human visual 

system, by analysing a point set at multiple scales, looking at smaller features, as well 

as larger regions of the point set. The Fast Point Feature Histogram (FPFH) [144] was  
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employed, to form a type of centre-surround description of variation around each mesh 

vertex, following Itti's computational framework for modelling human visual attention 

(ITTI98) [73]. The FPFH describes the relative angular direction of mesh normals with 

respect to each other (within a spherical region), centred at each mesh vertex. It was 

said to cope with “extremely large sets, which may contain tens of millions of points" 

and was produced without the topological information used by many other mesh-based 

saliency algorithms. Two applications were provided via "a set of the most informative 

viewpoints" and the suggestion of "an informative city tour given a city scan". 

Later work resulted in a clustering-based approach to salient region detection in point 

sets. [132]. The FPFH was also used in this work. Point sets were segmented into 

smaller clusters, via fuzzy clustering. Then a measure of each cluster's uniqueness was 

formed along with a spatial distribution of each cluster, to form a cluster-level saliency 

function. From this, the probabilities of points being contained in each cluster were used 

to determine point-wise saliency values. The measure of uniqueness used was based on 

Shtrom et al.’s work [143]. The authors evaluated their algorithm's saliency predictions, 

against a 3D interest point detection benchmark [145], showing that their algorithm was 

better at detecting ground-truth salient points, but at the expense of detecting more 

"uninteresting" or less extreme points (the emphasis was on recall, over precision), than 

the Heat Kernel Signature (HKS) [121]. The earlier mentioned benchmark contains 

interest points on surfaces, which may not necessarily be perceptually-based, unlike 

human selected points. If obtaining less false positives is of the essence (i.e. aiming for 

only salient points) over detecting a large amount of salient points, the HKS provides 

better results. 



Chapter 3: Related Work 

81 

Additionally, Tasse et al. have provided a quantitative analysis of saliency models 

[146], including evaluations of the earlier mentioned point set approach [143], and 

cluster based approach [132], a spectral processing method (using a Laplacian over a 

mesh) [114] and a PCA-based method, against a dataset of 4800 range scans, with 

associated ground-truth data. The PCA-based method used the Fast Point Feature 

Histogram (FPFH) which was also employed in other works [143, 132]. The Schelling 

points dataset of Chen et al. [6] was taken as ground-truth data. Range scans were 

collected from the SHREC'07 dataset [147]. 

Evaluation metrics included the Area under the ROC curve (AUC), based on the 

Receiver Operating Characteristic (ROC). The ROC curve is formed by separating 

saliency map points into salient points vs. non-salient points. For different true positive 

thresholds of saliency value, the true positive rate vs. the false positive rate is produced. 

This is used to compare saliency models in images, where an AUC of 1.0 is associated 

with an ideal saliency model. The Normalised scanpath saliency (NSS) measure was 

also computed. It can be used to compare 2D saliency maps to human eye fixations, 

measuring the saliency values along a user's eye scanpath/trajectory. The authors 

considered points selected by users in their ground truth data, as fixation points, also 

agreeing with the visual saliency results obtained by Borji et al. (see Visual Saliency 

section of this chapter) [80]. The Linear correlation coefficent (LCC) was also 

employed to measure the strength of the relationship between ground-truth selections 

and a saliency map prediction. The ROC, AUC, and LCC measures were noted in the 

2016 survey by Liu et al. [131] as not often being applied in mesh saliency evaluations, 

but often so in visual saliency studies. Other noted evaluation measures of this kind 

were: Precision-Recall and the F-Measure. 
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The results of Tasse et al.’s saliency model evaluation [146] suggested that the point-

set method [143] performed better at saliency detection over multiple classes of shape, 

with the authors' PCA based method, and cluster-based approach [132] close behind, 

outperforming the spectral processing approach by Song et al. [114]. 

Shape perception is another topic related to mesh saliency. One can perceive saliency 

on virtual meshes from a visual [135] or tactile [148] perspective. The visual salience 

of 3D printed objects has been measured [149]. Other works in shape perception have 

also predicted and validated shape perception with eye-tracking devices [150, 151], 

explored the preferred views of 3D objects [152], and developed a perceptually-based 

preference model for 3D printing orientations [153]. 

There are properties of shapes that humans can perceive including: the scale of 3D 

models [154], the relation between shapes and their colours and materials [155], and 

the depth of 3D objects in a single image [156]. The shape of a virtual object can also 

influence how the material reflectance is perceived [157]. Many such properties exist 

[158]. 

Schelling points selected on 3D meshes have been interpreted as a measure of saliency 

in polygon meshes. Could this be translated to the meshes themselves, treating them as 

individual selections within a collection of meshes (See Figure 1.3)? 

Summary 

We studied existing saliency approaches based on direct processing of geometry to 

determine what utility they can provide. This is to provide a baseline for comparison to 

our approach, or to show differences between these approaches and ours based on 

human perceptual data. 
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Image saliency techniques aim to automatically determine perceptually salient aspects 

of images. Mesh saliency techniques similarly aim to automatically “reason about 

which points, or regions of a 3D polygonal mesh are perceptually important". Within 

Mesh Saliency, the concept of Schelling saliency has only been applied to 3D meshes 

in one previous work [6], as Schelling points. This leads us to an open question: can we 

extend the notion of Schelling points on meshes, from points on 3D shapes, to the shapes 

themselves? Previous work has concluded that explicit shape selections agree with free-

viewing eye fixations [84, 83, 80]. Therefore, to approach this problem, we can collect 

explicit shape selections, made in the Schelling context. Careful experimental design is 

required to make sure that experiments cannot be gamed, reducing bias and increasing 

consistency in obtained results. 

Most existing mesh saliency methods to our knowledge, cannot be used as a basis for 

group-level saliency measures, as they study individual shapes at a time, determining 

salient regions of those shapes. A point set saliency measure potentially could be used 

for this purpose, but the placement of shapes within the scene would be arbitrary, and 

object boundaries would be unclear. Instead, we could potentially use indirect 

descriptions of shapes, based on their perceived attributes. This would ensure that 

human perception is directly taken into account. For 3D shapes, this induces a top-down 

or goal-driven viewpoint of saliency in meshes, closer in principle to global contrast 

methods, but the space being analysed is complementary to that of the shape geometry 

– e.g. the space of shape creativity ratings. In the case of fonts, we may be able to 

understand them via word-level descriptions (rather than image saliency methods), 

similarly to the Image Specificity work [7]. 
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There are existing works on Co-saliency [105] and group saliency [112] in images, but 

not 3D shapes. The former approach studies where people look when comparing 

multiple images. The latter type of work develops measures of saliency based on 

maximising both similarities between images and the distinctiveness of objects within 

images [112]. 

Global rarity could be the main concept behind Schelling saliency in shape. But could 

the Schelling concept of selection while thinking about other people’s potential 

selections, affect this? A mesh saliency approach exists which is based around the 

concept of global rarity [113]. 

Despite this focus on 2D images and 3D shapes, at the end of the day, all shapes are 

geometric in nature. Geometric representations have trade-offs in ease of processing 

and resolution. Determining which representation is suitable for a given situation, 

requires an understanding of geometry. 

3.3.2 Understanding of Geometry 

To determine geometric representations and descriptions of 2D/3D shape which 1) had 

ideal resolution and properties for later measurement and analysis, and 2) could be used 

for comparison to our data-driven based approach based on human-perception, we 

needed to review existing works on shape measurement and description. This yielded 

shape representations, descriptors and algorithms of varying kinds and uses. We 

summarise some of these and their applications. 

Data-Driven Shape Analysis and Processing 

Traditional geometry processing techniques work for shape comparison, retrieval and 

correspondence, between small groups of shapes (around 2-100 shapes). However, a 
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different set of methods are required as datasets increase in size. These methods are 

more data-driven and imply the use of larger-scale optimisation and machine learning 

techniques. They operate on explicit or implicit shape descriptors and can be scaled to 

compare 100s to 1000s of models. Explicit shape descriptors are manually designed to 

perform specific tasks, whereas implicit ones are those which are represented through 

an extraction process defined in the learning process itself. An example is that of 

translation invariant local descriptors, obtained via convolutional neural networks. We 

summarise some existing methods and their applications in this section of the chapter. 

Shape modelling and geometry analysis are well-developed topics [159, 66], with work 

done on many different problems. Earlier works focused on topics such as: 3D shape 

feature computation [9], detection of partial shape matches [136], establishing 3D 

model benchmarks [139] and performing 3D mesh segmentation and labelling [140]. 

Structure-aware shape processing [159] is a survey of methods which describe and use 

the arrangement and relations between shape parts (inter and intra) at a higher-level, 

rather than local geometric details. Structure-aware shape processing algorithms aim 

to link object function with shape geometry. Data-driven shape analysis and processing 

[66] is another survey, detailing the new approaches being taken to analyse large 

amounts of 3D shapes, and the new methods of shape understanding that come from 

this, which include: shape segmentation; shape reconstruction; scene analysis and 

synthesis; interactive shape modelling and editing, and generative models for 3D shape 

creation. However, the use of these is beyond the scope of this thesis. 

Given a skeleton model of a body, an algorithm has been developed to determine the 

pose a person should take to operate a vehicle, based on its geometry [160]. A method 

for automatic recognition of functional parts of man-made 3D shapes, using part-wise 



 

 86 

semantic (category/type) correspondences between those shapes, has also been 

produced [161]. 

Later work took this further to attempt to determine how objects interact together in a 

given 3D scene, dependent on their geometry, to work towards a “geometric 

functionality descriptor” via a notion of “interaction context” of geometry [162]. The 

descriptor tries to extract some semantic information about the purpose of an object. An 

example of a dinner table separates the chairs to sit on, from the table, and from the 

crockery and plates on the table. When comparing a desk, a trolley/cart and a shopping 

trolley, a traditional descriptor (LightField [163]) placed the desk much closer to the 

cart. Whereas, the authors’ descriptor places the cart much closer to the shopping trolley 

instead. 

Additionally, the authors attempted to produce a combined description of semantics and 

geometry, via a continuous approach. The semantics are defined in terms of the parts of 

a segmented object. E.g. for a horse model, each leg is labelled with the same tag, rather 

than individually, since they are all similar. This was done in terms of geodesic 

distances between parts (geodesic distance is the curved distance across a surface from 

a point A to B, both which lie on the surface). 

Generative Models 

The ShapeNet dataset, introduced in 2015 [8], has enabled people to work on shape 

classification and generation tasks of different kinds. One example involves the use of 

convolutional neural networks for object recognition, done via voxel grid classification 

[48]. Using a similar model, the orientation of 3D shapes has also been considered, by 

treating the optimisation problem as having multiple tasks - predicting both the shape's 

class and pose [164]. The ShapeNets model provides a convolutional neural network-
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based representation of voxel grids (within different classes), which can be used to both 

classify, and generate new voxel grids [47]. Other existing 3D model datasets include: 

the Trimble 3D Warehouse [2] and Princeton Shape Benchmark [165]. 

Work by Kanezaki, has produced a convolutional neural network-based model which 

attempts to simultaneously classify an object (via an image), and determine the best 

view of that object, under its predicted category [166]. This 'front' view is obtained via 

a rotation path from the image coordinates. The goals of the method were to: 1) select 

the best view for object classification, as the 'front' view of an object category and 2) 

select the 'front' view which best matches the category of images. Kanezaki argued that 

the two problems could only be solved by jointly learning a solution to the object 

classification and pose estimation problems. N*M possible predictions were produced, 

via N = number of object categories and M = number of views. Probabilities were 

assigned to each possibility, with the highest probability of a category, taken as the 

'front' view. 

Liu et al. took a similar approach, using 3D shapes in the form of voxel grids, where 

their model first learns the shape's class [167]. The shape and its class are then provided 

to individual regression networks, one for each of the possible shape classes/categories. 

The output of the each of the networks is a 3x1 vector, corresponding to a predicted 

orientation of the given shape, for each shape category [167]. 

Sharma et al. performed an analysis of deep learning methods which aim to learn shape 

distributions from large scale collections of 3D CAD models [168]. The authors 

discovered that the training process, as well as the resulting representation of shapes, 

were “strongly and unnecessarily tied to the notion of object labels”. 
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From these insights, they worked on a generative approach to 3D shape representation, 

producing a 3D convolutional denoising autoencoder, VConv-DAE, which is trained in 

an unsupervised fashion, using a binary voxel grid encoding of input shapes [168]. 

Voxel grids of dimensions 24 × 24 × 24 were used, as in ShapeNets [47]. The same 

dataset as was used to train ShapeNets, was also used to produce the authors' model (see 

0 Machine Learning for more details on autoencoders). 

The authors' showed that their model (a stacked convolutional autoencoder) 

outperformed some other generative methods, such as a standard convolutional 

autoencoder (CAE), or the ShapeNets model, which used a convolutional deep belief 

network, in most of their shape categorisation and completion tests, with less variance 

in the output voxel grids' error (proportion of incorrect voxels). 

As a test of 'completion' error, the authors evaluated their network based on a more 

structured form of noise, where the aim was to represent occlusion of objects when 

sensing them via a camera, for instance. To simulate this, 𝑛 randomly selected slices of 

an input voxel grid were removed, and reconstruction error was calculated for an input 

shape, given a percentage removal of the voxels within it. 

Overall, their results suggested that future deep learning approaches to 3D shape 

reconstruction should involve some form of generative model of 3D shape distribution 

and introduce noise for regularisation/generalisation purposes. They state this may 

possibly be useful even for classification tasks, since the parameters/weights of a 

generative model may be used for other tasks than just reconstruction, transferring 

knowledge (geometry, topology) of the shape distribution, to other domains. 

A different form of generative model: Generative Adversarial Networks (GANs) [169], 

have already been used to generate images, from a high-dimensional ‘latent space’ of 
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features, learned via convolutional neural networks [170], in addition to 3D shapes 

[171] (see 0 Machine Learning for more details on GANs). 

A method for unsupervised learning of image representations has been developed using 

with convolutional GANs. Arithmetic can be applied to the learned latent space of 

images, in a similar way to word embeddings – a kind of ‘vector arithmetic for image 

semantics’ – where images of similar class are closer together in the latent space [172]. 

See Figure 3.5 for some examples of generated images. Other work has attempted to 

make latent spaces more interpretable [173]. 

Convolutional GANs have been used to generate images of chairs, tables, cars [170], 

produce images based on perceptual similarity metrics [174] and predict visual saliency 

maps [94, 95]. Other generative models have been produced to work on more complex 

problems, such learning approximate inverse projection transforms of an image (via 

convolutional neural networks), to output a possible 3D shape which produced it, using 

multiple layers of convolution and de-convolution operators [175]. Models like these 

can generate new images of an existing object, with variations in pose and lighting. 

Rezende et al. have developed an unsupervised learning method for the creation of 3D 

structure from images [176]. Due to this work, generating 3D shapes from existing 

voxel grids, or multiple views of a shape to a less accurate degree, became possible. 

Future work in this area could help aid people that work on 3D modelling, since 

generation of 3D shape examples via images could save time at the earlier stages of 

shape design, for example: in furniture design. The ShapeNet dataset was used for their 

training data, as well as an extruded form of the MNIST character image dataset. 
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Generative models have also been applied to the problems of shape correspondence and 

segmentation of surface-based representation of 3D shapes, obtaining probabilistic 

representations of point correspondences and part segmentations of input shapes. 

Figure 3.5 – Generated image variations produced via arithmetic in a latent 

space of image embeddings learned via a convolutional GAN [172]. (Top) Notion 

of ‘smiling’ is retained. (Bottom) Notion of ‘wearing glasses’ is retained. 

One work does this via a deformation model, based on a conditional random field over 

different factors relating to segmentation, correspondence, etc. of part labels, to a given 

a set of surface points [177]. 

Other works have used generative models to learn the visual similarity of products or 

objects [178], classify 3D shapes [49], find dense correspondences between scans of 

humans [179], compute style similarity functions for 3D shapes [180], hierarchically 
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segment and label of shapes [181], solve shape classification, retrieval, and 

segmentation tasks [182] and create character motion synthesis and editing tools [183]. 

Text-based Description and Analysis of Shape 

There exists work in automatically tagging 3D models with labels or words [184], which 

improves text-based search for 3D models in this case. Work also exists where humans 

provide text labels. Chaudhuri et al. collect data on the strength of semantic attributes 

(or mainly adjectives) to describe shape parts, which is then used in an interface for 

creating novel virtual creatures [185]. 

Descriptions of 3D shapes are common in terms of geometric features. For a shape, a 

bag-of-words approach is a set of representative descriptors of the shape, obtained via 

vector-quantization (e.g. by k-means clustering). Even if a bag-of-words approach is 

used to represent shapes, the “words” are usually geometric features [186]. Streuber et 

al. collected data on the ratings of words for describing body shapes, which is then used 

to generate new body shapes from verbal descriptions [187]. 

The ESP game [188] collected words that describe an image from human participants. 

Recently, there has been much work in Computer Vision on the problem of image 

captioning [189, 190] to generate a description of an image automatically. 

The concept of Image Specificity [7] inspired our font Specificity work. As part of that 

work, humans were asked to describe an image in the form of sentences. From these 

descriptions, a measure of the consistency of sentence descriptions associated with each 

image, was produced. This was called Specificity. Specific images were found to be 

memorable to some degree (corr.=0.33, p<0.01), had less variation in sentence lengths 

provided as descriptions (corr.=-0.16, p<0.01), but sentence length itself was considered 
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to have no effect on Specificity (corr.=-0.02, p<0.64). There were additionally 

correlations with median object area (corr.=0.16) and mean object area (corr.=0.14). 

In 2016, a survey on the automatic generation of descriptions from images, was 

produced [190]. The authors compared existing models, datasets and evaluation 

measures on the topic, and classified methods into one of two groups: models which 

treat description as a generation problem, using meaning extracted from images, or as a 

retrieval problem over a “visual or multimodal representational space”. They note that 

the goal of answering questions about images, or “Visual Question Answering” is a 

recent one and is still an open challenge. The survey contains many examples of recent 

work at the time, which used neural networks for this topic. 

Recently, work has attempted to take a multi-modal approach to image saliency, based 

on image annotations and textual descriptions of images at a sentence-level [191]. The 

authors proposed a word-weighting scheme to extract visual and ‘verbal’ saliency ranks 

to compare against each other. They compared the different ways that a human and their 

saliency model looked at and described images, indicating that this information could 

provide reliable information to an image captioning model. Some low-level and 

semantic-level features relevant to visual and verbal saliency consistency are provided, 

and the authors show that the features can be visualised and integrated into a model to 

predict the consistency between the two modalities for an image dataset (given both 

kinds of annotation). 

Many image captioning approaches use a convolutional neural network pre-trained for 

classification to represent image features. Image features are then fed into a LSTM 

recurrent neural network to model the language word-by-word, considering all previous 
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words. These networks are trained with a maximum likelihood approach (softmax 

output and cross entropy loss function). 

Recent methods use variational autoencoding or generative adversarial nets (examples 

shown in the survey), which both generate a latent space of captions to be sampled from. 

But it is difficult to interpret this vector space, and so it is difficult to control how 

relevant certain captions are. The captions are also not necessarily based on prior 

language information or semantics. One approach [192] tries to not only “condition 

each word on the image, and all previous words in a sentence”, but also conditions on 

a part-of-speech tag sequence, which indicates the allowed structure of topics in the 

caption. Sampling different part-of-speech tag sequences provides different captions for 

the same image, allowing a diversified set of descriptions to be generated per image, 

with some level of control via the part-of-speech tags. 

Recently, a survey of methods on the vector space representation of word meaning has 

been produced [61]. It describes the theoretical background behind vector space models 

such as GLoVE [63] and the relatively low-dimensional word embeddings that they 

produce. The authors denote the “meaning conflation deficiency” as “the inability to 

discriminate among different meanings of a word”. It is an ambiguity problem which 

arises when a word’s many different meanings are represented with a single vector. 

Each individual meaning of a word is a called a word sense. They state that most words 

in word sense databases, such as WordNet [193] tend to be monosemous (have a single 

meaning), but frequent words tend to have more senses (are ambiguous), according to 

the Principle of Economical Versatility of Words [194]. So, they indicate that it is 

important to capture the semantics of ambiguous words as they are used in text. They 

categorise methods for learning distributed semantic representations of word meaning 
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into two main approaches: unsupervised models which learn word senses directly from 

text corpora, or knowledge-based systems which employ the use of “sense inventories” 

or collections of existing word senses put into some form of categorisation or structure. 

Summary and Research Gaps 

Previous work has studied how people select points on the surfaces of different 3D 

shapes, treating points/regions where people most agree when they are unable to 

communicate with others, as Schelling points. [6]. The question of extending the notion 

of Schelling points to whole 3D shapes, requires us to determine consistent measures 

of Schelling saliency between shapes. We can do this in many ways (relative shape 

selection, relative shape comparison or degree of agreement), but would need a method 

to compare their results. For example, there may be commonalities in Schelling meshes 

across different classes of shape, which can be exploited for this purpose. Hence, we 

would need to produce a Schelling saliency-based scoring mechanism for shapes. Using 

these scores, we can rank the Schelling saliency of shapes. Since we would directly 

collect human-perceptual data on shapes, that would avoid objects always being closer 

geometrically rather than in their function, application or meaning. E.g. a desk may be 

close to a trolley/cart than a shopping trolley, if we study multiple views of the shape 

(consider some form of rotation-invariance), but a shopping trolley is functionally 

closer to the cart [162]. 

There is also an underlying question in the sufficiency of geometric description (e.g. 

depth images, voxels etc.) or a more direct interpretation/representation of shape based 

on human perception, for Schelling score prediction, and which approach is best for 

this. Important geometric attributes for explaining Schelling point distributions over 

mesh vertices include: min curvature, Gaussian curvature, intrinsic symmetry, Shape 
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Diameter Function (SDF) values [31] and other attributes [6]. Based on this, curvature, 

symmetry or SDF based shape descriptions are promising candidates for prediction. 

Text-based description of images has been done via the concept of Specificity. 

Specificity has been applied to images in the form of photographs or scenes of objects 

[7]. We identify a research gap here. Could we translate the concept of Specificity from 

images in general, to other forms of shape? These forms could include fonts, a more 

specialised form of 2D shape, or potentially 3D shapes in general? 

This requires a measure of Specificity to be determined for each form of shape. For this, 

consistency would be needed in the collected data, so it would need to be based on a 

common truth or common subjective decision agreed on by a population at large. This 

could be the geometry itself, or to include some aspect of human perception in the 

measure, it could be based on human language. For example, the consistency of word 

or sentence-level descriptions of images, as in previous work [7]. If using this approach, 

we would then need to ask how we could represent word meaning in a quantitative 

manner. Currently, these word meanings or word senses can be described via word co-

occurrence frequencies represented as points or word embeddings in a vector space. Or 

otherwise, via a lexical database of words grouped together by their synonyms (as a 

graph structure), which are closer together if they have similar (and already known) 

word senses. The Image Specificity [7] work takes the latter approach. Could we 

represent the Specificity of images through an underlying word embedding? 

As was done in the Image Specificity work, it may be possible to automatically compute 

Specificity scores for shapes, using a measure based around the approaches above. 

Logistic regression was used to learn parameters for positive and negative sentence 

classification, with respect to an image using artificial neural networks. Using the 
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measure, Specificity prediction could be attempted for shapes not yet encountered in a 

dataset. Prior to our work, there had not been any collection and measurement of word 

distributions associated with fonts, with a focus on Specificity. 

Potentially, a single measure could be applied to different forms of shape/geometry, 

since the method of description would be separated from the shape data itself. But, the 

provision of individual measures for each form of shape could result in more accurate 

or consistent results, based on attributes unique to each of them. 

3.3.3 Machine Learning 

Machine learning aims to provide the following: given data, you wish to learn a model 

which represents it, but can generalise to new data, which could be later sampled from 

the same population (e.g. data class), as the original data. 

Classification aims to predict the class of a new data sample from the same population 

– e.g. Which animal is in this picture? Or, will this company’s stock price fall to a 

certain level, this week? Regression aims to predict a real-value for some question – 

e.g. How likely is it that this animal is a cat? Or, how much could this company’s stock 

price change over the next week? 

Discriminative models aim to answer these questions directly, whereas generative 

models aim to learn a joint distribution over inputs and outputs used to predict answers 

to these questions, allowing new, plausible data to be generated from that distribution.  

We use discriminative machine learning methods, to provide us with measures of shape 

based on human perception, which can be applied to new shapes. This is done using 

‘ground-truth’ data based around the concepts described at the end of the previous 

chapter (see 0, Summary and Research Gaps). Existing works which employ machine 
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learning include various classification and regression approaches. We describe in detail 

some specific sub-topics of machine learning that are more relevant to this thesis. 

Metric Learning 

This is a type of learning method that computes a metric to measure distances between 

pairs of items (e.g. between photos, or between points on a 3D mesh). Metric learning 

has been used to compute a similarity measure for fonts [58] and illustration style [59]. 

The latter approach combines many features/attributes of clip art together, to learn a 

metric for comparing clip art. An application was created to allow users to make a 

scene/mashup, of clip art. Search terms are entered in as text, and the closest matches 

are displayed. As the user places clip art on the screen, new clip art is listed in the search 

region, which matches the current style of clip art in the scene. Other works have 

attempted this for 3D shapes [195, 196, 197]. A 2013 survey on metric learning using 

feature vectors and structured data [60] details some existing metric-learning algorithms 

[198, 199]. 

Deep Learning 

Deep learning involves multiple layer architectures of neural networks. These neural 

networks have many hidden layers (potentially up to 10s or 100s), and usually 

additionally designed properties which make them suited to different kinds of input – 

e.g. convolutional neural networks [200], LSTM networks [52] or residual networks [90, 

201]. 

LSTM networks can be used for text classification [202, 203], sentiment analysis [204, 

205, 206], machine-based language translation [207, 208, 209, 210] and image 

generation [53]. In cases where 10s to 100s of layers of required for modelling large 

scale datasets, residual networks can be used to retain information at specific layers if 
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required (for accuracy improvement). Outputs of certain layers can be skipped, as the 

network learns a non-trivial identity function between pairs of layers, while outputting 

its own transformation of the input. 

Neural networks in general, have been used to classify 2D images [211] and 3D shapes 

[55, 212, 48, 47, 49] as well as saliency detection in individual 2D images [46, 70, 211]. 

Regarding 3D shapes, some classification approaches include: a 3D object classification 

algorithm, using convolutional, recurrent neural networks [212] and a high-level 

semantic feature extraction method, for 3D shapes, based on deep belief networks [56]. 

In this work, multiple views of a 3D shape are first encoded into a ‘bag-of-visual-

features’, extracted via SIFT. Then higher-level shape features are generated from this, 

via a deep belief network. Deep Boltzmann machines have also been used for 3D model 

recognition [55] and generation [54]. 

Geometric Deep Learning 

Geometric deep learning is a recent sub-field of machine learning and geometry 

processing: it is an “umbrella term for emerging techniques attempting to generalize 

(structured) deep neural models to non-Euclidean domains such as graphs [213] and 

manifolds”. Approaches which learn on graphs aim to automatically learn to encode 

graph structure into low-dimensional embeddings. 

The name of this topic was derived from a 2017 survey which provides examples of 

geometric deep learning problems and presents potential solutions, key difficulties, 

applications, and research directions to consider [214]. Since then, many works have 

begun to appear which move away from using more common 3D (voxel) and 2D 

(colour/depth image) based Euclidean data, for discriminative and generative models. 
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A related approach to shape correspondence has been developed using anisotropic (non-

uniform scale) convolutional neural networks [215]. Other structures such as point 

clouds are beginning to be used for learning applications, [216, 217, 218, 219], in 

addition to B-splines [220] and initial approaches which use polygon meshes [221]. The 

“graph neural network model” was an early example of this kind of approach [222]. 

Some models use hierarchical voxel or 3D grid-like structures (octrees; DAGs) for 

classification [223], representation via autoencoder [224] and generation and 

reconstruction of 3D shapes [225, 226]. 

In 2017, a framework for learning dense correspondence between deformable 3D 

shapes, using learnt functional maps was been produced [227]. Instead of treating shape 

correspondence as a labelling problem, where each point/vertex of a query shape 

receives a label identifying that point in a reference domain, with the correspondence 

being determined by comparing the label predictions of two input shapes, the authors 

proposed a prediction model in the space of functional maps. These are linear operators 

that provide a compact representation of the correspondence mapping. They model the 

learning process via a residual network which takes dense descriptor representations 

defined on each of the two shapes, as input, and outputs a “soft” (probability) map 

between the two objects. 

A method for approximate reconstruction of a 3D shape from a single image has been 

defined [228], in addition to a method for deformable shape completion, using graph 

convolutional autoencoders [229] and generation of 3D surfaces, using a single view of 

an image or a 3D point cloud, where the network represents a 3D surface as a set of 

parametric surface elements. It maps a set of squares to the surface of a target 3D shape 
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to be represented. Surfaces with non-disk topology can be modelled using this approach, 

which is similar to that of generating an atlas of a manifold [230]. 

Summary  

Artificial neural networks of many kinds have been demonstrated to work for 

classification [212], regression and generation of shapes [54] and scenes. Other works 

have produced methods to learn metrics for the comparison of clip art and to measure 

style in fonts [58], illustrations [59] and 3D shapes [195, 196, 197]. 

Geometric deep learning approaches aim to learn on non-Euclidean geometric 

structures directly. These are generally more traditionally analysed shape 

representations: such as graphs [229, 213], point sets and polygon meshes [221], even 

in a deformable shape setting [230]. Applications include shape correspondence [227] 

and shape reconstruction from an image [228]. 

The focus of our work was not to incorporate sophisticated learning methods, but to 

have some method to determine whether a Schelling shape function or font Specificity 

function can be learned. 

Can we predict Specificity for fonts through a machine learning approach? We could 

attempt this in different ways, selecting any of: {shape descriptor(s), image(s), 

sentence(s)}, mapping them to their respective Specificity score for each font. A fully-

connected network or convolutional network could be employed. If collecting word or 

sentence level descriptions to compute Specificity, a word embedding/vector space 

representation of the words may be useful for training the network. Previous work has 

collected and used crowdsourced data to create a font similarity metric [58]. A method 

to predict Specificity in images has been developed, based on a logistic regression 

model which is trained on ground-truth pairs of sentences from humans in the form of 
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‘positive’ examples, where both sentences come from the same source image. Pairs 

which were ‘negative’, did not come from the same image. The parameters of this 

prediction model are used to generate Specificity predictions for new images [7]. 

Can we predict Schelling saliency for whole meshes? This leads to the question of 

which shape representation(s) to use for prediction (depth images, voxel grids, etc.). 

The structure of the prediction model may depend on the shape selection approach taken 

in the data collection phase. That could involve direct mappings to relative shape 

selections (1-of-n), or prediction based on individual shape selection frequencies across 

all participants, made within the Schelling context (where people select meshes with the 

aim of matching with what they expect others to choose). 

Regarding 3D shapes, previous work has developed a regression model to predict which 

vertices of a mesh are most likely to be selected by people, structured as a mapping 

from a range of per-vertex geometric attributes to a per-vertex indicator function, 

representing vertex selections. Attributes included curvature, intrinsic symmetry and 

Shape Diameter Function values [6]. 

Convolutional neural networks (CNNs) are useful for predicting and analysing human-

perceptual properties of shape. A CNN’s structure incorporates some concepts of the 

ITTI98 saliency model [73]. The concept of centre-surround differences is reflected in 

local convolutions across an input shape (or that of other layers later in the network). 

This also indicates a local contrast method of shape analysis. Convolutions are also 

translation invariant due to filter windows being applied locally across a shape. Detail 

is represented at multiple scales; visual abstraction is discovered through the flow of 

information between layers in the network. These visual structures or more complex 

objects comprised of more primitive curves and shapes can be seen as elements of 
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global contrast being searched for in a shape. The above points lend to convolutional 

neural networks acting as a combined local and global contrast approach. This makes it 

ideal for shape analysis, as previous works have shown. Additionally, through 

abstraction obtained via multiple layers, deep learning methods in general tend to have 

greater generalisation potential across various problems, given new data instances. 

3.3.4 Crowdsourcing 

Our primary methods of data collection are crowdsourcing-based, so we provide a 

summary of recent approaches and outcomes. 

