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Abstract

We consider the consistency properties of a regularised estimator for
the simultaneous identification of both changepoints and graphical de-
pendency structure in multivariate time-series. Traditionally, estimation
of Gaussian Graphical Models (GGM) is performed in an i.i.d setting.
More recently, such models have been extended to allow for changes in
the distribution, but primarily where changepoints are known a-priori.
In this work, we study the Group-Fused Graphical Lasso (GFGL) which
penalises partial-correlations with an L1 penalty while simultaneously in-
ducing block-wise smoothness over time to detect multiple changepoints.
We present a proof of consistency for the estimator, both in terms of
changepoints, and the structure of the graphical models in each segment.
We contrast our results, which are based on a global, i.e. graph wide
likelihood, with those previously obtained for performing dynamic graph
estimation at a node-wise (or neighbourhood) level.
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1 Introduction

Many modern day datasets exhibit multivariate dependance structure that can
be modelled using networks or graphs. For example, in social sciences, biomed-
ical studies, financial applications etc. the association of datasets with latent
network structures are ubiquitous. Many of these datasets are time-varying in
nature and that motivates the modelling of dynamic networks. A network is
usually characterised by a graph G with vertex set V (the collection of nodes)
and edge set E (the collection of edges). We denote G = (V,E). For exam-
ple, in a biological application nodes may denote a set of genes and the edges
may be the interactions among the genes. Alternatively, in neuroscience, the
nodes may represent observed processes in different regions of the brain, and
the edges represent functional connectivity or connectome. In both situations,
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we may observe activity at nodes over a period of time— the challenge is to
infer the dependency network and how this changes over time.

Although the topic of change-point estimation is well represented in statis-
tics through methods such as binary segmentation [Fryzlewicz, 2014], dynamic
programming [Killick et al., 2012], or more classical methods such as Bai [1997],
Hinkley [1970], Raimondo [1998] and references therein; its application in the
context of graphical models, i.e. how the conditional dependency structure be-
tween a set of variables changes, is relatively unexplored. We here consider
a particular type of dynamic network model where the underlying conditional
dependency structure, encoded as a graph, evolves in a piecewise fashion. The
task is to estimate multiple change-points where the network structure changes,
as well as the structures themselves. To this end, we formulate the problem
as a joint optimization task whereby change-point estimation and structure re-
covery can be performed simultaneously. The particular class of networks we
aim to estimate are encoded via a multivariate Gaussian that has a piecewise
constant precision matrix and thus graph structure over certain blocks of time1.

Specifically, we assume observations X(t) = (X
(t)
1 , . . . , X

(t)
p ) are drawn from the

following model:

X(t) ∼ N (0,Σ
(k)
0 ) , t ∈ [τk−1, τk] , (1)

where t = 1, . . . , T indexes the time of the observed data-point, and k =
1, . . . , B := K + 1 indexes blocks [τk−1, τk] := {τk−1, . . . , τk − 1}, separated

by changepoints {τk}Kk=1, at which points the covariance matrix Σ
(k)
0 changes.

The challenge is to assess, how well, or indeed if, we can recover both the

changepoint positions τk and the correct precision matrices Θ
(k)
0 := (Σ

(k)
0 )−1.

In this paper we focus on the task of recovering {Θ(k)
0 , τk}Bk=1 in the case where

K is known in advance, that is, rather than focus on estimating the number of
changes, we consider where and in what form these changes appear.

For dependency graph identification in the static i.i.d. setting there are
two principal estimation approaches. Firstly, as suggested by Meinshausen and
Bühlmann [2006], one may adopt a neighbourhood or local selection approach
where edges are estimated at a node-wise level, an estimate for the network is
then constructed by iterating across nodes. Alternatively, one may consider joint
estimation of the edge structure across all nodes in a global fashion. In the i.i.d.
setting a popular method to achieved this is via the Graphical lasso [Banerjee
and Ghaoui, 2008], or explicitly constrained precision matrix estimation schemes
such as CLIME [Cai et al., 2011].

In the non-stationary setting, one could consider extending regression meth-
ods, for instance utilising the methods of Lee et al. [2016], Leonardi and Bühlmann
[2016] to estimate a graph where each node may exhibit multiple change points.
The work of Roy et al. [2016] considers a joint estimation approach for networks
in the presence of a single changepoint, while Kolar and Xing [2012] consider
using the fused lasso [Harchaoui and Lévy-Leduc, 2010] to estimate multiple
changepoints at a node-wise level. One may consider fused smoothing that re-

1For a reference on static graphical models the reader is directed to Lauritzen [1996]

2



stricts changes in the graph structure, either at an individual edge level via an
`1 penalty [Gibberd and Nelson, 2014, Monti et al., 2014], or across multiple
edges via a group-fused `2,1 penalty [Gibberd and Nelson, 2017]. The work of
Angelosante and Giannakis [2011] proposed to combine the graphical lasso with
dynamic programming to estimate changepoints and graph structures.

In this paper we operate in the group-fused setting, and we provide the-
oretical analysis for the Group-Fused Graphical lasso (GFGL) estimator first
proposed in Gibberd and Nelson [2017] and similarly in Hallac et al. [2017].
In these works, it was demonstrated empirically that GFGL can detect both
changepoints and graphical structure in relatively high-dimensional settings.
However, until now, the theoretical consistency properties of the estimator have
remained unexplored. In this paper, we derive rates for the consistent recov-
ery of both changepoints and model structure via upper bounds on the errors:

maxk |τ̂ (k)− τ (k)
0 | and ‖Θ̂(k)−Θ

(k)
0 ‖∞ under sampling from the model in Eq. 1.

Definition 1 (Group-Fused Graphical Lasso). Let Ŝ(t) := X(t)(X(t))> be the
local empirical covariance estimator. The GFGL estimator is defined as the
M-estimator

{Θ̂(t)}Tt=1 = arg min
{U(t)�0}Tt=1

[ T∑
t=1

{
− log det(U (t)) + trace(Ŝ(t)U (t))

}
︸ ︷︷ ︸

lT (U,S)

+ λ1

T∑
t=1

‖U (t)
\ii‖1 + λ2

T∑
t=2

‖U (t) − U (t−1)‖F︸ ︷︷ ︸
rT (U)

]
, (2)

where U
(t)
\ii deotes the matrix U (t) with diagonal entries set to zero. Once the pre-

cision matrices have been estimated, changepoints are defined as the time-points
{τ̂1, . . . , τ̂K̂} := {t | Θ̂(t) − Θ̂(t−1) 6= 0}. While changepoints in the traditional
sense are defined above, it is convenient later on to consider the block separators
T̂ := {1} ∪ {τ̂1, . . . , τ̂K̂} ∪ {T + 1}, the added entries are denoted τ0 and τK̂+1.

Remark 1. Time and Block Notation
Throughout the paper we will deal with parameters indexed by both individual

time-steps, and as part of constant blocks, respectively, these are denoted using

t and k. For instance, Θ
(t)
0 denotes the tth time-step of the true model structure

(in terms of precision matrix), whereas, Θ
(k)
0 denotes the precision matrix for the

kth block, i.e. inline with Eq. 1. Note: t is always reserved for time indexing,
whereas we use k or l to reference blocks. Estimators are denoted with a hat
notation, i.e. Θ̂(t) or Ŝ(t), while ground-truth objects are denoted with 0, i.e.

Θ
(k)
0 refers to the true precision matrix in the kth block.
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2 Theoretical Analysis of the GFGL Estimator

To assess the statistical properties of the GFGL estimator, we first need to derive
a set of conditions which all minimisers of the cost function (2) obey. We connect
this condition to the sampling of the model under (1) by the quantity W (t) :=

Ŝ(t)−Σ
(t)
0 which represents the difference between the ground-truth covariance

and the empirical covariance matrix X(t)(X(t))>. Since we are dealing with a
fused regulariser, it is convenient to introduce a matrix Γ(t) corresponding to
the differences in precision matrices. For the first step let Λ(1) = Θ(1), then for
t = 2, . . . , T , let Λ(t) = Θ(t) − Θ(t−1). The sub-gradients for the non-smooth

portion of the cost function are denoted respectively as R̂
(t)
1 , R̂

(t)
2 ∈ Rp×p, for

the `1 and the group-smoothing penalty. In full, these can be expressed as

R̂
(t)
1;ij =

{
sign(

∑
s≤t Λ̂

(s)
ij ) if

∑
s≤t Λ̂

(s)
ij 6= 0

[−1, 1] otherwise

R̂
(t)
2 =

{
Λ̂(t)

‖Λ̂(t)‖F
if Λ̂(t) 6= 0

BF (0, 1) otherwise
,

where BF (0, 1) is the Frobenius unit ball.

Lemma 1 (GFGL Optimality Conditions). The minimiser {Θ̂(t)}Tt=1 of the
GFGL objective satisfies the following

∑T
t=l

{
(Θ

(t)
0 )−1 − (Θ̂(t))−1

}
+
∑T
t=lW

(t) + λ1

∑T
t=lR̂

(t)
1 + λ2R̂

(l)
2 = 0 ,

for all l ∈ [T ] and R̂
(1)
2 = R̂

(T )
2 = 0.

