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Abstract—The problem of time-series clustering is considered
in the case where each data-point is a sample generated by a
piecewise stationary process. While stationary processes comprise
one of the most general classes of processes in nonparametric
statistics, and in particular, allow for arbitrary long-range
dependencies, their key assumption of stationarity remains re-
strictive for some applications. We address this shortcoming by
considering piecewise stationary processes, studied here for the
first time in the context of clustering. It turns out that this
problem allows for a rather natural definition of consistency of
clustering algorithms. Efficient algorithms are proposed which
are shown to be asymptotically consistent without any additional
assumptions beyond piecewise stationarity. The theoretical results
are complemented with experimental evaluations.

Index Terms—stationary ergodic processes, unsupervised
learning, clustering, consistency

I. INTRODUCTION

Clustering involves breaking a dataset into disjoint subsets
called clusters where the elements within the same cluster are
somehow more similar to each other than to those in other
clusters. This task is meant to help with making sense of
the data that typically have complex structures and represent
some unknown underlying phenomena to be inferred. Given
the nature of the problem, it is desirable to make as little
assumptions as possible about the underlying mechanisms that
generate the data. We consider a setting where each data-
point is a time series. Such sequential data are ubiquitous in
modern applications involving, for example, user behaviour,
social networks, as well as financial or biological data. The
common features in these datasets are the abundance of data
and the absence of precise models.

Statistical inference concerning time series is typically per-
formed under the assumption that the observations are i.i.d,
or that their distribution belongs to a specific model class.
However, such assumptions undermine the possibly complex
nature of the data which may possess long-range dependencies.

To address this shortcoming, one approach is to assume that
the process distributions are stationary without requiring any
conditions to hold on their memory. This allows for arbitrary
long-range dependencies between the observations. Moreover,
thanks to Birkhoff’s ergodic theorem, under this assumption
alone, the frequency of occurrence of events converge almost
surely to their underlying probabilities, even though there is
no guarantee on the speed of convergence. Various problems
of statistical inference can be solved under this assumption
alone [1]. In particular, [2] suggested to cluster stationary

ergodic time-series samples based on the distribution that
generates them, putting together those and only those samples
whose distribution is the same. Making use of the fact that
in this setting the target clustering has the so-called strict
separation property see [3], it was shown that asymptotically
consistent clustering is achievable under the assumption of
stationarity alone.

While already a weak assumption, stationarity often breaks
in applications. Simple real-world examples concerning user
behaviour that exhibit this property include such events as
changing a job, a mobile phone, or having a child. Typical
past events may stop happening and events of new kind
start occurring. In these cases, it is still possible to measure
frequencies of events in-between the changes.

To allow for these generalizations, we introduce a setting
where each time series is generated by a piecewise stationary
process, so that each time series can broken into stationary seg-
ments. The segments’ boundaries are arbitrary and unknown,
as are the stationary distributions that generate the data within
each segment. The only requirement imposed is stationarity.
Thus, the data within each segment are not assumed to possess
any independence, finite-memory or mixing properties.

A piecewise stationary distribution is identified with a “bag
of distributions” corresponding to the distributions of the
stationary segments. Thus locations of distributional change,
as well as the order of the stationary distributions, are dis-
regarded. As a result, two piecewise stationary distributions
are considered equivalent if the set of stationary distributions
of their segments coincide. The clustering objective is to
put together those and only those time-series samples whose
distributions are equivalent in this sense. An algorithm that
achieves this objective is said to be consistent.

The main result, provided in Section IV, is an algorithm
that, as we show, is asymptotically consistent under the only
assumption that each time series segment is stationary ergodic.
This algorithm relies on a novel distance between equivalence
classes of piecewise stationary distributions. The distance is
based on minimax distances between the distributions that
generate the stationary segments. We show that this distance
can be estimated consistently based on samples. This latter
result in itself can be useful in future research concerning
inference for piecewise stationary processes. In order to es-
tablish our results, we require a careful consideration of the
joint distribution of piecewise stationary samples along with
a rigorous formulation of the clustering problem. This is



particularly important since, unlike in the vast majority of the
literature on time series, in our setting different time-series
samples are allowed to be dependent. The necessary formalism
is introduced in Section III. The clustering algorithm proposed
generalizes those on clustering stationary time series [2], [4]. It
uses as sub-routines the algorithms for changepoint analysis
developed in [5], [6]. Our results are theoretical, and their
main appeal is in their generality. Yet, the proposed methods
are shown to be computationally feasible. Experimental eval-
uations are provided in Section V.

