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This paper proposes a new classification method for spatial data by adjusting
prior class probabilities according to local spatial patterns. First, the proposed
method uses a classical statistical classifier to model training data. Second, the
prior class probabilities are estimated according to the local spatial pattern
and the classifier for each unseen object is adapted using the estimated prior
probability. Finally, each unseen object is classified using its adapted classifier.
Because the new method can be coupled with both generative and discriminant
statistical classifiers, it performs generally more accurately than other methods
for a variety of different spatial datasets. Experimental results show that this
method has a lower prediction error than statistical classifiers that take no
spatial information into account. Moreover, in the experiments, the new method
also outperforms spatial auto-logistic regression and Markov random field-based
methods when an appropriate estimate of local prior class distribution is used.
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1. Introduction

As modern Earth observation devices and programmes have been developed, the classi-
fication of spatial data has been increasingly used to discover knowledge from very large
datasets. For example, periodic changes in the distribution of different types of vege-
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tation can be obtained through the classification of satellite sensor image time-series.
Furthermore, classification results are information sources for further interpretation of
related geographical phenomena. For example, land cover type has been used to study
the urban heat island phenomenon (Gartland 2010), analyze the run-off dynamics of
river basins (Khare et al. 2015) and plan biosphere reserves (Evans 2017). Accordingly,
classification techniques have attracted much attention.
Statistical classifiers are one of the most popular types of classifier in the geosciences.

Various kinds of statistical classifiers exist, such as the naive Bayesian, maximum likeli-
hood, k-nearest neighbor, support vector machine and logistic/softmax regression classi-
fiers (Duda et al. 2001, Bishop 2006, Murphy 2012). These classifiers model the feature
space of geographical objects from different perspectives. Generally, some classifiers try
to find the best hyperplane between classes directly in the feature space, while others
attempt to model the distribution of feature values for different classes. No matter which
classifier is used, the distribution of different categories in space is generally neglected
during modelling and reasoning.
It is important to model spatial patterns as well as the characteristics of other features

when modelling geographical phenomena and processes. Geographical phenomena may
have some patterns in their distribution in space. For example, spatial auto-correlation is
a simple measurable spatial pattern. For datasets with spatial auto-correlation, ignoring
spatial auto-correlation may lead to spatially auto-correlated regression residuals (Anselin
1988, Haining 1990). Meanwhile, compared with the situation that sampling units are
independent from each other, fewer samples may be needed to infer the parameters; for
example, the mean of the population given the same allowed error when using spatial
sampling methods (Goovaerts 1997, Wang et al. 2002).
Undoubtedly, the modelling of spatial patterns is a necessary step in the classification

of spatial data. There have been many related studies about incorporating spatial pattern
information into the classification process. These studies can be divided roughly into three
types. The first type creates new features that consider spatial pattern information (Ding
et al. 2009, Vainer et al. 2009), for example, the kernel-based image smoothing method.
These methods are not classification methods. The features created can be coupled with
any classifiers to increase classification accuracy. The disadvantage of this type of method
is that spatial feature creation is often application-specific and time-consuming (Jiang and
Shekhar 2017). The second type uses data fusing technologies, such as consensus theory,
Dempster–Shafer theory, Bayes updating and many other fusion techniques (Strebelle
2000, Ge and Bai 2010, 2011, Zhang and Prasad 2016, Joshi et al. 2016). However, data
fusion methods will inevitably introduce new assumptions about the data and some new
parameters. These will complicate the modelling process and introduce some additional
unnecessary uncertainties.
The final approach is to develop new statistical classifiers. Currently, there are two

major approaches for incorporating spatial patterns into statistical classification models:
Markov random field (MRF) models (Jeon and Landgrebe 1992, Solberg et al. 1996) and
spatial auto-regressive (SAR) models (Griffith 1989). These two models have been used
widely in classification and have attracted the attention of many researchers (Ni et al.
2014, Xia et al. 2015, Yu et al. 2016, White et al. 2017, Hughes et al. 2011, Chun and
Griffith 2013, Liu et al. 2017a,b). However, an MRF needs a large amount of comput-
ing resource, especially when high-order neighbors of objects are involved in finding the
minimum value of the energy function, although this method has been shown to be effec-
tive (Austad and Tjelmeland 2017). SAR needs less computational resource than MRF
to estimate parameters (Sherman et al. 2006, Paciorek 2007). However, it requires the
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data to match many restrictive assumptions about the probability distributions of fea-
ture values as well as the class boundaries (Shekhar et al. 2002). Accordingly, SAR alone
is insufficient to classify all kinds of spatial datasets, which may have different specific
feature space distributions and class boundary characteristics. Some studies have tried
to incorporate spatial pattern information into other classifiers. For example, Goovaerts
(2002) used indicator kriging to estimate the prior probability for the maximum likelihood
classifier to increase the classification accuracy of hyperspectral data.
Besides the above mentioned classifiers, there are many other statistical classifiers in the

field of machine learning. These classifiers model the data from a variety of perspectives
using different assumptions. For spatial data that do not match some of the assumptions of
MRF and SAR, these statistical classifiers provide alternative approaches. However, these
classifiers lack appropriate modelling of spatial patterns. Accordingly, it is imperative to
develop these statistical classifiers by incorporating spatial patterns into the framework
of statistical classification.
The aim of this paper was to develop a unified framework for traditional statistical

classifiers to introduce spatial pattern information into the modelling process for spatial
data. This framework first uses sample data to train traditional classifiers. Secondly, it
introduces the assumption that the prior probabilities of different classes are the marginal
probabilities of different classes in the sample data. Finally, it modifies the prediction
model by replacing the prior distribution of different classes with the local prior class
probabilities for each unseen object. In the experiment section, we compare the proposed
framework with traditional statistical classifiers. Moreover, the SAR and MRF models
are compared with the proposed framework. The comparison shows that the proposed
framework has an advantage over MRF and SAR when the classes have statistically
significant spatial association and the local prior distribution of different categories is
accurately estimated.
The rest of the paper first reviews the basis of statistical classifier systems. Next, a

new classification algorithm for spatial data is proposed through incorporating spatial
pattern information using a unified framework. Finally, a series of experiments on four
real-life spatial datasets is performed and the proposed algorithm is compared with other
commonly used classifiers to validate the effectiveness of the proposed method. The final
section concludes the paper.

2. Background

We take the classification of a remotely sensed image as an example to illustrate a typical
scenario. Assuming there is a remotely sensed image which has N pixels and J bands,
each pixel of the remotely sensed image can be represented using its values on all J bands.
A pixel u can be represented using a feature vector ~x(u) = [x1(u), x2(u), · · · , xJ(u)]T ,
in which xi(u) is the gray value of band 1 ≤ i ≤ J . Generally, some pixels are used for
training classifiers. The categories of these pixels have already been assigned to one of
K land cover types (categories) {y1, y2, · · · yK}. The remaining pixels are unseen objects
to be classified. These pixels are described only using a feature vector and have no pre-
assigned categories.
The aim of classifying a remotely sensed image is to infer which land cover type should

be assigned to each unseen pixel according to its feature vector. For a statistical classifier,
the purpose is to find the most probable land cover type for pixel u, that is, c(u) =
argmax{P (yi|~x(u))|i ∈ 1 · · ·K}, where c(u) is the estimated category of u and P (yi|~x(u))
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is the probability of observing land cover type yi given feature vector ~x(u). Obviously,
estimating P (yi|~x(u)) is the key issue in designing a statistical classifier. In terms of
the approach to P (yi|~x(u)) estimation, statistical classification can be divided into two
types (Bishop 2006). In the following, ~x(u) is simplified to ~x.
The first type of statistical classifier is called a generative model. For each land cover

type yi, these models first learn P (~x|yi) and then infer P (yi|~x) using Bayes’ theorem with
the help of the prior probability P (yi), i.e.,

P (yi|~x) =
P (~x|yi)P (yi)∑K
j=1 P (~x|yj)P (yj)

(1)

Representative generative models for classification include the naive Bayesian classifier,
maximum likelihood classifier, and hidden Markov model.
Another type of statistical classifier is called the discriminant model. A discriminant

model learns P (yi|~x) directly from the sample dataset and then subsequently uses this
distribution to make optimal decisions. Generally, it first defines a parametric model
P (yi|~x,θ) in terms of the characteristics of the data and some necessary assumptions.
Then, it estimates parameter θ using statistical parameter estimation methods. Finally,
given any input feature vector, it can generate the corresponding yi (sometimes with the
help of a sigmoid or softmax function). Representative discriminant models for classifica-
tion include logistic regression, neural networks, k-nearest neighbor, and relevance vector
machine classifiers.
For both models, the relation between P (~x|yi) and P (yi|~x) is

P (~x|yi) =
P (~x)× P (yi|~x)

P (yi)
, (2)

where a reasonable assumption of P (yi) is the marginal probability of yi in the sample data
when no prior knowledge of the probability distribution of different classes is given (Duda
et al. 2001).