Use of Crowdsourcing for Data Analysis 

Crowdsourcing is essentially large-scale data collection via users of the internet, for 

many purposes such as image annotation and description, user interface testing and 

other topics. Example providers include Amazon and CrowdFlower [231]. A lot of work 

has been done using crowdsourcing, within computer science. Some works include: the 

summarisation of image collections, according to user preferences [232]. With the help 

of workers on the Amazon Mechanical Turk, the authors obtained a large amount of 

“manually created visual summaries as well as information about criteria for image 

inclusion in the summary”. From this, an automatic image selection system was 

produced, using RankSVM (a machine learning classifier which can rank its inputs) 

[198, 199], which jointly analyses “image content, context, popularity, visual aesthetic 

appeal as well as the sentiment derived from the comments posted on the images”. 

Other works have focused on modelling human preferences in visual summarization, 

by attempting to detect semantic concepts [233]; modelling the appeal of photos which 

portray people [234] and the discovery of ‘non-obvious’ attributes of social images 

[235]. In relation to the latter work, three pictures of dogs can imply dogs are friendly 
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and seem like good companions, or otherwise show dogs to be angry creatures. The 

same goes for a living room which may seem homely or traditional in one picture or 

instead be very minimalistic/modern, in another. These biases are not captured in just 

the definition of the subject of interest. 

Crowdsourcing has also been used to discover ‘beautiful’ attributes for the analysis of 

aesthetic properties of images [236]. Focusing on image preference, the authors aimed 

to provide accurate and interpretable results, via the automatic learning and discovery 

of visual appearance from an approx. 250,000 image database, called AVA [237] 

(images were obtained from: www.dpchallenge.com) combined with aesthetics scores 

and "textual comments given by photography enthusiasts". Discriminative textual 

attributes were automatically discovered using user comments and preference scores. 

The learned visual attributes were applied to image classification and retrieval, as well 

as aesthetic quality prediction. The authors noted that images with high aesthetic score 

variance were often non-conventional - i.e. "edgy or subject to interpretation", whereas 

"images with a low variance tend to use conventional styles or depict conventional 

subject matter". 

Using the AVA dataset, Lu et al. produced a system for rating aesthetics in pictures, 

using a convolutional network which takes two inputs [237, 238].The inputs consist of 

a global and local set of saliency cues, where each input has its own convolutional 

layers, leading to a merged single output as a saliency score, based on both inputs. 

Many more works have been produced which relate to human computation [239] 

image/video annotation [240], user interface testing [241], and networking [242]. Some 

work has been done in crowdsourcing data for saliency. One work studied how humans 

select “Schelling” points or vertices on 3D polygon meshes, in a coordination game [6]. 

http://www.dpchallenge.com/
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Another work, TurkerGaze, provides a set up for obtaining large-scale eye tracking data 

for saliency prediction, using eye-tracking games, where a saliency dataset was 

additionally built for natural images [243]. Other approaches to webcam-based eye-

tracking have also been made [244, 245]. 

Other work has applied crowdsourcing to solve various problems in computer graphics. 

The idea of collecting data on how humans perform a task and then learning from this 

data, has been used to determine a similarity measure of style for 2D clip art [59], fonts 

[58] and 3D shapes [195, 196]. A method for learning visual similarity for product 

design has been developed using convolutional neural networks [178], which uses pairs 

of images containing products placed in real-scenes vs. products in their ‘iconic’ form. 

The resulting embedding is used for visual search. 

Many evaluations of crowdsourcing have been performed over recent years, including 

a comparison of methodologies for subjectively assessing image aesthetic appeal [246]. 

The authors assessed four different scoring approaches, on their ability to measure 

aesthetic appeal in images. 24 people were asked to assess an image set, meant to 

uniformly represent a "wide range of aesthetic appeal". They suggested that the 

"Absolute Category Rating (ACR) 5-point scale provides the most consistent ratings 

across participants". This result reinforced previous work from 2012, on audio-visual 

subjective tests across six laboratories, from four countries [247]. In the 2012 study, 

mean opinion scores (MOS) were calculated as an average of participants' ratings, 

across all datasets. Pearson correlations were calculated from this data, against the 

number of participants and the range of MOS. These two distributions based on 24 

participants, yielded narrow distributions/lower variance, at a correlation of 0.96 or 

greater. Due to this, 24 or more subjects were recommended for absolute category 
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rating (ACR) tests. In public environments, or where there is a narrower range of audio-

visual quality, 35 subjects were required for the same Student’s t-test sensitivity. A 

second important aspect mentioned is to remember how opinions differ among subjects. 

They affirmed that participants drawn from a sole source cannot fully replicate the 

behaviour of all people and suggest that improved methods are needed for eliminating 

non-performing subjects - i.e. those that do not understand the task, and those that 

simply do not perform it. They mentioned that current methods “assume opinions are 

homogenous". But, their work suggested that factors such as native language, lighting, 

monitor calibration, viewing distance, translation of ACR labels, or culture/country of 

origin matter very little, and are likely to be obscured by human factors. The authors 

however, did note that the "impact of language and culture on subjective scores would 

be an interesting topic, for further investigation". These studies did not involve viewing 

3D shapes, which can have variable/user-defined viewpoints. This may affect the 

reliability of their guidelines in studies, which do. 

In other work, data obtained via crowdsourcing has also been used to extract depth 

layers and image normals from a photo [248] and to convert low-quality drawings into 

high-quality ones [249]. Furthermore, human preference data has been collected in 

terms of semantic attributes (words) to describe body parts [185] and words describing 

body shape [187]. 

Crowdsourcing has been used for software engineering support [250] and behavioural 

sciences research [251]. Amazon Mechanical Turk (MTurk) has been empirically 

compared to other platforms such as: Crowdflower (CF) and Prolific Academic (ProA). 

The authors test for honesty and naivety in participants, finding that participants on CF 

and ProA were “more naïve and less dishonest compared to MTurk participants”, and 
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that participants on CF provide the best response rate of the three platforms. But, CF 

participants failed more of the authors’ attention-checking questions [252]. 

In 2018, a review of crowdsourcing and suggestions for future research was produced 

[253], in addition to an analysis of methodologies for conducting interactive 

experiments online [254]. 

Summary 

There was a need to collect data in addition to shapes since we aimed to understand 

them from a perspective of human perception. Large scale data collection, or ground-

truth data is needed to train neural networks. Due to this, crowdsourcing was a crucial 

element of our data collection process. Regarding the data collection surveys 

themselves, it is important to design the questions so that useful data can be gathered. 

Validation of inputs, qualifications and pre-tests are all potential avenues which can be 

followed, to prevent results being gamed. 

Although data has been collected on fonts for learning a metric based on high-level 

attributes/adjectives (e.g. legible, formal, friendly) associated with fonts [58], the notion 

of font similarity is based on triplet-wise comparisons, where participants are asked to 

decide whether a font B is more similar to a font A, than the remaining font, C. Can 

meaningful word-level descriptions be collected on fonts? It could be possible for a 

measure of font Specificity to be produced based on the consistency of these 

descriptions. 

Data has been collected on vertices selected on 3D meshes, given the Schelling concept 

of attempting to match with others’ selections without communication [6]. In contrast, 

can meaningful data be collected on whole shape selections out of a collection of 

meshes, given the same Schelling concept? 
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3.4 Conclusion 

There are existing works on co-saliency [105] and group saliency [112] in images, but 

not 3D shapes. Therefore, no prior works have created a group-level saliency measure 

for 3D shapes. 

Data has only been collected on Schelling points on 3D meshes, where the points lie on 

a single mesh. Whole meshes have not been studied relative to other meshes, under this 

context (where each mesh can be treated as a candidate Schelling point). Part-wise 

comparisons of shape, under similar constraints, have not been made. Data hasn’t been 

collected on Schelling points in images, audio or video. 

Text-based description of images has been done via the concept of Specificity. 

Specificity has only been applied to photographic images [7], therefore not fonts or 3D 

shapes. Specificity has been formulated using a lexical database of words / word senses, 

which is in some way ‘supervised’, as the data is manually constructed to some degree. 

But it has not been formulated through an unsupervised approach to representation of 

word semantics, such as word embeddings. 

The previous two points also imply that a discriminative model of Schelling meshes or 

Specificity in fonts (or 3D shapes) has not yet been developed. Or more generally, given 

some measure of these concepts, a model to predict them for 2D shapes and/or 3D 

shapes. 

Based on these potential research gaps to follow, the following discussion sets the 

context for the approaches taken in this thesis. 
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3.4.1 Potential Approaches 

Schelling Meshes 

Free-viewing eye fixations have been shown to agree with explicit shape selections in 

previous work, so we use this as a basis for collecting explicit shape selections as 

Schelling saliency data, instead of measuring eye fixation trails. This enables us to 

collect data via a crowdsourcing approach, which would not currently be possible 

otherwise, as personal eye-trackers are not widespread, even if accurate enough for this 

purpose. 

Given that existing works have shown that humans can perceive the depth of 3D objects 

in a single image and show that the shape of a virtual object can influence the perception 

of its material reflectance, it is possible to collect data using rendered images of shapes, 

with consistent lighting conditions (as animations in the case of 3D shapes). Although 

it has been shown that relationships between shapes and their colours and materials can 

be perceived, a consistent colour can be used across all shapes, to remove potential bias 

that could occur due to contrast in the selected colours of shapes. 

Font Specificity 

To understand fonts from a derived representation of their geometry, we can collect 

textual descriptions, as previous works have done before. We then need to disambiguate 

between word meanings. Currently, these word meanings or word senses can be 

described via word co-occurrence frequencies represented as points or word 

embeddings in a vector space. Or otherwise, via a lexical database of words grouped 

together by their synonyms (as a graph structure), which are closer together if they have 

similar (and already known) word senses. To define Specificity in images, previous 

work has taken the latter approach, but not the former. 
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General Points 

It is possible to use depth images and colour images for 2D shape representation. Depth 

images of multiple-views can be obtained in the 3D case, in addition to fixed-size or 

hierarchical representations of voxel grids. Evidence suggests that latter representation 

would be sufficient for good prediction results. 

Previous work considers the various notions that exist in visual saliency, which include: 

local contrast, global contrast, centre-surround differences at multiple scales and global 

rarity. These should inform the selection of any methods for prediction of Schelling 

saliency data and Specificity in fonts. We see that hierarchical prediction methods such 

as convolutional neural networks are predominately used for saliency detection in 

images and understanding of 3D shapes. 

Existing approaches to regression based on 3D shapes and 2D images use hand-crafted 

shape descriptors or more recently, deep learning approaches. Determining which 

approach to use for Schelling saliency or font Specificity prediction, requires 

knowledge of which methods have been useful for modelling aspects of human 

perception, or have otherwise been related to the topic. For example, curvature has been 

related to aesthetics [4]. Some measures of curvature and the Shape Diameter Function 

have been informative in explaining points selected on 3D meshes, in the Schelling 

context. Other potential candidates consist of: the distribution of per-vertex normals, 

D2 Distribution values. In the 2D case, the SIFT, SURF and FREAK descriptors to can 

be applied to individual images. Some descriptors can be applied to a 2D or 3D shape 

representation. The Histogram of Oriented Gradients (HoG) descriptor or 3D Sobel 

filter can be computed over a voxelised form of a 3D shape, whereas the 2D Sobel filter 

and 2D HoG descriptor can be applied to an image. 
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Overall, the literature suggests potential avenues to approach the creation of group-level 

saliency methods for 2D and 3D shapes, even if existing works are uncommon or 

loosely related. We used this information to form the basis of the studies in the 

following chapters, which begins with our first Schelling meshes study. 
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4 Schelling Meshes: ‘4-

Choose-1’ Approach 

The notion of Schelling points on 3D meshes has been studied [6], where Schelling 

points are vertices on the surfaces of meshes that people expect will be selected by 

others. See Figure 1.2 [6] for a visual description. In our approach, the domain of 

saliency changes: instead of selecting among points on a mesh, people select among 

multiple meshes. 

4.1 Introduction 

Schelling Points are choices made by people when they aim to match with what they 

expect others to choose, with no prior communication between them. Although an 

abstract concept, people have studied points on 3D meshes selected by people due to 

their salience, in this coordination game setting. We extended the notion of Schelling 

points on meshes, from points on 3D shapes, to the shapes themselves. 

For this study, our aim was to determine the degree of agreement between people when 

they are individually asked to select the most salient shape of out of a collection. We 

collected Schelling-based data for meshes by asking people to choose one of four shapes 

from a class of shapes (e.g. tables, lamps). They were asked to select shapes that they 

believed others would also select, given no communication beforehand. 

This agreement was reflected in the frequency of shape selections in each context, or 

‘Schelling frequencies’. We studied these shape selections and their distributions to 

determine what makes a shape Schelling salient. As shapes were represented as polygon 
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meshes, we named the most salient of these in this sense, Schelling meshes. This is a 

data-driven approach to understanding geometry, where we collect data based on a 

human interpretation of it and use this data to better understand it. 

We show that the notion of Schelling salient meshes can be learned and used for 

Schelling score prediction via a voxel-based convolutional neural network. Results are 

shown for several classes of 3D shapes. We view the concept of Schelling meshes as 

another tool for 3D shape analysis, demonstrating that it is useful for the applications 

of Schelling-based visualisation, clustering, and search. 

4.2 Hypotheses 

We hypothesized that Schelling meshes are salient in the sense that they stand out in 

some way, when compared to other meshes. We broke this idea down into multiple 

hypotheses: 

1. A more natural shape is less Schelling frequent, as there is not much special 

(surface variation) that makes it stand out against other shapes. 

2. A stranger shape is more Schelling frequent, as the strangeness will make it 

stand out against other shapes. 

3. A shape which stands out from others or is considered unique, is more 

Schelling frequent due to global rarity of elements on the shape’s surface 

(related to naturalness and strangeness). 

4. A more visually appealing shape is more Schelling frequent, as the 

appeal/aesthetics of the shape will attract people to select it. 

5. A shape may be perceived as more memorable relative to others, as its 

Schelling frequency increases. 
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4.3 Methodology 

4.3.1 Data Selection and Generation 

For shape data, we collected 145 3D shapes mainly from ShapeNet [8]. These included 

man-made objects and a variety of abstract shapes (chain-like objects, primitive shapes 

and others). Specifically, we collected 30 tables, 44 lamps, 45 chairs and 26 abstract 

shapes. The ‘abstract’ shapes were collected for additional variation, with the aim of 

increased generality of any collected data, and the results of its analysis. 

After obtaining these shapes, we needed to determine the best way to present them to 

participants. We decided to do so using animated .gif images, since they provided good 

resolution at reasonable file-sizes. To display the shapes on a 2D screen, we generated 

a continuously rotating view of each shape, over a period of 3 seconds. The view 

allowed one to see the top and bottom parts of each shape. Animation frames were 

produced from renderings of each shape, shaded with consistent colour and lighting, 

where the shape’s viewpoint was changed via incremental rotations around the 

horizontal or y-axis, to a full 360°. After a short pause, the rotation would repeat. This 

happened in a recursive manner, allowing participants to focus longer on a shape if they 

felt they missed some aspect of the shape after a first rotation. Since direct interaction 

was not required to initiate any rotation, this minimised the interaction necessary to 

view each shape. We chose this representation over multiple images, to make 

visualising each shape easier. 

We could have displayed shapes as individual videos, enabling participants to pause a 

shape’s rotation and adjust their effective viewpoint of the shape (at least along a fixed 

axis). But we believed it unlikely that the majority of participants would interact with 

all or even many of the shape videos. This would likely result in many people effectively 
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viewing static images to make their selections, even when the shapes in question are not 

symmetric around the video’s axis of rotation. This would make the amount of focus on 

each shape or the amount of each shape viewed, biased to the level on interest the 

participant had in the survey, introducing unnecessary bias to shape selections. 

We decided to show four shapes to participants for each question, where the participant 

was asked to choose one of these four shapes. We did not take a smaller or larger number 

of shapes for a few reasons. Showing two shapes is not realistic given a person’s field 

of view, where 10+ objects can be seen at once. Then, why not display 10 or more 

shapes at once? If displaying shapes on a computer screen, it is difficult to show 5 or 

more shapes horizontally, without loss of resolution or detail, at a glance of the shape.  

Scrolling is a partial solution, but with too many shapes on screen this requires some 

memorisation of previous shapes. Displaying three shapes is not much different from 

two, but you can internally rank the shapes shown to you, via triplets (e.g. A > C > B).  

Three shapes can force tie-breaking, however. See Figure 4.1 for a pictorial description. 

With four shapes, you can still allow for dual ‘ties’ or pair of shapes that are the same 

or similar, where the two pairs look different. 

Figure 4.1 - Shows some possible outcomes given 2, 3 or 4 options to choose from, 

when selecting a Schelling Point. 
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We also felt that 5+ shapes per question might overwhelm participants, making it 

difficult for them to focus on the selection task. So, we refer to the current study as our 

‘4-choose-1’ setup. Since the item chosen to be Schelling was done so relative to the 

other items, we decided not to compute a Schelling function for each shape, and did not 

collect Schelling data for each shape, individually. 

Although picking four random shapes to generate each question is possible, this may 

not lead to useful data. Taking colour as an example, if we show humans four squares 

each with a different colour (e.g. red, green, blue, yellow), it is difficult to choose one 

of them, and different people may choose different responses. A similar outcome has 

occurred in previous work, where people have tried to study triplets of shapes. In a study 

of perception of style in shapes, participants were unable to provide a clear similarity 

ranking between shapes in the triplets, for over 60% of cases [196]. 

Because of this, some form of subjective bias was introduced into the process of 

selecting each triplet for presentation to participants. This ensured that there was always 

a possible reason for an answer, or that participants could always discriminate between 

the shapes in some way. For example, the shapes might be members of the same class 

(e.g. tables) or occupy a shared scene or arrangement [196]. We thereby took the idea 

of generating a more careful set of questions to produce questions which were more 

likely to lead to useful data. To sample shapes in a similar manner, we determined 

categories either according to simple geometric 'primitives', or otherwise, previously 

collected aesthetic ratings (see Table 4.1 for details). 

Based on these categories, we separated the shapes in each class into some high-level 

groups and then generated survey questions by picking three shapes from one group and 

one shape from another group. The groups, and shapes in each group were randomly 
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chosen.  Each shape was placed into one or more groups (see Table 4.1). It may seem 

that each question has a “correct” response, but this is typically not obvious, due to the 

overlapping of groups and variation of the shapes. 

Table 4.1 – High-level groups used to sample shapes for presentation to 

participants. 

Before we began to think about high-level groups however, we originally held a small 

test survey of 5 people, asking them to select one of 4 tables per question that were 

randomly sampled (where each shape of the 4 was unique), providing them with 10 

questions each in total. 

Participants consisted of students at Lancaster University, studying different subjects at 

post-graduate level (2 PhD students, 3 Masters' students). When asked how they made 

their choices, 4 people stated that the selected shapes were usually "different" or 

"unique" compared to the remaining 3 shapes, with 2 people mentioning that they 

sometimes selected "familiar" shapes or "what they were used to in their daily life". 

People also stated that it was sometimes difficult to make a decision, and sometimes 

selected randomly. Overall, we didn't find any clear pattern among the most frequently 

selected shapes. Although at a very small scale, this expressed a similar issue to that of 

participant uncertainty in previous work [196], when fully randomised shapes were 

Shape 

Class 

No. of 

Shapes 

High-Level Group/Criterion Number of 

possible 

permutations 

Abstracts 30 Sharp (13), Smooth (14), Chain (3), Spikes (4), Shell (3), 

Sharp and Smooth (7) 

657720 

Chairs 45 Based on Likert score ratings of shape aesthetics made via 

Amazon Mechanical Turk, from 15 participants. 

Low (15), Medium (15), High (15) 

3575880 

Lamps 44 Unusual (31), Plain (13), Cylindrical Top (33), Rectangular 

Top (11), Non-Circular Base (9) 

3258024 

Tables 30 Circular Top (24), Non-Circular Top (6), Multiple Legs (9), 

Flat Base (12), Round Base (13), Tall (4), Non-Curved (5), 

Octagonal (1), Pointed Top (1)  

657720 



Chapter 4: Schelling Meshes: ‘4-Choose-1’ Approach 

117 

presented to participants. The number of survey participants was clearly not a valid 

sample size for a study, but it was an additional small reason behind why we decided to 

use high-level groups in our actual study. However, as you will see later on, we also 

collected Schelling saliency data without high-level groups, for comparison. 

4.3.2 Data Collection 

We created survey webpages using the Amazon Mechanical Turk platform, allowing us 

to collect Schelling saliency data using a crowdsourcing approach. Participants were 

first given written instructions: “For each question, your task is to choose one of four 

3D shapes. You should choose the shape that you think will be chosen by other 

participants. Your only goal is to choose a shape such that it will most likely match with 

what others will choose.” 

Each HIT (set of questions on Mechanical Turk) had 30 questions where each question 

gave us one data sample. A participant typically took about 5-10 seconds for each 

question. We paid $0.10 for each HIT. Separate surveys were held for each shape class; 

there was no overlap between them (e.g. only tables or only abstract shapes). For each 

shape class, example questions that we used, are shown in Figure 4.2. Before 

participants could work on any HITs, they were required to pass a qualification test 

consisting of 10 control questions and answer at least 8 of them “correctly”. The control 

questions were designed to test if a user was not paying attention at all. Each control 

question had an obvious and “correct” answer, as we showed three shapes that were the 

same, with one different shape. After passing the qualification test, participants could 

take as many HITs as they liked, but we limited this to about 20 per person, to not bias 

the complete set of data to a few people. Within each HIT, there were also 5 control 
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questions. A participant was required to answer at least 3 of these “correctly” for their 

results to be included in our data. 

Figure 4.2 – Four examples of questions used to collect Schelling saliency data, 

one for each shape class (tables, lamps, chairs and abstract shapes). Within each 

survey, shapes displayed were only sampled from a single class. 

Table 4.2 shows the amount of data samples that we collected for each shape class. 

These were used as training data for Schelling saliency prediction. The data for each 

class was collected separately, as the four shapes in each question were sampled from 

the same class. Each data sample, 𝑥𝑖, has the form (𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 , 𝑆𝐷 , 𝑠𝐴, 𝑠𝐵 , 𝑠𝐶 , 𝑠𝐷) where 

𝑀 represents a 3D shape and 𝑠 represents the corresponding Schelling score. They each 

contained four shapes and scores indexed by 𝐴, 𝐵, 𝐶, 𝐷. As participants always chose 

one of the four shapes in each question, only one element of (𝑠𝐴, 𝑠𝐵 , 𝑠𝐶 , 𝑠𝐷) was 1 and 

the others were 0. For the purposes of Schelling score prediction, we wanted to ensure 

that each permutation of four shapes within a sample was unique (as k-fold cross 

validation would be employed), but we neglected to enforce this at the beginning of the 
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data collection process. So, instead we filtered for duplicate permutations after the data 

was collected. This was done by firstly locating each set of data samples with duplicate 

permutations, then randomly selecting a sample from each set, and finally substituting 

each set with the sample selected from it. By doing so, we removed the other samples 

in each set from the collected data. Therefore, the number of participant selections used 

in the study was not necessarily a multiple of 30 (the number of questions, and therefore 

number of shape selections, per survey). We report Minimum Number of Participants 

in Table 4.2, as a lower bound on the number of participants that participated in the 

study. 

Given 𝑟𝑒𝑚𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = (Number of participant selections 𝑚𝑜𝑑 30), this is calculated 

with integer division as: 
Number of participant selections

30
, if 𝑟𝑒𝑚𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 0  or 

Number of participant selections

30
+ 1, otherwise. 

Shape 

Class 

Participant 

Selections 

Minimum 

Number of 

Participants 

Minimum 

Total 

Cost 

% of 

permutations 

of 4 shapes 

covered by 

sample size 

(number of 

Participant 

Selections) 

Tables 3005 101 $10.10 0.46% 

Lamps 4100 137 $13.70 0.11% 

Chairs 3800 127 $12.70 0.12% 

Abstracts 3800 127 $12.70 0.58% 

Total 14705 492 $49.2 0.18% 

Table 4.2 – Summary of the collected Schelling selection data, based on high-level 

groups. 

Participant Selections 

Figure 4.3 shows some examples of selections made by participants from the Schelling 

data collection. The selected shape was typically different from the other three and stood 

out in some way. For example: the selected table is shorter, and the selected lamp is 
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more planar. After the data collection, we were able to communicate electronically with 

some participants to gather their comments. One participant mentioned that the shape 

of one of the chairs was not suitable. Another mentioned that one chair did not look 

structurally sound. Some participants considered how natural the shapes looked, to 

make their decisions. These examples show that the participants sometimes thought 

about the structural and/or functional aspects of a shape, even though they were not 

instructed to. 

Figure 4.3 - Four examples of “Schelling” questions (one in each row for the 

tables, lamps, chairs, and abstract shapes) with the participant’s selection 

highlighted. 

4.4 Analysis 

4.4.1 Validation of Data Consistency 

We aimed to test if the collected Schelling saliency data was consistent across different 

people. We firstly assumed a null hypothesis that there would be no difference in 

distribution shape between two groups of randomly sampled shape selections from 

different participants (without replacement, and which were equally sized). To test this, 
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we gave the same question to different people, to investigate whether their answers 

would be consistent. We collected the following data: 4 shape classes × 30 questions 

per category × 30 participants. 

There were 120 total questions, each answered by 30 people. We limited each 

participant to only one HIT, to ensure that we obtained data from different people. For 

each question, we separated the data into two groups of 15 participants and recorded 

the distributions of the (𝐴, 𝐵, 𝐶, 𝐷) responses in the two groups. As the values in the 

distributions were relatively low (some less than five), we compared the distributions 

by performing a Fisher’s exact test. For all the questions that we tested, the test gave p-

values >= 0.05, so we could say that the two groups had the same distributions. This 

provided evidence that there was consistency in the Schelling saliency data. 

4.4.2 Schelling Frequencies 

The Schelling concept is a relative concept. To capture this, we computed a Schelling 

frequency for each shape, to give an indication of how likely it will be selected in a 

Schelling sense. For each shape, we took all data samples for its class, and computed 

the total number of samples where it was selected, divided by the total number of 

samples where it appeared (at least once), to compute its Schelling frequency. We 

produced Schelling frequencies given a data sample 𝑑𝑖 , where 𝑀  is the number of 

shapes in the class and 𝑠𝑗 is a score for a shape, 𝑆𝑗 potentially in 𝑑𝑖: 

𝑗 ∈ {1, … , 𝑀} 

𝑚𝑒𝑚𝑏𝑒𝑟(𝑆𝑗) = {
1 if 𝑆𝑗 ∈ 𝑑𝑖

0 if 𝑆𝑗 ∉ 𝑑𝑖
, 𝑠𝑗 = 0 if 𝑆𝑗 ∉ 𝑃𝑖 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑆𝑗 = 𝑆𝑗 𝑡𝑜𝑡𝑎𝑙
= ∑ 𝑠𝑗

𝑖

× 𝑚𝑒𝑚𝑏𝑒𝑟(𝑆𝑗) 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑆𝑗 = 𝑆𝑗 𝑜𝑐𝑐
= ∑ 𝑚𝑒𝑚𝑏𝑒𝑟(𝑆𝑗)

𝑖
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𝑠𝑓𝑗
=  

𝑆𝑗 𝑡𝑜𝑡𝑎𝑙

𝑆𝑗 𝑜𝑐𝑐

 

Equation 4.1 – Schelling frequency derivation (4-choose-1 approach). 

The mean Schelling frequencies were 0.241 for tables, 0.253 for lamps, 0.251 for chairs, 

and 0.244 for the abstract shapes. If we randomly sample a shape out of four, this acts 

as sampling from a uniform distribution of 4 shapes. As each subsequent sample is 

independent from previous ones, the expected probability of selecting a given shape 

each time is 0.25. Due to this, we expected a random predictor to be approximately 25% 

accurate. 

Figure 4.4 to Figure 4.6 show Schelling frequency plots for each shape class, with 

frequency values represented by a picture of each shape. The more common tables are 

near the middle of the plot with some similar tables clustered together. For the chairs, 

the more creative and/or strange looking shapes tend to be on the right of the plot, while 

the more common shapes tend to be on the left. For the abstract shapes, a few shapes 

which have real-world meaning (human head, dog, and trophy) have the largest 

Schelling frequencies. Chain-like objects have mid to high-range Schelling frequencies. 

The shapes are partially clustered into two groups – primitive shapes vs. personified 

shapes. 

For the lamps, those that were more planar, had a thin lamp pole, and/or had a strange 

looking base, tended to have the largest Schelling frequencies. The lamps that were 

more common tended to be near the middle (at around 0.25) of the plot. For the tables, 

the two of them that looked more special (a pointy top and an octagonal top), had the 

largest Schelling frequencies. 
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We could infer some visual patterns from the visualisations, but we wanted to determine 

whether filtering the shapes shown to participants (via per-class high-level groups), was 

introducing bias into our results (e.g. by introducing confounding factors or introducing 

a preferred result). We collected additional shape selections where no high-level groups 

were used to select shape combinations for participants to see and produced Schelling 

frequencies from them. See Table 4.3 for a summary of the collected data. Like in the 

high-level groups case, we ensured no data samples had duplicate shape permutations. 

As a qualitative visual check, we created additional Schelling frequency plots as above, 

using this new data. Shapes per question were randomly sampled from each class. These 

are shown in Figure 4.7 and Figure 4.8. The mean Schelling frequency for the abstract 

shapes, chairs and lamps was 0.25. The mean for the tables was 0.249. 

Shape 

Class 

Participant 

Selections 

Minimum 

Number of 

Participants 

Minimum 

Total Cost 

% of permutations of 4 shapes 

covered by sample size 

(number of Participant 

Selections) 

Tables 2160 72 $7.20 0.33% 

Lamps 3142 105 $10.50 0.09% 

Chairs 2151 72 $7.20 0.07% 

Abstracts 4100 137 $13.70 0.62% 

Total 11553 386 $38.60 0.14% 

Table 4.3 – Summary of the collected Schelling selection data (without high-level 

groups). 

For the chairs, it is difficult to see any clear pattern as to whether certain geometries are 

more visual appealing, unique, prominent etc. This is unlike the case where high-level 

groups are in place, and a clear pattern of geometric variation with Schelling frequency, 

is visible. There is a similar story with the table shapes, but we can see some smaller 

trends when high-level groups are not in use. Tables with rectangular tops are placed at 

both the extreme low and nearly highest ends of Schelling frequencies, rather than being 

distributed around the mid-point of the plot. But tables with a circular base and/or top 
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tend to be placed near the centre of the Schelling frequency plot, maybe indicating that 

simpler shapes are likely to have middling or mean Schelling frequencies. The previous 

two points result in a simple form of clustering shown in the plot. 

One small pattern is that the tables with highest Schelling frequency tended to have 

more complex structures to their bases, in addition to more asymmetric tops (not simply 

circular or rectangular alone). A similar pattern exists for the table Schelling frequencies 

based around high-level groups, where the complexity of the shape is the deciding 

factor. 

Looking at the lamps, shapes with lower Schelling frequencies are more varied in 

structure with respect to one another as compared to other Schelling frequency intervals. 

But it is not necessarily the case that more unusual lamps have higher Schelling 

frequencies, potentially indicating that visual appeal is the distinguishing factor. This is 

different for the lamp Schelling frequencies based around high-level groups, where 

more complex or unusual lamps had the highest Schelling frequencies. 

For the abstract shapes, chain-like objects had the highest Schelling frequencies, not 

differing extremely from the result obtained via high-level groups. Some sharp or spiky 

objects (those with extreme curvature) had medium to high Schelling frequencies. This 

is a different result to the case based on high-level groups, where sharp objects had 

varied Schelling frequencies in the low to medium range. The shape clustering obtained 

via high-level groups broke down also, as personified shapes (abstract shapes in the 

‘Head or Body’ category) span the entire Schelling frequency spectrum, rather than only 

occupying the high-end when high-level groups are employed. The dog-like statue may 

have been selected highly due to its visual appeal relative to the other shapes in its 

category. 
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Figure 4.4 – Plots of Schelling frequencies for the chairs and abstract shapes, 

based on high level groups, indicating how likely each shape will be selected in a 

Schelling sense. 
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Figure 4.5 – Plots of Schelling frequencies for the lamp shapes, based on high level groups, indicating how likely each shape will be 

selected in a Schelling sense. 
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Figure 4.6 – Plots of Schelling frequencies for the table shapes, based on high level groups, indicating how likely each shape will be 

selected in a Schelling sense. 
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Figure 4.7 – Plots of Schelling frequencies for chair and lamp shapes, indicating 

how likely each shape will be selected in a Schelling sense (without high-level 

groups). 
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Figure 4.8 – Plots of Schelling frequencies for table and abstract shapes, 

indicating how likely each shape will be selected in a Schelling sense (without 

high-level groups). 
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The overall trend with the Schelling frequency plots based on high-level groups is that 

of prominence or unusual structure in shapes as Schelling frequency increases, which 

directly stems from the definition of saliency (“the quality or fact of being more 

prominent in a person’s awareness or in his memory of past experience”) [71]. This 

does not generally apply in the case of Schelling frequencies obtained without them 

(apart from the abstract class of shapes, in some ways). 