While the literature on the related topic of changepoint anal-
ysis is vast, the existing work, with the exception of [1], [5]–
[8], is mostly concerned with independent or mixing data, and
also restricts the nature of the changes to single-dimensional
marginals. To our knowledge, there are no prior attempts to
consider piecewise stationary distributions in the context of
clustering. A related problem outside of changepoint analysis
that has been considered previously, albeit under much more
restrictive assumptions, is that of prediction. For example,
[9] considers time-series prediction concerning piecewise i.i.d.
processes; see also [10] and references.

II. PRELIMINARIES

We use the abbreviation u..v for {u, . . . , v}, u ≤ v ∈ N.
Let (X ,BX ) be a measurable space. In this work we let X =
[0, 1]. However, the results can be readily generalized to R.

Denote by ∆u,v := {[ i12v ,
i1+1
2v ) × · · · × [ iu2v ,

iu+1
2v ) : ij ∈

0..2v − 1, j ∈ 1..u} the set of dyadic cubes in X u, u ∈ N
of side-length 2−v , and let B(u) := σ({∆u,v, v ∈ N}) be the
Borel subsets of X u, u ∈ N. Let XN be the set of all X -valued
infinite sequences equipped with the Borel σ-algebra B :=
σ({B×XN : B ∈ ∆u,v, u, v ∈ N}). Stochastic processes are
probability measures on (XN,B). Take a sequence of random
variables x := 〈Xt〉t∈N with joint distribution µ where for
every t ∈ N, Xt : XN → X is the coordinate projection of
a := 〈at〉t∈N ∈ XN onto its tth element, i.e. Xt(a) = at.
For each n ∈ N and B ∈ B(u), u ∈ N define the empirical
measure µn(x, B) : XN → [0, 1], n ∈ N of B as µn(x, B) :=

1
n−u+1

∑n−u+1
i=1 I{Xi..i+u ∈ B} for n ≥ u and 0 otherwise,

where I is the indicator function.
Definition 1: A process µ is stationary if µ(X1..u ∈ B) =

µ(X1+j..u+j ∈ B) for all B ∈ B(u), u ∈ N and j ∈ N. A
stationary process µ with corresponding sequence of random
variables x = 〈Xt〉t∈N is (stationary) ergodic if for every u ∈
N and B ∈ B(u) it holds that limn→∞ µn(x, B) = µ(B), µ−
a.s. This is equivalent to the standard definition involving

triviality of invariant measurable sets, e.g. [11].
Joint process distributions. We simultaneously consider mul-
tiple samples X1..n, n ∈ N generated by different, possibly
dependent stationary ergodic processes. To allow for this, we
first define a distribution over a matrix of random variables,
each row of which shall correspond to one of the samples.
Next, we obtain each process as the marginal distribution of
the corresponding row of the matrix. We have the following
formulation. For a fixed m ∈ N, let ρ be a measure on the
space (Xm×N,B⊗m) where, B⊗m := σ({B1 × · · · × Bm :

Bi ∈ B, i ∈ 1..m}). Define the matrix of X -valued random
variables X :=

(
Xi,j

)
i∈1..m,j∈N where Xi,j : Xm×N →

X , i ∈ 1..m, j ∈ N are jointly distributed according to ρ,
so that for B ∈ B⊗m we have Pr(X ∈ B) = ρ(B). For each
i ∈ 1..m, let xi := 〈Xi,j〉j∈N and define the projection map
πi 7→ xi. The marginal distribution µi of xi is then defined as
the distribution induced by ρ over the ith row, i.e. µi := ρ◦π−1

i .
We denote by M(ρ) := {µi : i ∈ 1..m} the set of marginal
process distributions of ρ.

Definition 2 ( [11]): A distributional distance between
a pair of processes µ, µ′ is defined as d(µ, µ′) :=∑
u,v∈N wuwv

∑
B∈∆u,v

|µ(B) − µ′(B)| where wj = 2−j ,
j ∈ N, or a summable sequence of positive weights.

