arXiv:1703.05885v3 [quant-ph] 29 Apr 2019

Heat and work along individual trajectories of a quantum bit
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We use a near quantum limited detector to experimentally track individual quantum state trajec-
tories of a driven qubit formed by the hybridization of a waveguide cavity and a transmon circuit.
For each measured quantum coherent trajectory, we separately identify energy changes of the qubit
as heat and work, and verify the first law of thermodynamics for an open quantum system. We
further establish the consistency of these results by comparison with the master equation approach
and the two-projective-measurement scheme, both for open and closed dynamics, with the help of a
quantum feedback loop that compensates for the exchanged heat and effectively isolates the qubit.

Continuous measurement of a quantum bit can be used
to track individual trajectories of its state. Due to the
intrinsic quantum fluctuations of a detector, measure-
ment is an inherently stochastic process [1]. If a quan-
tum system starts in a given state, then by accurately
monitoring the fluctuations of the detector, it is pos-
sible to reconstruct single quantum trajectories, which
describe the evolution of the quantum state conditioned
to the measurement outcome [1]. The idea of quantum
trajectories made its transition from a theoretical tool
(unraveling) to simulate open quantum systems [2] to a
physically accessible quantity with the experimental abil-
ity of tracking these trajectories in optical [3, 1] and more
recently in solid state [5, 6] systems. Continuous monitor-
ing of superconducting qubits has, for example, enabled
continuous feedback control [7-9], the determination of
weak values [10-12], and the production of deterministic
entanglement [13, 14]. In view of their ability to com-
bine quantum trajectory monitoring with external uni-
tary driving, these superconducting devices additionally
offer a unique platform to explore energy exchanges and
thermodynamics along single quantum trajectories.

The laws of thermodynamics classify energy changes
for macroscopic systems as work performed by external
driving and heat exchanged with the environment [15]. In
past decades, these principles have been successfully ex-
tended to the level of classical trajectories to account for
thermal fluctuations [16]. By providing a theoretical and
experimental framework for determining work and heat
along individual trajectories, stochastic thermodynamics
has paved the way for the study of the energetics of micro-
scopic systems, from colloidal particles to enzymes and
molecular motors [17, 18]. The further generalization of
thermodynamics to include quantum fluctuations faces
unique challenges, ranging from the proper identification
of heat and work to the clarification of the role of co-
herence [19-22]. Quantum heat is commonly associated

with the nonunitary part of the dynamics [23-25], carry-
ing over the classical notion of energy exchanged with the
surroundings. This definition has recently been extended
to the level of single discrete quantum jumps [26-31] and
to individual continuous quantum trajectories [32, 33].
Other definitions of quantum work and heat have been
put forward, for instance based on the single shot ap-
proach [34, 35] or quantum resource theory [36, 37]. This
diversity of theoretical approaches emphasizes the crucial
importance of an experimental study.

We here report the measurement of work and heat as-
sociated with unitary and non-unitatry dynamics along
single quantum trajectories of a superconducting qubit.
The qubit evolves under continuous unitary evolution
and is only weakly coupled to the detector. As a re-
sult, information about its state may be inferred from the
measured signal without projecting it into eigenstates.
This system might thus generically be in coherent su-
perpositions of energy eigenstates. We show that the
measured heat and work are consistent with the first law
and prove the agreement with both the two-projective-
measurement (TPM) scheme [38] and the master equa-
tion approach [23-25]. We finally establish the corre-
spondence with the TPM work in the unitary limit by
employing a phase-locking quantum feedback loop that
effectively compensates for the heat.

Heat and work along quantum trajectories. In macro-
scopic thermodynamics, work performed on a thermally
isolated system is defined as the variation of internal en-
ergy, W = AU [15]. According to the first law, heat is
given by the difference, Q = AU — W, for systems that
are not thermally isolated [15]. Thermal isolation is thus
essential to distinguish heat from work. At the quantum
level, identifying heat and work is more involved, because
quantum systems do not necessarily occupy definite en-
ergy states. Energy changes are usually defined in terms
of transition probabilities between energy eigenstates in



the so-called two-projective-measurement (TPM) scheme
[38]. For a driven quantum system described by the
Hamiltonian Hy, the distribution of the total energy vari-
ation AU is thus given by [38],
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where PY denote the initial occupation probabilities,
PF, ,, are the transition probabilities between initial and
final eigenvalues E° and ET, of H;, and 7 is the duration
of the driving protocol. This relation has been used to
experimentally determine the work distribution in closed
quantum systems such as NMR, trapped ion, and cold
atom systems [ |, for which AU =W.

However, in open quantum systems, the total energy
change AU cannot, in general, be uniquely separated into
heat and work [412] and several definitions have been pro-
posed [23-37]. Open quantum systems can be described
with density operator p; with evolution given by a quan-
tum master equation [43],

d i
= —[Hypi] + Loy, (2)
where £ is a Lindblad dissipator. In this case, the first
law has been written in the usual form, AU = Q + W,

with [23-25],
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As in classical thermodynamics, @ is the energy sup-
plied to the system by the environment and W the work
done by external driving. The above definition of quan-
tum work has been originally introduced by Pusz and
Woronowicz in a C*-algebraic context [44] and recently
applied to individual discrete quantum jumps [26-29].

In our experiment, we examine how quantum heat and
work can be consistently identified for systems whose en-
vironment consists of a continuously coupled quantum
limited detector, an effectively zero temperature reser-
voir [1]. The ability to track quantum state trajectories
enables energy changes to be decomposed separately into
heat and work components [32, 33]. The starting point of
our analysis is that the quantum state evolution consists
of both a unitary part and, because of the continuous
monitoring, an additional nonunitary component: the
former is again identified as work, the latter as heat, in
analogy to macroscopic thermodynamics [32, 33]. Specif-
ically, for an infinitesimal time interval dt, a change of the
conditional density operator for a single trajectory may
be written as dp; = OW/[p¢|dt + 0Q[p¢)dt, where dW|p;]
and 6Q[p:] are superoperators associated with the respec-
tive unitary and nonunitary dynamics [32]. The tilde here
marks quantities that are evaluated in different realiza-
tions of the experiment, as opposed to quantities aver-
aged over the possible trajectories. The first law along a

single quantum trajectory p; then reads dU = W + 60,
with W = tr[p:—qrdHy] and 6Q = tr[Hidp:] [45]. When
integrated over time, the first law takes the form,
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for each quantum trajectory. Equation (4) is a quan-
tum extension of the first law of stochastic thermody-
namics. It relates the average change of energy AU with
the path-dependent heat Q and work W. Similarly, we
may distinguish quantum heat and work contributions to
changes of the transition probabilities [32],
along single quantum trajectories [45].