4.4.3 What Makes a 3D Shape Schelling Salient? 

To understand and characterize what makes a shape Schelling salient, we attempted to 

discover correlations between some human-understandable, subjective terms and 

Schelling frequency. These terms consisted of: “naturalness”, “strangeness”, 

“memorability”, “uniqueness”, “visual appeal” and a notion of “standing out”. We 

compared each term’s association with a shape (average Likert score among 

participants) and its Schelling frequency. 

We collected data for these criteria as a separate set of HITs on Amazon Mechanical 

Turk. Each HIT had 30-45 questions. Each question showed one shape only and asked 

the participant to give a score from 1 to 5 on how natural, strange, or visually appealing 

they thought the shape was. Each shape was given a score, by 15 participants. We paid 

$0.10 per HIT. We collected separate Likert data according to these terms and attempted 

to correlate the average scores in each case, with their corresponding Schelling 

frequencies, for each shape. 

Table 4.4 shows the result of the correlations between these subjective terms and 

Schelling frequencies based on high-level groups. Values are Pearson correlation 

coefficients. Bold values are significant (p < 0.05). 
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For the tables and chairs, there was a negative correlation between naturalness and 

Schelling frequency, and a positive correlation between strangeness, uniqueness and 

standing out, and Schelling frequency (especially in the case of the chairs). 

Sample Correlation 

Coefficient 

(Corr. Coef.) 

Schelling Frequency (high-level groups) 

Tables Lamps Chairs Abstracts 

Naturalness -0.5653 -0.083 -0.6506 0.1553 

Strangeness 0.5307 0.2071 0.8211 -0.3434 

Visual Appeal 0.1894 -0.3741 -0.017 0.1002 

Memorability 0.3175 0.1327 0.4872 0.6455 

Standing Out 0.4711 -0.0749 0.789 0.1286 

Uniqueness 0.5304 -0.1345 0.616 -0.0344 

Table 4.4 - Correlations between some human understandable terms 

(naturalness, strangeness, and visual appeal) and Schelling frequencies (based on 

high-level groups). Significant correlations (p < 0.05) are in bold. 

For the abstract shapes and chairs, perception of memorability correlated positively with 

Schelling frequency. Our hypotheses were correct for these cases. The abstract shapes 

only correlated with perception of memorability. They were a special class of shape 

which did not have a single function to them, potentially indicating that participants 

imagined and searched for valid concepts or affordances, imposing their own functions 

or categorisations to the shapes. It may be that the since the shapes had little inherent 

meaning with respect to one another, the shapes or concepts on display (primitive 

shapes, chain-like objects or functional objects) were considered to be equally unique, 

natural or visually appealing compared to one another. 

This suggests that the perceived memorability of a shape may not be caused by a shape’s 

surface variation or aesthetics, relative to other shapes. It may instead be based on a 

shape’s alignment with common concepts/meanings/abstractions already learnt by the 

population being surveyed, the extent of a shape’s ability to invoke previous scenarios 

one has been in, or memories one has experienced. The chairs also correlated positively 
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with a perception of memorability. We believe that the restricted amount of geometric 

variation within the lamps and tables, respectively, caused this pattern to not appear 

within these classes. Shapes within these classes (specifically the datasets being 

analysed) seemed to be designed around function rather than form, for ergonomic 

reasons. Collecting additional shapes from these classes, which have more geometric 

variation could help to verify this association with perceived memorability. 

For visual appeal, there was no significant correlation with Schelling frequency, across 

all shape groups except for the lamps, where there was a negative correlation. Our 

hypothesis for visual appeal was not correct according to these results, as a visually 

appealing shape can possibly look common or stand out against others depending on 

the context of the other shapes. 

Correlation values were not very high apart from the cases of strangeness and the notion 

of ‘standing out’ for the chairs shape class. Naturalness and strangeness are symmetric, 

and strangeness is related to uniqueness or a notion of standing out, so we can treat these 

as similar concepts. But memorability was not always associated with these concepts, 

even though it can be associated with Schelling frequency. Additionally, visual appeal 

was negatively correlated with the lamp Schelling frequencies, but not those of the other 

classes. This suggests that a single criterion is likely not enough for understanding and 

predicting Schelling frequency. 

When not using high-level groups to collect data and produce Schelling frequencies, we 

obtained less correlations, but they more frequently tended positively towards visual 

appeal (tables, lamps and abstract shapes), indicating that this was the most prominent 

factor describing Schelling frequencies (see Table 4.5). Perception of memorability was 

still correlated with the abstract shapes, however. This was in addition to naturalness 
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for the tables and chairs. So, it is not necessarily the case that visual appeal explains 

Schelling frequencies completely. 

But, since many trends vanish if not using high-level groups (which have variation 

between those of different classes), this result may indicate that more selection data is 

required to consistently measure population level differences in Schelling saliency 

between permutations of four shapes, without high-level groups to filter the many 

permutations which could be put on display. Additionally, shape variation may have 

been too narrow across each class of shape (or the number of shapes in each class, too 

low), and given this narrow variation, collecting selection samples based on 4 shapes 

per question may have been unlikely to produce population/class level statistics that 

may appear when larger collections of shapes are shown. Therefore, we found these 

results to be inconclusive. 

Table 4.5 - Correlations between some human understandable terms 

(naturalness, strangeness, and visual appeal) and Schelling frequencies (without 

high-level groups). Significant correlations (p<0.05) are in bold. 

4.4.4 Statistical Comparison of Schelling Frequencies Obtained 

With/Without High Level Groups 

We aimed to determine whether the distributions of Schelling frequencies differed 

whether we employed the use of high-level groups or not. 

Corr. Coef. Schelling Frequency (without high-level groups) 

Tables Lamps Chairs Abstracts 

Naturalness 0.48 0.1817 0.31 0.05 

Strangeness -0.49 -0.1372 -0.24 -0.11 

Visual Appeal 0.53 0.49 0.2854 0.76 

Memorability 0.2445 0.0707 0.1592 0.5547 

Standing Out 0.3006 0.2028 -0.0244 0.2843 

Uniqueness 0.129 0.1018 -0.1859 -0.112 
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Firstly, we performed a two-sample Kolmogorov-Smirnov test over the Schelling 

frequency distributions with/without high-level groups for each shape class. They were 

each determined to be the same, apart from the chairs shape class (abstract: p < 0.761; 

chairs: p << 0.01, lamps: p < 0.991 and tables, p < 0.341). 

Figure 4.9 – Estimated PDF of Schelling frequencies for the chairs class of shape 

with/without high-level groups. (Left) With high-level groups. (Right) Without 

high-level groups. 

The difference in shape of the chair-based distributions that was indicated by the two-

sample Kolmogorov-Smirnov test is visualised in Figure 4.9. This may be attributed to 

the type of grouping applied to the chairs (aesthetic ratings). It provides plots of the 

estimated PDF for the chair Schelling frequencies, with/without high-level groups. Plots 

of estimated PDFs for the other shape classes are shown in Figure 4.10. 

Random choice for each of the PDFs would look like a uniform distribution. As there 

is a clear deviation from this, it indicates that there is some information in the Schelling 

frequencies. Additionally, consistency between the distributions of 3 out of 4 shape 

classes, indicates Schelling frequency distributions are likely to be consistent across 

different shape classes, whether or not high-level groups are used. 
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We additionally performed a two-sample t-test on the Schelling frequencies for each 

shape class produced with/without high-level groups. The distribution means were 

considered to be the same (p > 0.05) for each class of shapes, including the chairs class. 

From these statistical results, we focused on using Schelling frequencies and predicting 

Schelling scores based on data collected with high-level groups, so we refer to these 

from this point forward. 

Figure 4.10 – Estimated PDF of Schelling frequencies for the abstract, lamp and 

table classes of shape based on high-level groups. 

4.5 Learning 

In this section, we describe the method used to learn and predict Schelling scores using 

a neural network. We represented a 3D shape with voxels, which the neural network 

took as input. 
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We now describe our learned function for Schelling score prediction, and the neural 

network architecture which represents it. As the Schelling concept is a relative one, the 

input to the function consisted of multiple shapes. In accordance with each sample of 

the collected data, we provided four shapes (each in a voxelised form) as input 

(𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 , 𝑆𝐷) to the network, which output four Schelling scores (𝑦𝐴, 𝑦𝐵 , 𝑦𝐶 , 𝑦𝐷) in 

response. We wished to learn the function (𝑦𝐴, 𝑦𝐵 , 𝑦𝐶 , 𝑦𝐷) = ℎ𝑊,𝑏(𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 , 𝑆𝐷) where 

𝑊, 𝑏 are the weights and biases respectively, of a neural network. 

𝑦𝐴  is the computed Schelling score, and 𝑠𝐴  is the Schelling score from participant 

provided data (see Data Collection). Each of the computed Schelling scores 

corresponded to how Schelling salient that shape was, relative to the other three shapes. 

Figure 4.11 shows the neural network used for the input voxel resolution of 32x32x32. 

A small voxel resolution produced a relatively small number of nodes in the layers, 

therefore a fully-connected network could be trained for voxel grids of a resolution 

below this. On the other hand, a large voxel resolution led to a large number of nodes, 

and convolutional layers were needed. We trained the network using k=10 fold cross-

validation, shuffling and splitting the total dataset per class into 90% training data, 10% 

testing data. For each fold, we correlated the network predictions with actual selection 

data from participants, to produce our accuracy measure. We averaged these per-fold 

correlations to achieve our final results. 

We produced different neural network architectures for different voxel resolutions, and 

this was done with the motivation of making the best predictions of Schelling 

frequencies for each resolution. The network architectures for the other voxel 

resolutions were similar to that of the diagram in Figure 4.11. Dropout and batch 

normalisation after convolutions, was employed. For 16x16x16, there was only one 
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convolutional layer in the blocks on the left. For 12x12x12 and 8x8x8, all the layers 

were fully-connected with only dropout in use, at the first layer. Rectified Linear Units 

were used at each layer (after convolutions, or otherwise used to form fully connected 

layers), apart from the last layer which was a linear combination of weights and previous 

outputs. 

To learn 𝑊, 𝑏 we minimised the following loss function: 

ℒ(𝑾, 𝒃) =
1

𝑁
( ∑ (𝑦𝑖𝐴

− 𝑠𝑖𝐴
)

2

𝑖 ∈ 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎

+ ∑ (𝑦𝑖𝐵
− 𝑠𝑖𝐵

)
2

𝑖 ∈ 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎

+ ∑ (𝑦𝑖𝐶
− 𝑠𝑖𝐶

)
2

𝑖 ∈ 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎

+ ∑ (𝑦𝑖𝐷
− 𝑠𝑖𝐷

)
2

𝑖 ∈ 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎

) 

+ 0.01‖𝑾‖
2
2

+ 0.01‖𝒃‖
2
2

 

Equation 4.2 – Loss function for Schelling frequency prediction (4-choose-1 

approach). 

Index 𝑖 denotes the 𝑖th training data sample, 𝑑𝑖 = (𝑆𝑖𝐴
, 𝑆𝑖𝐵

, 𝑆𝑖𝐶
, 𝑆𝑖𝐷

, 𝑠𝑖𝐴
, 𝑠𝑖𝐵

, 𝑠𝑖𝐶
, 𝑠𝑖𝐷

), 𝑁 

is the number of samples used for training (in this case, the training batch size), 𝑦𝑖𝐴
 is 

the corresponding output in the function ℎ() for 𝑆𝑖𝐴
 (similarly for 𝑆𝑖𝐵

, 𝑆𝑖𝐶
 and 𝑆𝑖 𝐷

), and 

‖𝑾‖
2
2

 and ‖𝒃‖
2
2

 are 𝐿2 regularizers employed to prevent overfitting. 

We minimised Equation 4.2 with the Adam optimisation algorithm and standard 

backpropagation, where the learning rate decayed by 20% every 300 epochs. 

Optimisation was executed in batch sizes of 32. Adam uses a weighted combination of 

an exponential moving average of previous gradients and the current squared gradient, 

to minimise a loss function.
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4.5.1 Neural Network Structure 

 

 

 

 

 

 

 

 

Figure 4.11 – Schelling saliency neural network for an input voxel resolution of 32x32x32. There are 4 input shapes and 4 output 

Schelling scores. Layers after L4 are fully-connected. 
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The training time for each shape class was 2000 epochs per fold at approx. 6 seconds 

each, for 10 folds. This led to an approximate training time of 33.3 hours per shape 

class. Our implementation used the Theano [255] and Keras [256] Python libraries. 

Training was done with a Nvidia GTX 1080Ti graphics card. Refer to Table 4.6 for our 

results. Also note that a random predictor is 25% accurate. 

Table 4.6 – k=10 fold cross-validation results from training a voxel-based neural 

network for predicting Schelling saliency via 32x32x32 voxel grids (4-choose-1 

approach). 

For every shape class in Table 4.6, we achieved significant cross-validation correlations 

(p << 0.05), greater than that of a random predictor, indicating that Schelling scores can 

be learned. But the correlations were relatively low, especially for the lamps. This 

suggests that larger amounts of selection data, shapes or computation/time may be 

needed to improve results further. 

4.6 Applications 

We demonstrate the use of Schelling salient meshes in various Schelling-based 

applications. 

4.6.1 Visualisation 

Here, the idea is to visualize a set of shapes in one larger image or collage, with the 

Schelling concept influencing their locations in the larger image. We represented each 

shape as a vector of binary numbers by converting each of them to 15x15x15 voxels. 

Shape Class Number of 

Shapes 

Number of 

Samples 

Number of 

Samples for 

Validation 

CV 

Correlation 
𝑹𝟐  

Abstracts 30 3420 380 0.42 0.177 

Chairs 45 3420 380 0.48 0.226 

Lamps 44 3690 410 0.3 0.0089 

Tables 30 2704 301 0.467 0.22 
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Afterwards, we used tSNE [41] to convert the vector to two dimensions and plot the 

smaller images of each shape into one larger image. In a second case, we then combined 

the 2D embedding/location for each shape with its Schelling frequency. These 3D 

values were then converted into 2D via t-SNE, and the smaller images of each shape 

were then plotted into one larger image. Figure 4.12 and Figure 4.13 show a comparison 

of these two cases, for the chairs and tables, respectively. The plots created with 

Schelling frequencies allow shapes to be grouped which have the smallest and largest 

Schelling frequencies, and allow comparison of shapes with similar Schelling 

frequencies to each other. 

Figure 4.12 - Schelling-based visualizations of chairs obtained using t-SNE. (Left) 

one without and (Right) one with Schelling frequencies considered before 

reducing to two dimensions. 

Figure 4.13 - Schelling-based visualizations of tables obtained using t-SNE. (Left) 

one without and (Right) one with Schelling frequencies considered before 

reducing to two dimensions. 
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4.6.2 Clustering 

The Schelling concept can be used to cluster a set of shapes into groups based on high-

level criteria that would otherwise be difficult using shape geometry alone. For example, 

the plots in Figure 4.4 to Figure 4.6 show this. For the plots of man-made objects (i.e. 

lamps, tables, and chairs), the shapes that are near the right end of the spectrum (with 

higher Schelling frequencies) tend to be more creative, strange, and/or uncommon. The 

shapes near the middle of the spectrum tend to be more common. 

4.6.3 Search 

The Schelling concept can be applied for search and retrieval applications of 3D model 

datasets. The idea is to use the Schelling frequencies or scores as a distance metric such 

that the distance between two shapes is the difference between the Schelling frequencies 

or scores. This is effective in placing those shapes that are similar in the Schelling 

context, to a query shape near the top in a search application. Figure 4.14 shows some 

examples. 

Figure 4.15 and Figure 4.16 show the closest k=5 shapes to a query shape of high 

Schelling frequency, based on the Euclidean distance between their Schelling 

frequencies and a range of shape descriptors. The shapes closest to the query in terms 

of Schelling frequency tend to be more unusual than the shapes closest to the query in 

terms of each shape descriptor. This suggests that Schelling meshes are the extreme 

meshes in a shape class/distribution. Or in other words, the higher the Schelling 

frequency, the more extreme the shape is. 
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Figure 4.14 - Schelling-based Search. Four examples of searching with a query 

shape (shown on the left). In each case, the 5 closest shapes based on Schelling 

frequencies are shown. Moving from left-to-right, indicates increased distance 

from the shape to the query. 
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Figure 4.15 - Schelling-based Search 2. Two examples of searching with a query 

shape (shown on the left) of high Schelling frequency, one each for the chair and 

table shapes. The 5 closest shapes to the query are shown based on Schelling 

frequencies and various shape descriptors. Moving from left-to-right, indicates 

increased distance from the shape to the query. 
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Figure 4.16 - Schelling-based Search 3. Two examples of searching with a query 

shape (shown on the left) of high Schelling frequency, one each for the abstract 

and lamp shapes. The 5 closest shapes to the query are shown based on Schelling 

frequencies and various shape descriptors. Moving from left-to-right, indicates 

increased distance from the shape to the query. 
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4.7 Discussion 

To begin, we restate our hypotheses below: 

1. A more natural shape is less Schelling frequent, as there is not much special 

(surface variation) that makes it stand out against other shapes. 

2. A stranger shape is more Schelling frequent, as the strangeness will make it 

stand out against other shapes. 

3. A shape which stands out from others or is considered unique, is more 

Schelling frequent due to global rarity of elements on the shape’s surface 

(related to naturalness and strangeness). 

4. A more visually appealing shape is more Schelling frequent, as the 

appeal/aesthetics of the shape will attract people to select it. 

5. A shape may be perceived as more memorable relative to others, as its 

Schelling frequency increases. 

We discuss our results from a viewpoint of high-level groups being necessary to collect 

Schelling saliency data. 

We have found that when using high-level groups to distinguish between shapes to 

present to participants (from a class), there was only a negative correlation between the 

Schelling frequencies of the lamp shapes and 'visual appeal', indicating that hypothesis 

#4 was incorrect. 

We also found that natural shapes were less Schelling frequent, for two out of four shape 

classes (tables and chairs), agreeing with hypothesis #1. But, as this result did not occur 

for two other shape classes, this is not a general observation. 

Additionally, two out of four classes produced positive correlations of 'strangeness' with 

their shape Schelling frequencies (tables and chairs). This is also not a general trend, 
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but it provides evidence for hypothesis #2. Strong positive correlations (for the tables 

and chairs) were also found for notions of 'standing out' and 'uniqueness', which are 

similar in meaning. These results provide evidence for hypothesis #3, but this also 

cannot be taken as a general conclusion. 

We also found that two out of four shape classes (abstract shapes and chairs) gave 

positive correlations between their Schelling frequencies and a notion of 'memorability'. 

As these classes were disjoint from the table and chair classes, this indicates that there 

are different factors behind understanding Schelling frequencies. This result provides 

evidence that hypothesis #5 is correct, but not generally so. 

Overall, we concluded that potentially: 1) not enough permutations of shapes were 

presented to participants, to consistently measure class-level patterns, 2) not enough 

shapes were shown per question, or 3) without predetermined criteria (for example, via 

the high-level groups), some participants do not understand which choice to make in a 

Schelling selection task, involving the comparison of a small group of shapes in a class. 

4.8 Conclusion 

We have explored the notion of Schelling points, where points are the meshes 

themselves, and we have studied various aspects of this problem. We found that there 

are many factors behind Schelling frequencies including uniqueness, visual appeal, 

memorability and other aspects. Whether using high-level groups or not, the Schelling 

frequencies of all shape classes significantly correlate with the average Likert ratings of 

at least one subjective term. 

Schelling meshes can be predicted at accuracies above chance, using a voxel-based 

convolutional neural network (correlations of predictions with actual Schelling 
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frequencies were positive and not near zero – see section 4.5). From our experience, 

having more shapes and selection data is likely to improve prediction accuracies. 

Many shapes in our dataset were quite similar, making it difficult to differentiate among 

them, based on Schelling frequencies. For example, in the results of the Schelling 

frequency plots, many shapes can fall within a large group in the middle of the spectrum. 

Our Schelling-based analysis is less useful for these shapes and more useful for shapes 

that are in the “extreme” ends of the spectrum. 

For data collection, we limited this study to showing participants four shapes, asking 

them to pick one. We could have instead showed them a larger number of shapes and 

let them pick any number they wanted to. In addition, we could have mixed shapes from 

all the available categories in each question. The abstract shapes from this study were 

mixed already, to some degree, but it was possible to consider all shapes at the same 

time, without any shape classes. We later attempted this, but participants found it 

difficult to select shapes consistently. On restricting shapes shown via this approach, by 

not allowing overlap between classes, we achieved more consistent results. This is the 

basis of the next chapter. 
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5 Schelling Meshes: ‘Many-

Within-Class’ approach 

5.1 Introduction 

Recall that Schelling Points are choices made by people when they aim to match with 

what they expect others to choose, with no prior communication between them. We can 

treat explicit shape selections out of a group of shapes as Schelling points within that 

group. Shapes with high selection frequencies in this context act as Schelling points 

within their respective shape class. 

To remove the restriction on the size of the shape group, which was 4 shapes at a time 

for the previous study, we designed a new survey setup which allows participants to 

select as many shapes as they like, with their choices still being represented as binary 

values. This gave participants more freedom in their answers. Shapes were still 

restricted to being shown in separate classes at a time, to reduce the difficulty in making 

selections, as we could not find patterns in Schelling frequencies collected with mixed 

shape groups. 

As before, our aim was to determine the degree of agreement between people when they 

are individually asked to select a shape of out of a collection that they believe others 

will also pick. We collected Schelling-based data for meshes by asking people to choose 

one or more shapes from a class of shapes (e.g. tables, lamps), where people selected 

shapes that they believed others would also select, given no communication beforehand. 
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This agreement was reflected in the frequency of shape selections in each context, or 

‘Schelling frequencies’. We studied these shape selections and their distributions to 

determine what makes a shape Schelling salient, given a different selection framework. 

We show that the notion of Schelling salient meshes can be learned via a depth image-

based convolutional neural network, allowing for Schelling frequency prediction. We 

compare a selection of traditional shape descriptors to deep-learning approaches for 

prediction of Schelling frequencies, and achieve better prediction accuracy in each case, 

using a deep-learning approach. Results are shown for several types of 3D shapes. We 

demonstrate that the concept of Schelling meshes in this study is useful for the 

applications of Schelling-based visualisation, clustering, and search. 

Overall, we found that Schelling meshes are those that people consider more prominent 

and stand out with respect to other shapes in a dataset. This suggests that they can 

represent a dataset’s extremes. They are also perceived as memorable relative to the 

other members of their class. 

5.2 Hypotheses 

5.2.1 We retained some of the original hypotheses from the Layout 

and Structure 

Following the Introduction is a Background chapter, covering key concepts needed to 

understand the work in this thesis, such as information on geometry representations, 

data collection, statistical tests / analysis, and relevant topics in machine learning. 

Afterwards is the Related Work chapter, which provides an overview of previous 

research that is related to the theme of the thesis. It covers four main topics: 1) Saliency 

+ Shape Perception, 2) Understanding of Geometry, 3) Machine Learning, and 4) 
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Crowdsourcing. A summary is provided for each topic. In the conclusion section of the 

chapter, research gaps are indicated which are most relevant to the thesis research, 

highlighting the contributions we provide that complement the existing literature. 

In the Schelling Meshes: ‘4-choose-1’ chapter, we introduce the notion of ‘Schelling 

meshes’, an approach to understanding 3D shapes via a basis of human preference. We 

study the agreement between participants when they select one out of four shapes, 

aiming to match other people’s selections. We detail our data collection method, 

interpret and analyse the results, and describe our approach to learning and predicting 

which shape is most likely to be a Schelling mesh out of a group of four shapes. We 

also provide potential applications in search and visualisation, using shape selection 

frequencies given shape visibility by participants. To conclude the chapter, we discuss 

the approach and report our main findings. 

The next chapter (Schelling Meshes: ‘Many-Within-Class’) introduces an approach to 

collecting data on Schelling meshes where participants can select multiple shapes within 

a class, aiming to match others’ selections, as before. We interpret and analyse our 

results and provide a method to predict how likely a shape is to be a Schelling mesh out 

of a shape class. This is our ‘Many-Within-Class’ approach. To conclude the chapter, 

we report and discuss our main findings. 

To follow, we study 2D shapes in the Font Specificity chapter. This covers our approach 

to understanding 2D fonts via the concept of Specificity. We detail our data collection 

approach and show the results of our analysis. Based on these results, we show how 

per-font word distributions can be used to create a Specificity score and detail an 

approach to automatically compute Specificity scores with similar properties. We also 

provide a method to predict font Specificity and introduce potential applications in 
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search, visualisation and clustering. To conclude, we report and discuss our main 

findings. 

We end the thesis with a Conclusions chapter, discussing how the topics of Schelling 

meshes and font Specificity relate to the thesis’ theme of understanding 3D shapes and 

2D fonts via human-perceptual aspects of their geometry. We provide potential future 

applications, and areas of research that could follow from this work.. These are listed 

below: 

1. A shape which stands out from others or is considered unique, is more 

Schelling frequent. 

2. A more visually appealing shape is more Schelling frequent. 

3. A shape may be perceived as more memorable relative to others, as its 

Schelling frequency increases. 

4. Schelling frequencies convey different information to that of shape 

descriptors. 

5.3 Methodology 

5.3.1 Data Selection and Generation 

We firstly took the previously collected 145 3D shapes from the ‘4-choose-1’ study (30 

abstracts, 45 chairs, 44 lamps and 30 table shapes) and increased this number to 169 

shapes, taken from online sources (e.g. ShapeNet [8] and Trimble 3D Warehouse [2]). 

Some data collection and analysis was performed with this shape dataset, which will be 

shown later in the chapter. It consisted of 38 abstract shapes, 49 chairs, 49 lamps and 

33 tables. 

Further analysis was done using a larger dataset of 387 shapes, which included the 

previous 4 classes, and another 7: bottles, baskets, cabinets and shelves, cups, plants, 
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plates and pots. The shape datasets in question are referred to when applicable, 

throughout the chapter. See Table 5.1 for shape class sizes and per-class mean Schelling 

frequencies for the dataset of 387 shapes. 

Shape Class Number of Shapes Mean Schelling Freq. 

Abstracts 38 0.1290 

Baskets 28 0.1629 

Bottles 28 0.1114 

Cabinets/Shelves 32 0.1238 

Chairs 49 0.1084 

Cups 31 0.1077 

Lamps 49 0.1228 

Plants 31 0.1439 

Plates 21 0.1838 

Pots 47 0.0957 

Tables 33 0.1245 

Table 5.1 – Shape class sizes and the mean Schelling frequencies of each class. 

As in the ‘4-choose-1’ study, we displayed 3D shapes on a 2D screen, via a continuously 

rotating view of each shape. All shapes went through a full rotation (taking three 

seconds) where one could also see the top and bottom parts of the shape. This was 

followed by a short pause before the shape was rotated again. 

For this study, we aimed for shapes to be selectable in an analogous manner to points 

in the Schelling Points on 3D Surface Meshes work [6]. Specifically, participants would 

need to be shown multiple shapes on screen, potentially all shapes of a given class (e.g. 

chairs), where they would choose several of the presented shapes, with a goal of 

matching other participants’ responses based on what they believed others would 

choose. In the previous study, we did not collect data in this way, as we originally 

believed it difficult to learn a function that takes many shapes as input. But for this 

study, we allowed many shapes to be selected per question and determined an approach 
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to learn a function to predict Schelling saliency, which takes depth images of a shape 

as input. It was possible to mix classes but separating them was already interesting for 

us to study the concept of Schelling meshes. 

5.3.1 Data Collection 

In this section, we describe the process of collecting data to study Schelling meshes. 

The main difference between this study design, and the last, is in the representation of 

the Schelling concept as applied to 3D shapes. As mentioned before, it requires humans 

to analyse a shape relative to other shapes. 

We used the Amazon Mechanical Turk crowdsourcing platform, to collect data. Each 

question displayed all shapes in a shape class. Each shape had a selection box for the 

participant to indicate choosing it or not, and each selection box was independent from 

the others. Unlike the ‘4-choose-1’ approach, we did not restrict shapes shown to 

participants, based on criteria. By doing this, we aimed to reduce bias in the shape 

selection process/survey. Since participant selections were subjective, and there were 

no right or wrong answers (there were no combinations more valid than any other – 

unlike in the more restricted ‘4-choose-1’ case), we decided to not have any control 

questions to filter out potentially bad users. 

Participants were first given written instructions: “For each question, your task is to 

choose from a selection of shapes. Other participants will be given the same task. You 

should choose shapes that will most likely match with their selections. Note that you 

will not be able to communicate with other participants, and this is intentional”. They 

were also told to choose at least one shape per question. 
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Each HIT (“Human Intelligence Task” or set of questions on Amazon Mechanical Turk) 

consisted of several questions, one for each class of shape. Shape order was randomized 

per question. We provided questions based on 11 shape classes, and so split surveys 

into 3 or 4 questions at a time, for different participants. At the end of each HIT, we 

included an optional text box and asked participants to provide a few words describing 

why they selected the shapes that they did. Figure 8.1 (in the appendix) provides a 

screenshot of a survey provided to participants. A shape selection was a binary choice 

(like in the ‘4-choose-1’ study), but in this case, participants could choose many shapes 

until the total amount of shapes per shape group was reached. 

Each participant provided a binary-valued vector, 𝑠 for an ordered set of shapes, 𝑆. 

Associated with each shape 𝑆𝑗 was a score, 𝑠𝑗 indicating whether it had been selected (1 

= selected, 0 = not selected). Therefore, each selection sample was of the form (𝑆𝑗 , 𝑠𝑗), 

where 𝑆𝑗 was the participant’s stimuli. Equation 5.1 provides the Schelling frequency, 

𝑠𝑓𝑗
 for a shape, 𝑆𝑗 . 

We took the number of participants as 𝑁, and the number of shapes in a class as 𝑀. For 

a shape 𝑆𝑗, which had a score, 𝑠𝑗, across many participants’ selection samples, 𝑃𝑖: 

𝑗 ∈ {1, … , 𝑀} 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑆𝑗 = 𝑆𝑗𝑡𝑜𝑡𝑎𝑙
= ∑ 𝑠𝑗𝑖

𝑖

, (𝑆𝑗 , 𝑠𝑗)
i

∈ 𝑃𝑖 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑆𝑗 = 𝑆𝑗𝑜𝑐𝑐
= 𝑁 

𝑠𝑓𝑗
=  

𝑆𝑗𝑡𝑜𝑡𝑎𝑙

𝑆𝑗𝑜𝑐𝑐

 

Equation 5.1 – Schelling frequency derivation (‘Many-Within-Class’ approach). 
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However, we attempted to introduce data quality standards. In the provided instructions, 

we tried to encourage users to carefully work on the questions by specifying to users 

that if they randomly chose their answers, their HIT responses would not be taken, and 

they would not be paid. Furthermore, users were only allowed to work on our HITs if 

their acceptance rate of previously completed HITs, was at least 80%. A participant 

took about 1 to 5 minutes to complete each HIT. We paid participants $0.10 for each 

HIT. 

Qualitative Characteristics of Schelling Meshes 

Next, we attempted to understand the qualitative characteristics of Schelling meshes 

from participant text responses. We collected responses from 102 participants (made at 

the end of their surveys), for the abstract shapes, chairs, lamps and tables (169 shapes). 

46 out of 102 participants gave comments. 18 participants mentioned they made 

selections based on appeal, aesthetics, or beauty. 