Definition 3: Consider a pair of marginals µ and µ′ ∈
M(ρ) with corresponding sequence of random variables x
and x′ respectively, where µ := µi, µ

′ := µj , and x :=
〈Xi,t〉t∈N, x′ := 〈Xj,t〉t∈N correspond to rows i, j ∈ 1..m
of X. An empirical estimate of d(µ, µ′) can be given by
d̂n(x,x′) :=

∑
u,v∈N wuwv

∑
B∈∆u,v

|µn(x, B)− µn(x′, B)|
with wj , j ∈ N as in Definition 2. Note that d̂n can be effi-
ciently calculated with computational complexity O(n log n)
for un := log n, vn := − log(smin), where smin is the
minimal non-zero difference between the union of all the
elements of the two sequences x,x′, see [4].

Proposition 1 ( [4]): If the marginals inM(ρ) are stationary
ergodic, then limn→∞ d̂n(xs,xt) = d(µs, µt), ρ − a.s., for
any µ ∈ M(ρ) and s, t ∈ 1..m, where xj := 〈Xj,t〉t∈N
correspond to jth row of X above and µj ∈M(ρ), j = s, t.

III. PROBLEM FORMULATION

Piecewise stationary processes. We shall be dealing with
multiple samples y of the form

Y1, . . . , Yτ1 , Yτ1+1, . . . , Yτ2 , . . . , Yτκ , . . . , Yn, (1)

where the (stationary) segments Yτi , . . . , Yτi+1 are generated
by different, possibly dependent, stationary ergodic processes.
To specify the distribution of the sample y we define a
distribution on a matrix of random variables, each row of
which shall correspond to a stationary segment of the sample.
The set of stationary-segment distributions of (1) is the set of
the distributions of the rows.

More formally, we specify a Piecewise Stationary Process
as follows. Consider a measure ρ on (X κ×N,B⊗κ+1) for
some fixed κ ∈ N with set of marginals M(ρ) = {µi, i ∈
1..κ + 1}, where µi 6= µi+1, i ∈ 1..κ are stationary
ergodic. Fix some n ∈ N and a sequence τ := 〈τi〉i∈1..κ

with τ1 < τ2 < · · · < τκ ∈ 1..n. Define the mapping
c : N → N × N as c(j) 7→ (t∗(j) + 1, j − τt∗(j)) where
t∗(j) := maxi∈0..κ+1 τi ≤ j picks out the changepoint τi that
is closest to j ∈ N from the left, with the convention that
τ0 := 0 and τκ+1 := n. A Piecewise Stationary Sample of the
form (1) generated by (ρ, τ ) can be specified as a sequence
of coordinate projections Yt : Xn → X , t ∈ 1..n such that
for any ` ∈ 1..n, t1, . . . , t` ∈ 1..n and Bi ∈ BX , i ∈ 1..`
it holds that Pr(Yt1 ∈ B1, . . . , Yt` ∈ B`) = ρ(Xc(t1) ∈



B1, . . . , Xc(t`) ∈ B`). Thus, the distribution of each segment
Yτi+1..τi+1

is given by a stationary ergodic process µi, i ∈
1..κ + 1. Since it is assumed that µi 6= µi+1, i ∈ 1..κ, the
indices τi, i ∈ 1..κ are called changepoints. The pair (ρ, τ )
composed of the measure ρ and its corresponding sequence of
changepoints τ defines a piecewise stationary process.

Definition 4: A pair of piecewise stationary processes (ρ, τ )
and (ρ′, τ ′) are considered equivalent if and only if they agree
on their set of stationary-segment distributions, i.e.,

(ρ, τ ) ∼ (ρ′, τ ′)⇔M(ρ) =M(ρ′). (2)

Let P denote the set of all piecewise stationary processes. The
equivalence relation defined above induces a partitioning of P
into distinct classes [(ρ, τ )], (ρ, τ ) ∈ P where [(ρ, τ )] :={

(ρ′, τ ′) ∈ P : (ρ′, τ ′) ∼ (ρ, τ )
}
, so that two piecewise

stationary processes belong to the same class if and only if
they are equivalent in the sense of (2). Let C := {[(ρ, τ )] :
(ρ, τ ) ∈ P} be the set of all such classes.
Clustering Problem. Fix some N ∈ N, which is the number
of samples, and (unknown) sequence κi ∈ N, i ∈ 1..N
corresponding to the number of changepoints in each sam-
ple. Moreover, define (unknown) increasing sequences θi :=