3. Method

The lack of consideration of spatial patterns in statistical classification decreases pre-
diction accuracy. The traditional statistical classifier uses only the feature set, which is
represented using ~x = [x1, x2, · · · , xJ ]T , of a geographical object to learn the conditional
probability P (yi|~x) of observing category yi given ~x. When the model is used to predict
unseen objects, the same model is used without considering the locations of the target
objects. For example, the maximum likelihood classifier (MLC) can be used to classify a
remotely sensed image. It generally assumes that the bands of the remotely sensed im-
age have a multi-Gaussian distribution. Then, MLC learns the parameters from sample
data and constructs the posterior distribution P (yi|~x). Finally, each un-labelled pixel is
classified to the category that has the maximum posterior probability. The whole clas-
sification process neglects completely the spatial pattern that prevails in the remotely
sensed imagery.
However, according to the first law of geography (Tobler 1970), objects within an area

where some category prevails are more likely to belong to that category than another
category. For example, two pixels a and b have the same spectral values. a lies in an area
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full of grasses and b is located in forest. a is more likely to belong to grassland and b is
more likely to belong to forest. As different categories of geographical objects are always
unevenly distributed in space, traditional statistical classifiers inevitably underestimate
the probability of P (yi|~x) in the region in which yi prevails and overestimate the prob-
ability of P (yi|~x) in the region where yi is rare. This is the over-generalization of the
classifier to unseen objects in the regions that are not suitable for the trained classier,
which leads to a lower classification accuracy than expected.
More specifically, Figure 1 presents an example of the above task. When all objects of

the study area are used as training data, the decision plane corresponds to the black line.
However, if only the left (right) part of the study area is used to train a classifier, the red
(blue) line is the appropriate decision plane. Obviously, when classifying a new object in
the left (right) part of the study area, the red (blue) decision plane is more appropriate
than the black one.

[Figure 1 about here.]

To overcome the above deficiency, a natural idea is to adjust the learned probabilistic
model P (yi|~x) through modelling the local spatial pattern for each unseen object. We,
thus, propose a new local pattern-based prior tuning statistical classifier (LPPT), which
is illustrated in Figure 2. This classifier proceeds as follows.

[Figure 2 about here.]

First, the probabilistic model P (yi|~x) can be learned from the sample data. The training
process is the same as that of the selected traditional statistical classifier. One should
choose the classifier that is suitable for the application need. The selected traditional
statistical classifier is called the original classifier. For example, an MLC model can be
learned from the sample data of a remotely sensed image.
Second, local patterns are used to infer the prior probability of different categories for

each unseen object. Generally, the local pattern of the unseen object is modelled using
its neighboring geographical objects. Let u denote an unseen object, for example, a pixel
with no land cover type in a remotely sensed image, and N (u) be the neighbor of u,
for example pixel, classifications in the local neighborhood of u. Information in N (u)
can be used to estimate the probability with which u belongs to yi. The probability of a
given category yi to which u belongs in terms of the neighboring objects is referred to as
PN (u)(yi).
There are many different approaches to calculate the neighbors of a geographical object

u. One approach is to use the first to kth order adjacency neighbors. The first order neigh-
bors can be constructed using any connectivity algorithm (Fortin and Dale 2005), and
the kth order neighbors can be established using the concept of relation composition (Bai
et al. 2016). Another possible approach is to select objects within a given distance to u.
For simplicity, this distance is denoted as the neighboring distance. Users can choose the
most suitable method in terms of applications and the characteristics of the underlying
geographical phenomena. For example, when the area of different objects differs greatly,
the latter approach may be more suitable. In all the following experiments, one object is
another object’s neighbor if its distance is less than the predefined neighboring distance.
The simplest way of estimating PN (u)(yi) is to use the proportions of the categories of

neighboring geographical objects to estimate the prior class probabilities for this object,
if P (yi) in the neighborhood of u is stationary. This is called the local observed frequency
(LOF) estimator. All the neighboring objects of u are used as samples. Meanwhile, the
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neighbors labelled yi form a set Nyi
(u). Then

PN (u)(yi) =
|Nyi

(u)|
|N (u)|

, (3)

where |Nyi
(u)| is the number of neighboring objects of category yi and |N (u)| is the

number of neighboring objects in the training data. Taking a remotely sensed image as
an example, each pixel’s PN (u)(yi) could be learned from its neighboring training pixels.
The percentage of each category of all neighboring training pixels can be used as the prior
class distribution.
Alternative approaches exist for modelling spatial patterns under the assumption of

stationarity. For example, indicator kriging can be used to model the prior probabilities
of different categories for each unseen object. When the geographical phenomenon or
process has complex spatial structures, multiple point statistics (e.g., SNESIM), can be
used to model the prior probabilities of different categories.
Finally, PN (u)(yi) is used to replace the marginal probability P (yi) in Equation (1),

that is,

PN (u)(yi|~x) =
P (~x|yi)PN (u)(yi)∑K
j=1 P (~x|yj)PN (u)(yj)

(4)

to calculate the final adjusted PN (u)(yi|~x) for u. From the decision plane P (yi|~x) learned
by the original statistical classifier, P (~x|yi) = P (~x) × P (yi|~x)/P (yi) (see Equation (2)).
Accordingly,

P (~x|yi)PN (u)(yi)∑K
j=1 P (~x|yj)PN (u)(yj)

=
P (~x)× P (yi|~x)/P (yi)× PN (u)(yi)∑K
j=1 P (~x)× P (yi|~x)/P (yj)× PN (u)(yj)

=
P (yi|~x)PN (u)(yi)/P (yi)∑K
j=1 P (yi|~x)/P (yj)PN (u)(yj)

For simplicity,

PN (u)(yi|~x) ∝
P (yi|~x)
P (yi)

× PN (u)(yi). (5)

Replacing of the prior distribution with a local one is an effective and commonly used
strategy for measuring local spatial association, for example, as used in the Local Indica-
tors of Spatial Association (LISA) (Anselin 1995) and the Local Indicators of Categorical
Data (LICD) (Boots 2003) approaches. In both methods, spatial association is measured
in the neighborhoods of each geographical object.
Based on the general procedure presented, a new classification algorithm based on the

LOF estimator (see Equation (3)) was developed. The algorithm is divided into two stages,
training and classification. The training stage starts with the selection of the appropriate
traditional statistical classifier. Next, the traditional classifier is trained for spatial data
D = {< ~x(u), y(u) >: u = 1, 2, · · · , N}, where ~x(u) and y(u) are the feature vector and
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category of the ith object in the training data, respectively. The traditional classification
model learned from the training data is {P (yi|~x) : i = 1, 2, · · · ,K} .
The classification stage involves three main steps: finding the neighboring objects N (u)

of the unseen object u, estimating PN (u)(yi) in terms of the LOF estimator, and calcu-
lating PN (u)(yi|~x) in terms of Equation (5). During the estimation of PN (u)(yi), some
unseen objects may have very few or even no neighboring objects with decision values.
We add a smoothing factor to Equation (3) to solve this issue:

PN (u)(yi) =
|Nyi

(u)|+ P (yi)

|N (u)|+ 1
. (6)

When there are no neighboring objects with decision values, PN (u)(yi) falls back to the
marginal probability of category yi.
Compared with traditional statistical classifiers, additional time is needed to estimate

PN (u)(yi). Generally, the number of neighboring objects is very small compared to the to-
tal number of objects, hence the time spent in counting the number of different categories
is short.
When the classes have statistically significant spatial associations, the prior probabili-

ties of different categories estimated by the LOF reflect the real situation more accurately
than the marginal probabilities for most unseen objects. As illustrated in the experiment
in Section 5.1.1.2, the more accurate prior gave the opportunity to generate more accu-
rate classifiers. More accurate classifiers generally produce more accurate classification
results. Accordingly, the successful application of LPPT relies on the existence of statisti-
cally significant spatial associations in the classes and the correct estimation of the local
prior distribution of different categories for unseen objects.

4. Experiments

A series of experiments on simulated datasets and three real datasets are presented in this
section. The first real dataset consisted of a Landsat Thematic Mapper (TM) remotely
sensed image and a Gaofen-2 remotely sensed image. The second real dataset concerned
neural tube birth defects (NTD) in Heshun, Shanxi, China. The third real dataset focused
on poverty-stricken villages in Yunyang, Hubei, China. The three real-life datasets were
collected to serve different objectives. The first real dataset showed that LPPT was ef-
fective for multi-category cases and can increase the classification accuracy greatly when
there are strong spatial associations in the classes. The second real dataset was used to
evaluate LPPT when there are statistically significant, but relatively weak spatial asso-
ciations. The third real dataset was used as an example to analyze the performance of
LPPT when there was no spatial auto-correlation.

4.1. Classification of simulated data

Different simulated datasets were used to evaluate the performance of LPPT under differ-
ent scenarios. First, simple two-category simulated data were used to show the effective-
ness of the proposed method. Figure 3(a) shows a simulated two-category spatial dataset.
This dataset was simulated using sequential indicator simulation (SIS). The proportions
of the “Black” and “White” categories were both set to 0.5. Both x and y axes ranged
from 0 to 50. The exponential variogram model was used, and the sill and range were set
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to 1 and 7 units for the simulation. For simplicity, each object had only one feature. The
feature values that corresponded to the “Black” and “White” categories obeyed Gaussian
distributions N(3, 1) and N(4, 1), respectively.

[Figure 3 about here.]

Furthermore, simulated datasets with multiple categories and attributes were gener-
ated to analyze the performance of LPPT under different scenarios. Figure 3(b) shows
a simulated six-category dataset. SIS was used to simulate multiple category datasets.
Similarly, the proportions of different categories were all set to 1/K, where K is the
number of categories. Both x and y axes ranged from 0 to 50. The exponential variogram
model was used, and the sill and range were set to 1 and 7 units for each category during
the simulation. The values of different features that corresponded to different categories
obeyed multi-Gaussian distributions. Sensitivity analysis was conducted for the neigh-
boring distance and the number of categories. Finally, the LPPT method was compared
with other classifiers on 1,000 simulated datasets with a random number of categories
(from two to six) and random number of attributes (from one to six).

