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Abstract 
 

 

This thesis aims to propose a robust statistical model to predict the future energy demand on 

low voltage distribution networks based on the data obtained from the EV (electric vehicle) 

trials of Electric Nation project, conducted from 2017 to 2018. While the ultimate objective of 

Electric Nation is to assess the impact of EV charging on distribution networks and enable the 

distribution network operators (DNOs) to make informed decisions on demand management, 

this research project, as part of Electric Nation, aims to build relevant statistical models that 

would help the industry partner, EA Technology, to forecast the quantum of energy 

consumption, with high accuracy, that EV charging would lead to. In current research, we 

develop four statistical models based on four different algorithms: we start with time series 

regression as the benchmark model and iteratively improve the forecast accuracy of the 

benchmark model by boosting methodology. In addition, we also explore deep learning 

models (LSTM networks as the data is sequential) and identify that such models, with little 

hyperparameter tuning, deliver the best forecast accuracy among all the models.     

 

While chapter 1 lays the foundation of the thesis, chapter 2 critically reviews relevant 

academic literature in the field of EV charging and impact on the electric grid. Chapter 3 gives 

a brief overview of Electric Nation and introduces the current research project. Chapter 4 

introduces the data obtained from the Electric Nation trials and gives a comprehensive report 

on exploratory data analysis. Chapter 5 discusses the mathematical formulation of the project 

and explains the most relevant classes of algorithms applicable in this project. Furthermore, 

chapter 5 also discusses the various methodologies we opted in this project. Chapter 6 

presents the developed models, and chapter 7 summarises the findings and discusses the way 

forward.     

 

Keywords: electric vehicle (EV); EV charging; time series; forecasting; regression; ARIMA; 

LSTM networks.  
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1. Introduction 
 

 

1.1 EVs, EVs and More EVs 
 

The global EV stock crossed 2 million in 2016, which makes up nearly 0.2% of 1 billion 

passenger light-duty vehicles in circulation (Robinson, 2018). In 2016, China and the US had 

the largest shares of EVs, 32% and 28% respectively (Robinson, 2018). The UK has seen a 15-

fold increase in the number of electric vehicles (EVs) between 2013 and 2015 (Godfrey, 2016). 

In fact, some forecasts even predict that the number of EVs would shoot to over one million 

by 2020 (Godfrey, 2016), although Chargemaster, UK’s largest provider of EV charging 

infrastructure, forecasts the same figure by 2022 (Polar-Plus, n.d.). Despite the distinct 

forecasts on the growth of EVs as reported by different agencies, all of them indicate that the 

UK roads would be definitely inundated with hundreds of thousands of EVs in the next three 

to five years. The latest stats available as of July 4th, 2019 indicate that the sales of EVs rose 

by 61.7% in June 2019 compared to that in June 2018, with 2461 new battery electric vehicles 

(BEVs) registered in the UK in that month (Driving-Electric, 2019). The Society of Motor 

Manufacturers and Traders suggests that 60.3% more EVs have been sold so far in 2019 

compared to the same last year (Driving-Electric, 2019). Chargemaster furthers that the 

current growth in EV registrations would see 60% of new cars being electric by 2030 (Polar-

Plus, n.d.). Moreover, Chargemaster forecasts that one in every four vehicles would be EV by 

2025 (Polar-Plus, n.d.). Keeping pace with rising trends of EV registrations, the UK automobile 

market would see more than 30 new EV models by 2020 giving a plethora of options to the 

consumers (Polar-Plus, n.d.). 

 

1.2 Is EV Charging A Concern? 
 

The EV charging infrastructure has been expanding to match the rise of EVs and hence, the 

charging requirements in the UK automobile market. POLAR, the UK’s largest EV public 

charging network operated by Chargemaster, added more rapid chargers in 2017 than all 
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other public networks combined, leading to a market share of 51% (Polar-Plus, n.d.). Other 

major UK-wide networks include Ecotricity, Pod Point and Charge Your Car. As more EVs hit 

the UK roads, the charging infrastructure would be expected to expand proportionately. As 

more EVs and more charging stations come to reality, the demand for additional power from 

local distribution networks would increase.  

 

If majority of the people in a locality start charging their EVs at the same time, then the 

additional demand would create stress on the distribution networks even if the duration of 

charging is small, the power ratings of the chargers are smaller than 7 kW and the battery 

ratings of the EVs are less than 75 kWh. Based on UK’s National Grid’s (NG) study, there would 

be 90% penetration of EVs by 2050 leading to an increased demand of 46 TWh (1 𝑇𝑊ℎ =

 109 𝑘𝑊ℎ); this is over and above the total demand of 308 TWh in 2016 (Robinson, 2018). 

Robinson (Robinson, 2018) states that the impact of increased demand would depend upon 

the charging scenario. For instance, a sensible charging structure would encourage people to 

charge their EVs during off-peak periods, thereby reducing the impact on distribution 

networks (Robinson, 2018). My Electric Avenue project predicts that reinforcement of low-

voltage (LV) distribution networks would be required when 40-70 % of the vehicles are EVs 

(Godfrey, 2016). Low Carbon London estimates a four times increase in the current LV network 

reinforcement spend during an increased EV uptake (Godfrey, 2016). Reinforcement across 

the whole network would also cause disruption to customers while the work is under progress 

(Godfrey, 2016). Besides, the rate of EV uptake may also redefine reinforcement plans 

(Godfrey, 2016). Furthermore, with rising uptake of EVs, there’s a high probability of cluster 

formation within localities (Godfrey, 2016), i.e., clusters of people having charging 

requirements at the same time. Based on the estimates from Zap-Map as shown earlier in this 

section, such clusters would lead to increased load on the LV distribution networks. Hence, it 

is important for power distribution companies to devise plans to minimise the effect of such 

clustering. 
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In this project, we proposed deep learning models (LSTM networks) to forecast consumption 

of energy caused by EV charging in future scenarios. Summarised results of one such scenario 

in the city of Lancaster during a week in winter season in 2040 is presented below. The details 

can be found in section 7.1.1. 

 

Scenario of Lancaster, UK (2040): 

Start Date: 24/12/2040 

End Date: 30/12/2040 

Season: Winter 

The mean consumption of energy for EVs based on a range of battery capacities are tabulated 

below (detailed description on the choice of battery capacity ranges is presented in section 

4.2).  

 

Table 1: Summary of scenario-based forecasting for the city of Lancaster, UK in 2040 

Battery Capacity Range 

(kWh) 

Estimated number of 

EV owners 

Mean Consumption of Energy 

per day (kWh) 

0-25 39673 106151.8 

26-50 21176 99036.6 

51-75 8522 42620.4 

76-100 3651 18458.1 

 

The results indicate an increased consumption of energy by 266,266.9 kWh per day in the city 

of Lancaster in the year 2040. Although this estimate is based on a few assumptions, it still 

gives a faithful indication of the quantum of stress the LV distribution networks would have in 

case EVs are allowed to charge without restrictions. 

 

In further sections, we use the words ‘predictors’ and ‘features’ interchangeably. However, 

both the words mean the same: set of variables used to predict the target variable. 
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2. A Review of Academic Literature 
 

 

2.1 Introduction 
 

Estimating the energy requirements prior to EV charging is part of emergency preparedness 

in distribution networks as any additional bulk demand on the network may lead to frequent 

outages. Researchers, in the past, answered a plethora of questions relevant to EV charging, 

including EV uptake scenarios and the stress it causes on electricity networks, via extensive 

studies and analyses across different locations worldwide.  

 

In past, researchers worked with data which included: 

• Geography of consumers 

• Types of vehicles (hybrid or battery operated) 

• Capacity of vehicle batteries, although with small variance 

• Energy consumed from chargers or batteries of vehicles 

• Vehicle usage 

• Household demand profile  

• Demographics 

• Weather conditions 

•  Mechanics of vehicles 

Using different subsets of the aforementioned data, researchers in the past estimated 

consumption of energy of EVs from not only chargers but also their batteries while the vehicles 

were running. Although energy data were mostly sequential, modelling methods were largely 

restricted to rudimentary regressions and relevant time series methods were not deployed: 

this can be attributed to the objective that past researches primarily focussed on assessing 

the impact of either EV charging on distribution networks or kinematics on the consumption 

of energy from the batteries, with the former emphasised on understanding the stress levels 

EV charging would cause on the existing infrastructure of electricity networks. In the current 
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research project, the focus had been on developing predictive models, using relevant machine 

learning algorithms and time series dynamics, that would act as a tool for distribution network 

operators to estimate how much additional energy would be required in a local network when 

clusters of EVs get charged. The project leveraged machine learning and time series dynamics 

to develop models to forecast energy consumption during EV charging based on an initial 

understanding of the data that might be available to the distribution network operators.               

 

2.2 Circa 2011 – 12 
 

Green II et al. (Green II, et al., 2011) assessed the impact of PHEVs (plug-in hybrid EVs) on the 

distribution networks by analysing four important factors: driving patterns, charging 

characteristics, charge timing and vehicle penetration. The authors suggested that leveraging 

a combination of MATSim and power simulation systems to further analyse the impact of 

PHEVs on the distribution networks could be insightful (Green II, et al., 2011). Higgins et al. 

(Higgins, et al., 2012) implemented a diffusion model, linking features of multi-criteria analysis 

and choice modelling, and applied it to estimate the market share of different types of EVs, 

using the vehicle stock of 1.5 million households in the city of Victoria, Australia. The authors 

identified that the geographical differences in uptake of EVs were primarily attributed to 

driving distance, employment status and household income, with urban areas having 

approximately thrice the proportional uptake (Higgins, et al., 2012). Higgins et al. (Higgins, et 

al., 2012) tested the model for a range of incentives to demonstrate its ability to inform and 

evaluate policy options.  

 

2.3 Circa 2013 – 14 
 

Xydas et al. (Xydas, et al., 2013) leveraged data mining methods such as decision tables, 

decision trees, artificial neural networks and support vector machines, to forecast EV load. 

The model was built using data on previous day load, number of the week, day of the week, 

type of day, number of new plug-ins every half-hour and total charging connections every half-

hour (Xydas, et al., 2013). The authors used two scenarios, next day forecast and next week 
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forecast, and forecasting was done for each scenario separately (Xydas, et al., 2013). The 

objective of the study was to validate the use of data mining methods to forecast the EV 

charging load. However, the authors did emphasise that more cases should be studied to have 

a better understanding of the key attributes that indicate the choice of a given method over 

another (Xydas, et al., 2013). Foley et al. (Foley, et al., 2013) studied the impacts of EV charging 

in an actual working electricity market in Ireland. The authors developed a model of Ireland’s 

electricity market in 2020 using the power systems market model called PLEXOS for power 

systems for both peak and off-peak scenarios (Foley, et al., 2013). The authors quantified the 

impact of EV charging by firstly simulating a baseline scenario without any EV load (Foley, et 

al., 2013). The model was then run with EV load for both peak and off-peak loads (Foley, et 

al., 2013). The baseline scenario was then compared to both peak and off-peak scenarios to 

determine the effect of EV load (Foley, et al., 2013). Hoed et al. (Hoed, et al., 2013) analysed 

the actual usage patterns of public charging infrastructure in the city of Amsterdam, based on 

more than 109,000 charging events in the year 2012-13. The authors identified that as the 

charging infrastructure expanded in Amsterdam, the number of charging sessions also 

increased from 2012 to 2013 (Hoed, et al., 2013). The per month consumption of energy 

increased from 55 MWh (April 2012) to 109 MWh (March 2013) (Hoed, et al., 2013). The mean 

consumption was found to be 8.31 kWh per charging event (Hoed, et al., 2013). The authors 

also identified that the consumption of energy grew significantly from September 2012 

onwards; this can also be verified from the plot shown below in figure 1 (Hoed, et al., 2013). 

The analysis was intended to deliver insights in the actual usage patterns of public charging 

infrastructure, eventually increasing effectiveness of the existing system and optimising the 

roll out of further charging stations by municipalities (Hoed, et al., 2013).    
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Figure 1: kWh consumption across sessions and months in Amsterdam (Hoed, et al., 2013, p. 6) 

 

Paevere et al. (Paevere, et al., 2014) discussed a suite of models for the city of Victoria 

(Australia) to obtain spatial and temporal projections of charging demand and peak-shaving 

potentials from EVs. Paevere et al. (Paevere, et al., 2014) discussed models for future EV 

uptake, travel by households, household electricity demand and recharge/discharge of EVs at 

their home locations. An overview of the modelling strategy is shown below in figure 2 

(Paevere, et al., 2014).  

 

 

Figure 2: Modelling strategy by Paevere, et al., 2014 (Paevere, et al., 2014, p. 64) 
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The authors also emphasised that the shape and magnitude of EV charging demand profiles 

were dependent on the geography (Paevere, et al., 2014). Paevere et al. (Paevere, et al., 2014) 

projected that the average peak daily charging load under a demand charging scenario in 

Victoria was 0.66 kW per EV. The authors concluded that under the expected EV penetration 

in Victoria by 2033 and demand charging, the projected increase in peak electrical loads was 

mostly less than 10% (Paevere, et al., 2014). Khoo et al. (Khoo, et al., 2014) addressed the 

issue of impacts contributed by different EV user categories and models to peak loads through 

statistical analysis of the charge events in the Victorian EV Trial in Australia. Moreover, they 

also modelled (from probability distributions to regression) the relationships between EV 

types and attributes of the charge events such as charge duration, daily charge frequency, 

energy consumed, start charge hour, and time to next charge event  (Khoo, et al., 2014). The 

Victorian EV trial saw 178 participants (70% participants being household) generating 4333 

charge events with a total energy consumption of 33 MWh over a duration of 12,170 hours 

(Khoo, et al., 2014). Khoo et al. (Khoo, et al., 2014) projected the mean and maximum 

percentage increase in the energy demands between 3.27% and 5.70%, and 5.72% and 9.79% 

respectively in the summer of 2032/33 based on the future EV uptake scenarios. 

 

2.3 Circa 2015 – 16 
 

Wang et al. (Wang, et al., 2015) highlighted that energy consumption during driving of EVs is 

largely determined by driving behaviour, road topography information, and traffic situation. 

They (Wang, et al., 2015) proposed an offline algorithm that gave two energy consumption 

results, one for the maximum driving speed and the other for the most economical driving 

speed, to give a first impression to the driver on the possible energy consumption and 

therefore, the range which the EV can cover even before the actual trip. Furthermore, Wang 

et al. (Wang, et al., 2016) also proposed an online energy consumption algorithm that would 

help in adjusting the energy consumption prediction during driving of BEVs; this will be based 

on a number of factors, such as vehicle characteristics, driving behaviour, route information, 

traffic states and weather conditions. De Cauwer et al. (De Cauwer, et al., 2015) detected and 
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quantified correlations between the kinematic parameters of EVs and their energy 

consumption from the batteries. The authors developed three regression models for energy 

consumption as a function of the EV’s kinematic parameters, such as travel distance, travel 

time, temperature, and acceleration, using three different aggregation levels for the variables 

(De Cauwer, et al., 2015). Neaimeh et al. (Neaimeh, et al., 2015) focussed on studying the 

impact of EV penetration by leveraging a probabilistic approach and network models in rural 

and urban households. They studied data that included 44 EVs, 85000 journeys, 19000 

charging events and 125 users. Neaimeh et al. (Neaimeh, et al., 2015) analysed only domestic 

charging events that involved domestic load profiles of half-hourly power consumption and 

EV usage profile including time, battery current, voltage and state of charge. Such variables 

were then used to compute other variables such as duration of charging and consumption of 

energy (Neaimeh, et al., 2015). Monte Carlo Simulation was used to build a distribution of 

possible demands on the trial networks using data produced by sampling domestic load 

profiles and EV charging profiles (Neaimeh, et al., 2015). Neaimeh et al. (Neaimeh, et al., 2015) 

assessed the impact of EV charging by evaluating the effect of peak load on a given day in the 

month of January. Neaimeh et al. (Neaimeh, et al., 2015) suggested that it would be beneficial 

for the DNOs to distribute EV charging across both space and time, i.e., allowing a plethora of 

options, such as work, public, home and rapid, for the EV owners to charge their vehicles could 

be helpful in alleviating the impact of EV charging on domestic networks. Moreover, allowing 

the roll-out of EV charging infrastructure in association with relevant market players would be 

an efficient way to manage existing distribution networks (Neaimeh, et al., 2015). Xydas et al. 

(Xydas, et al., 2016) proposed a ‘risk level’ index using fuzzy logic to assess the impact of EV 

demand on distribution networks. Xydas et al. (Xydas, et al., 2016) developed three modules, 

clustering, correlation and regression, and assimilated information from all the three modules 

to generate a ‘risk level’ index. While the clustering module created daily demand profiles in 

a given geographical location using 𝑘-means clustering, correlations were computed between 

weather attributes and daily peak power of EVs’ demand in a geographical location in the 

correlation module (Xydas, et al., 2016). The regression module involved computation of 

linear regression model of monthly demand as a function of time, i.e., modelling with a trend 
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(Xydas, et al., 2016). A high ‘risk level’ index indicated high risk on the distribution networks 

(Xydas, et al., 2016). Xydas et al. (Xydas, et al., 2016) identified Leicestershire and 

Nottinghamshire having high ‘risk level’ indices, while West Midlands with low ‘risk level’ 

index, based on the available data.  

 

2.4 Circa 2017 – 18 
 

Bi et al. (Bi, et al., 2018) proposed a combined model for charging time prediction as a function 

of the amount of state of charge based on regression and time series methods according to 

the data from 70 battery electric vehicles (BEVs) operating in Beijing, China. Bi et al. (Bi, et al., 

2018) argued that accurate charging time prediction of BEVs could help drivers determine 

travel plans and driving range. Moon et al. (Moon, et al., 2018) estimated the changes in 

electricity charging demand based on consumer preferences for EVs, charge time of the day 

and types of EV supply equipment (EVSE) for the Korean market. The authors used a mixed 

logit model (consumers’ utility function for vehicles) to estimate consumers’ preferences for 

different types of vehicles (Moon, et al., 2018). Consumers’ preferences were analysed for 

deriving the choice probability of EVs to assess the potential market size of EVs (Moon, et al., 

2018). Moon et al. (Moon, et al., 2018) also analysed charging patterns by surveying 

consumers to know about their preferred EVSE (private or public) and time of day. Total 

electricity demand was estimated using total EV owners, average distance travelled per day, 

and average fuel efficiency of current EVs (Moon, et al., 2018). The authors suggested that the 

EV market in Korea could increase by 73,000 vehicles annually (Moon, et al., 2018). The 

authors also indicated that, based on their analysis and estimates, the current power grid 

infrastructure in Korea might not be able to meet the peak demand of energy in some areas 

(Moon, et al., 2018). López et al. (López, et al., 2018) proposed a demand response strategy 

based on machine learning to control EV charging in response to the real-time pricing, such 

that the overall energy cost of an EV was minimised. The authors assumed a hypothetical case 

when perfect knowledge of the future, such as fuel prices, vehicle data, was present and an 

optimal set of actions was proposed using dynamic programming, i.e., to analyse historical 
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data to select the best moments to charge EVs (López, et al., 2018). López et al. (López, et al., 

2018) used the optimal set of actions, in combination with an information system, to learn 

which variables and under what conditions the charging decisions should be made, using 

machine learning algorithms. An overview of the proposed methodology is shown below in 

figure 3 (López, et al., 2018). 

 

 

Figure 3: Methodology proposed by López, et al., 2018 (López, et al., 2018, p. 4) 
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3. The Project 
 

 

3.1 Electric Nation 
 

Electric Nation, the world’s largest EV trial, is the customer-facing brand of CarConnect, which 

is a Western Power Distribution (WPD) and Network Innovation Allowance (NIA) funded 

project (Dudek, 2017). WPD collaborated with EA Technology, DriveElectric, Lucy Electric 

GridKey and TRL for the Electric Nation project (Dudek, 2017). Electric Nation attempts to 

answer the challenge that when 40-70 % of households within a local distribution network 

have EVs, at least 32% of these networks across the UK would require intervention (Dudek, 

2017). The project involved developing and delivering a number of smart charging solutions 

to support EV uptake on local networks (Dudek, 2017). One of the major outcomes of this 

project would be the Network Assessment Tool (NAT) that would analyse EV related stress on 

networks and would identify the best economic solution (Dudek, 2017).  