2.1 Consistent Changepoint Estimation

We here present a result for changepoint consistency with the GFGL estimator
where T → ∞, and the dimensionality p is fixed. Let {δT }T≥1 be a non-
increasing positive sequence that converges to zero as T → ∞. This quantity
should converge at a rate which ensures an increasing absolute quantity TδT →
∞ as T → ∞. The target of our results is to bound the maximum error to an
ever decreasing proportion of the data, i.e. maxk |τ̂k− τk|/T ≤ δT . To establish
a bound, we consider the setting where the minimum true distance between
changepoints dmin := mink∈[B] |τk − τk−1| increases with T , for simplicity let
us assume this is bounded as a proportion γmin < dmin/T . Furthermore, let us
consider that the minimum jump size is denoted by:

ηmin := min
k∈[B]

‖Σ(k)
0 − Σ

(k−1)
0 ‖F ,

and that the maximum jump size is finite in the Frobenius norm. The term
ηmin is important as in some sense it defines the strength of the jump signal
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in our true sequence of covariance matrices. We can either consider ηmin fixed
as a function of T and demonstrate that we recover the jump positions with
increasing precision, and/or we consider ηmin to be a decreasing sequence in T
and that we can recover (asymptotically in T ) ever decreasing jump sizes.

The first result we present below requires that the regularisers λ1, λ2 are
set in a very specific way, to achieve the correct number of changepoints. After
discussing the result based on this somewhat restrictive assumption we will then
present an alternative result which is more flexible in the specification of the
regularisers.

Assumption 1. Appropriate Regularisation
For sequences of regularisers {λ1:T }, {λ2:T } (and {ηmin:T } if we consider

this as a decreasing sequence) β1 := (ηminγminT )λ−1
2 > 25, β2 := ηminλ

−1
1 (p(p−

1))−1/2 > 23, and β3 := (ηminTδT )λ−1
2 > 3.

Theorem 1 (Changepoint Consistency, K̂ = K). Assume for all T ≥ T0, we
have sequences which meet Assumption 1 such that GFGL problem (2) results
in |K̂| = K changepoints, then we have

P ( max
k∈[K]

|τk − τ̂k| ≥ TδT ) ≤ fτ (T ) := CK,p exp{−TδT η2
min/p

2c3} , (3)

where CK,p = 4p2K(K22K+1 + 4). The probabilistic bound holds for c3 =

5427 maxk ‖Σ(k)
0 ‖∞, and ηmin ≤ 2352pmaxk ‖Σ(k)

0 ‖∞.

The proof of the above follows a similar line of argument as used in Harchaoui
and Lévy-Leduc [2010], Kolar and Xing [2012]. However, several modifications
are required in order to allow analysis with the Gaussian likelihood and group-
fused regulariser, we also utilise a different concentration bound. Full details
can be found in Appendix A.

The results demonstrate that asymptotically changepoint error can be con-
strained to a decreasing fraction δT → 0 of the time-series as T → ∞. Indeed,
this occurs with increasing probability when estimation is performed with an
increasing number of data-points. Unlike in high-dimensional settings [e.g. Ne-
gahban et al., 2012, Ravikumar et al., 2011], the regularisation parameters have
less strict requirements on their form and the bound in Theorem 1 holds for
any T ≥ T0 where T0 is dictated by the choice of tuning parameter sequences
in Assumption 1.

Remark 2. Choosing the regularisers to scale as λ1 � λ2 = O[{log(T )/T}1/2]
enables convergence in probability with

δT = log(T )α/T ; ηmin = Ω{(log T )(1−α)/2} , (4)

where α ≥ 1. Under such regularisation, the conditions in the theorem (specifi-
cally Assumption 1) are met (under the assumption K̂ = K) and the exponential
bound of (3) decreases in order fτ (T ) ∝ T−1. Alternatively, one may consider
the polynomial quantities ηmin = Ω(T−b) and δT = T−a, where a, b > 0 and
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a + 2b = c < 1. In this case TδT > 0 still increases with T , although the ex-
ponential bound is dependent on c of the form fτ (T ) ∝ exp{−T 1−c}. Unlike
in (4), when using the polynomial scaling there is a clear trade-off between the
minimum jump size ηmin, and the amount of data TδT required to gain a cer-
tain level of changepoint consistency. For example, considering the case where
b = 0, and thus ηmin is a constant as T → ∞, enables for a fixed value of c a
larger value of a = c. In such cases changepoints may be recovered with greater
accuracy.

In Assumption 1 we made a strong assumption on the number of change-
points, in that we had K̂ = K and that we somehow had access to a sequence
of regularisers λ1, λ2 which attained such a condition. In practice, we will not
often be able to meet the condition K̂ = K as we don’t know a-priori what the
true number of changepoints K is. We note that this is a general challenge in
changepoint estimation methods, as these are typically used in an exploratory
data-analysis setting Harchaoui and Lévy-Leduc [2010], Killick et al. [2012].
What is perhaps more reasonable to assume is that we recover some K̂ which
upper bounds the truth. In the fused-lasso inspired changepoint estimators,
such as GFGL studied here and that of Harchaoui and Lévy-Leduc [2010] it is
typically seen experimentally that the regularisation imposes a bias on the esti-
mated parameters. Particularly, unlike when using `0 penalised schemes such as
AIC/BIC, for instance those which are typically used with dynamic program-
ming schemes [Angelosante and Giannakis, 2011, Killick et al., 2012], the `1
or group smoothing can shrink the size of parameter changes resulting in less
defined ”jumps” and over-estimating the number of changepoints. For exam-
ples of this, the reader is referred to the synthetic experiments in Harchaoui and
Lévy-Leduc [2010], Gibberd and Nelson [2017]. In the former paper, the authors
suggest a second stage of estimation which further prunes the estimates from
the fused-lasso smoother using a dynamic programming scheme. Potentially,
this hybrid estimation scheme can also be adapted to GFGL, however, we leave
this as further work. In the following result, we consider relaxing Assumption 1
and bounding the distance between any point in the estimated changepoint set
T̂K̂ , even in the case where K̂ ≥ K.

Proposition 1 (Changepoint Error, K̂ ≥ K). Consider the maximum distance
of any estimated changepoint from its closest true changepoint as measured via

h(T̂K̂‖TK) = sup
τ∈TK

inf
τ̂∈T̂K̂

|τ̂ − τ | .

then under Assumption 1 and that K ≤ K̂ ≤ Kmax we have

P [h(T̂K̂‖TK) ≤ TδT ]→ 1 , as T →∞ .

The proof of the above can be demonstrated along similar lines to that of
Theorem 1 Harchaoui and Lévy-Leduc [2010]. The result is a direct extension
of bounds used in proving Thm. 1.
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2.2 Consistent Graph Recovery

One of the key properties of GFGL and similar fused estimation procedures is
that they simultaneously estimate both the changepoint and model, i.e. con-
ditional dependency structure. In this section we will turn our eye to the
estimation of model structure in the form of the precision matrices between
changepoints. In particular, we consider that a set of K̂ = K changepoints have
been identified as per Assumption 1 and Theorem 1. We here assume that such
a bound maxk∈[K] |τk − τ̂k| ≤ TδT holds, and develop theory relating to the
recovery of model structure and parameters in the relevant segments.

A key advantage of splitting the changepoint and model-estimation con-
sistency arguments as we do here, is that we can consider a simplified model
structure such that the GFGL estimator may be parameterised in terms of a
B = K + 1 block-diagonal matrix Θ0;B ∈ R̃Bp×Bp. Conditional on segmenta-
tion, we do not need to deal with the fact that the model may be arbitrarily
mis-specified, as this is bounded by Theorem 1. As such, in this section the
dimensionality of the model space is fixed with respect to an increasing number
of time-points. The following results demonstrate, that as expected, gathering
increasing amounts of data relating to a fixed number of blocks allows us to
identify the model with increasing precision.

Let us define a set of pairs Mk which indicate the support set of the true

model in block k and its complement M⊥k as Mk = {(i, j) | Θ(k)
0;ij 6= 0} and

M⊥k = {(i, j) | Θ(k)
0;ij = 0} respectively. The recovery of the precision matrix

sparsity pattern in true block l from estimated block k can be monitored by the
sign-consistency event defined:

EM(Θ̂(k); Θ
(l)
0 ) :=

{
sign(Θ̂

(k)
ij ) = sign(Θ

(l)
0;ij) ∀i, j ∈Ml

}
.

In order to derive bounds on model recovery, one must make assumptions on
the true structure of Θ0. Whilst the GFGL loss function is strictly convex over
the space of positive definite matrices (Appendix D), one also needs to take into
account more specific constraints referred to as incoherence or irrepresentability
conditions. In the setting of graphical structure learning, these conditions act
to limit correlation between edges and restrict the second order curvature of the
loss function. In the case where we analyse GFGL under Gaussian sampling the
Hessian Γ0 ≡ ∇2

ΘL(Θ)|Θ0
relates to the Fisher information matrix such that

Γ0;(j,k)(l,m) = Cov(XjXk, XlXm). Written in this form we can understand the
Fisher matrix as relating to the covariance between edge variables defined as

Z
(t)
ij = X

(t)
i X

(t)
j − E[X

(t)
i X

(t)
j ] for i, j ∈ {1, . . . , p}.