The consistency of the decompositions (4) and (5) may
be established in three independent ways: (i) the to-
tal energy change along a trajectory, AU = ZdU, and
the total transition probability, P = > dan, may be
compared to the TPM approach [38], (i) the stochastic
heat and work contributions (4) may be compared to the
mean quantities (3) after averaging over stochastic and
quantum fluctuations, and (#) finally, the work (4) along
a trajectory may be directly compared to the TPM result
(1) in the unitary limit when heat vanishes. In that case,
AU = AU = E, — ES =W [49].

Ezxperimental set-up. The qubit is realized by the near-
resonant interaction of a transmon circuit [46] and a three
dimensional aluminum cavity [17] capacitivley coupled to
a 50 ) transmission line. Resonant coupling between the
circuit and cavity results in an effective qubit which is
described by the Hamiltonian, Hy = —hAwq0o,/2, and de-
picted in Figure la. The radiative interaction between
the qubit and transmission line is given by the inter-
action Hamiltonian, Hyy = hy(aocy + a'o_), where
is the coupling rate between the electromagnetic field
mode corresponding to a (a'), the annihilation (creation)
operator, and the qubit state transitions denoted by
o4 (0-), the raising (lowering) ladder operator for the
qubit. By virtue of this interaction Hamiltonian, a ho-
modyne measurement along an arbitrary quadrature of
the quantized electromagnetic field of the transmission
line, ae~* + afet™?, results in weak measurement along
the corresponding dipole of the qubit, o, e~ + o_eti®
[48]. In order to perform work on the qubit, we introduce
a classical time-dependent field described by the Hamil-
tonian Hr = hQdro, cos(wqt + ¢), where wq is the reso-
nance frequency of the qubit and Qg is the Rabi drive
frequency.

Homodyne monitoring is performed with a Josephson
parametric amplifier [19, 50] operated in phase-sensitive
mode. We adjust the homodyne detection quadrature
such that the homodyne signal dV; obtained over the time
interval (t,¢ 4+ dt) provides an indirect signature [51] of
the real part of o_ = (0, +i0,)/2. The detector signal



FIG. 1. Evaluating heat and work along single quantum trajectories. (a), Schematic of the qubit system, drive, and homodyne
detection. (b), Work (blue), heat (red) and energy (green) along a single trajectory. The discrete timestep resolution is §t = 20
ns, the smallest compatible with the detection bandwidth (c), A scatter plot of final work and heat contributions to the Pp o
transition probability for an ensemble of ~ 10* experimental protocols of duration 2 us. Each experimental sequence terminates
with a projective measurement and the color of the points indicate the outcome of this measurement (orange: m = 1, purple:
m = 0). The heat and work contributions are not necessarily bounded, but their sum is limited to [-1,0] as expected. (d),
The total energy along a single quantum trajectory (green) compared to the total energy as determined from an ensemble of
projective measurements at each time point (circles). The error bars indicate the standard error of the mean. (e), Projective

measurements binned and averaged according to the sum of the work and heat contributions ﬁ(% ero?o- The error bars indicate

the standard error of the mean based on the number of occurrences (N) for each value of ]50% + ]50?0 (inset).

is given by dV; = /ny(oz)dt + \/7dX;, where ) is the
quantum efficiency of the homodyne detection, 7 is the
radiative decay rate, and dX; is a zero-mean Gaussian
random variable with variance dt.

The qubit evolution, given both driven evolution Hg
and homodyne measurement results dV;, is described in
the rotating frame by the stochastic master equation [52],
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where Dlo_|p = o_poy — 3(040-p + poyo_) and

H[O]p = Op + pOT — tr[(O + OT)p]p are the dissipation
and jump superoperators, respectively. By taking the
ensemble average, Eq. (6) reduces to a master equation
of the form (2) with dissipator Lp; = vD[o_]p:, which
describes the coupling to a zero-temperature reservoir [1].

We next introduce the experimental protocols to de-
termine the stochastic heat and work contributions. We
identify the instantaneous work contribution éW{p,] with
the first (unitary) term in Eq. (6), while the instanta-
neous heat contribution 6Q[p¢] is associated with the lat-
ter two (nonunitary) terms. Although the system could,
in general, exchange energy with the detector in the
form of heat or work, the homodyne measurement in our
experiment only induces a zero-mean stochastic back-
action, which guarantees no extra work is done by the
detection process.

Having access to the instantaneous heat and work con-
tributions from an individual quantum trajectory, we
now verify the first law in the form of Egs. (4) and (5).
For this, we initialize the qubit in the eigenstate n, and
then drive the qubit while collecting the homodyne mea-
surement signal. Figure 1b shows the path-dependent
instantaneous heat and work contributions, 6(2 and (5W,
and the corresponding changes in internal energy dU for
a single trajectory originating in n = 0. After time 7,
we projectively measure [53] the qubit in state m and
then repeat the experiment several times. In Figure lc
we show a scatter plot of the calculated heat and work

contributions to the transition probabilities, P9 and

m,n
P,‘,QV n, for 7 = 2 ps. Each single quantum trajectory ex-
hibits different heat and work contributions, highlighting
the stochastic nature of its quantum evolution. Using in-
dividual heat and work trajectories we now address the
consistency of these decompositions in three independent
ways.

(i) Total energy change—In order to establish the con-
sistency of these results with the TPM scheme [38], we
first show in Figure 1d the path-dependent total energy
variation AU = 2(5(] for a single trajectory and the
path-independent total energy change AU = (hwq)Pi 0
obtained via projective measurements performed at var-
ious intermediate times [15]. We find that the path-
independent energy changes are in excellent agreement
with the energy changes along a single quantum tra-
jectory. In Figure le we further compare the path-



FIG. 2. Comparison of stochastic and average heat and work
quantities. (a), Individual heat and work trajectories Q7

are displayed as transparent red and blue traces. The mean
of these individual trajectories (@), and (W) are displayed
as dashed lines which are in good agreement with the mean
values from the master equation, Q and W, Eq. (3), solid lines.
(b), Distributions of Q and W at evolution time 7 = 6 ys.

independent transition probability P ¢ to the sum of the
path-dependent work and heat contributions, ]5(% + Po 0>
for experiments of variable duration 7 = [0, 8] us. We
again observe very good agreement.