 

3.1.1 Demand Management 
 

The essence of demand management service (DMS) is to regulate the consumption of energy 

to minimise the level of demand related stress on the electricity networks. The demand 

management system relevant to Electric Nation can be well captured in figure 4 (Dudek, 2017).  
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Figure 4: Demand management system (Dudek, 2017, p. 6) 

 

The figure shows that the flow of information is bidirectional: 

• Smart charger to DMS: plug-in status and status of charging, i.e., whether a car is 

connected and drawing current (Dudek, 2017). 

• DMS to smart charger: electric current available for charging (Dudek, 2017). 

This information is leveraged by the DMS to ensure that the total demand of groups of 

chargers under a given substation is within the limit set by the distribution network operator 

(DNO) (Dudek, 2017). In Electric Nation, two separate DMS providers, GreenFlux (GF) and 

CrowdCharge (CC), participated and a total of 673 smart chargers were installed (Dudek, 

2017). Each DMS provider uses a different algorithm to allocate current to the chargers 

connected; moreover, the quantum of data they have and they handle, and the way the 

customers interact with their systems also differ (Dudek, 2017). The two DMS providers used 

different equipment during the trials. While CC used an APT/eVolt charger, GF worked with 

an ICU charger (Dudek, 2017). Both the DCS systems communicated to the customers’ routers 

either directly or via a Wi-Fi bridge (Dudek, 2017). For the GF systems, a GSM sim was also 

installed inside the charger, providing a back-up form of communication (Dudek, 2017).  
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3.1.2 Test Rig 
 

A test rig was designed, built and commissioned at EA Technology’s premises in Capenhurst 

(Dudek, 2017). The test rig had twelve chargers, six APT and six ICU, with additional monitoring 

equipment (Dudek, 2017). The rig served two main purposes: 

• To test the response of EVs to changes in the available current; this was to ascertain that 

the EVs would regulate their charging based on the available current (Dudek, 2017). 

• To confirm the behaviour of re-configured algorithms over multiple cycles to show that 

current was allocated impartially among chargers without breaching the DNO limit 

(Dudek, 2017). 

The aim of building the test rig was to test the behaviour of individual cars before flagging off 

the customer trials; this also involved re-configuring the algorithm (s) of demand management 

for both GF and CC DMS providers (Dudek, 2017). Moreover, the test rig trial also helped in 

confirming the behaviour of chargers if communications are lost from the DMS (Dudek, 2017). 

Both the DMS systems were tested and it was confirmed that their initial configurations were 

fit for the purpose of customer trials under varying capacity limits (Wells & Dale, 2017).    

 

3.1.3 The 3-Pronged Approach 
 

The aim of the Electric Nation project is to enable the DNOs to identify those parts of their 

networks that would be affected by EV uptake and therefore, EV charging (Wells & Dale, 

2017). To achieve this, Electric Nation adopted a three-pronged approach. 

1. Modelling:  This phase would provide DNOs with an assessment tool to identify the areas 

in their networks that are most likely to be impacted by EV charging (Wells & Dale, 2017). 

Moreover, the tool would also enable the DNOs to have a detailed assessment of the 

level of risk on the networks caused by EV charging and would enable to decide on 

whether reinforcement would be necessary (Wells & Dale, 2017). 

2. Monitoring: This phase would develop an algorithm that can be deployed on an existing 

substation monitoring facility, enabling the effect of charging EVs on LV networks to be 

retrospectively analysed (Wells & Dale, 2017). 
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3. Mitigation: This phase would see adapting existing smart charging technology, including 

V2G chargers if possible (Wells & Dale, 2017). The aim is to prove the technical and 

economic viability of domestic EV charging demand control and V2G services, to defer or 

minimise network reinforcement (Wells & Dale, 2017). This phase would involve 

customer trials with a wide range of EVs having a breadth of battery capacities and 

charging rates to reflect a diverse EV market (Wells & Dale, 2017).  

 

3.2 Predicting Future Loads of Electric Vehicles in the UK  
 

The MSc by Research project, ‘Predicting Future Loads of Electric Vehicles in the UK’ (under 

the aegis of Centre for Global Eco-Innovation, Lancaster University) in collaboration with EA 

Technology was aimed at estimating the additional load on distribution networks caused by 

EV (electric vehicle) charging. This project was part of the subproject ‘Mitigation’ under the 

purview of Electric Nation. Under the subproject Mitigation, customer trials were conducted 

between January 2017 and December 2018 (Electric-Nation, 2019). A summary of the trials 

can be found below. 

• 673 smart chargers were installed at customers’ homes throughout the licensed areas of 

WPD (Electric-Nation, 2019). 

• The trials included 40 different types, makes or models of EVs (Electric-Nation, 2019). 

• Smart charging was provided by two DMS providers, GF and CC. These providers used 

different algorithms to control EV charging and customer-facing systems (Electric-Nation, 

2019). 

• The smart chargers at customers’ premises could report the plug-in time of EVs and their 

active charging start time (Electric-Nation, 2019). Besides, smart chargers were also 

capable of receiving instructions for pausing or reducing charging (Electric-Nation, 2019).      

• Trial 1: Customers were not told that EV charging was regulated, and they could not 

interact with the smart charging system (Electric-Nation, 2019). 

• Trial 2: Customers were given apps to enable them to interact with the smart charging 

system (Electric-Nation, 2019).  
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• Trial 3: Leveraged a simulated Time of Use (ToU) tariff to reward customers for changing 

their charging behaviour such as charging their EVs during the off-peak time (Electric-

Nation, 2019). 

EA Technology was interested in a robust statistical model that would give an estimate of the 

additional load on the LV distribution networks caused by EV charging under unsupervised 

conditions, i.e., if the EV owners have access to unconstrained charging, how much power 

would be consumed solely due to EV charging? This objective could have been addressed with 

different time granularities; for e.g., additional energy consumption per hour or per day, and 

so on. EA Technology was interested in the per day estimate of the additional load caused by 

EV charging. Hence, at any phase of the analysis, day-wise aggregation of data or results was 

indispensable as it was warranted by the project (business) objective. We did day-wise 

aggregation of the raw data before beginning the analyses and modelling, and converted the 

data into a day-wise time series (section 4.3). Another possibility (which was not analysed) 

could have been converting the raw data into hour-wise sequential data and then, further 

aggregating the results to get day-wise forecasts. However, day-wise aggregation of data prior 

to analyses and modelling offered an obvious advantage over other time aggregations: 

imputation of missing values in the day-wise sequential data was relatively easier and reliable. 

This is because charging events or transactions were randomly distributed in time in a given 

day and it was difficult to spot the exact point in time when a missing charging event could 

have taken place. This fact was also corroborated by EA Technology, who emphasised that 

based on the data available, it was challenging to identify which transactions might have been 

missing, both in magnitude and timestamp in a given day. Since a missing transaction with a 

fixed timestamp couldn’t be spotted with certainty in a day but could certainly be estimated 

to have occurred in a particular day, working with day-wise aggregated data offered certainty 

relevant to aggregated charging events over other time-aggregations. Summarily, higher the 

frequency of time aggregations, higher was the uncertainty in imputing the missing values.      
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In further discussion, we will use the terms ‘forecast’ and ‘ prediction’ interchangeably. At 

places, we may also use the term ‘estimate’. However, all the terms hold the same meaning 

in the report.  
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4. Exploratory Data Analysis (EDA) 
 

 

4.1 Description of GreenFlux (GF) and CrowdCharge (CC) Data 
 

The trials, as part of the Electric Nation project, began in 2017. As such, the data collection,  

too, commenced in 2017. The GF transaction data had 80,313 observations across 12 variables 

(GF data collected from 01/02/2017 to 30/12/2018). The CC transaction data had 71,264 

observations across 13 variables (CC data collected from 04/05/2017 to 03/11/2018). In 

addition, another dataset, Charger Install (CI), containing information on 673 participants 

involved in the trial was also present. In the CI dataset, an additional variable, 

Min_Charging_Time was created that informed the total charging time (in hours) when a 

battery got charged from 0% to 100% uninterruptedly. Two variables from the GF data and 

three variables from the CC data were dropped before preliminary analysis, as they were 

found to be redundant or irrelevant to the objective of the project.  

 

The essence of delivering data-driven intelligence to any business depends on how tidy the 

data is (Wickham, 2014). Businesses, in general, are inundated with large volumes of data but 

data in its raw form can’t be used to train machine learning algorithms, to generate sensible 

meaning and results. We need to pre-process the raw data so that the learning algorithm can 

be trained to yield meaningful insights and results, eventually rendering intelligence to 

businesses. As such, data pre-processing was imperative to our way-forward. We began with 

an initial inspection of the data and observed, and rectified the following issues. 

• The GF data had 79,056 missing values, which were spread across the following variables: 

Trial (27,690), GroupID (27,690) and ActiveChargingStart (23,676). The CC dataset had 

80,031 missing values, spread across the following variables: ParticipantID (3899), CarKW 

(3899), CarKWh (3899), GroupID (24,034), Trial (24,034), ConsumedkWh (1) and 

ActiveChargingStart (20,265). It’s important to note that the total number of missing 
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values were aggregated over all the variables and hence, did not represent the actual 

number of rows with missing information.  

• In the GF transaction data, 1 observation showed vehicle plug-in time in the year 2022 

and 2 observations showed plug-out time in the year 2022. These anomalies were 

attributed to the communication loss between the Demand Control System (DCS) and the 

smart chargers. No such anomaly was observed for the CC data.   

• As per the norms of the industry partner (EA Technology), observations with consumed 

energy less than 0.5 kWh or greater than 100 kWh were dropped from the CC data. Such 

observations were already dropped by EA Technology for the GF data before it was made 

available for analyses.  

• The missing values for Trial and GroupID were actually the events when the charging was 

unsupervised; hence, no IDs were assigned to the two variables, thereby resulting in 

missing values. Such events were recoded as “Unmanaged”; this brought down the 

number of missing values in GF data to 23,676 and in CC data to 19,707. 

• In the GF transaction data, transactions were recorded for only 301 participants, although 

the CI dataset showed that 345 participants had GF DCS. So, there was no information for 

44 participants. In the CC data, transactions were also recorded for only 300 participants, 

although the CI dataset showed that 328 participants had CC DCS. So, there was no 

information for 28 participants. The missing information on 44 GF and 28 CC participants 

were attributed to the fact that the chargers for those participants never communicated 

with the DCS and hence, no data was collected.   

• GF and CC datasets were separately combined with CI dataset to create two new 

datasets, GF-CI, and CC-CI respectively, having 18 variables each, including the ones 

created for analyses (discussed later). The missing values were present because of the 

unavailability of the start time of vehicle charging; this information could neither be 

retrieved nor be estimated and hence, were dropped from the datasets after advice from 

EA Technology. The final GF-CI and CC-CI datasets had 56,637 and 50,085 observations 

respectively.     
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Based on the objective, additional features, Charging_Time_Hour, ActiveChargingStop, and 

capacity_kWh, were extracted from the GF-CI and CC-CI transaction datasets (Zheng & Casari, 

2018). Each observation in the dataset conveyed a unique transaction (charging event) with 

information captured by 18 variables. Description of the 18 variables in the combined datasets 

is as follows. 

1. ChargerID: ID of charger assigned to a consumer. 

2. ParticipantID: ID of the consumer. 

3. CarkW: Power rating of EV battery in kW. 

4. CarkWh: Energy rating of EV battery in kWh. 

5. Min_Charging_Time: Time (hours) required to fully charge an EV from 0% to 100% based 

on CarkW and CarkWh. 

6. GroupID: ID of the group to which a consumer was assigned during the trials. It kept 

changing as the trials progressed. 

7. Trial: ID of the trials. In total, 4 trials were conducted chronologically; they were: 

unmanaged or unsupervised, 1, 2 and 3. 

8. AdjustedStartTime: Time at which an EV was plugged in. 

9. ActiveChargingStart: Time at which an EV started charging. 

10. ConsumedkWh: Energy (kWh) consumed during a given transaction. 

11. AdjustedStopTime: Time at which an EV was plugged out. 

12. Charging_Time_Hour: Duration of charging (hours), assuming uninterrupted charging. It 

was computed by taking the ratio of ConsumedkWh and CarkW. 

13. ActiveChargingStop: Time at which an EV stopped charging. It was estimated by adding 

Charging_Time_Hour to ActiveChargingStart. 

14. DCSProvider: Type of DCS (GF or CC) connected to the charger. 

15. CarMake: Brand of EV owned by the consumer. 

16. CarModel: Model of EV owned by the consumer. 

17. PIVType: Type of plug-in vehicle (PHEV, REX or BEV) owned by the consumer. 

18. capacity_kWh: Category/bin of battery energy rating (kWh); initially, four categories/bins 

were created, 0-25, 26-50, 51-75 and 76-100; this was in agreement with EA Technology’s 
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expectations (validity of the choice of bins was warranted by the conclusions drawn from 

clustering analysis, discussed later in section 4.2). For instance, if a consumer had owned 

a car with CarkWh of 33, he was assigned the bin 26-50. 

Distribution of vehicles based on battery capacities can be observed from the boxplots (figure 

5). We observe that the majority of the consumers in the trials preferred cars with lower 

battery capacities.  

 

 

EA Technology’s objective required us to estimate the consumption of energy assuming that 

the charging events were unsupervised. Hence, the variable ActiveChargingStop was 

extracted from the raw data (Zheng & Casari, 2018) assuming that all the charging events were 

unsupervised. In principle, charging across all the trials except for trial 3 were assumed to be 

identical. In addition, analyses based on the assumption of unsupervised charging was to be 

done excluding trial 3 observations as, during trial 3, people’s charging behaviour was affected 

because of monetary incentives given for off-peak charging. Hence, 9,650 and 4,332 

observations were dropped from GF-CI and CC-CI datasets respectively. Further analyses and 

insights discussed in the report only involves transactions until trial 2.  

Figure 5: Car count vs bins (GF and CC) 
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4.1.1 Variability of Consumption per Transaction 
 

From the boxplots of consumption of energy with respect to capacity range (figure 6), we 

observe that for both GF and CC DCS, there is significant variability of consumption per 

transaction (or per charging event) with capacity range. We observe that the median energy 

consumption is highest for consumers who own PIVs with battery capacities from 51 to 75 

kWh. It is followed by consumers who own PIVs with capacities from 76 to 100 kWh. This aligns 

with our initial assumption that there would be the variability of frequency of charging and 

hence, consumption based on battery capacities.  

 

  

The boxplots of the count of PIVs of different car makers (figures 7 and 8) in the trials (for both 

GF and CC DCS) show that the top three choices for consumers are BMW, Tesla, and Nissan. 

These are followed by Volkswagen, Mitsubishi, and Mercedes. However, the boxplots of 

energy consumption with respect to car makers show that Tesla cars, in general, consume 

more energy than cars of other makers. Moreover, although the count of BMWs is highest 

among all the cars, the median energy consumption of BMWs are similar to that of many 

others. These observations can be attributed to the fact that while Tesla cars are found to 

Figure 6: kWh consumption vs bins (GF and CC) 
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have higher battery capacities, for BMW cars, it is just the opposite, i.e., BMW cars are found 

to have lower battery capacities (figures 48 and 49, Appendix A).  

 

 

Figure 7: Car count vs car brand (GF) 

 

 

Figure 8: Car count vs car brand (CC) 
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Details of the median energy consumption of cars of different makers can be visualised from 

the boxplots (figures 9 and 10). In addition, Appendix A (figures 48 and 49) gives the boxplots 

for the battery capacities of different cars with respect to carmakers. Another important 

observation that can be drawn from the boxplots is that energy consumption gets significantly 

affected by the battery capacity and not by the carmaker, i.e., the effect of car make appears 

to be insignificant in the presence of battery capacity.   

 

 

Figure 9: kWh consumption vs car brand (GF) 
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Figure 10: kWh consumption vs car brand (CC) 

 

Boxplots of energy consumption with respect to PIV types (figure 11) show that the median 

energy consumption is highest for BEVs (battery electric vehicles); this is followed by REXs 

(range extenders) and PHEVs (plug-in hybrid electric vehicles). Although PIV type has an effect 

on energy consumption, the future scenario of distribution of PIV types has uncertainty. As 

such, EA Technology was more interested in assessing the effect of battery capacities on 

energy consumption. In view of the business objective, battery capacities ranged from 4.4 

kWh to 100 kWh to capture a lot of variability in understanding the effect of capacities on the 

consumption of energy. Hence, further analyses are restricted to estimating energy 

consumption as a function of battery capacities and other features which would be available 

to DNOs (distribution network operators) in future. 



26 

 

 

 

4.2 Cluster Analysis 
 

Although minor variations were acceptable, if trial participants within each bin showed 

extremely dissimilar consumption patterns, then our assumption of creating four capacity bins 

with equal bin width would have been seriously questioned. Cluster analysis was imperative 

to validate our assumption of working with four battery capacity bins to meet the business 

objective.  

 

The GF transaction data was transformed to obtain consumer-wise data across all the trials 

except for trail 3. It is important to note that we chose only those consumers who were 

present in the trial for at least one day (24 hours). As such, we dropped 2 participants and 

summarised the data for 298 consumers. We focussed on the features that were most 

relevant to the future scenario: battery rating and average energy consumption per charge. It 

may be argued why we didn’t choose the average energy consumption per day instead of the 

same per charge. This is because the motive behind clustering was to identify the consumption 

behaviour of participants every time they charge their EVs. Besides, many consumers were 

reported to be active for almost an entire year but charged their EVs very few times. Since we 

didn’t know the reason for such a behaviour, we focussed on everyone’s average energy 

Figure 11: kWh consumption vs EV type (GF and CC) 
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consumption per charge assuming that they used the EVs as their primary vehicles for 

commutation.      

 

We started with 𝑘-means clustering (Witten, et al., 2013) for customer segmentation. A good 

clustering should result in small within-cluster variation (Witten, et al., 2013). The within-

cluster variation for a cluster 𝐶𝑘 is a measure that indicates how different the observations 

are from each other within 𝐶𝑘. In our analysis, we used the squared Euclidean distance to 

define the within-cluster variation. For cluster 𝐶𝑘, within-cluster variation, 𝑊(𝐶𝑘), is 

mathematically represented by (Witten, et al., 2013) 

 

𝑊(𝐶𝑘) = (
1

|𝐶𝑘|
) ∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)2

𝑝

𝑗=1𝑖,𝑖′𝜖𝐶𝑘

 

where, 

|𝐶𝑘| =  number of observations in 𝐶𝑘 

 

This entity, when summed over all the clusters, is known as the total within-cluster sum of 

squares. The figure shown below (figure 12) shows that as we increase the number of clusters, 

the total within-cluster sum of squares decreases. This result is obvious because as we 

increase the number of clusters (or, form smaller clusters), the within-cluster variation would 

decrease. However, the figure below shows an interesting observation: as we move from no 

cluster (𝑘 = 1) to 10 clusters, the total within-cluster sum of squares initially drops quickly from 

𝑘 = 1 to 𝑘 = 3 but then, decreases gradually as 𝑘 increases. This implies that as we increase 𝑘 

beyond 𝑘 = 3, we don’t get a significant decrease in the within-cluster variation. Hence, 𝑘 = 3 

is the optimum number of clusters.  
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Figure 12: Total-within-cluster sum of squares vs the number of clusters 

 

The results of 𝑘-means clustering for 𝑘 = 3 are tabulated below (table 2). 

 

Table 2: Cluster features for k = 3 

Cluster Min Rating 

(kWh) 

Max Rating 

(kWh) 

Mean Rating 

(kWh) 

Mean kWh / 

Charge 

1 4.4 18.7 9.41 5.68 

2 22 41 29 14.3 

3 60 100 77.8 26.8 

  

However, we also identified the clusters for 𝑘 = 4 to compare the results with those for 𝑘 = 3. 