4.2. Recognition of vegetation types from remotely sensed imagery

This dataset was used to illustrate the typical scenario of applying LPPT: there were
multiple categories in the study area and the classes had statistically significant spatial
associations. Two remotely sensed images were used for classification to further validate
the effectiveness of the proposed classification model. The first image was clipped from the
Landsat TM image with product id LT05_L1TP_125034_20100923_20161013_01_T1.
The study area was located in the south-east of Taiyuan, Shanxi Province. The TM
image size was 1, 000 × 1, 000 pixels. The image contained seven spectral bands. The
spatial resolution of band six was 120 m. The spatial resolution of all other bands
was 30 m. The upper-left latitude and longitude coordinates of this image were
113◦19′32.41′′E and 37◦59′43.34′′N , and its lower-right latitude and longitude coordi-
nates were 113◦39′25.96′′E and 37◦43′8.49′′N , respectively. Figure 4(a) shows the 5, 4,
3-band pseudo-colour composite image. The second remotely sensed image used was the
Gaofen-2 image with product id GF2_PMS2__L1A0001708261-MSS2. The image size
was 7299× 6999 pixels and it contained four spectral bands with a spatial resolution of 4
m. This image and its label is available at http://captain.whu.edu.cn/GID/. Please refer
to Tong et al. (2020) for a detailed description of the Gaofen-2 image. Figure 4(b) shows
the red, green, blue color composite image of the Gaofen-2 image.

[Figure 4 about here.]

Both the TM image and Gaofen-2 image were segmented using the multi-resolution
segmentation function of eCognition 8.9 before classification. Both images were classi-
fied following the object based image analysis framework. During the segmentation, “the
weight of color criterium” was set to 0.5, and “the maximum standard deviation of the
homogeneity in regard to the weighted image layers” was set to five for the TM image
and 200 for the Gaofen-2 image. The segmentation result of the TM image is shown in
Figure 4(a). Each object of the segmentation result of the TM image and Gaofen-2 image
had seven features and four features, respectively. Each feature corresponded to a spectral
band and its value was the algorithmic mean of all the pixels in the object. For the TM
image, the land cover type of each object was obtained from the Global Land Cover Map
(GLOBCOVER) 2009 (Bicheron et al. 2008), which had a spatial resolution of 300 m.
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Each object in the segmentation result intersected with the pixels of the GLOBCOVER
2009 map. The category with the largest area was used as the object’s category. For the
Gaofen-2 image, the land cover types were labeled by Tong et al. (2020).
When these category values were assumed as the true categories of each object, new un-

certainties were introduced. For example, the intersection between the segmented result
and the pixels introduced polygon overlay uncertainties (Smith and Campbell 1989) in the
result and the GLOBCOVER 2009 map also contained system or random errors (Bicheron
et al. 2008). These uncertainties led to bias in the estimation of the parameters of the
classifiers. If the classification results were used in other tasks, these uncertainties would
influence the consequent analysis. Accordingly, it is necessary to provide uncertainty anal-
ysis in real life applications using, for example, uncertainty propagation methods (Rajabi
2019, Chen et al. 2019). To alleviate any such influence on the evaluation of LPPT, the
training data and validation data both used the assumed true categories.
Although, there were 10 types of vegetation in the TM image, some vegetation types had

very few instances. Accordingly, six categories with more than 100 instances were selected
to perform classification. All the other four categories were merged into one category. In
the following, “1” to “7” were used to represent the “Rainfed croplands,” “Others,” the
“Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland, forest) (20-50%),” the
“Closed (>40%) needleleaved evergreen forest (>5m),” the “Closed to open (>15%) mixed
broadleaved and needleleaved forest (>5m),” the “Mosaic Forest / Shrubland (50-70%) /
Grassland (20-50%),” and “Artificial surfaces and associated areas (urban areas >50%)”
classes, respectively. The Gaofen-2 image had five types of vegetation. In the following “a”
to “e” were used to represent the “Built-up”, “Others”, “Farmland”, “Forest”, and “Meadow”
classes, respectively. Figure 5 shows the distribution of different vegetation types. Table 1
and 2 shows the degree of spatial association calculated using NCP1 (Bai et al. 2016) for
different neighboring distances.

[Figure 5 about here.]

[Table 1 about here.]

[Table 2 about here.]

The GLOBCOVER map had a coarse spatial resolution, such that some fine resolution
details of the patterns of different categories might be missed, which might increase
the degree of spatial association for target categories in real life applications. In our
experiment, this dataset had a higher degree of overall spatial association than the other
two real-life datasets.
The main purpose of this dataset was to evaluate the effectiveness of LPPT in the

situation where there is strong spatial association in multiple classes. To strengthen the
multi-category and strong spatial association characteristics, some less important factors
for the validation of LPPT were ignored. This is instructive for exploring the performance
of LPPT in such situations.

4.3. Prediction of NTD occurrences

This dataset was used to test the performance of LPPT when there are statistically sig-
nificant, but relatively weak spatial associations in classes. NTD data have been collected

1NCP > 0, NCP = 0 and NCP < 0 indicate positive, no and negative spatial associations, respectively. The
larger the NCP is, the stronger the spatial association.
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over several years and investigated in many previous studies (Wu et al. 2004, Liao et al.
2009a,b, Wang et al. 2010, Bai et al. 2010, 2016). In the study area, there were 322 villages
and one town. The locations of the 322 villages were determined using a geographical in-
formation system. The data were collected by a field survey. This research project was
approved by the Ministry of Science and Technology of the People’s Republic of China.
The study used only local statistical data. There were no experimental or ethical issues.
As there were no boundaries defined for the villages, they were drawn for each village
using Voronoi polygons (see Figure 6). Meanwhile, the villages that did not have new
births from 1998 to 2003 were not included in the figure and the experiment.

[Figure 6 about here.]

Each village had 14 conditional attributes and one decision attribute. Nine continuous-
valued attributes were used in the experiment, including gross domestic product (GDP)
per capita, fertilizer used in the area, access to a doctor, production of fruit, production
of vegetables, elevation, distance to rivers, distance to roads, and distance to fault lines.
All the maps of the attributes can be found in Wang et al. (2010) and Bai et al. (2010).
A detailed description of the NTD data can be found in Wang et al. (2010). The decision
attribute was whether there were NTD instances in a village. If there were NTD instances,
then the village was labeled as “Yes”; otherwise, the village was labeled “No”. Table 3 shows
the degree of spatial association calculated using NCP for different neighboring distances.

[Table 3 about here.]

4.4. Identification of poverty in villages

This dataset was used to show the effectiveness of LPPT when there are no statistically
significant spatial associations in classes. Poverty data in the village level for Yunyang,
Hubei, China were collected using a local government field survey. The poverty headcount
was identified using the income poverty line of China (2736 Chinese yuan in 2013). If the
proportion of poor people in a village was larger than 2%, then the village was considered
a poverty-stricken village (Hubei provincial government 2018). There were 85 poverty-
stricken villages in the study area which consisted of 340 villages. The locations of these
340 villages were determined using a geographical information system (see Figure 7).

[Figure 7 about here.]

Each village had six conditional attributes and one decision attribute, including the
population of working ages, the proportion of migrant workers, the number of partici-
pants in the new rural cooperative medical system, cement road mileage, and the number
of households with broadcast and television fiber optic cables. The decision attribute
was whether the village is in poverty. Poverty-stricken villages were labelled as “Yes”;
otherwise, the village was labelled “No”. Table 4 shows the degree of spatial association
calculated using NCP for different neighboring distances.

[Table 4 about here.]

4.5. Classifier comparison process

For each dataset, the comparison between the LPPT-based and other methods was per-
formed following the process shown in Figure 8. First, the dataset was divided into train-
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ing and validation data using simple random sampling. Second, different classifiers were
trained using the training data. Next, the validation data were classified using all trained
classifiers. Finally, different accuracy assessment indices were computed for all classifica-
tion results to compare the effectiveness of the different classifiers. In the experiments,
the entire process was repeated 1,000 times.

[Figure 8 about here.]

In the sampling step, some geographical objects were selected randomly as training
data and all the remaining objects were used as validation data. When predicting the
occurrence of NTD instances and identifying poverty-stricken villages, half the villages
were drawn randomly as training data to feed sufficient samples into the classifier. Re-
garding recognizing vegetation types and experiments on simulated datasets, there were
more than 2900 objects, and 10% of objects were drawn randomly as training data.
During the training stage, four traditional statistical classifiers were selected as the

original classifiers and were trained using the training data: naive Bayes (NB), k-nearest
neighbors (kNN), relevance vector machines (RVM) and logistic regression (LR). In these
classifiers, NB is a generative model-based classifier and the other three classifiers are
discriminant model-based classifiers. The scikit-learn (Pedregosa et al. 2011) and scikit-
rvm (Ritchie 2017) packages in Python were used to implement these algorithms. In
the NB classifier, the Gaussian distribution was used to model each attribute. The kNN
algorithm used five nearest neighbors. The pseudo-random number generator seed of LR
was set to 42. All other parameters of these algorithms were set to their default values.
Additionally, two spatial classification models, SAR and the model which incorporated

neighboring object features, were trained using the training data. The SAR was solved
using the pseudo-likelihood method (Sherman et al. 2006) and was also implemented in
Python. The second approach, NeighFea for simplicity, included 10 neighboring object
feature values in the current pixel’s feature vector for classification. The training and clas-
sification steps were the same as those of the classical statistical classifiers. The NeighFea
models that corresponded to the above four classical statistical classifiers were denoted
by NeighFea_NB, NeighFea_kNN, NeighFea_RVM, and NeighFea_LR.
In the classification step, only the validation data were used to assess classification ac-

curacy. The classical statistical classifier, SAR, and NeighFea models were used directly to
classify the validation data. Meanwhile, the local prior was calculated for each geograph-
ical object using neighboring objects in the training data to update the corresponding
original classifiers. The LPPT-based methods are also implemented using Python. All four
classical statistical classifiers were coupled with LPPT, and the corresponding classifiers
were denoted by NE_NB, NE_kNN, NE_RVM, and NE_LR.
The comparison also used MRF-based classifiers (Solberg et al. 1996). The difference