〈θ(i)
j 〉j∈1..κi+1 with θ

(i)
1 < · · · < θ

(i)
κi+1 ∈ (0, 1), i ∈

1..N . For any n ∈ N, define the sequence τ i(n) :=

〈τ ij(n)〉j∈1..κi , i ∈ N where τ ij(n) := bnθ(i)
j c, with the

convention that θ(i)
0 = 0 for all i ∈ 1..N .

The problem is formulated as follows. For a fixed n ∈ N,
we are given a set

S(n) := {y1, . . . ,yN} (3)

of N piecewise stationary samples of the form (1), each of
length ni := bnθκi+1c generated by an unknown piecewise
stationary process (ρi, τ i(n)), i ∈ 1..N . Thus, each sample
yi, i ∈ 1..N has κi changepoints τ ij(n), j ∈ 1..κi. It is
assumed that each of N piecewise stationary processes that
generate the samples belongs to one of m distinct classes
C1, . . . , Cm ∈ C, which are unknown. Define the normalized
minimum separation between the changepoints as

α := min
i∈1..N

min
k∈1..κi+1

θ
(i)
j − θ

(i)
j−1. (4)

We assume α > 0, i.e. the segments are at least nα long.
Definition 5 (Ground-Truth Clustering): Let G :=

{G1, . . . ,Gm} be a partitioning of 1..N where for any i ∈
1..N , it holds that i ∈ G` for some ` ∈ 1..m if and only if
(ρi, τ i(n)) ∈ C`. We call G the ground-truth clustering.
Thus, samples fall into the same ground-truth cluster if and
only if their corresponding piecewise-stationary distributions
are equivalent in the sense that they have the same set of
stationary-segment distributions.

A clustering function f takes a set S of samples and the
number m of target clusters to produce a partition f(S,m) 7→
{J1, . . . , Jm} of 1..N , aiming to recover the ground-truth G.

Definition 6 (Consistency): A clustering function f is
consistent for a set of samples S = S(n), n ∈ N if

f(S,m) = G. Moreover, f is called asymptotically consistent
if with probability 1 it holds that limn→∞ f(S(n),m) = G.
Joint distribution of piecewise stationary samples. Observe
that the problem requires us to simultaneously consider multi-
ple samples, each generated by a piecewise stationary process.
These samples can themselves be dependent. Formally, this is
defined through the following construction. Consider the space
Y := X κ1×N×· · ·×X κN×N. Denote by F := B1⊗· · ·⊗BN the
product σ-algebra on Y where Bi := σ({B1×· · ·×Bκi : Bj ∈
B}), i ∈ 1..N is in turn the product σ-algebra on X κi×N. Let
P be a probability measure on (Y,F). Consider a sequence
Z := 〈Yi〉i∈1..N of infinite matrices of X -valued random
variables Y (i)

s,t : X κi×N → X , s ∈ 1..κi, t ∈ N, i ∈ 1..N ,
which can be easily shown to be F-measurable. Suppose that
P is the distribution of Z so that Pr(Z ∈ F ) = P (F )
for all F ∈ F . For each i ∈ 1..N , define the projection
π̃i 7→ 〈Y (i)

s,t 〉s∈1..ki, t∈N. Then ρi := P ◦ π̃−1
i , i ∈ 1..N is

the measure of Yi. Our statements are made in terms of P .

IV. MAIN RESULTS

This section outlines our main results, with a focus on
describing the proposed algorithm and explaining how and
why it works. We refer to the longer version of the paper [12]
for more detailed arguments and technical proofs.

We start by introducing a distance between pairs of equiva-
lence classes of piecewise stationary distributions. Since these
classes are distinguished by their sets of stationary-segment
distributions, it is natural to require the distance between any
pair of equivalence classes to be 0 if and only if they agree
on these distributions. This leads to the following definition.