(i) Correspondence with master equation definitions—
Figure 2 displays the time evolution of the heat Q and
work T along single trajectories, as well as their respec-
tive mean values. The ensemble average of the individual
work (W) and heat (Q) trajectories agrees well with the
the averaged values, Q and W, Eq. (3), thus recovering
the expression by Pusz and Woronowicz [14] at the level
of unraveled quantum trajectories. In addition, the in-
dividual trajectories allows examination of the heat and
work distributions (Fig. 2b) at each timestep.

(ii) The unitary limit—We finally show correspon-
dence of the quantum trajectory work W and the TPM
work, W = ET — E? for a single realization by experi-
mentally isolating the system with a quantum feedback
loop [1]. The essence of feedback is to compensate for
the effect of the detector by adjusting the Hamiltonian at
each timestep, 60Q[p;], thus making the system effectively
closed. The dynamics of the system is then simply de-
scribed by unitary evolution where only the work §W|p;]
contributes to changes in the state. In order to imple-
ment feedback, we adapt the phase-locked loop protocol
introduced in Ref. [7]. This is achieved by multiplying
the homodyne measurement signal with a reference oscil-
lator of the form A[sin(Qrt+ @) + B| yielding a feedback
control, Qp = /n(cos(Qt + ¢) — 1)dV;/dt, that modu-
lates the Rabi frequency of the qubit drive. The detector
heat exchange is eliminated by applying additional work,
W e[5e] = (/1) (A0, cos(wqt + ), pi].

Figure 3a shows the instantaneous feedback work,
SWr = hwqtr [TL,=10Wg[p]] dt (with TI,, the projec-
tor onto eigenstate m), together with the corresponding
instantaneous heat, 6Q = fiwqtr [[1,,=10Q[5;]] dt, along
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FIG. 3. Quantum feedback loop. (a), Instantaneous heat and
feedback work along a single trajectory. The feedback work
has been time shifted by 20 ns to account for the time de-
lay in the feedback circuit. The anti-correlation (r = —0.68)
of heat and feedback work is evident in the scatter plot (b).
(c), Average of the instantaneous contribution of heat and
feedback to the transition probablhty for 10* experlmental it-
erations. (d), Parametric plot of Py} versus P0 o (red) and

Ij’(f 0+ Q (blue) showing how the feedback cancels the heat, nar-
rowing and shifting the distribution toward zero for 7 = 6 us.

a trajectory for a quantum efficiency of 35%. We ob-
serve that the feedback partially cancels the heat at each
point in time. The anti-correlation between the instan-
taneous feedback and heat contributions depicted in Fig-
ure 3b confirms that the feedback loop compensates for
exchanged heat at each timestep. In addition, by aver-
aging the instantaneous heat and work contributions to
the transition probability over many iterations of the ex-
periment (Fig. 3c), we clearly see how feedback works
toward canceling the heat on average. Similarly, at the
level of single trajectories, the total transition probability
may be written as P77 = PW PQ + Pf;: n» With the
work contribution from feedback Pﬁn. Figure 3d shows
the transition probabilities Py} versus Py + Pfy. By
comparing the transition probabilities with and without
feedback, we observe a significantly reduced heat contri-
bution.

In the presence of the quantum feedback loop we can
decompose the instantaneous work along trajectories into
work imparted by the feedback and work associated with
the driving protocol, §W. In the absence of the feed-
back loop, the quantum dynamics of the qubit are given
by work 6W[p;] and heat dQ][p;] superoperators; the heat
changes the state, causing the observed §W to differ from
the case of closed unitary evolution, §W,. With the feed-
back loop, the heat contribution is compensated at each
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FIG. 4. Work along trajectories with and without feedback.
(a), the instantaneous work dW along a single trajectory in
the presence of feedback (blue) and the open loop configura-
tion (no feedback) (red) is compared to the calculated instan-
taneous work expected for pure unitary evolution (green). (b,
¢), The correlation between the instantaneous work oW and
the work for a unitary evolution along a quantum trajectory.
The linear regression fit (black lines) show correlation (slope
0.437) when the feedback loop is employed, and no correlation
in the open loop configuration (slope 0.006).

timestep causing the instantaneous work SW to match
the expected unitary work 0W,. Figure 4 displays 6W
for a single quantum trajectory in the presence of feed-
back (blue) and for a different trajectory in the absence
of feedback (red) compared to the expected unitary work
Wy (green). Figure 4b,c show that in the presence of
feedback the work is more closely correlated with the
unitary work, with the correlation only limited by the
efficiency of the feedback loop [45]. In the limit of unit
quantum efficiency and null loop delay, a feedback loop
could exactly compensate for the exchanged heat [45].

Conclusion. We have introduced experimental proto-
cols for a continuously monitored driven qubit that allow
to operationally define and individually measure quan-
tum heat and work along single trajectories, account-
ing for the presence of coherent superpositions of energy
eigenstates. We have verified the first law of thermody-
namics at the level of energy exchanges and of transi-
tion probabilities. Moreover, we have demonstrated the
consistency of these results with the master equation ap-
proach as well as with the TPM scheme, both for open
and closed evolutions, with the help of feedback control.
Our findings pave the way for future experimental and
theoretical studies in quantum thermodynamics [54] at
the single trajectory level.

Acknowledgements: We acknowledge research support
from the NSF (Grants No. PHY-1607156 and No. PHY-
1752844 (CAREER)), the ONR (Grant No. 12114811),

the John Templeton Foundation, and the EPSRC (Grant
No. EP/P030815/1). This research used facilities at the
Institute of Materials Science and Engineering at Wash-
ington University. K. W. M. acknowledges support from
the Sloan Foundation. E. L. acknowledges support from
the German Science Foundation (DFG) (Grant No. FOR
2724).

[1] K. Jacobs, Quantum Measurement Theory (Cambridge,
2014).

[2] H. Carmichael, An Open Systems Approach to Quantum
Optics (Springer-Verlag, 1993).