between the four MRF-based models used was their energy functions. All the energy
functions contained two parts: a spatial contextual term Esp, and a class-conditional term
Edata. Esp was modelled in the same manner used in (Solberg et al. 1996). Edata was gener-
ally modelled using ln(P (~x|yi)). Different traditional statistical classifiers learned different
P (~x|yi), and generated four different Edata models. Corresponding to the four traditional
statistical classifiers used, four MRF models, MRF_NB, MRF_kNN, MRF_RVM, and
MRF_LR, were used. The weights of Edata and Esp were both set to one. The iterated
conditional model (ICM) algorithm was used to determine the local minimum energy.
Details of the algorithm can be found in (Solberg et al. 1996).
Two methods were used to evaluate the classification accuracy. Confusion matrices (Co-

hen 1960, Powers 2011) are commonly used to evaluate classifications. Three indices from
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the confusion matrix were selected to perform the accuracy assessment. The overall ac-
curacy refers to the proportion of correctly classified objects in the test data. For each
category, the precision is the ratio of the number of correctly classified objects to the
number of all the objects that are allocated to this category by the classifier. The recall
is the fraction of the objects of a category that are correctly classified. The precision and
recall have many alternative names, for example producer’s accuracy and user’s accuracy.
Although these three indices measure the classification accuracy when the discriminant

threshold of probability is 0.5, they neglect the chance level performance when different
discriminant thresholds are used (Powers 2011). The area under the curve (AUC) can
measure the uncertainty of a classifier when different discriminant thresholds are used in
classifications. Accordingly, the AUC metric (Fawcett 2006, Theodoridis and Koutroum-
bas 2009) was also selected to assess the accuracy of classification to provide a richer
comprehension of the accuracy.

5. Results and discussion

5.1. Comparison with traditional statistical classifiers

The first objective of the experiments was to test whether the proposed LPPT method
outperformed the corresponding traditional statistical classifiers. All simulated datasets
and three real life datasets were used for comparison.

5.1.1. Simulated datasets

5.1.1.1. Performance of LPPT. In the following, the performance of LPPT is com-
pared with traditional statistical classifiers from the perspective of neighboring distance,
different number of categories, different number of attributes. A total of 10% of the data
was used as training data and the NB classifier was used by default.
Figure 9(a) shows the increment of different average accuracy measures using LPPT

when neighboring distances were set from one to 10 using the simulated two category
datasets (see Figure 3). Clearly, regardless of which neighboring distance was used, all
average accuracies increased. Furthermore, when the neighboring distance increased, the
accuracy increment increased firstly and then decreased and gradually approached zero.
The Bonferroni corrected1 Student’s t-test showed that there was a statistically significant
difference between the average accuracy of LPPT and classical classifiers in all cases, when
the significance level was 0.05. The Cohen’s d of the difference was larger than 0.9 in most
cases, which meant a relatively large increase in accuracy.

[Figure 9 about here.]

The classical classifier and LPPT were also compared for simulated datasets with differ-
ent numbers of categories. Four new datasets with three to six categories were generated.
All datasets had only one feature for simplicity. The feature’s variance for each cate-
gory was set to one and the feature’s means for the six categories were set to three to
eight, respectively. Figure 9(b) shows that the average overall accuracy increased using
LPPT for datasets with different numbers of categories. Although the average overall
accuracy decreased when the number of classes increased, the accuracy increment using

1The total number of comparisons for each dataset was one plus the triple of the number of categories in the
dataset. The number of the comparison with true null hypothesis is used in the Bonferroni corrections.
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LPPT became larger when the number of categories increased. The Bonferroni corrected
Student’s t-test showed that there was a statistically significant difference between the
average accuracy of LPPT and classical classifiers in all cases, when the significance level
was 0.05. The Cohen’s d of the difference was larger than 0.9 in most cases, which meant
a relatively large increase in accuracy. Meanwhile, the greater the number of categories,
the larger the Cohen’s d.
Finally, Figure 9(c) shows that the average overall accuracy increased when the original

classifiers were NB, kNN, RVM, and LR. This was the average result of classification on
1,000 different simulated datasets. The number of categories of these datasets ranged from
two to six, and the number of features of these datasets ranged from one to six. Clearly,
regardless of which original classifier was used, the average overall accuracy increased in
most cases for most simulated datasets. The Bonferroni corrected Student’s t-test showed
that there was a statistically significant difference between the average overall accuracy
of LPPT and classical classifiers, when the significance level was 0.05. The Cohen’s d was
larger than 0.45 for the NB, kNN and LR classifiers, which meant a medium increase
in overall accuracy. The Cohen’s d for the RVM was 0.2, which meant a relatively small
increase in overall accuracy. These experiments showed that LPPT was superior to the
corresponding original classifiers and LPPT was effective in processing spatial data.

5.1.1.2. Case by case examples of LPPT. To further inspect the proposed algo-
rithm, we selected some representative correctly and incorrectly rectified classifications
of unseen objects using LPPT. Figure 10 shows five such examples. In Figure 10(a), the
unseen object was surrounded by four neighboring objects with the label “Black.” Mean-
while, P (White|x = 2.48) = 0.92 and P (Black|x = 2.48) = 0.08 using NB. When LPPT
was used, N (u) = NBlack(u) = 4 and NWhite(u) = 0. Then, PN (u)(White) = 0.69/5 and
PN (u)(Black) = 4.31/5. Therefore, PN (u)(White|x = 2.48) ∝ 0.92/0.69 ∗ 0.69/5 = 0.184
and PN (u)(Black|x = 2.48) ∝ 0.08/0.31 ∗ (4.31)/5 = 0.2225. Finally, the probability of
being classified as “White” and “Black” categories using NE_NB was approximately 0.45
and 0.55, respectively. Then, the incorrectly classified object was correctly rectified to
“Black.” In the same manner, Figure 10(b) and (c) show two correctly rectified examples.

[Figure 10 about here.]

In most cases, unseen objects were surrounded by objects of the same category. Com-
pared with classical classifiers, LPPT changed the decision hyper-plane according to the
local prior distribution of different categories for each unseen object, which, in turn,
rectified some originally misclassified objects and increased the classification accuracy.
LPPT might also incorrectly rectify the classification results of unseen objects sur-

rounded by opposite categories. Consider Figure 10(d) as an example. The unseen ob-
ject, whose true category was “White”, was surrounded by four objects with the label
“Black.” P (White|x = 1.59) = 0.90 and P (Black|x = 1.59) = 0.10 using NB. Then,
PN (u)(White|x = 1.59) ∝ 0.905/0.57 ∗ 0.57/5 = 0.18 and PN (u)(Black|x = 1.59) ∝
0.095/0.43 ∗ 4.43/5 = 0.206. Accordingly, the probabilities of being classified as “White”
and “Black” categories using NE_NB were approximately 0.47 and 0.53, respectively.
Clearly, NE_NB incorrectly classified the unseen object, whereas NB correctly classified
it. Figure 10(e) shows another failed example.
The false rectifications using LPPT shared the same characteristic; that is, the majority

of the neighbors of the unseen objects were of the opposite category to their true category.
Generally, neighboring objects tended to have the same category as the current object in
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spatial data. If most objects were surrounded by objects with different labels, then there
were negative spatial associations. LPPT is not suitable for such datasets.
Furthermore, LPPT can be adapted to give more consideration to such isolated objects

by the modification of Equation 6 to

PN (u)(yi) =
|Nyi

(u)|+ f × P (yi)

|N (u)|+ f
(7)

where f is the weight of the smoothing factor. Equation 6 is the special case of Equa-
tion 7 when f = 1. Consider Figure 10(d) as an example. If f was set to 1.2, then
PN (u)(White|x = 1.59) ∝ 0.90/0.57 ∗ (1.2 ∗ 0.57)/5.2 ≈ 0.21 and PN (u)(Black|x =
1.59) ∝ 0.10/0.43 ∗ (4 + 0.43 ∗ 1.2)/5.2 = 0.20. Then the probabilities of being classi-
fied as “White” and “Black” categories using NE_NB were approximately 0.51 and 0.49,
respectively. The classification result for the object was still “White.”
The above method is an approach to alleviate the influence of the induction bias (Hsu

2003) of LPPT, which assumes that neighboring objects tend to be of the same cate-
gories in terms of the first law of geography. Besides the above approach, there are many
candidate methods. For example, the local prior was set to the marginal probability for
objects classified to a category with high probability by the original classifier. Or f can
be set to different values for different regions in the study area. We will investigate this
issue in our future work.

5.1.2. Real datasets

5.1.2.1. Strong spatial association. In the first real dataset experiment, although
substantially fewer training data (only 10%) were used than that in the second and third
real dataset experiments, the classification accuracy increased remarkably. Figure 11(a)
shows the increment of the average overall accuracy when the neighboring distance was 2
km using different original classifiers for the TM image. The LPPT-based model’s overall
accuracy increased by at least 4% compared with the original classifiers. Furthermore,
with the exception of the average recall of “1” using NE_NB, and average recalls of
“2” and “4” using NE_kNN, which decreased slightly, the accuracies of all the other
indices increased significantly. This indicates that LPPT outperformed the corresponding
original classifiers. The Bonferroni corrected Student’s t-test showed that there was a
statistically significant difference between the average accuracy of LPPT and classical
classifiers, when the significance level was 0.05, with the exception of the average precision
of “2” of NE_NB, the average recall of “1” and “3” of NE_RVM, and the average recall
of “1” and “2” of NE_LR. The Cohen’s ds of most accuracy measures for the NB, kNN,
and LR were larger than 0.9, which indicated a relatively large increase in accuracy. For
the RVM classifier, the Cohen’s ds of almost all indices were larger than 0.2, which meant
that NE_RVM increased the classification accuracy slightly.

[Figure 11 about here.]