Definition 7: Let C = [(ρ, τ )] and C ′ = [(ρ′, τ ′)] ∈ C
be two classes of piecewise stationary processes. We define a
distance between C and C ′ as

δ(C,C ′) = max
µ∈M(ρ)

min
µ′∈M(ρ′)

d(µ, µ′) + max
µ′∈M(ρ′)

min
µ∈M(ρ)

d(µ′, µ)

where, d(·, ·) is given by Definition 2.
Proposition 2: The distance δ induces a metric on the set

of equivalence classes of piecewise stationary processes.
See the longer version of the paper [12] for a proof.

Next, we present Algorithm 1 that estimates δ from piece-
wise stationary samples. The output is used in the clustering
algorithm, namely, Algorithm 2. In order to estimate δ,
Algorithm 1 relies on a so-called list-estimator, defined below,
which is a function that takes a piecewise stationary sample
with κ changepoints and produces an exhaustive list of at least
κ candidate estimates.

Definition 8 (List-estimator): Given a parameter λ ∈ (0, 1),
define a list-estimator as a function Lλ :

⋃
j∈N X j → Nb1/λc

that takes any x ∈ Xn, n ∈ N and produces a list {ψi ∈
1..n : i ∈ 1..b1/λc} of indices to correspond to candidate
changepoint estimates in x.

Definition 9 (Consistent List-Estimator): Consider a se-
quence θ1 < · · · < θκ ∈ (0, 1) for some fixed κ ∈ N. Let y :=
Y1..n, n ∈ N be a sample of the form (1), generated by a piece-
wise stationary process (ρ, τ (n)), where τ (n) := 〈nθi〉i∈1..κ.



Algorithm 1 Calculating an empirical estimate of δ

1: INPUT: y ∈ Xn1 , y′ ∈ Xn2 , λ ∈ (0, 1)
2: Obtain a sequence of candidate changepoints in y and

y′ respectively, using the method of [5].

τ̂ ← Lλ(y) and τ̂ ′ ← Lλ(y′) (5)

3: Generate sets U and U ′ of consecutive stationary-
segments corresponding to y and y′.

U ← {yi := yψi−1..ψi , i ∈ 1..|τ̂ |+ 1 : (6)
〈ψi〉i∈1..|τ̂ | = τ̂ , ψ0 := 1, ψ|τ̂ |+1 := n1}

U ′ ← {y′i := yψ′i−1..ψ
′
i
, i ∈ 1..|τ̂ ′|+ 1 : (7)

〈ψ′i〉i∈1..|τ̂ ′| = τ̂ ′, ψ′0 := 1, ψ′|τ̂ ′|+1 := n2}

4: Calculate an empirical estimate of δ.

n← min{λn1, λn2}
δ(y,y′, λ)← max

y∈U
min
y′∈U ′

d̂n(y,y′) + max
y′∈U ′

min
y∈U

d̂n(y′,y)

(8)

5: OUTPUT: δ(y,y′, λ)

Algorithm 2 Clustering piecewise stationary samples

1: INPUT: sequences S := {y1, · · · ,yN}, number m of
target clusters, parameter λ

2: Initialize m points as cluster-centres
3: c1 ← 1
4: C1 ← {c1}
5: for ` = 2..m do
6: c` ← min{argmaxi=1..N min

j=1..l−1
δ(yi,ycj , λ)},

where δ is given by Algorithm 1
7: C` ← {c`}
8: Assign the remaining points to appropriate clusters:
9: for i = 1..N do

10: k ← argminj∈
⋃m
`=1 C`

δ(yi,yj , λ)
11: C` ← C` ∪ {i}
12: OUTPUT: clusters C1, C2, · · · , Cm

Denote by ψ1(n) ≤ · · · ≤ ψb1/λc(n) the candidate estimates
produced by a list-estimator Lλ(y) for some λ ∈ (0, λ∗] where
λ∗ := mini∈1..κ+1 θi − θi−1 with θ0 := 0, θκ+1 := 1, is the
minimum normalized distance between the changepoints of
y. We say that Lλ is consistent if with probability 1 it holds
that limn→∞maxk∈1..κ mini∈1..b1/λc | 1nψi(n) − θi| = 0 and
mini∈1..b1/λc+1 ψi(n)− ψi−1(n) ≥ nλ, ψ0 := 0.