[3] C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes,
S. Kuhr, M. Brune, J. Raimond, and S. Haroche, “Pro-
gressive field-state collapse and quantum non-demolition
photon counting,” Nature 448, 889 (2007).

[4] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Ry-
barczyk, G. Sebastien, P. Rouchon, M. Mirrahimi,
H. Amini, and M. Brune, “Real-time quantum feedback
prepares and stabilizes photon number states,” Nature
477,73 (2011).

[5] K. W. Murch, S. J. Weber, K. M. Beck, E. Ginossar, and
I. Siddiqi, “Reduction of the radiative decay of atomic
coherence in squeezed vacuum,” Nature 499, 62 (2013).

[6] S. J. Weber, A. Chantasri, J. Dressel, A. N. Jordan,

K. W. Murch, and I. Siddiqi, “Mapping the optimal

route between two quantum states,” Nature 511, 570

(2014).

R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W.

Murch, R. Naik, A. N. Korotkov, and I. Siddiqi, “Stabi-

lizing Rabi oscillations in a superconducting qubit using

quantum feedback,” Nature 490, 77 (2012).

M. S. Blok, C. Bonato, M. L. Markham, D. J. Twitchen,

V. V. Dobrovitski, and R. Hanson, “Manipulating a

qubit through the backaction of sequential partial mea-

surements and real-time feedback,” Nature Physics 10,

189-193 (2014).

[9] G. de Lange, D. Riste, M. J. Tiggelman, C. Eichler,
L. Tornberg, G. Johansson, A. Wallraff, R. N. Schouten,
and L. DiCarlo, “Reversing quantum trajectories with
analog feedback,” Phys. Rev. Lett. 112, 080501 (2014).

[10] J. P. Groen, D. Riste, L. Tornberg, J. Cramer, P. C.
de Groot, T. Picot, G. Johansson, and L. DiCarlo,
“Partial-measurement backaction and nonclassical weak
values in a superconducting circuit,” Phys. Rev. Lett.
111, 090506 (2013).

[11] P. Campagne-Ibarcq, L. Bretheau, E. Flurin, A. Auffeves,
F. Mallet, and B. Huard, “Observing interferences be-
tween past and future quantum states in resonance fluo-
rescence,” Phys. Rev. Lett. 112, 180402 (2014).

[12] D. Tan, S. J. Weber, 1. Siddiqi, K. Mglmer, and K. W.
Murch, “Prediction and retrodiction for a continuously
monitored superconducting qubit,” Phys. Rev. Lett. 114,
090403 (2015).

[13] D. Riste, M. Dukalski, C.A. Watson, G. de Lange,
M. J. Tiggelman, Ya.M. Blanter, K.W. Lehnert, R. N.
Schouten, and L. DiCarlo, “Deterministic entanglement
of superconducting qubits by parity measurement and
feedback,” Nature 502, 350 (2013).

[7

8


https://doi.org/10.1038/nature06057
https://doi.org/10.1038/nature10376
https://doi.org/10.1038/nature10376
https://doi.org/10.1038/nature12264
https://doi.org/10.1038/ncomms11527
https://doi.org/10.1038/ncomms11527
https://doi.org/10.1038/nature11505
https://doi.org/10.1038/nphys2881
https://doi.org/10.1038/nphys2881
http://dx.doi.org/10.1103/PhysRevLett.112.080501
http://dx.doi.org/10.1103/PhysRevLett.111.090506
http://dx.doi.org/10.1103/PhysRevLett.111.090506
https://link.aps.org/doi/10.1103/PhysRevLett.112.180402
https://link.aps.org/doi/10.1103/PhysRevLett.114.090403
https://link.aps.org/doi/10.1103/PhysRevLett.114.090403
https://doi.org/10.1038/nature12513

[14] N. Roch, M. E. Schwartz, F. Motzoi, C. Macklin,
R. Vijay, A. W. Eddins, A. N. Korotkov, K. B.
Whaley, M. Sarovar, and I. Siddiqi, “Observation of
measurement-induced entanglement and quantum tra-
jectories of remote superconducting qubits,” Phys. Rev.
Lett. 112, 170501 (2014).

[15] A. B. Pippard, Elements of Classical Thermodynamics
(Cambridge, 1966).

[16] C. Jarzynski, “Equalities and inequalities: Irreversibility
and the second law of thermodynamics at the nanoscale,”
Annual Review of Condensed Matter Physics 2, 329-351
(2011).

[17] U. Seifert, “Stochastic thermodynamics, fluctuation the-
orems and molecular machines,” Rep. Prog. Phys. 75,
126001 (2012).

[18] S. Ciliberto, R. Gomez-Solano, and A. Petrosyan,
“Fluctuations, linear response, and currents in out-of-
equilibrium systems,” Annual Review of Condensed Mat-
ter Physics 4, 235-261 (2013).

[19] R. Gallego, J. Eisert, and H. Wilming, “Thermody-
namic work from operational principles,” New Journal
of Physics 18, 103017 (2016).

[20] S. Deffner, J. P. Paz, and W. H. Zurek, “Quantum work
and the thermodynamic cost of quantum measurements,”
Phys. Rev. E 94, 010103 (2016).

[21] P. Kammerlander and J. Anders, “Coherence and mea-
surement in quantum thermodynamics,” Scientific Re-
ports 6, 22174 (2016).

[22] N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq,
Q. Ficheux, J. Anders, A. Auffeves, R. Azouit, P. Rou-
chon, and B. Huard, “Observing a quantum Maxwell
demon at work,” Proceedings of the National Academy
of Sciences 114, 7561-7564 (2017).

[23] R. Alicki, “The quantum open system as a model of the
heat engine,” Journal of Physics A: Mathematical and
General 12, 1.103-1L107 (1979).

[24] Herbert Spohn and Joel L. Lebowitz, “Irreversible ther-
modynamics for quantum systems weakly coupled to
thermal reservoirs,” in Advances in Chemical Physics
(John Wiley & Sons, Inc., 2007) pp. 109-142.

[25] R. Kosloff, “A quantum mechanical open system as a
model of a heat engine,” The Journal of Chemical Physics
80, 1625-1631 (1984).

[26] H.-P. Breuer, “Quantum jumps and entropy production,”
Phys. Rev. A 68, 032105 (2003).