An example user comment was: “I basically selected items that I liked and items which 

I thought other people would like as well”. 16 participants said they selected shapes that 

stand out, are different, or catchy. For example, one user commented: “I selected the 

shapes that are unusual and different from others”. This suggested that Schelling meshes 

may be perceived to stand out or be unique from others in a collection. A few 

participants said that they chose familiar or memorable shapes. For example, one user 

commented: “I hope that most of the other participants have also gone for similar 

designs as they are common and easy to remember”. This indicated that perception of 

shape memorability could be a factor behind Schelling mesh selections. 
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5.4 Analysis 

5.4.1 Validation of Data Consistency 

At this point, we wanted to determine whether the collected data was consistent among 

participants. Since the data was subjective, there was no right or wrong answer to 

compare against. Hence, we checked the consistency within the collected data. The 

main idea was to split the whole set of data into different groups and check whether the 

groups had similar distributions. 

We performed this test for the abstract shapes, chairs, lamps and tables (169 shapes), 

given selections from 102 participants. The collected data consisted of binary values 

indicating whether each of the participants selected each shape. We randomly sampled 

from this dataset, 10 times, where each time we randomly picked half (51) of the 

participant responses. Half of the responses still provided us with information about all 

shapes, giving us 10 vectors of 169 values. Figure 5.1 shows a visual representation. 

We can see that there is much correspondence in the horizontal rows, where some rows 

are mostly blue and light blue, and some rows are mostly yellow and orange. This means 

that across the 10 vectors, the distributions of the values are similar. We found that a 

minimum of 40-50 participants was required to show a consistent pattern in Schelling 

frequencies, across all shape classes (see Figure 5.1 or columns 4 and 5 of Figure 5.2). 

Quantitatively, we performed a two-sample Kolmogorov-Smirnov test for each pair of 

169 values (pairs sampled from the 10 vectors) and found that the p-value >= 0.05 in 

each case. This provided evidence that these 10 vectors came from the same distribution 

and that there was consistency in the collected data. So, for the remaining shape classes 

which contributed to the dataset of 387 shapes, we collected data from 50 participants 

for each shape class (baskets, bottles, cabinets/shelves, cups, plants, plates and pots). 
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Using some of the additional shapes, we performed a different test where we asked 

participants to make selections from a small set of shapes (all from the same class), and 

separately asked people to select from a large set of shapes (from the same class). Then 

we determined whether the selections were consistent, by attempting to correlate the 

Schelling frequencies produced for the separate distributions of small vs. large shape 

sets. 

We showed 100 participants surveys in a very similar setup to what was mentioned 

previously, but the difference is that we independently showed people a survey of 

questions with only 12 shapes randomly sampled from a shape class, vs. a survey of 

questions showing all shapes in that class. 

Data was collected on the pots shape class in this manner, where we showed participants 

95 pots (which contained the original 47 pots) vs. 12 pots (sampled from the original 

47 pots). In the former case, shape order was randomised. In the latter case, shapes were 

randomly sampled with replacement. 
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Figure 5.1 – Plot showing variance in Schelling frequency distributions according 

to shape selections randomly sampled from 51 participants (out of 102) with 

replacement. 

The y-axis indicates each shape (from top to bottom) across the abstract shapes, 

chairs, lamps and tables (169 shapes). The x-axis/columns represent samples of 

Schelling frequencies for each shape. 

Horizontal lines of the same or similar colour (selection frequency), indicate 

consistency between the samples. 
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Figure 5.2 – Visualisation of how Schelling frequencies become more stable as 

more selections are gathered. 

The y-axis indicates each shape (from top to bottom) across the abstract shapes, 

chairs, lamps and tables (169 shapes). The x-axis/columns represent samples of 

Schelling frequencies for each shape, derived from incrementally summing 10 

randomly chosen participants’ shape selections, each sampled without 

replacement. 

 Consistently distinct horizontal regions of colour across columns, indicates 

consistency in the shapes’ Schelling frequencies, from a certain column onwards. 

This indicates a minimum selection sample size. 
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Additional shapes were collected from ShapeNet [8] in order to hold the survey. For 

both cases of survey, participants were asked to select a number of shapes. We aimed 

to compare the Schelling frequencies of the original 47 pots, given that they were mixed 

within the 95 pots, with Schelling frequencies obtained from incrementally collecting 

selection data on 12 pots out of the original 47 pots (eventually producing Schelling 

frequencies for the 47 pots). 

Since not all shapes were shown when providing 12 out of a larger total, the Schelling 

frequency definition changed (see Equation 5.2), since the number of participants, 𝑁, 

was not necessarily the number of times a shape was shown to participants. The number 

of shapes in the class was 𝑀, as before. In this case, for a shape 𝑆𝑗, which has a score, 

𝑠𝑗 , across many participants’ selection samples, 𝑃𝑖, the shape’s Schelling frequency, 

𝑠𝑓𝑗
, is calculated as follows: 

𝑗 ∈ {1, … , 𝑀} 

𝑚𝑒𝑚𝑏𝑒𝑟(𝑆𝑗) = {
1 if 𝑆𝑗 ∈ 𝑃𝑖

0 if 𝑆𝑗 ∉ 𝑃𝑖
, 𝑠𝑗 = 0 if 𝑆𝑗 ∉ 𝑃𝑖 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑆𝑗 = 𝑆𝑗𝑡𝑜𝑡𝑎𝑙
= ∑ 𝑠𝑗

𝑖

× 𝑚𝑒𝑚𝑏𝑒𝑟(𝑆𝑗) 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑆𝑗 = 𝑆𝑗𝑜𝑐𝑐
= ∑ 𝑚𝑒𝑚𝑏𝑒𝑟(𝑆𝑗)

𝑖

 

𝑠𝑓𝑗
=  

𝑆𝑗𝑡𝑜𝑡𝑎𝑙

𝑆𝑗𝑜𝑐𝑐

 

Equation 5.2 – Schelling frequency derivation (consistency test of ‘Many-Within-

Class’ approach). 

Given that the mean number of occurrences (in surveys) of each shape was 50, we 

obtained results as shown in Table 5.2. This is approximately the target number of times 
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that we wished participants to see a shape, to get a good distribution of Schelling 

frequencies (see Figure 5.2). 

 

 

 

 

 

Table 5.2 – Correlations between Schelling frequencies from the pots class where 

all 47 shapes were shown (within a larger 95 pots group) vs. Schelling frequencies 

obtained via showing 12 shapes at a time, incrementally. 

Mean, Median, Min, Max, and Std. Dev., refer to statistics obtained on the final 

Schelling frequencies across each shape in the pots shape groups (which were shown 

12 shapes at a time), respectively. 

Correlations between Schelling frequencies obtained via showing participants 12 pots 

shapes at a time, vs. showing participants all 47 pots (mixed within 95 pots), were 

significant and positive. The correlations improved if we only included shapes with a 

high number of occurrences (seen by 50 participants or more). 

This suggests that incrementally collecting shape selections for smaller groups of shapes 

at a time, can be a valid option for consistently obtaining Schelling frequencies vs. doing 

so by showing all shapes in a class, allowing Schelling frequencies to be collected in 

more realistic situations. Further validation with additional shape classes would be 

needed to confirm this, however. Additionally, a greater number of participants than 50 

Consistency Test Pots (47 shapes total) 

Corr. Coef. 0.5676 

Corr. Coef. 

(shapes with >= 50 occurrences) 

0.6348 

R-Squared 0.307 

p-value p << 0.01 (3.17E-05) 

Mean 0.2155 

Median 0.2 

Min 0.0333 

Max 0.5 

Std. Dev. 0.1047 
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may be required to achieve high correlations to Schelling frequencies obtained from 

shape selection data collected in bulk. 

5.4.2 Observed Patterns 

Firstly, we describe the patterns that we observed in the plots of the first 169 shapes that 

we studied (See the Visualisation section for plots of other shape groups). Figure 5.3 

provides 1-D plots of these shapes (abstract shapes, chairs, lamps and tables). 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 – 1-D plots of shapes at their respective participant Schelling 

frequencies. We show one plot for each of the abstract shapes, tables, lamps and 

chairs shape classes. 

Regarding the chairs, shapes that looked more strange, unusual, and/or different from 

the others had higher Schelling frequencies. In contrast, the plain or normal-looking 

chairs were all clustered into one big group near the left side of the 1D plot. Similarly, 
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for the tables and lamps, the non-typical and/or strange shapes had higher Schelling 

frequencies, while the more normal-looking shapes were mostly clustered on the left 

side. 

For abstract shapes, chain-like shapes (rings or holes) and the statue shapes had higher 

Schelling frequencies. The lower Schelling frequency shapes tended to be blobs, 

primitives, or otherwise abstract or unknown shapes. 

Comparing the range of Schelling frequencies for the four shape categories, the category 

with the smallest range was the chairs. It seemed that there was less variety or creativity 

in the provided types of chairs, compared to the tables and lamps, even though all 169 

shapes were examples of furniture. This led to a smaller range for the chairs. 

5.4.3 Comparison with 3D Shape Descriptors 

Another characteristic that participants pointed out, is that they chose shapes that were 

appealing or aesthetically pleasing. We tried to measure the aesthetics of a shape (in the 

form of a polygon mesh) by computing curvature since it is regarded to be related to 

aesthetics [4]. We computed the Gaussian curvature and mean curvature [67] for each 

mesh vertex and then averaged them to get curvature values for each shape. We tried to 

correlate each of these averaged values for all shapes, with their Schelling frequencies 

but found that there was no correlation (p > 0.05). Therefore, we did not observe any 

quantitative correlation between aesthetics and Schelling frequency (although curvature 

is only one possible measure of aesthetics). 

In addition, we computed for each shape, histograms of some common 3D shape 

descriptors: D2 shape distribution [9], Gaussian curvature and mean curvature [67], and 

the Shape diameter function [31]. Descriptors were computed using MATLAB code, 
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and C++ via LibIGL [257] and CGAL [258]. We ranked these descriptors by participant 

Schelling frequency, in ascending order, and plotted each descriptor as a vertical 

colour/heatmap. As an example, for the 33 tables, 33 vertical columns are shown in the 

plot. This allowed us to visualise if there were correlations between individual shape 

descriptors, and the participant Schelling frequencies. Visually, we found no clear 

correlation between each descriptor and Schelling frequency. See section 5.5.5 for the 

mesh processing that we applied to all shapes before computing descriptors on them. 

Figure 5.4 and Figure 5.5 show some heatmaps (for the abstract shapes, chairs, tables, 

plants and all shapes together) based on our larger 387 shape dataset (which consisted 

of: abstract shapes, lamps, tables, chairs, plants, pots, plants, bottles, baskets, cups and 

cabinets/shelves). 

5.4.4 Understanding Schelling Frequencies through Subjective terms 

To determine what a ‘high’, ‘low’ or even ‘average’ Schelling frequency may mean, we 

collected data on how people ranked shapes based on subjective terminology, as in the 

‘4-choose-1’ study. As previously, we used the Amazon Mechanical Turk platform for 

this. Participants were paid $0.10 per HIT. 

Similarly, to the ‘4-choose-1’ case, we provided participants with Likert surveys, with 

each question showing a single shape and a scale. We asked them to rank how visually 

appealing, memorable, unique or ‘stand out’ each shape was, by choosing an option on 

a scale, between 1 and 5 for each shape, with 1 being “Not at all”, and 5 being 

“Extremely”.
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Figure 5.4 – Plots of shape descriptor histograms for the abstracts, chairs, and 

tables shape groups, with each column representing one shape, where columns 

are sorted according to increasing Schelling frequency. Bins with values of < 5e-3 

were removed. 
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Figure 5.5 – Plots of shape descriptor histograms for the plants shape group, as 

well as all shape groups combined, with each column representing one shape, 

where columns are sorted according to increasing Schelling frequency.  
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Groups of 15 unique participants were each shown a survey on a shape class and 

criterion combination (e.g. baskets + memorable). Shapes were sampled from a single 

shape class, without replacement. Table 5.3 shows correlations between the average 

Likert scores for each shape (from 15 participants) and each shape’s Schelling 

frequencies as obtained via showing all shapes in each shape class (from 50 

participants). Bold values indicate statistical significance (p-values < 0.05). 

For 10 out of 11 shape classes, participant perception of shape memorability correlated 

significantly and positively with the Schelling frequency for each shape. This suggests 

that a shape’s perceived memorability is likely to be positively correlated with the 

Schelling frequency of a shape, especially since significance occurred for very different 

shape groups. For the memorability and ‘standing out’ cases, Schelling frequencies 

could be treated as a sort of prior for further shape analysis or processing. 

Previous results on image memorability [259, 260] have suggested a counter-intuitive 

result, that the perception of memorability is inversely correlated with actual 

memorability. The authors created a Memory Game in which participants were asked to 

memorise a sequence of images. Their task was to indicate (via key press) whenever 

they saw an identical repeat of an image at any time in the sequence. The memorability 

score for an image was the percentage of correct detections, by participants. People 

were also asked to estimate whether they were likely to remember an image the 

following day. They found that the human estimates of image memorability were 

negatively correlated (corr. = −0.19) with the true memorability of images. However, 

this is a different class of data (2D images), so the correlation (which spans a large 

dataset of images but is also weak) may not apply directly to 3D shapes or scenes. A 

memorability study of Schelling meshes could be informative in determining this. 
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Table 5.3 - Correlations between the average Likert scores for each shape (from 15 participants), and each shape’s Schelling frequencies 

as obtained via showing all shapes in each shape class (from 50 participants). Significant correlations (p < 0.05) are in bold. 

  

Corr. Coef. Abstract Baskets Bottles Cabinets-Shelves Chairs Cups Lamps Tables Plants Plates Pots 

Memorable 0.5008 0.3193 0.545 0.4271 0.3153 0.5184 0.4007 0.6452 0.3838 0.7568 0.4311 

Stand-out -0.1026 0.3875 0.0144 0.5059 0.5839 0.4281 0.3015 0.635 0.0582 0.6813 0.2986 

Uniqueness 0.1298 0.3336 0.4234 0.4198 0.439 0.2987 0.2418 0.6337 0.0868 0.6876 0.1976 

Visual Appeal 0.6005 0.3907 0.052 0.213 0.1512 0.2612 0.4987 0.3703 0.1764 0.7263 -0.0172 



Chapter 5: Schelling Meshes: ‘Many-Within-Class’ approach 

169 

All other criteria had reasonable counts of significance with the Schelling frequencies, 

indicating that only a single criteria/dimension is not sufficient to model the Schelling 

frequencies of 3D meshes, with the term “stand out”, or a shape’s prominence, 

significantly correlating 8/11 times; uniqueness, 5/11 times, and visual appeal, 5/11 

times. This suggests that the hypothesis of positive correlation with visual appeal is true 

for nearly half of the shape classes, but this is less consistent than the more frequent 

occurrences/classes where the hypotheses relating to (perception of) memorability and 

a notion of “standing out” are correct. This leads onto the next section. How can we 

predict, or model Schelling meshes, given this study setup? 

5.5 Learning 

To attempt to generalise our Schelling frequencies to shapes we had not yet 

encountered, we created a convolutional neural network which takes as input a 

collection of three depth image views of a shape, 𝑖, and produces a single output value, 

𝑦̂𝑖, as a Schelling frequency prediction. Depth images were taken at a resolution of 128 

x 128, so each training sample was of the form of: (𝑋, 𝑦𝑖), where 𝑋 ∈ ℝ3×128×128, and 

𝑦𝑖 was a Schelling frequency derived from participant selections. 

For each depth image in a sample, its pixel values corresponded to depth/intensity 

values in [0, 1] (although the values were originally quantized as integers that lie within 

{0, …, 255} via OpenGL), except for pixel values corresponding to the background, 

which were set to -2. 

To generate samples for each shape, depth images were taken in groups of 3 orthogonal 

views. Firstly, a random location is sampled on a sphere (of fixed radius) with a shape 

at its centre. From this location, 3 orthogonal views of the shape are generated by 
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rotating 90 degrees around each of a pair of axes that are perpendicular to the sampling 

camera’s direction and each other. For example, if we started looking at the shape along 

the z-axis (a possible camera direction), from the x-y plane, we could rotate 90 degrees 

around the y-axis, moving us into the y-z plane. We would then look along the x-axis 

towards the shape. Similarly, we could now rotate around the z-axis, moving us into the 

x-z plane, where we would look along the y-axis towards the shape (the rotations can 

be anti-clockwise or clockwise, but must be fixed before generating samples). Taking a 

depth image at each stage, generates 3 orthogonal views of a shape (of fixed order). If 

we associate the Schelling frequency, 𝑦𝑖 of the shape with these views, that generates a 

single data sample for training. 

In order to generate enough examples for training, we performed data augmentation by: 

1) looking around the entire shape and 2) generating new samples from different random 

locations. To look around an entire shape, we repeated the earlier sampling process 

another 5 times, rotating around the shape from the initial random location at 60-degree 

intervals, from 60 to 300 degrees inclusive (using a fixed axis, such as the y-axis). This 

produced a total of 6 samples (6 collections of 3 orthogonal views). To obtain different 

groups of 360-degree views, we repeated the entire sampling process 17 times per 

shape, to obtain 102 samples per shape, in total. This was done to reach an approximate 

target of 100 samples per shape. Finally, we associated the Schelling frequency, 𝑦𝑖, of 

each shape, 𝑖, with each of the 102 samples (by duplicating the Schelling frequency). 

This would indicate to the model that it would need to look for primitive features and 

more complex structures from multiple viewpoints of the same shape, to generalise 

well. In other words, the network would be less likely to regress to a Schelling frequency 

based on a shape’s orientation alone. The convolutional aspect of the network also 

provides translation invariant outputs, given the same input, allowing important features 
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of a depth image to be searched for across an image, at the scale of the convolution 

window/filter. For specific parameters, see Figure 5.6. 

We trained the convolutional network to learn a hypothesis function: ℎ(𝑋) = 𝑦̂𝑖 , to 

predict Schelling frequencies using 3 orthogonal depth images. These can be 

automatically extracted per shape (with Schelling frequencies duplicated for each 

sample corresponding to the same shape). The training process aimed to minimise the 

error between predicted Schelling frequencies, 𝑦̂𝑖 , and the associated target (or 

participant derived) Schelling frequencies, 𝑦𝑖 (shown in Equation 5.3), using the mean-

square error loss function as a measure of accuracy. Weights were optimised via 

stochastic gradient descent and standard backpropagation. The stochastic gradient 

descent executed in batch sizes of 24. ‖𝑾‖
2
2

 and ‖𝒃‖
2
2

 were 𝐿2 regularizers employed 

to prevent overfitting. 

In Equation 5.3, index 𝑖 is the 𝑖-th sample in the training data and 𝑁 is the number of 

samples used for training (the training batch size). 

ℒ(𝑾, 𝒃) =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2

𝑖 ∈ 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎

+ 0.01‖𝑾‖
2
2

+ 0.01‖𝒃‖
2
2

 

Equation 5.3 – Loss function for Schelling frequency prediction (‘Many-Within-

Class’ approach). 

The network structure used LeakyReLU neurons [261, 262] at each layer, excluding the 

output layer, which was a linear combination of previous outputs. LeakyReLU neurons 

allow for a small, non-zero gradient, even when they are inactive (or more specifically, 

negative). This gradient can still help to propagate information throughout the network, 

unlike ReLU neurons where the gradient can suddenly change to zero, given negative 

inputs (for ReLU inputs, when x < 0, the gradient is 0). 
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This helps to avoid the vanishing gradient problem, that can occur while training neural 

networks with backpropagation, where gradients which are used to update the 

parameters/weights of the network, tend to zero, due to the repeated small changes 

occurring through previous layers, to the input. 

Figure 5.6 shows a diagram of the neural network that we trained. We produced a 

separate instance of this network for each shape class, training it using 𝑘 = 10 fold 

cross-validation (
1

10
 of the data samples per shape class, were separated into a test set), 

then averaging the prediction accuracy of each of the held-out test data sets. 

Since each shape corresponded to 102 different predictions, as a measure of network 

performance, we correlated each of these predictions with a duplicate of the participant 

provided Schelling frequency, 𝑦𝑖, of that shape, 𝑖. In addition, we produced the averages 

of the 102 predictions, for each shape. We report the correlations between these 

averages 𝑦̅𝑖, and the participant provided 𝑦𝑖. Results are shown in Table 5.4. R-squared 

values are shown in each case, in addition to the shape dataset sizes. The neural network 

was trained using a Nvidia GeForce 1080ti graphics card with 16GB RAM. 
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5.5.1 Neural Network Structure (Depth Image-Based) 

 

 

 

 

 

 

 

 

Figure 5.6 – A diagram showing the structure of a convolutional neural network for predicting Schelling frequencies. Its input is a triplet 

of depth images 𝑰𝒊𝒋, with dimensions: 𝟑 × 𝟏𝟐𝟖 × 𝟏𝟐𝟖. The output is a single real-valued Schelling frequency prediction, 𝒚̂𝒊. 
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5.5.2 Depth Image-based Results 

CV 

Learning 

Results 

Number 

of 

Shapes 

Number 

of 

Samples 

Number 

of 

Samples 

for 

Validation 

CV 

Correlation 
𝑹𝟐  Average-

based CV 

Correlation 

Average-

based 𝑹𝟐 

Abstracts 38 3488 387 0.91 0.83 0.98 0.96 

Baskets 28 2570 285 0.75 0.57 0.93 0.86 

Bottles 28 2570 285 0.92 0.84 0.97 0.94 

Cabinets/ 

Shelves 

32 2937 326 0.59 0.35 0.87 0.77 

Chairs 49 4498 499 0.82 0.67 0.94 0.89 

Cups 31 2845 316 0.78 0.61 0.94 0.90 

Lamps 49 4498 499 0.71 0.51 0.92 0.84 

Plants 31 2845 316 0.72 0.52 0.92 0.84 

Plates 21 1927 214 0.75 0.56 0.90 0.81 

Pots 47 4314 479 0.77 0.59 0.88 0.78 

Tables 33 3029 336 0.77 0.6 0.94 0.89 

Table 5.4 – Correlations between Schelling frequency predictions based on depth 

image triplets and participant provided Schelling frequencies, for each shape 

class. Additionally, shows the correlation between the average of all predictions 

across each shape’s depth image triplets and each shape’s participant Schelling 

frequency (which was associated with each triplet). 

Our implementation used the Theano [255] and Keras [256] Python libraries. 

Correlations between the participant-provided Schelling frequencies and the predicted 

Schelling frequencies, were highly positive, and statistically significant (p << 0.05), for 

every shape class. 

In addition, the average correlations derived from 𝑦̅𝑖  were always higher than 

correlations produced from directly mapping participant Schelling frequencies to 

predictions (by duplicating the Schelling frequencies). We found that if the correlations 

between prediction averages and participant Schelling frequencies increased as the 

training process progressed, it showed that the neural network was learning from the 

data. It was a useful guideline indicator, when training the network. 
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Since we were successful in predicting Schelling frequencies for individual shape 

groups, we attempted to train the network using all shapes, given 11x weights at each 

layer (one multiple for each shape group). Due to memory limitations, we trained the 

network in batches of approx. 11662 samples, in 3 batches, for 3765 epochs each batch, 

at a learning rate of 0.01. Samples were randomly collected without replacement for 

each of the 3 batches, to ensure that all of the training data was seen by the network. 

The number of training examples taken from each shape class, was weighted according 

to the number of shapes in each class, relative to the total. A larger proportion of samples 

was taken from classes with a larger amount of shapes relative to other classes, as a 

fraction of the entire dataset’s shape total (387). 

We achieved only a lower than average correlation between the predicted Schelling 

frequencies and the participant ones. We believe this was either due to computational 

(memory limitations) or there being contradictions in the reasoning behind selections 

between some of different shape groups, resulting in the neural network not being able 

to handle this. Our results are shown in Table 5.5. 

CV Learning 

Results 

Number of 

Shapes 

Number of 

Samples 

Number of 

Samples for 

Validation 

CV 

Correlation 

R^2  

All 387 35526 3947 0.50 0.25 

Table 5.5 – Correlations between Schelling frequency predictions and participant 

provided Schelling frequencies across all shapes. Additionally, shows the 

correlation between the average of all predictions across a shape’s depth image 

triplets and each shape’s participant Schelling frequency (which was associated 

with each triplet). 

5.5.3 Voxel-based results 

We additionally wanted to compare the results of training via depth images to a voxel-

based shape representation. Given an input of a 32x32x32 voxel grid, representing a 

single shape, the model produced a Schelling frequency prediction for that shape. 
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Similarly, to the depth image case, we provided 102 rotated versions of each voxel grid 

(or 102 samples per shape) as potential training examples to a convolutional neural 

network. Each of these samples was assigned the Schelling frequency of the original 

shape, as in the depth image case. The network was trained via the Adam optimiser, and 

k=10 fold cross-validation was employed to achieve our final results. Our results are 

located in Table 5.6. A diagram of the network is shown in Figure 5.7. 

CV 

Learning 

Results 

Number 

of 

Shapes 

Number 

of 

Samples 

Number of 

Samples 

for 

Validation 

CV 

Correlation 
𝑹𝟐  Average

-based 

CV 

Corr. 

Average

-based 

𝑹𝟐 

Abstracts 38 3488 387 0.54 0.297 0.72 0.53 

Baskets 28 2570 285 0.099 0.0099 0.55 0.30 

Bottles 28 2570 285 0.28 0.08 0.77 0.59 

Cabinets/ 

Shelves 

32 2937 326 0.33 0.11 0.55 0.30 

Chairs 49 4498 499 0.44 0.19 0.66 0.43 

Cups 31 2845 316 0.26 0.07 0.66 0.43 

Lamps 49 4498 499 0.36 0.13 0.61 0.37 

Plants 31 2845 316 0.22 0.05 0.44 0.19 

Plates 21 1927 214 0.05 0.002 0.22 0.05 

Pots 47 4314 479 0.11 0.01 0.32 0.10 

Tables 33 3029 336 0.52 0.27 0.79 0.62 

Table 5.6 - Correlations between Schelling frequency predictions based on voxel 

grids and participant provided Schelling frequencies, for each shape class. 

Additionally, shows the correlation between the average of all sample predictions 

across each shape and each shape’s participant Schelling frequency. 

We can see that the voxel-based approach performed worse than the depth image-based 

approach, across all shape classes (correlations are lower, whether from individual 

predictions or averaged predictions per shape). We believe this was at least partly due 

to the low resolution of each slice of a voxel grid (32x32) vs that of the depth images 

(128x128). 

Similarly, to the depth-image based results, correlations between a shape’s participant-

based Schelling frequency and the average of predictions across the samples of each 
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shape were always higher than the correlation between the list of per-sample predictions 

and the participant-based Schelling frequency, duplicated for each prediction. This 

indicated that the model was learning to weight each sample as a contribution to a 

Schelling frequency, but to a less accurate degree than in the depth image case. The 

results did not seem to (negatively) correlate with shape class size, as the plates, pots 

and plants shape classes, which span nearly the full range of class sizes, produced low 

magnitude correlations, when compared to the rest of the classes. Shape classes with 

thin structures (e.g. plates, plants) or hollowed-out elements (e.g. baskets, bottles, pots) 

tended to have the worst results (see CV Correlation column of Table 5.6). 

Overall, we recommend the use of depth images over voxel grids for the prediction of 

3D shape Schelling frequencies, given dataset sizes similar to ours.  It may be the case 

that at higher resolutions, fixed-size voxel grids (e.g. 64x64x64, 128x128x128) provide 

comparable results or better, but memory would be less efficiently used. For memory 

efficiency, while retaining increased detail, a dynamic voxel grid representation 

possibly could be used instead. 

5.5.4 A short note on memory usage 

The number of bytes in a 128x128 depth image is 128 x 128 x 1 byte = 16,384 bytes, as 

each value of the OpenGL depth buffer is 8 bits in size. For a fixed-size voxel grid, 

occupation state can be represented with 1 bit: 32 x 32 x 32 x 1 bit = 32,768 bits, or 

4096 bytes. However, 16-bit floating point values are usually used to represent data at 

training time. This is done to avoid integer overflow. Therefore, memory usage is 32 x 

32 x 32 x 2 bytes = 65,536 bytes. This 2-byte, or 16-bit floating point unit is also 

required in the depth image case. As we used 3 depth images per sample, the actual 

number of bytes used to represent each sample in this case, is 128 x 128 x 2 bytes x 3 
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images = 98,304 bytes. The depth image approach requires 1.5x the space, per sample. 

However, the results were worse when using a 32x32x32 voxel grid representation. 

Additionally, the required memory for a voxel grid becomes exponentially bigger with 

each added dimension, indicating that depth images should be tested first, if memory 

limitations are a factor, before moving to fixed-size voxel grids. Even for a 48x48x48 

voxel grid, 48 x 48 x 48 x 2 bytes > 98,304 bytes. 

5.5.5 Predicting Schelling frequencies via Shape Descriptors 

We asked ourselves: are there any correlations between geometric descriptions and 

shape Schelling frequencies? To attempt to answer this question, we produced a set of 

shape descriptor values (binned to histograms) based on the source polygon meshes of 

the shapes shown to participants. These captured geometric aspects of each shape in our 

dataset. 

Before computing descriptors, we pre-processed meshes using MeshLab [263]. We 

firstly removed duplicate faces and any vertices detached from the overall mesh 

structure. Vertices within 1% of the maximum distance between pairs of vertices in each 

mesh were merged into a single vertex. 

Some meshes were still not well-formed, so for consistency, we then voxelised each 

mesh at a 200x200x200 resolution and reconstructed them via the marching cubes 

algorithm (see section 2.3.1). After this point - in certain cases - we applied quadric 

edge collapse decimation [264] to simplify reconstructed meshes where their face count 

was above 100000, to reduce their face count to a target of 100000, also attempting to 

preserve normal directions and topological structure. This reduced unnecessary 

descriptor computations.
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5.5.6 Neural Network Structure (Voxel-Based) 

 

 

 

 

 

 

 

 

Figure 5.7 – A diagram showing the structure of a convolutional neural network for predicting Schelling frequencies. Its input is a voxel 

grid with dimensions: 𝟑𝟐 × 𝟑𝟐 × 𝟑𝟐. The output is a single real-valued Schelling frequency prediction, 𝒚̂𝒊.
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Figure 5.8 – Various meshes before and after the mesh processing required for 

descriptor computation. 

Across all meshes, we then applied 2 steps of Laplacian smoothing [265], using a co-

tangent weighting scheme (See Curvature section in the Background chapter). This 

replaced each vertex with a position based on the average of its surrounding vertices, 



Chapter 5: Schelling Meshes: ‘Many-Within-Class’ approach 

181 

calculated using angles between edges formed from those vertices and the initial mesh 

vertex. See Figure 5.8 for renderings of a subset of the meshes, before/after processing. 

Descriptors were computed using MATLAB code, and C++ via LibIGL [257] and 

CGAL [258]. The chosen descriptors are listed below: 

• D2 Distribution 

• Shape Diameter Function (SDF) 

• Difference in angles of per-vertex normals 

• Gaussian curvature 

• Mean curvature 

• Histogram of Oriented Gradients 

• Sobel Filter 

Details on these descriptors are provided in the 2D Shape Descriptors and 3D Shape 

Descriptors sections of the Related Work chapter. We used polygon meshes to represent 

our 3D shapes for processing, so curvatures and D2 distribution values were weighted 

by face area. For each descriptor we binned their values into histograms, to produce our 

shape representation, 𝑣𝑖 , per shape, 𝑖 . In total, each vector 𝑣𝑖  had 672 dimensions. 

Descriptors were concatenated together in a consistent order, to produce each 𝑣𝑖 . 

The number of bins for each descriptor were as follows: 

• D2 Descriptor: 128 bins 

• Gaussian Curvature: 128 bins 

• Mean Curvature: 128 bins 

• Normals: 50 bins 

• Shape Diameter Function: 128 bins 

• Sobel: 110 bins 
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We attempted to learn a regression function that maps a single vector of shape descriptor 

values to Schelling frequencies, in a similar vein to previous work studying Schelling 

Points on 3D meshes [6], but the authors of this work instead predicted probable vertex 

selections/regions on polygon meshes. The loss function we minimised was similar to 

that of the convolutional neural network, but the network was a simpler fully-connected 

one, in order to minimise the influence of factors regarding the network’s design, on the 

results. The network consisted of 4 layers, taking as input a single 𝑑 = 672 dimensional 

vector, 𝑣𝑖 , representing each shape 𝑖 , and output a single value, 𝑦̂𝑖  - a Schelling 

frequency prediction. The hypothesis ℎ, is represented by the network: ℎ(𝑣𝑖) = 𝑦̂𝑖. 

