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The state of a quantum system, adiabatically driven in a cycle, may
acquire a measurable phase depending only on the closed trajectory
in parameter space. Such geometric phases are ubiquitous, and also
underline the physics of robust topological phenomena such as the
quantum Hall effect. Equivalently, a geometric phase may be induced
through a cyclic sequence of quantum measurements. We show that
the application of a sequence of weak measurements renders the
closed trajectories, hence the geometric phase, stochastic. We study
the concomitant probability distribution and show that, when varying
the measurement strength, the mapping between the measurement
sequence and the geometric phase undergoes a topological transi-
tion. Our finding may impact measurement-induced control and ma-
nipulation of quantum states—a promising approach to quantum in-
formation processing. It also has repercussions on understanding
the foundations of quantum measurement.

Quantum measurement | quantum trajectories | quantum feedback |

Berry phase | topological phases of matter

he overall phase of a system’s quantum state is an unmea-

surable quantity that can be freely assigned. However,
when the system is driven slowly in a cycle, it undergoes an
adiabatic evolution which may bring its final state back to the
initial one (1, 2); the accumulated phase then becomes gauge
invariant and, therefore, detectable. As noted by Berry (3),
this is a geometric phase (GP) in the sense that it depends on
features of the closed trajectory in parameter space, and not
on the dynamics of the process. Geometric phases are key to
understanding numerous physical effects (4-6), enabling the
identification of topological invariants for quantum Hall phases
(7), topological insulators and superconductors (8, 9), defin-
ing fractional statistics anyonic quasiparticles (10, 11), and
opening up applications to quantum information processing
(12, 13).

Geometric phases are not necessarily a consequence of
adiabatic time evolution. For any pair of states |1;),|tm) in
Hilbert space, it is possible to define a relative phase, xi,m =
arg [(¢i|m)]. For a sequence of states (14, 15) |¢x), k =
0,...,N, for which |¢)n) x |¢o), one can define the total
phase accumulated through the sequence (the Pancharatam
phase (14, 15))

N-1
(P) _
Xgeom = Xk+1,k
k=0

= arg [(to| Pn ... PaP1 [tpo)] = arg(yholn), [1]

where [¢5) = P ... P2P1|tho) and Pr = |¢i) (x| is the pro-
jector onto the k-th state. Note that |¢) oc |¢) is not
normalized, which however does not undermine the definition
of the phase (unless some |ix) = 0). Note also that Xéfo)m
is independent of the gauge choice of phases of all |1x). For
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a quasicontinuous sequence of states {|ix)}, the Pancharat-
nam phase trivially coincides with the Berry phase under the
corresponding continuous state evolution. Moreover, for any
sequence {|¢k)}, the Pancharatnam phase is equal to the Berry
phase associated with the trajectory that connects the states
|1x) by the shortest geodesics in Hilbert space (6, 16).

The Pancharatam phase can quite naturally be interpreted
as a result of a sequence of strong (projective) measurements
acting on the system and yielding specific measurement read-
outs (17). This interpretation is valid for optical experiments
observing the Pancharatnam phase induced with sequences
of polarizers (18). Such a phase can be consistently defined
despite the fact that measurements (typically considered an
incoherent process) are involved. A generic sequence of mea-
surements is an inherently stochastic process. One thus ex-
pects a distribution of measurement-induced geometric phases,
determined by the sequences of measurement readouts as-
sociated with the corresponding probabilities. For a quasi-
continuous sequence of strong measurements (N — oo and
l|Yr+1) — |¢x)]] = O(1/N)), the induced evolution is fully
deterministic due to the dynamical quantum Zeno effect (17),
thus yielding a unique Pancharatnam-Berry phase.

Recently, geometric phases induced by weak measurements
(that do not entirely collapse the system onto an eigenstate of
the measured observable (19)) have been experimentally ob-
served (20). The setup of Ref. (20) ensured that only one possi-
ble readout sequence contributed to the observed phase. When
considering all possible readout sequences, the system dynam-
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ics remains stochastic even for quasicontinuous sequences of
weak measurements (21, 22). In a wider context, employing
weak measurements enables continuous monitoring of the sys-
tem through weak measurements, which has been successfully
employed experimentally for dynamically controlling quantum
states (23-26).

In the present study, we define and investigate the geomet-
ric phase accrued by a quantum state of a two-level system
following a sequence of measurements and detector readouts
with tunable measurement strength. We compute the full
distribution function of the induced geometric phases and
analyze the phase of specific trajectories which can be singled
out by postselecting specific readout sequences. As opposed to
the case of projective measurements (17, 18), where the state
trajectory (and the resulting phase) are solely determined by
the measurement sequence and the measurement readouts,
the trajectories (and the phases) here depend crucially on the
measurement strength. We mainly focus on the scenarios of a
single postselected state trajectory and consider the effect of
averaging over all possible trajectories in the Supplementary
Material.