[27] B. Leggio, A. Napoli, A. Messina, and H.-P. Breuer,
“Entropy production and information fluctuations along
quantum trajectories,” Phys. Rev. A 88, 042111 (2013).

[28] F. W. J. Hekking and J. P. Pekola, “Quantum jump ap-
proach for work and dissipation in a two-level system,”
Phys. Rev. Lett. 111, 093602 (2013).

[29] Z. Gong, Y. Ashida, and M. Ueda, “Quantum-trajectory
thermodynamics with discrete feedback control,” Phys.
Rev. A 94, 012107 (2016).

[30] J. M. Horowitz, “Quantum-trajectory approach to the
stochastic thermodynamics of a forced harmonic oscilla-
tor,” Phys. Rev. E 85, 031110 (2012).

[31] J. M. Horowitz and J. M R Parrondo, “Entropy produc-
tion along nonequilibrium quantum jump trajectories,”
New Journal of Physics 15, 085028 (2013).

[32] J. J. Alonso, E. Lutz, and A. Romito, “Thermodynamics
of weakly measured quantum systems,” Phys. Rev. Lett.
116, 080403 (2016).

[33] C. Elouard, D. A. Herrera-Martl, M. Clusel, and

A. Aufféves, “The role of quantum measurement in
stochastic thermodynamics,” npj Quantum Information
3, 9 (2017).

[34] J. Aberg, “Truly work-like work extraction via a single-
shot analysis,” Nature Communications 4 (2013).

[35] N.Y. Halpern, A. J. P. Garner, O. C. O. Dahlsten, and
V. Vedral, “Introducing one-shot work into fluctuation
relations,” New Journal of Physics 17, 095003 (2015).

[36] F. G. S. L. Brandéo, M. Horodecki, J. Oppenheim, J. M.
Renes, and R. W. Spekkens, “Resource theory of quan-
tum states out of thermal equilibrium,” Phys. Rev. Lett.
111, 250404 (2013).

[37] F. G. S. L. Brandao and G. Gour, “Reversible framework
for quantum resource theories,” Phys. Rev. Lett. 115,
070503 (2015).

[38] P. Talkner, E. Lutz, and P. Hanggi, “Fluctuation the-
orems: Work is not an observable,” Phys. Rev. E 75,
050102 (2007).

[39] T. B. Batalhao, A. M. Souza, L. Mazzola, R. Auccaise,
R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara,
M. Paternostro, and R. M. Serra, “Experimental recon-
struction of work distribution and study of fluctuation
relations in a closed quantum system,” Phys. Rev. Lett.
113, 140601 (2014).

[40] S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q.
Yin, H. T. Quan, and K. Kim, “Experimental test of the
quantum Jarzynski equality with a trapped-ion system,”
Nature Physics 11, 193199 (2015).

[41] F. Cerisola, Y. Margalit, S. Machluf, A. J. Roncaglia,
J. P. Paz, and R. Folman, “Using a quantum work me-
ter to test non-equilibrium fluctuation theorems,” Nature
Communications 8 (2017).

[42] M. Campisi, P. Hanggi, and P. Talkner, “Colloquium:
Quantum fluctuation relations: Foundations and appli-
cations,” Rev. Mod. Phys. 83, 771-791 (2011).

[43] Heinz-Peter Breuer and Francesco Petruccione, The The-
ory of Open Quantum Systems (Oxford University Press,
2002).

[44] W. Pusz and S. L. Woronowicz, “Passive states and KMS
states for general quantum systems,” Communications in
Mathematical Physics 58, 273-290 (1978).

[45] Further details are given in supplemental material.

[46] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck,
D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive
qubit design derived from the Cooper pair box,” Phys.
Rev. A 76, 042319 (2007).

[47] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair,
G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor,
L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. De-
voret, and R. J. Schoelkopf, “Observation of high coher-
ence in Josephson junction qubits measured in a three-
dimensional circuit QED architecture,” Phys. Rev. Lett.
107, 240501 (2011).

[48] M. Naghiloo, N. Foroozani, D. Tan, A. Jadbabaie, and
K. W. Murch, “Mapping quantum state dynamics in
spontaneous emission,” Nature Communications 7, 11527
(2016).

[49] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton,
L. R. Vale, and K. W. Lehnert, “Amplification and
squeezing of quantum noise with a tunable Josephson
metamaterial,” Nature Physics 4, 929-931 (2008).

[50] M. Hatridge, R. Vijay, D. H. Slichter, J. Clarke, and
I. Siddiqi, “Dispersive magnetometry with a quantum


http://dx.doi.org/10.1103/PhysRevLett.112.170501
http://dx.doi.org/10.1103/PhysRevLett.112.170501
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184240
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184240
http://dx.doi.org/10.1088/1367-2630/18/10/103017
http://dx.doi.org/10.1088/1367-2630/18/10/103017
https://link.aps.org/doi/10.1103/PhysRevE.94.010103
https://doi.org/10.1038/srep22174
https://doi.org/10.1038/srep22174
http://dx.doi.org/ 10.1073/pnas.1704827114
http://dx.doi.org/ 10.1073/pnas.1704827114
https://doi.org/10.1088/0305-4470/12/5/007
https://doi.org/10.1088/0305-4470/12/5/007
http://dx.doi.org/10.1002/9780470142578.ch2
https://doi.org/10.1063/1.446862
https://doi.org/10.1063/1.446862
https://link.aps.org/doi/10.1103/PhysRevA.68.032105
https://link.aps.org/doi/10.1103/PhysRevA.88.042111
http://dx.doi.org/10.1103/PhysRevLett.111.093602
https://link.aps.org/doi/10.1103/PhysRevA.94.012107
https://link.aps.org/doi/10.1103/PhysRevA.94.012107
http://dx.doi.org/10.1103/PhysRevE.85.031110
https://doi.org/10.1088%2F1367-2630%2F15%2F8%2F085028
http://dx.doi.org/10.1103/PhysRevLett.116.080403
http://dx.doi.org/10.1103/PhysRevLett.116.080403
https://doi.org/10.1038/s41534-017-0008-4
https://doi.org/10.1038/s41534-017-0008-4
https://doi.org/10.1038/ncomms2712
https://doi.org/10.1088%2F1367-2630%2F17%2F9%2F095003
https://link.aps.org/doi/10.1103/PhysRevLett.111.250404
https://link.aps.org/doi/10.1103/PhysRevLett.111.250404
https://link.aps.org/doi/10.1103/PhysRevLett.115.070503
https://link.aps.org/doi/10.1103/PhysRevLett.115.070503
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://link.aps.org/doi/10.1103/PhysRevLett.113.140601
http://link.aps.org/doi/10.1103/PhysRevLett.113.140601
http://www.nature.com/nphys/journal/v11/n2/full/nphys3197.html
https://doi.org/10.1038/s41467-017-01308-7
https://doi.org/10.1038/s41467-017-01308-7
https://link.aps.org/doi/10.1103/RevModPhys.83.771
https://doi.org/10.1007/bf01614224
https://doi.org/10.1007/bf01614224
http://link.aps.org/doi/10.1103/PhysRevA.76.042319
http://link.aps.org/doi/10.1103/PhysRevA.76.042319
https://link.aps.org/doi/10.1103/PhysRevLett.107.240501
https://link.aps.org/doi/10.1103/PhysRevLett.107.240501
https://doi.org/10.1038/ncomms11527
https://doi.org/10.1038/ncomms11527
https://doi.org/10.1038/nphys1090