Figure 11(b) shows the increment of the average overall accuracy when the neighboring
distance was 1 km using different original classifiers for the Gaofen-2 image. The LPPT-
based model’s overall accuracy increased by more than 2% compared with the original
classifiers except for the RVM. Furthermore, For each classifier, the Bonferroni corrected
Student’s t-test showed that there was a statistically significant difference between the
average overall accuracy of LPPT and classical classifiers when the significance level was
0.05. The Cohen’s ds of the average overall accuracy for the NB, kNN, and LR were



February 28, 2020 14:48 International Journal of Geographical Information Science main

15

larger than 0.9, which meant a relatively large increase in accuracy. With respect to the
RVM classifier, the Cohen’s d of the average overall accuracy was smaller than 0.2, which
meant a slight increase in classification accuracy.
To further validate the performance of LPPT, the TM and Gaofen-2 remotely sensed

image was divided into four equal subregions: top left, top right, bottom left and bottom
right. In each sub-region, 20% objects were used as training data and all the remaining
objects were used as validation data. The experiment followed the same procedure shown
in Figure 8. Figure 11(a & b) shows that the average overall accuracy of all sub-regions
increased when LPPT was used, regardless of which original classifiers were used. The
Bonferroni corrected Student’s t-test showed that there was a statistically significant dif-
ference between the average overall accuracy of LPPT and that of the original classifiers,
except for the RVM for the Gaofen-2 image, when the significance level was 0.05. The
Cohen’s ds of all the average overall accuracies of the NB, kNN, and LR for the Gaofen-2
image were all larger than 0.68, among which 75% Cohen’s ds were larger than 0.9. This
indicates a relatively large difference in the accuracy.

5.1.2.2. Weak but significant spatial association. Consider the prediction of the
occurrence of NTD instances as an example, Figure 11(c) shows the increment of the
average overall accuracy, average precision, average recall, and average AUC of 1,000
classifications when the neighboring distance was 2 km. Although the average recall of
“No” decreased slightly when kNN or LR was used, all the other average indices of LPPT-
based models were larger than or equal to those of the original classifiers when kNN,
NB, RVM, or LR were used. With respect to the NE_RVM, the AUC increased by
almost 0.2 compared with the original RVM classifier, although it did not change the hard
classification result. This means that NE_RVM increased the chance level performance of
the RVM. The Bonferroni corrected Student’s t-test showed that there was a statistically
significant difference between the average accuracy of LPPT and that of classical classifiers
when the significance level was 0.05, with the exception of all the average recalls of
NE_NB, the average recall of “Yes” of NE_LR and the average recall, average precision,
and average overall accuracy of NE_RVM. The Cohen’s ds of most accuracy measures
were between 0.2 and 0.7, which meant a medium difference in the classification accuracy.

5.1.2.3. No spatial association. Figure 11(d) shows the increment of the average
overall accuracy, average precision, average recall, and average AUC of 1,000 classifica-
tions when the neighboring distance was 2 km. As there was no statistically significant
overall spatial auto-correlation in the dataset, LPPT had an adverse effect on the classi-
fication result in most cases. The accuracy of most of the LPPT results decreased or was
not significantly different to those of the classical classifiers.
The above three experiments investigated the performance of LPPT under the situa-

tion that there was strong, weak but significant, or no spatial associations amongst the
classes. When there was significant spatial association, LPPT could effectively increase
the classification accuracy no matter which original classifier was used. Meanwhile, the
greater the spatial association, the more the prediction accuracy increased. On the con-
trary, the experiments on the third dataset showed that it is only beneficial to use LPPT
when spatial correlation exists; otherwise, LPPT might lead to adverse effects because of
the inaccurate estimation of the prior using limited samples.
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5.2. Sensitivity analysis of the neighboring distance

The neighboring distance is an important parameter that influences the performance
of LOF-based LPPT. If it is too small, then there are too few samples from neighboring
objects to estimate PN (u)(yj). If it is too large, then the local prior distribution of different
categories approaches the marginal probability distribution.
This issue is essential when classifying any spatial data. The classification of spatial ob-

jects should be conditioned by the spatial extent chosen. If the spatial extent was extended
to one side, or the area was doubled, then because of natural spatial variation, the classi-
fier parameters were expected to change slightly, or even a great deal. As a consequence,
the precision of prediction or overall accuracy will probably change too. This naturally
leads to the suggestion that one should consider the spatial extent carefully when classify-
ing. And further than that, it leads to the suggestion that local classification approaches
may hold benefits over global ones (i.e., restrict the spatial extent arbitrarily). There are
many ways that this could be done, including geographically weighted classification type
approaches (Fotheringham et al. 1998, Fotheringham and Brunsdon 1999, Atkinson and
Naser 2010, Tang et al. 2016, Wu et al. 2019) where the model is fitted locally. Instead
of fitting the model locally, the solution proposed modifies locally the prior. However, it
is still greatly influenced by the spatial extent chosen.
In all the real-life experiments, the comparison between LPPT and its corresponding

original classifier was performed using a neighboring distance from 1 km to 8 km. Fig-
ure 12(a) and (b) shows the tendency of the increment of the average overall accuracy of
the NTD prediction using a neighboring distance from 1 km to 8 km. When the neighbor-
ing distance was 1 km, the Bonferroni corrected Student’s t-test showed that the average
overall accuracy and AUC using LPPT were not statistically significantly different from
those using the original classifiers when the significance level was 0.05 regardless of which
original classifier was used, with the exception of NE_LR. Meanwhile, the Cohen’s ds
of most accuracy indices were smaller than 0.2, which meant small differences between
LPPT and the corresponding original classifiers. This was because that there was weak
spatial auto-correlation (see Table 3) and too few neighboring objects to correctly esti-
mate PN (u)(yi). When the neighboring distance was 3 km, more neighboring objects were
used to estimate PN (u)(yi). As a consequence, the overall accuracy and AUC approached
a maximum for most original classifiers.

[Figure 12 about here.]

When there was strong spatial auto-correlation, the LPPT increased the classification
accuracy even if only a few neighboring objects were used to estimate PN (u)(yi). Fig-
ure 12(c & d) shows the tendency of the average overall accuracy of vegetation-type
recognition using a neighboring distance from 1 km to 8 km for the TM image and
Gaofen-2 image, respectively. When the neighboring distance was 1 km, the local prior
probability was estimated using only two to three neighboring objects. However, there
was strong spatial auto-correlation in the study area when the neighboring distance was 1
km, as is shown in Table 1. Accordingly, the Bonferroni corrected Student’s t-test showed
that the average overall accuracy from LPPT was statistically significantly larger than
those from the original classifiers when the significance level was 0.05, regardless of which
original classifier was used. The Cohen’s ds of all the average overall accuracies were
larger than 1.5 except the RVM for Gaofen-2.
Another tendency was that the prediction accuracy decreased gradually, when the

neighboring distance continually increased. When the neighboring distance was too large,
more global information about the category distribution was introduced to the process of
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estimation PN (u)(yi). As a result, PN (u)(yi) approached the marginal probability P (yi).
Therefore, PN (u)(yi|~x) approached P (yi|~x) and the prediction accuracy of the LPPT-
based classifier approached that of its original classifier.
Considering the prediction of NTD occurrences as an example, when the neighboring

distance was larger than 3 km, the increment of the overall accuracy and AUC decreased
gradually and the prediction accuracy of LPPT approached that of its original classifier
as the neighboring distance increased. The same tendency could also be seen in the
vegetation recognition examples. As is shown in Figure 12(c & d), the increment of the
average LPPT prediction accuracy decreased gradually and approached zero when the
neighboring distance increased.
To determine the optimal neighboring distance for different types of data, users should

balance between the degree of spatial auto-correlation and the number of neighboring
training objects. If there was only weak spatial auto-correlation, then a large neighboring
distance could be set; otherwise, a small neighboring distance was sufficient for LPPT.
Meanwhile, if there were only few training data, a relatively larger neighboring distance
was necessary. For example, the dashed line in Figure 9(a) shows the overall NCP of the
simulated two-category data. Although there was strong spatial auto-correlation, there
was only one neighboring object for most unseen objects when the neighboring distance
was one unit distance. Accordingly, it was necessary to increase the neighboring distance
to estimate PN (u)(yi) more accurately. The optimal neighboring distance was three unit
distances.
LPPT can use other estimators in addition to the LOF estimator, such as the kriging

method. Some of these methods use a large neighboring distance and assign different
weights to different neighbors of the current object. For distant objects, they are assigned
very small weights. The same strategy can be incorporated into LOF as an alternative to
selecting the optimal neighboring distance.

5.3. Comparison with other spatial data oriented classifier

This section compares LPPT with three commonly used classifiers for spatial data: SAR,
MRF and NeighFea. In the comparison, the MRF-based method and NeighFea methods
were compared with the LPPT-based method using NB, kNN, RVM, or LR as the original
classifier. For fairness, the experiment compares LPPT based on LR with SAR.

5.3.1. Comparison with SAR

Figure 13(a) shows the increment of the average overall accuracy of SAR for predicting
Heshun NTD occurrence and recognizing vegetation types. Clearly, SAR was superior to
LR when predicting Heshun NTD occurrence. To inspect the influence of the neighboring
distance on the accuracy difference between NE_LR and SAR, Figure 13(b) shows the
increment of the average overall accuracy, average precision, average recall, and average
AUC of NE_LR compared with SAR when the neighboring distance was set to 1 km, 2
km and 8 km. When the neighboring distance was 1 km, these two methods had almost
the same accuracy. The Bonferroni corrected Student’s t-test showed that the average
overall accuracy and average AUC of NE_LR were not statistically significantly different
from those of SAR when the significance level was 0.05.
As the neighboring distance increased, the NE_LR was more accurate than LR. When

the neighboring distance was 2 km, except the recall of “No” and precision of “Yes”, the
Bonferroni corrected Student’s t-test showed that the average overall accuracy of NE_LR
was statistically significantly larger than those of SAR when the significance level was
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0.05. When the neighboring distance was 8 km, the Bonferroni corrected Student’s t-test
showed that the average accuracy of NE_LR was statistically significantly larger than
that of SAR when the significance level was 0.05, with the exception of the recall for
“No.”. For both neighboring distances, the Cohen’s ds for the significant average accuracy
measures were larger than 0.2, which meant a small increase in accuracy.