Assumption 2. Incoherence Condition
LetM denote the set of components relating to true edges in the graph and

M⊥ (for block k) its complement. For example, Γ
(k)
0;MM refers to the sub matrix

of the Fisher matrix relating to edges in the true graph. Assume that for each
k = 1, . . . , B there exists some αk ∈ (0, 1] such that

max
e∈M⊥

‖Γ(k)
0;eM(Γ

(k)
0;MM)−1‖1 ≤ (1− αk) .
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Notationally, we will use U
(k)
M to denote components of a matrix that are in

the true support. In the multivariate Gaussian case we have

max
e∈M⊥

‖E[Z(t)
e Z

(t)>
M ]E[Z

(t)
MZ

(t)>
M ]−1‖1 ≤ (1− αk) ,

for every t ∈ {τk, . . . , τk + 1} for each k where we denote and track α =
mink{αk}. One can interpret the incoherence condition as a statement on
the correlation between edge variables which are outside the model subspace
Zij such that (i, j) 6∈ M, and those contained in the true model (i, j) ∈ M.
In practice, this sets bounds on the types of graph and associated covariance
structures which estimators such as graphical lasso can recover (see the discus-
sion in Sec. 3.1.1 of Ravikumar et al. 2011, and Meinshausen 2008). The model
selection proof presented here can be seen as an extension of Ravikumar et al.
[2011] to non-stationary settings. Similarly to their original analysis we will

track the maximal row-wise sum via the upper bound KΣ0 := maxk|||Σ(k)
0 |||∞

and KΓ0
:= maxk|||Γ(k)

0 |||∞.
When using GFGL there will generally be an error associated with the iden-

tification of changepoints and as such the estimated and ground-truth blocks do
not directly align. With this in mind, the model consistency proof we present
does not necessarily compare the kth estimated block, to the kth ground-truth
block. Instead, the result we present is constructed such that the structure in
an estimated block k ∈ [B̂] is compared to the ground-truth structure in block l
such that the blocks k and l maximally overlap with respect to time. Notation-
ally, let n̂k = τ̂k− τ̂k−1 and n̂lk = |{τ̂k−1, . . . , τ̂k}∩{τl−1, . . . , τl}|, the maximally
overlapping block is then defined as kmax = arg maxl{n̂lk}.

Theorem 2 (Bounds on Estimation Error). Consider the GFGL estimator with
Assumption 2, and in the case where changepoint error is bounded according to
the event Eτ := {maxk∈[K] |τk − τ̂k| < TδT }, this event occurs in probability
1 − fτ (T ) under Theorem 1. Assume λ1 = 16α−1ε, λ2 = ρλ1 for some finite
ρ > 0 and any

ε ∈

(√
c4 log(4p2)

(γmin − 2δT )T
,

min

{
1

235maxk ‖Σ(k)
0 ‖∞

,
1

6dz2
T max{KΣ0KΓ0 ,K

3
Σ0
K2

Γ0
}

})
, (5)

where c4 = 2752 maxk ‖Σ(k)
0 ‖∞, and zT := 1 + 24α−1 (1 + 2/(γmin − 2δT )T ),

then we have
‖Θ̂(k) −Θ

(kmax)
0 ‖∞ ≤ 2KΓ0

εzT , (6)

in probability greater than 1− fτ (T )− fV (T )→ 1 as T →∞, where

fV (T ) := 4p2 exp{−c−1
4 ε2(γmin − 2δT )T} .
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Corollary 1 (Model-selection consistency). In addition to the assumptions

in Theorem 2. Let θ
(k)
min := minij |Θ(k)

0;ij | for all (i, j) ∈ Mk and for each

k = 1, . . . , B. Let vθ = 2KΣ0
zn̂k

θ−1
min, then if ε satisfies Eq. 5, and ε ≤

1/2KΣ0
zn̂k

θ−1
min , then GFGL attains sign-consistency P{EM(Θ̂(k); Θ

(kmax)
0 )} ≥

1− fτ (T )− fV (T ) with probability tending to one as T →∞.

Theorem 2 is obtained utilising a primal-dual-witness approach conditional
on the event Eτ . This follows a similar argument to that used in Ravikumar et al.
[2011], but requires modifications due to the smoothing regulariser in GFGL
and posssible (but limited) mis-specification related to changepoints. Corollary
1 follows from Theorem 2 subject to the condition that the true entries in the
precision matrix are sufficiently large, i.e. bounded away from zero. Full details
of the proofs are found in Appendix B.

The above bounds suggest that indeed, if regularisation is appropriately set
one can not only recover changepoint structure, but also obtain a consistent
estimate of the precision matrices using GFGL. However, there are several im-
portant insights we can take from the results. Firstly, we clearly see the effect
of the smoothing regulariser in (6) where a larger ρ will result in a larger upper
bound for the error, even though asymptotically this bias diminishes. In the
analagous results from the i.i.d. graphical lasso case [Ravikumar et al., 2011],
the bound on Eq. 6 is of a form 2KΓ0

(1 + 8α−1)ε. In fact, our results sug-
gest that the additional error in the precision matrix is a function of the ratio
λ2/λ1n̂k, if we now let ρT = λ2/λ1 vary as a function of T , but so it doesn’t
grow faster than n̂k ' O(T ), then estimation consistency can still be achieved.
For example, if we set λ1 = O({log(p)/T}1/2) then noting n̂k = O(T ) (under
changepoint consistency), gives λ2 the flexibility to grow with increasing T , for
instance at a rate λ2 = O({T log p}1/2). We note that under such scaling it is
possible to satisfy the conditions of Assumption 1, thus both changepoint and
structure estimation consistency can be achieved.

3 Discussion

The grouped nature of GFGL assumes that the graph structure underlying a
process changes in some sense systematically, where changepoints are considered
at the full precision matrix scale as opposed to seperately for each node i =
1, . . . , p. As a consequence of this changepoint definition, we may expect that
the minimum jump size ηmin required in our results (Theorem 1) are greater
than that utilised in neighbourhood selection case [Meinshausen and Bühlmann,
2006, Kolar and Xing, 2012]. To compare, lets consider defining the analogous

quantity η
(i)
min := mink ‖Σ(k+1)

0;i,· − Σ
(k)
0;i,·‖2, at the neighbourhood of each node

i = 1, . . . , p. The jumps as measured through the group-norm can now be

related to those measured in a Frobenius sense, such that ηmin ≤
∑
i η

(i)
min ≤

p1/2ηmin. Thus, even though the minimum jump size in the GFGL case is

greater, i.e. ηmin > η
(i)
min, it is not proportionally greater when one considers

summing over nodes. In our analysis it should be noted that consistent recovery
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of changepoints requires a tradeoff between the minimum jump-size ηmin and
the amount of data T . For example, a smaller minimum jump-size will generally
require more data; as expected it is harder to detect small jumps. The relation

ηmin ≤
∑
i η

(i)
min suggests that the minimum jump-size at a graph-wide (precision

matrix wide) level is proportionally smaller when measured in the Frobenius
norm, than at a node-wise level. As a result, for equivalent scaling of ηmin and

η
(i)
min the graph-wide GFGL method will be able to detect smaller (graph-wide)

jumps with an equivalent level of data. Conversely, if the jumps one is interested
in occur at the neighbourhood level the neighbourhood based method would be
more appropriate.

Neighbourhood selection is the result of a set of p group-fused optimisation
problems, and changepoints are selected at the node level. However, in many
situations it is not trivial how we combine edge estimates when using a neigh-
bourhood selection approach. For example, we may consider an edge to exist if
it is estimated according to one node “OR” another, or alternatively, when it
is estimated by one node “AND” another. Because edges are estimated locally
they may be inconsistent across nodes which can make it difficult to interpret
global changes. Clearly, the OR rule will result in a graph which is less sparse,
but more prone to false positives. In the context of changepoint detection for
the block-constant GGM (1) the results of Kolar and Xing [2012] require one
to use a union bound over the p separate nodes. The bulk of the theory in that
paper operates at the node level, with the argument being that when one has
successfully recovered the local structure then global structure can be recovered
by combining results over nodes. In the case of GFGL, the estimator is obtained
by optimising over the whole set of precision matrices jointly, and thus we have
no need to combine estimates.

In practice, whether a global or local approach is more appropriate will de-
pend on the application, and thus it is important to study both cases. For ex-
ample, in certain biological applications (proteins, biomolecules etc.) node-wise
changes would be more appropriate, whereas for genetic interaction networks,
social interaction or brain networks global structural changes may be of more
interest. To this end, the results presented here complement previous results de-
rived in the literature, and extend our theoretical understanding of regularised
fused estimators for graphical model recovery. One may note that the results
here are presented in a Gaussian setting, i.e. we analyse the Gaussian gener-
ating process (1), however, the proof of the result is actually more general in
that results will also hold for sub-Gaussian sampling. This suggests some level
of robustness to these estimators, even when the likelihood is mis-specified. We
conclude with a remark about the path towards a true high-dimensional change-
point theory and note that while in our case, the model-selection arguments can
operate in high-dimensions, we have yet to prove consistency of changepoint es-
timation in high-dimensions. We leave this as a direction for future work.
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A Proof of Changepoint Consistency

We relate the proof bounding the maximum deviation between estimated and
true changepoints to the probability of an individual changepoint breaking the
bound. Following Harchaoui and Lévy-Leduc [2010], we utilise the union bound

P

[
max
k∈[K]

|τk − τ̂k| ≥ TδT
]
≤
∑
k∈[K]

P [|τk − τ̂k| ≥ TδT ] .