limited SQUID parametric amplifier,” Phys. Rev. B 83, [65] K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi,

134501 (2011). “Observing single quantum trajectories of a supercon-
[61] A. N. Jordan, A. Chantasri, P. Rouchon, and B. Huard, ducting qubit,” Nature 502, 211 (2013).

“Anatomy of fluorescence: Quantum trajectory statis- [56] M. Naghiloo, D. Tan, P. M. Harrington, P. Lewalle,

tics from continuously measuring spontaneous emission,” A. N. Jordan, and K. W. Murch, “Quantum caustics

Quantum Stud.: Math. Found. 3, 237 (2016). in resonance-fluorescence trajectories,” Phys. Rev. A 96,
[52] A. Bolund and K. Mglmer, “Stochastic excitation during 053807 (2017).

the decay of a two-level emitter subject to homodyne and [67] P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson,

heterodyne detection,” Phys. Rev. A 89, 023827 (2014). P. Morfin, M. Mirrahimi, M. H. Devoret, F. Mallet, and
[63] M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I B. Huard, “Persistent control of a superconducting qubit

Schuster, L. Frunzio, and R. J. Schoelkopf, “High-fidelity by stroboscopic measurement feedback,” Phys. Rev. X 3,

readout in circuit quantum electrodynamics using the 021008 (2013).

Jaynes-Cummings nonlinearity,” Phys. Rev. Lett. 105, [58] D. Riste, C. C. Bultink, K. W. Lehnert, and L. Di-

173601 (2010). Carlo, “Feedback control of a solid-state qubit using high-
[64] J. Gemmer, M. Michel, and G. Mahler, Quantum Ther- fidelity projective measurement,” Phys. Rev. Lett. 109,

modynamics (Springer, 2004). 240502 (2012).

SUPPLEMENTAL MATERIAL

Heat and work definitions and contributions to transition probabilities

For a continuously monitored driven quantum system, one can consistently identify unitary and nonunitary contri-
butions to (i) the evolution of the conditional density operator j; along a single trajectory, (ii) to the energy of the
system U, (averaged over quantum fluctuations), and (iii) to changes 6 P,,.,, of the transition probabilities [32]. The
definition of heat and work in the manuscript stems from the association of work with the deterministic driving of the
quantum system, and of heat with the stochastic evolution due to the detection process, dp; = §W|p;]dt + dQ]p¢]dt,
where dW[5;] and 6Q[p:] are superoperators associated with the respective unitary and nonunitary dynamics. In fact,
the change in the internal energy between times ¢ and ¢ + dt along a single quantum trajectory may be expressed as,

dU, =tr[H(pr—ar + dpe)] — tr[H—qipr—ar]
:tr[ﬁt,dtht] + tI‘[Ht6W[ﬁt}dt] + tT[Ht(SQ[ﬁt]dt]
:6Wt + 5Q~ta (7)

where in the second line dH; = Hy — Hy_g¢ and tr[H 0W([p:|dt] = —(i/h)tr[H:[Hy, ps]dt] = 0. In the last line,
W, = tr[ps—ardH:] and 5Q = tr[H¢dp:], indicating that work is related to a change of the Hamiltonian and heat to
the nonunitary changes in the state. Equation (7) shows that there are actually two contributions to the averaged
work 0W;: one coming from the variation dH; of the Hamiltonian and one coming from the superoperator SW([p¢].
However, the average of the latter vanishes due to the properties of the trace. The superoperator §W|p;], by contrast,
directly contributes to the (unaveraged) density operator p; and transition probabilities 513,,1,”. We note that the
association of dW([p;] with work at this level is limited to the case of driven unitary dynamics.

The different contributions of heat and work to the quantum evolution are reflected in different contributions to

the transition probabilities. The changes to the transition probabilities due to heat and work are defined as 51527n =
tr [IL,, 6Q[p]], and 5]5,YK” = tr [IL,, dW[p;]], where II,, is the projective measurement operator of the eigenstate m
at time ¢ and the trajectory p(t) originates in eigenstate n. Correspondingly, we define the path-dependent total

transition probabilities,
P9, = / dtsBe,, BV, = / dt P, (8)
0 0

The definition of heat and work contributions to the evolution of the density matrix, dp;, imply that, starting from a
density matrix pg corresponding to an eigenstate n, the total transition probabilities Py, ,, are given by

Pl =t = Po, + / dt tr[I1,,6Q[p]]dt + / dt tr[11,,6Q[]|dt = PS,, + P, (9)
0 0

The instantaneous heat, work, and feedback are also expressed in terms of energy by 6Q = hwqtr [[I,—10Q[p]], oW =
hwqtr [Hp=16W[p]], and dWe = Twqtr [Il,,—10Wrg[p;]], respectively. These changes reflect only the instantaneous
changes in energy and do not depend on the initial state of the system.
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Transition probabilities can be experimentally obtained by preparing the qubit in a specific initial state n and
terminating the experiment at time 7 with a projective measurement [53] in the energy basis. These projective
measurements allow us to determine the total energy change the qubit and compare to the total energy calculated
from the heat and work along individual quantum trajectories, in a manner similar to the tomographic validation
for trajectories in previous work [6, 55]. In Figure 1d we show the total energy changes of the qubit AU obtained
from the transition probability P; o which was determined from an ensemble of 10° experiments of variable duration
7 where the path-dependent energy U was within +0.05 hwq of the black curve shown in Figure 1d at time 7. The
transition probability is corrected for the finite readout fidelity of 65%. In Figure le, we compare the measured,
path-independent, transition probability Py, to the path-dependent transition probability P(% + ﬁoc,?o» by binning
experiments of variable duration according to the final path-dependent transition probability and determining the
transition probability Py at each point from the outcomes of the projective readout. The close agreement between
Fy,o and ]5(}/}6 + ]5(?0 indicates that the two independent measures of the qubit energy are in agreement, thereby
confirming the first law of thermodynamics.