The results of 𝑘-means clustering for 𝑘 = 4 are tabulated below (table 3). 
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Table 3: Cluster features for k = 4 

Cluster Min Rating 

(kWh) 

Max Rating 

(kWh) 

Mean Rating 

(kWh) 

Mean kWh / 

Charge 

1 85 100 91.3 26.4 

2 4.4 18.7 9.41 5.68 

3 22 41 29 14.3 

4 60 75 72 27.0 

 

We observe that, for both 𝑘 = 3 and 𝑘 = 4, the clusters with the two lowest mean ratings have 

identical mean energy consumption per charge. However, the third cluster (parent cluster) for 

𝑘 = 3 splits further and forms two sub-clusters when we choose 𝑘 = 4. However, the mean 

consumption per charge differs by on 0.6 kWh for 𝑘 = 4 and hence, the variability is not high 

in terms of mean energy consumption between the two clusters. Although the use of 𝑘 = 4 

doesn’t help in reducing the total within-cluster sum of squares by a large margin, it is still 

valid and applicable, if one wishes to work with high granularity.  

 

The suggested bins and the unique individual ratings for clustering with 𝑘 = 4 are: 

1. 4.4 – 18.7 kWh (4.4, 6.2, 7.1, 7.6, 8.8, 8.9, 9.2, 9.9, 11.2, 12.0, 16.0, 17.3, 18.7) 

2. 22 – 41 kWh (22, 24, 27, 28, 30, 33, 40, 41) 

3. 60 – 75 kWh (60, 75) 

4. 85 – 100 kWh (85, 90, 100) 

As mentioned earlier, EA Technology was interested in estimating the energy consumption for 

four ranges of battery capacities, which were equally split. The two largest battery capacity 

bins, 76 -100 kWh and 51 – 75 kWh, that were proposed align with two of the proposed 

clusters. However, the ranges of battery ratings in the clusters with two lowest mean ratings 

are slightly different from the proposed bins. While the proposed bins had ranges 0 – 25 kWh 

and 26 – 50 kWh, the clusters have ranges less than 20 kWh and greater than 20 kWh but less 

than or equal to 50 kWh.  
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The motivation behind 𝑘-means clustering was not to identify the exact capacity bins but to 

validate the approach. While results from 𝑘-means clustering suggested the use of three 

clusters, it didn’t invalidate the use of four clusters but indicated that addition of a fourth 

cluster didn’t offer any advantage relevant to within-cluster variation of consumer’s energy 

consumption. However, the usage of four bins did allow for one advantage that couldn’t be 

captured by the variance in the data: the addition of EVs with new battery capacities might 

change the range of observations in the clusters, including the number of optimal clusters 

based on the 𝑘-means algorithm. Hence, drawing a hard line on the range of observations 

within a cluster as well as the number of clusters was not recommended as this would have 

put constraints on the future scenarios with little room for flexibility. Hence, we adopted a 

more generalised binning approach to address the business objective, and approached the 

objective using the pre-agreed four bins of battery capacities.  

 

Summarily, 𝑘-means clustering helped us to validate our approach of working with different 

battery capacity bins and develop predictive models for different bins as it helps in capturing 

variations at higher granularity. 

 

4.3 Time Series Analysis 
 

The transaction data in its original form, even after initial pre-processing, still didn’t deliver 

the information that we needed to address the business objective. Hence, we transformed 

the transaction data into the day-wise dataset. The day-wise data for GF and CC were created 

to understand the overall maximum connected load (sum of the battery ratings in kWh for all 

the charging events in a given day) and consumption of energy per day for consumers across 

all the battery capacity bins created, i.e. we took into account variability of consumption as a 

function of battery capacities.  
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The day-wise data had nine variables which were extracted (Zheng & Casari, 2018) based on 

the information available in GF-CI and CC-CI datasets. The description of the variables can be 

found below: 

1. date: Date of charging events. 

2. day: Day of the week corresponding to a given date. 

3. season: The annual season of the year based on the month (Elexon, n.d.). This agreed 

with the client’s objective. 

4. demand: Maximum connected load in kWh (as explained earlier) in each day; it was 

estimated by aggregating battery capacities for all the transactions in each day. It 

followed from the observation that in more than 98% of the days, number of charging 

events taking place per day was more than the number of consumers, thereby meaning 

that consumers tend to charge their EVs more than once per day. Hence, every time a 

consumer connected his/her EV for charging, we considered the battery capacity as 

his/her demand. For instance, if a consumer with a battery capacity of 4.4 kWh connected 

his/her EV twice in each day, we estimated the demand as 8.8 kWh. Such an estimation 

was necessary as we didn’t have information on the state of the charge of an EV when it 

was connected. Demand puts and upper cap on the consumption of energy as the latter 

will always be less than or equal to the former. 

5. consumed: Total consumed energy (kWh) in each day; it was obtained by aggregating the 

energy consumption data for all transactions in a given day. 

6. time: Total duration of charging (hours) per day. 

7. owners: Number of EV owners per day. The original data had no information on the 

number of EV owners per day. This information was vital as not all the people who would 

own EVs would charge their vehicles every day. From the original data, we could directly 

extract information on the number of people charging their EVs every day, but the 

information on EV owners per day could not be extracted without any prior assumptions. 

Besides, people gradually joined the trials from March 2017 onwards until the trials got 

over. Moreover, it would be the number of EV owners that would be known to the DNOs 

in future, and a sophisticated model would be required to estimate the number of users 
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who would actually charge their EVs. Hence, we needed to estimate EV owners so that 

we could estimate the number of EV owners, called users, who would actually charge 

their vehicles per day. To estimate the EV owners per day, we assumed that an EV owner 

joined the trials whenever he/she charged his/her EV for the first time; besides, we also 

assumed that the consumer never dropped from the trials until the trials were active. 

Under this assumption, the EV owners increased with time during the trials.       

8. users: Number of EV users per day.     

9. trans: Number of transactions per day. 

 

4.3.1 The Influential Tail 
 

The day-wise data obtained had missing dates between the first and last days of transactions. 

The missing days resulted out of lack of information in the original data. There were two 

possibilities: no charging took place on a given day, resulting in no data, or the charging events 

for the missing days were not recorded because of communications loss between chargers 

and DCS. The first possibility was highly unlikely and hence, interpolation of missing data was 

essential for further analyses. Since the data was actually a time series, to interpolate missing 

information, we first computed STL decomposition, which was followed by linear interpolation 

after seasonally adjusting the data; finally, the seasonal component was added back 

(Hyndman & Athanasopoulos, 2018). The methodology used for interpolation was found to 

render the best fit for all the univariate time series in the multivariate data and hence, helped 

in retaining the structure of the time series. The details of the number of observations 

(number of days for which charging data is available) in the datasets can be found below (table 

4).  
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Table 4: Number of observations vs bins (GF and CC) 

Battery Capacity Bin (kWh) GF (Number of Days) CC (Number of Days) 

0-25 590 653 

26-50 611 629 

51-75 613 599 

76-100 473 610 

 

The difference in the number of observations arises because of the different start and end 

dates of the transactions for the DCS providers. From the above table, we observe that, in the 

majority of the cases (75% of the cases), CC datasets have a larger number of observations.  

 

The time plots of owners vs users for both GF and CC are shown below in figure 13 (0-25 kWh 

data). While the time plot for GF shows sudden level shifts at certain times, the plot for CC is 

relatively smoother. This can be attributed to the fact that consumers were gradually added 

to the CC DCS provider; however, for the GF DCS, batches of consumers were added at specific 

time instants.  

 



34 

 

 

 

Figure 13: Owners vs users (GF and CC) 

 

We also observe a sudden drop in owners as well as users in the time plots. Similar effects can 

also be observed for time plots of demand vs consumption (figure 14). The sudden drop in 

values can be attributed to the migration of consumers to trial 3. Although the data used for 

analysis didn’t involve observations from trial 3, the effect of migration of consumers could 

be felt even before trial 3 actually began. Such observations would have adversely affected 

the insights and intelligence drawn from data as the drop in the number of users was not 

proportional to the drop in the number of owners, and so was the case with demand and 

consumption.  

 

Observations in the tail of the plots, if retained, would have strongly affected the learning of 

forecasting algorithms as they were highly influential. Hence, for each time series based on 

battery capacity bins, such influential observations, which exhibited a disproportional drop in 

values across different variables, were dropped from further analysis. It is worth mentioning 
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here that most of such observations in the tail were imputed by the interpolation algorithm 

based on the neighbouring values and trend of the time series. As such, it was safe to drop 

such values as any algorithm, if used for interpolation, would have yielded similar results.    

 

 

Figure 14: Demand vs consumption (GF and CC) 

 

 

4.3.2 Towards Cleaner Data 
 

The time plots for owners vs users and for demand vs consumption, after dropping the 

influential observations in the tail, are shown below (figure 15) for the GF dataset (plots for 

CC data are shown in figure 50, Appendix A).  

 

We observe that, for both GF and CC data, a greater number of users charge every day in the 

0-25 kWh bin than users in any other bin. Although this does follow from the fact that 0-25 

kWh bin had the highest number of registered consumers in the trials and hence, higher 



36 

 

 

proportion of them charging, another possibility had been that consumers with smaller 

battery capacities needed to frequently charge their EVs than consumers with higher battery 

capacities, to keep their vehicles charged for usage. 

 

However, the demand and consumption plots (figure 16) reveal that for GF data (plots for CC 

data are in figure 51, Appendix A), consumers seem to have similar consumption patterns for 

the two lowest battery capacity bins (0-25 and 26-50 kWh). Summary statistics for the GF data, 

as shown in tables 5 to 8 (summary statistics for the CC data can be found in tables 43 to 46, 

Appendix B), reveal a very interesting observation: while the mean number of users and 

transactions for 0-25 kWh bin is approximately double the mean values of the respective 

variables for 26-50 kWh bin, the mean consumption for 0-25 kWh bin is nearly the same as 

that of 26-50 kWh bin.  However, the mean demand for 26-50 kWh bin is higher than that for 

the 0-25 kWh bin. We can infer that although the mean number of users and transactions for 

the 26-50 kWh bin is significantly smaller than those of the 0-25 kWh bin, demand and 

consumption per user (or per transaction) is higher for the former category than the latter. 

For bins with higher capacities, the number of users and transactions is extremely small 

compared to the values of the variables for lower capacity bins. Besides, the mean demand 

and consumption are also smaller than those for lower capacity bins.  
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Figure 15: Owners vs users for all bins (GF) 

 

Table 5: Summary statistics for 0-25 kWh bin (GF) 

Statistics – 

GF – 0/25 

Demand Consumed Time Owners Users Trans 

Minimum 8.8 3.8 0.54 1 1 1 

1st Quartile 395.4 179.5 43.58 52 22 30 

Median 692.4 341.9 82.85 85 37.5 52 

Mean 685.1 344.3 82.57 93.45 39.83 53.27 

3rd Quartile 1031.1 529.7 126.56 152 63 82.05 

Maximum 1516.2 838.1 202.99 163 82 119 
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Table 6: Summary statistics for 26-50 kWh bin (GF) 

Statistics – 

GF – 26/50 

Demand Consumed Time Owners Users Trans 

Minimum 93 29.5 4.21 3 3 3 

1st Quartile 447 172.6 28.43 39 11 14 

Median 755 320.2 52.52 53 19 23 

Mean 778.6 340.4 55.97 57.06 19.89 24.23 

3rd Quartile 1081 490.4 80.05 84 29 34 

Maximum 1961 945 154.75 87 40 61 

 

 

 

Figure 16: Demand vs consumption for all bins (GF) 
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Table 7: Summary statistics for 51-75 kWh bin (GF) 

Statistics – 

GF – 51/75 

Demand Consumed Time Owners Users Trans 

Minimum 60 2.4 0.34 1 1 1 

1st Quartile 180 66.3 9.47 13 2 3 

Median 345 119 17 17 4 5 

Mean 411.2 142.1 20.31 19.16 5.02 5.83 

3rd Quartile 600 204.9 29.27 29 8 8 

Maximum 1395 456.8 65.26 35 15 19 

 

Table 8: Summary statistics for 76-100 kWh bin (GF) 

Statistics – 

GF – 

76/100 

Demand Consumed Time Owners Users Trans 

Minimum 85 1 0.14 1 1 1 

1st Quartile 90 25.38 3.63 4 1 1 

Median 270 58.9 8.41 12 2 3 

Mean 318.2 75.23 10.75 9.61 2.62 3.47 

3rd Quartile 460 112.45 16.06 14 4 5 

Maximum 1210 285.5 40.79 15 7 13 

 

 

4.3.3 The Story of Unreliable Data 
 

Comparison of summary statistics reveals an interesting observation: the mean values of all 

the variables of GF data was higher than those of CC data (for 0-25 kWh datasets). A similar 

scenario exists for the 26-50 kWh bin too. Summary statistics of CC data can be found in 

Appendix B (tables 43 to 46). This shouldn’t be the case as, per EA Technology, consumers 

were randomly assigned to both the DCS providers with no bias and preferences and hence, 



40 

 

 

the mean charging patterns across all the variables for both the DCS providers should be 

similar, if not identical, as long as the variability within a capacity bin is not high. Moreover, 

the demand and consumption plots for CC data reveal that, unlike GF data, the charging 

patterns for 0-25 and 26-50 kWh bins were not similar. Summary statistics for the 0-25 and 

26-50 kWh bins also validate this observation. Furthermore, after initial pre-processing of 

data, we had data for 300 consumers for GF and 284 consumers for CC. This also validated the 

hypothesis that, in principle, consumers should show similar charging behaviour unless 

allotment of consumers between both the DCS providers involved any bias, such as consumers 

with lower battery capacities were allotted to CC, while those with higher battery capacities 

went for GF. However, such was not the case, as can be observed from the table below (table 

9).  

 

Table 9: Number of consumers vs bins (GF and CC) 

Battery Capacity Bin (kWh) GF – Consumers CC – Consumers 

0-25 163 162 

26-50 87 73 

51-75 35 30 

76-100 15 19 

 

Based on our observations, we suspected that either one or both the DCS providers didn’t 

capture all the information correctly relevant to the charging of EVs. When the issue was 

raised with EA Technology, they informed us that unlike GF DCS, CC DCS didn’t maintain a 

record of data if there was a communication loss between the charger and CC DCS, i.e., if a 

charger lost communication with CC DCS, CC would never have a record of the transaction. 

However, GF always recorded transactions even if there was loss of communication between 

charger and DCS; this obviously happened when the communication was re-established. In 

fact, EA Technology furthered that CC data was unreliable for the reasons specified above. To 

summarise, the GF dataset was completer and more reliable than the CC dataset. Having 
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identified the unreliability of CC data, we decided to work only with GF data in all our analyses 

that followed. 

 

4.3.4 The Outlier Conundrum 
 

The number of owners was estimated for both the datasets as explained earlier. However, for 

other univariate time series in the datasets, inspection for the presence of outliers was 

warranted to ensure reliable statistical modelling. Identification of outliers was carried out by 

a blend of graphical visualisation and an automated algorithm (Hyndman & Athanasopoulos, 

2018) that identifies outliers and suggests reasonable replacements by identifying residuals 

via a periodic STL decomposition for seasonal data; residuals are labelled as outliers if they lie 

outside the range given by the following: 

 

±2(𝑞0.9 − 𝑞0.1) 

where, 𝑞𝑝= 𝑝-quantile of the residuals. 

 

 

Figure 17: Demand vs consumption for 0-25 kWh (GF) 
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From the time plots of demand and consumption for 0-25 kWh bin, as shown in figure 17 (time 

plots for other bins are shown in figures 52 to 54, Appendix A), we observe a lot of variabilities 

as we move ahead in time. However, at certain instants we observe significant drops in the 

values compared to nearby values; a closer inspection would reveal that values of demand 

and consumption abnormally drop to extremely lower values towards the end of 2017 at three 

different instants. Similar results also hold for variables users, transactions and time. It is 

worth mentioning here that while automated algorithms usually work pretty well for lots of 

datasets, there may be cases that might cause problems. Hence, we compared the findings 

from automated algorithm with those from graphical visuals so that identification of outliers 

became more reliable. 

 

However, it is worth mentioning here that not all the values were replaced with the 

suggestions of the algorithm by treating them as outliers; further graphical analysis was 

carried out to validate the findings and only those values were replaced that were identified 

as outliers via both algorithm and graphical analyses. 

 

The table below summarises the number of observations in each of the GF dataset that were 

identified as outliers by the automated algorithm. 

 

Table 10: Number of outliers identified by algorithm (GF) 

Variable 0-25 kWh 26-50 kWh 51-75 kWh 76-100 kWh 

Users 3 1 3 4 

Trans 4 1 1 8 

Time 3 1 0 1 

Demand 3 1 1 10 

Consumed 1 1 0 1 

 

The following table shows the actual number of observations that were treated as outliers and 

were replaced with reasonable replacements.  
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Table 11: Number of observations replaced as outliers (GF) 

Variable 0-25 kWh 26-50 kWh 51-75 kWh 76-100 kWh 

Users 2 2 3 0 

Trans 2 2 3 0 

Time 2 2 3 0 

demand 2 2 3 0 

consumed 2 2 3 0 

 

It might be surprising to see that for the 76-100 kWh bin, not a single observation was 

replaced. This was against what the algorithm suggested. We didn’t replace any observation 

in the 76-100 kWh bin because the charging behaviour of people and hence, the estimated 

values of certain variables such as trans and demand didn’t agree with the findings of the 

algorithm: we identified that transactions and demand (per day) seldom reached high values 

as EVs with higher battery capacities had lower charging frequencies. Hence, based on our 

understanding of the data, we didn’t replace any observation in the 76-100 kWh bin. Similar 

reasons were also applicable for explaining the difference between the estimated number of 

outliers by the automated algorithm and the actual number of observations that were 

replaced. 

 

4.3.5 Variability of Consumption (Day-Wise and Season-Wise) 
 

We assumed that demand and consumption of energy would be the same neither across all 

the days of a week nor across all the seasons in a year. The boxplots shown below (figures 18 

and 19) show the variability of demand and consumption across the days of a week and 

seasons in a year (0-25 kWh bin; plots for other bins can be found in figures 55 to 60, Appendix 

A).  

 

We observe that the median demand and consumption are lowest for Sunday and respectively 

close to 600 kWh and 250 kWh. The median demands on all the other days are nearly the 
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same and approximately equal to 700 kWh. While both Thursday and Friday have their top 25 

percent of the observations (demand) above 1100 kWh approximately, Monday, Tuesday and 

Wednesday have their top 25 percent of demand above 1000 kWh approximately.      

 

 

Figure 18: Demand and consumption vs day of the week for 0-25 kWh bin (GF) 
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Figure 19: Demand and consumption vs season of the year for 0-25 kWh bin (GF) 

 

The median consumption on Monday and Tuesday (approximately 375 kWh) are found to be 

highest among all the days. For both Saturday and Sunday, the bottom 75 percent of the 

observations are below 500 kWh, i.e., consumption doesn’t even reach 500 kWh for the 

bottom 75 percent of the values. In other words, the top 25 percent of the values start below 

500 kWh on weekends. However, for other days, the top 25 percent consumption is above 

500 kWh. Summarily, consumption on weekends is expected to be lowest than those on other 

days.  

 

While the median demand and consumption are highest during winter and spring and are 

approximately equal to 800 kWh and 500 kWh respectively, they are nearly the same during 

summer and autumn (median demand and consumption are nearly 600 kWh and 250 kWh 

respectively). Summer and winter are two extreme weather conditions and spring and autumn 

lie at their interface, i.e., while the transition from summer to winter experiences autumn, the 
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transition from winter to summer experiences spring. Hence, we observe a lot of variability in 

demand and consumption during autumn and spring.  Summarily, demand and consumption 

are expected to be higher in spring and winter, with a lot of variabilities expected during 

spring.  