The complement of the event on the LHS is equivalent to the target of proof;
we wish to demonstrate P [maxk |τk − τ̂k| ≤ TδT ] → 1. In order to show this,
we need to show the LHS above goes to zero as T →∞. It is sufficient, via the
union bound, to demonstrate that the probability of the bad events:

AT,k := {|τk − τ̂k| > TδT } , (7)

go to zero for all k ∈ [K]. The strategy presented here separates the probability
of AT,k occurring across complementary events. In particular, let us construct
what can be thought of as a good event, where the estimated changepoints are
within a region of the true ones:

CT :=

{
max
k∈[K]

|τ̂k − τk| < dmin/2

}
. (8)

The task is then to show that P [AT,k] → 0 by showing P [AT,k ∩ CT ] → 0 and
P [AT,k ∩ CcT ]→ 0 as T → 0.

A.1 Stationarity induced bounds

As a first step, let us introduce some bounds based on the optimality conditions
which occur in probability one. We base our results on a set of events which
occur in relation to these conditions. By intersecting these events with AT,k ∩
CT and AT,k ∩ CcT , we can construct an upper bound on the probability for
changepoint error exceeding a level TδT .

Without loss of generality, consider the optimality equations (Lemma. 1)
with changepoints l = τk and l = τ̂k such that τ̂k < τk. We note, that an
argument for the reverse situation τk > τ̂k follows through symmetry. Taking
the differences between the equations we find

‖
∑τk−1
t=τ̂k

(Σ̂(t) − Σ
(t)
0 )−

∑τk−1
t=τ̂k

W (t) + λ1

∑τk−1
t=τ̂ R̂

(t)
1 ‖F ≤ 2λ2 . (9)

The gradient from the `1 term
∑τk−1
t=τ̂k

λR̂
(t)
1 can obtain a maximum value of

±λ1(τk− τ̂) for each entry in the precision matrix. Transferring this to the RHS
and splitting the LHS in terms of the stochastic and estimated terms we obtain

‖
∑τk−1
t=τ̂k

(Σ̂(t) − Σ(t))‖F −‖
∑τk−1
t=τ̂k

W (t)‖F ≤ 2λ2 + λ1

√
p(p− 1)(τk − τ̂k) . (10)

The next step is to replace the time indexed inverse precision matrices Θ(t) with

the block-covariance matrices indexed Σ
(k)
0 and Σ

(k+1)
0 . We can re-express the
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difference in precision matrices as the sum of a difference between true values

before τk , i.e. Σ
(k+1)
0 −Σ

(k)
0 , and the difference between the next (k+ 1)st true

block and estimated block, i.e. Σ̂(k+1) − Σ
(k+1)
0 to obtain:

λ2 + λ1

√
p(p− 1)(τk − τ̂k) ≥ ‖

∑τk−1
t=τ̂k

(Σ
(k)
0 − Σ

(k+1)
0 )‖F︸ ︷︷ ︸

‖R1‖F

− ‖
∑τk−1
t=τ̂k

(Σ̂(k+1) − Σ
(k+1)
0 )‖F︸ ︷︷ ︸

‖R2‖F

−‖
∑τk−1
t=τ̂k

W (t)‖F︸ ︷︷ ︸
‖R3‖F

, (11)

which holds with probability one. Define the events:

E1 :={λ2 + λ1

√
p(p− 1)(τk − τ̂k) ≥ 1

3
‖R1‖F }

E2 :={‖R2‖F ≥
1

3
‖R1‖F }

E3 :={‖R3‖F ≥
1

3
‖R1‖F }

Since we know that the bound (11) occurs with probability one, then the union of
these three events must also occur with probability one, i.e. P [E1∪E2∪E3] = 1.

A.2 Bounding the Good Cases

One of the three events above are required to happen, either together, or sepa-
rately. We can thus use this to bound the probability of both the good CT and
bad AT,k events. Similar to Harchaoui and Lévy-Leduc [2010], Kolar and Xing
[2012] we obtain

P [AT,k ∩ CT ] ≤ P [

AT,k,1︷ ︸︸ ︷
AT,k ∩ CT ∩ E1] + P [

AT,k,2︷ ︸︸ ︷
AT,k ∩ CT ∩ E2] + P [

AT,k,3︷ ︸︸ ︷
AT,k ∩ CT ∩ E3] .

The following sub-sections describe how to separately bound these sub-events.
Unlike in the work of Kolar and Xing [2012], there is no stochastic element

(related to the data Xt) within the first event AT,k,1. We can bound the proba-

bility of P [AT,k,1] by considering the event { 1
3‖R1‖F ≤ λ2 + λ1

√
p(p− 1)(τk −

τ̂k)}. Given ‖R1‖F = ‖
∑τk−1
t=τ̂k

Σ
(k)
0 − Σ

(k+1)
0 ‖F ≥ (τk − τ̂k)ηmin we therefore

obtain the bound

P [AT,k,1] ≤ P [(τk − τ̂k)ηmin/3 ≤ λ2 + λ1

√
p(p− 1)(τk − τ̂k)] .

When the events CT , AT,k occur we have TδT < τk − τ̂k ≤ dmin/2 to ensure the
event AT,k,1 does not occur, we need:

ηminTδT > 3λ2 ; ηmin > 3λ1

√
p(p− 1) . (12)

12



These conditions are satisfied by Assumption 1. Thus, for a large enough T , we
can show that the probability P [AT,k,1] = 0, the size of this T depends on the
quantities in Eq. (12).

Now let us consider the event AT,k,2. Consider the quantity τ̄k := b(τk +

τk+1)/2c. On the event Cn, we have τ̂k+1 > τ̄k so Σ̂(t) = Σ̂(k+1) for all t ∈
[τk, τ̄k]. Using the optimality conditions (Prop 1) with changepoints at l = τ̄k
and l = τk we obtain

2λ2 + λ1

√
p(p− 1)(τ̄k − τk) ≥ ‖

∑τ̄k−1
t=τk

(Σ̂(k+1) − Σ
(k+1)
0 )‖F − ‖

∑τ̄k−1
t=τk

W (t)‖F ,

and thus

‖Σ̂(k+1)−Σ
(k+1)
0 ‖F ≤

4λ2 + 2λ1

√
p(p− 1)(τ̄k − τk) + 2‖

∑τ̄k−1
t=τk

W (t)‖F
τk+1 − τk

. (13)

We now combine the bounds for events E1 and E2, via E2 := {‖R2‖F ≥
1
3‖R1‖F } and the bounds ‖R1‖F ≥ (τk− τ̂k)ηmin and ‖R2‖F ≤ (τk− τ̂k)‖Σ̂k+1−
Σk+1

0 ‖F . Substituting in (13) we have

P [AT,k,2] ≤ P [E2] = P

[
ηmin ≤

12λ2 + 6λ1

√
p(p− 1)(τ̄k − τk) + 6‖

∑τ̄k−1
t=τk

W (t)‖F
τk+1 − τk

]
.

(14)
Splitting the probability into three components, we obtain

P [AT,k,2] ≤ P [ηmindmin ≤ 12λ2]+P [ηmin ≤ 3λ1

√
p(p− 1)]+P

[
ηmin ≤

6‖
∑τ̄k−1
t=τk

W (t)‖F
τk+1 − τk

]
.

(15)
Convergence of the first two terms follows as in AT,k,1, the second is exactly

covered in AT,k,1; however, the third term ηmin ≤ 3‖
∑τ̄k−1
t=τk

W (t)‖F /(τ̄k − τk)
requires some extra treatment. As τ̄k < τk+1, we can relate the covariance
matrix of the ground-truth (time-indexed) and block (indexed by k) such that

Σ(t) = Σ
(k)
0 for all t ∈ [τk, τk+1]. One can now write the average sampling error

across time according to:

V
(k)

|s(k)| := Ŝ
(k)

|s(k)| − Σ
(k)
0 ,

where

Ŝ
(k)

|s(k)| :=
1

|s(k)|
∑
t∈s(k)

X(t)(X(t))>

and s(k) ⊆ [τk, τk+1] is a subset of the kth changepoint interval. To simplify
the notation, we will refer to the above quantities with a general subset of data
n = |s(k)|, principally, this is because in a block the samples are i.i.d so only the
length n distinguishes the quantity.
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Lemma 2 (Error Bound on Empirical Covariance Matrix). Let X(t) ∼ N (0,Σ
(k)
0 ),

or more generally be sub-Gaussian with parameter σt for t = 1, . . . , n, then

P
(
‖V (k)

n ‖F ≥ ε
)
≤ 4p2 exp

{
−nε2/p2c1

}
, (16)

where c1 = maxi,t{Σ(t)
0;ii}27(1 + 4 maxt{σ2

t })2 for all

ε ≤ 23pmax
i,t
{Σ(t)

0;ii}(1 + 4 min
t
{σ2

t })2/(1 + 4 max
t
{σ2

t }) .

The result is a corollary of relating the empirical covariance under sub-
Gaussian sampling to the sum of sub-exponential random variables, see C.1 for
details.