The unitary limit

In the absence of a detector, the system under consideration reduces to an isolated system and our definition of work
agrees with the standard definition in Eq. (1) of the manuscript. In order to see this for a two energy measurement
protocol, we note that our distinction between heat and work amounts to the separation of work-like and heat-like
components of the transition probabilities, P,I,/lv » and 15,‘3” When the system detector coupling is vanishing, one has
Pn"f n = P, In fact, for an isolated system initially prepared in the E? energy eigenstate, the trajectory is only
dictated by the unitary evolution, with the nonunitary part being zero along the entire trajectory, dQ[p:]/dt = 0.
Hence P,%n = 0 and dp; = dW|[p,|dt. Together with Eq. (9), this implies the work-like component of the transition
probability is reduced to that of an isolated system,

In addition, our formalism also reproduces the physics of an isolated system at the level of a single two-energy-
measurement realization. In that case, one identifies four possible trajectories corresponding to the transitions from
the initial states of energy EY to the final states with energy ET . The probability of such a trajectory is PgP,T,w.
Each of these trajectories consists of a unitary evolution from 0 to ¢y ending with a density matrix py and a final
extra nonunitary step from ¢y to ¢y + Aty = 7 determined by the measurement, during which the Hamiltonian is
unchanged and py — p,,, = |m)(m|. The work contribution from the unitary evolution is,

TS50 tr §W
[ e [0 = iy o

dt
— te[pyH,] — EU. (11)
The contribution from the last step does not involve exchange of energy with the detector and is therefore regarded
as work, although it arises from nonunitary evolution [30]. This yields
T SW trt At 5y
/ W gt = / W

o dt ¢ dt

= tr[pmH, — prH;| = Ej, — tr[ps Hy). (12)

This correctly reproduces the change of internal energy, AU = AU = ET — EY = W associated with the trajectory
from energies E° to ET.. We therefore recover the full probability distribution in Eq. (1) of the manuscript.

Heat and work tracking

The stochastic master equation (Eq. 3) is used to update state of the qubit conditioned on the collected homodyne
signal which is digitized in 20 ns steps, and scaled such that its variance is vydt [48]. Our identification of work and
heat as the respective unitary and nonunitary changes of the state applies in the laboratory frame. However, it is



Supplemental Figure 1. Simulation of optimal unitary feedback. (a), Schematic of the feedback operation, the qubit
evolution from A at time t to C' at time ¢ + dt comprises of two different types of evolution; unitary evolution due to the
Rabi drive (A — B) and stochastic evolution due to coupling to the environment. Because the environment is monitored with
nonideal quantum efficiency we effectively average over some of the stochastic evolution reducing the state purity (B — C'). The
ideal unitary feedback maintains the phase relation with unitary evolution by application of a rotation —f¢ to state B’. (b),
Instantaneous contributions of heat and feedback to the transition probability Py for a single run of experiment. (c), Scatter
plot of the instantaneous heat versus feedback for 100 runs of experiment which shows an anti-correlation (r = —0.9) between
feedback and heat contributions to the transition probability Pyo. (d), Ensemble behavior of the trajectories in presence of
feedback with no delay (red) and a 500 ns loop delay (blue) showing a persistent Rabi oscillations.

convenient to calculate the state trajectories in the frame rotating with the qubit drive and identify energy changes
in the rotating frame. We break the evolution into discrete timesteps. Each timestep i is divided into two substeps.
The first substep updates the p[i] by the unitary terms. The second substep updates j[i] with the non-unitary terms
given by the discretized stochastic master equation (in It6 form) [32, 56].

dooli] = (1 — poolil)dt + /A(AVIi] — v/iy201li1d0)2701i)(1 — foolil), (13)
dporli] = vpouli]/2dt + \/i(AV [i] - v/iy201i1dt) (L — pooli] — 2% ). (14)

Therefore, in each timestep, we accordingly distinguish between instantaneous work and instantaneous heat in the
rotating frame. Since the transformation to the lab frame is set by the deterministic driving, it is straightforward to
determine these energy changes in the lab frame.

Feedback

In this section, we analyze in detail the feedback protocol used in the experiment and compare it with optimal
feedback protocols in the presence of finite efficiency and feedback loop delay.

If n =1 and given a pure initial state, the state of the system is pure at all times, and is described by a vector on
the surface of the Bloch sphere. An ideal feedback loop would then exactly and immediately compensate for the heat
exchanged with the environment resulting in completely unitary evolution of the state. This is not possible at finite
inefficiency, where the evolution of the system is no longer constrained to the surface of the Bloch sphere. Since the
evolution due to the feedback protocol is unitary, it preserves the length of the Bloch vector, and cannot maintain
pure evolution once purity has been lost. Therefore, it is impossible to exactly compensate for the exchanged heat
with a unitary operation.