 

4.3.6 Correlations 
 

The multiple scatterplots shown below (figure 20) highlight the correlation among all the 

numeric variables in the GF dataset for the 0-25 kWh bin (scatterplots for other bins can be 

found in figures 61 to 63, Appendix A). All the variables show strong correlations (correlation 

coefficient > 0.9) among each other.  

 

 

Figure 20: Correlations among numeric variables for 0-25 kWh bin (GF) 

 

Variables (predictors) which have high correlations among each other would have relatively 

large standard errors in partial regression coefficients. This makes the partial regression 

coefficients unstable, thereby leading to varying coefficients across different samples of data 
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and eventually unreliable forecasts. Since all the variables were strongly correlated among 

each other, careful consideration was given during variable selection during the development 

phase of forecasting models as too many variables would have posed problems of 

multicollinearity and overfitting.  

 

4.3.7 Time Series Decomposition 
 

Time series decomposition deconstructs a time series into its various components, each 

representing one of the underlying categories of patterns. We split a time series into three 

components: trend-cycle, seasonal and a remainder component. The trend-cycle component 

indicates how the time series progresses (sloping upward, sloping downward or no slope) with 

time, including any cyclic patterns for smaller time periods.  The seasonal component indicates 

the periodic variations in the time series, which occurs after a given fixed interval of time. For 

instance, a daily sales time series may show peak sales on every Sunday for all the weeks, 

while relatively lower sales on other days; the pattern of sales for all weeks would be similar, 

if not same. We call this type of seasonality as weekly as it repeats every week. After filtering 

out the trend-cycle and seasonal components, we get the remainder component. Time series 

decomposition not only helps to understand the time series better but also can be used to 

improve the forecast accuracy.   

 

The plots shown (figure 21) below give the details of the components of the time series for GF 

data (0-25 kWh); plots of other bins are shown in figures 64 to 66, Appendix A. Since we 

converted the raw transaction data into day-wise time series after data cleaning (Wickham, 

2014) and we had data for less than two years, we only opted for weekly seasonality and 

excluded annual seasonality as we didn’t have two full periods of annual data. The plots are 

shown for demand and consumption of energy; each plot shows four subplots: original time 

series, trend, seasonal and remainder components. 
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Figure 21: Time series decomposition for 0-25 kWh bin (GF ) 

 

The decomposition was carried out using STL (Cleveland, et al., 1990). STL is an acronym for 

“Seasonal and Trend decomposition using Loess”. STL offers several advantages over other 

decomposition methods (Hyndman & Athanasopoulos, 2018). Some of them are discussed 

below.   

• STL handles any type of seasonality. 

• The seasonal component is allowed to change over time, with the provision of the rate of 

change being allowed to be controlled by the user. 

• The smoothness of trend-cycle is also user-controllable.  

• It can be robust to outliers, provide the user specifies for a robust STL decomposition. 

We observe a clear upward trend for both demand and consumption; the upward trend is 

caused by an increasing number of users charging their EVs as time progresses. Both time 

series also show strong weekly seasonal components having both troughs and crests, with the 
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troughs corresponding to weekends when both demand and consumption are on the lower 

side. The variation in seasonal components is in agreement with the inferences drawn from 

the boxplots of demand and consumption with respect to days of the week. The seasonal 

components also experience variation in magnitude with time; this can be attributed to the 

fact that variability of demand and consumption increase with an increasing number of EV 

owners and therefore, users. When the number of EV owners and therefore, the users are at 

their peak, demand and consumption are at their maximum too, but with higher variations. 

 

4.3.8 Autocorrelations and Partial Autocorrelations 
 

In this section, we discuss the time series dynamics of correlations of the target variable that 

also play an important role in determing the value of the target variable; this is because such 

dynamics contain information that need to be extracted to enhance the predictive accuracy 

of the models. Since predictive accuracy of the model is vital to the objective, discussion on 

autocorrelations are essential and necessary.           

 

 

Figure 22: ACF and PACF of demand for 0-25 kWh bin (GF) 
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The autocorrelations and partial autocorrelations for the demand and consumption of 0-25 

kWh bin are shown above via the ACF and PACF plots in figures 22 and 23 (ACF and PACF for 

other bins are shown in figures 67 to 72, Appendix A).  

 

ACF (autocorrelation function) shows the correlations among lagged variables of a time series. 

We observe that for both demand and consumption, there is a slow decrease in the values of 

ACF. This means that the time series has a trend. However, a closer inspection would also 

show that at lags 7, 14, 21 and so on, there are spikes, i.e., ACF values at these lags are higher 

than the neighbouring values. This happens because of the presence of weekly seasonality in 

time series. The presence of both trend and seasonality gives a “scalloped” shape to the ACF 

plots. The dashed blue lines are an indication of whether the autocorrelations are significantly 

different from zero. If the ACF lies within the blue lines, then it means that the time series is 

white noise as the time series shows no autocorrelation.   

 

 

Figure 23: ACF and PACF of consumption for 0-25 kWh bin (GF) 



51 

 

 

 

ACF plot measures the correlation between 𝑦𝑡 and 𝑦𝑡−𝑙 for different values of 𝑙, where 𝑙 is the 

lag. However, if 𝑦𝑡 and 𝑦𝑡−𝑙 are correlated, and 𝑦𝑡−𝑙 and 𝑦𝑡−𝑚 are correlated, then 𝑦𝑡 and 

𝑦𝑡−𝑚 will also be correlated as both of them have a correlation with 𝑦𝑡−𝑙. This doesn’t mean 

that 𝑦𝑡−𝑚has any new information that may help in forecasting. To overcome this problem, 

we use PACF, partial autocorrelation function (Hyndman & Athanasopoulos, 2018). 

 

PACF measures the correlation between 𝑦𝑡 and 𝑦𝑡−𝑙 after removing the effects of 

intermediate lags. Hence, PACF is a better measure to understand if there’s an actual 

relationship between 𝑦𝑡 and 𝑦𝑡−𝑙. PACF plot of demand shows that only lags 1 to 5, 7, 12 and 

14 have significant correlations with 𝑦𝑡. Similarly, the PACF plot of consumption tells that lags 

1, 2, 4 to 7 and 14 have significant correlations with 𝑦𝑡. Although partial autocorrelation 

between 𝑦𝑡 and 𝑦𝑡−3 is just significant (as the spike is slightly above the dashed blue line), we 

can neglect the partial correlation at lag 3.  

 

However, the standard ACF and PACF plots become unreliable for large lags and hence, we 

also present improved versions of ACF and PACF plots (figures 24 to 26), known as tapered 

ACF and PACF plots (Hyndman, 2014).    
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Figure 24: Tapered ACF of demand for 0-25 kWh bin (GF) 

 

 

Figure 25: Tapered PACF of demand for 0-25 kWh bin (GF) 

 

Autocorrelations that are significantly different from zero are shown using the dark solid 

circles, while insignificant circles are shown using bubbles (small open circles). The shaded 

region represents the 95% bootstrapped confidence intervals (Hyndman, 2014). The ACF plot 

(figure 24) shows that for demand, the first 29 autocorrelations are significant; after this, lags 
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at multiples of 7 remain statistically significant, with autocorrelations at neighbouring lags 

seldom significant. The tapered PACF plot for demand (figure 25) shows that partial 

autocorrelations from lags 1 to 5, and at lags 7 and 14 are statistically significant. Similar 

insights can also be drawn from tapered ACF and PACF plots for consumption (figures 26 and 

27) of 0-25 kWh GF time series.  

 

A better understanding of ACF and PACF help us in making a better decision on the order 𝑝 of 

a 𝐴𝑅(𝑝) or order 𝑞 of a 𝑀𝐴(𝑞) process. Hence, we shared some lights on tapered ACF and 

PACF plots as they can be more useful and easier to interpret than the conventional ACF and 

PACF plots (Hyndman, 2014). However, we would restrict ourselves to the conventional ACF 

and PACF plots as tapered plots would be of little use to our objective. 

 

 

Figure 26: Tapered ACF of consumption for 0-25 kWh bin (GF) 
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Figure 27: Tapered PACF of consumption for 0-25 kWh bin (GF) 
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5. Forecasting 

 

5.1 A Retrospect of Project Objective 
 

Based on the discussion with EA Technology, the primary objective of the project was to 

estimate the EV load on distribution networks in the UK when the roads would be inundated 

with a higher number of EVs (section 3.2). Furthermore, the estimate should be based on the 

information available to the DNOs (distribution network operators) in the future. While the 

available data had many features (predictors), not all of them would be available to the DNOs 

in the future. The constraints on the breadth of information available to the DNOs seriously 

limit the modelling approach we could have taken to forecast the energy demand. EA 

Technology asked us to come with a statistical model that would give an estimate of energy 

consumption due to EV charging; the energy consumption should be based on number of EV 

owners in the market.  

 

The mathematical representation of the statistical model based on the aforementioned 

objective would be: 

𝑐 = 𝑓(𝑜) + 𝜖 

where, 

𝑐 = energy consumption   

𝑜 = number of EV owners  

𝑓 = statistical function that maps 𝑜 and 𝑐 

𝜖 = irreducible random error which has zero mean  

 

The objective, in its original form, missed on a lot of variabilities that EV charging might have. 

For instance, the energy consumption, in a given charging event (or transaction), of an EV with 

smaller battery could be less than that of an EV with larger battery; besides, the frequency of 

charging for an EV with smaller battery could be higher than that of an EV with larger battery. 
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Moreover, the consumption may vary from one day of the week to another and from one 

season of the year to another. Many such possibilities were discussed with EA Technology, 

and after a comprehensive discussion on what information would be available to the DNOs in 

future, we reformulated the objective with additional variables as shown below. It’s worth 

mentioning that only such variables were considered that were available or accessible to us 

as well as of concern to EA Technology. 

 

The reformulated objective can be mathematically represented as: 

𝑐 = 𝑓(𝑜, 𝑑, 𝑠, 𝑏) + 𝜖 

where, 

𝑐 = energy consumption   

𝑜 = number of EV owners  

𝑑 = day of the week 

𝑠 = annual season of the year (spring, summer, autumn or winter)   

𝑏 = battery capacity of EV  

𝑓 = statistical function of that maps 𝑜 and 𝑐 

𝜖 = irreducible random error which has zero mean  

 

It is worth mentioning that the data available to the DNOs would only have information on 

the number of EV owners in their distribution network, day of the week, battery capacity of 

EVs and annual season of the week; hence, forecasting models were developed around the 

information that would be available to the DNOs in future.  

 

We know from earlier discussions in section 4.3 that the number of users who charge their 

EVs was smaller than the number of owners; there were, however, exceptions when the users 

equalled the owners; however, it happened for very small number of owners and hence, can 

be neglected as it would highly unlikely in future scenarios. In general, we would observe that 

the number of users who are charging their EVs is always less than the number of actual 

owners in the market.  
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The time plots shown below (figure 28) depict how the proportion of EV owners who are active 

per day changes over time.  

 

 

Figure 28: Active users proportion for all bins (GF) 

 

Initially, the proportion is at 100% as the number of EV owners is very small and hence, the 

active users are equal to the number of EV owners. However, as the number of EV owners 

begins to rise, the proportion of active users per day declines and never even crosses the 60% 

mark. Based on our observations, we can ascertain that the number of users is a random 

variable that needs to be predicted before we can forecast energy consumption.    

 

The summary statistics shown below corroborate the findings from the time plots shown 

above. 
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Table 12: Summary statistics of active users proportion for all bins (GF) 

Statistics 0-25 kWh 26-50 kWh 51-75 kWh 76-100 kWh 

Minimum 11.11 8.51 5.88 7.14 

1st Quartile 36.84 29.27 20.00 22.40 

Median 44.44 34.88 25.81 25.00 

Mean 45.29 36.14 30.61 29.16 

3rd Quartile 50.98 41.46 35.29 35.71 

Maximum 100.00 100.00 100.00 100.00 

 

We observe that for users who fall in the smallest battery capacity bin, the mean percentage 

of active users is even less than 50. For other users, the mean is always less than 40%. The 

mean would go down even further if we drop the few observations at the beginning of the 

trials as the number of EV owners and hence, users are very small, resulting in extremely 

higher percentage values of active users; this, however, would not be the case, in general, and 

would never occur in real-life scenario. While building predictive models, we would drop such 

observations that would never appear in a real-life set-up. However, we would maintain 

consistency across all the models that we would build and hence, would discuss later on the 

number of observations to be dropped. 

 

The boxplots shown below (figure 29) exhibit variability of users as a function of the season of 

the year and day of the week. Hence, the mathematical formulation for forecasting the 

number of users per day would be identical to the one we devised to forecast energy 

consumption, i.e., we would fit a statistical model that would explain the variability in the 

number of users as a function of EV owners, day of the week, season of the year and battery 

capacity.   
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Figure 29: Variability of users with season and day for 0-25 kWh bin (GF) 

 

Furthermore, from the scatterplots discussed in section 4.3.6 we observed that consumption 

had a stronger correlation with users (0.981) than with owners (0.905), i.e., users may be a 

better explanatory variable (predictor) than owners to forecast demand. The choice of 

explanatory variables for forecasting a given response variable (target) would be discussed 

later in this chapter. Since the maximum number of variables (predictors) available to the 

DNOs would be only four (as advised by EA Technology), selection of predictors to find the 

model with best forecast performance doesn’t require sophisticated feature selection 

algorithms (Hmamouche, et al., 2017; Yoon & Shahabi, 2006; Yang, et al., 2005; Tyralis & 

Papacharalampous, 2017; Rahajoe, et al., 2017). In case the formulation of the objective was 

in high-dimensional space, i.e., if we had a very high number of explanatory variables (), we 

could have chosen one or more of the approaches based on our objective to select the optimal 

combination of variables (predictors) in our forecast model.    
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5.2 Ex-ante vs Ex-post vs Scenario-based Forecasting 
 

Depending on what is assumed to be known when forecasting, we can classify the different 

types of forecasts into three broader categories (Hyndman & Athanasopoulos, 2018).  

• Ex-ante forecasts are the ones which are computed using the information that is available 

in advance. In this case, to forecast the response variable, we need to forecast the 

predictors (explanatory variables) too as the forecaster has no information of the 

predictors as well. These are genuine forecasts as the forecaster has no knowledge of the 

future whatsoever. 

• Ex-post forecasts are those which are computed using the actual information available 

on predictors, i.e., information on predictors is available prior to forecasting. It’s worth 

mentioning that in ex-post forecasting, only the information on predictors is known and 

no knowledge of the response variable exists. 

• Scenario-based forecasts are the ones which are computed assuming possible scenarios 

for the predictors that are of interest to the objective. In scenario-based forecasting, the 

uncertainty associated with the confidence intervals of the forecasts does not assume 

any uncertainty in the values of the predictors as it is believed that the predictors are 

known with certainty.     

Based on the project requirements, we mathematically formulated the objective to 

incorporate the future scenario, i.e., the future information available to the DNOs. Using the 

available information, the DNOs (or authorities concerned) should be able to estimate the 

energy consumption caused by EV charging using a robust statistical model. While additional 

information relevant to EV charging and EVs might have enhanced the predictive performance 

of the model, EA Technology wanted the model to be robust so that it could forecast the 

energy consumption with minimal errors under increased uncertainty; this was definitely 

caused by the constraints on the quantum of information we could work with.  

 

The mathematical formulation of the objective manifested itself in the form of a multiple 

regression problem: predict the response based on the available predictors. In our case, the 
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client would like to work with different plausible scenarios, with each scenario having its own 

set of values of the predictors, and we would be required to forecast the response variable 

based on the prior information on predictors for different scenarios; this was a case of 

scenario-based forecasting. For instance, the client might be interested in estimating the 

energy demand on a Sunday in the winter season for an EV ownership of 10,000 people having 

battery capacity within a given range, such as EVs with battery capacity less than 25 kWh. 

 

5.3 The Curious Case of Univariate Forecasting 
 

The day-wise time series we had was multivariate; hence, forecasters might argue that the 

simplest approach to start with could be univariate forecasting for the variables of interest (or 

individual time series as each time series in a multivariate set-up is also a variable). To address 

this concern, we would discuss our observations from the results obtained from one such 

univariate forecasting approach. Although EA Technology referred to the consumption of 

energy as the demand for energy, we made a clear distinction between the two terms. While 

the total consumption per day was referred to as consumed, the total connected load caused 

by all the transactions was referred to as demand. Hence, we focussed on two variables, 

demand and consumed, separately. While consumed would give an estimate of the mean 

consumption of energy per day, demand would indicate the mean connected load caused by 

all the transactions. Besides, since demand is the aggregate of the total connected load caused 

by all the charging events or transactions, it gives an estimate of the energy consumption 

under worst-case scenario when every charging event leads to maximum energy consumption 

governed by the capacity of the battery in kWh. In other words, a demand model gives an 

upper boundary prediction of consumption of energy and helps in estimating the total 

consumption of energy under worst-case scenario, although this is a hypothetical estimation 

and the actual consumption of energy given by the consumption model will always be less 

than that given by the demand model. We built seasonal ARIMA (Hyndman & Athanasopoulos, 

2018) models for owners, demand and consumed (Although the primary objective of the 

project was to estimate consumption of energy, we included estimate of the total connected 
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load too to indicate that not every charging event would lead to full battery charge and hence, 

consumption would be usually less than the total connected load). We set the forecasting 

horizon to four years from the last day of observation, which was 9th October 2018. The time 

plots shown below highlight the estimated values of the three univariate time series (for the 

0-25 kWh bin) with respective confidence intervals, both 80%, and 95%. The x-axis shows time 

in weeks; so, four years is a little over 200 weeks. It is not important how long the forecasting 

horizon is in the given instance as the entire idea to discuss univariate approaches is to show 

why such standard forecasting algorithms are not applicable in our case irrespective of any 

forecasting horizon. Moreover, it is also not important how the ARIMA parameters are chosen 

as we once again reiterate that the idea is to show why such approaches are not applicable in 

our case. Even the best ARIMA or exponential smoothing models do not solve the purpose. 

Hence, discussion on how the parameters are chosen is irrelevant.   

 

We observe in figure 30 that as time progresses all the time series exhibit a strong linear 

upward trend. In principle, this does reflect the future scenario as the number of EV owners 

and hence, the demand and consumption of energy caused by EV charging would rise. Besides, 

the table (table 13) following the time plots (figure 30) show the last 6 estimates of all the 

three univariate time series towards the end of the forecasting horizon of 4 years (365.25 * 4 

= 1461 days).  
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Figure 30: Forecasts using seasonal ARIMA for 0-25 kWh bin (GF) 

 

Table 13: Last six forecasts of the forecast horizon for 0-25 kWh bin (GF) 

Observation Count Owners (0-25) Demand (0-25) Consumed (0-25) 

1456 560.20 4086.22 2120.79 

1457 560.48 4088.03 2121.83 

1458 560.75 4090.03 2122.87 

1459 561.03 4092.04 2123.92 

1460 561.30 4094.04 2124.96 

1461 561.58 4096.04 2125.99 

    

Although the estimates of owners are non-integral, we can realise the nearest lowest or 

greatest possible integral values for the estimates of owners. If we assume the nearest 

greatest possible integral values, the last 6 estimates of owners are 560, 560, 561, 561, 561, 

562.  



64 

 

 

 

In the trials, the upward trend of EV owners was controlled by the authorities concerned. Since 

the estimates of owners depend on the learning of forecasting algorithm, the estimates are 

biased because of the presence of this element of control: how the participants (EV owners) 

had gradually risen in the trials. The rise of EV owners in the trials doesn’t represent the actual 

trend in the real-world scenario. While the estimates of demand and consumption might have 

been captured well by the model as they depended upon how many people had EVs and 

hence, how many were actually charging per day, the estimates for all the time series suffer 

from the following issues and hence, do not completely reflect the future scenario. 