The number of neurons for each successive hidden layer, were ⌊0.2𝑑⌋, ⌊0.1𝑑⌋, ⌊0.05𝑑⌋ 

and ⌊0.025𝑑⌋, respectively.  We attempted to train the network for each separate shape 

group (using stochastic gradient descent, and backpropagation, as before), but did not 

achieve good results in most cases, with predictions varying wildly from their expected 

values (the participant Schelling frequencies). Increasing the data provided to the 

network, by training with all shapes, did not greatly change the outcome. Our results 

are shown in Table 5.7. R-squared values are shown in each case, in addition to the 

shape dataset sizes. The neural network was trained using a Nvidia GeForce 1080ti 

graphics card with 16GB RAM. 

The main problem was that our shape dataset was too small for meaningful regression 

(to Schelling frequencies) to be achieved using a fully-connected network. But this 

suggested that using a multitude of shape descriptors may not necessarily be enough to 

predict Schelling frequencies for small-to-medium dataset sizes. 
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A larger shape dataset would also require further Schelling frequency data collection, 

compared to what is required to train a convolutional neural network, before better 

results might be obtained. 

CV Learning 

Results 

Number of 

Shapes 

Number of 

Samples 

Number of 

Samples for 

Validation 

CV 

Correlation 

R^2  

Abstracts 38 34.2 3.8 -0.08 0.01 

Baskets 28 25.2 2.8 -0.28 0.08 

Bottles 28 25.2 2.8 0.16 0.026 

Cabinets/ 

Shelves 

32 28.8 3.2 -0.065 0.004 

Chairs 49 44.1 4.9 -0.34 0.11 

Cups 31 27.9 3.1 -0.00026 7.08E-08 

Lamps 49 44.1 4.9 -0.117 0.014 

Plants 31 27.9 3.1 -0.09 0.009 

Plates 21 18.9 2.1 -0.254 0.06 

Pots 47 42.3 4.7 -0.025 0.0006 

Tables 33 29.7 3.3 0.459 0.21 

All 387 348.3 38.7 -0.144 0.021 

Table 5.7 – Correlations between Schelling frequency predictions based on shape 

descriptors and participant provided Schelling frequencies, for each shape class. 

This suggests that deep learning methods may be useful for prediction/regression of 

other aspects of shape perception where a glut of memory or computation time is not 

available. Neural networks which learn on more complex geometric shape 

representations, such as polygon meshes, graphs and approximations to continuous 

manifolds, directly, could be useful here (see the Geometric Deep Learning, Machine 

Learning section of the Related Work chapter). 

5.6 Applications 

We show some applications in search, visualisation and clustering. 
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5.6.1 Search 

Schelling frequencies allow you to search for a complementary or contrasting shape to 

a query shape. Treating a shape as a query, we can take its participant Schelling 

frequency, and find the closest 𝑘 shapes. These are the most complementary shapes, in 

terms of Schelling frequency. The farthest 𝑘 shapes are the most contrasting, similarly 

so. We plot search results from a query shape of high Schelling frequency, based on 

Schelling frequencies and the shape descriptors previously computed (using Euclidean 

distance as the metric). Some examples for 𝑘 = 5, are shown in Figure 5.9. Each plot 

is read from left to right, from closest shape to farthest shape. Search results are laid out 

according to the given key. 

As in the ‘4-choose-1’ study, shapes closest to a query shape of high Schelling 

frequency tend to be more extreme than shapes closest to the query in terms of shape 

descriptors. 

5.6.2 Visualisation 

Each shape group for which Schelling frequencies can be obtained, can be visualised as 

a 1D plot of shapes, according to their ordered Schelling frequencies. The greater the 

distance between shapes, the more contrasting they are, and vice-versa. The higher a 

Schelling frequency is, relative to that of other shapes, the more memorable it is 

perceived to be, and more likely it is to be focused on or selected. Figure 5.10 shows 

Schelling frequency plots for the pots and cups. 

In Figure 5.11, we provide Schelling frequency plots for the abstract shapes, bottles, 

tables, lamps, chairs and plates. You can see that the more geometrically varied a shape 

is, relative to the rest of its class, the more likely it is to have a higher Schelling 

frequency. 
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Figure 5.9 – Plots of shapes displayed in rows according to how close they are to 

a query shape, on the left of each plot. Moving from left-to-right, indicates 

increased distance from the shape to the query. 
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Figure 5.10 - 1-D plots of shapes at their respective participant Schelling 

frequencies. We show one plot for each of the pots, and cups shape groups. 

This is not always the case. For example, with the lamps, some oblong structures which 

are clearly different to most shapes in their class (curved; oval like structures; with 

shrouds), do not have high Schelling frequency. But these shapes are not complex. 

In a similar manner to the ‘4-choose-1’ case, we also produced t-SNE embeddings of 

our dataset of 387 shapes, based on the 2nd -to-last output of our convolutional neural 

network (at layer L6 of the network in section 5.5.1; a 25-dimensional vector), for each 

shape in a shape class. This output is what is put through a linear combination, to reach 

a final Schelling frequency prediction. Some example visualisations based on the 

resulting 2D embeddings, are shown in Figure 5.12 and Figure 5.13. 
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Figure 5.11 - 1-D plots of shapes at their respective participant Schelling 

frequencies. We show one plot for each of the abstract shapes, tables, lamps, 

bottles, chairs, and plates shape groups. 
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You can see that for each plot, the highest Schelling frequency shapes are placed around 

the boundary of the shape distribution. Figure 5.12 shows this for the plates and tables 

shape classes. More specifically, Schelling frequency tends to increase with 

distance/radius from the centre of each plot. In some cases, like the abstract shapes and 

bottles, distinct clusters appear. Visual patterns also appear when explicitly clustering 

according to k-means, which we discuss ahead. 

5.6.3 Clustering 

Visual Patterns 

Figure 5.14 provides a visualisation of k-means (k=4) for the chairs, bottles and cups. 

Figure 5.15 does so for the abstract shapes and plates (k=4). Regarding the abstract 

shapes, we can see increased shape variation in the top-left and bottom-left clusters, 

relative to the other clusters of that class. This is reflected in the higher mean Schelling 

frequency of those clusters. There is also increased detail in the top-right cluster relative 

to the bottom left. Overall, each cluster has increasing geometric variation according to 

its mean Schelling frequency (of its constituent shapes). The same trend is visible in the 

bottles, plates and chairs clusterings, and to a lesser degree, the cups clustering. 

Across many shape classes, Gaussian curvature measurements did not provide clear 

visual differences between clusters. Shapes sometimes varied dramatically in 

smoothness even within clusters. Mean curvature seemed to dampen this noise and 

could achieve better results for some shape classes, but this did not result in visual 

patterns as clear as the Schelling frequencies. Additionally, clusters were unevenly 

populated. Clustering via the D2 distribution did provide good visual patterns in some 

cases: such as the abstract shapes, bottles and plates. 
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Figure 5.12 - Plots of the plates and tables shapes according to the 2D t-SNE 

embedding of their neural network outputs from layer n-1 (2nd to last layer), just 

before they are transformed into a Schelling frequency prediction. 
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Figure 5.13 - Plots of the abstracts and bottles shapes according to the 2D t-SNE 

embedding of their neural network outputs from layer n-1 (2nd to last layer), just 

before they are transformed into a Schelling frequency prediction. 
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Figure 5.14 – Visualised Schelling frequency based clusterings (k-means) for the 

bottles, chairs and cups. For each cluster, the mean and standard deviation of the 

Schelling frequencies of its constituent shapes is displayed. 
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Figure 5.15 – Visualised Schelling frequency based clusterings (k-means) for the 

abstract shapes and plates. For each cluster, the mean and standard deviation of 

the Schelling frequencies of its constituent shapes is displayed. 

Clustering via Sobel filtering provided good visual patterns for the cups and chairs. 

Normal-binning rarely provided good clustering results, whether for the simpler classes 

such as the plates and tables, or more complex classes such as the abstract shapes. 

Lastly, visual patterns did not appear across most shape classes when clustering 

according to the Shape Diameter Function (SDF) descriptor. Overall, a single shape 

descriptor was not sufficient to provide clear visual differences between clusters, across 
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all shape classes, as was possible via clustering according to Schelling frequencies, or 

visualisation via 1D shape plots. See Figure 8.2 to Figure 8.4 in the appendix, for 

visualisations of descriptor-based clusterings. 

Statistical Comparison 

Similarity Tests 

To determine the similarity between clusterings based on Schelling frequencies and 

those based on shape descriptors, we employed the Adjusted Rand Index (ARI) and 

Adjusted Mutual Information (AMI) metrics. They each measure the degree of 

agreement between two partitions of a dataset (such as two clusterings), both taking into 

account the possibility that cluster assignments occurred due to chance. The ARI is 

commonly used when it is believed that the underlying or true clustering yields evenly 

distributed, large clusters. The AMI is used when the underlying clustering is 

considered to be uneven, where small clusters might exist. As we were uncertain about 

which method would be most accurate for our data, we computed both measures. For 

the ARI, a value of 1 indicates the exact same clustering, and values near 0 suggest a 

uniform random clustering. The AMI results in 0 on average, when the clustering 

occurred due to chance (so values can be negative), and 1 when the partitions are the 

same. Our results are shown in Table 5.8 and Table 5.9 (per-class Schelling frequency-

based clustering vs. descriptor clusterings). Results which deviated by more than 2 

standard deviations from the mean were nearly the same in both cases, apart from the 

case where all descriptors were combined. These cases tended to be the most positive 

and were somewhat similar to clustering based on Schelling frequencies. But the degree 

of similarity was usually low in magnitude (all values were below 0.24) and across 

disjoint shape classes. This indicates that clusterings based on Schelling frequencies 

conveyed different information to the tested shape descriptors. 
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ANOVA Using Likert Scores 

We also aimed to test whether shape clusters obtained via Schelling frequencies better 

encapsulated differences in subjective notions of shape, rather than clusters obtained 

via shape descriptors. Our earlier collected Likert ratings represented the subjective 

aspect of this test. We clustered each class of shapes according to their Schelling 

frequencies, or one of a range of shape descriptors (used earlier in the chapter). These 

included the D2 distribution; Gaussian curvature, mean curvature, per-vertex normals, 

per-vertex Shape Diameter Values and Sobel filter values as applied to a 100x100x100 

voxelisation of each shape. Each of these were considered treatments. We then took the 

Likert scores corresponding to memorability, ‘standing out’, uniqueness and visual 

appeal, and individually assigned the scores to each shape, in each cluster. From there, 

a one-way ANOVA test was performed for each treatment’s clustering and Likert score 

category combination for a shape class (e.g. abstract shapes: memorability + mean 

curvature, or lamp shapes: uniqueness + Schelling frequencies). 

This was to test whether the means of the Likert scores in each cluster (for each 

clustering) differed significantly from one another, with p-value < 0.05. That would 

indicate the degree of utility of a clustering, for separating the shapes according to the 

criteria of the Likert rating (e.g. visual appeal). We show our results in Table 5.10 to 

Table 5.13. 

Apart from the case of ‘uniqueness’, Schelling frequencies yielded more, or equal 

numbers of differences in cluster Likert score means, across classes, than the shape 

descriptors. When equal, Schelling frequencies tended to yield differences in disjoint 

shape classes to the shape descriptors. Among the shape descriptors, mean curvature 

yielded differences in memorability, most (but less than the Schelling frequencies). 
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Table 5.8 – Adjusted Mutual Information values based on pairing a clustering derived from Schelling frequencies with a clustering 

based on each shape descriptor (values > 𝟐𝝈 away from the mean are in green). 

 

 

Schelling 

Frequencies 

All Descriptors D2 Gaussian 

Curvature 

Mean Curvature Normals Shape Diameter 

Function 

Sobel Filter 

Abstract -0.054 0.002 -0.046 0.017 0.033 -0.053 0.058 

Baskets -0.035 -0.004 -0.032 0.139 -0.033 0.002 -0.02 

Bottles 0.088 -0.001 0.055 -0.04 0.001 -0.013 0.071 

Cabinets-Shelves -0.056 0.005 -0.064 -0.051 0.004 -0.024 0.029 

Club Chairs -0.02 -0.015 -0.024 -0.005 0.045 -0.037 0.08 

Cups -0.051 0.106 0.16 0.023 0.168 -0.049 0.043 

Lamps -0.039 0.058 -0.047 0.001 -0.025 -0.003 -0.01 

Tables -0.054 0.088 0.036 0.187 0.021 -0.064 0.149 

Plants 0.025 0.236 0.013 0.008 0.029 0.122 -0.021 

Plates 0.037 0.138 -0.005 0.007 -0.007 0.004 0.207 

Pots 0.033 -0.008 0.01 0.003 0.026 0.007 0.059 
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Table 5.9 – Adjusted Rand Index values based on pairing a clustering derived from Schelling frequencies with a clustering based on each 

shape descriptor (values > 𝟐𝝈 away from the mean are in green).

Schelling 

Frequencies 

All Descriptors D2 Gaussian 

Curvature 

Mean Curvature Normals Shape Diameter 

Function 

Sobel Filter 

Abstract -0.018 -0.026 -0.011 -0.003 0.013 -0.004 -0.006 

Baskets -0.053 -0.03 0 0.104 -0.026 -0.034 -0.006 

Bottles -0.041 -0.005 0.024 0.022 0.057 -0.074 0.117 

Cabinets-Shelves -0.035 -0.013 -0.037 -0.047 -0.005 -0.009 -0.009 

Club Chairs 0 0.01 -0.018 -0.027 0.023 -0.043 0.031 

Cups -0.035 0.072 0.169 -0.001 0.212 -0.002 0.043 

Lamps -0.018 0.029 -0.034 -0.015 0.008 0.01 0.011 

Tables -0.044 0.056 0.052 0.197 0.038 -0.034 0.156 

Plants -0.005 0.228 0.005 -0.021 0.114 0.06 -0.004 

Plates 0 0.109 -0.016 0.008 -0.034 0.007 0.204 

Pots 0.012 0.014 0.014 0.001 0.05 -0.016 0.055 
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Normals did so for ‘standing out’ (equivalent to the Schelling frequencies), and Sobel 

filter values did so for visual appeal (less than the Schelling frequencies). Regarding the 

classes where there was significance given the normals-based clustering, there were 

only 2 cases of overlap with the Schelling frequency-based clustering (the chairs and 

cups classes of shape). The total number of significant cases for the normals was 5, 

whereas for the Schelling frequencies it was 4. 

Excluding uniqueness, Schelling frequencies yielded differing Likert score means 

across clusters more often or equally as often across shape classes, compared to the 

tested shape descriptors. For the Schelling frequencies, memorability yielded the largest 

frequency of differences. This was greater than the frequencies of each of the shape 

descriptors, indicating that Schelling frequencies may be preferred when clustering 

shapes according to perception of their memorability. 

ANOVA Using Schelling Frequencies 

By clustering each class of shapes in the same manner as above, for each shape 

descriptor (best of 10 iterations of k-means; k=4), we tried to determine whether shape 

descriptors could be used to cluster shapes in a way that significantly introduces 

between cluster differences in terms of their Schelling frequencies. We performed a 

one-way ANOVA test between the Schelling frequency distributions of clusters 

obtained per shape class, to determine if there were significant differences between the 

means of the cluster Schelling frequency distributions. As a sanity test, we found that p 

<< 0.0001 when clustering via per-class Schelling frequencies, respectively. Therefore, 

we considered k-means as a valid option for clustering via the shape descriptors. 

Overall, we found that five descriptor-based clusterings yielded significant differences 

in mean Schelling frequencies, but for only 2 classes out of 11 at most. Like the 
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clustering similarity tests, this suggests that Schelling frequencies contain some 

information orthogonal to that of the shape descriptors. See Table 5.14 for our results. 

5.7 Discussion 

To begin, we restate our hypotheses below: 

1. A shape which stands out from others or is considered unique, is more 

Schelling frequent. 

2. A more visually appealing shape is more Schelling frequent. 

3. A shape may be perceived as more memorable relative to others, as its 

Schelling frequency increases. 

4. Schelling frequencies convey different information to that of shape 

descriptors. 

We found that 8 out of 11 shape classes gave positive correlations between their shape 

Schelling frequencies and a notion of 'standing out', with 5 out of 11 doing so for a 

notion of 'uniqueness'. Looking at these results, these notions are likely factors behind 

Schelling frequencies, with the difference in shape class totals potentially being due to 

people not agreeing with the definitions of the terms 'stand out' and 'unique'. Due to this, 

hypothesis #1 may be generally correct. 

We found that 5 out of 11 shape classes gave positive correlations between their shape 

Schelling frequencies and a notion of 'visual appeal', indicating the hypothesis #2 is 

correct in some cases, but may not generally be so. 

We consider hypothesis #3 to likely be correct, as 10 out of 11 shape classes gave 

positive correlations between their shape Schelling frequencies and a notion of 

'memorability'. But, previous results on image memorability [259, 260] have suggested 
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a counter-intuitive result, that perception of image memorability is inversely correlated 

with the actual memorability of images, although at a small magnitude. It was found 

that human estimates of image memorability were negatively correlated (corr. = −0.19) 

with the true memorability of images. So, given that we showed 3D shapes to 

participants in the form of animated images, it may be possible that the higher the 

Schelling frequency of a shape is, the more difficult it is to truly memorise. 

We found that when shapes are clustered according to k-means (k=4) via their Schelling 

frequencies, significant differences are exhibited between mean memorability scores of 

shape clusters, more often, than clusters obtained via the tested shape descriptors 

(similar to Likert correlation results). Apart from the case of ‘uniqueness’, Schelling 

frequencies yielded more, or equal numbers of differences in cluster Likert score means, 

across classes, than the tested shape descriptors. But even in that case, there was only 

partial overlap in the results. Also, through comparing each partitioning via the 

Adjusted Rand Index and Adjusted Mutual Information measures, we see little to no 

alignment between clusterings based on Schelling frequencies vs. the tested shape 

descriptors. Visually, we can see some differences between clusters, as well. 

Additionally, visualising per-shape descriptor values as an intensity heatmap across 

each shape class, shows no visual patterns when the descriptors are displayed in order 

of increasing Schelling frequency. These results provide evidence that hypothesis #4 is 

correct.
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Table 5.10 – One-way ANOVA test results for significant differences in mean memorability Likert scores of clusters obtained via k-

means (k=4), across all shape classes. 

 

 

Memorability 
Schelling 

Frequencies 
All Descriptors D2 

Gaussian 

Curvature 

Mean 

Curvature 
Normals 

Shape Diameter 

Function 
Sobel Filter 

Abstract p < 0.01 p >= 0.05 p >= 0.05 p < 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 

Baskets p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Bottles p < 0.01 p >= 0.05 p >= 0.05 p < 0.01 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Cabinets-Shelves p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Chairs p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p < 0.01 p >= 0.05 p < 0.01 

Cups p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 

Lamps p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Tables p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 

Plants p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Plates p < 0.01 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Pots p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 
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Standing out 
Schelling 

Frequencies 

All 

Descriptors 
D2 

Gaussian 

Curvature 

Mean 

Curvature 
Normals 

Shape Diameter 

Function 
Sobel Filter 

Abstract p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Baskets p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Bottles p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Cabinets-Shelves p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Chairs p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p < 0.01 

Cups p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 

Lamps p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Tables p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 

Plants p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Plates p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Pots p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 

Table 5.11 – One-way ANOVA test results for significant differences in mean ‘standing out’ Likert scores of clusters obtained via k-

means (k=4), across all shape classes. 
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Table 5.12 – One-way ANOVA test results for significant differences in mean uniqueness Likert scores of clusters obtained via k-means 

(k=4), across all shape classes. 

 

 

 

Uniqueness 
Schelling 

Frequencies 
All Descriptors D2 

Gaussian 

Curvature 

Mean 

Curvature 
Normals 

Shape Diameter 

Function 
Sobel Filter 

Abstract p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 

Baskets p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Bottles p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Cabinets-Shelves p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p < 0.05 p >= 0.05 

Chairs p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 

Cups p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 

Lamps p < 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Tables p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p < 0.01 p >= 0.05 p >= 0.05 

Plants p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 

Plates p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Pots p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 
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Table 5.13 – One-way ANOVA test results for significant differences in mean visual appeal Likert scores of clusters obtained via k-

means (k=4), across all shape classes.

Visual Appeal 
Schelling 

Frequencies 
All Descriptors D2 

Gaussian 

Curvature 

Mean 

Curvature 
Normals 

Shape 

Diameter 

Function 

Sobel Filter 

Abstract p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Baskets p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Bottles p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Cabinets-Shelves p >= 0.05 p < 0.05 p < 0.05 p >= 0.05 p < 0.05 p >= 0.05 p < 0.01 p >= 0.05 

Chairs p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Cups p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p < 0.05 

Lamps p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Tables p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Plants p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Plates p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 

Pots p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p < 0.01 p >= 0.05 p < 0.01 
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Table 5.14 – One-way ANOVA test results for significant differences in mean Schelling frequency of clusters obtained via k-means (k=4) 

for various shape descriptors, across all shape classes. 

 

 

 

Schelling Frequencies 

vs. Shape Descriptors 
All D2 Gaussian Curvature Mean Curvature Normals 

Shape Diameter 

Function 
Sobel Filter 

Abstract p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Baskets p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Bottles p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Cabinets-Shelves p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Chairs p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 p < 0.01 

Cups p >= 0.05 p < 0.01 p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 

Lamps p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Tables p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p < 0.05 p >= 0.05 p >= 0.05 

Plants p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Plates p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Pots p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 
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It is possible to search for shapes that have complementary or contrasting Schelling 

frequency to a query shape. We have produced plots, representing a search response 

given the top k=5 closest shapes, with respect to Schelling frequency and each tested 

shape descriptor (e.g. D2 distribution, SDF values, Gaussian curvature). Search query 

response shapes based on Schelling frequencies tend to be more prominent or detailed, 

compared to those obtained via the tested shape descriptors. 

Geometric shape descriptors such as curvatures (mean, Gaussian), per-vertex normals, 

Sobel filters, the D2 distribution, and per-vertex SDF values consistently do not 

correlate well, either individually or as a group, with shapes ordered by Schelling 

frequency. Even without a linear correlation relationship between Schelling 

frequencies, a combination of 10s or 100s of shape descriptors might provide better 

prediction results than those in this thesis, possibly with shape dataset sizes near our 

current amount (387), but it would require more selection and testing of shape descriptor 

combinations (what is a descriptor’s purpose; what are the dimensions of each 

descriptor?). Testing combinations of descriptors could quickly become impractical as 

more shapes are added to the dataset, relative to testing different numbers of depth 

image samples per shape, and different depth image resolutions. 

5.8 Conclusion 

Shapes with higher Schelling frequency, or Schelling meshes, are more geometrically 

varied. Schelling meshes can be visually appealing but that is not the most important 

factor in understanding them. Schelling meshes tend to be those that people consider 

more prominent and stand out with respect to other shapes in a dataset. They are 

perceived as memorable, relative to the remainder of their class. This suggests that they 

can represent a dataset’s extremes. More balance can be achieved via sampling some 
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shapes from the low and mid Schelling frequency ranges/intervals. We find that 

Schelling frequencies best distinguish differences between shapes which have more 

extreme frequencies. 

Using the ‘Many-Within-Class’ methodology, we have found that Schelling frequencies 

can be obtained via: 1) repeated integration of results from showing people smaller 

datasets within a larger group/class – e.g. 12 out of 30 shapes total, or 2) results obtained 

when showing people all shapes within a class. Under case 2), Schelling frequencies 

can be obtained with approximately 35 people, but ideally 50 or more. Additionally, 

results can be updated as new shapes are added to each class, over time. However, case 

1) requires further testing with additional shape classes, to be a general conclusion. 

Schelling frequencies can be learned via depth-image/multiple-view shape 

representations provided to a visual field-like regression approach, such a convolutional 

neural network. For new shape classes, a classifier could be used to pre-classify an 

unknown shape before providing it to a neural network to predict its Schelling frequency 

(decided via exact match, or synonyms of the class word/category). 

At this point, our study of human-interpretations of shape had been limited to 3D 

shapes. We began to question whether similar approaches could be undertaken to better 

understand 2D shapes. This leads us to the next chapter, which focuses on a specific 

category of 2D shapes: fonts. 
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6 Font Specificity 

6.1 Introduction 

Inspired by the Image Specificity [7] work, we focused on applying the concept of 

Specificity to 2D fonts. We provide two interpretations of Specificity, by asking people 

to describe fonts using words. One is based on word frequency, and another is an 

automated method based on pre-trained word embeddings that reflect word co-

occurrence probabilities. 

We firstly collected font Specificity data by asking people to describe fonts using words. 

The consistency of these descriptions was represented via the distribution of word 

frequencies associated with each font. Secondly, we determined consistency via the 

closeness of word embeddings, where the word embeddings represented word co-

occurrence probabilities within a corpus of text. We determined Specificity scores via 

these approaches. We explored the question of “what makes a font Specific?”, via our 

collected data. We show that Specificity can be learned and used for prediction of 

Specificity scores using a colour image-based convolutional neural network. We 

compared a selection of traditional image-based shape descriptors to deep-learning 

approaches for prediction of Specificity scores, and achieved better prediction accuracy 

in most cases, using a deep-learning approach. Results are shown for a range of 2D 

fonts and we demonstrate that Specificity is a useful concept for the applications of 

Specificity-guided visualisation, clustering, and search. 

We have found that fonts of low Specificity score start out as a mixture of many 

characteristics (texture, curvature, thickness), with thin and italic fonts appearing as 
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Specificity increases, then mostly bold fonts appearing as Specificity is highest. Highest 

Specificity fonts tend to have only one or two clear aspects to them – i.e. bold; bold and 

italic; italic and thin etc. 

In addition, Specific fonts tend to be perceived as more memorable (corr.=0.2774, 

p<0.05); they are considered to be more normal (corr.=0.3651, p<0.05) and visually-

appealing (corr.=0.3471, p<0.05), more legible (corr.=0.4676, p<0.05) and less creative 

(corr.=-0.5174, p<0.05). For our automated font Specificity scores, the number of 

unique words provided by participants, per font, reduced as Specificity score increased 

(corr.=-0.5601, p << 0.01). This was also true for our approach based on word frequency 

(corr.=-0.7544, p << 0.01). 

6.2 Hypotheses 

We aimed to determine whether Specific fonts could be described via unique attributes 

or properties, such as legibility or creativity. Below is a list of our tested hypotheses: 

1. A more legible font is more Specific. 

2. A more creative font is less Specific and less legible.  

3. Visually appealing fonts are more Specific but potentially not the most Specific 

fonts. 

4. Specificity conveys information different to that of existing image descriptors. 

6.3 Methodology 

6.3.1 Data Collection 

We collected human descriptions of 100 individual fonts in the form of words, from 

111 participants (approx. 19-24 people per 20 fonts, avg.=22.4 people per 20 fonts), via 

the Amazon Mechanical Turk platform. Fonts were collected from fontlibrary.org. We 
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paid participants $0.10 per HIT. An example survey is shown in Figure 8.5 (see 

appendix). 

For each question, participants were asked to describe an image of a font, using any 

words that came to mind. Each image showed the letters A-Z and the numbers 0-9, in a 

different font style. Some text validation was employed to ensure that participants 

provided only words, separated by commas. 

Pre-processing of User Provided Words 

All words provided by participants, were checked for spelling errors and corrected. 

Otherwise, grammatically incorrect words were removed. Plural words were substituted 

with their singular form. Words concatenated together were split into individual words. 

Stop-words, or highly common words (e.g. ‘the’, ‘at’ and ‘on’) were removed, in 

addition to punctuation. Words of length less than 3 were ignored, and remaining words 

were lemmatised (group inflected word forms were treated as a single entity – e.g. 

‘jumped’ and ‘jumping’ are replaced with ‘jump’). 

Participant and word-level statistics 

7443 words were provided across all users. The average number of words provided per 

participant was 67.05, with a standard deviation of 27.96 across all 100 fonts, and 

median word count of 65. Additionally, the minimum amount of provided words by a 

participant was 13, and the maximum was 150, showing a large absolute deviation in 

word frequency among participants. 

In Figure 6.1, we provide some plots showing 1) mean per-participant word frequencies 

across all fonts, and 2) the estimated PDF of mean per-font word frequencies, across all 

participants. The mode is approximately 4 words per font, on average. 
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Figure 6.2 shows a plot of the proportions of words provided only once across all 

participants, for each font. The distribution is mostly random, but nearly all values lie 

within a confined range of approximately 0.6 to 0.87, or 60-87% of words, per font. 

On average, words were provided once approximately 73.7% of the time. See Table 6.1 

for other statistics. Here, we can see that median is close to the mean, indicating that 

the percentage of unique words provided was consistent across participants (suggesting 

that there were few outliers). 

Table 6.1 – Statistics of the percentage of words provided only once, by 

participants. 

Figure 6.1 – Plots of per-font word frequency statistics across participants. (Left) 

means (Right) estimated PDF of per-font word frequency means. 

Percentage of words provided once 100 Fonts 

Min 53.66% 

Max 90.77% 

Mean 73.69% 

Median 74.36% 

Std. Dev. 68.1% 
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Figure 6.2 – A plot showing the proportion of words provided once for each font, 

across all 111 participants. 

6.4 Analysis 

6.4.1 Top-50 words across all fonts 

See Figure 6.3 for a plot of the top-50 words among the 100 fonts, and their frequencies. 

We can see that simpler, geometry-oriented words tend to have higher frequency (bold, 

italic, thin, thick, thin, slant, narrow etc). In some cases, more subjective terms appear 

(classic, simple, elegant). As word frequency decreases, the proportion of words related 

to subjectivity/emotion increases. 

6.4.2 Determining Word Categories via Wordnet Synsets 

We also categorised participant-provided words by grouping words of similar meaning. 

For this purpose, we obtained the synonyms of each font’s words using Wordnet [193], 

a lexical database of English, which groups words of similar concepts as synsets. These 

are connected via “conceptual-semantic and lexical relations” [193]. 
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Figure 6.3 – Word frequency plot of the top-50 most frequent words across all fonts. 
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Each English word in the database (noun, verb, adjective etc.), is associated with a 

‘synset’, or a set of synonym words. Participant provided words were grouped 

according to the synsets that they shared (at least one of the word’s synsets was part of 

an existing group of synsets). Across 100 fonts, we found 693 unique groups of words, 

with 191 groups that contained more than one word. 

Using the words of these 191 groups, we categorised each of the fonts manually 

according to more general categories of our own, including words related to ‘geometry’, 

words related to ‘subjectivity and emotion’, and words hinting at ‘abstraction’. 

Table 8.1 in the appendix provides the words that were associated with each category. 

Words grouped in brackets were considered to have the same meaning (via their shared 

synsets), and if associated with a font, were treated as an equivalent word occurrence 

for the purposes of statistical calculations including: word frequency (either per font, or 

conditional on a category) and part-of-speech tagging. 

There was a large amount of word variation per category even within the reduced 

amount of 191 groups of words, which we thought was sufficient enough to understand 

which types of words are associated with Specific fonts, and the meanings of those 

words. Figure 6.4 shows plots of frequencies of words and word groups found in each 

category. 

6.4.3 Types of Words According to Category? 

Across all fonts, we tagged each of their associated words using the Stanford Part-Of-

Speech tagger [266], to determine the most common type of words associated with 

them, and also to check whether the words provided, were mostly descriptive. We 

additionally tagged words conditionally on a word categorisation such as: geometry-
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related terms, subjectivity/emotion-related terms and ‘abstraction’-related terms, to 

determine if word meaning induced any differences. 

Part-of-Speech 

Across all fonts, we determined the types of words provided by participants, via part-

of-speech tags. Each font was predominantly described with adjectives (approx. 60% 

of the time) and nouns (approx. 20% of the time). Verb/Adverb terms were provided 

rarely, approx. 2% of the time. 