In words, a consistent list-estimator takes a piecewise sta-
tionary sample of length n ∈ N whose stationary segments
are of lengths O(n) and, for large enough n, produces a list
of candidate estimates which contains a good approximation
for each of the true changepoints. Note that it is not required
for a list-estimator to find the number of changepoints κ, but
among the candidate estimates that it outputs there should be
κ estimates corresponding to the true, unknown changepoints.

An example of a consistent list-estimator is provided in [5].
Note that the algorithm in [5] establishes a stronger property
than that required by Definition 9: specifically, it sorts the
list in such a way that its first κ elements estimate the true
changepoints of y. We shall not require this feature here: it is
enough to have a list of arbitrary order that includes a correct
estimate for each changepoint. For simplicity, assume that the
candidate estimates are sorted in increasing order.

Given two piecewise stationary samples y and y′ and a
parameter λ ∈ (0, 1) to specify a lower-bound on the minimum
normalized length of the stationary segments, Algorithm 1
works as follows. First, a consistent list-estimator, e.g. that
of [5], is applied to each sample to identify a set of stationary
segments in each. An empirical estimate of δ is then obtained
as a minimax empirical distributional distance δ̂ given by (8)
between the stationary segments identified. As follows from
Proposition 3 below, Algorithm 1 can consistently estimate δ.

Proposition 3 (δ can be estimated consistently.): Consider
the samples y,y′ generated by a distribution P with piecewise
stationary marginals (ρ, τ ) and (ρ′, τ ′); the lengths of the
samples are parameterized by n. Let the estimate δ̂n(y,y′) :=
δ(y,y′, λ) be obtained as the output of Algorithm 1 when pro-
vided with y, y′ and any λ ∈ (0, α] as input, where α is given
by (4). Then limn→∞ δ̂n(y,y′) = δ(C,C ′), P− a.s., where
C := [(ρ, τ )] and C ′ := [(ρ, τ ′)] are the equivalence classes
containing the processes that generate y and y′ respectively.
See the longer version of the paper [12] for a proof.

A key reason why this result holds is that for a large
enough n the (consistent) list-estimator closely approxi-
mates all of the change-points in y, partitioning it into a
set U of (mostly) stationary segments. Thus it holds that
limn→∞maxy∈U d̂n(y, µ∗(y)) = 0, and at least one sample
per each of the stationary marginals of y is present in U . An
analogous argument can be given for y′. Putting these together,
Proposition 3 can be shown. The estimates of δ are in turn used
to construct a clustering method outlined in Algorithm 2. The
algorithm starts by initializing the clusters using farthest-point
initialization of [13], and then assigns the remaining samples
to the nearest cluster. Theorem 1 establishes that the algorithm
is asymptotically consistent in the sense of Definition 6.

Theorem 1 (Algorithm 2 is asymptotically consistent.): Let
f(S(n),m) = Alg 2(S(n),m, λ) be the output of Algorithm 2
when provided with the set S(n) of piecewise stationary
samples (3), along with the correct number m of target clusters
and some λ ∈ (0, α], where α is given by (4). It holds
that limn→∞ f(S(n),m) = G, P − a.s., i.e. Algorithm 2
is asymptotically consistent. The computational complexity of
Algorithm 2 is O(mN(n2 log n+ λ−2n log n)).
See the longer version of the paper [12] for a proof.

V. EXPERIMENTS

In this section we provide some experimental evaluations of
our clustering method using synthetically generated data. Our
objective here is to showcase the generality of the proposed
method. We generate the synthetic data according to stationary
ergodic processes that do not belong to any “simpler” class.
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Fig. 1: Average error as a function of min sample length.

More specifically, we consider an ergodic rotation, see, e.g.
[14], which is an example of a stationary ergodic process
that is not a B-process, and that cannot be modelled by a
hidden Markov model with a finite or countably infinite set of
states. To generate a stationary ergodic sample x we proceed
as follows. First, we fix some parameter β ∈ (0, 1). Then, we
select r0 ∈ [0, 1]; for each i = 1..n we obtain ri by shifting
ri−1 by β to the right, and removing the integer part, i.e.
ri := ri−1 +β−bri−1 +βc. The sequence x is obtained from
ri, i ∈ 1..n by thresholding at 0.5 i.e., for each i ∈ 1..n we set
zi = 1 if ri > 0.5 and zi = 0 otherwise. If β is irrational then
z forms a binary sample from a stationary ergodic process. We
simulate β by a longdouble with a long mantissa. We obtain
a piecewise stationary sample by first generating stationary
samples as above, and then concatenating them in such a way
that consecutive stationary samples are generated by rotation
processes with different parameters. To carry out experiments
concerning Algorithm 2 we fixed two sets of parameters
β1 := {β(1)