• The estimates suggest that towards the end of four years from 9th October 2018, the 

number of EV owners with battery capacities less than 25 kWh would be 562, and the 

demand and consumption would vary as observed from the table above. Although the 

demand and consumption of energy are a function of the EV owners, their estimates 

towards the end of the forecasting horizon (four years) are biased as the estimates of EV 

owners are biased. It is highly likely that the UK roads would have more than 562 EVs with 

battery capacities less than 25 kWh around October 2022 and hence, the estimates of 

demand and consumption do not reflect the true future scenario of additional load on 

distribution networks. Moreover, the estimates only indicate that when the EV ownership 

reaches 562 for battery capacity less than 25 kWh, mean demand and consumption 

would be approximately 4096 and 2126 kWh respectively.  

• Although the univariate models might give a good estimate of demand and consumption 

as a function of EV owners, we lose the variability of demand and consumption across 

different seasons of the year and days of the week. This can be attributed to the fact that 

estimates of demand and consumption for a given number of EV owners would only be 

valid for a given day of the week and season of the year if we opt for univariate 

forecasting. For instance, the 1461st estimate from the table above would fall somewhere 

in Autumn and on a particular day of the week. As such, the univariate model would not 

be able to tell the effect of any other season or day on the demand and consumption for 

an EV ownership of 562. This seriously undermines the project objective.  
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From the previous discussions on the constraints offered by univariate forecasting models, we 

can conclude that univariate forecasting doesn’t align with the projective objective, although 

it might still generate good estimates of demand and consumption. Hence, based on our 

understanding of the project objective and analyses, we decided to focus on multiple 

regression algorithms applicable to time series data as they aligned with what the client 

sought. 

 

5.4 The Nested Approach 
 

The flow diagram shown below (figure 31) is a pictorial representation of the mathematical 

formulation of the objective. As we mentioned in the previous section that we would not only 

be forecasting the consumption of energy per day but also the total connected load caused 

by all the transactions per day. While consumption tells us the actual energy consumed, 

demand tells us the maximum connected load for all the charging events in a given day. The 

flow diagram, in its original form, miss out on a lot of important information that was present 

in the data or was extracted from the data. For instance, the scatterplots shown in the section 

4.3.6 reveal that variables such as transactions and users have a stronger correlation with the 

two response variables of interest than owners have with them. So, the two predictors may 

turn out to be more useful than owners in forecasting the response variables. Similarly, 

duration of charging (time) and demand also show strong correlations with consumption. 

Hence, a lot of plausible combinations existed in forecasting demand and consumption of 

energy. It was a matter of developing models with different combinations of predictors to 

eventually identify which model gave the best forecasting performance.   
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Figure 31: Flow diagram to show the project objective 

  

An important consideration we had to keep in mind while developing models was that when 

the model would be used for forecasting, the available information would be restricted to only 

four variables, which had already been shown in the mathematical formulation as well as the 

flow diagram above. However, we needed to incorporate the variables which showed stronger 

correlations with the response variables. Hence, we decided to adopt the following strategy 

and called it the ‘Nested Approach’. 

• We used information from the day-wise time series (GF data) to train the forecasting 

algorithm, i.e., training was done using any subset of the features in the day-wise time 

series. For instance, we might have used the information on demand for each battery 

capacity bin to train an algorithm to forecast consumption; the forecasts obtained on the 

training data were then fitted values (fitted values are the in-sample predictions or the 

predictions made on the training data). However, when forecasting consumption on test 

data (scenario-based data), we couldn’t use demand as this feature wasn’t present in the 

scenario-based data (section 5.1 explains the structure of test data). Hence, we needed 

to devise an approach that would help us in determining demand (and all other variables 

of interest) and then, could use the estimates of demand (and other variables) as a 

feature to forecast consumption (or any other variable of interest).  
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• Variables such as users, transactions, time, demand and consumption had stronger 

correlations with each other than they had with owners. Hence, there was a possibility 

that variables other than owners could have given a better estimate of other variables. 

However, this was to be done keeping in mind the causal relationship between any two 

variables, i.e., if 𝑋 caused 𝑌, then it didn’t mean that 𝑌 also caused 𝑋. For instance, users 

caused transactions but not vice-versa, and hence, transactions could be modelled as a 

function of the user, but not the other way around. So, we could train algorithms to 

forecast transactions as a function of owners, or as a function of users (users being a 

function of owners) but not both as this led to overfitting (section 5.6). Similarly, time 

could be modelled as a function of owners, users or transactions but not as a function of 

all at the same time. Similar analysis held true for demand and consumption. The choice 

of the final model to forecast consumption was based on forecasting performance. 

The flow diagram shown (figure 32) below depicts one such nested forecasting approach to 

eventually forecast our response variables. In the approach shown below, the four predictors 

(scenario-based test data) are used to forecast users. Once we get estimates of users, we use 

them to forecast transactions. We, then, use estimates of transactions to forecast both time 

and demand and eventually use estimates of demand to forecast consumption. This approach 

helps to extract more information from the available test data that wouldn’t be apparently 

present at first place, and help develop better forecasting models than the ones that could be 

developed using only the information directly available in test data.  
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Figure 32: The nested modelling approach 
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5.5 Algorithms 
 

In this section, we discuss different algorithms that aligned with the business objective to 

forecast consumption of energy.  

 

5.5.1 Time Series Regression 
 

The fundamental concept of time series regression is that we forecast the time series 𝑦𝑡 as a 

linear function of some other time series 𝑥𝑡. We observed in section 4.3.6 that all the time 

series showed strong correlations with each other and their relationships were significantly 

linear. Hence, the scatterplots validated the use of time series regression to forecast our 

response variables.  

The mathematical formulation of a simple time series linear regression model is shown below. 

 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡 

where,   

𝑦𝑡 = response 

𝑥𝑡 = predictor 

𝜀𝑡 =  random error 

𝛽0 = predicted value of 𝑦𝑡 when 𝑥𝑡 is zero 

𝛽1 = average predicted change in the value of 𝑦𝑡 when the value of 𝑥𝑡 changes by one unit 

 

5.5.2 Regression with ARIMA Errors 
 

An improved version of regression is to fit an ARIMA (Hyndman & Athanasopoulos, 2018) 

model on the residuals, to boost forecasting. This would be possible as the overall forecast 

would be a combination of forecasts from the regression part and the ARIMA part (Hyndman 

& Athanasopoulos, 2018). Regression with ARIMA errors is useful when the residuals show 

high autocorrelations, thereby meaning that the model didn’t capture all the information from 

the data. The regression equation described in the previous section can be reformulated to 

incorporate ARIMA errors as described below. 
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𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜂𝑡 

𝜂𝑡 = 𝜙𝜂𝑡−1 + 𝜀𝑡 + 𝜃𝜀𝑡−1 

where,   

𝑦𝑡 = response 

𝑥𝑡 = predictor 

𝜂𝑡 =  regression error 

𝛽0 = predicted value of 𝑦𝑡 when 𝑥𝑡 is zero 

𝛽1 = average predicted change in the value of 𝑦𝑡 when the value of 𝑥𝑡 changes by one unit 

𝜀𝑡 =  ARIMA error 

𝜙 = parameter of the AR part of the ARIMA model 

𝜃 =  parameter of the MA part of the ARIMA model 

 

The ARIMA models fitted on the residuals use the Hyndman-Khandakar algorithm for 

automatic ARIMA modelling (Hyndman & Khandakar, 2008; Hyndman & Athanasopoulos, 

2018).  

 

5.5.3 Distributed Lag Models 
 

Assume an instance when a user with a low battery EV charges his/her vehicle on a Monday. 

It is highly likely that the user would charge the EV again on Tuesday if the EV is the primary 

vehicle for commutation. If the user doesn’t charge the EV on Tuesday, then the probability 

of charging the EV on Wednesday increases. On the contrary, the probability of a user charging 

his/her EV with a higher battery on consecutive days is comparatively less. The time plots on 

the active proportion of EV owners per day also corroborate these assumptions. We 

understand that previous predictor values (such as the number of users in the previous day 

(s)) can impact the consumption of energy at present. We can summarise that it is possible 

that the impact of a predictor which is included in a forecasting model may not be simple and 

immediate (Hyndman & Athanasopoulos, 2018). As such we need to allow for lagged values 

of predictors too as they may help improve the forecasting accuracy. Such an approach is 
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called ‘modelling with distributed lags’. The mathematical representation of such an approach 

is shown below. 

𝑦𝑡 = 𝑓(𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2, … ) 

where,   

𝑦𝑡 = response 

𝑥𝑡 = predictor 

𝑥𝑡−𝑙 = lagged value of a predictor at a lag 𝑙 

𝑓 = function that maps the relationship between 𝑦𝑡 and 𝑥𝑡 

 

We incorporate distributed lags in regression with ARIMA errors. The mathematical 

formulation of regression with ARIMA errors including distributed lags is as follows.  

 

𝑦𝑡 = 𝛽0 + 𝛾0𝑥𝑡 + 𝛾1𝑥𝑡−1 + 𝛾2𝑥2 + ⋯ + 𝛾𝑙𝑥𝑡−𝑙 + 𝜂𝑡 

𝜂𝑡 = 𝜙𝜂𝑡−1 + 𝜀𝑡 + 𝜃𝜀𝑡−1 

where,   

𝑦𝑡 = response 

𝑥𝑡 = predictor 

𝑥𝑡−𝑙 = lagged value of a predictor for a lag 𝑙 

𝜂𝑡 =  regression error 

𝛽0 = predicted value of 𝑦𝑡 when all predictors are zero 

𝛾𝑙 = average predicted change in the value of 𝑦𝑡 when value of 𝑥𝑡−𝑙 changes by one unit 

𝜀𝑡 =  ARIMA error 

𝜙 = parameter of the AR part of the ARIMA model 

𝜃 =  parameter of the MA part of the ARIMA model  

 

5.5.4 LSTM 
 

In conventional feed-forward neural networks (NNs), all cases are considered to be 

independent, i.e., to estimate the future value of a sequential data (for instance, a time series), 
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no consideration is given to the values in the past. We can say that such neural networks have 

no memory (Chollet & Allaire, 2018). Recurrent neural networks (RNNs), which have loops in 

them allowing information to persist, address this issue (Olah, 2015). RNN processes 

sequential data by iterating through the sequence elements and maintaining a state (𝑠𝑡) 

containing information based on what the network has seen until then (Chollet & Allaire, 

2018). The state of the RNN is reset before processing the next independent sequence (Chollet 

& Allaire, 2018); this makes one sequence a single data point, i.e., a single input to the network 

(Chollet & Allaire, 2018). The pseudocode (Chollet & Allaire, 2018) to explain RNN is depicted 

in the figure shown below (figure 33).  

 

 

Figure 33: Pseudocode to explain RNN (Chollet & Allaire, 2018, p. 181) 

 

The RNN loops over timesteps (a chunk of sequential data treated as one sample or data 

point), and at each timestep, it produces an output based on the current input and the current 

state. For instance, at time 𝑡 = 𝑘, output (ℎ𝑘) is a function of the input (𝑥𝑘) and state (𝑠𝑘). 

This current output, ℎ𝑘, then becomes the state for the next timestep. The previous output 

for the first timestep is not defined; hence, the initial state (𝑠𝑜) is set to zero.  

 

However, simple RNNs have a major issue: although they should theoretically be able to retain 

at present time the information about inputs seen many timesteps before, practically, such 

long-term dependencies are impossible to learn (Chollet & Allaire, 2018) because of vanishing 

gradient problem (Hochreiter, 1998).  

 

LSTM (Long Short-Term Memory) networks are an advanced version of RNNs, capable of 

learning long-term dependencies (Olah, 2015; Chollet & Allaire, 2018). LSTM networks save 
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information that can be used later, thereby preventing past information to gradually fade with 

time (Chollet & Allaire, 2018).      

 

5.6 Performance Assessment 
 

We mentioned in the previous section that in our project, a model is chosen based on its 

forecasting performance as achieving a higher predictive accuracy is intrinsic to our objective. 

The reasons for choosing forecasting performance over model fit as the criterion to select the 

best model can be summarised below (Hyndman & Athanasopoulos, 2018). 

• A model that fits the training sample well doesn’t necessarily forecast well as a better 

model fit can result from capturing patterns in that data that occur by chance (randomly). 

Such a case is called overfitting. 

• A better fit can be obtained by using enough parameters while training the algorithm.  

In the following sections, we discuss the approach we chose to evaluate the forecast models 

and our choice of error metric.  

 

5.6.1 Model Evaluation and Variable Origin 
 

A forecast model can be evaluated on unseen or new data. A model 𝑋 that gives higher 

forecast accuracy than another model 𝑌 on new data is a better model for forecasting. It is 

worth mentioning that no part of the new data should be used to fit the forecast model.    

 

In practice, it’s not always possible to find new data to evaluate our forecast models. Under 

such circumstances, it is a common practice to split the data into two components:  training 

and test data. We fit the model on the training data and evaluate the model performance on 

the test data. The decision on the split is user-specific; however, practitioners choose 20% of 

the data as the test data. However, the choice of the split also depends on the length of the 

data. If the data is small, then creating a training-test split may render us with an even smaller 

training sample to fit the model.  A popular approach to evaluate model performance is time 



74 

 

 

series cross-validation (Hyndman & Athanasopoulos, 2018). In this case, we do not create 

training and test samples but create successive test sets with a single observation. The 

corresponding training sets consist of all the observations that occur before the test sample 

in the time series data. This approach is also called ‘evaluation of forecast performance on 

rolling origin’ as the size of training sample gradually increase as we move the test sample 

observation by one time-unit forward.  

 

However, our objective is scenario-based forecasting and hence, we do not have a fixed 

forecasting horizon. We, in fact, need to forecast for years ahead in time and the length of the 

period is also user-specific. Hence, working with a small number of origins seems 

unreasonable to our case as we need to test our model on larger samples of data. Hence, we 

propose a modified version of cross-validation, ‘evaluation of forecast performance on 

variable origin, which is similar to the rolling origin methodology. However, in our proposed 

methodology, we work on larger samples of test data by changing the position of the origin 

(hence the name variable origin) in such a way that the time series dynamics are retained. 

Hence, random sampling is strictly prohibited.  

 

The diagram shown below (figure 34) depicts our proposed methodology. In this project, we 

decided to include only three origins so that we obtain three possible train-test splits as shown 

below. We start with 70% of the data as the test sample and keep decreasing that proportion 

in steps of 10% until it reaches 10%. We fit three different models on different training 

samples and evaluate their performance on respective test samples. This eliminates any bias 

caused by choosing a fixed length for the training sample to fit the model. We compute the 

mean performance of the models by using suitable measure of accuracy. The mean 

performance measure eventually helps in comparing models based on different algorithms. 

The model with the best accuracy is the one chosen for forecasting.  
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Figure 34: Variable origin 

 

5.6.2 Error Metrics 
 

When we forecast a variable, we are always left with an unpredictable part of an observation 

of that variable; this part is called forecast error. It is the difference between the observed 

value of a variable and its forecast. Obviously, better forecasting performance warrants lower 

forecast errors. For an h-step forecast, the forecast error can be mathematically represented 

as follows (Hyndman & Athanasopoulos, 2018). 

 

𝑒𝑇+ℎ = 𝑦𝑇+ℎ − �̂�𝑇+ℎ|𝑇 

where, 

𝑦𝑇+ℎ = observed value at time 𝑇 + ℎ 

 �̂�𝑇+ℎ|𝑇  = forecast at time 𝑇 + ℎ using all the observations till time 𝑇 

𝑒𝑇+ℎ = forecast error 

Forecasts are calculated on test data, and hence are different from residuals which are 

calculated on training data (Hyndman & Athanasopoulos, 2018). A residual is the difference 

between an observed value and the estimated (fitted) value of that observation in the training 
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sample. If 𝑦𝑡 is the actual value of an observation, and 𝑦�̂� is the estimated value of that 

observation, then residual is defined as  

 

𝑒𝑡 = 𝑦𝑡 − 𝑦�̂� 

 

Scale-dependent Errors 

Forecast errors are on the same scale as the data (Hyndman & Athanasopoulos, 2018). Such 

error metrics cannot be used to compare performance across series having different units. If 

𝑒𝑡 is the forecast error, the two most commonly used scale-dependent error metrics are MAE 

and RMSE, which are defined below. 

Mean Absolute Error: 𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑒𝑡|)  

Root Mean Square Error: 𝑅𝑀𝑆𝐸 =  √𝑚𝑒𝑎𝑛(𝑒𝑡
2) 

 

Percentage Errors 

Percentage error, 𝑝𝑡, is given by  𝑝𝑡 = 100 𝑒𝑡/ 𝑦𝑡. Percentage errors are unit free and hence, 

can be used to compare performance across series with different units (Hyndman & 

Athanasopoulos, 2018). A popular percentage error metric is MAPE, which is defined below. 

Mean Absolute Percentage Error: 𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(| 𝑝𝑡|).  

 

However, MAPE suffers from the disadvantage that for zero or very low values of  𝑦𝑡, it 

becomes undefined. Besides, MAPE also has another disadvantage of putting a heavier 

penalty on negative errors than on positive errors. 

 

Since we will be comparing models to forecast consumption, the corresponding series across 

all the models will have the same unit and hence, scale-dependent error metrics can be used. 

For the sake of interpretability, we choose MAE as the error metric to compare the 

performance of different models. Besides, we would also use MAPE to compare models as it 
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can be used to compare models to forecast consumption with the models to forecast users; 

this would help in assessing how the model performance degrades from as we move from 

forecasting users to consumption of energy. Moreover, just like MAE, MAPE also offers the 

advantage of easy interpretability. Summarily, we would use MAE and MAPE to compare 

performance of models. 
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6. The Forecasters 
 

6.1 Introduction 
 

In this section, we discuss different predictive models developed to address the ultimate aim 

of identifying the best model that would forecast the consumption of energy with minimum 

errors. We discussed our modelling strategy in section 5.4, where we explained ‘The Nested 

Approach’ to bridge the gap between the data we had and the data the DNOs would have in 

the future. All the models were built using the same approach: we first leveraged the concept 

of variable origin, discussed in section 5.6.1, to fit three models on different train-test splits. 

However, before fitting the models, the data was normalized to ensure convergence of the 

learning algorithms as we were dealing with multivariate data with different scales. The 

performance of a given algorithm for forecasting was computed using the mean of MAE and 

MAPE across all the test samples for all the models. We, then, used the entire data to obtain 

the final model. Models across different family of algorithms were compared using the mean 

MAE and MAPE. In all the following sections, we would share the details of three models with 

users, demand, and consumption as target variable. It is worth mentioning that based on the 

current objective, time series regression is the benchmark algorithm, and in the following 

sections we also focus on how other algorithms perform with respect to the benchmark.   

 

In the subsequent sections, we indicate a predictor with a prime (’) if the estimate of the 

predictor is used for scenario-based forecasting. For instance, if the predictor, users, is used 

for forecasting consumption, we indicate the predictor as users’ instead of users, to 

differentiate between the situations when actual values of predictors are used and when 

estimates of predictors are used. Since only owners, day and season are the predictors that 

will be available to the DNOs, any other predictor, if used for forecasting, will be indicated 

with a prime (’) as they will not be available to DNOs and only their estimates can be leveraged 

for forecasting.  
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6.2 Time Series Regression 
 

We share the details of the time series regression models for the 0-25 kWh bin. The results 

for other bins are present in Appendix C. 