Finally, let us turn to AT,k,3. Recall P (AT,k,3) := P (AT,k ∩ CT ∩ E3) :=

P (AT,k∩CT∩{‖
∑τk−1
t=τ̂k

W (t)‖F ≥ ‖R1‖F /3}). Given that ‖R1‖F ≥ (τk−τ̂k)ηmin

with probability 1, an upper bound on P [AT,k,3] can be found using the same
concentration bounds (Lemma 2) as for AT,k,2. The only difference is that
we need to replace the integration interval n with TδT . Noting that TδT <
τk − τ̂k ≤ dmin/2, the overall bound will be dominated by the concentration
results requiring n > TδT .

A.3 Bounding the Bad Cases

In order to complete the proof, we need to demonstrate that P [AT,k ∩CcT ]→ 0.
Again, the argument below follows that of Harchaoui and Lévy-Leduc [2010],
whereby the bad case is split into several events:

D
(l)
T : = {∃k ∈ [K], τ̂k ≤ τk−1} ∩ CcT ,

D
(m)
T : = {∀k ∈ [K], τk−1 < τ̂k < τk+1} ∩ CcT ,

D
(r)
T : = {∃k ∈ [K], τ̂k ≥ τk+1} ∩ CcT ,

where CcT = {maxk∈[K] |τ̂k − τk| ≥ dmin/2} is the complement of the good
event. The events above correspond to estimating a changepoint; a) before

the previous true changepoint (D
(l)
T ); b) between the previous and next true

changepoint (D
(m)
T ), and c) after the next true changepoint (D

(r)
T ). The events

D
(l)
T and D

(r)
T appear to be particularly bad as the estimated changepoint is very

far from the truth, due to symmetry we can bound these events in a similar

manner. Focussing on the middle term P [AT,k ∩ D(m)
T ], let us again assume

τ̂k < τk , the reverse arguments hold by symmetry.

The probability of the intersection of AT,k and D
(m)
T can be bounded from

above by considering the events

E
′

k := {(τ̂k+1 − τk) ≥ dmin/2} , (17)

E
′′

k := {(τk − τ̂k) ≥ dmin/2} . (18)
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In particular, one can demonstrate that:

P [AT,k ∩D(m)
T ] ≤ P [AT,k ∩ E

′

k ∩D
(m)
T ] +

K∑
j=k+1

P [E
′′

j ∩ E
′

j ∩D
(m)
T ] . (19)

Let us first assess P [AT,k ∩D(m)
T ∩E′k], and consider the stationarity conditions

(10) with start and end points set as l = τ̂k, l = τk and l = τ̂k, l = τk+1 . We
respectively obtain:

|τk− τ̂k|‖Σ(k)
0 − Σ̂(k+1)‖F ≤ 2λ2 +λ1

√
p(p− 1)(τk− τ̂k)+‖

∑τk−1
t=τ̂k

W (t)‖F (20)

and

|τk−τ̂k+1|‖Σ(k+1)
0 −Σ̂(k+1)‖F ≤ 2λ2+λ1

√
p(p− 1)(τ̂k+1−τk)+‖

∑τ̂k+1−1
t=τk

W (t)‖F .
(21)

Using the triangle inequality, we bound ‖Σ(k+1)
0 −Σ

(k)
0 ‖F conditional on E

′

k :=
{(τ̂k+1−τk) ≥ dmin/2} and AT,k := {|τk− τ̂k| > TδT }. Specifically, we construct
the event

HΣ
T := {‖Σ(k+1)

0 − Σ
(k)
0 ‖F ≤ 2λ1

√
p(p− 1) + 2λ2((TδT )−1 + 2/dmin)

+‖V (k)
τk−τ̂k‖F + ‖V (k+1)

τ̂k+1−τk‖F } , (22)

which bounds the first term of (19) such that P [AT,k ∩ E
′

k ∩D
(m)
T ] ≤ P [HΣ

T ∩
{τk − τ̂k ≥ TδT } ∩ E

′

k]. Splitting the intersection of events we now have five
terms to consider

P (AT,k ∩ E
′

k ∩D
(m)
T )

≤ P (λ1

√
p(p− 1) ≥ ηmin/10) + P (λ2/TδT ≥ ηmin/10) + P (λ2/dmin ≥ ηmin/20)

+P (‖V (k)
τk−τ̂k‖F ≥ ηmin/5} ∩ {τk − τ̂k ≥ TδT })

+P ({‖V (k+1)
τ̂k+1−τk‖F ≥ ηmin/5} ∩ {τ̂k+1 − τk ≥ dmin/2}) .

The stochastic error terms (containing V
(k)
τk−τ̂k) can then be shown to converge

similarly to P (AT,k∩CT ). Again, it is worth noting that the term involving TδT
will be slowest to converge, as dmin = γminT > δTT for large T . The first three
terms are bounded through the assumptions on dmin, λ1, λ2, and δT as required
by the theorem (and enforce a similar requirement to those used to bound

P (AT,k,1) in Eq. 12). The other terms in (19), i.e.
∑K
j=k+1 P [E

′′

j ∩ E
′

j ∩D
(m)
T ]

can be similarly bounded. Instead of using exactly the event HΣ
T one simply

replaces the term 1/TδT in (22) with 2/dmin.

Now let us consider the events D
(l)
T := {∃k ∈ [K], τ̂k ≤ τk−1} ∩ CcT . The

final step of the proof is to show that the bound on AT,k ∩D(l)
T , and similarly

AT,k∩D(r)
T tends to zero. To achieve this, we introduce an upper bound derived

by the combinatorics of estimated changepoints:
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Claim 1. The probability of D
(l)
T is bounded by

P (D
(l)
T ) ≤ 2K

K−1∑
k=1

K−1∑
l≥k

P (E
′′

l ∩ E
′

l ) + 2KP (E
′

K) .

We omit proof for brevity, however, remark that a similar argument is made
in Harchaoui and Lévy-Leduc [2010, Eq. 31]. In order to bound the above
probabilities we relate the events E

′′

l and E
′

l to the optimality conditions as
before, via Eq. 10 . Setting k = l and invoking the triangle inequality gives us
(similarly to Eq. 22), the event

JΣ0

T :=
{
‖Σ(l+1)

0 − Σ
(l)
0 ‖F ≤ 2λ1

√
p(p− 1) +M + ‖V (l)

τl−τ̂l‖F + ‖V (l+1)
τ̂l+1−τl‖F

}
,

where M = 2λ2(|τl − τ̂l|−1 + |τ̂l+1 − τl|−1). Conditioning on the event E
′′

l ∩E
′

l

implies that M = 8λ2/dmin. We can thus write

P (E
′′

l ∩ E
′

l ) ≤ P (ηmin ≤ 8λ1

√
p(p− 1)) + P (ηmin ≤ 32λ2/dmin)

+P ({‖V (l)
τl−τ̂l‖F ≥ ηmin/4} ∩ {τl − τ̂l ≥ dmin/2})

+P ({‖V (l+1)
τ̂l+1−τl‖F ≥ ηmin/4} ∩ {τ̂l+1 − τl ≥ dmin/2}) .

Finally, the term corresponding to the last changepoint can be bounded by
noting that when k = K we have M = 6λ2/dmin, and

P (E
′′

K) ≤ P (ηmin ≤ 8λ1

√
p(p− 1)) + P (ηmin ≤ 24λ2/dmin)

+ P ({‖V (K)
τK−τ̂K‖F ≥ ηmin/4} ∩ {τK − τ̂K ≥ dmin/2})

P (‖V (K+1)
T+1−τK‖F ≥ ηmin/4) . (23)

A.4 Summary

The bounds derived in A1-A3 demonstrate that P (AT,k) → 0 since P (AT,k ∩
CT ) → 0 and P (AT,k ∩ CcT ) → 0. However, to achieve these bounds, the

regularisers must be set appropriately. The event E
′′

l ∩ E
′

l establishes a min-
imal condition on T in conjunction with ηmin and the regularisers, such that
ηmindmin/λ2 > 32 and ηmin/λ1

√
p(p− 1) > 8. A final condition for AT,k,1 re-

quires ηminTδT /λ2 > 3. Once T is large enough to satisfy these conditions, the
probabilistic bound is determined either by the smallest block size dmin = γminT

or by the minimum error TδT . Let k∞ = arg maxk{maxii Σ
(k)
0;ii} select the block

which results in the largest expected covariance error. Summing the probabili-
ties, one obtains the upper bound:

P [|τk − τ̂k| ≥ TδT ] ≤2× 2K
(
(K − 1)2 + 1

)
P (‖V k∞;dmin/2‖F ≥ ηmin/4)

+ 2P (‖V (k∞)
TδT

‖F ≥ ηmin/5)

+ 2P (‖V (k∞)
TδT

‖F ≥ ηmin/3) ,
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where the top row corresponds to D
(l)
T and D

(r)
T ; the middle D

(m)
T , and the

bottom AT,k,2 and AT,k,3. Since δTT < γminT for large T , the above bounds

will be dominated by errors V
(k∞)
TδT

integrated over the relatively small distance
TδT . A suitable overall bound on the probability is

P ( max
k∈[K]

|τk − τ̂k| ≥ TδT ) ≤ K32K+1P (‖V (k∞)
dmin/2

‖F ≥ ηmin/4)

+ 4KP (‖V (k∞)
TδT

‖F ≥ ηmin/5)

≤ CKP (‖V (k∞)
TδT

‖F ≥ ηmin/5) .