1 = 0.121.., β
(1)
2 = 0.141.., β

(1)
3 = 0.161..}

and β2 := {β(2)
1 = 0.141.., β

(2)
2 = 0.15..}. Each set was

used to parameterize the “bag of stationary disributions”
corresponding to each cluster. The two sets were allowed
to intersect, specifically, we let β(1)

2 = β
(2)
1 . We generated

one nonstationary sample with κ = 2 changepoints from the
first process, using β1 as parameters for ergodic rotations,
and two nonstationary samples with κ = 1 changepoint from
the second one using β2. The objective was to ensure that
the first nonstationary sample was separated from the second
two samples. We set the clustering error to 0 if all three
samples were correctly labeled and to 1 otherwise. Figure 1
shows the clustering error of Algorithm 2, averaged over 1000
repetitions, as a function of sample length n; the average error
was calculated as the frequency of incorrect clustering. The
parameter λ was set to 75% of the true value of α.

VI. CONCLUSION

We have introduced a novel setting for clustering time
series. Our framework is more general than those considered
in the literature, and allows for provably consistent algorithms.

In this section we analyze the conditions of the main theorem
and list possible extensions and generalizations.
Necessity of Conditions. In Theorem 1 we require that the
correct number of clusters m, as well as a lower-bound on
the minimum normalized length of the stationary segments,
be provided. The former requirement is necessary: as shown
in [15], there is no consistent two-sample test for stationary
time series. Hence, without knowing the number of clusters,
it is impossible to determine whether two samples generated
by (single-piece and thus, of course, also piecewise) stationary
distributions belong to the same or different clusters. More-
over, the lower-bound λ on the minimum normalized distance
between changepoints is due to the corresponding condition
of the changepoint estimation algorithm of [6]. We conjecture
that this requirement is necessary. In contrast, as established by
[8], it is possible to estimate the changepoints of a piecewise
stationary sample consistently without knowing λ ∈ (0, α],
provided that the number of changes is known. Thus, an
analogous (though less practical) result can be obtained for
the problem considered here: Algorithm 1 would obtain the
changepoint estimates using the algorithm of [8], and proceed
without further modifications. Hence, the knowledge of λ can
be traded for that of the number of changepoints per sample.
Finite-time guarantees. In the context of stationary ergodic
time series, fundamental results establish the impossibility
of obtaining any finite-time guarantees on the error of the
resulting algorithms: already the speed of convergence of
frequencies of events to their underlying probabilities may
be arbitrarily slow [14]. Thus, additional assumptions beyond
stationarity and ergodicity are necessary to allow for finite-
time guarantees. While this falls beyond the scope of the
present paper, it would be interesting to consider the problem
of clustering piecewise stationary mixing or even piecewise
i.i.d. time series. Such assumptions would also make it possi-
ble to construct clustering algorithms that achieve consitency
without knowing the correct number of clusters; see also [4]
for a brief consideration of the problem concerning stationary
mixing processes. Note that due to long-range dependencies,
a rigorous finite-time analysis in this setting will require a
careful consideration of random times, see, e.g. [16].
Extensions. An interesting generalization would be to an
online setting whereby the samples grow over time, and new
samples can be added at every time step. This has the poten-
tial to address a range of applications that involve growing
bodies of data. The corresponding problem for stationary time
series is addressed in [4]. Piecewise stationarity presents new
challenges in this respect. Specifically, we may have infinitely
many changepoints, and the number of stationary marginals
per piecewise stationary process can also be infinite. An impor-
tant challenge here would be to ensure robustness with respect
to the case where two samples are generated by equivalent
piecewise stationary distributions yet they consistently appear
to be different in finite-time, since different subsets of their
stationary marginals are revealed after any given number of
time-steps. This task remains a challenge even when the sets
of stationary marginals are assumed to be finite.
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