 

1. 𝒖𝒔𝒆𝒓𝒔 = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) + 𝒆𝒓𝒓𝒐𝒓 

We identified in section 5.1 that the number of consumers who charge their EVs every day 

(active users or simply, users) is a random variable that also needs to be predicted as this 

variable varies with every season and day of the week and is always less than the number of  

people who own EVs. Since we have two categorical variables, season and day, we use 3 

dummies for season (3 dummies for autumn, spring, and  summer) and 6 dummies for day (6 

dummies for all the days except for Sunday) as the number of dummies should always be less 

than the number of factors in a categorical variable to avoid the dummy variable trap 

(Hyndman & Athanasopoulos, 2018). We observe that factors ‘spring’ and ‘sat’ are statistically 

insignificant at 5% significance level. For all the days whose coefficients are statistically 

significant, we observe that when the day changed from Sunday to any other day, there is 

always an increase in the number of users. Similarly, for all the seasons with statistically 

significant coefficients, we observe that when the season changed from winter to any other 

season, there is a decrease in the number of users. The estimates of the coefficients of the 

predictors and the mean error metrics across all the test samples are tabulated below (tables 

14 and 15). The chosen model explains 90.94% (𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 0.9094) of the variability in 

users as a function of the predictors.   
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Table 14: Coefficients of the regression model to predict users for 0-25 kWh bin (GF) 

Coefficients 

Predictors Estimate Std. Error t-value p-value 

intercept 0.023379 0.014803 1.579 > 0.05 

owners 0.816852 0.011017 74.143 < 0.05 

autumn -0.082634 0.012224 -6.76 < 0.05 

spring 0.010211 0.011801 0.865 > 0.05 

summer -0.07167 0.01148 -6.243 < 0.05 

mon 0.046637 0.014004 3.33 < 0.05 

tue 0.061698 0.014004 4.406 < 0.05 

wed 0.064494 0.014047 4.591 < 0.05 

thu 0.067558 0.014048 4.809 < 0.05 

fri 0.043191 0.014004 3.084 < 0.05 

sat -0.007239 0.014004 -0.517 > 0.05 

 

 

Table 15: MAE and MAPE of the regression model to predict users for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day 10.69 19.45 
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Figure 35: Residuals of the regression model to predict users for 0-25 kWh bin (GF) 

 

From the plots shown above (figure 35), we observe that the residuals show a strong 

autocorrelation among themselves, thereby implying that there is still significant information 

left in the data that the model failed to capture (Hyndman & Athanasopoulos, 2018).  

 

2. 𝒅𝒆𝒎𝒂𝒏𝒅 = 𝒇(𝒕𝒊𝒎𝒆′) + 𝒆𝒓𝒓𝒐𝒓 

The total connected load, called demand, could be modelled as a function of four different 

sets of predictors. The error metrics for forecasting demand as a function of different sets of 

predictors are shown below (table 16).  We observe that the error metrics for time’ as the 

predictor are nearly the same as those for owners, season, day as predictors. However, we 

chose the model with fewer predictors to minimise model complexity. 
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Table 16: MAE and MAPE of the regression model to predict demand for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day 195.14 21.47 

users’ 213.83 23.42 

trans’ 206.06 22.7 

time’ 195.92 21.19 

 

The estimates of the coefficients of the predictors are tabulated below (table 17). The positive 

coefficient in the model suggests that as the duration of charging (time’) increases, the total 

connected load (demand) also increases. It is worth mentioning that time is modelled as a 

function of owners, season, day as the model gives the lowest error metrics (MAE = 26.87, 

MAPE = 25.26) than models with other predictors.  

 

Table 17: Coefficients of the regression model to predict demand for 0-25 kWh bin (GF) 

Coefficients 

Predictors Estimate Std. Error t-value p-value 

intercept 0.03289 0.003748 8.774 < 0.05 

time’ 1.021479 0.007794 131.057 < 0.05 

  

The model explains 96.82% of the variability in demand as a function of time (𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 =

0.9682). Moreover, this model validates ‘The Nested Approach’ that we proposed in section 

5.4. Although the model captures the variability of response variable pretty well (96.82%), the 

residuals have significant autocorrelations among each other as shown below (figure 36). 
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Figure 36: Residuals of the regression model to predict demand for 0-25 kWh bin (GF) 

 

3. 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 = 𝒇(𝒅𝒆𝒎𝒂𝒏𝒅′) + 𝒆𝒓𝒓𝒐𝒓 

Modelling consumption was possible with five different sets of predictors. The performance 

of different models to forecast consumption as a function of different sets of predictors can 

be observed from the table shown below (table 18). We identify that the model with demand’ 

as the predictor gives the best mean performance over a variable origin (minimum error 

metric).  

 

Table 18: MAE and MAPE of the regression model to predict consumption for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day 112.69 25.05 

users’ 124.8 27.95 

trans’ 119.6 26.88 

time’ 114.07 25.38 

demand’ 110.93 24.6 
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The model with demand’ as the predictor explains 97.18% of the variability in consumption 

(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 0.9718). In addition, the model also suggests that as the connected load 

(demand) increases, the consumption also increases (indicated by the positive sign of the 

coefficient of demand’ in the model, table 19).   

 

Table 19: Coefficients of the regression model to predict consumption for 0-25 kWh bin (GF) 

Coefficients 

Predictors Estimate Std. Error t-value p-value 

intercept -0.018975 0.003582 -5.297 < 0.05 

demand’ 0.956531 0.006866 139.31 < 0.05 

 

 

 

Figure 37: Residuals of the regression model to predict consumption for 0-25 kWh bin (GF) 

 

The above figure shows (figure 37) that the residuals analysis have significant correlation 

among themselves, thereby indicating that the model fails to capture a lot of information from 

the data and hence, can be further improved.  
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6.3 Regression with ARIMA Errors 
 

We observed in time series regression that the residuals were never even close to being white 

noise, i.e., the residuals exhibited strong autocorrelations among each other, leading to huge 

scope for extracting more information from the data to improve forecasts. Since the residuals 

obtained from time series regression didn’t resemble white noise, we leveraged a boosting 

approach to fit an ARIMA model on the regression errors. The errors obtained after fitting 

ARIMA model, ARIMA errors (residuals), should represent white noise.      

 

We share the details of the regression models with ARIMA errors for the 0-25 kWh bin. The 

results for other bins are present in Appendix C. 

 

1. 𝒖𝒔𝒆𝒓𝒔 = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) + 𝑨𝑹𝑰𝑴𝑨 𝒆𝒓𝒓𝒐𝒓 

The estimates of the coefficients of the model are shown below (table 20). We see four 

additional predictors in the table below: ar1, ma1, sar1, and sma1. These four predictors are 

introduced into the model as we fitted an ARIMA model on the regression errors (section 

5.5.2). A seasonal (1, 0, 1)(1, 0, 1)7 ARIMA model is fitted on the regression errors. We also 

observe that no differencing is done before fitting the ARIMA model as the regression errors 

are found to be stationary. 
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Table 20: Coefficients of regression with ARIMA model to predict users for 0-25 kWh bin (GF) 

Coefficients 

Predictors Estimate Std. Error 

ar1 0.9417 0.0203 

ma1 -0.5612 0.047 

sar1 0.9091 0.0509 

sma1 -0.8266 0.0684 

owners 0.8187 0.0539 

autumn -0.0068 0.0342 

spring 0.0155 0.0305 

summer -0.0105 0.0337 

mon 0.0438 0.013 

tue 0.0576 0.0136 

wed 0.0607 0.0139 

thu 0.0637 0.0139 

fri 0.0403 0.0135 

sat -0.0095 0.013 

 

The mean error metrics on a variable origin are shown below (table 21). We observe a 

marginal improvement in the performance of the regression model when an ARIMA model is 

fitted on the regression errors.  

 

Table 21: MAE and MAPE of regression with ARIMA model to predict users for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day 10.46 17.97 

 

Although the model performance using regression with ARIMA errors marginally improves 

than that of the earlier model using time series regression, we observe a significant 
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reduction in the autocorrelation among the residuals, as shown in figure 38 (ARIMA errors); 

this makes the prediction intervals more reliable. 

 

 

Figure 38: Residuals of regression with ARIMA model to predict users for 0-25 kWh bin (GF) 

 

2. 𝒅𝒆𝒎𝒂𝒏𝒅 = 𝒇(𝒕𝒊𝒎𝒆′) + 𝑨𝑹𝑰𝑴𝑨 𝒆𝒓𝒓𝒐𝒓 

The total connected load (demand) can be modelled using four possible sets of predictors. The 

mean performance of four such models on variable origin can be found below (table 22). 

 

Table 22: MAE and MAPE of regression with ARIMA model to predict demand for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day 161.12 18.02 

users’ 197.05 20.19 

trans’ 154.29 17.14 

time’ 144.53 15.43 
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We see that the model with time’ as the predictor gives the best performance among all the 

models. Besides, the error metrics see a significant reduction in their values using regression 

with ARIMA errors compared to when only regression is used. Moreover, we can observe from 

the figure below (figure 39) that the autocorrelations among residuals get significantly 

reduced, thereby making the prediction intervals more reliable.    

 

 

Figure 39: Residuals of regression with ARIMA model to predict demand for 0-25 kWh bin (GF) 

 

The estimates of the coefficients with time’ as predictor have been tabulated below (table 23). 

A seasonal (1, 1, 2)(1, 0, 0)7 ARIMA model is fitted on the regression errors. We also observe 

that non-seasonal differencing is done before fitting the non-seasonal ARIMA part; this 

emphasises that the regression errors are not stationary and hence, differencing is warranted. 
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Table 23: Coefficients of regression with ARIMA model to predict demand for 0-25 kWh bin (GF) 

Coefficients 

Predictors Estimate Std. Error 

ar1 0.7911 0.1013 

ma1 -1.6594 0.1134 

ma2 0.6683 0.1092 

sar1 0.1343 0.0447 

time’ 0.9697 0.0237 

 

 

3. 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 = 𝒇(𝒅𝒆𝒎𝒂𝒏𝒅′) + 𝑨𝑹𝑰𝑴𝑨 𝒆𝒓𝒓𝒐𝒓 

Consumption can be modelled using five distinct sets of predictors; the mean performance 

metrics for each model have been tabulated below (table 24). We observe that with demand’ 

as the predictor, the model to forecast consumption gives the lowest error metrics. Hence, 

consumption is modelled as a function of demand’.  

 

Table 24: MAE and MAPE of regression with ARIMA model to predict consumption for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day 113.99 23.52 

users’ 112.63 23.18 

trans’ 84.29 18.55 

time’ 85.45 18.66 

demand’ 82.91 17.37 

   

The estimates of the coefficients are shown below (table 25). The positive coefficient of 

demand’ indicates that as demand increases, consumption also increases. We also observe 

that a seasonal  (1, 1, 1)(2, 0, 0)7 ARIMA model is fitted on the non-stationary regression 

errors after carrying out non-seasonal differencing.   
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Table 25: Coefficients of regression with ARIMA model to predict consumption for 0-25 kWh bin (GF) 

Coefficients 

Predictors Estimate Std. Error 

ar1 0.1243 0.0488 

ma1 -0.9034 0.0222 

sa1 0.2316 0.0441 

sar2 0.0897 0.0423 

demand’ 0.7498 0.0209 

 

 

 

Figure 40: Residuals of regression with ARIMA model to predict consumption for 0-25 kWh bin (GF) 

 

The ARIMA errors too have reduced autocorrelations than the earlier model built to forecast 

consumption using regression (figure 40). The reduced correlations, obviously, make the 

prediction intervals more reliable than earlier.  

 

Comparing the two modelling approaches discussed so far, we observe that regression with 

ARIMA errors not only improves forecasting performance but also makes the prediction 
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intervals more reliable. However, we still believe that forecasting can be improved as we can 

modify the modelling using regression with ARIMA errors by incorporating distributed lags 

(Hyndman & Athanasopoulos, 2018). The modelling approach to be followed incorporates 

distributed lags (DL) as predictors in the regression with ARIMA errors approach.  

 

6.4 Distributed Lag Models (with ARIMA errors) 
 

We share the details of the distributed lag models (with ARIMA errors) for the 0-25 kWh bin. 

The results for other bins are present in Appendix C. 

 

1. 𝒖𝒔𝒆𝒓𝒔 = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏, 𝒍𝒂𝒈𝒈𝒆𝒅 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 𝒐𝒘𝒏𝒆𝒓𝒔) + 𝑨𝑹𝑰𝑴𝑨 𝒆𝒓𝒓𝒐𝒓 

As we added lagged values of owners to the model, the error metrics over a variable origin 

gradually decreased for the model. With one lagged value of owners, the mean MAE and 

MAPE were 10.36 and 17.79 respectively. However, the minimum error metrics were 

observed for six lagged values of owners. The error metrics with six lagged values are shown 

below (table 26). 

 

Table 26: MAE and MAPE of regression with distributed lag model to predict users for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day, 6 lagged values of owners  8.03 14.53 

 

A non-seasonal (2, 0, 1) ARIMA model is fitted on the regression errors without any 

differencing prior to model fitting. Although the ARIMA errors (residuals) exhibit some degree 

of autocorrelation (figure 41), it is significantly less than the residuals obtained in time series 

regression and hence, the prediction intervals are more reliable than earlier.  

 

The estimates of the coefficients have been tabulated below (table 27). We can observe that 

not all the lagged values of owners have a positive effect on the number of users. If the values 
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of owners at lags 1, 3 and 4 increase, the value of users also increases. However, for owners 

at lags 2, 5 and 6, an increase in their values would see a decrease in the value of users. 

 

Table 27: Coefficients of regression with distributed lag model to predict users for 0-25 kWh bin (GF) 

Coefficients 

Predictors Estimate Std. Error 

ar1 1.1265 0.0756 

ar2 -0.1555 0.0682 

ma1 -0.7048 0.0596 

owners 1.421 0.4695 

autumn -0.0058 0.0334 

spring 0.0209 0.0291 

summer -0.0124 0.0317 

mon 0.0446 0.0073 

tue 0.0585 0.008 

wed 0.0641 0.0082 

thu 0.066 0.0081 

fri 0.0403 0.008 

sat -0.0088 0.0073 

owners-lag1 0.4508 0.6129 

owners-lag2 -0.8389 0.6197 

owners-lag3 0.1315 0.6267 

owners-lag4 0.5477 0.6258 

owners-lag5 -0.3627 0.6268 

owners-lag6 -0.5506 0.48 
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Figure 41: Residuals of regression with distributed lag model to predict users for 0-25 kWh bin (GF) 

 

2. 𝒅𝒆𝒎𝒂𝒏𝒅 = 𝒇(𝒕𝒊𝒎𝒆′) + 𝑨𝑹𝑰𝑴𝑨 𝒆𝒓𝒓𝒐𝒓 

Modelling demand could be done using four different sets of predictors with or without their 

lagged values. When demand is modelled as a function of owners and their lagged values as 

well as season and day, the best performance is obtained with one lagged value of owners 

(MAE = 160.64, MAPE = 17.96). If users’, trans’ or time’ is used as a predictor, the best 

performance is obtained when no lagged values are used. Adding lagged values only 

deteriorates the model performance for any of the subject predictors. The best performance 

of the four distinct models can be found below (table 28). 

 

Table 28: MAE and MAPE of regression with distributed lag model to predict demand for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day, 1 lagged value of owners  160.64 17.96 

users’ 159.8 17.07 

trans’ 153.29 17.02 

time’ 143.71 15.33 
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We observe that the lowest error metrics are obtained when demand is modelled as a function 

of time’. The estimates of the coefficients are tabulated below (table 29). A non-seasonal 

(1, 1, 2) ARIMA model is fitted on the regression errors after non-seasonal differencing.  

 

Table 29: Coefficients of regression with distributed lag model to predict demand for 0-25 kWh bin (GF) 

Coefficients 

Predictors Estimate Std. Error 

ar1 0.8535 0.0713 

ma1 -1.7224 0.0824 

ma2 0.7299 0.0789 

time’ 0.9538 0.0230 

 

The residuals (ARIMA errors, as shown in figure 42) also exhibit a significant reduction in 

autocorrelations, leading to more reliable prediction intervals than the benchmark model.  

 

 

Figure 42: Residuals of regression with distributed lag model to predict demand for 0-25 kWh bin (GF) 
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3. 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 = 𝒇(𝒅𝒆𝒎𝒂𝒏𝒅′) + 𝑨𝑹𝑰𝑴𝑨 𝒆𝒓𝒓𝒐𝒓 

Consumption can be modelled using five different sets of predictors, which may include lagged 

values of predictors too. When owners, season, day are used as predictors, the best 

performance is obtained with six lagged values of owners (MAE = 86.92, MAPE = 19.17). With 

one lagged value of owners, the mean MAE and MAPE are respectively 113.41 and 23.40. As 

we add more lagged values of owners, the performance improves and reaches its best at six 

lagged values of owners as mentioned above. If users’, trans’, time’ or demand’ is used are 

predictor, the best performance is obtained when no lagged values are used. The mean error 

metrics for the best model with every possible predictor (s) are tabulated below (table 30). 

 

Table 30: MAE and MAPE of regression with distributed lag model to predict consumption for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day, 6 lagged values of owners  86.92 17.17 

users’ 91.47 19.62 

trans’ 83.79 18.43 

time’ 84.96 18.53 

demand’ 82.5 17.27 

 

We observe that the best performance is obtained when consumption is modelled as a 

function of demand’. Estimates of the model coefficients are shown below (table 31).  
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Table 31: Coefficients of regression with distributed lag model to predict consumption for 0-25 kWh bin (GF) 

Coefficients 

Predictors Estimate Std. Error 

ar1 0.0190 0.0598 

ar2 -0.0247 0.0516 

ar3 -0.1230 0.0499 

ar4 -0.1073 0.0506 

ma1 -0.8120 0.0482 

demand’ 0.7680 0.0212 

 

A non-seasonal (4, 1, 1) ARIMA model is fitted on the regression errors after carrying out non-

seasonal differing of the errors. While we do see some degree of autocorrelation in the 

residuals (figure 43), it is significantly less than what we observed in the case of the benchmark 

model.  

 

 

Figure 43: Residuals of regression with distributed lag model to predict consumption for 0-25 kWh bin (GF) 
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It might be argued that models to estimate consumption of energy for both regression (with 

ARIMA errors) with distributed lags and regression with ARIMA errors use demand’ as the 

predictor, with the former model using no distributed lags. In that case, how did the 

performance improve? The answer lies in the way we built up to the final model. In case of 

regression with ARIMA errors, consumption was modelled as a function of demand’, demand 

was modelled as a function of time’, and time was modelled as a function of owners, day and 

season. The difference lies in the way time was modelled in case of regression (with ARIMA 

errors) with distributed lags. It was modelled as a function of transactions’ with no distributed 

lags, but in turn, was modelled as a function of owners with lags, day and season, which 

delivered much better performance. Hence, the subsequent estimates also improved, leading 

to the final model being better than the one built using ARIMA errors only.      

 

6.5 LSTM Networks 
 

We set up a basic architecture and then gradually tuned a few hyperparameters to improve 

the performance of LSTM networks. The basic architecture is described below. 

• Number of hidden layers (LSTM layers) = 2 

• Activation function = Rectified Linear Unit 

• Loss function = Mean Squared Error 

• Optimiser = RMSprop 

• Metrics = MAE and MAPE 

We kept the aforementioned hyperparameters fixed while tuning the others. We tuned the 

following hyperparameters to improve the performance of the LSTM networks.  

• Number of neurons in each LSTM layer 

• Epochs 

• Batch size  

• Dropout and recurrent dropout rates 

• Learning rate    



98 

 

 

We initially tested eleven different combinations of neurons for the two LSTM networks to 

forecast the number of active users as a function of EV owners, day of the week and season 

of the year. The details of the eleven configurations are shown below (table 32). 

 

Table 32: Initial eleven configurations of hidden layers (GF) 

Configuration Neurons (Layer 1) Neurons (Layer 2) 

1 20 10 

2 20 20 

3 30 20 

4 30 30 

5 40 30 

6 40 40 

7 100 100 

8 50 40 

9 30 10 

10 40 10 

11 40 20 

 

We tuned the epochs for three different values: 50, 100 and 150. We observe from the plots 

shown below (figures 44 and 45) that except for networks with configurations 1 and 2, all 

other networks exhibited lowest error metrics (MAE and MAPE) at epochs = 50. Besides, the 

error metrics for configurations 1 and 2 were higher than any other configurations. Hence, in 

further analyses, we dropped the configurations 1 and 2. We also tested the networks at 

epochs = 25, but the error metrics increased, suggesting that epochs should be set to 50.  
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Figure 44: MAE vs epochs 

 

 

Figure 45: MAPE vs epochs 

 

We also tested the configurations for three different batch sizes (1, 7, and the default value 

of 32) during model training. We found that while the default number of batch sizes ( = 32) 

gave decent performance, the error metrics increased when the batch size was set to 1. 