Word Category Unique 

Tag 

Count 

Most 

Frequent 

Tag 

2nd Most 

Frequent 

3rd Most 

Frequent 

4th Most 

Frequent 

All Words 16 Adjective 

(0.63) 

Singular 

Noun (0.24) 

Plural Noun 

(0.037) 

Past-Tense 

Verb (0.027) 

Geometric 11 Adjective 

(0.59) 

Singular 

Noun (0.2) 

Plural Noun 

(0.06) 

Past-Tense 

Verb (0.04) 

Subjective/Emotion 9 Adjective 

(0.81) 

Singular 

Noun (0.15) 

Adverb 

(0.016) 

Past-Participle 

Verb (0.007) 

Abstraction 12 Adjective 

(0.65) 

Singular 

Noun (0.296) 

Plural Noun 

(0.024) 

Present-Tense 

Verb (0.015) 

Table 6.2 – Proportions of Part-Of-Speech associated with word categories. 

We can see from Table 6.2 that adjectives and singular nouns made up most of the 

words provided under each category, matching the overall trend for the whole set of 

100 fonts. This was expected, if participants completed surveys to a good standard. But 

the ratio of adjectives to singular nouns changed with category. Subjective words tended 

to consist mostly of adjectives (over 80%), with a smaller amount of singular noun terms 

than abstraction-related words and geometry-related words (approx. 15%). The number 

of unique part-of-speech tags reduced for subjective words also. Across categories, the 

fraction of foreign/unknown words was 0.007 or under 1%. As you will see later, the 

frequency of unique words across fonts, is negatively correlated with font Specificity, 

possibly suggesting that Specific fonts are described with more subjective words than 

geometry-related/abstraction words. 
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Figure 6.4 – Plots of word and word group frequency, per category. Word groups 

are represented in the plot by the first word in their group. 
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Word 

Category 

Bold Italic Etched Sans-

Serif 

Narrow Child-

like 

Elegant 

All 

Words 

Adj. 

0.63 

Adj. 

0.62 

Adj. 

0.511 

Adj. 

0.61 

Adj. 

0.63 

Adj. 

0.594 

Adj. 

0.64 

Table 6.3 – Most frequent PoS tags of seven of the most frequent word categories. 

Word 

Category 

Fun Modern Pretty Legible Moderate Education 

All 

Words 

Adj. 

0.65 

Adj. 

0.63 

Adj. 

0.66 

Adj. 

0.65 

Adj. 

0.63 

Adj. 

0.59 

Table 6.4 – Most frequent PoS tags of six of the most frequent word categories. 

In Table 6.3 and Table 6.4, we see a trend of participants mostly providing adjectives 

in their responses, with similar proportions across words, except in the ‘Etched’ case, 

but that category also had a lower absolute number of parts-of-speech associated with 

it, likely due to it being a more specialised word category. 

For determining a measure of font Specificity, we began to focus on the consistency of 

font descriptions. In this sense, the target data was the distribution of descriptions, or a 

distribution based on word frequency, per font. From these, we determined a per-font 

Specificity score, which increased as variation in the words used to describe a font, 

reduced. 

6.4.4 Rényi Specificity 

Definition 

Given a set of participant-provided words, 𝑤𝑖 , for each font, 𝑓 , we counted the 

occurrence frequency of each word (after being passed through a 

stemming/lemmatising process, such that words with the same root were treated as the 

same). These frequencies, 𝑓𝑖, were normalized to obtain a set of probabilities, 𝑝𝑖, for 

each 𝑓. These 𝑝𝑖 represent a probability distribution over 𝑓. Entropy is a measure of 

uncertainty in a distribution, so we consider Specificity to be in opposition to entropy. 



Chapter 6: Font Specificity 

217 

Therefore, we define a font’s Specificity score to be the inverse of the entropy of the 

word frequency distribution for that font. 

Rényi entropy [267] is: 

𝐻𝛼(𝑝𝑖) =
1

1 − 𝛼
log2 (∑ 𝑝𝑖

𝛼

𝑖
) 

Equation 6.1 – Rényi entropy formulation 

We take its inverse as: 

2−
𝐻𝛼

𝑐 , where 𝑐 is a parameter to be chosen. 

Shannon entropy [268] is a special case of Equation 6.1, if 𝛼 = 1: 

𝐻1(𝑝𝑖) = − ∑ 𝑝𝑖log2(𝑝𝑖)
𝑖

 

Its inverse/Specificity is: 

𝑆1(𝑝𝑖) = ∏(𝑝𝑖)
𝑝𝑖
𝑐

𝑖

 

Equation 6.2 – Rényi Specificity (𝜶 = 𝟏) 

If 𝛼 = 2: 

𝐻2(𝑝𝑖) = − log2 (∑ 𝑝𝑖
2

𝑖
) 
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Specificity in this case, is: 

𝑆2(𝑝𝑖) = [∑ 𝑝𝑖
2

𝑖
]

−
1
𝑐
 

Equation 6.3 – Rényi Specificity (𝜶 = 𝟐) 

Equation 6.2 and Equation 6.3 capture an intuitive notion of Specificity, in that: 

1. The larger the number of descriptions, the more varied they are, and this leads 

to a higher entropy and smaller Specificity. 

2. The more uniform the distribution, the descriptions become more equally likely, 

and this leads to a higher entropy and smaller Specificity. 

For any future references to Rényi Specificity, we use 𝛼 = 2 (Equation 6.3). 

We chose to use Rényi entropy at 𝛼 = 2, since the resulting Specificity formula is 

similar to existing diversity indices used in Physics and Ecology (such as the diversity 

index derived from the Simpson concentration or Gini-Simpson index) [269]. Diversity 

indices account for the number of elements associated with a concept, rather than just 

the uncertainty in describing the concept. They aim to show equivalence between 

concepts (communities, fonts) consisting of the same base elements – e.g. (species, 

words). Many diversity indices are monotonic functions of ∑ 𝑝𝑖
𝑞𝑆

𝑖=1  (given 𝑆 species) 

[269]. Values of 𝑞 < 1  favour rarer species, and values of 𝑞 > 1  favour the most 

common species. When 𝑞 = 0, the index is independent of species frequency (e.g. 

independent of word frequency), as 𝑝𝑖
0 ≡ 1 (for non-zero probabilities). When 𝑞 = 1, 

species are only weighted by their frequencies. With 𝛼 = 2 (similar to 𝑞 = 2), we can 

imagine that when a font is mostly associated with a few, highly frequent/common 

words, its Specificity should be high. 
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Visualising Rényi Specificity for Fonts 

We can visualise Rényi font Specificity by plotting font images on a 1D plot, according 

to their scores. To ensure that each image is clearly visible, we show the top-10 and 

bottom-10 fonts according to Rényi Specificity score, in Figure 6.5. In this figure, we 

additionally provide a plot consisting of one font sampled from a 10-bin histogram, 

according to increasing Rényi Specificity score. 

Figure 6.5 – Visualisations of Rényi Specificity. (Top) Plot of the bottom-10 and 

top-10 fonts according to their Rényi Specificity scores. (Bottom) Plot of a sample 

of fonts randomly taken from 10 equal Specificity score intervals. 

Fonts seem to start out as a mixture of many characteristics (texture, curvature, 

thickness) if they have low scores, with thinner fonts appearing as score increases 

(around the mid-score range), in addition to italic fonts, and then finally more bold fonts 

appearing as Rényi Specificity is highest. We can also see that fonts with high 

Specificity tend to have only one or two clearly defined features to them – i.e. they are 

bold, bold+italic, thin+italic etc. This reflects the trend that the number of unique words 
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per font strongly reduces as Rényi Specificity increases (corr.=-0.7544, p << 0.05), as 

shown in Figure 6.6. 

Figure 6.6 – Plot showing Rényi Specificity decreasing with the frequency of 

unique words associated with a font (corr.=-0.7544, p << 0.05). 

Understanding Rényi Specificity through Subjective terms 

We collected Likert score data on how "visually appealing", "stand out", "memorable", 

and "unique" people thought each of the 100 fonts were. 15 participants provided 

results, via Amazon Mechanical Turk. We paid participants $0.10 per HIT. For each 

term, we attempted to correlate the average Likert score per font, across all participants, 

with our Rényi Specificity scores. Our results are shown in Table 6.5. Correlations in 

bold are significant (p < 0.05). Also see Figure 8.6 in the appendix, for a screenshot of 

a survey that we distributed to participants. Perception of memorability correlated 

positively with Rényi Specificity scores. This may imply the opposite with regards to 

true memorability, based on previous image memorability work [259, 260], although 
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this was focused on photographic images. Perception of uniqueness was inversely 

correlated with font Specificity. Visual appeal correlated positively. 

Corr. Coef. 100 Fonts 

Memorable 0.2832 

Stand-out 0.1353 

Unique -0.2913 

Visually Appealing 0.3544 

Table 6.5 – Correlations of Likert scores of subjective terms with Rényi 

Specificity scores. Significant correlations (p < 0.05) are in bold. 

6.4.5 Automated Font Specificity via Cosine Similarity of Word 

Embeddings 

At this point, we believed Rényi Specificity to be a useful measure, which could be 

collected via crowdsourcing, over time. But it still requires direct collection of word 

frequencies from participants. So, we wanted to produce a method of computing font 

Specificity values which had many of the same properties of our Rényi Specificity 

scores, but could more explicitly use text to do so, rather than in a derived or relative 

fashion, using word frequencies alone. 

At first, we wanted to replicate the Image Specificity [7] method of computing 

Specificity values, using font word data. The method uses WordNet ‘path similarity’ as 

a basis for producing a Specificity score [193]. 

But this approach required pairs of sentences per image (or in our case, per font) to 

compute reasonable Specificity values. The authors pre-processed participant provided 

words in each sentence and took the base-forms of each word via lemmatisation, to 

produce their dataset (E.g. ‘running’ becomes ‘run’, jumped becomes ‘jump’). For each 

pair of these processed sentences, per image, the maximum similarity between pairs of 

words in each sentence is computed, as defined via the WordNet corpus [193]. This is 

then weighted by the frequency of each word’s occurrence in the current sentence and 
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across all sentences (via tf-idf or term-frequency, inverse document frequency). Across 

all pairs of words in the two sentences, the sum of these maximum similarity values is 

obtained. Across all pairs of sentences, the average of these values is taken, to produce 

a Specificity measure for an image. 

Since we did not ask participants to provide sentences per font/image, we could not 

calculate Specificity via pairs of sentences per image. We believed that asking 

participants to provide sentences would request superfluous information such as 

connectives and punctuation, unneeded to describe fonts in enough detail for 

discrimination. 

So, we attempted to produce an approximation to the Image Specificity approach, which 

compares only pairs of words per font, rather than pairs of sentences. See Algorithm 6.1 

for our formulation. 

#    Algorithm 

1. 𝑤𝑜𝑟𝑑𝑙𝑖𝑠𝑡𝑓 ←  List of words 𝑎ssociated with a font, 𝑓 

2. 𝑝𝑎𝑡ℎ_𝑠𝑖𝑚𝑠𝑓 ← For each word 𝑤𝑎 in 𝑤𝑜𝑟𝑑𝑙𝑖𝑠𝑡𝑓, obtain the remaining words 

𝑤𝑙𝑏 and repeat steps 3, 4 and 9. 

3. 𝑡𝑓𝑤𝑎
=  𝑡𝑒𝑟𝑚_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑤𝑎) 

4. 𝑝𝑎𝑡ℎ_𝑠𝑖𝑚_𝑙𝑖𝑠𝑡𝑤𝑎
 ← For each word 𝑤𝑏 in 𝑤𝑙𝑏  repeat steps 5 to 8. 

5. 𝑠𝑙𝑎 , 𝑠𝑙𝑏 ← Obtain the list of synsets 𝑠𝑙𝑎 of word 𝑤𝑎 and 𝑠𝑙𝑏 of word 𝑤𝑏, 

using WordNet. 

6. 𝑝𝑠𝑤𝑎𝑏
← Repeat steps 7 and 8 for all pairs of synsets (𝑠𝑦𝑛𝑎, 𝑠𝑦𝑛𝑏), where 

𝑠𝑦𝑛𝑎 in 𝑠𝑙𝑎, and 𝑠𝑦𝑛𝑏 in 𝑠𝑙𝑏 

7.  

𝑝𝑠𝑎𝑏 = 𝑝𝑎𝑡ℎ_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠𝑦𝑛𝑎 , 𝑠𝑦𝑛𝑏) 

𝑝𝑠𝑏𝑎 = 𝑝𝑎𝑡ℎ_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠𝑦𝑛𝑏 , 𝑠𝑦𝑛𝑎) 

8. 𝑝𝑠𝑤𝑎𝑏
= 𝑝𝑠𝑤𝑎𝑏

< max(𝑝𝑠𝑎𝑏, 𝑝𝑠𝑏𝑎) ? max(𝑝𝑠𝑎𝑏 , 𝑝𝑠𝑏𝑎) ∶  𝑝𝑠𝑤𝑎𝑏
 

9. 𝑝𝑎𝑡ℎ_𝑠𝑖𝑚_𝑤𝑎 = 𝑡𝑓𝑤𝑎
× 𝑚𝑎𝑥 (𝑝𝑎𝑡ℎ_𝑠𝑖𝑚_𝑙𝑖𝑠𝑡_𝑤𝑎) 

10. return avg(𝑝𝑎𝑡ℎ_𝑠𝑖𝑚𝑠𝑓) 

// avg. of contributions is Specificity of a font 

Algorithm 6.1 – Path Similarity-based Specificity formulation 
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Regarding step 7 of Algorithm 6.1, Both 𝑝𝑠𝑎𝑏  and 𝑝𝑠𝑏𝑎 are computed since the 

𝑝𝑎𝑡ℎ_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  function is not commutative [7]. For step 9, the term-frequency 

weighting is calculated via the term/word frequency of 𝑤𝑎  (the current word being 

compared to all others of a font) in its original list of words. Eventually, word 𝑤𝑏 will 

be the first word of a pair, so its term-frequency will be considered. 

Within Algorithm 6.1, we still weighted each word’s contribution to the similarity, but 

instead used only term-frequency (TF) to do this (without inverse document frequency 

(IDF), since each word per document is equally frequent among documents if there is 

only one document of interest – i.e. one font’s list of words). Doing this for all pairs of 

words associated with a font, and summing those values together gave us per-font scores 

to compare with our Rényi Specificity scores. The correlation between path similarity-

based font Specificity scores and Rényi font Specificity scores was approx. 0.43 (p << 

0.01). 

But, on removal of the term-frequency component of the formulation, we achieved no 

(significant) correlations using this approach, apart from in the case of the standard 

deviation of each font’s path similarity-based Specificity contributions, correlating 

positively with Rényi Specificity scores (see Table 6.6). Additionally, these correlations 

were low in magnitude. This suggested that term-frequency was the main factor behind 

the correlation between path similarity-based scores and Rényi Specificity scores. 

Corr. Coef. Correlation with Rényi 

scores 

p-value 

Per-font Std. Dev. of path similarity contributions 0.1187 p < 0.05 

Per-font Std. Dev. of path similarity contributions 

without outliers (removed according to Cook’s distance) 

0.2256 p < 0.01 

Table 6.6 – Correlations between standard deviations of path similarity based 

font Specificity contributions (without term-frequency weightings) and Rényi 

Specificity scores. 
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We believe that this lack of significance in direct correlations of path similarity-based 

Specificity (without term-frequency) and Rényi Specificity occurred due to one or more 

of the following points: 

1. There was a lack of word variation per font – predominantly adjectives and 

nouns (approx. 60% of word distribution across all fonts). 

2. WordNet synsets per font may have also been too similar – either per font, or 

when compared to fonts of similar score. We thought that there was too little 

variation in the words between score bins and believed that we'd probably need 

more font word data before any changes would appear. 

Due to this result, we attempted to formulate a similar method which used a different 

measure of similarity between words, and so we attempted to use distances between 

word-embedding vectors as a basis for this method. In this approach, words are 

represented via their word vector’s closeness/similarity to other vectors. 

Word vectors are modelled to capture the occurrence probability of words, given a 

context of other words, by the distances between their respective word vectors. They 

also capture some notion of word semantics/meaning, expressed via arithmetic between 

word vectors (see Figure 6.7). 

For example, word vectors can be added or subtracted from another word vector, to 

discover words similar in meaning or further away in meaning [270, 271]: 

o vector('Paris') - vector('France') + vector('Italy') results in a vector that is very 

close to vector('Rome') 

o vector('king') - vector('man') + vector('woman') is close to vector('queen') 
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We decided not to train our own skip-gram or bag-of-words vector space model, but 

instead used existing/pre-trained word embeddings for our purposes – due to 

computational efficiency (time required) and accuracy reasons (size of word dataset). 

To this end, we gathered existing Word2Vec (skip-gram model) [64, 271], GloVe [63] 

and FastText (skip-gram model) word embeddings to test with. 

 

Figure 6.7 – Image visualising cosine similarity between two word vectors; data 

by Shi et al. [272]. 

Word Embedding Comparison 

Given pairs of words, 𝑤𝑎 and 𝑤𝑏, associated with each font, 𝑓, we can compute the 

cosine similarity, 𝐶𝑆(𝑣𝑎 , 𝑣𝑏), between their word vectors 𝑣𝑎 and 𝑣𝑏, as a contribution 

to the Specificity of 𝑓: 

𝐶𝑆(𝑣𝑎, 𝑣𝑏) = cos(𝜃) =
𝑣𝑎  ∙  𝑣𝑏

‖𝑣𝑎‖‖𝑣𝑏‖
=

∑ 𝑣𝑎𝑖
𝑣𝑏𝑖

𝑛
𝑖=1

√∑ 𝑣𝑎𝑖
2𝑛

𝑖=1  √∑ 𝑣𝑏𝑖
2𝑛

𝑖=1

 

Equation 6.4 – Cosine similarity between two word vectors. 



 

 226 

It is also possible to substitute cosine similarity, 𝐶𝑆(𝑣𝑎, 𝑣𝑏), with the Jensen-Shannon 

Divergence (JSD) between 𝑣𝑎  and 𝑣𝑏 , by firstly normalising 𝑣𝑎  and 𝑣𝑏 , and then 

computing: 1 − 𝑠𝑞𝑟𝑡(𝐽𝑆𝐷(𝑣𝑎||𝑣𝑏)), treating the word vectors 𝑣𝑎 and 𝑣𝑏 as probability 

distributions 𝑃 and 𝑄, over low-dimensional representations of word co-occurrence. 

𝐽𝑆𝐷(𝑃||𝑄) =
1

2
𝐷(𝑃||𝑀) +

1

2
𝐷(𝑄||𝑀)

=
1

2
∑ 𝑃(log 𝑃 − log 𝑀) +

1

2
∑ 𝑄(log 𝑄 − log 𝑀) 

Equation 6.5 – Jensen-Shannon divergence 

𝐽𝑆𝑆(𝑣𝑎 , 𝑣𝑏) = 1 − 𝑠𝑞𝑟𝑡(𝐽𝑆𝐷(𝑣𝑎||𝑣𝑏)) 

Equation 6.6 – Jensen-Shannon similarity between two word vectors. 

We computed Specificity scores using three pre-trained word embeddings [64, 63, 273], 

where each word vector was of 300 dimensions: 

1. Word2Vec (skip-gram): Google News dataset (100 billion tokens, 3 million 

words/phrases) [64] 

2. GLoVe: Wikipedia 2014 + Gigaword 5 (6B tokens, 400K words/vocabulary) 

[63] 

3. fastText (skip-gram): Wikipedia 2017, UMBC webbase corpus and statmt.org 

news dataset (approx. 1 million words, 16B tokens) [274, 273] 

For each of these word embeddings, we computed per-font Specificity scores based on: 

• Cosine similarity: 𝐶𝑆(𝑣𝑎, 𝑣𝑏), based on pairs of word vectors, 𝑣𝑎 and 𝑣𝑏. 

• Jensen-Shannon similarity: 𝐽𝑆𝑆(𝑣𝑎 , 𝑣𝑏), based on pairs of word vectors, 𝑣𝑎 

and 𝑣𝑏. 
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• L2 Norm of element-wise min + max across word vectors: Given the word 

vectors 𝑣𝑖 , of words 𝑤𝑖 associated with each font, compute the L2 norm of the 

element-wise minimum values across all 𝑣𝑖  concatenated with the element-wise 

maximums across all 𝑣𝑖: 

𝑠𝑖 = 𝐿2 (elementwise min.
𝑣𝑖

 𝑐𝑜𝑛𝑐𝑎𝑡 elementwise max
𝑣𝑖

) 

• L2 Norm of element-wise avg. across word vectors: Given the word vectors 

𝑣𝑖  of words 𝑤𝑖 associated with each font, compute the L2 norm of element-wise 

averages of values across all 𝑣𝑖: 𝑠𝑖 = 𝐿2(elementwise avg.
𝑣𝑖

) 

For the cosine similarity and Jensen-Shannon similarity cases, to determine the 

contribution of a word, 𝑤𝑎, to a font’s Specificity (that was used to describe the font), 

𝑤𝑎 is compared to every other word associated with that font, in a pairwise manner. 

This is done by computing one of the similarity measures on the word vectors of each 

pair of words. The maximum of these similarities is taken and weighted by the term 

frequency of 𝑤𝑎, to produce 𝑤𝑎’s Specificity. The set of Specificity values generated 

across all possible 𝑤𝑎 (all words associated with a font), are averaged, to obtain a font’s 

Specificity. For the L2 norm cases, the Specificity of a font is computed as earlier 

described. An issue is that any words to be processed must be included in the word 

vector dictionary, which is why we used existing word embeddings that were pre-

trained with many words/tokens. 

We attempted to correlate each set of word embedding-derived scores with our original 

Rényi Specificity scores and found the scores based on cosine similarity and Jensen-

Shannon similarity correlated significantly, and positively with Rényi Specificity. The 

L2 norm-based scores correlated negatively (and nearly always significantly). See 
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Table 6.7 for our results. However, we could see that all of the correlations based on 

cosine similarity and Jensen-Shannon similarity Specificity scores were very close to 

one another… 

Correlation 

Coefficient 

Avg. of 

Cosine Sim. 

Avg. of Jensen-

Shannon Sim. 

L2 Norm of 

element-wise avg. 

L2 Norm of 

element-wise min + 

max 

Word2Vec 0.6442 0.6228 -0.2097 -0.2500 

GLoVe 0.6302 0.608 -0.2352 -0.2664 

fastText 0.6262 0.6133 -0.2360 -0.1360 

Table 6.7 – Correlations between Rényi Specificity scores, and scores obtained 

between various word embeddings and formulations of font Specificity (with 

term-frequency weighting). Correlations in bold are significant (p<0.05). 

On removal of the term-frequency component in the Specificity formulation for these 

cases, all of their correlations had also become negative. After this, when we ordered 

the fonts by ascending score to visualise them, we saw the opposite trend to what was 

expected. Simpler, more legible fonts had lower scores, and more creative fonts which 

were varied in shape and texture, relative to the others, had higher scores. The solution 

was to invert the resulting scores, simply by subtracting them from 1. We also applied 

this to the L2 norm-based scores. In the cosine similarity case, this maps scores in the 

interval [-1 1] to [2 0] (therefore, halving the result will normalise the values). The 

lowest scores became highest, and highest scores became lowest. This changed the sign 

of the correlations in all cases, to positive. 

After this change, for the cosine similarity and Jensen-Shannon similarity Specificity 

scores, we obtained only one similar correlation to beforehand, which was also the 

highest relative to other cases. This was produced using cosine similarity and the 

word2vec-based embedding, which we selected for our automated font Specificity 

approach. We refer to Specificity scores derived this way, from this point forward (see 

Algorithm 6.2). 
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We also found that when using the cosine similarity formulation, correlations across all 

word embeddings were higher than the path similarity-based approach. See Table 6.8 

for our results. Correlations in bold are significant (p < 0.05). 

Correlation 

Coefficient 

1 – Avg. of 

Cosine Sim. 

1 – Avg. of 

Jensen-Shannon 

Sim. 

1 - L2 Norm of 

element-wise avg. 

1 - L2 Norm of 

element-wise min + 

max 

Word2Vec 0.6086 0.1886 0.2097 0.2500 

GLoVe 0.4850 0.4858 0.2352 0.2664 

fastText 0.4977 0.4119 0.2360 0.1360 

Table 6.8 – Correlations between Rényi Specificity scores, and scores obtained 

between various word embeddings and formulations of font Specificity. 

Correlations in bold are significant (p<0.05). 

Given a set of participant words associated with each font, 𝑓, Algorithm 6.2 computes 

a Specificity value for 𝑓. For each word, 𝑤𝑎 in w𝑜𝑟𝑑𝑙𝑖𝑠𝑡𝑓, a Specificity contribution is 

obtained for the font f, by comparing 𝑤𝑎 to every other word 𝑤𝑏 in w𝑜𝑟𝑑𝑙𝑖𝑠𝑡𝑓, via the 

cosine similarity between their word vectors. The maximum of these similarities is 

taken to produce 𝑤𝑎’s Specificity. The set of Specificity values generated across all 𝑤𝑎, 

are averaged and subtracted from 1, to obtain a font’s Specificity. 

It may be that fonts with more varied curvature, texture, font weight, etc. tend to have 

mainly similar word vectors, as even though there is more word variation, it is 

specialised to a certain style or concept (resulting in weakly to strongly positive cosine 

similarities between word vectors). For example, many words might relate to entities 

and scenery found at a beach, such as: ‘sea’, ‘sandcastle’, ‘shell’, ‘jellyfish’. Whereas 

fonts which are plainer may have less word variation, but more variation between the 

concepts or meanings of those words (negative, orthogonal or weakly positive cosine 

similarities between word vectors).
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Word Embedding-based Font Specificity Definition 

#    Algorithm 

1. 𝑠𝑦𝑛𝑓 ← Given a list of words associated with a font, 𝑓, obtain the synsets of 

each word, using WordNet. Concatenate them into a list. 

2. 𝑟𝑒𝑚𝑓 ← All words of 𝑓, where synsets were not found. 

3. 𝑤𝑜𝑟𝑑𝑙𝑖𝑠𝑡𝑓 ← Extract lemma words for every synset in 𝑠𝑦𝑛𝑓 and the lemma 

words of words in 𝑟𝑒𝑚𝑓. Concatenate them into a list. 

4. 𝑐𝑜𝑠_𝑠𝑖𝑚𝑠𝑓 ← For each word 𝑤𝑎 in 𝑤𝑜𝑟𝑑𝑙𝑖𝑠𝑡𝑓, obtain the remaining words 

𝑤𝑙𝑏 and repeat steps 5 and 8. 

5. 𝑐𝑜𝑠_𝑠𝑖𝑚_𝑙𝑖𝑠𝑡𝑤𝑎
 ← For each word 𝑤𝑏 in 𝑤𝑙𝑏  repeat steps 6 to 7. 

6. 𝑤𝑣[𝑤𝑎], 𝑤𝑣[𝑤𝑏] ← Obtain the word-vectors of word 𝑤𝑎 and word 𝑤𝑏, using 

a word embedding dictionary. 

// Given that 𝑤𝑎 and 𝑤𝑏 must be in the wordvector dictionary to be 

computed, at most 𝑙𝑒𝑛𝑔𝑡ℎ(𝑤𝑜𝑟𝑑𝑙𝑖𝑠𝑡𝑓)  −  1 similarity values will be 

computed. 

7. 𝑐𝑠𝑎𝑏 = 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤𝑣[𝑤𝑎], 𝑤𝑣[𝑤𝑏] ) 

8. 𝑐𝑜𝑠_𝑠𝑖𝑚_𝑤𝑎 = 𝑚𝑎𝑥 (𝑐𝑜𝑠_𝑠𝑖𝑚_𝑙𝑖𝑠𝑡_𝑤𝑎) 

9. return 1 − avg(𝑐𝑜𝑠_𝑠𝑖𝑚𝑠𝑓) 

// 1 – avg. of contributions is Specificity of a font 

Algorithm 6.2 – Cosine Similarity-based Specificity formulation 

Statistical Tests 

To check for consistency in the distributions of words between sub-groups of fonts, we 

randomly sampled two disjoint groups of 50 fonts from the total of 100 and computed 

a two-sample Kolmogorov-Smirnov test between the two groups’ Specificity scores. 

The resulting p-value was greater than 0.05, indicating that the two groups of scores 

were considered to be from the same distribution. Since approximately every 20 fonts 

were described by a different group of participants (avg. of 22.4 participants per 20 

fonts), we considered this result to imply that font Specificity scores obtained by 

different groups of participants are also likely to have the same distribution. 

We also checked to see whether the font Specificity scores were Gaussian distributed, 

and we found this to be the case, using a chi-squared goodness of fit test (p > 0.05). The 

distribution of scores was skewed however (skewness: -0.2651). 
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Figure 6.8 – (Top) Estimated PDF of word embedding-based Specificity scores 

and (Bottom) their empirical CDF (blue), with a fitted curve overlaid (green). 
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Figure 6.9 – Plots created via word embedding-based font Specificity scores. 

(Top) Plot of data sorted from lowest to highest score, with a fitted curved 

overlaid. (Bottom) 8-bin histogram of those scores. 
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Figure 6.10 – Plot showing word embedding-based Specificity decreasing with 

the frequency of unique words associated with a font. 

We show the PDF and empirical CDF of the Specificity scores, in Figure 6.8, where the 

data is left-skewed. A plot of the scores ordered from lowest to highest, along with a 

histogram, is also shown in Figure 6.9. The modal score is approximately 0.675. 

Visualising Word Embedding-based Font Specificity 

Figure 6.11 provides a visualisation of the bottom-10 and top-10 fonts according to their 

word embedding-based Specificity scores. The number of unique words provided per 

font correlated significantly and negatively with these Specificity scores (corr.=-0.5601, 

p << 0.01), similarly to Rényi Specificity. See Figure 6.10 for a visual representation. 
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Figure 6.11 – Plot of the bottom-10 and top-10 fonts according to their word 

embedding-based Specificity scores. 

Understanding Word Embedding-based Font Specificity through Subjective 

terms 

We additionally collected Likert score data on several subjective terms, including those 

collected in the Rényi Specificity case, for each of the 100 fonts. 15 participants 

provided results, via Amazon Mechanical Turk. As before, we paid $0.10 per HIT. For 

each term, we attempted to correlate the average Likert score per font, across all 

participants, with our word embedding-based Specificity scores. The chosen terms were 

sampled from the top-50 most frequent words provided by participants (see Figure 6.3), 

and topics/subjects associated with those words.  See Table 6.9 for our results. 

Correlations in bold are significant (p < 0.05). 

Corr. Coef. 100 Fonts 

Memorable 0.2774 

Stand-out -0.0381 

Unique -0.3591 

Visually Appealing 0.3471 

Legible 0.4676 

Creative -0.5174 

Boring 0.4405 

Fun -0.1841 

Elegant 0.2257 

Modern -0.1962 

Normal 0.3651 

Table 6.9 - Correlations of Likert scores of subjective terms with word 

embedding-based Specificity scores. Correlations in bold are significant (p<0.05). 
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Perception of memorability correlated positively with these Specificity scores, as in the 

Rényi Specificity case. Uniqueness was inversely correlated with font Specificity as 

before, in addition to creativity. Visual appeal or a notion of ‘elegance’, correlated 

positively, as did perception of legibility and the perception of how boring or normal 

each font was. 

We further studied the statistically significant terms, to determine whether some of the 

terms were associated with fonts of high, low or medium score, or covered the entire 

distribution of fonts. 

For each of these terms, we attempted to correlate their font Likert score averages with 

word embedding-based Specificity scores obtained from fonts of low, medium and high 

score. Table 6.10 shows our results. 

Corr. Coef. Low scores (33 fonts) Medium scores (33 

fonts) 

High scores (34 fonts) 

Memorable 0.12 0.31 -0.09 

Unique -0.22 -0.07 -0.0118 

Visually Appealing 0.40 0.19 0.03 

Legible 0.40 0.09 0.11 

Creative -0.37 -0.15 -0.01 

Boring 0.34 -0.0064 0.02 

Elegant 0.23 -0.02 -0.02 

Normal 0.22 0.06 -0.17 

Table 6.10 – Correlations of Likert scores of subjective terms with word 

embedding-based Specificity scores, given fonts with low, medium and high 

Specificity. Significant correlations (p < 0.05) are in bold. 

We highlight correlations based on perception of memorability and uniqueness, in 

addition to a notion of normality or elegance in fonts, as belonging to the entire 

distribution of fonts, since there was no significant correlation based on certain font 

Specificity score ranges. 
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Reduced visual appeal, reduced legibility or higher creativity was associated with fonts 

of low Specificity score. This suggested that medium to high Specificity score fonts 

may be less creative or more visually appealing or legible, compared to fonts of low 

score, but not compared to each other, since there was not a significant trend occurring 

between fonts of medium score, and separately, fonts of high score, in these cases. 