In the Gaussian case where σt = 1 for all t, we have

P ( max
k∈[K]

|τk − τ̂k| ≥ TδT ) ≤ CK4p2 exp{−TδT η2
min/p

2c3}

where CK = K(K22K+1+4), c3 = 5427‖Σ(k∞)
0 ‖∞ for all ηmin ≤ 2352p‖Σ(k∞)

0 ‖∞.
We thus arrive at the result of Theorem 1.

B Proof of Model-Selection Consistency

Assumption 3. The event Eτ := {maxk |τ̂k − τk| ≤ TδT } holds with some
increasing probability 1− fτ (T )→ 1 as T →∞.

For the model selection consistency argument, we extend that presented in
the stationary i.i.d setting as discussed in Ravikumar et al. [2011]. Specifically,
this follows the primal-dual witness method as described in Wainwright [2009].
Since {Θ̂(k)}Bk=1 is an optimal solution for GFGL, for each estimated block

k, l = 1, . . . , B̂ = K + 1 it needs to satisfy
B̂∑
l 6=k

n̂lk(V
(l)
n̂lk

)

+ n̂kkV
(k)
n̂kk
− n̂kΣ̂(k) + λ1n̂kR̂

(τ̂k−1)
1 + λ2(R̂

(τ̂k−1)
2 − R̂(τ̂k)

2 ) = 0 ,

(24)
where n̂lk describes the proportion of overlap between the lth true block and

the kth estimated block. The term
∑
l 6=k∈[B̂] n̂lk(V

(l)
n̂lk

) can be though of as pro-
viding a sampling bias due to estimation error in the changepoints, wheras the
term n̂kkV

k;n̂kk compares samples and the ground-truth of the same underlying
covariance matrix.

We will now proceed to construct an oracle estimator Θ̄ ∈ MB̂ := {U (k) ∈
Rp×p| U (k)

M⊥ = 0, U (k) � 0}B̂k=1. The oracle is constructed through solving the
restricted problem

Θ̄ := arg min
U∈MB̂

[ B̂∑
k=1

{ B̂∑
l=1

n̂lktr(Ŝ
(l)
n̂lk
U (k))−n̂k log det(U (k))

}
+λ1

B̂∑
k=1

n̂k‖U (k)‖1

+ λ2

B̂∑
k=2

‖U (k) − U (k−1)‖F
]
.
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The construction above does not utilise oracle knowledge to enforce change-
point positions, only the sparsity structure of the block-wise precision matrices.
Again, for each estimate block, we obtain a set of optimality conditions like
(24). Let us denote the sub-gradient of the restricted problem evaluated at the

oracle solution as R̄
(k)
1 ≡ R̄

(τ̂k−1)
1 for the `1 penalty, and R̄

(τ̂k−1)
2 , R̄

(τ̂k)
2 for the

smoothing components. By definition the matrices R̄
(τ̂k−1)
2 , R̄

(τ̂k)
2 are members

of the sub-differential and hence dual feasible. To show that Θ̄ is also a min-
imiser of the unrestricted GFGL problem (2), we will show that ‖R̄(k)

1;M⊥‖∞ ≤ 1
and is hence dual-feasible.

Ravikumar et al. [2011, Lemma 4] demonstrates that for the standard graph-
ical lasso problem strict dual-feasibiility can be obtained by bounding the max-
ima of both the sampling and estimation error. The estimation error (on the
precision matrices) is tracked through the difference (remainder) between the
gradient of the log-det loss function and its first-order Taylor expansion. In
our case we will track the precision matrices at each block k via the remainder
function defined as

E(∆) = Θ̄−1 −Θ−1
0 + Θ−1

0 ∆Θ−1
0 , (25)

where ∆ = Θ̄−Θ0 ∈ Rp×p.

Lemma 3 (Dual Feasibility). The out-of-subspace parameters are dual feasible

such that ‖R̄(k)

1;M⊥‖∞ < 1 if

max
{
‖Ṽ (k)‖∞, ‖E(∆)‖∞, λ2n̂

−1
k ‖R̄

(τ̂k−1)
2 ‖∞, λ2n̂

−1
k ‖R̄

(τ̂k)
2 ‖∞

}
≤ αλ1/16 ,

(26)
where

Ṽ (k) := n̂−1
k (
∑B̂
l 6=kn̂lkV

(l)
n̂lk

+ n̂kkV
(k)
n̂kk

) . (27)

We note at this point, that the condition (26) in the setting where T → ∞
converges to that of the standard graphical lasso Ravikumar et al. [2011].
Specifically, if changepoint error is bounded according to the event Eτ :=
{maxk |τ̂k − τk| ≤ TδT }, the mis-specification error averaged across the block

converges to the exact case Ṽ (k) → V
(k)
exact, where exact refers to the setting with

zero changepoint estimation error.

Lemma 4. The average sampling error over estimated block k is bounded for

some ε < c5 := 235‖Σ(k∞)
0 ‖∞ according to

P [‖Ṽ (k)‖∞ > ε] ≤ 4p2e−ε
2n̂k/c4 ,

for c4 = 2752‖Σ(k∞)
0 ‖∞ .

Applying this result to (26) and making the choice of regulariser λ1 =
16α−1ε, enables the condition ‖Ṽ (k)‖∞ ≤ αλ1/16 in (26) to be satisfied in
high probability. Specifically, we have

P [‖Ṽ (k)‖∞ > αλ12−4] ≤ fV (T ) ,
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where fV (T ) = 4p2 exp{−c−1
4 ε2(γmin − 2δT )T}, and note that fV (T ) → 0 as

T →∞.
We now turn our attention to the size of the remainder ‖E(∆)‖∞. In the

first step, we directly invoke a result from Ravikumar et al. [2011]:

Lemma 5 (Ravikumar et al. [2011], Lemma 5). If the bound ‖∆‖∞ ≤ (3KΣ0
d)−1

holds and d is the maxmimum node degree, then

‖E(∆)‖∞ ≤
3

2
d‖∆‖2∞K3

Σ0
.

While we can use the same relation as Ravikumar et al. [2011] to map ‖∆‖∞
to ‖E(∆)‖∞ we need to modify our argument for the actual control on ‖∆‖∞.

Lemma 6. The elementwise `∞ norm of the error is bounded such that ‖∆̄‖∞ =
‖Θ̄−Θ0‖∞ ≤ r if

r := 2KΓ0{‖Ṽ (k)‖∞ + λ1 + λ2n̂
−1
k (‖R̄(τ̂k−1)

2 ‖∞ + ‖R̄(τ̂k)
2 ‖∞)} , (28)

and r ≤ min{(3KΣ0
d)−1, (3K3

Σ0
KΓ0

d)−1}.

Note that the contribution of the fused sub-gradient is bounded λ2n̂
−1
k (‖R̄(τ̂k−1)

2 ‖∞+

‖R̄(τ̂k)
2 ‖∞) ≤ 2λ2n̂

−1
k . Let us further assume that λ2 = λ1ρ for ρ > 0, we now

upper bound (28) with the stated form of λ1 such that

r ≤ rEV
:= 2KΓ0

{ε+ λ1(1 + 2ρn̂−1
k )} = 2KΓ0

zn̂k
ε ,

where
zn̂k

:= 1 + 16α−1(1 + 2ρn̂−1
k ) .

We have two constraints on ε, one from the concentration bound (Lemma 5)

whereby ε ≤ 235‖Σ(k∞)
0 ‖∞, then a second from Lemma 6 gives

r ≤ rEV
≤ min{(3KΣ0

d)−1, (3K3
Σ0
KΓ0

d)−1}

which implies ε ≤ 1/vEV
where vEV

:= 6dzn̂k
max{KΣ0

KΓ0
,K3

Σ0
K2

Γ0
}. Now

lets use Lemma 5 to obtain

‖E(∆)‖∞ ≤ 3

2
d‖∆‖2∞K3

Σ0

≤ 6dK2
Γ0
K3

Σ0
z2
n̂k
ε2

=
[
6dK2

Γ0
K3

Σ0
z2
n̂k
ε
]

2−4λ1α ,

where the last line comes from setting ε = λ1α/16. To demonstrate dual fea-
sibility we therefore have to satisfy the further constraint that ε ≤ 1/vE where
vE := 6dK2

Γ0
K3

Σ0
z2
n̂k

. Dual feasibility is obtained in the case where

ε ∈

(
0,min

{
1

235‖Σ(k∞)
0 ‖∞

,
1

6dz2
n̂k

max{KΣ0
KΓ0

,K3
Σ0
K2

Γ0
}

})
.
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Consider the lower bound on n̂k > (γmin− 2δT )T → γminT , as T →∞ then the
term zn̂k

→ 1 + 16α−1. For convergence of the tail bound (Lemma 5) we need

ε2T > c4 log(4p2)
/

(γmin − 2δT ) .

Thus, we can choose a rate ε = Ω(T−1/2) and still maintain dual feasibility.
The final step of the proof is to demonstrate that all possible solutions

to GFGL maintain this relation. In the case of GFGL, the following lemma
states that the objective function is strictly convex on the positive-definite cone.
Hence, if we find a minima it is the global minima, and the dual-feasibility con-
dition ensures that the suggested bounds are achieved.

Lemma 7 (Strict Convexity). For matrices ΘT ∈ ST++ := {{U (t)}Tt=1 | U (t) �
0 , U (t) = U (t)>} the GFGL cost function is strictly convex.