10

11

12

13

14

15

16

17

18

50 100 150

M
A

E

Epochs

MAE vs Epochs

Config 1

Config 2

Config 3

Config 4

Config 5

Config 6

Congif 7

Config 8

Config 9

Config 10

Config 11

16

18

20

22

24

26

28

50 100 150

M
A

P
E

Epochs

MAPE vs Epochs

Config 1

Config 2

Config 3

Config 4

Config 5

Config 6

Congif 7

Config 8

Config 9

Config 10

Config 11



100 

 

 

However, for a batch size of 7, the error metrics were found to be lowest. As such the batch 

size was set to 7. We also observed that the networks gave a decent performance without any 

dropout of neurons in both the LSTM layers. When both dropout and recurrent dropout were 

set to 0.2, the performance deteriorated. However, when the dropouts were set to 0.1 each, 

the performance was found to be the best than the other two combinations of dropouts. 

Hence, both dropout and recurrent dropout were set to 0.1. Moreover, the learning rate was 

also adjusted to 0.05 and 0.005 (default value = 0.001); however, in both the cases, the 

performance was found to deteriorate compared to the case when the learning rate was left 

to its default value. In further analyses, learning rate, epochs, dropout, and recurrent dropout 

were set to 0.001, 50, 0.1 and 0.1 respectively.     

 

With fixed values of the learning rate, epochs, dropout and recurrent dropout (as mentioned 

above), we again tested twelve configurations and found that the lowest error metrics were 

obtained for the configuration 9 (table 33, figures 46 and 47). We observed that as we 

increased the number of neurons in each layer, the error metrics decreased initially. However, 

after configuration 9, where each layer had 50 neurons, the error metrics increased on 

increasing the number of neurons. Hence, we fixed the number of neurons in each LSTM layer 

to 50 for all the models we built henceforth.      
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Table 33: Final twelve configurations of hidden layers (GF) 

Configuration Neurons (Layer 1) Neurons (Layer 2) MAE MAPE 

1 30 10 11.88 18.37 

2 30 20 11.85 18.67 

3 30 30 11.09 17.52 

4 40 10 11.96 18.85 

5 40 20 11.11 17.86 

6 40 30 10.53 16.64 

7 40 40 9.73 15.45 

8 50 40 9.49 15.2 

9 50 50 8.37 13.64 

10 60 50 9.28 14.93 

11 60 60 8.58 14.04 

12 100 100 9.24 15.43 

 

 

 

Figure 46: MAE vs configurations 
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Figure 47: MAPE vs configurations 

 

The final architecture of the LSTM network we used to build all the models can be found 

below. 

• Number of hidden layers (LSTM layers) = 2 

• Activation function = Rectified Linear Unit 

• Loss function = Mean Squared Error 

• Optimiser = RMSprop 

• Metrics = MAE and MAPE 

• Number of neurons in each LSTM layer = 50 

• Epochs = 50 

• Batch size = 7 

• Dropout and recurrent dropout rates = 0.1 

• Learning rate = 0.001    

As in the case of previously discussed algorithms, we also tested all combinations of features 

for each response variable. We present the details of error metrics for all the models for users, 

demand and consumed for the 0-25 kWh and present the details of error metrics of only the 

best models for other bins in Appendix C.  
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1. 𝒖𝒔𝒆𝒓𝒔 = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) 

The error metrics are shown below (table 34).  

 

Table 34: MAE and MAPE of LSTM network to predict users for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day 8.37 13.64 

 

 

2. 𝒅𝒆𝒎𝒂𝒏𝒅 = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) 

The error metrics for predicting the total connected load (demand) are shown below (table 

35). We observe that the best model is obtained when owners, season and day are used to 

predict the total connected load. 

 

Table 35: MAE and MAPE of LSTM network to predict demand for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day 128.11 12.36 

users’ 186.32 17.13 

trans’ 187.42 17.17 

time’ 171.21 15.75 

 

 

3. 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) 

The error metrics for predicting the consumption of energy (consumed) are shown below 

(table 36). We observe that the best model is obtained when owners, season and day are used 

to predict the consumption. 
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Table 36: MAE and MAPE of LSTM network to predict consumption for 0-25 kWh bin (GF) 

Predictors MAE MAPE 

owners, season, day 59.18 11.94 

users’ 101.51 18.63 

trans’ 104.71 18.74 

time’ 91.68 16.66 

demand’ 83.19 15.37 
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7. Conclusions 
 

 

7.1 Summary of Results 
 

We observed that deep learning networks (LSTMs) delivered the best performance over a 

variable origin among all algorithms. While the objective of the project was to predict future 

energy load caused by EV charging on local distribution networks, we also developed models 

to estimate the number of active users who would charge their EVs every day and to estimate 

the total connected load (demand) on the distribution networks caused by all the EV 

transactions. While the models on predicting active users were meant to give an estimate of 

the mean number of users out of the total population of EV owners who would charge their 

EVs per day, the models on predicting demand was meant to indicate an upper cap on the 

energy requirements caused by multiple transactions of EV charging. However, in subsequent 

sections we will focus our discussion only on the actual business objective of EA Technology: 

predicting energy consumption due to EV charging. A summary of the performance of the 

relevant models (for all the bins) is presented below (tables 37 to 40). It is important to note 

that the best performing model across different algorithms might have used different set of 

predictors.      

 

Table 37: Performance comparison of all models to predict consumption for 0-25 kWh bin (GF) 

Models (0-25 kWh) MAE MAPE 

Time Series Regression 110.93 24.6 

Regression with ARIMA errors 82.91 17.37 

Regression (with ARIMA errors) with Distributed Lags 82.5 17.27 

LSTM networks 59.18 11.94 

 

For the model in 0-25 kWh bin (table 37), we see an improvement of 12.66 percentage points 

in MAPE as we move from the benchmark model (Time Series Regression) to LSTM networks. 
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Besides, the MAE improves by a value of 51.75 (equivalent to 46.65%) over the benchmark. A 

similar analysis is also true for other bins. However, at this stage it is important to understand 

that in future, DNOs will be dealing with thousands of EV owners and hence, more users and 

transactions every day, thereby leading to high consumption of energy due to EV charging. 

Hence, keeping in mind the future scenario, relative error metrics would be a more suitable 

performance evaluation measure than absolute metrics. So, we would be focussed on MAPE 

in the discussions to follow. Comparing the performance of all algorithms for the bins, we 

observed that deep learning method (LSTM networks), with little hyperparameter tuning, 

outperformed all the other algorithms.   

 

Table 38: Performance comparison of all models to predict consumption for 26-50 kWh bin (GF) 

Models (26-50 kWh) MAE MAPE 

Time Series Regression 91.8 24.26 

Regression with ARIMA errors 87.1 22.89 

Regression (with ARIMA errors) with Distributed Lags 86.88 22.82 

LSTM networks 75.79 18.13 

 

Table 39: Performance comparison of all models to predict consumption for 51-75 kWh bin (GF) 

Models (51-75 kWh) MAE MAPE 

Time Series Regression 64.77 40.49 

Regression with ARIMA errors 65.04 43.67 

Regression (with ARIMA errors) with Distributed Lags 66.82 42.72 

LSTM networks 64.34 36.9 
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Table 40: Performance comparison of all models to predict consumption for 76-100 kWh bin (GF) 

Models (76-100 kWh) MAE MAPE 

Time Series Regression 49.23 150.01 

Regression with ARIMA errors 40.17 110.77 

Regression (with ARIMA errors) with Distributed Lags 40.07 109.06 

LSTM networks 42.65 93.68 

 

 
7.1.1 Scenario-based Forecasting (Case of Lancaster, UK in 2040) 
 

We consider a future scenario in the city of Lancaster (UK) in 2040. Detailed results of one 

such scenario-based forecasting is presented below (summarised results outlined in section 

1.2). By 2040, the projected number of EVs in the UK is 36 million (Evans, 2018). Besides, by 

2040, the UK and Lancaster population are projected to rise to 72 million and 0.146043 million 

respectively (Nash, 2017; Lancashire-County-Council, n.d.). Based on the aforementioned 

statistics, we estimate the number of EV owners in Lancaster under the following assumption. 

1. Distribution of EVs in the UK will be uniform 

2. Distribution of EVs across battery capacity bins will be same as observed in EV trials 

Estimated number of EVs in Lancaster in 2040 = (
36

72
) × 146043 = 73022 

The distribution of EVs (73022) across various battery capacity bins is tabulated below. 

 

Table 41: Distribution of EVs across battery capacity bins in Lancaster in 2040 

Battery Capacity 

Bins (kWh) 

Count of EVs in 

trials 

% of EVs (p) among total 

EVs (= 300) in trials 

Estimate of EVs in 2040 

(= 73022 * p/100) 

0-25 163 54.33 39673 

26-50 87 29.00 21176 

51-75 35 11.67 8522 

76-100 15 5.00 3651 
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Based on the estimates of EVs in Lancaster in 2040, the LSTM networks forecast the following 

kWh consumption (tabulated below) during a given week (from 24/12/2040 to 30/12/2040) 

in winter season in 2040. 

 

Table 42: Scenario-based forecasting of kWh consumption per day in winter season in Lancaster in 2040 

Day kWh Consumed 

(0-25 bin) 

kWh Consumed 

(26-50 bin) 

kWh Consumed 

(51-75 bin) 

kWh Consumed 

(76-100 bin) 

Monday 106156.1 99035.5 42616.0 18455.0 

Tuesday 106145.2 99036.5 42622.3 18464.7 

Wednesday 106134.8 99018.9 42614.5 18452.2 

Thursday 106157.5 99038.8 42619.7 18456.5 

Friday 106163.0 99048.1 42622.0 18461.7 

Saturday 106163.5 99044.1 42628.1 18457.3 

Sunday 106142.5 99034.1 42620.1 18459.3 

 

We observe that for extremely higher number of EVs, the effect of day in determining the 

energy consumption is apparently insignificant as the observed kWh consumption is very 

high and vary by marginal values across days. However, the LSTM networks developed are 

expected to be robust and work well for local distribution networks with relatively smaller 

number of EV owners (a few hundreds). Hence, the models should be leveraged to forecast 

energy consumption for smaller clusters of EV owners as is the case of actual local 

distribution networks, to ensure more reliable forecasts. However, such forecasts (tabulated 

above) do indicate the quantum of stress that distribution networks would have in case EVs 

are allowed to charger without any constraints.  
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7.2 Discussion 
 

While we found that LSTM networks are the way forward to estimate the consumption of 

energy based on the current objective, we also realised that the deep learning models can be 

improved to incorporate a more realistic scenario with better predictive accuracy. The 

following comments have summarised the constraints in the project with plausible 

suggestions on how to improve predictive performance in the future. 

• We observed in section 4.3.8 that the response variable (consumption of energy) had 

significant autocorrelations with its lagged values, thereby meaning that lagged values of 

the response variable also carried information that could have been used to forecast the 

response variable. Since the objective was not a conventional forecasting problem (we 

didn’t have to forecast ahead of time for a given forecasting horizon based on trailing 

data), we couldn’t leverage the autocorrelations among lagged values of the response 

variable, leading to loss of relevant information in forecasting the response variable. This 

adversely affected the predictive accuracy of the models. A plausible solution to take on 

this issue would be either real-time or near time forecasting of energy consumption. In 

both cases, autoregressive models can be leveraged to incorporate the strong 

correlations among the lagged values of our target variable. In real-time forecasting, we 

forecast the future value of energy consumption based on a set of predictors as well as 

the past values of energy consumption (lagged values) as EV charging takes place in real-

time. In near time forecasting, we would also forecast energy consumption but not in 

real-time, i.e., we would collect data on EV charging in a local distribution network and 

predict the future consumption of energy for a given forecasting horizon; this approach 

would help in regulating demand management system in future. In addition, we can also 

leverage the temporal aggregation of forecasts to get long-term forecasts 

(Athanasopoulos, et al., 2017).     

• We discussed in section 5.1 that the scenario-based forecast of energy consumption was 

seriously constrained by the future information available to DNOs. This compelled us to 

propose a nested modelling approach so that the feature space of scenario-based data 
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could be extended to match the training data (actual data available). However, in nested 

modelling approach, errors get multiplied if we use forecasts of one variable to forecast 

another variable, leading to poor predictive accuracy. Hence, if the breadth of 

information available to DNOs could be increased, it would likely improve the predictive 

accuracy.  

• In the project, we transformed the raw transaction data to day-wise time series data for 

analyses and modelling. However, it could be also possible to work with high-frequency 

time series data (hour-wise time series) and aggregate results to get day-wise predictions. 

Working with high-frequency data may provide higher variability in the available 

information, leading to better algorithm training. However, it is a mere possibility and 

needs to carefully analysed.  

• It can be argued that analyses and modelling can also be done on the raw transaction 

data (after data cleaning) and the results can then be suitably aggregated to get day-wise 

predictions. We observed in section 4.3.1 that the data had missing values which were 

imputed to obtain the regular time series. However, the problem of working with 

transition data is that imputing the missing values in the data is a challenging task. This is 

because the charging events are randomly scattered within a day and imputing a missing 

charging event with a reasonably accurate timestamp would be really challenging.           

• We observed in section 4.2 that 𝑘-means clustering suggested the use of a minimum of 

three bins and adding any fourth bin didn’t lead to any additional variability across the 

clusters. However, we chose to work with four bins (as agreed with EA Technology) to 

develop predictive models. However, it would also be interesting to identify what 

hierarchical clustering has to suggest. After comparing the results obtained from both 

clustering approaches, different combinations of clusters can be tried and tested to see 

if the results improved or deteriorated.  

• We identified in section 5.1 that the number of users charging their EVs was very small in 

the initial phase of the trials, leading to a very small consumption of energy. High absolute 

errors (poor predictions) on such smaller values amplify the percentage errors (as the 

denominator is a small number) more than they do on larger values (as the denominator 
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is a large number). A high value of percentage error can be misleading as it fails to capture 

the real picture and, in turn, gives a false alarm caused by the poor forecasts of smaller 

values. Hence, to have a more realistic understanding of the predictive accuracy of the 

models, we need to work with data which is more realistic. Dropping observations that 

do not reflect the real-world scenario might help in getting rid of the false alarms.  

• Hyperparameter tuning of deep learning networks is time-consuming and varies from one 

case to another, i.e., a good architecture to predict a given response variable might not 

be good enough to predict another response variable. In our case, we had tuned a few 

hyperparameters to get good predictive accuracy for the model on users. The 

architecture also delivered the best results among all the different family of algorithms 

for the model on the consumption of energy. However, it might be possible that the 

performance of the LSTM networks to forecast energy consumption could be improved 

by using different architectures and more hyperparameter tuning. Besides, the 

hyperparameters were tuned for the 0-25 kWh bin and the same architecture was used 

for all the other bins. It could be possible that different architectures work better for 

other bins.   

 

7.3 Concluding Remarks 
 

In the project, we developed predictive models to forecast the daily energy consumption 

caused by EV charging. The models were developed keeping in view of the information that 

would likely be available to the DNOs in the future. We observed that the energy consumption 

varied with day of the week and season of the year, with highest median consumption during 

winter and mid-week. However, it is likely that there are more contributors to the variation in 

energy consumption, and gathering more information and data would help in better 

understanding of the variability of energy consumption, leading to the identification of more 

important predictors for forecasting consumption of energy. We proposed deep learning 

models as the way forward and even suggested plausible solutions to counter the constraints 

we faced during the project for enhancing the predictive accuracy. It would be interesting to 
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see in future work how deep learning can be leveraged to build forecast models with minimal 

errors (or high predictive accuracy) that serve the business objective and enable the DNOs to 

make better, informed decisions on demand management.  
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Appendices 
 
 

Appendix A 
 

 

 
Figure 48: Battery rating vs car brand (GF) 

 

 
Figure 49: Battery rating vs car brand (CC) 
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Figure 50: Owners vs users for all bins (CC) 

 

 
Figure 51: Demand vs consumption for all bins (CC) 
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Figure 52: Demand vs consumption for 26-50 kWh (GF) 

 

 
Figure 53: Demand vs consumption for 51-75 kWh (GF) 
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Figure 54: Demand vs consumption for 76-100 kWh (GF) 

 

 
Figure 55: Demand and consumption vs season of the year for 26-50 kWh bin (GF) 
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Figure 56: Demand and consumption vs season of the year for 51-75 kWh bin (GF) 

 
 

 
Figure 57: Demand and consumption vs season of the year for 76-100 kWh bin (GF) 
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Figure 58: Demand and consumption vs day of the week for 26-50 kWh bin (GF) 

 

 
Figure 59: Demand and consumption vs day of the week for 51-75 kWh bin (GF) 
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Figure 60: Demand and consumption vs day of the week for 76-100 kWh bin (GF) 

 

 
Figure 61: Correlations among numeric variables for 26-50 kWh bin (GF) 
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Figure 62: Correlations among numeric variables for 51-75 kWh bin (GF) 

 

 
Figure 63: Correlations among numeric variables for 76-100 kWh bin (GF) 
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Figure 64: Time series decomposition for 26-50 kWh bin (GF) 

 

 
Figure 65: Time series decomposition for 51-75 kWh bin (GF) 
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Figure 66: Time series decomposition for 76-100 kWh bin (GF) 

 

 
Figure 67: ACF and PACF of demand for 26-50 kWh bin (GF) 
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Figure 68: ACF and PACF of consumption for 26-50 kWh bin (GF) 

 

 
Figure 69: ACF and PACF of demand for 51-75 kWh bin (GF) 
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Figure 70: ACF and PACF of consumption for 51-75 kWh bin (GF) 

 

 
Figure 71: ACF and PACF of demand for 76-100 kWh bin (GF) 
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Figure 72: ACF and PACF of consumption for 76-100 kWh bin (GF) 
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Appendix B 
 
Table 43: Summary statistics for 0-25 kWh bin (CC) 

Statistics – 
CC – 0/25 

Demand Consumed Time Owners Users Trans 

Minimum 6.2 3.86 1.07 1 1 1 

1st Quartile 208.6 91.52 21.89 43 12 15.75 

Median 720 389.42 91.8 98.5 41.5 57 

Mean 630.4 330.88 79.12 92.68 37.66 50.46 

3rd Quartile 982.1 523.37 124.49 153 60 81 

Maximum 1414.7 772.75 185.36 162 84 114 

 
Table 44: Summary statistics for 26-50 kWh bin (CC) 

Statistics – 
CC – 26/50 

Demand Consumed Time Owners Users Trans 

Minimum 28 0.92 0.13 1 1 1 

1st Quartile 261.2 115.41 17.77 37 7 8 

Median 572.4 270.2 42.68 55 16 18 

Mean 530.3 247.27 39.54 51.59 14.52 16.85 

3rd Quartile 755 349.94 56.62 72 21 24 

Maximum 1201.8 572.48 99.51 73 30 38 

 
Table 45: Summary statistics for 51-75 kWh bin (CC) 

Statistics – 
CC – 51/75 

Demand Consumed Time Owners Users Trans 

Minimum 60 1.06 0.15 1 1 1 

1st Quartile 150 53.43 7.63 6 2 2 

Median 435 157.07 22.44 21 5 6 

Mean 425.9 158.84 22.69 17.25 5.12 5.79 

3rd Quartile 660 240.56 34.37 28 8 9 

Maximum 1335 604.86 86.41 30 13 18 
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Table 46: Summary statistics for 76-100 kWh bin (CC) 

Statistics – 
CC – 

76/100 

Demand Consumed Time Owners Users Trans 

Minimum 85 0.51 0.07 1 1 1 

1st Quartile 174.2 33.66 4.81 8 1.29 1.94 

Median 280 75.33 10.76 13 3 3 

Mean 331.4 89.88 12.84 12.24 3.15 3.6 

3rd Quartile 465 135.41 19.35 17 4 5 

Maximum 1020 337.17 48.17 19 9 11 
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Appendix C 
 
Time Series Regression 
 
1. 𝒖𝒔𝒆𝒓𝒔 = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) + 𝒆𝒓𝒓𝒐𝒓 

 

 
Table 47: Coefficients of the regression model to predict users  for 26-50 kWh bin (GF) 