When comparing fonts of low score to the whole font dataset, correlation due to 

perception of creativity increased in magnitude from corr.=-0.37 to corr.=-0.5174, 

indicating that this trend spans the entire font dataset, but is mostly concentrated in fonts 

of low score. Perception of legibility also followed this trend, but to a lesser degree. 

For the lower score fonts, corr.=0.40, vs. 0.4676, for all fonts. Correlation due to visual 

appeal reduced from corr.=0.40 (low score fonts) to corr.=0.3471 (all fonts), indicating 

that this trend may be relegated to lower score fonts. 

We can also see changes in word and word frequency distribution as word embedding-

based Specificity increases. Figure 8.9 to Figure 8.11 in the appendix provide plots of 

the top-50 words’ frequencies for 5 groups of 20 fonts sampled according to increasing 

word embedding-based Specificity score (without replacement), shown from top 

(lowest scores) to bottom (highest scores). Note that the word frequency axis varies per 

plot. 

6.5 Learning 

To generalise our font Specificity scores to fonts we had not yet encountered, we created 

a convolutional neural network model, which takes as input an RGB image, 𝐼𝑟𝑔𝑏 of size 

200 × 200 , where 𝐼𝑟𝑔𝑏 ∈ ℝ3×200×200  and outputs a single font Specificity score 

prediction, 𝑦̂𝑖. Each font was represented as an image, 𝐼𝑓 of approximately 512 × 233 
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in dimensions, containing A-Z characters presented in upper and lower case, with the 

numbers 0-9 placed beneath them. These were centred over a white background. 

Training data came in the form of (𝐼𝑟𝑔𝑏, 𝑦𝑖) pairs. Multiple pairs were sampled from 

each font image, 𝐼𝑓 via 100 randomly positioned windows of pixels, of size 200 × 200, 

which were each associated with the font Specificity score, 𝑦𝑖 of font image, 𝐼𝑓. Given 

the 100-font dataset, this generated 10000 (𝐼𝑟𝑔𝑏, 𝑦𝑖) training examples. As the network 

was trained using k=10 fold cross validation, each fold used 9000 examples for training, 

and 1000 for testing. 

Number of 

Fonts 

CV Correlation R^2  Number of 

Epochs 

(training was 

split into 120 

epochs at a time) 

Training Time 

100 0.709875312 0.5039229 2280 19 hours 

Table 6.11 – Correlation between k=10 cross-validation Specificity score 

predictions and actual Specificity scores of fonts (based on word embeddings), 

based on training examples created via font image sub-samples. 

Specificity scores 𝑦𝑖 , were based on per-font word distributions 𝑤𝑑𝑓 , based on the 

stimuli of 𝐼𝑓, that we wanted to map to 𝑠𝑓 (we assumed that there exists an invertible 

function mapping 𝑤𝑑𝑓 → 𝑠𝑓 and 𝐼𝑓 → 𝑤𝑑𝑓, for this to be possible): ℎ(𝐼𝑓) = 𝑠𝑓. 

The trained convolutional neural network represented, ℎ . Overall, a function was 

learned to minimise the error between predicted font Specificity scores, 𝑦̂𝑖 , and the 

target font Specificity scores, 𝑦𝑖 , computed via word-embeddings. To do this, we 

minimised the mean-square error loss function (shown in Equation 6.7), via stochastic 

gradient descent, and standard backpropagation. The stochastic gradient descent 

executed in batch sizes of 24. ‖𝑾‖
2
2

 and ‖𝑏‖
2
2

 are 𝐿2 regularizers that were employed 
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to prevent overfitting. Additionally, 𝑁 is the number of samples used for training (the 

training batch size). 

ℒ(𝑾, 𝒃) =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2

𝑖 ∈ 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎

+ 0.01‖𝑾‖
2
2

+ 0.01‖𝒃‖
2
2

 

Equation 6.7 – Loss function for font Specificity prediction. 

Similarly, to the Schelling meshes case, the network structure used LeakyReLU neurons 

at each layer, excluding the output layer, which was a linear combination of the previous 

layer’s outputs. Figure 6.12 shows a diagram of the neural network. It was trained using 

𝑘 = 10 fold cross-validation (
1

10
 of the 𝐼𝑟𝑔𝑏 , were separated into a test set). After 

training, we averaged the prediction accuracy of each of the held-out test data sets. But, 

since each font corresponded to 100 different predictions, we instead correlated each 

prediction 𝑦̂𝑖, from 𝐼𝑟𝑔𝑏, with the word embedding-based font Specificity scores, 𝑦𝑖, of 

each font 𝐼𝑓, that each 𝐼𝑟𝑔𝑏 was sampled from. We achieved a significant correlation 

(p<0.05) of 0.71, after approx. 2280 epochs of training across the 10 folds. For a random 

predictor, correlations would hover around 0. Results are shown in Table 6.11. Our 

implementation used the Theano [255] and Keras [256] Python libraries. 

6.5.1 Predicting Font Specificity with Image-Based Shape 

Descriptors 

To attempt to answer the question of whether shape descriptors could predict font 

Specificity, we trained a descriptor-based fully-connected neural network to learn a 

regression function that mapped a single vector of shape descriptor values, to word 

embedding-based font Specificity values. 

We computed shape descriptors such as: Sobel filters (magnitudes and orientations), k-

means vector-quantised SIFT and SURF descriptors, Histogram of Oriented Gradients 
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(HoG) values and contour curvatures, to see if they were useful for this. The network 

consisted of 4 layers. It accepted a single 𝑑 dimensional vector, 𝑣 and output a single 

value, 𝑦̂𝑖, a font Specificity prediction. 

Each font image 𝐼𝑓, was used to generate multiple vectors, 𝑣𝑗, by randomly sampling 

200 x 200 windows of 𝐼𝑓, 𝑗 = 100 times. Each 𝑣𝑗 was subsequently paired with their 

associated font’s Specificity score, 𝑦𝑖. Given the 100 font dataset, this generated 10000 

(𝑣𝑗 , 𝑦𝑖) training examples. As the network was trained using k=10 fold cross validation, 

each fold used 9000 examples for training, and 1000 for testing. The hypothesis ℎ, was 

represented by the network: ℎ(𝑣𝑗) = 𝑦̂𝑖. 

The SIFT, SURF and Histogram of Oriented Gradients vectors, were 512 dimensions 

each, so in that case, 𝑑 = 512. The Sobel filter values were 64 dimensions each, so for 

these, 𝑑 = 64.  The number of neurons for each successive hidden layer, were ⌊0.5𝑑⌋, 

⌊0.25𝑑⌋, ⌊0.125𝑑⌋ and ⌊0.06125𝑑⌋, respectively. The loss function we minimised was 

similarly to that of the convolutional neural network, but we chose a simpler fully-

connected network in order to not allow other factors, such as network design, to 

influence the results. 

We trained the network using stochastic gradient descent and backpropagation, but 

achieved worse results in most cases, with predictions sometimes varying largely from 

the word embedding-based font Specificity scores. We highlight the Histogram of 

Oriented Gradients descriptor, as a good predictor of Specificity. Our results are shown 

in Table 6.12.
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CV Learning Results CV Correlation R^2  Number of Epochs 

(training was split 

into 150 epochs at a 

time) 

Histogram of 

Oriented Gradients 

(PCA applied – 512 

dimensions) 

0.52 0.27 2250 

Sobel filter (64 bins) 0.43 0.19 2250 

Vector-Quantised 

SIFT (512 bins) 

0.25 0.06 1500 

Vector-Quantised 

SURF (512 bins) 

0.06 0.004 2250 

Table 6.12 – Correlations between k=10 cross-validation Specificity score 

predictions and actual Specificity scores of fonts associated with training 

examples based on image descriptors. 
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6.5.2 Neural Network Structure (Colour Image-Based) 

 

 

 

 

 

 

 

 

Figure 6.12 – Diagram of a convolutional neural network for word embedding-based font Specificity prediction. Takes as input a 

200x200 sub-image of a font, and outputs a font Specificity prediction, 𝒚̂𝒊. 
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6.6 Applications 

We can search for and visualise fonts via their Specificity scores. They can be searched 

for and compared according to their Specificity, to find complementary fonts (similar 

Specificity values) and contrasting fonts (large relative distance between Specificity 

values). Fonts can be clustered via their Specificity, with visual differences expressed 

between clusters. 

6.6.1 Visualisation 

Fonts sorted according to word embedding-based Specificity scores (in ascending 

order), show a trend of increased simplicity as Specificity increases. See the appendix 

for a list of the entire 100 fonts, ordered in this way, with their font names (Figure 8.8). 

We can additionally visualise the font dataset using t-SNE embeddings based on the 

weights of the convolutional neural network trained for font Specificity prediction. This 

is done using the outputs at layer L6 of the network (see section 6.5.2). An example 

visualisation is shown in Figure 6.13. The picture shows a trend of increasing contrast 

from the top-left to the bottom right of the plot. This indicates that the network may be 

using contrast to predict Specificity, as was shown to be possible via the reasonable 

cross-validation learning results of the PCA-HoG descriptor and Sobel descriptor to 

some degree. The network seems to have clustered thinner fonts of similar geometry 

together; a similar pattern appears for the bold fonts. 

Via Amazon Mechanical Turk, we showed 15 participants a visualisation of all 100 

fonts, created via t-SNE embeddings derived from our Specificity prediction model (see 

Figure 6.13) alongside another visualisation based on t-SNE embeddings of a shape 

descriptor applied to the fonts.
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Figure 6.13 – Visualisation of 100 font t-SNE embedding based on outputs of our 

font Specificity prediction model. 

We repeated this for each shape descriptor. Each group of 15 participants was not 

necessarily unique for each descriptor. In two separate cases, we asked participants to 

select which set of fonts (visualisation image) they found 1) most legible or 2) most 

creative. Regarding legibility, participants found the Specificity score-based plot to be 

preferred over those of the Sobel and SIFT descriptors, but not the curvature and PCA-

HoG descriptors. We believe this was due to an experimental design error, in that 

participants focused on the shape of the visualisation image (due to the contrast between 

the overlapping black text of the fonts and the white background), rather than the fonts 

themselves to make their decision. We believe that the majority of participants 

effectively gave their preference on the entire shape of each visualisation image vs 
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another, based on the shape boundary defined by the change in contrast in the image, 

and did not mention similarities/differences between clusters of fonts, contrast etc. Due 

to this, we held a more focused survey on creativity and legibility of fonts at extreme 

Specificity levels, where the layout of fonts on display was fixed. See Figure 6.14 for 

some images of fonts that were shown to participants. 

6.6.2 Search via Extremes: Specificity vs. Shape Descriptors 

Via Amazon Mechanical Turk, we held a survey to determine whether fonts with low 

Specificity score were considered to be more creative (but still legible), compared to 

fonts close to these from a perspective of shape descriptors. Specifically, we took the 

closest 5 fonts to a query font of high creativity from the earlier Likert survey results, 

based on word embedding-based Specificity scores and a range of shape descriptors. 

We asked 30 participants on Amazon Mechanical Turk to look at 7 rows of fonts, with 

each row corresponding to the closest 5 fonts in terms of: 1) word embedding-based 

Specificity scores, 2) Pixel-wise Euclidean Distance, 3) Contour curvature, 4) Sobel 

filter magnitudes and orientations, 5) Vector-quantised SIFT descriptors and 6) PCA-

reduced Histogram of Oriented Gradients (to 256 dimensions) and 7) SURF descriptors. 

Their task was to select the row of fonts that was most creative, but still legible. See 

Figure 8.7 for a screenshot of a survey that we provided to participants (refer to 

appendix). 

By shuffling rows, different orderings were shown per 10 participants. Participants were 

also required to explain why they made their choice, with a minimum 50 characters. 

The average creativity Likert score for the query font was approximately 3.87 out of 5 

(96th percentile; from earlier collected data). Average Likert scores for the fonts in each 

row indicated that the font Specificity-based row would be most selected – see column 
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7 of Table 6.13. Row selection frequencies were collated, which indicated that the row 

of fonts based on Specificity scores was selected most often. Totals are shown in Table 

6.16. 

Participants that selected the Specificity row of fonts, mentioned that the fonts were 

different, yet clear and legible. For example, one participant mentioned that these fonts 

were “all easily readable” and contained “several different and creative fonts”. Another 

participant explicitly indicated some row comparisons, stating that “row 1 had the most 

unique variety of fonts that were legible”, additionally saying that “the other rows such 

as 7 and 2 contained illegible fonts” and “rows 3-6 contained fonts I felt were too similar 

to one another and were not very creative” (see creativity section of Figure 6.14). A 

third participant stated that the row “has the widest array of fonts but you can still read 

them all”. 

Other participants that selected the SIFT-based row of fonts, indicated that they were 

clear and easy to read, or were not as boring as the fonts of other rows. For example, 

one participant stated that the fonts were the “clearest and easiest to read”. Another 

stated that all the fonts in the SIFT-based row were legible (row 3 in creativity section 

of Figure 6.14), saying that they considered the Specificity row of fonts boring: “none 

of the font sets are boring like in row 1”. Overall, they mentioned that they “just [liked] 

the looks of the fonts in row 3 the best”. In these two cases, the participants did not 

actually answer the question correctly of selecting the most creative row of fonts (which 

are also still legible). Additionally, a participant that selected the curvature-based row 

mentioned that they felt “this font type is the most legible while it also looks interesting 

to me”. Another participant selected the same row stating that it was “[clear] and visible 

when compared to other fonts”.
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Figure 6.14 – Rows of fonts shown to participants in font creativity and legibility surveys for comparison of Specificity to shape 

descriptors. Each query font is located under each category (this was hidden from participants). 
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Creativity 1st 2nd 3rd 4th 5th Avg. of 

Font 

Scores 

Std. Dev. 

of Font 

Scores 

Percentile of 

Scores Avg. 

Font 

Specificity  

2.13 3.53 3.47 3.33 3.27 3.27 0.59 80th percentile 

Euclidean 

Distance 

3.47 2.33 2.00 3.00 3.87 2.93 0.77 71st percentile 

Sobel 

Values 

2.27 2.53 2.67 2.60 3.13 2.64 0.31 Approx. 60th 

percentile 

Curvature 2.60 2.93 2.60 2.93 3.13 2.84 0.23 Approx. 68th 

percentile 

SIFT 2.20 2.07 2.93 2.27 2.07 2.31 0.36 Approx. 35th 

percentile 

HOG 2.60 3.53 2.93 2.87 2.67 2.92 0.37 Approx. 70th 

percentile 

SURF 2.00 3.27 2.20 3.73 2.40 2.72 0.74 Approx. 65th 

percentile 

Table 6.13 – Average creativity Likert scores of fonts in each row (1st=closest, 

5th=farthest), based on 15 participants, in addition to the average score of each 

row and its approximate percentile relative to the entire 100 font dataset. 

 

Spec 

Scores 

L1/L2 

Distance 

Contour 

Curvature 

PCA-

HoG 
SIFT Sobel SURF 

Creativity 9 2 6 3 6 3 1 

Table 6.14 – Most creative (while still legible) font row selection frequencies 

among 30 participants. 

We cannot be certain whether ‘interesting’ or ‘clear’ corresponds to ‘creativity’ or 

similar terms, like uniqueness. Discounting these participants responses would 

effectively increase the proportion of participants that selected the Specificity-based 

row of fonts. Regardless, all selection frequencies (including those of the two 

participants mentioned) are shown in Table 6.14. As a counterpoint, one participant 

mentioned that the SIFT based row was “the only row that the letters were totally 

readable and that it had some unique fonts”, indicating that they gave a valid answer. 

Overall, participants that selected the Specificity-based row tended to provide less 

ambiguity in their answers and more often showed that they accurately followed the 

survey instructions. 
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We additionally held another survey asking participants which row of fonts was most 

legible, given rows of fonts closest to a query font with high legibility. As before, row 

shuffling was employed per 10 participants. The row frequency for closest fonts via 

Specificity scores was selected most often, with a greater magnitude compared to the 

shape descriptors. The average legibility Likert score for the query font was 

approximately 4.47 out of 5 (80th percentile; from earlier collected data). As with the 

creativity case, average Likert scores for each row of fonts indicated that the font 

Specificity-based row would be most selected – see column 7 of Table 6.15. Row 

selection frequencies are shown in Table 6.16. 

Participants that selected the Specificity-based row of fonts, indicated simplicity, font 

boldness, consistent spacing, scale and orientation and good spacing between letters as 

the reasoning behind their selections. For example, one participant stated that the fonts 

were not “too close together or too far apart”, indicating that font spacing was a factor. 

Legibility 1st 2nd 3rd 4th 5th Avg. of 

Font 

Scores 

Std. Dev. 

of Font 

Scores 

Percentile of 

Scores Avg. 

Font 

Specificity  

4.20 4.40 3.87 4.07 4.73 4.25 0.33 Approx. 52nd 

percentile 

Euclidean 

Distance 

2.33 4.60 3.53 4.07 3.93 3.69 0.85 Approx. 22nd 

percentile 

Sobel 

Values 

3.67 4.40 2.00 4.33 4.00 3.68 0.98 Approx. 22nd 

percentile 

Curvature 4.33 4.13 1.40 4.07 4.00 3.59 1.23 Approx. 21st 

percentile 

SIFT 4.27 4.13 4.33 3.87 4.13 4.15 0.18 Approx. 45th 

percentile 

HOG 4.00 4.40 3.33 4.33 4.40 4.09 0.46 Approx. 40th 

percentile 

SURF 4.20 4.27 3.93 4.53 4.27 4.24 0.21 Approx. 52nd 

percentile 

Table 6.15 – Average legibility Likert scores of fonts in each row (1st=closest, 

5th=farthest), based on 15 participants, in addition to the average score of each 

row and its approximate percentile relative to the entire 100 font dataset. 
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Spec 

Scores 

L1/L2 

Distance 

Contour 

Curvature 

PCA-

HoG 
SIFT Sobel SURF 

Legibility 14 0 0 6 4 4 1 

Table 6.16 – Most legible font row selection frequencies among 30 participants. 

Another mentioned that “the font designs were fairly straightforward with no weird 

spacing or flourishes making them harder to read”, citing consistency. A third 

participant mentioned that font boldness was important, in addition to consistent font 

scale and orientation. They stated that fonts were “all in bold” and that there was “no 

distortion in any [of] the lettering”, where the lettering was “basically the same size and 

easy to read compared to the other rows”, with each font being of a “very similar type” 

and “not at all confusing in any way". Similarly, another participant stated that “most 

fonts were bolded” and that they were the “clearest of the others”. 

These results suggest that searching for fonts in the extreme of font Specificity scores, 

can yield creative (but still legible), or most legible fonts which are preferred to closest 

fonts obtained via many shape descriptors. 

6.6.3 Clustering 

Visual Patterns 

We also attempted to determine whether clustering on the font Specificity scores (both 

word embedding-based Specificity and Rényi Specificity) provided visual differences 

between clusters, and whether those differed to clusters obtained via shape descriptors. 

We used the best of 10 iterations of k-means, to obtain cluster assignments for each 

font. The shape descriptors employed were those used earlier in the chapter. All 

clusterings were produced with k=4, unless specified. Ahead, we may also refer to word 

embedding-based Specificity as word2vec Specificity, on occasion. 
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Visually, the clearest patterns were visible in the Rényi and word2vec Specificity-based 

clusterings, and the SIFT clustering. We provide visualisations of cluster assignments 

via images of the fonts themselves shown in Figure 6.15 to Figure 6.18. On repeated 

clustering attempts, we see similar visual patterns, indicating that there is some stability 

in the results. 

Rényi and word2vec Specificity-based clusters show reduced variation or greater 

simplicity in font edges, according to the increasing mean Specificity score of each 

cluster. The clusters with the top-2 highest mean scores contain simple fonts which tend 

to be very thin or bold. SIFT best reflects contrast/boldness and thinness of fonts 

between clusters. This is somewhat like clustering according to the contrast of each font 

against the background. 

Contour curvature sometimes shows contrast and texture variation between clusters, but 

some of the simplest fonts are blended within the extreme fonts in those clusters. Also, 

cluster assignments are uneven. This unevenness is also true for the PCA-HoG and 

Sobel-based clustering. Sobel filtering produces cluster assignments determined via 

contrast or thickness. 

Statistical Comparison 

Similarity Tests 

We used the Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI) 

metrics to determine the similarity between clusterings based on word2vec font 

Specificity and those based on shape descriptors. They each measure the degree of 

agreement between two partitions of a dataset, both taking into account the possibility 

that cluster assignments occurred due to chance. For the ARI, a value of 1 indicates the 

exact same clustering, and values near 0 suggest a uniform random clustering. 
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Figure 6.15 – Visualised Rényi Specificity-based clustering (k-means; k=4) for all 100 fonts. For each cluster, the mean and standard 

deviation of the Specificity scores of its constituent fonts is displayed. 
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Figure 6.16 – Visualised word2vec Specificity-based clustering (k-means; k=4) for all 100 fonts. For each cluster, the mean and standard 

deviation of the Specificity scores of its constituent fonts is displayed. 
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Figure 6.17 – Visualised SIFT-based clustering (k-means; k=4) for all 100 fonts. 
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Figure 6.18 – Visualised PCA-HoG-based clustering (k-means; k=4) for all 100 fonts. 
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The AMI results in 0 on average, when the clustering occurred due to chance (so values 

can be negative), and 1 when the partitions are the same. Our results in Table 6.17 and 

Table 6.18 show that cluster assignments based on word2vec or Rényi Specificity vs. 

those of the tested shape descriptors do not align, even in the most extreme cases of the 

Sobel descriptor. 

Adjusted Rand Index  Contour Curvature PCA-HoG SIFT Sobel SURF 

Rényi (k=4) 0.002 0.025 0.024 0.043 -0.022 

Rényi (k=8) -0.007 0.005 0.026 -0.008 -0.016 

Word2vec (k=4) 0.008 0.006 0.041 0.028 0.005 

Word2vec (k=8) -0.005 0.00035 0.00032 0.007 -0.01 

Table 6.17 – Adjusted Rand Index values based on pairing k-means clusterings 

derived from Specificity scores with a clustering based on each shape descriptor 

(values > 𝟐𝝈 away from the mean are in green). 

Mutual Information  Contour Curvature PCA-HoG SIFT Sobel SURF 

Rényi (k=4) 0.007 0.019 0.042 0.078 -0.019 

Rényi (k=8) 0.006 0.01 0.021 0.003 -0.04 

Word2vec (k=4) -0.005 0.014 0.042 0.026 -0.012 

Word2vec (k=8) 0.011 0.022 0.01 0.033 -0.003 

Table 6.18 – Adjusted Mutual Information values based on pairing k-means 

clusterings derived from Specificity scores with a clustering based on each shape 

descriptor (values > 𝟐𝝈 away from the mean are in green). 

ANOVA Using Specificity Scores 

For a statistical test of the difference in clusterings obtained via shape descriptors vs. 

font Specificity, we performed a series of one-way ANOVA tests, to find significant 

differences, if any, between mean cluster Specificity scores in each case (each 

descriptor, or font Specificity measure). As a sanity test, we found that p << 0.0001 

when clustering via the Rényi Specificity and word2vec-based Specificity scores, 

respectively. Therefore, we considered k-means as a valid option for clustering via the 

shape descriptors. 
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Table 6.19 provides results for k=4 and k=8 clusters, respectively. For k=4, we can see 

that clustering via contour curvatures, or the Sobel descriptor, provides significant 

differences in mean Rényi Specificity. Only the PCA-reduced HoG does so for the 

word2vec case. For k=8, the PCA-HoG descriptor provides significant differences in 

mean Specificity across both the word2vec and Rényi variants. SIFT and Sobel also do 

so in the Rényi case. Although there are differences here, both the Sobel descriptor 

(k=4) and PCA-HoG descriptor (k=8) measure gradients of an image at differing levels 

of detail – and with scale invariance in the case of PCA-HoG. This result, in addition to 

the earlier cross-validation learning results based on descriptors, indicates that some 

information regarding image gradients is reflected in a font’s Specificity score – 

whether in word frequency, or variation in co-occurrence of words associated with a 

font (as defined by the word2vec embedding). 

Table 6.19 – One-way ANOVA test results for significant differences in mean 

Specificity score of clusters obtained via k-means (k=4, k=8), across all 100 fonts. 

ANOVA Using Likert Scores 

We additionally held a series of one-way ANOVA tests to determine whether there were 

significant between cluster differences in the Likert score means of the fonts. Table 6.20 

and Table 6.21 show that significant differences occur across many Likert criteria and 

image-based descriptors, whether clustering via k=4 or k=8 clusters. Overall, we see 

that for k=4, both the word2vec and Rényi Specificity variants showed the most 

significant difference in creativity Likert score means. For the k=8 case, Rényi 

Specificity was best. In terms of legibility, Rényi Specificity and the Sobel descriptor 

Specificity 

Scores vs. Shape 

Descriptors 

Contour 

Curvature 
PCA-HoG SIFT Sobel SURF 

Word2vec (k=4) p < 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 

Word2vec (k=8) p >= 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 

Rényi (k=4) p >= 0.05 p >= 0.05 p < 0.01 p < 0.01 p >= 0.05 

Rényi (k=8) p >= 0.05 p < 0.01 p < 0.05 p < 0.01 p >= 0.05 



Chapter 6: Font Specificity 

257 

yielded the most significant differences. For k=4, Rényi Specificity and the PCA-HoG 

descriptor did so for legibility, whereas word2vec Specificity did so for creativity. 

For uniqueness, visual appeal and notions of normality or boringness, both Specificity 

measures were similar in significance to other descriptors at p < 0.05. The Sobel 

descriptor yielded most differences with respect to memorability and a notion of 

‘standing out’ for both the k=4 and k=8 cases. Finally, for notions of elegance, fun and 

modernity, shape descriptors tended to yield better results than Specificity – apart from 

a notion of fun, in the k=4 case, where word2vec Specificity yielded a significant result, 

in addition to the Sobel descriptor. 

6.7 Discussion 

To begin, we restate our hypotheses below: 

1. A more legible font is more Specific. 

2. A more creative font is less Specific and less legible.  

3. Visually appealing fonts are more Specific but potentially not the most Specific 

fonts. 

4. Specificity conveys information different to that of existing image descriptors. 

We have found that more Specific fonts tend to be more legible, as fewer words or 

words with a more consistent meaning are used to describe them. This can be visualised 

by ordering the font dataset by increasing Rényi or word2vec-based Specificity score. 

We also observe negative correlations with per-font word frequency and font Specificity 

scores (Rényi and word2vec variants).
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  Word2vec Rényi Contour Curvature PCA-HoG SIFT Sobel SURF 

Legible p < 0.01 p < 0.01 p < 0.01 p < 0.01 p >= 0.05 p < 0.01 p >= 0.05 

Creative p < 0.01 p < 0.01 p < 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 

Memorable p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 

‘Stand Out' p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 

Unique p < 0.01 p < 0.05 p >= 0.05 p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Visual Appeal p < 0.05 p < 0.01 p < 0.05 p < 0.05 p >= 0.05 p < 0.01 p < 0.01 

Boring p < 0.01 p < 0.01 p < 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 

Normal p < 0.01 p < 0.01 p >= 0.05 p < 0.05 p >= 0.05 p < 0.01 p < 0.05 

Elegant p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 

Fun p < 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 

Modern p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p < 0.01 p >= 0.05 

Table 6.20 – One-way ANOVA test results for significant differences in mean Likert score of clusters obtained via k-means (k=4), across 

all fonts. 
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 Word2vec Rényi Contour Curvature PCA-HoG SIFT Sobel SURF 

Legible p < 0.01 p < 0.01 p < 0.01 p < 0.01 p >= 0.05 p < 0.01 p >= 0.05 

Creative p < 0.01 p < 0.01 p < 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 

Memorable p >= 0.05 p < 0.05 p < 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 

‘Stand Out’ p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p < 0.01 p >= 0.05 

Unique p < 0.01 p < 0.05 p < 0.05 p < 0.01 p >= 0.05 p >= 0.05 p >= 0.05 

Visual Appeal p < 0.01 p < 0.01 p < 0.05 p < 0.01 p >= 0.05 p < 0.01 p >= 0.05 

Boring p < 0.01 p < 0.01 p >= 0.05 p < 0.01 p < 0.05 p < 0.05 p >= 0.05 

Normal p < 0.01 p < 0.01 p >= 0.05 p < 0.01 p >= 0.05 p < 0.05 p >= 0.05 

Elegant p >= 0.05 p >= 0.05 p >= 0.05 p < 0.05 p >= 0.05 p < 0.01 p >= 0.05 

Fun p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Modern p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 p >= 0.05 

Table 6.21 – One-way ANOVA test results for significant differences in mean Likert score of clusters obtained via k-means (k=8), across 

all fonts. 
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Additionally, we have found that fonts high in Specificity are considered more legible 

than fonts close to them in terms of the tested image-based shape descriptors. These 

results indicate that hypothesis #1 may be correct, but do not directly confirm it. 

Visual appeal correlates with Specificity (Rényi and word2vec variants), but not as 

strongly as notions of legibility (positive corr.) or creativity (negative corr.). This 

suggests that visual appeal can be a factor behind Specificity, but it is not the most 

important one. We conclude that hypothesis #3 is correct. We have also found that fonts 

low in Specificity are considered more creative (given some legibility) than fonts close 

to them in terms of the tested image-based shape descriptors. Given that only a subset 

of image-based shape descriptors have been tested, and there was a requirement for 

fonts to be legible to some degree, this result does not imply that hypothesis #2 is 

correct, but provides evidence towards it. 

Through comparing clusterings (k-means) based on word2vec-based font Specificity 

with the tested shape descriptors, we see little to no alignment between the clusterings, 

when using the Adjusted Rand Index and Adjusted Mutual Information measures. 

Visually, we can see some differences in the clusterings, as well. Additionally, when 

fonts are clustered via Specificity (k-means), Specificity can more significantly 

distinguish between a notion of ‘creativity’ in fonts, on average, compared to the tested 

image-based shape descriptors. This was based on a one-way ANOVA test of the 

clusterings (see section 6.6.3 – “ANOVA Using Likert Scores”). These results give 

evidence that hypothesis #4 is correct. 
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6.8 Conclusion 

Specific fonts can be perceived as more memorable relative to other fonts. They are 

considered to be more common and visually-appealing, more legible, less creative and 

more mundane or normal. 

Fonts seem to display a mixture of many characteristics (texture, curvature, thickness) 

if they have low Specificity. Thinner and italic fonts tend to have higher Specificity 

scores, with a greater proportion of bold fonts appearing as Specificity is highest. The 

highest Specificity fonts tend to have only one or two clear aspects to them. For 

example, they are bold, bold and italic, italic and thin etc. 

People have also found fonts high in Specificity to be more legible than similarly close 

fonts in terms of geometric shape descriptors. Specificity can be used to search for 

creative or legible fonts, based on these properties. Clustering using Specificity clearly 

shows differences between fonts which are not only based on contrast, or closest font 

shape or pixel alignment. Specificity-based clustering assignments can more 

significantly distinguish between a notion of ‘creativity’ in fonts, on average, compared 

to a range of shape descriptors. 

We have also shown that font Specificity can be learned using an image-based 

convolutional network, by sub-sampling 200x200 images from a higher-resolution 

source image of a font’s alphanumeric characters. The Histogram of Oriented Gradients 

and Sobel (magnitudes and orientations) descriptors were also found to be suitable for 

prediction of font Specificity. 
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7 Conclusions 

We set out to understand shapes from a lens of human perception, rather than via 

geometric shape descriptors. The argument was that this approach would lead to a better 

understanding of “shapes” or provide a different outlook on them, which geometric 

shape descriptors could not provide. By different, we mean a measure of group-level 

saliency which reflects how distinctive each discrete or whole element of a group is, 

with respect to the other elements of the group. This differs from unit-level saliency 

measures which describe or focus on an individual object at a time, with a goal of 

understanding which sub-components of a single object are salient. Group-level 

saliency approaches allow you to measure complementary aspects of the shapes within 

a group (i.e. perceived elements of the shapes), that are different to the underlying 

geometry – e.g. creativity, memorability. 