We discover that a topological transition vis-a-vis the ge-
ometric phase takes place as a function of the measurement
strength. The transition is topological in the sense that it is re-
lated to a discontinuous jump of an integer-valued topological
invariant. Specifically, we consider a family of measurement
sequences: The state trajectories induced by these sequences
form a surface which covers a certain area on the Bloch sphere,
and our topological transition is manifest through a jump
of the Chern number associated with this surface. Finally,
we propose concrete interferometry protocols, which allow
us to consistently define geometric phases in the presence of
detectors, and facilitate their detection.

Defining geometric phases from variable strength
gquantum measurements

Our system is a qubit whose Hilbert space is spanned by
[1),{). The system undergoes a chronological sequence of
weak measurements, labeled as k =1,..., N. The measured
observables are represented by the operators on, = o - ng,
where o = (0z,0y,0) is the vector of Pauli matrices and
ny = (sin O cos @i, sin Oy, sin i, cos 0;). The sequence of mea-
surement orientations {n} defines a trajectory on the unit
sphere S? as depicted in Fig. 1 (left). Each weak measurement
is characterized by its strength n € [0,1] and two possible
readouts r, = 4, —. The modification of the system state
conditional to the obtained measurement readout rx is given
by |¢) — MLT’“)\QM, where MS:’“) = M,, (ng, ) are Kraus
operators (21, 22) (cf. Methods below). Given the measure-
ment strength 7, a sequence {ny} of measurement orientations
with corresponding readouts {ry} induces a sequence of states
{|1/~Jk>} in the system Hilbert space, where

[Pk = [thry ) = M MY Jaho) [2]

The weak measurement-induced geometric phase can be de-
fined as

Xgeom = arg(toln) = arg (Yol MG .. MU o). [3]

In order to further proceed with our analysis we need to
specify the nature of the measurement. For the present study
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Fig. 1. Measurement sequences and induced quantum trajectories. (left)
A measurement sequence spanned by the directions n, = (zk,yk,2x) =
(sin O cos ¢k, sin Oy, sin @y, cos Oy, ), following a parallel (0, = 7 /4 and @), =
27k /N). (right) Quantum trajectories on the Bloch sphere induced by the mea-
surement sequence depicted on the left for different measurement strengths and
readout sequences. The trajectory induced by the {r, = +} readout sequence for
strong measurements (¢ = + oo, dotted black) meticulously follows the measurement
eigenstates | 4+ ny, ), while the {r, = +} trajectory for finite-strength measurements
(¢ = 3, red) deviates from this line. A weak-measurement-induced trajectory (¢ = 3)
corresponding to the readout sequence with all 7, = + except for a single rg, = —
readout is depicted by the dot-dashed (blue) line. The “—" readout induces a state
jump from its position on the red line (red dot) to the blue dot via the shortest geodesic
on the Bloch sphere. For weak measurements, the quantum trajectory does not
coincide with the measurement sequence and may not terminate at the initial state
(red and blue lines). The final measurement (yellow segment) projects the N-th state
onto the initial state via the shortest geodesic.

we opt for so-called null-type weak measurements (27-29).
The state before the measurement is [¢)) = a|n) + b|—n),
where oq |£n) = + |£n), while the detector initial state is
|+). The measurement process is mediated by the system-
detector interaction which is described by the interaction-
induced mapping

(aln) + b)) [+)
> (alm) +by/T=71=m)) 14) + by l-m) |- [4

Following this step, the detector is projectively measured in
the basis of |+) states. Note that this measurement protocol
has the following properties: (i) if the initial system state is
In) (a=1,b=01in Eq. (4)), it gives with certainty readout
r = + and does not alter the state of the system; (ii) if the
initial system state is |-n) (a = 0, b = 1 in Eq. (4)), it
yields readouts r = — or r = + with probabilities p— =7 and
p+ = 1—n, respectively, again without altering the state of the
system. In general, when the system state is in a superposition
of |n) and |—n), the measurement does alter the system state.
For n < 1, the detector remains practically always in its
initially prepared state (r = +, i.e., null-outcome), modifying
the system state only slightly; yet with probability 7 |b|* the
readout is r = —, inducing a jump in the system state to |—n).
Considering only the experimental runs resulting in r = +
allows one to define “null weak values” (27, 28). For arbitrary
7, such postselected measurements may be implemented, with
imperfect polarizers, as depicted in Fig. 2: a photon of one
polarization is always transmitted (r = +), while a photon
of the orthogonal polarization has finite probability to be
transmitted (r = +) or absorbed (r = —). Here, we do not
restrict ourselves to postselected measurements and to the
n < 1 limit. Below (cf. Methods) we address a Hamiltonian
implementation of such measurements in the spirit of the von
Neumann (30) measurement model.
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Fig. 2. An imperfect polarizer implementing a null-type weak measurement.
Each polarizer transmits a certain polarization (here, e ), with certainty. An impinging
beam with generic polarization (blue arrows) is either transmitted, resulting in a null
readout, = + , or absorbed, r = —. (a) A vertically polarized photon (|1)) is
transmitted without altering its polarization; (b) a horizontally polarized photon (|{.))
is transmitted with a probability 1-n < 1 (pale blue arrow); (c) a photon of generic
polarization 1) = a |1) + b|J) is transmitted with probability |a|? + (1 — n) |b]?
and a modified polarization state , |¢0) — My (e.,r = +)[¢) = M) |y).
By rotating the polarizers and adding phase plates (e.g., quarter-wave plates), it is
possible to engineer a fully transmitted polarization direction | + n) = cos 6/2 |1) +
e sing/21).

