Additional Information:
Conference code: 157434 Export Date: 26 March 2020 CODEN: CRCND Funding details: Solar Energy Technologies Office, SETO, DE-EE-0008172 Funding details: U.S. Department of Energy, USDOE Funding details: Office of Energy Efficiency and Renewable Energy, EERE Funding text 1: This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number DE-EE-0008172. The DuPont Silicon Valley Technology Center is recognized for fabricating the investigated monocrystalline PERC cells. References: Tennyson, E.M., Garrett, J.L., Frantz, J.A., Myers, J.D., Bekele, R.Y., Sanghera, J.S., Munday, J.N., Leite, M.S., Nanoimaging of open -circuit voltage in photovoltaic devices (2015) Advanced Energy Materials, 5 (23), p. 1501142; Glatzel, T., Fuertes Marrón, D., Schedel-Niedrig, T., Sadewasser, S., Lux-Steiner, M.C., Cugase2 solar cell cross section studied by kelvin probe force microscopy in ultrahigh vacuum (2002) Applied Physics Letters, 81 (11); Kutes, Y., Aguirre, B.A., Bosse, J.L., Cruz-Campa, J.L., Zubia, D., Huey, B.D., Mapping photovoltaic performance with nanoscale resolution (2016) Progress in Photovoltaics, 24 (3), pp. 315-325; Atamanuk, K., Luria, J., Huey, B.D., Direct afm-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics (2018) Beilstein J. Nanotechnol., 9, pp. 1802-1808; Kutes, Y., Zhou, Y., Bosse, J.L., Steffes, J., Padture, N.P., Huey, B.D., Mapping the photoresponse of ch3nh3pbi3 hybrid perovskite thin films at the nanoscale (2016) NanoLetters, 16 (6), pp. 3434-3441; French, R.H., Murray, M.P., Lin, W., Shell, K.A., Brown, S.A., Schuetz, M.A., Davis, R.J., Solar radiation durability of materials components and systems for low concentration photovoltaic systems (2011) Energytech, , IEEE, Cleveland, 2011; Ahn, N., Kwak, K., Jang, M., Yoon, H., Lee, B., Lee, J.-K., Pikhitsa, P., Choi, M., Trapped charge-driven degradation of perovskite solar cells (2016) Nature Communications, 7; Kraft, A., Labusch, L., Ensslen, T., Dürr, I., Bartsch, J., Glatthaar, M., Glunz, S., Reinecke, H., Investigation of acetic acid corrosion impact on printed solar cell contacts (2015) IEEE Journal of Photovoltaics, 5 (3), pp. 736-743; Badiee, A., Ashcroft, I.A., Wildman, R.D., The thermomechanical degradation of ethylene vinyl acetate used as a solar panel adhesive and encapsulant (2016) Science Direct, 68, pp. 212-218; Pern, F.J., Czanderna, A.W., Characterization of ethylene vinyl acetate (eva) encapsulant: Effects of thermal processing and weathering degradation on its discoloration (1992) Science Direct, 25 (1), pp. 3-23; Luria, J., Kutes, Y., Moore, A., Zhang, L., Stach, E., Huey, B., Charge transport in cdte solar cells revealed by conductive tomographic atomic force microscopy (2016) Nature Energy, 1; Leite, M., Abasin, M., Lezec, H., Gianfrancesco, A., Talin, A., Zhitenev, N., Nanoscale imaging of photocurrent and efficiency in cdte solar cells (2014) ACS Nano, 8 (11), pp. 11883-11890; Sadewasser, S., Abou-Ras, D., Azulay, D., Baier, R., Balberg, I., Cahen, D., Cohen, S., Unold, T., Nanometer-scale electronic and microstructural properties of grain boundaries in cu(in, ga)se2 (2011) Thin Solid Films, 519 (21), pp. 7341-7346; Visoly-Fisher, I., Cohen, S., Gartsman, K., Ruzin, A., Cahen, D., Understanding the beneficial role of grain boundaries inpolycrystalline solar cells from single-grain-boundary scanningprobe microscopy (2006) Advanced Functional Materials, 16 (5), pp. 649-660; Li, J., Chawla, V., Clemens, B., Investigating the role of grain boundaries in czts and cztsse thin film solar cells with scanning probe microscopy (2012) Advanced Materials, 24 (6), pp. 720-723; Galloway, S., Edwards, P., Durose, K., Characterisation of thin film cds/cdte solar cells using electron and optical beam induced current (1999) Solar Energy Materials and Solar Cells, 57 (1), pp. 61-74