[Figure 13 about here.]

In the vegetation-type recognition experiment, it was obvious that the overall accuracy
of SAR was significantly smaller than that of LR. However, this did not mean that SAR
was definitely inferior to NE_LR. There were seven categories in the study area and
only 10% of the data was used to train the classifiers. When SAR was used, there were
many additional parameters to learn. In this case, the training data might be insufficient
to effectively learn all the parameters. This hindered the correct classification of unseen
objects and influenced the correct evaluation of the proposed method.
From the above comparison, the results showed that NE_LR with an appropriate neigh-

boring distance was superior to SAR. However, when the neighboring distance was small,
the classification accuracy of NE_LR had no advantage over SAR. Moreover, progres-
sively increasing the neighboring distance caused these two methodsâĂŹ classification
accuracies to approach that of LR. Accordingly, it is not possible to conclude that one
method is definitely superior to the other from the perspective of accuracy assessment.
However, the main advantage of LPPT is that it can be used with different types of
statistical classifiers. SAR may not be suitable for the classification of some real-life data,
whereas some other statistical classifier may be appropriate. For example, nominal vari-
ables may be used to describe spatial data, or the distribution of the attribute value may
obey some specific distribution instead of the Gaussian distribution. In these scenarios,
some other statistical classifiers may be more suitable than the SAR, or the SAR may not
be applicable at all. In these circumstances, LPPT is an effective method to account for
spatial patterns in the target objects for the classification of spatial data and is superior
to SAR.

5.3.2. Comparison with MRF-based methods

With respect to the MRF-based methods, Figures 14 (a-c) show the increment of the av-
erage overall accuracies of the LPPT-based models (NE_kNN, NE_NB, NE_RVM, and
NE_LR) compared with those of the MRF models (MRF_kNN, MRF_NB, MRF_RVM,
and MRF_LR) when the neighboring distance was set to 1 km to 8 km, respectively.
Clearly, the MRF-based model was inferior to the LPPT-based model in most cases. The
Bonferroni corrected Student’s t-test showed that the average overall accuracy of results
from the LPPT-based models was statistically significantly larger than that of the results
from the MRF-based models when the significance level was 0.05, except when RVM was
used as the original classifier to predict Heshun NTD occurrences. For the Heshun NTD
data, the Cohen’s d for the significant average accuracy measures was larger than 0.2,
which meant a small increase in accuracy. For the vegetation recognition, the Cohen’s
d for the average overall accuracy was larger than 0.9, which meant a large increase in
accuracy.

[Figure 14 about here.]

In the vegetation-type recognition experiment, the MRF-based models were even infe-
rior to the classical models. The MRF models performed poorly because the MRF model
used in the experiment (Solberg et al. 1996) took the relation between only two objects
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into account. It neglected the complex relation between multiple objects. However, it
is difficult to construct appropriate cliques for irregular lattice data. Even if there is a
perfect solution to construct appropriate cliques, MRF-based models need much more
computational resources than LPPT-based models. Taking vegetation-type recognition
from remotely sensed imagery as an example, when the neighboring distance was 4 km,
in addition to the time required to train traditional statistical classifiers, MRF-based
methods required 42 seconds, whereas LPPT-based methods required two seconds.

5.3.3. Comparison with NeighFea approach

Finally LPPT was compared with the NeighFea approach. NeighFea included neigh-
borhood information, that is, neighboring objects’ feature values, in the vector of each
geographical object during the training and classification steps. This method was easy to
implement and could increase the classification accuracy. However, NeighFea used many
more features than the classical classifiers. It required more training data to estimate the
classifier’s parameters. When there were insufficient training data, NeighFea performed
poorly.
Figure 15 shows the average overall accuracy of NB, NE_NB, and NeighFea_NB using

LPPT and NeighFea for the simulated data, which had two to six categories or one
to six features. When the number of categories was two and the number of features
was one, the average overall accuracy of NeighFea_NB was larger than those of NB
and NE_NB. Clearly, the NeighFea approach was superior to the classical classifier and
LPPT method in terms of classification accuracy. However, when the number of categories
increased, NeighFea was inferior to LPPT, because more categories introduced more
parameters and the training data size was unchanged. Similarly, increasing the number
of attributes increased the number of parameters to be estimated with the same training
data, which led to inaccurate estimated parameters. Accordingly, increasing of the number
of attributes decreased the average overall accuracy of NeighFea.

[Figure 15 about here.]

In the experiment on real-life data, NeighFea was inferior to LPPT because many
features were used to describe geographical objects. For example, Figure 16(a) and (b)
show the increment of the average overall accuracy and average AUC of NeighFea when
NB, kNN, RVM and LR were used for the prediction of NTD occurrence. Clearly, the
accuracy of NeighFea was less than that of the classical classifier, with the exception
of the average AUC of RVM. For the recognition of vegetation types, NeighFea was also
inferior to the classical classifiers. Figure 16(c) and (d) shows the increment of the average
overall accuracy of NeighFea when NB, kNN, RVM and LR were used for the recognition
of vegetation types. The Bonferroni corrected Student’s t-test showed that there were
statistically significant differences between NeighFea and the classical classifiers when
the confidence level was 0.05 except for the RVM of Gaofen-2. All the Cohen’s ds of all
statistically significant accuracy measures were smaller than zero, which meant a decreases
in classification accuracy.

[Figure 16 about here.]

NeighFea had the potential to increase classification accuracy for spatial data. It intro-
duced many neighboring objects’ features to help to improve the classification of unseen
objects. However, there was a limited number of instances in the training data compared
with the number of parameters to be estimated in some real-life applications. Accordingly,
it might perform poorly in such scenarios. Different from NeighFea, the LOF estimator
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in LPPT was independent of the training of the original classifiers. It did not introduce
new parameters in the training of classical classifiers. Therefore, it is more effective in
processing data with many features.
To summarize, LPPT performed more accurately than the three benchmark methods in

the experiments when there is statistically significant spatial association and local spatial
patterns were modelled appropriately in some situations. In particular, LPPT can be
adapted readily to real-life applications in which SAR is inappropriate through selecting
an appropriate original classifier. Compared with MRF, LPPT could easily estimate local
prior distributions for irregular lattices and spend much less computing resources. With
respect to the NeighFea, LPPT suffered less from the curse of dimensionality.

5.4. Influence of sampling methods

To test whether LPPT was only effective when the simple random sampling method is
used, the clustering sampling method (Wang et al. 2012) was used to perform comparisons
between LPPT and the classical statistical classifiers.
The clustering sampling method first divided the population into separate groups. Then,

a group was randomly selected. In the selected group, a random sample was then selected
from the group. This process iterated until sufficient samples were obtained. In our ex-
periment, the datasets were divided into 10 groups using k-means (Murphy 2012). For
simplicity, the comparison was performed on the vegetation recognition dataset.

[Figure 17 about here.]

Figure 17 shows the increment of the average overall accuracy for the vegetation type
recognition using different sampling methods when the neighboring distance is 2 km.
When the NB or kNN were used as the original classifier, the average overall accuracy
corresponding to that of the clustering sampling method increased less than that using
simple random sampling. Nevertheless, when the clustering sampling method is used, the
average overall accuracy also increased at least 4%. This showed that LPPT was not
limited to the simple random sampling method.
The key to increasing classification accuracy using LPPT is not which sampling method

is used, but the correct estimation of the prior distribution of different classes for each
unseen object. According to Equation 6, if there are no samples in the neighborhood of
unseen objects, both |N (u)| and |Nyi

(u)| were zero and PN (u)(yi) = P (yi), then LPPT
degrades to its original classifier. However, if a correct prior distribution is provided to
update the prior for each unseen object, LPPT can help increase classification accuracy
even when there are no samples in the neighborhood of unseen objects.
To validate this, the vegetation recognition of TM, the vegetation recognition of Gaofen-

2, and Heshun NTD dataset were divided into left and right parts. The left part was used
as training data and the right part as validation data. The LR was used as the original
classifier. When classifying the right part for each dataset, no objects from the sample
were used in the classification.
Correct and incorrect prior distributions of classes were assigned to each unseen object

during classification, respectively. In the experiment, the prior distribution was obtained
using the neighboring objects’ real labels. In real applications, the correct prior distribu-
tion can be obtained from experts or inferred from some secondary data. The incorrect
prior distribution is set through subtracting the correct prior probability from 1. Results
shows that almost all the classification accuracy measures increased by at least 5% when
the correct prior probability was used to update the local prior for each object. However,
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when an incorrect prior probability is used, the overall accuracy of LPPT decreased by
at least 4%.
Therefore, when the prior distribution of different classes can be correctly estimated,

LPPT is preferred and superior to classical classifiers. However, when no information is
available to estimate the prior information, it is recommended to use classical classifiers
because LPPT generates the same result as the original result. In future, we plan to
explore methods for estimating the prior distribution under different scenarios.