We studied 3D shapes from a new point of view, treating whole shapes as Schelling 

Points, or Schelling meshes. The concept was previously only applied to the study of 

vertices on 3D meshes. 2D fonts were studied from a new perspective of Specificity, 

which was previously only applied to photographic images. We researched both 

concepts via the use of crowdsourcing platforms and machine learning, holding online 

surveys to gather data for further analysis, comparison and prediction of shapes/fonts 

more aligned with each concept, respectively. From this, we introduced potential 

applications of each concept. 

In this chapter, we look back at the discussed approaches, summarise the research 

outcomes and indicate future directions. 



Chapter 7: Conclusions 

263 

7.1 Contributions 

The alternative approaches to understanding 3D shapes and 2D fonts described in this 

thesis – introduced via the concepts of Schelling Points and Specificity, are our main 

contributions to the field of shape perception. Each approach provides a measure of 

some subjective elements of shape, which are consistent across many people. 

Our contributions are four-fold: 

• Methodologies for data collection via crowdsourcing – the ‘4-choose-1’ study 

of Schelling meshes in Chapter 4, the ‘Many-Within-Class’ study of Schelling 

meshes in Chapter 5, and the font Specificity study in Chapter 6. 

• Analysis of what makes a shape ‘Schelling’ and a font ‘Specific’. As part of this, 

we created a scoring approach for Schelling saliency in shapes, measures of 

Specificity for fonts, and determined subjective properties common to Schelling 

meshes or Specific fonts. 

• An approach to learning a function that can predict which shapes are likely to 

be Schelling salient, or fonts, Specific. Such a learned function can then be used 

to make predictions for any new font, or shape within the same class. 

• Applications of Schelling meshes in visualisation and clustering, and font 

Specificity in visualisation, search and clustering. 

7.2 Summary of Studies 

7.2.1 Schelling meshes: ‘4-Choose-1’ Study 

In this preliminary study, selections under the Schelling context corresponded to people 

choosing one of four shapes, each randomly sampled from a single class of shape (e.g. 

baskets, bottles), according to various geometric high-level groups, described in the 
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associated chapter (see section 4.3.1 and 4.3.2). These selections, or Schelling scores 

were represented as a four-dimensional, binary-valued vector (e.g. 0100), with a one 

denoting the selected shape. From these scores, we derived per-shape Schelling 

frequencies, or the fraction of times a shape is selected, given its visibility in a 

combination of 4 shapes (see section 4.4.2).  The question of “what makes a shape 

Schelling salient?” was explored with the collected data. As an example, we collected 

data on subjective terms (e.g. visual appeal, naturalness, strangeness), and attempted to 

correlate Likert score ratings of shapes according to these terms, with shape Schelling 

frequencies (see section 4.4.3 and 4.4.4). We showed that the notion of Schelling salient 

meshes can be learned and we predicted Schelling scores with a voxel-based 

convolutional neural network, mapping 4 shapes to their Schelling score predictions 

(see section 4.5). Predictions can be interpreted as a weighted average of all Schelling 

scores for a shape (e.g. table #6 out of 25), given another 3 shapes shown nearby. We 

show results for several types of 3D shapes and demonstrate that the notion of Schelling 

saliency of meshes is useful for the applications of Schelling-based visualisation, 

clustering, and search (see section 4.6). 

7.2.2 Schelling meshes: ‘Many-Within-Class’ Study 

In this study, we continued our exploration of the Schelling meshes concept by 

collecting shape selection data in a setup where multiple shapes can be selected from a 

class of shapes. This generalises the group-level saliency aspect of the study, in that 

there are now direct comparisons between a shape and all of shapes of a class (1-to-n, 

instead of 1-to-m). From this data, we computed per-shape Schelling frequencies, or the 

fraction of times a shape is selected, given its visibility to participants (see section 

5.3.1). As before, we explored what makes a shape Schelling salient. As in the previous 

study, we collected data on subjective terms (e.g. memorability, uniqueness, visual 
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appeal), attempting to correlate Likert score ratings of shapes based on these terms, with 

shape Schelling frequencies (see section 5.4.2 and 5.4.4). We showed that the notion of 

Schelling saliency of meshes can be learned via a depth image-based convolutional 

neural network and used to predict Schelling frequencies (see sections 5.5.1 to 5.5.3). 

We then attempted to predict Schelling frequencies using a range of traditional shape 

descriptors, but we achieved better prediction accuracy in each case, using a deep-

learning approach (see section 5.5.5). 

We show results for several types of 3D shapes and demonstrate that this study’s 

interpretation of mesh Schelling saliency is useful for the applications of Schelling-

based visualisation, and search. Schelling meshes are perceived as memorable and can 

best distinguish between the extreme shapes of a dataset. Simple dataset visualisations 

of shapes can be produced by plotting pictures of them, on a 1-D line according to their 

Schelling frequencies. t-SNE embeddings based on shape Schelling frequencies can be 

used to visualise 3D shapes (see section 5.4.2 and 5.6.2). Schelling frequencies can be 

used to search through a dataset for shapes which are considered to be memorable 

and/or are likely to stand out relative to the class. This is done through the absolute 

difference of their Schelling frequencies (see section 5.6.1). Predictive models as 

described above, can help people to find similar shapes, which are not necessarily within 

our shape datasets, but are from the same shape class – e.g. different lamps, tables etc.  

7.2.3 Font Specificity Study 

This study aimed to determine a measure of some aspect of human perception of fonts, 

via the consistency of textual descriptions associated with greyscale 2D fonts. This 

consistency encapsulates how Specific a font is. We collected word-level descriptions 

of these fonts and used them to determine two approaches to measuring Specificity: 1) 
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based on word frequency (see section 6.4.4), and 2) an automated approach based on 

pre-trained word embeddings, which represent word co-occurrence frequency in a 

corpus of text, or a notion of word meaning (see section 6.4.5). To explore what makes 

a font Specific, we collected data on subjective terms (e.g. creativity, legibility, visual 

appeal), attempting to correlate Likert score ratings of fonts based on these terms, with 

font Specificity (see section 6.4.5). Additionally, we analysed word frequencies and the 

types of words used to describe fonts, via their Part-Of-Speech (see section 6.4). We 

developed a method to predict word-embedding based font Specificity and introduce 

potential applications in search, visualisation and clustering (see section 6.5 and 6.6). 

7.3 Summary of Findings 

The findings listed below have been presented in previous chapters. Here they are 

displayed in a summarised form. 

7.3.1 Schelling Meshes 

People consider Schelling meshes to be those meshes which are more prominent and 

stand out with respect to other shapes in a dataset. This suggests that they can represent 

a dataset’s extremes. They are perceived as the most memorable shapes relative to their 

class. Differently to that of previous work which has studied points on 3D meshes 

selected under a Schelling coordination game setting [6], we found that Gaussian 

curvature and Shape Diameter Function (SDF) values do not correlate with our per-

shape Schelling saliency score – its Schelling frequency. This was also the case for the 

other tested descriptors (see section 5.4.3). 

Overall, we found that Schelling frequencies convey different information to that of the 

shape descriptors. For example, visualising per-shape descriptor values as an intensity 

heatmap across each shape class, shows no visual patterns when the descriptors are 
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displayed in order of increasing Schelling frequency (see section 5.4.3). Additionally, 

Schelling frequencies tend to encapsulate subjective concepts associated with a 3D 

shape more accurately than the shape descriptors held in comparison to them. 

We found that a notion of Schelling saliency in shapes can be learned, using a voxel-

based convolutional neural network (see section 4.5 or 5.5.3), or a depth image-based 

convolutional neural network (see section 5.5.2). Significantly better prediction results 

were achieved in the latter case, however. We compared a selection of geometric shape 

descriptors to deep-learning approaches for prediction of Schelling scores, and achieved 

better prediction accuracy, using a deep-learning approach (see section 5.5.5). 

When shape Schelling frequencies are clustered according to k-means, there is greater 

between-cluster variation in shape memorability ratings across a number of shape 

classes, than that of clusters obtained via a range of shape descriptors (see section 5.6.3). 

Additionally, partition agreement tests (Adjusted Rand Index and Adjusted Mutual 

Information) show large differences between clusterings obtained via Schelling 

frequencies vs. the tested shape descriptors. Geometric differences in shape also exist 

between clusters, given per-class clusterings based on their Schelling frequencies (see 

section 5.6.3). 

Measures of Schelling saliency for shapes could be used to select which of a collection 

of mock-up 3D products or packaging is most prominent or memorable, for more 

effective advertising. In a more consumer-oriented example, a furniture store could 

provide a service which ranks a set of chairs a customer is interested in, by their 

perceived memorability or uniqueness. Going further, if a 3D shape of an existing chair 

were to be provided by the customer, it could be ranked relative to the in-store options. 
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7.3.2 Font Specificity 

Specific fonts are the simplest and most legible fonts in a collection. Fonts start out as 

a mixture of many characteristics (texture, curvature, thickness) when they have low 

Specificity, with thinner and/or italic fonts appearing as Specificity increases. A large 

proportion of bold fonts have the highest Specificity. The highest Specificity fonts tend 

to have only one or two clear aspects to them – i.e. bold; bold and italic; italic and thin 

etc. Specific fonts are perceived as legible and memorable. They are also considered to 

be more visually-appealing, common/normal, and less creative compared to other fonts 

(see latter parts of section 6.4.5). 

We found that font Specificity can be learned, and we predicted Specificity scores using 

a depth image-based convolutional neural network. The PCA-HoG shape descriptor 

was also shown to be a reasonably good predictor of font Specificity (see section 6.5.1). 

There is some alignment in the information represented by font Specificity vs. that of 

the tested shape descriptors, as we reasonably found that contrast is a useful indicator 

for Specificity prediction (see section 6.6.1). It is not a direct indicator of Specificity 

however, as many fonts, both low and high in Specificity have consistent colour 

throughout them. 

Simple dataset visualisations of fonts can be produced by plotting pictures of them, on 

a 1-D line according to their font Specificity scores (see section 6.4.5 and Appendix 

A6). t-SNE embeddings based on font Specificity, can also be used to visualise fonts 

(see section 6.6.1). Fonts can be searched for and compared according to the absolute 

difference of their Specificity scores (see section 6.6.2), to find legible fonts (high 

Specificity value) and creative fonts (low Specificity value). 
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When font Specificity scores are clustered via k-means, the clusters show greater or 

equal variation in subjective notions of creativity, when compared to a 512-bin PCA-

compressed, Histogram of Oriented Gradients descriptor. In terms of legibility, some 

shape descriptors achieve similar between cluster variation (for both points, see section 

6.6.3). Geometric differences in fonts also exist between clusters, given per-class 

clusterings based on their Specificity (see section 6.6.3 for a visual representation of the 

clusters). 

Measures of Specificity for fonts can enable the automatic selection of readable fonts 

for a website or a word-processed document or assist in the selection of creative fonts 

for advertising, posters and billboards. 

7.4 Discussion 

7.4.1 Schelling Meshes – Comparison of Methodologies: Bias and 

Generality 

From our two approaches, ‘4-choose-1’ and ‘Many-Within-Class’, we collected data on 

different classes of 3D shape and noticed some differences, similar patterns, and clear 

trade-offs. Both studies were designed to collect Schelling saliency data, but different 

levels of bias and data quality were achieved. 

The ‘Many-Within-Class’ study brought up a common problem in collecting survey 

results without some form of qualifying test. The methodology was good for reducing 

bias in our results, in that participants were not primed to expect a certain situation, but 

since there was no pre-defined goal/target, participants could not be easily guided via 

controls. This was different to the ‘4-choose-1’ approach which allowed for controls, 

making it more experimental. But the associated bias in that study (shape high-level 

groups; only 4 shapes at a time) was removed in the ‘Many-Within-Class’ setup, making 
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it more exploratory (although the number of shapes to be shown to a participant at any 

one time, must be pre-determined). 

Some bias could potentially be removed from shape high-level group selection in the 

‘4-choose-1’ approach by determining groups only based on words provided by survey 

participants which would describe each shape (in comments, or via a separate survey). 

But the ‘4 shapes at a time’ restriction, remains. 

Now that existing results have been gathered using the ‘Many-Within-Class’ approach, 

further comparison with additional shape classes is possible. Regarding Schelling 

saliency, we believe that this is the best approach to take for any future work involving 

the study of whole shapes. This is due to the consistency of the obtained results 

(regarding analysis and learning), relative to the ‘4-choose-1’ approach, even though 

the setup is less restrictive in terms of data collection. Additionally, if shape class sizes 

become much larger than those in this thesis, it will likely become infeasible to collect 

informative data under the ‘4-choose-1’ approach due to the increased number of 

possible shape permutations. The generality of the ‘Many-Within-Class’ approach 

stems from the fact that incremental results can be obtained one person at a time, given 

existing Schelling frequencies. 

7.4.2 Modelling Approaches 

Since our purpose was to create a discriminative model of Schelling saliency in 3D 

shapes or Specificity in fonts, we decided not to use autoencoders or generative 

adversarial networks in our work. Additionally, there were accuracy and computational 

cost reasons. Without these limitations, generation of shapes with the properties of these 

concepts could be an interesting research topic. We also decided to not use a residual 

network due to shape data not needing a very deep/abstract representation to be learned. 
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Lastly, we decided to not use a recurrent neural network such as an LSTM, since our 

shape data does not deform or transform over time. To add to this, we collected word-

level descriptions of fonts rather than sentence-level descriptions. An LSTM may be 

useful for modelling the latter case of data, but not the former. But, our collected shape 

selections and font word-level descriptions can change over time, so a time-series 

interpretation of that data could lend to the use of recurrent networks/models for 

analysis. For example, given a context of the previous 5 selected shapes, present a 

Schelling salient shape with respect to the context. 

7.5 Future Work 

7.5.1 Schelling Meshes 

Doing it Differently 

With additional time and resources, we could produce Schelling frequencies and 

associated plots for new shapes in each shape class population, completely outside of 

the presently collected data, via predicted Schelling frequencies obtained by our 

convolutional network. Analysis of similarities and differences in the Schelling 

frequencies produced via ground-truth human selections vs. predictions, could 

encourage the detection of quirks or irregularities in the Schelling frequency predictions 

of individual shapes. 

We would collect more shapes across different shape classes for finer precision and 

accuracy in Schelling mesh predictions (e.g. 1000+ shapes per class) and attempt to 

explicitly combine shape classes that are commonly found together (e.g. chairs + tables, 

bottles + cups) when collecting data, to see how Schelling frequencies change with the 

mixed stimuli. 
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It may be interesting to handle the case where shape classes are mixed, as in this 

situation, between shape class factors could have affected our results. But we have 

already seen commonalities between disparate shape classes such as the abstract and 

cabinets/shelves shapes, which other shape classes share. 

Impact of Colour/Texture on Schelling Saliency 

Speaking of colour, it may be the case that the colour and/or texture of a shape affects 

its Schelling saliency. How significant would the effect(s) be? We might be able to 

measure this in some way, by modifying the colour of half of a class of shapes, keeping 

it fixed for the remainder. On shuffling the shapes, would participants select the shapes 

with modified colour more or less often, than when all shapes are of the same colour? 

We could repeat this test for a range of colours, via crowdsourcing. The colour 

resolution being measured would depend on cost, however. Would certain colours 

exhibit larger changes in Schelling frequency? If significant differences appear, a 

similar test could be held for a range of colour textures. We might separately study 

shapes with surface-level engravings, or even embossed shapes, produced via 

displacement maps. Assuming that there is some significant effect, adjusting the colour 

or texture of a shape could be used to enhance or reduce a shape’s Schelling saliency in 

a scene, potentially affecting how memorable it is. This could be useful in advertising 

applications or possibly educational scenarios for young students. 

Impact of Proximity on Schelling Saliency 

When looking at the ‘4-choose-1’ and ‘Many-Within-Class’ studies, we can see that the 

former assumes that shapes are close to an observer, taking up much of their field of 

view. This limits the amount of shapes in view, while increasing their detail. The latter 

assumes the opposite, in that shapes are further away, increasing the number of shapes, 

while decreasing their individual detail. This detail does not seem to be necessary – it 
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may be that there is too much detail in the former case, to collect the best quality 

Schelling saliency data. But is Schelling saliency applicable at short focal distances? 

That is, does it work at close distances where most objects or parts of objects are in the 

periphery of the visual field? If not, is Schelling saliency only applicable at longer focal 

distances from a group of objects, where none or a minimum of objects are in the 

periphery? Determining an answer to this would suggest whether explicit focus on 

shapes within a relatively narrow field of view is required to collect Schelling saliency 

data, or whether some quick glances over a larger field of view, is enough. 

Internal vs. External Validation of Schelling Context?  

In the Schelling meshes studies presented in the thesis, we requested that participants 

understand that their responses needed to be given under a Schelling ‘context’ for them 

to be valid. This context was satisfied if a participant was 1) imagining potential choices 

of other participants, and 2) weighting and filtering these choices to select those which 

they believed matched with other people’s selections. But, how can we know whether 

each participant is internally agreeing to perform these tasks, without using external 

comparison and analysis of data to do so? Ethical considerations must be taken into 

account to determine whether this should be allowed, at all. For example, is the selection 

device invasive or non-invasive? Is it possible to measure information about a 

participant that is not explicitly requested? 

7.5.2 Font Specificity 

Doing it Differently 

Collecting more fonts (e.g. 1000+) would enhance the precision of training data used 

for font Specificity predictions, likely improving prediction accuracy for unseen fonts. 
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We would also attempt to better handle continuity in Specificity scores, as a few fonts 

of similar geometry have Specificity scores which are quite far apart (see Appendix for 

all 100 fonts ordered by word2vec based Specificity). This occurs with both the Rényi 

and word2vec-based Specificity measures. Doing so could reduce the number of 

effective outliers in the Specificity score distribution of a set of fonts. 

Group-level Specificity 

How can we determine the Specificity of a group of fonts? Would it be based on a 

uniform weighting of their Specificity scores, or would the weighting be adjusted 

dependent on whether a reading, writing or advertising task is at hand? 

Specificity-based Font Selection for a Document 

A user might want a set of fonts to be automatically selected for an existing document 

(e.g. a word-processed article, or a website). This would require an algorithm for the 

automatic determination of a set of fonts for a document, given task keywords or the 

meaning behind a word context (phrases or sentences in the document). For a word 

context, we could train a LSTM network to predict words likely associated with the 

context, and automatically compute their Specificity via a word embedding, taking a 

weighted sum of the Specificity scores (or their average), as the Specificity of the word 

context. A fixed context size would need to be determined, but if large enough, it could 

provide information on how consistent a sentence is, with consistent sentences being 

associated with a simpler legible font (high in Specificity). A relatively inconsistent 

sentence could potentially be displayed in a font with low Specificity, to make it stand 

out from the main body of text. Accounting for words which co-occur often (are close 

in the word embeddings) but have different word senses/meanings could help to 

improve the accuracy of results. 
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Impact of Colour/Texture on Specificity 

The colour and texture of a font may affect its Specificity. Analysis of the types and 

meanings of the words associated with each font, given gradual changes in colour or 

texture may be interesting to see. It would be reasonable to expect increased variation 

in the words provided, increasing the entropy of per-font word frequency distributions, 

reducing each font’s Specificity. But would this scale equally across all fonts, even 

those with different geometry? Also, would this reduction in Specificity apply to scores 

computed with a word embedding-based approach? 

As font Specificity conveys some different information to that of shape descriptors, it 

may be interesting to form a multimodal approach to font/image search, using both 

image geometry/features and a Specificity score, each weighted by their importance to 

the task at hand. Clustering SIFT features of fonts tends to cluster fonts by their contrast 

with the background. Weighting Specificity slightly higher than SIFT features and 

selecting descriptors with values in a certain bound, could ensure that legible fonts of 

specific contrast are selected. A similar multimodal approach to image saliency based 

on image annotations and textual descriptions has been attempted [191]. 

Processing Fluency and Text Memorisation 

Processing fluency is the ease with which information is processed. Perceptual fluency 

is the ease of processing stimuli based on manipulations to perceptual quality, whereas 

retrieval fluency is the ease with which information can be retrieved from memory 

[275]. 

Judgements of learning (JOL) are a person's estimate as to how well they have learned 

something. In 1991, Nelson and Dunlosky discovered that JOLs were highly accurate 

when delayed slightly, rather than being immediately made. This suggested that it took 
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time for new concepts to move from short-term memory to long-term memory. If tested 

immediately, a person may perceive to have learned some concept, but quickly forget 

some aspects of it when moving onto a new task. Testing their longer-term memory can 

therefore be more accurate [276]. Similarly, if we repeat some text in a paragraph, 

quickly after the initial text, we are inclined to skip it as we think we have acquired the 

information already. So, we do not learn anything new. 

When showing repeated text to a subject, without delay or with minimal delay, we could 

ask whether the inconsistency of fonts used to show each piece of repeated text 

encourages an accurate judgement of learning to be made more quickly, relative to 

displaying all text in a single font. Could Specificity be a measure of the perceptual 

fluency of each piece of text? If so, some distance measure based on the text’s 

Specificity could reflect how easy the text is to learn and internalise. 

For example, "The quick brown fox jumps over the lazy dog" could be shown in two 

different fonts (keeping one font fixed, while varying the other), repeated with only a 

short gap between the sentences. But each font would be different, and some distance 

apart with respect to Specificity: 

E.g. 

"The quick brown fox jumps over the lazy dog" 

"The quick brown fox jumps over the lazy dog" 

Would a subject recall the initial text more accurately, as the Specificity-based distance 

between the two fonts increases? If true, this may be useful for learning natural 

language-based concepts, in an educational setting. Given a fixed initial font, we could 

vary the latter font, to determine how recall times vary with Specificity, if at all. 
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We might also attempt to increase the space between sentences or request a specified 

time delay before a response to the font stimuli, to see if recall in each case differs – 

possibly according to the delayed JOL effect [276]. 

Many works have attempted to adjust the perceptual fluency of text. One study of 

children's learning and comprehension found that modifying the perceptual properties 

of words (font sizes, line lengths and line spacing) provided to children, affects their 

comprehension, but differently across different ages [277]. Other work has discovered 

that larger font sizes can affect JOLs, which in some way increases perceptual fluency, 

even though font size does not affect retention of the information provided [278]. 

Another study looked at whether disfluency of text influences learning, either 

perceptually (by making the text less legible), or lexically (via scrambling letters in the 

text) [279]. The authors tested the recall performance of 134 subjects, immediately after 

viewing the text, and when delayed by 2 weeks. They found that an illegible font 

"improved long-term recall by decreasing forgetting", whereas scrambled letters 

"reduced short-term recall but tended to aid remembering" [279]. From this, we can 

hypothesize that low Specificity fonts may be useful in aiding text memorisation. If this 

is the case, it may be worthwhile to see if this still holds when fonts are pre-categorised 

into plain text (original font), bold and italic, as these are common manipulations of 

fonts used in word processing. Other work has shown that displaying text in a disfluent 

manner can reduce confirmation bias, as it promotes more careful analysis of the text 

[280]. 

7.6 Conclusion 

Overall, we have found that the Schelling meshes and font Specificity concepts both 

represent similarities between their respective type of shape, even when there are 
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discontinuities between the shape geometries themselves. This agrees with recent 

results obtained via the collection, analysis and modelling of human fixations on 3D 

printed shapes [102]. In this case, the authors found that the accuracy of saliency 

predictions increased across all shapes, given an unseen shape. This indicated some kind 

of high-level feature(s) common across many shapes. For our human-perceptual 

approach, the ‘context’ of these similarities is in some kind of abstract or subjective 

meaning which is consistent among different people. Some simple examples are that of 

the Likert criteria tested for in the thesis. Statistical comparisons of cluster assignments 

relative to shape descriptors for each form of shape, show little agreement, indicating 

the presence of different information. It may be the case that other consistent factors 

beyond those discovered, influence Schelling saliency in 3D shapes and Specificity in 

fonts. Looking ahead, it may also be interesting to apply these concepts to other 

domains, such as Schelling saliency to images, or Specificity to 3D shapes. 
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A1 – Schelling Meshes (Many-Within-Class): Shape 

Selection Survey 

Figure 8.1 - Screenshot of an Amazon Mechanical Turk hosted survey that we 

provided to participants. 
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A2 – Schelling Meshes (Many-Within-Class): 

Descriptor-Based Clustering 

Figure 8.2 – Visualised D2 descriptor based clusterings (k-means) for the 

abstract shapes and plates. 
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Figure 8.3 – Visualised D2 descriptor based clustering for the bottles and Sobel-

based clustering for the chairs (k-means). 
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Figure 8.4 – Visualised Sobel-based clustering for the cups (k-means). 
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A3 – Font Specificity: Word Collection Survey 

Figure 8.5 – An example of a survey that we provided to participants. They were 

asked to describe several fonts, using individual words. 

 



 

 306 

A4 – Font Specificity: Subjective Terms Likert Survey 

Figure 8.6 – Example Likert survey shown to participants, for data collection of 

subjective terms. 
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A5 – Font Specificity: Creativity Likert survey 

Figure 8.7 – Screenshot of survey on font creativity held via Amazon Mechanical 

Turk. 
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A6 – Font Specificity: 100 fonts ordered by word 

embedding-based Specificity scores 
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Figure 8.8 – All 100 fonts sorted according to word2vec-based Specificity scores 

(in ascending order).
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A7 – Font Specificity: Top-50 words of disjoint groups of 20 fonts, sorted according to 

word embedding-based Specificity scores 

 

 

 

 

 

 

 

 

Figure 8.9 – Plots of the top-50 words’ frequencies for the bottom 2 groups of 20 fonts sampled according to increasing word embedding-

based Specificity score (without replacement) - top (font #1 to #20), bottom (font #21 to #40). 
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Figure 8.10 – Plots of the top-50 words’ frequencies for the mid-to-high score groups of 20 fonts sampled according to increasing word 

embedding-based Specificity score (without replacement) - top (font #41 to #60), bottom (font #61 to #80). 
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Figure 8.11 – Plots of the top-50 words’ frequencies for the highest score groups of 20 fonts sampled according to increasing word 

embedding-based Specificity score (without replacement; font #81 to #100). 
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A8 – Font Specificity: Participant words split into 

categories 

Word 

Category 

Groups of words with equivalent meaning, per category 

Geometry (bold, boldface, emphasis, emphasize), (edges, edge, border, borders), (twist, curve, 

curved, curves, swerving, move, movement, swoosh, swish, curl, loop, looping, 

waves, wave, sway, swayed, zig, zag, zig-zag, zigzag), (italic, slant, slanted, diagonal, 

tilt, lean, crook, crooked, leaning, incline, sway, swayed, taper, weight, angled, 

angle), thin, serif, (thick, wide, broad, full, spacious, wider), (sans-serif, sans, sans 

serif), (straight, line), (narrow, tall, strain, crowded, elongate, elongated, stretch, 

stretched, tense), (cartoon, toon), (squash, stress, squeeze, constrict, crush, cramp, 

cramped, squashed, compress, flat, compact), (etched, etch, scratch, scratched, 

rubbed, engrave, hatch, hatched, scrape, scraped, scrap),  (abstract, strange, 

mysterious, mystery), (sharp, point, pointy, spike, spiky, sharpen, pointed, precise, 

crisp, astute, abrupt, scrunch), (curved, curved, twist), (rough, rush, rushed, hurried, 

harsh, sketch, unfinished, outline, rustic, unsophisticated, doodle, doodled, wobbly, 

shaky, wonky, jerky, ragged, colouring, colour, color, choppy, uneven, spotty), 

(bubble, bubbles),  (carving,  jagged, jag, slash, cut, carve), (blocky, block, blockish, 

stumpy, blunt, chunky, gaunt), (pattern, patterned, embellish, embellished, repeating, 

copy, copying, copies, recurrent, double), (stamp, stamped, emboss, boss), (gothic, 

medieval), (big, great, large) 

Subjectivity (old, dated, old-fashioned, antique, antiquated, older, age, mature, aged), (traditional, 

classic, tradition, authoritative, standard, reliable, honest, secure, safe, dependable, 

practical, pragmatic), (modern, new, young, youthful, innovative, novel, immature, 

fresh, smart, sassy), (funny, peculiar, odd), (readable, legible, clear), (average, boring, 

dull, tiresome, ordinary, mean, norm, everyday, casual, mundane, common, usual, 

daily, uninspired, unimaginative), (elegant, fancy, fashion, flair, style, sophisticate, 

sophisticated, classy, swish, royal, majestic, regal), (royal, majestic, regal), (pretty, 

cute, lovely, attractive, desire, want), (sleek, slick, crafty), (sinister, bleak, spooky, 

flighty, nervous, unsettling, unnerving, confuse, disconcert, illogical, disjointed), 

(fantastic, fantastical, wonderful, lofty, grand, striking, dramatic, luxurious, special), 

(varied, eccentric, distant, aloof, wacky, goofy, woozy, dizzy, vary, variation, 

barbaric, fruity, elastic, flexible, dynamic, active, mix, hybrid, potpourri, mixture, 

mixed, combine, combination, complex, complicated), (sad, sorry), (strange, unusual, 

alien, unknown, extra-terrestrial, funny, fishy,), (foreign, ethnic, cultural, foreign, 

exotic), (comic, comical), (interesting, interest), (exciting, excite, excitement, yelling, 

shouting, screaming, shout, scream, wow, bright, hopeful, promising, hope), 

(extreme, overpower, overwhelm, overconfident, overpowering, overwhelming, 

exaggerate, exaggerated, overdone, overdo, extremely, magnify), 

(ugly, horrible, repulse, repulsive, abrasive, disgusting), 

(fun, play, playful, playfulness, toy, sport), (appeal, appealing, attention-grabbing, 

witch, bewitching, enchanting, capture, charm, spell, allure, tempt, entice, invite, 

inviting, catchy, attention-getting, eye-catching), (reasonable, good, respectable, 

proper, dependable, honest, ok, fair, alright, fine) 

Abstraction-

like 

(vague, shadow, shadowed, shadowy, obscure, shade, jumble, blur, smudge, 

smudged, clutter, cluttered, muddle, hide, unknown, hidden, secret, mysterious, 

mystical, cryptic, deep, fuzzy, faint, wispy, weak, undefined, trail, cloud, fog, trace, 

blurry, blot,  hazy), (flow, flows, flowing, silver, fluent, fluid, unstable), (clean, neat, 

bare, barren, bleak, fair), (tough, denser, dense, stout, sturdy, dense, denser, heavy, 

heavier), (unclear, unreadable, indecipherable, hard, harder, difficult), (clear, light, 
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Table 8.1 – Table of word groups used to analyse the collected word data. 

 

feather, readable, neat, easy, minimal, minimum, approachable, accessible, effortless, 

direct, straightforward, straight-forward, clean, smart, easily), (school, educated, 

grade, examination, testing, essay, class, education, teaching, instructions, command, 

commanding), (office, work), (moderate, soften, relax, informal, loose, docile, mild, 

comfort, relaxation, smooth, gentle, kind, soft, delicate, lenient, easy-going, easy-

going, easy, ease, still, quiet, static, still, calm), (material, chalk, glass, ice, metallic, 

metal), (advertising, advertise, advert, business, sales, sale, presentation, display, 

banner), (child, childish, infantile, infant, kid, children, kids, juvenile, adolescent), 

(structure, family, pops, pop, dad, parents, mum, mom, parent, value, logical, 

coherent, level, orderly, order, regulate, coordinate, construction, organise, moral, 

morals, structured, stern, strict), (lettering, letters, postage, post, letter, content, 

message), (history, historical, memory, evocative, reminiscent, memories), (print, 

professional, headline, headlines, pro, brochure, pamphlet, telephone, phone, sign, 

signboard, signs, board, menu, formal, stately, imposing, handwriting, diary, journal, 

script, textbook, text, book, books, hand, scripture, bible, newspaper, intro, 

presentation, display, paper, wallpaper, composition, news, newsprint, typography, 

typeface, typeset, typesetting, define, calligraphy, penmanship, scribe, published, 

scribed, banner, standard, printing, essay, write, writing, pen), (place, pub, school, 

saloon, city, metropolis), (design, designer, architect, construction, construct), (art, 

artistic, aesthetic), (machine, computer, calculator, mac, retro, tech, technology, 

technological, technical, hackers, hacker, television, TV, video, robots, robot, 

artificial), 

(science, sciences, experiment, testing, test), 

(season, time, day, week, month, year, summertime, summer, wintertime, winter, 

springtime, spring, autumntime, autumn) 