C Proof of Lemmata

C.1 Bounds for Empirical Covariance Error

Proof of Lemma 2. We want to bound P [‖V (k)
n ‖∞ ≥ ε]. Our approach is to

extend the single block tail-bound of Ravikumar et al. [2011], derived in an
i.i.d setting, to the case where samples are independent, but not necessarily
identically sampled. Without loss of generality consider the event

Aij(v) :=

{∣∣ n∑
t=1

X
(t)
i X

(t)
j − Σ

(t)
0;ij

∣∣ > d

}
. (29)

Recall, the deviation of a sub-exponential random variable Z with E[Z] = µZ
is given by the inequality

P (Z ≥ µZ + v) ≤

{
exp(−v

2

2γ2 ) if 0 ≤ v ≤ γ2/b

exp(− v
2b ) if v > γ2/b

. (30)

For independent Z(t), sub-exponentials with parameters (γ2
t , bt) the sum Zij =

Z
(1)
ij + . . . + Z

(t)
ij is sub-exponential with parameters (

∑
t γ

2
t ,maxt bt). Now

consider the event Aij(v), and construct the auxilary variables A
(t)
ij := X̌

(t)
i +

X̌
(t)
j and B

(t)
ij := X̌

(t)
i − X̌

(t)
j where X̌

(t)
i = X

(t)
i /
√

Σ
(t)
0;ii. We note that Lemma

9 of Ravikumar et al. [2011] holds at the individual t step level such that, if X̄
(t)
i

is sub-Gaussian with parameter σt, then the random variables A
(t)
ij and B

(t)
ij are

sub-Gaussian with parameter 2σt, and for all d > 0

P [Aij(v)] ≤ P

[
|
n∑
t=1

(A
(t)
ij )2 − 2(1− ρ∗ij)| > 2d

/√
Σ

(t)
0;iiΣ

(t)
0;jj

]

+ P

[
|
n∑
t=1

(B
(t)
ij )2 − 2(1− ρ∗ij)| > 2d

/√
Σ

(t)
0;iiΣ

(t)
0;jj |

]
.
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Through Lemma 10 (Ravikumar et al. [2011]) we have Z
(t)
ij := (A

(t)
ij )2−2(1+ρ

(t)
ij )

is sub-exponential with parameter γ = b = 16(1+4σ2). Application of (30) with
the tighter bound (0 ≤ v ≤ γ2/b), gives us

P

[
|
n∑
t=1

(A
(t)
ij )2 − 2(1− ρ∗ij)| > 2d

/√
Σ

(t)
0;iiΣ

(t)
0;jj

]
≤ 2 exp

{
−d2/nc1

}
,

where c1 = maxi,t{Σ(t)
0;ii}27(1 + 4 maxt{σ2

t })2 for all d ≤ nc2 where c2 =

23 maxi,t{Σ(t)
0;ii}(1 + 4 mint{σ2

t })2/(1 + 4 maxt{σ2
t }). A bound on the required

quantity P (‖B(k)
n ‖∞ ≥ ε) follows from application of the union bound over both

A and B, and then further over the individual elements in the p × p matrices.
In a general setting we obtain

P

[
‖

n∑
t=1

(X̌(t))>X̌(t) − Σ
(t)
0 ‖∞ > d

]
≤ 4p2 exp

{
−d2/nc1

}
, (31)

where c1 = maxi,t{Σ(t)
0;ii}27(1 + 4 maxt{σ2

t })2 for all

d ≤ 23nmax
i,t
{Σ(t)

0;ii}(1 + 4 min
t
{σ2

t })2/(1 + 4 max
t
{σ2

t }) .

The required bound is given by the inequality ‖X‖F ≤ p‖X‖∞ and setting
d = εn with ε ≤ c2.

Proof of Lemma 4. For the quantity ‖Ṽ (k)‖∞ we consider adapting the proof
of Lemma 2. A bound on this can be derived from (31) setting n = n̂k, d = εn̂

letting maxi,t{Σ(t)
0;ii} = ‖Σ(k∞)

0 ‖∞ and maxt{σ2
t } = mint{σ2

t } = 1, i.e. all
variates are Gaussian. We then obtain

P [‖Ṽ (k)‖∞ > ε] ≤ 4p2 exp{−ε2n̂k/c4} ,

for c4 = 2752‖Σ(k∞)
0 ‖∞ and ε < c5 := 235‖Σ(k∞)

0 ‖∞.

C.2 Dual-feasibility with Mis-Specification (Proof of Lemma
3)

Proof. We can write the block-wise optimality conditions (24) for the restricted
estimator as

(Θ
(k)
0 )−1∆(k)(Θ

(k)
0 )−1 − E(∆(k)) +

1

n̂k

 B̂∑
l 6=k

n̂lkV
(l)
n̂lk

+ n̂kkV
(k)
n̂kk

+ λ1R̄
(k)
1

+
λ2

n̂k
(R̄

(τ̂k−1)
2 − R̄(τ̂k)

2 ) = 0 .
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As pointed out in Ravikumar et al. [2011], this equation may be written as an or-

dinary linear equation by vectorising the matrices, for instance vec{(Θ(k)
0 )−1∆(k)(Θ

(k)
0 )−1} =

{(Θ(k)
0 )−1 ⊗ (Θ

(k)
0 )−1}vec(∆(k)) ≡ Γ0vec(∆). Utilising the fact ∆M⊥ = 0 we

can split the optimality conditions into two blocks of linear equations

Γ
(k)
0;MMvec(∆

(k)
M ) + vec(G

(k)
n̂k

(X;λ1, λ2)M) = 0 (32)

Γ
(k)

0;M⊥Mvec(∆
(k)
M ) + vec(G

(k)
n̂k

(X;λ1, λ2)M⊥) = 0 , (33)

where

G
(k)
n̂k

(X;λ1, λ2) := Ṽ (k) − E(∆(k)) + λ1R̄
(k)
1 + n̂−1

k λ2(R̄
(τ̂k−1)
2 − R̄(τ̂k)

2 ) .

Solving (32) for vec(∆
(k)
M ) we find vec(∆

(k)
M ) = −(Γ

(k)
0;MM)−1vec{G(k)

n̂k
(X;λ1, λ2)M}.

Substituting this into (33) and re-arranging for R̄1;M⊥ gives

vec(G
(k)
n̂k

(X;λ1, λ2)M⊥) = Γ
(k)

0;M⊥M(Γ
(k)
0;MM)−1vec{G(k)

n̂k
(X;λ1, λ2)M} ,

and thus, letting H(k) := Γ
(k)

0;M⊥M(Γ
(k)
0;MM)−1 we obtain

R̄
(k)

1;M⊥ =
1

λ1
H(k)vec{Ṽ (k)

M − EM(∆(k))}+
λ2

n̂kλ1
H(k)vec{(R̄(τ̂k−1)

2 − R̄(τ̂k)
2 )M}+H(k)vec(R̄

(k)
1;M)

− 1

λ1
vec{Ṽ (k)

M⊥ − EM⊥(∆(k))} − λ2

n̂kλ1
vec{(R̄(τ̂k−1)

2 − R̄(τ̂k)
2 )M⊥} .

Taking the `∞ norm of both sides gives

‖R̄(k)

1;M⊥‖∞ ≤
1

λ1
|||H(k)|||∞(‖Ṽ (k)

M ‖∞ + ‖EM(∆(k))‖∞) + ‖H(k)vec(R̄
(k)
1;M)‖∞

+
1

λ1
(‖Ṽ (k)

M⊥‖∞ + ‖EM⊥(∆(k))‖∞)

+
λ2

n̂kλ1

{
|||H(k)|||∞(‖R̄(τ̂k−1)

2;M ‖∞ + ‖R̄(τ̂k)
2;M‖∞) + ‖R̄(τ̂k−1)

2;M⊥ ‖∞ + ‖R̄(τ̂k)

2;M⊥‖∞
}
.

Claim 2. The error in the model-space dominates that outside such that

‖Ṽ (k)

M⊥‖∞ ≤ ‖Ṽ
(k)
M ‖∞ , (34)

‖EM⊥(∆(k))‖∞ ≤ ‖EM(∆(k))‖∞ . (35)

Furthermore, the maximum size of the sub-gradient in the model subspace is

bounded ‖R̄(k)
1;M‖∞ ≤ 1.

A similar claim in made in Ravikumar et al. [2011], and thus via the results

above, we obtain ‖H(k)vec(R̄
(k)
1;M)‖∞ ≤ 1− α and

‖R̄(k)

1;M⊥‖∞ ≤ λ
−1
1 (2− α){‖Ṽ (k)

M ‖∞ + ‖EM(∆(k))‖∞

+ λ2n̂
−1
k (‖R̄(τ̂k−1)

2;M ‖∞ + ‖R̄(τ̂k)
2;M‖∞)}+ ‖H(k)vec(R̄

(k)
1;M)‖∞ .