Given access to the trajectory in real time, the best possible feedback is to maintain the phase of the oscillation
as if the qubit state were to undergo closed unitary evolution (Supplemental Fig. 1a). In this case, the feedback
output would be Qrdt = —60g where 0 can be calculated by the state of the qubit at ¢ and ¢ + dt. In this case we
would not have control over the purity of the state and it will change by measurement backaction from point to point.
Supplemental Figure 1 shows simulation results for this type of feedback for 35% quantum efficiency. As depicted in
Supplemental Figure 1b, the exchanged heat contribution is compensated by the feedback contribution. The scatter
plot in Supplemental Figure 1(c) shows the anti-correlation of these contributions. Therefore, as we expect, the
system will behave more like a closed system and we observe persistent Rabi oscillations with 70% of full contrast
(Supplemental Fig. 1d). However, a realistic feedback loop would also have a finite loop delay, given by the time it
takes for the measurement signal to travel to a detector and for the feedback output to be calculated. Considering a
feedback loop delay of ~ 500 ns [57, 58], Supplemental Figure 1(d) (blue curve) shows that the feedback performance
would be reduced.
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Supplemental Figure 2. Simulation of phase-lock feedback. (a), Instantaneous contribution of heat and feedback to
the transition probability Poo for a single run of experiment. (b), Scatter plot of instantaneous heat versus feedback for 100
runs of the experiment which shows anti-correlation (r = —0.81) between the feedback and heat contributions to transition
probability Py o. (c), Ensemble behavior of the trajectories in presence of feedback with no delay (red) and 100 ns loop delay
(blue) showing a persistent Rabi oscillations. (d), Simulated feedback efficiency versus feedback scale (A) and offset (B). The
green dot indicates the expected parameters for optimal feedback.

The feedback loop implemented in our experiment differs from the optimal feedback in that it does not require
real-time state tracking and error processing. This feedback takes a copy of homodyne signal, dV;, and multiplies it
by a sinusoidal reference signal, A [sin(Qgt + ¢) + B] resulting in a feedback signal Qp, which is used to modulate the
drive amplitude.

This feedback loop essentially implements a phase-locked loop, and in order to clarify how the loop works we may
cast the stochastic master equation (3) in terms of the Bloch components z and z,

dz = +Qudt + v(1 — 2)dt + /nz(1 — 2)(dV; — vy/nzdt) (15)
dx = —Qzdt — %xdt + (1 — z — 2 (dV; — vy/nzdt). (16)

It is apparent that by canceling the last two terms, the evolution would be unitary as we expect for a closed system.
However, with only unitary rotations we can change dz and dx in the following way,

dz = Qpadt, dr = —Qpzdt, (17)

where, we wish to cancel all the stochastic terms in (15) with the unitary terms (17). Regardless how complicated
Qp is, with finite efficiency, it is impossible to compensate for all terms as mentioned earlier and the best choice
recovers about 70% of purity for 35% quantum efficiency. To understand how the phase-locked loop approximates the
optimal feedback, we consider just the z = (¢,) component of the state. This is reasonable since all thermodynamics
parameters e.g. work, heat and transition probabilities directly relate to the z component. This requires Qpzdt =
—/Mx(1 — 2)(dVy — vy/mxdt), where for weak measurement y,/nxdt is negligible compared to dV;. Thus, we have
Op = —/n(1 — 2)dV;/dt. The essence of the phase-locked loop is to replace z with cos(2t + ¢), which is the “target”
z that would be obtained for closed evolution. Here ¢ = 0 () for an initial ground (excited) state. This choice for z
has a two-fold effect: not only is this a reasonable approximation for z in presence of feedback but it also locks the
oscillation phase which addresses the damping term in (15). Note that the choice of phase ¢ only affects the transient
behavior and appears as a overall phase shift in the persistent Rabi oscillations without affecting the contrast. Thus
the feedback signal is,

Qr = /n(cos(Qt + ¢) — 1)dV;/dt, (18a)

This equation suggests that the scale for feedback should be around A = ,/n/dt ~ 30 which is in agreement with
optimal value found empirically in the experiment of A = 34. Experimentally, this factor may be set by pre-
amplification of the homodyne signal. Note that this result also suggests the offset term of B = —1 as we use in our
feedback setup. Supplemental Figure 2 shows the simulation result for the phase-locked feedback with 35% quantum
efficiency.

As we see in Supplemental Figure 2(a,b), the phase-locked feedback loop effectively compensates for the heat at
each point in time. Supplemental Figure 2(c) shows persistent Rabi oscillations for this case. In Supplemental Figure
2(d), we explore the contrast of persistent Rabi oscillations versus feedback parameters. The simulated result shows
that maximum contrast occurs around B ~ —1 and A ~ 35 as we expect.
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Supplemental Figure 3. Experimental setup The qubit and Josephson parametric amplifier share a signal generator to
maintain the phase relation defining the amplification quadrature. We use a double sideband technique to pump the parametric
amplifier. The homodyne signal is split for the purpose of feedback and state tracking. Both the feedback signal and homodyne
signal are digitized for state tracking in a post-processing step.

Experimental setup and parameters

The transmon circuit was fabricated by double angle evaporation of aluminum on a high resistivity silicon substrate.
The circuit was placed at the center of a 3D aluminum waveguide cavity machined from 6061 aluminum. The
bare cavity frequency is w./2m = 7.257 GHz. The near-resonant interaction between the circuit and the cavity
(characterized by coupling rate g/2m = 136 MHz) results in hybrid states, as described by the Jaynes-Cummings
Hamiltonian. The lowest energy transition of hybrid states (wq/2m = 6.541 GHz) can therefore be considered a “one-
dimensional” artificial atom because the radiative decay of the system is dominated by the cavity’s coupling to a 50
) transmission line. This radiative decay was characterized by a decay of rate v = 1.7 us~!. Resonance fluorescence
from the artificial atom is amplified by a near-quantum-limited Josephson parametric amplifier, consisting of a 1.5
pF capacitor, shunted by a Superconducting Quantum Interference Device (SQUID) composed of two Iy = 1 pA
Josephson junctions. The amplifier produces 20 dB of gain with an instantaneous 3-dB-bandwidth of 50 MHz. The
quantum efficiency was measured to be 35%. We drive the qubit by sending a resonant coherent signal via a weakly
coupled transmission line, and the strength of the drive is characterized by a Rabi frequency of /27 ~ 1 MHz. The
total loop delay for the feedback is 100 ns. The initial state fidelity was limited by a 3% thermal population of the
excited state.

Statistical Analysis

Error bars reported in Figure 1 indicate the standard error of the mean for binomial data, which are subsequently
scaled by the readout fidelity. On average 300, projective energy measurements were used for the determination of AU
at each timestep in Figure 1d. The number of data points for each value reported in Figure le is shown in the inset.
In Figure 3, the shaded regions indicate the standard error of the mean based on binomial data used to determine
the work distribution and the standard error of the mean based on the trajectories used to calculate the efficacy.
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