5.5. Incorporating spatial pattern information

In SAR, the categories of neighboring objects ~yN (u) in the training data are modelled as
an independent variable. If the training data have strong spatial associations, the weights
of ~yN (u) will be much larger than the weights for other attributes. When such a model
is used in prediction or classification, the result will depend greatly on the neighbor
and neglect other attributes. In MRF, the weights of the spatial pattern information
are assigned arbitrarily in the potential function. It is hard for the user to predetermine
this weight to make the best use of the spatial information and attribute information
simultaneously.
There exist additional methods for incorporating spatial pattern information into the

classification process in the framework of statistics besides SAR and MRF. These methods
all need additional assumptions to fuse spatial pattern information into the classification
besides the assumptions of the statistical classifier and the correct modelling of spatial
pattern information. A commonly used strategy is giving appropriate weight to spatial
pattern information (Atkinson and Naser 2010, Ge and Bai 2011, Tang et al. 2016).
However, like MRF, these methods need to pre-define the weight of spatial pattern in-
formation. No matter which type (a constant or a function) of weight is used, the user
must define it at the risk of personal induction bias. Bayesian updating (Journel 2002) is
another way of considering both spatial pattern information and feature space informa-
tion. It needs the assumption that the contribution of the spatial pattern information is
the same before and after the feature space information is used. However, the suitability
of this assumption needs to be reconsidered for different datasets.
Post classification processing is another commonly used method to increase classifica-

tion accuracy. A simple post classification method is moving a kernel across each object
and using the mode to smooth the classification result. An experiment was performed
to compare this post classification method and LPPT using the Gaofen-2 image. The
NB classifier was used as the original classifier and the neighboring distance was set to 2
km. When the post classification method was used, although the average overall accuracy
increased by 1%, the average precision and recall of the category “a” with strong spatial
association increased at the cost of decreasing of the accuracy of all the other categories.
The average recall of “a” increased more than 30%. However, for the categories, “d” and
“e”, which had weak spatial association, the precision and recall decreased more then 30%.
When this method was used for the detection of the Heshun NTD occurrence, which had

weak spatial association, all accuracy measures decreased. For the vegetation recognition
using the TM image, this simple post-classification strategy was insufficient because many
different types of vegetation in the image mixed together and only two categories among
all seven categories had large spatial associations. As a result, the average overall classi-
fication accuracy decreased. Accordingly, this post classification method is only suitable
for categories with strong spatial association. To further increase the classification accu-
racy, a complex rule set for smoothing the classification should be constructed through



February 28, 2020 14:48 International Journal of Geographical Information Science main

22

considering the pattern for different categories. LPPT simplified this complex rule set
construction process to the updating of the prior distribution of different categories, and
needed no post classification processing.
Compared with the above methods, LPPT updates the prior probability distribution

of each category according to the spatial pattern information for each unseen object.
If a generative model is used as the original classifier, LPPT does not introduce any
more assumptions besides those of the statistical classifier and the correct modelling of
spatial pattern information. For example, incorporating indicator kriging into maximum
likelihood classification through prior updating is effective for classifying hyperspectral
data (Goovaerts 2002). If a discriminant model is used, as traditional statistical classifiers
do not use spatial pattern information, it is appropriate to assume that P (yi) is equal
to its marginal probability. Meanwhile, this assumption is easy to check for a statistical
classifier through synthetic experiments by changing the proportion of objects of different
categories. This assumption is related only to the original classifier used and has nothing
to do with the data at hand and user induction bias. Accordingly, when using LPPT,
users need not set appropriate weights for spatial pattern information or consider the
contribution of the spatial pattern information to be the same before and after the feature
space information is used. Rather, users can focus on the effective and efficient modelling
of spatial pattern information.
Although LPPT provides a new way to incorporate spatial pattern information, as with

other spatial classifiers, users should also consider the possibility of over-generalization
of the spatial pattern information in practical use. The spatial pattern information is
learned inevitably using some models or assumptions. For example, the LOF estimator-
based LPPT uses the first law of geography and sample objects surrounding the unseen
object to infer the prior probability of different categories. If the spatial pattern prior of
a category is very large, it may suppress the feature space information.

6. Conclusion

This paper proposed a novel classification model for spatial data based on traditional sta-
tistical classifiers. In this model, a traditional statistical classifier is first trained. Then,
each unseen geographical object’s local prior class distribution is estimated and used to
replace the marginal class distribution in the prediction model of the traditional statisti-
cal classifier. The experiment results show that the classifier using the proposed method
outperformed its corresponding original classifier. Meanwhile, the proposed model’s clas-
sification accuracy was larger than those of logistic spatial autoregression and MRF based
models when there was statistically significant spatial association and PN (u)(yi) was cor-
rectly estimated in the experiments.
Because LPPT can be coupled readily with traditional statistical classifiers, in addition

to its effectiveness, the main advantage of LPPT is its wide applicability. Even a discrim-
inant model can be coupled with LPPT under the assumption that the prior distribution
is the marginal classes’ distribution. With the help of LPPT, a traditional statistical clas-
sifier can take the spatial distribution pattern of classes into account. Accordingly, the use
of LPPT can increase classification accuracy for spatial data. The experimental results
show that LPPT does increase classification accuracy, even for discriminant statistical
classifiers. Therefore, as well as effectively modelling the feature space using a traditional
statistical classifier and properly estimating the local prior class probability, LPPT can
be applied to generate classification results with higher accuracy than that of its original
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classifier.
The current LPPT model may be regarded as a generic modelling approach. It may need

further reinforcement to adapt it to various kinds of real-life spatial data. In particular,
future research is required to extend this model in the following five ways:
(1). Applying LPPT to additional types of spatial data. This paper shows three real-life

applications for the proposed classifier. There exist many different types of spatial data.
These spatial data may have different forms, such as points, lines, polygons, or networks.
Some new methods, for example geostatistics and multiple point simulation, can be used
to estimate PN (u)(yi) to help adapt LPPT for different spatial data.
(2). Determining how to estimate PN (u)(yi) for objects with no or very few surrounding

sample data. For example, sample data and unseen objects may not be in the same study
area, or there are too few samples in the study area. The proposed method is not efficient
in both cases. However, if some unseen objects can be pre-classified using some methods,
there will be more neighboring objects to estimate PN (u)(yi).
(3). Determining how to consider multiple spatial scale structure information. Geo-

graphical phenomena generally have spatial characteristics at different scales. Under the
framework of LPPT, the classification accuracy can be increased by making the best use
of multiple scale structure information, as long as the estimation of PN (u)(yi) takes it
into account.
(4). Generating finer spatial resolution classifications. This method has the potential

to be used in sub-pixel mapping. Finer spatial resolution spatial information could be
acquired in many different ways (Tatem et al. 2001, Ge et al. 2009, Zhong and Zhang
2012, Wang et al. 2014, Li et al. 2017). This information can then be coupled with soft
classification results from statistical classifiers using LPPT. The LPPT can then adjust
the category at the sub-pixel level in terms of both spatial information and spectral
information.
(5). Further exploring LPPT using Bayes decision theory. In addition to the experi-

ments, effort should also be made to explain why LPPT can classify spatial data more
accurately than the original classifiers, for example, whether there are any properties of
LPPT that demonstrate its advantage over classical statistical classifiers when used on
spatial data. Bayesian decision theory is a powerful candidate tool for further exploring
this question.

7. Data and codes availability statement

The data and codes that support the findings of this study are available in “figshare.com”
with the identifier “:doi:10.6084/m9.figshare.11876490.v1”. The Heshun NTD dataset and
the poverty-stricken village dataset of Yunyang is owned by two local governments.
Their websites are http://www.chinacdc.cn and http://www.shiyan.gov.cn, respectively.
We are not authorized to publish these datasets. Accordingly, these two datasets are
not included and are replaced with mock data. Meanwhile, The Gaofen-2 remotely
sensed image and its label are provided by Tong et al. (2020) and are available at
http://captain.whu.edu.cn/GID/.
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Table 1. Overall NCP and NCP of different vegetation types in the TM image using different neighboring
distances

Neighboring Overall “1” “2” “3” “4” “5” “6” “7”Distance
1km 0.25 0.32 0.09 0.18 0.10 0.18 0.11 0.53
2km 0.16 0.19 0.04 0.11 0.05 0.13 0.15 0.39
3km 0.11 0.11 0.01 0.17 0.04 0.09 0.04 0.30
4km 0.08 0.05 0.00a 0.04 0.03 0.07 0.03 0.23

a failed to pass the permutation test.
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Table 2. Overall NCP and NCP of different vegetation types in the Gaofen-2 image using different
neighboring distances

Neighboring Overall “a” “b” “c” “d” “e”Distance
1km 0.20 0.31 0.18 0.23 0.03 0.09
2km 0.12 0.16 0.11 0.15 0.01 0.05
3km 0.07 0.09 0.06 0.10 0.01 0.03
4km 0.05 0.05 0.04 0.07 0.00a 0.02

a failed to pass the permutation test.
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Table 3. Overall NCP and NCP of different categories of NTD occurrences in Heshun, Shanxi, China,
using different neighboring distances.

Neighboring Overall “Yes” “No”Distance
1km 0.12 0.10 0.13
2km 0.12 0.12 0.13
3km 0.11 0.11 0.11
4km 0.09 0.09 0.09



February 28, 2020 14:48 International Journal of Geographical Information Science main

TABLES 31

Table 4. Overall NCP and NCP of different categories of poverty-stricken villages in Yunyang, Hubei,
China, using different neighboring distances

Neighboring Overall “Yes” “No”Distance
1km 0.08a 0.10 0.02a
2km 0.06a 0.09 0.04a
3km 0.06a 0.09 0.02a
4km 0.04a 0.07 0.02a

a failed to pass the permutation test.
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Figure 1. Spatial distribution and statistical classifier. P (Black) (P (White)) is the
marginal probability of ‘Black’(‘White’). P (Black|right part) (P (White|left part)) is the
probabilities of observing ‘Black’(‘White’) in the right part (left part).

Figure 2. Local pattern-based prior tuning statistical classifier.

Figure 3. Simulated datasets: (a) two categories; (b) six categories.