The condition (26) stated in the lemma now ensures ‖R̄(k)

1;M⊥‖∞ < 1.
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C.3 Control of Estimation Error (Proof of Lemma 6)

Note that Θ̄
(k)

M⊥ = Θ
(k)

0;M⊥ = 0 and thus ‖∆(k)‖∞ = ‖∆(k)
M ‖∞. We follow

Lemma 6 from Ravikumar et al. [2011] in the spirit of our proof. The first step
is to characterise the solution Θ̄M in terms of its zero-gradient condition (of
the restricted oracle problem). Define a function to represent the block-wise
optimality conditions (akin to Eq. 75 Ravikumar et al. [2011])

Q(Θ
(k)
M ) = −(Θ

(k)
M )−1+n̂−1

k

 τ̂k−1∑
t=τ̂k−1

Ŝ
(t)
M

+λ1R̄
(k)
1 +λ2n̂

−1
k (R̄

(τ̂k−1)
2 −R̄(τ̂k)

2 ) = 0 .

Now construct a map F : ∆
(k)
M 7→ F (∆

(k)
M ) such that its fixed points are equiv-

alent to the zeros of the gradient expression in terms of ∆
(k)
M . To simplify the

analysis, let us work with the vectorised form and define the map

F (vec(∆
(k)
M )) := −(Γ0;MM)−1vec{Q(Θ

(k)
M )}+ vec(∆

(k)
M ) ,

such that F{vec(∆
(k)
M )} = vec(∆

(k)
M ) iff Q(Θ

(k)
0;M + ∆

(k)
M ) = Q(Θ

(k)
M ) = 0. Now,

to ensure all solutions that satisfy the zero gradient expression may have their
error bounded within the ball we demonstrate that F maps a `∞ ball B(r) :=

{Θ(k)
M | ‖Θ

(k)
M ‖∞ ≤ r} onto itself. Expanding F (vec(∆

(k)
M )), we find

F (vec(∆
(k)
M )) = −(Γ0;MM)−1vec{Q(Θ

(k)
0;M + ∆

(k)
M )}+ vec(∆

(k)
M )

= T1 − T2 ,

where

T1 := (Γ0;MM)−1vec
[
{(Θ(k)

0 + ∆(k))−1 − (Θ
(k)
0 )−1}M + vec(∆

(k)
M )

T2 := (Γ0;MM)−1vec
[
Ṽ

(k)
M + λ1R̄

(k)
1;M + λ2n̂

−1
k (R̄

(τ̂k−1)
2;M − R̄(τ̂k)

2;M)
]
.

The rest of the proof follows from Ravikumar et al. [2011], where via Lemma 5,
one can show

‖T1‖∞ ≤
3

2
dK3

Σ0
KΓ0
‖∆(k)‖2∞ ≤

3

2
dK3

Σ0
KΓ0

r2 ,

under the assumptions of the lemma we obtain ‖T1‖ ≤ r/2. Combined with

the stated form of r, we also find ‖T2‖∞ ≤ r/2 and thus ‖F (vec(∆
(k)
M ))‖∞ ≤ r.

Through the construction of F , we have ‖∆(k)
M ‖∞ ≤ r iff Q(Θ

(k)
0;M + ∆

(k)
M ) =

Q(Θ
(k)
M ) = 0 and since Q(Θ̄

(k)
M ) = 0 for any Θ̄

(k)
M we obtain ‖∆̄(k)

M ‖∞ ≤ r where

∆̄
(k)
M := Θ̄(k) − Θ

(k)
0 . Finally, the existence of a solution Θ̄

(k)
M corresponding to

vec(∆̄
(k)
M ) ∈ B(r) is guaranteed by Brouwer’s fixed point theorem.
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D Further Results

D.1 Strict Convexity of GFGL (Proof of Lemma 7)

Proof. The negative log-det barrier − log det(Θ(t)) is strictly convex on Θ(t) ∈
S1

++. While the frobenius norm is strictly convex on a given matrix ‖A‖F for

A ∈ S1
++ it is not strictly convex when considering the mixed norm

∑T
t=2 ‖Θ(t)−

Θ(t−1)‖F for Θ(t) ∈ S(T )
++ . However, due to Lagrangian duality, we can re-write

the GFGL problem as an explicitly constrained problem

min
ΘT∈S(T )

++

{ T∑
t=1

[
〈Θ(t), Ŝ(t)〉 − log det(Θ(t))

]}
such that

T∑
t=1

‖Θ(t)
−ii‖1 +

λ2

λ1

T∑
t=2

‖Θ(t) −Θ(t−1)‖F ≤ C(λ1) .

We can alternatively write

min
ΘT∈S(T )

++

{ T∑
t=1

[
〈Θ(t), Ŝ(t)〉 − log det(Θ(t))

]}
such that

T∑
t=1

‖Θ(t)
−ii‖1 ≤ Csparse(λ1, λ2) and

T∑
t=2

‖Θ(t) −Θ(t−1)‖F ≤ Csmooth(λ1, λ2) .

A similar argument to that used in Ravikumar et al. [2011] now holds. Specif-
ically, we note that even the rank one estimate Ŝ(t) will have positive diagonal

entries Ŝ
(t)
ii > 0 for all i = 1, . . . , p. The off-diagonal entries in the precision

matrix are restricted through the `1 term. Unlike in the standard static case,
the size of this norm is not related to just a single precision matrix, rather
it counts the size of the off-diagonals over the whole set {Θ(t)}Tt=1. Thus,
to obtain strict convexity, one also needs to include appropriate smoothing.
To borrow the same argument as used in Ravikumar et al. [2011], we need
to demonstrate that for any time-point t we can construct a problem of the

form min
Θ(t)∈S(1)

++

{
〈Θ(t), Ŝ(t)〉 − log det(Θ(t))

}
such that ‖Θ(t)

−ii‖1 ≤ Ct(λ1, λ2).

The constraint due to smoothing allows exactly this, for instance, one may

obtain a bound ‖Θ(t)
−ii‖1 ≤ Csparse(λ1, λ2) −

∑
s6=t ‖Θ

(s)
−ii‖1. Writing Θ(s) =

Θ(1) +
∑s
q=2(Θ(q) −Θ(q−1)) for s ≥ 2 we obtain

∑
s6=t

‖Θ(s)‖1 ≤ ‖Θ(1)‖1 +
∑
s6=t

s∑
q=1

‖Θ(q) −Θ(q−1)‖1

≤ pCsmooth(λ1, λ2) + ‖Θ(1)‖1 ,

where we note ‖ · ‖1 ≤ p‖ · ‖F . Converting to the bound for the `1 norm at time
t we find

‖Θ(t)
−ii‖1 ≤ Csparse(λ1, λ2)− pCsmooth(λ1, λ2)− ‖Θ(1)‖1 ≡ Ct(λ1, λ2) ,
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and thus an effective bound on the time-specific `1 norm can be obtained.

D.2 Consistency when K̂ ≥ K (Proof Sketch for Proposi-
tion 1)

Proof. The below constitutes a sketch of the proof for Proposition 1. Let us
start by recalling the assumption K ≤ K̂ ≤ Kmax. We can split the bound into
two, one corresponding to the correctly identified number of changes and one
for those which exceed this number:

P
[{
h(T̂K̂‖TK) ≥ TδT

}
∩
{
K ≤ K̂ ≤ Kmax

}]
≤ P [h(T̂K‖TK) ≥ TδT ]︸ ︷︷ ︸

→0 via Thm.1

+

Kmax∑
L>K

P [h(T̂L‖TK) ≥ TδT ] .

Focusing on the second bound, Harchaoui and Lévy-Leduc [2010] demonstrates
this can be broken down in terms of three events:

Kmax∑
L>K

P [h(T̂L‖TK) ≥ TδT ] ≤
Kmax∑
L>K

K∑
k=1

P [FT,k,1] + P [FT,k,3] + P [FT,k,3]

where
FT,k,1 = {|τ̂l − τk| ≥ TδT and τ̂l < τk , ∀1 ≤ l ≤ L}

FT,k,2 = {|τ̂l − τk| ≥ TδT and τ̂l > τk , ∀1 ≤ l ≤ L}

FT,k,3 = {∃1 ≤ l ≤ L | |τ̂l − τk| ≥ TδT , |τ̂l+1 − τk| ≥ TδT , and τ̂l < τk < τ̂l+1} .

The probability of these events can all be bounded in a similar way to the that
of Eq. 14, i.e. by considering specific start and end-points in the optimality
conditions given by Lemma 1. In the interests of space, we refer the reader to
Harchaoui and Lévy-Leduc [2010] for technical details of this procedure.

Finally, in the statement of the above proposition, we asserted that there
was some Kmax which upper bounded the number of estimated changepoints.
By considering the bias of the GFGL estimator as a function of specific λ1, λ2

which scale as discussed in the main paper one should be able to demonstrate
that the estimated number of changepoints is indeed bounded from above. In
the seminal paper of Harchaoui and Lévy-Leduc [2010], this is achieved via
Lemma 2 of Meinshausen and Yu [2009]. In the case of GFGL, with the log-
determinant constrained likelihood and the additional regulariser, a new result
would be needed to upper bound K̂. One possible pathway to achieving this
would be via the analysis provided in Rothman et al. [2008], and extending this
to the non-stationary setting. Proof of such a specific result is left as future
work.
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S. Roy, Y. Atchadé, and G. Michailidis. Change point estimation in high dimen-
sional markov random-field models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 2016.

M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity
recovery using l1-constrained quadratic programming (lasso). Information
Theory, IEEE Transactions on, 55(5):2183–2202, 2009.

27