Coefficients (26 – 50 kWh) 

Predictors Estimate Std. Error t-value p-value 

intercept 0.11129 0.01926 5.778 < 0.05 

owners 0.62417 0.01431 43.606 < 0.05 

autumn -0.1413 0.01559 -9.064 < 0.05 

spring -0.04265 0.01502 -2.84 < 0.05 

summer -0.12526 0.01462 -8.567 < 0.05 

mon 0.01899 0.01784 1.065 > 0.05 

tue 0.03714 0.01784 2.082 < 0.05 

wed 0.03758 0.0179 2.1 < 0.05 

thu 0.04115 0.01784 2.306 < 0.05 

Fri 0.04499 0.01784 2.522 < 0.05 

sat 0.02463 0.01784 -1.381 > 0.05 
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Table 48: Coefficients of the regression model to predict users  for 51-75 kWh bin (GF) 

Coefficients (51 – 75 kWh) 

Predictors Estimate Std. Error t-value p-value 

intercept 0.0105705 0.0106166 0.996 > 0.05 

owners 0.1969915 0.00916 21.506 < 0.05 

autumn -0.0389401 0.0087681 -4.441 < 0.05 

spring 0.0035499 0.0084149 0.422 > 0.05 

summer -0.0147009 0.0082128 -1.79 > 0.05 

mon -0.0098429 0.0100318 -0.981 > 0.05 

tue -0.0076959 0.0100318 -0.767 > 0.05 

wed -0.0006814 0.0100633 -0.068 > 0.05 

thu 0.0096027 0.0100328 0.957 > 0.05 

Fri 0.0031601 0.0100322 0.315 > 0.05 

sat -0.0199669 0.0100318 -1.990 < 0.05 

 

 
Table 49: Coefficients of the regression model to predict users  for 76-100 kWh bin (GF) 

Coefficients (76 – 100 kWh) 

Predictors Estimate Std. Error t-value p-value 

intercept -0.05496 0.03173 -1.732 > 0.05 

owners 0.52164 0.02619 19.917 < 0.05 

autumn -0.01224 0.02514 -0.487 > 0.05 

spring 0.05219 0.02769 1.885 > 0.05 

summer 0.04648 0.02391 1.944 > 0.05 

mon -0.02945 0.03109 -0.947 > 0.05 

tue 0.00105 0.03109 0.034 > 0.05 

wed -0.04424 0.03121 -1.417 > 0.05 

thu -0.01146 0.03121 -0.367 > 0.05 

Fri 0.04357 0.03121 1.396 > 0.05 

sat 0.01092 0.03121 0.350 > 0.05 
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Table 50:  Performance comparison of models to predict users (GF) 

Models (Bin-wise) MAE MAPE 

26-50 kWh 4.34 19.13 

51-75 kWh 2.04 38.8 

76-100 kWh 1.32 54.09 

 

 

2. 𝒅𝒆𝒎𝒂𝒏𝒅 = 𝒇(𝒕𝒊𝒎𝒆′) + 𝒆𝒓𝒓𝒐𝒓 
 

Table 51: Coefficients of the regression model to predict demand for 26-50 kWh bin (GF) 

Coefficients (26 – 50 kWh) 

Predictors Estimate Std. Error t-value p-value 

intercept 0.048763 0.004482 10.88 < 0.05 

time’ 0.942945 0.011182 84.33 < 0.05 

 

 
Table 52:  Coefficients of the regression model to predict demand for 51-75 kWh bin (GF) 

Coefficients (51 – 75 kWh) 

Predictors Estimate Std. Error t-value p-value 

intercept -0.001931 0.006735 -0.287 > 0.05 

time’ 1.343359 0.027679 48.533 < 0.05 

 

 
Table 53:  Coefficients of the regression model to predict demand for 76-100 kWh bin (GF) 

Coefficients (76 – 100 kWh) 

Predictors Estimate Std. Error t-value p-value 

intercept 0.011506 0.009122 1.261 < 0.05 

time’ 0.751222 0.026951 27.873 < 0.05 
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Table 54: Performance comparison of models to predict demand (GF) 

Models (Bin-wise) MAE MAPE 

26-50 kWh 171.65 19.8 

51-75 kWh 210.56 37.64 

76-100 kWh 161.28 53.69 

 

 

3. 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 = 𝒇(𝒅𝒆𝒎𝒂𝒏𝒅′) + 𝒆𝒓𝒓𝒐𝒓 
 

Table 55: Coefficients of the regression model to predict consumption for 26-50 kWh bin (GF) 

Coefficients (26 – 50 kWh) 

Predictors Estimate Std. Error t-value p-value 

intercept -0.027745 0.004395 -6.313 < 0.05 

demand’ 0.980022 0.010369 94.516 < 0.05 

 

 
Table 56: Coefficients of the regression model to predict consumption for 51-75 kWh bin (GF) 

Coefficients (51 – 75 kWh) 

Predictors Estimate Std. Error t-value p-value 

intercept 0.063421 0.005887 10.77 < 0.05 

demand’ 0.929057 0.017432 53.30 < 0.05 

 

 
Table 57: Coefficients of the regression model to predict consumption for 76-100 kWh bin (GF) 

Coefficients (76 – 100 kWh) 

Predictors Estimate Std. Error t-value p-value 

intercept 0.088747 0.008701 10.20 < 0.05 

demand’ 0.834093 0.029924 27.87 < 0.05 
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Table 58: Performance comparison of models to predict consumption (GF) 

Models (Bin-wise) MAE MAPE 

26-50 kWh 91.8 24.26 

51-75 kWh 64.77 40.49 

76-100 kWh 49.23 150.01 

 

 

 

Regression with ARIMA Errors 
 

1. 𝒖𝒔𝒆𝒓𝒔 = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) + 𝒆𝒓𝒓𝒐𝒓 

 

Table 59: Coefficients of regression with ARIMA model to predict users for 26-50 kWh bin (GF) 

Coefficients (26 – 50 kWh) 

Predictors Estimate Std. Error 

ar1 0.9423 0.0241 

ma1 -0.7205 0.0442 

sar1 0.8127 0.0939 

sar2 0.0842 0.0472 

sma1 -0.8133 0.0894 

owners 0.6738 0.0584 

autumn -0.0064 0.0465 

spring 0.0096 0.039 

summer -0.0391 0.0427 

mon 0.0231 0.0228 

tue 0.0383 0.023 

wed 0.0422 0.0233 

thu 0.0411 0.0232 

fri 0.0475 0.023 

sat -0.021 0.0227 
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Table 60: Coefficients of regression with ARIMA model to predict users for 51-75 kWh bin (GF) 

Coefficients (51 – 75) 

Predictors Estimate Std. Error 

ma1 0.2363 0.0415 

ma2 0.1826 0.0431 

ma3 0.1919 0.0421 

ma4 0.1338 0.0383 

ma5 0.1987 0.0422 

owners 0.5857 0.0273 

autumn -0.1083 0.0257 

spring 0.0164 0.0227 

summer -0.0306 0.0229 

mon -0.0008 0.0163 

tue -0.0032 0.0152 

wed 0.0348 0.0157 

thu 0.0582 0.0157 

fri 0.0388 0.0152 

sat -0.0317 0.0163 
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Table 61: Coefficients of regression with ARIMA model to predict users for 76-100 kWh bin (GF) 

Coefficients (76 – 100 kWh) 

Predictors Estimate Std. Error 

ar1 0.9426 0.0257 

ma1 -0.8116 0.0403 

owners 0.4988 0.0533 

autumn -0.0267 0.0452 

spring 0.0257 0.057 

summer -0.0048 0.0474 

mon -0.0349 0.0265 

tue -0.0043 0.0267 

wed -0.0497 0.0268 

thu -0.0163 0.0269 

fri 0.0368 0.0268 

sat 0.0057 0.0266 

 

 
Table 62: Performance comparison of models to predict users (GF) 

Models (Bin-wise) MAE MAPE 

26-50 kWh 4.47 19.74 

51-75 kWh 1.99 31.13 

76-100 kWh 1.2 47.19 
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2. 𝒅𝒆𝒎𝒂𝒏𝒅 (𝟐𝟔 − 𝟓𝟎 𝒌𝑾𝒉) = 𝒇(𝒕𝒊𝒎𝒆′) + 𝒆𝒓𝒓𝒐𝒓 

𝒅𝒆𝒎𝒂𝒏𝒅 (𝟓𝟏 − 𝟕𝟓 𝒌𝑾𝒉) = 𝒇(𝒕𝒓𝒂𝒏𝒔′) + 𝒆𝒓𝒓𝒐𝒓 
𝒅𝒆𝒎𝒂𝒏𝒅 (𝟕𝟔 − 𝟏𝟎𝟎 𝒌𝑾𝒉) = 𝒇(𝒕𝒓𝒂𝒏𝒔′) + 𝒆𝒓𝒓𝒐𝒓 
 

Table 63: Coefficients of regression with ARIMA model to predict demand for 26-50 kWh bin (GF) 

Coefficients (26 – 50 kWh) 

Predictors Estimate Std. Error 

ma1 -0.924 0.0223 

sar1 0.1222 0.044 

sar2 0.096 0.0423 

time’ 0.7987 0.0224 

 

 
Table 64: Coefficients of regression with ARIMA model to predict demand for 51-75 kWh bin (GF) 

Coefficients (51 – 75 kWh) 

Predictors Estimate Std. Error 

ar1 -0.874 0.2011 

ma1 -0.0854 0.2375 

ma2 -0.7169 0.2318 

sar1 0.0966 0.0539 

trans’ 0.9546 0.0034 

 

 
Table 65: Coefficients of regression with ARIMA model to predict demand for 76-100 kWh bin (GF) 

Coefficients (76 - 100 kWh) 

Predictors Estimate Std. Error 

ar1 -0.3912 0.0252 

ar2 -0.9552 0.0312 

ma1 -0.3669 0.0359 

ma2 0.5692 0.0395 

ma3 -0.7956 0.0355 

trans’ 0.9749 0.0028 
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Table 66: Performance comparison of models to predict demand (GF) 

Models (Bin-wise) MAE MAPE 

26-50 kWh 167.73 19.52 

51-75 kWh 192.39 34.00 

76-100 kWh 164.44 57.94 

 

 

3. 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 (𝟐𝟔 − 𝟓𝟎 𝒌𝑾𝒉) = 𝒇(𝒅𝒆𝒎𝒂𝒏𝒅′) + 𝒆𝒓𝒓𝒐𝒓 

𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 (𝟓𝟏 − 𝟕𝟓 𝒌𝑾𝒉) = 𝒇(𝒕𝒓𝒂𝒏𝒔′) + 𝒆𝒓𝒓𝒐𝒓 
𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 (𝟕𝟔 − 𝟏𝟎𝟎 𝒌𝑾𝒉) = 𝒇(𝒕𝒓𝒂𝒏𝒔′) + 𝒆𝒓𝒓𝒐𝒓 
 

Table 67: Coefficients of regression with ARIMA model to predict consumption for 26-50 kWh bin (GF) 

Coefficients (26 – 50 kWh) 

Predictors Estimate Std. Error 

ar1 -0.41 0.2543 

ma1 0.5223 0.2369 

sar1 0.9307 0.0311 

sma1 -0.8154 0.0537 

sma2 0.0123 0.0465 

intercept -0.0152 0.0082 

demand’ 0.9454 0.0169 

 

 
Table 68: Coefficients of regression with ARIMA model to predict consumption for 51-75 kWh bin (GF) 

Coefficients (51 – 75 kWh) 

Predictors Estimate Std. Error 

ma1 -0.9566 0.9096 

trans’ 0.0124 0.0259 
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Table 69: Coefficients of regression with ARIMA model to predict consumption for 76-100 kWh bin (GF) 

Coefficients (76 – 100 kWh) 

Predictors Estimate Std. Error 

ma1 -0.9233 0.0185 

sar1 -0.6682 0.0947 

sar2 0.2338 0.0484 

sma1 0.856 0.0872 

trans’ 0.7943 0.0368 

 

 
Table 70: Performance comparison of models to predict consumption (GF) 

Models (Bin-wise) MAE MAPE 

26-50 kWh 87.1 22.89 

51-75 kWh 66.06 43.01 

76-100 kWh 40.17 110.77 
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Regression (with ARIMA Errors) with Distributed Lags 
 

1. 𝒖𝒔𝒆𝒓𝒔 = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) + 𝒆𝒓𝒓𝒐𝒓 

 

Table 71: Coefficients of regression with distributed lag model to predict users for 26-50 kWh bin (GF) 

Coefficients (26 – 50 kWh) 

Predictors Estimate Std. Error 

ar1 0.9546 0.0205 

ma1 -0.7417 0.0436 

autumn -0.0121 0.0446 

spring 0.02 0.0366 

summer -0.0419 0.0395 

mon 0.0185 0.0137 

tue 0.0375 0.0139 

wed 0.0366 0.014 

thu 0.042 0.014 

fri 0.0452 0.0139 

sat -0.0266 0.0137 

owners 0.4591 0.7047 

owners-lag1 0.4699 1.0977 

owners-lag2 0.5404 1.1085 

owners-lag3 -2.0542 1.1038 

owners-lag4 2.4823 1.1201 

owners-lag5 -1.515 1.1198 

owners-lag6 0.2896 0.7309 
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Table 72: Coefficients of regression with distributed lag model to predict users for 51-75 kWh bin (GF) 

Coefficients (51 – 75 kWh) 

Predictors Estimate Std. Error 

ma1 0.2312 0.0417 

ma2 0.1861 0.0433 

ma3 0.1965 0.0424 

ma4 0.1339 0.0384 

ma5 0.196 0.0433 

autumn -0.1024 0.0259 

spring 0.0232 0.0232 

summer -0.0248 0.0233 

mon -0.0008 0.0162 

tue -0.0041 0.015 

wed 0.0343 0.0155 

thu 0.0585 0.0155 

fri 0.0386 0.015 

sat -0.03 0.0162 

owners 1.3671 0.7141 

owners-lag1 -0.2650 1.0204 

owners-lag2 -0.8563 1.0437 

owners-lag3 -1.2728 1.0355 

owners-lag4 2.9522 1.0429 

owners-lag5 -0.5884 1.0479 

owners-lag6 -0.7574 0.741 
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Table 73: Coefficients of regression with distributed lag model to predict users for 76-100 kWh bin (GF) 

Coefficients (76 – 100 kWh) 

Predictors Estimate Std. Error 

ar1 0.9413 0.0262 

ma1 -0.8047 0.042 

autumn -0.0214 0.0459 

spring 0.0329 0.0575 

summer 0.0015 0.0475 

mon -0.0407 0.0264 

tue -0.0042 0.0264 

wed -0.0481 0.0266 

thu -0.0164 0.0267 

fri 0.0357 0.0266 

sat 0.0043 0.0264 

owners 1.7716 0.4966 

owners-lag1 -1.2836 0.4979 

 

 
Table 74: Performance comparison of models to predict users (GF) 

Models (Bin-wise) MAE MAPE 

26-50 kWh 4.44 19.63 

51-75 kWh 1.96 30.15 

76-100 kWh 1.14 42.72 
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2. 𝒅𝒆𝒎𝒂𝒏𝒅 (𝟐𝟔 − 𝟓𝟎 𝒌𝑾𝒉) = 𝒇(𝒕𝒊𝒎𝒆′) + 𝒆𝒓𝒓𝒐𝒓 

𝒅𝒆𝒎𝒂𝒏𝒅 (𝟓𝟏 − 𝟕𝟓 𝒌𝑾𝒉) = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) + 𝒆𝒓𝒓𝒐𝒓 
𝒅𝒆𝒎𝒂𝒏𝒅 (𝟕𝟔 − 𝟏𝟎𝟎 𝒌𝑾𝒉) = 𝒇(𝒐𝒘𝒏𝒆𝒓𝒔, 𝒅𝒂𝒚, 𝒔𝒆𝒂𝒔𝒐𝒏) + 𝒆𝒓𝒓𝒐𝒓 
 

Table 75: Coefficients of regression with distributed lag model to predict demand for 26-50 kWh bin (GF) 

Coefficients (26 – 50 kWh) 

Predictors Estimate Std. Error 

ar1 -0.0666 0.0608 

ar2 -0.1175 0.0537 

ar3 -0.1357 0.0507 

ar4 -0.1666 0.0504 

ma1 -0.8032 0.0506 

time’ 0.794 0.0217 

 

 
Table 76: Coefficients of regression with distributed lag model to predict demand for 51-75 kWh bin (GF) 

Coefficients (51 – 75 kWh) 

Predictors Estimate Std. Error 

ar1 0.2334 0.0413 

ar2 0.1395 0.0422 

ar3 0.1969 0.0415 

autumn -0.0753 0.0291 

spring 0.0206 0.0255 

summer -0.0232 0.026 

mon -0.0061 0.0158 

tue 0.0016 0.0162 

wed 0.0209 0.0156 

thu 0.0445 0.0156 

fri 0.031 0.0162 

sat -0.0067 0.0158 

owners 0.5235 0.0313 
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Table 77: Coefficients of regression with distributed lag model to predict demand for 76-100 kWh bin (GF) 

Coefficients (76 - 100 kWh) 

Predictors Estimate Std. Error 

ar1 0.1231 0.1491 

ar2 0.7985 0.1444 

ma1 -0.0277 0.1685 

ma2 -0.6224 0.147 

autumn -0.006 0.0409 

spring -0.0351 0.0526 

summer -0.0282 0.0454 

mon 0.0064 0.0207 

tue 0.0207 0.0202 

wed -0.0146 0.0206 

thu 0.0203 0.0207 

fri 0.0426 0.0203 

sat 0.0057 0.0207 

owners 1.0474 0.3872 

owners-lag1 -0.6693 0.3883 

 

 
Table 78: Performance comparison of models to predict demand (GF) 

Models (Bin-wise) MAE MAPE 

26-50 kWh 167.0 19.44 

51-75 kWh 193.44 33.5 

76-100 kWh 163.51 56.91 
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3. 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 = 𝒇(𝒅𝒆𝒎𝒂𝒏𝒅′) + 𝒆𝒓𝒓𝒐𝒓 

 

Table 79: Coefficients of regression with distributed lag model to predict consumption for 26-50 kWh bin (GF) 

Coefficients (26 – 50 kWh) 

Predictors Estimate Std. Error 

ar1 1.0674 0.0508 

ar2 -0.1755 0.0619 

ar3 0.001 0.0618 

ar4 0.0895 0.0449 

ma1 -0.9102 0.0308 

demand’ 0.9146 0.0162 

 

 
Table 80: Coefficients of regression with distributed lag model to predict consumption for 51-75 kWh bin (GF) 

Coefficients (51 – 75 kWh) 

Predictors Estimate Std. Error 

ma1 -0.9579 0.0122 

demand’ 0.9517 0.0271 

 

 
Table 81: Coefficients of regression with distributed lag model to predict consumption for 76-100 kWh bin (GF) 

Coefficients (76 – 100 kWh) 

Predictors Estimate Std. Error 

ma1 -0.9075 0.0187 

demand’ 0.7801 0.0385 

 

 
Table 82: Performance comparison of models to predict consumption (GF) 

Models (Bin-wise) MAE MAPE 

26-50 kWh 86.88 22.82 

51-75 kWh 66.82 42.72 

76-100 kWh 40.07 109.06 
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LSTM Networks 

 

Table 83: Performance comparison of LSTM networks (GF) 

Bin Target Predictors MAE MAPE 

26-50 kWh users owners, season, day 3.74 15.21 

26-50 kWh demand users’ 147.86 15.75 

26-50 kWh consumed owners, season, day 75.79 18.13 

51-75 kWh users owners, season, day 2.09 28.59 

51-75 kWh demand owners, season, day 65.56 36.26 

51-75 kWh consumed owners, season, day 64.34 36.9 

76-100 kWh users owners, season, day 1.36 40.43 

76-100 kWh demand time’ 178.26 48.49 

76-100 kWh consumed owners, season, day 42.65 93.68 
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Appendix D 
 

R-Codes 
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