Figure 4. The segmentation and pseudo-color composites of the TM and Gaofen-2
image: (a) the segmentation and pseudo-color composite of the TM image; (b) the true
color composite image of the Gaofen-2 image.

Figure 5. Vegetation type maps of Figure 4: (a) vegetation type map of the TM image;
(b) vegetation type map of the Gaofen-2 image.

Figure 6. Map of NTD occurrences in Heshun, Shanxi, China.

Figure 7. Map of poverty-stricken villages in Yunyang, Hubei, China.

Figure 8. Classifier comparison process for all experiments.

Figure 9. Average accuracy increase in the experiments on simulated datasets: (a) av-
erage accuracy increase using the neighboring distances from one to 10. The dashed line
in the top right subchart is the overall spatial association calculated; (b) average overall
accuracy of NB and NE_NB, and the accuracy increment of LPPT when the numbers of
categories are two to six, respectively; (c) average overall accuracy increase using LPPT
for 1,000 datasets with random numbers of features and random numbers of categories
when the original classifiers were NB, kNN, RVM and LR, respectively.

Figure 10. Examples of correctly and incorrectly rectified classification of unseen ob-
jects. Left column shows the neighboring objects found, and the right column shows how
the decision hyperplane changed as a result of using the updated local prior. For each case,
x denotes the feature value, NB pdf denotes the soft classification from NB, and LPPT
pdf denotes the soft classification from NE_NB. The dashed and solid lines represent the
decision hyperplane of NB and NE_NB, respectively.

Figure 11. Increment of the average accuracy for the three real datasets: (1) The incre-
ment of the average overall accuracy for recognizing vegetation types (TM) using different
original classifiers when the neighboring distance was 2 km; (2) The increment of the av-
erage overall accuracy for recognizing vegetation types (Gaofen-2) using different original
classifiers when the neighboring distance was 2 km; (3) the increment of the average over-
all accuracy, precision, recall and AUC for the predicting NTD occurrences using different
original classifiers when the neighboring distance was 2 km; (4) the increment of the av-
erage overall accuracy, precision, recall and AUC for the identification of poverty-stricken
villages using different original classifiers when the neighboring distance was 2 km. PYes
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represents the precision of “Yes,” RYes represents the recall of “Yes,” PNo represents the
precision of “No,” and RNo represents the recall of “No.”

Figure 12. Tendency of the increment of the average accuracy of NTD prediction and
vegetation type recognition using a neighboring distance from 1 km to 8 km when the
original classifiers were NB, kNN, RVM, and LR, respectively: (a) the average overall ac-
curacy increment tendency for NTD prediction; (b) the average AUC increment tendency
for NTD prediction; (c) the average overall accuracy increment tendency for vegetation
type recognition (TM); (d) the average overall accuracy increment tendency for vegetation
type recognition (Gaofen-2).

Figure 13. Comparison between LPPT and SAR: (a) increment of the average overall
accuracy of SAR for predicting Heshun NTD occurrence and recognizing vegetation types
when the neighboring distance was from 1 km to 8 km; (b) increment of the average overall
accuracy, average precision, average recall and average AUC of NE_LR compared with
SAR for predicting Heshun NTD occurrence when the neighboring distance was set to 1
km, 2 km and 8 km. PYes represents the precision of “Yes,” RYes represents the recall of
“Yes,” PNo represents the precision of “No,” and RNo represents the recall of “No.”

Figure 14. Increment of the average overall accuracy of the LPPT models (NE_kNN,
NE_NB, NE_RVM, and NE_LR) compared with those of the MRF models (MRF_kNN,
MRF_NB, MRF_RVM, and MRF_LR) for (a) predicting NTD instances, (b) vegeta-
tion recognition (TM) and (c) vegetation recognition (Gaofen-2) when the neighboring
distance was set to 1 to 8 km, respectively.

Figure 15. Average overall accuracy of NB, NE_NB, and NeighFea_NB using LPPT
and NeighFea for the simulated data, which had two to six categories or one to six features
when the neighboring distance was two unit distances.

Figure 16. Increment of the average accuracy of NeighFea when NB, kNN, RVM, and
LR were used: (a) average overall accuracy for the prediction of NTD occurrence; (b)
average AUC for the prediction of NTD occurrence; (c) average overall accuracy for the
vegetation type recognition (TM); (d) average overall accuracy for the vegetation type
recognition (Gaofen-2)

Figure 17. The increment of the average overall accuracy for the vegetation type recog-
nition using different sampling methods when the neighboring distance is 2km.



February 28, 2020 14:48 International Journal of Geographical Information Science main

34 FIGURES

y

x
P (Black) < P (Black|right part)

P (White) < P (White|left part)

Feature space
Geographical

space

Figure 1. Spatial distribution and statistical classifier. P (Black) (P (White)) is the marginal
probability of ‘Black’(‘White’). P (Black|right part) (P (White|left part)) is the probabilities of
observing ‘Black’(‘White’) in the right part (left part).
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Figure 2. Local pattern-based prior tuning statistical classifier.
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Figure 3. Simulated datasets: (a) two categories; (b) six categories.
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Figure 4. The segmentation and pseudo-color composites of the TM and Gaofen-2 image: (a) the
segmentation and pseudo-color composite of the TM image; (b) the true color composite image
of the Gaofen-2 image.
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Figure 5. Vegetation type maps of Figure 4: (a) vegetation type map of the TM image; (b)
vegetation type map of the Gaofen-2 image.
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Figure 6. Map of NTD occurrences in Heshun, Shanxi, China.
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Figure 7. Map of poverty-stricken villages in Yunyang, Hubei, China.
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Figure 8. Classifier comparison process for all experiments.
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Figure 9. Average accuracy increase in the experiments on simulated datasets: (a) average ac-
curacy increase using the neighboring distances from one to 10. The dashed line in the top right
subchart is the overall spatial association calculated; (b) average overall accuracy of NB and
NE_NB, and the accuracy increment of LPPT when the numbers of categories are two to six,
respectively; (c) average overall accuracy increase using LPPT for 1,000 datasets with random
numbers of features and random numbers of categories when the original classifiers were NB,
kNN, RVM and LR, respectively.
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(b)

x = 2.02
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(c)
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(d)
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Figure 10. Examples of correctly and incorrectly rectified classification of unseen objects. Left
column shows the neighboring objects found, and the right column shows how the decision hy-
perplane changed as a result of using the updated local prior. For each case, x denotes the feature
value, NB pdf denotes the soft classification from NB, and LPPT pdf denotes the soft classifi-
cation from NE_NB. The dashed and solid lines represent the decision hyperplane of NB and
NE_NB, respectively.
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(a) Strong spatial association (TM) (b) Strong spatial association (Gaofen-2)

(c) Weak spatial association (d) No spatial association

Figure 11. Increment of the average accuracy for the three real datasets: (1) The increment of the
average overall accuracy for recognizing vegetation types (TM) using different original classifiers
when the neighboring distance was 2 km; (2) The increment of the average overall accuracy for
recognizing vegetation types (Gaofen-2) using different original classifiers when the neighboring
distance was 2 km; (3) the increment of the average overall accuracy, precision, recall and AUC for
the predicting NTD occurrences using different original classifiers when the neighboring distance
was 2 km; (4) the increment of the average overall accuracy, precision, recall and AUC for the
identification of poverty-stricken villages using different original classifiers when the neighboring
distance was 2 km. PYes represents the precision of “Yes,” RYes represents the recall of “Yes,”
PNo represents the precision of “No,” and RNo represents the recall of “No.”
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Figure 12. Tendency of the increment of the average accuracy of NTD prediction and vegetation
type recognition using a neighboring distance from 1 km to 8 km when the original classifiers were
NB, kNN, RVM, and LR, respectively: (a) the average overall accuracy increment tendency for
NTD prediction; (b) the average AUC increment tendency for NTD prediction; (c) the average
overall accuracy increment tendency for vegetation type recognition (TM); (d) the average overall
accuracy increment tendency for vegetation type recognition (Gaofen-2).
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Figure 13. Comparison between LPPT and SAR: (a) increment of the average overall accuracy
of SAR for predicting Heshun NTD occurrence and recognizing vegetation types when the neigh-
boring distance was from 1 km to 8 km; (b) increment of the average overall accuracy, average
precision, average recall and average AUC of NE_LR compared with SAR for predicting Heshun
NTD occurrence when the neighboring distance was set to 1 km, 2 km and 8 km. PYes represents
the precision of “Yes,” RYes represents the recall of “Yes,” PNo represents the precision of “No,”
and RNo represents the recall of “No.”



February 28, 2020 14:48 International Journal of Geographical Information Science main

FIGURES 47

(a)

(b) (c)

Figure 14. Increment of the average overall accuracy of the LPPT models (NE_kNN, NE_NB,
NE_RVM, and NE_LR) compared with those of the MRF models (MRF_kNN, MRF_NB,
MRF_RVM, and MRF_LR) for (a) predicting NTD instances, (b) vegetation recognition (TM)
and (c) vegetation recognition (Gaofen-2) when the neighboring distance was set to 1 to 8 km,
respectively.
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Figure 15. Average overall accuracy of NB, NE_NB, and NeighFea_NB using LPPT and Neigh-
Fea for the simulated data, which had two to six categories or one to six features when the
neighboring distance was two unit distances.
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Figure 16. Increment of the average accuracy of NeighFea when NB, kNN, RVM, and LR were
used: (a) average overall accuracy for the prediction of NTD occurrence; (b) average AUC for the
prediction of NTD occurrence; (c) average overall accuracy for the vegetation type recognition
(TM); (d) average overall accuracy for the vegetation type recognition (Gaofen-2)
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Figure 17. The increment of the average overall accuracy for the vegetation type recognition
using different sampling methods when the neighboring distance is 2km.