Define the normalized state |1x) = |1x)/\/ (¥r|tbx). With
the standard parametrization, |¢;) = e'**(cos Or/2|1) +
e'®r sin @1, /2 1)), the sequence of states is mapped onto a
discrete trajectory on the Bloch sphere with spherical co-
ordinates O and ®5. Fig. 1(right) depicts state trajecto-
ries that correspond to measurement orientation sequences
(Fig. 1(left)) of various measurement strengths. The particular
type of measurement we employ guarantees that <'l/~1k|'le—1> =

(s | MU Gy = (G| MO [da)) > 0, ene
abling us to express the above geometric phase in the same
form as the Pancharatnam phase (1). It thus follows that
Xgeom = —§2/2 can be expressed via the solid angle Q sub-
tended by a piecewise trajectory on the Bloch sphere that
connects the neighboring states (|ix) and |¢r4+1); here we
imply |[¢)n+1) == |1o)) along shortest geodesics. Note the
difference between weak and projective measurements. In
the latter, the system states |¢y) are fully determined by the
measurement orientation and the measurement readout rg.
By contrast, the system state following a weak measurement
also depends on its strength n < 1 and on the state before the
measurement. Furthermore, for a quasicontinuous sequence of
strong measurements (N — oo and ||ng41 — ngl| = O(1/N)),
the readout rp = — is impossible due to the dynamical quan-
tum Zeno effect (17), rendering all readouts 7, = + and the
measurement-induced trajectory deterministic. For a quasi-
continuous sequence of weak measurements, the trajectory
is, instead, stochastic, manifested in a variety of possible
readout sequences {ry}, cf. Fig. 1(right). The probability
of obtaining a specific sequence of readouts {ry} is given by
Py = (Un[Yn).

For a general choice of n the final state |"Z’N> may not be
proportional to the initial state |¢o), meaning the trajectory
|1) — ... = |bn) is not closed. For simplicity, we take the
last measurement to be strong (nn = 1) and postselect it
to yield ry = + (i.e., discard those experimental runs that
yield rxy = —), hence MY = MY = |4po) (o] = Po. The
probability of getting a specific sequence of readouts {ry} can
then be expressed as

Prryry=ty = |<w0|1[’1\’>|2 = }<w0|1/~}N71>|2 [5]

with |1/~)N> = ’7/;{%}> as defined in Eq. (2). Thus,

ol MV ME? ) = /Py, ]
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Fig. 3. Statistics of the measurement induced geometric phase. The geometric
phase induced by continuous measurements (¢ = 7/4) as a function of the param-
eter ¢ controlling the strength of measurements: For the {r;, = +} postselected
trajectory, xgeom iS given by Eq. (7) (red solid line). The averaged geometric phase,
Xgeom EQ. (8), is represented by the blue dot-dashed line. Both curves show a
similar transition from a finite geometric phase for strong measurements to a van-
ishing one in the weak measurement limit. The gray-scale density plot shows the
probability distribution of the geometric phases in the absence of postselection. Note
that the phase of the postselected trajectory is the most probable one (black squares).
Forc ~ 0.1...1, a secondary peak emerges, and persists for intermediate mea-
surement strengths before fading out again. In the weak measurement regime, the
r,, = — readouts are not probable due to the weakness of the measurement. The
secondary peak seems to arise due to the trajectories with a single ), = — readout
at k ~ N/2, where the probability of such a readout is the highest. At intermediate
measurement strengths, the distribution is dichotomic and broader as the probability
of r, = — outcomes is higher. For large ¢, the secondary peak is suppressed and
the distribution finally collapses onto the result enforced by the dynamical quantum
Zeno effect. Inset: The probability of observing the {r,, = +} readout sequence (red
solid line) and the suppression factor e~ in Eq. (8) (blue dot-dashed line) arising
due to averaging (6 = /4). The probability distribution and averaging were obtained
performing Monte Carlo simulations with NV = 500 measurements per sequence and
Nyealizations = 4000 realizations.

We next study Xgeom as a function of the measurement
strength. We consider N — oo measurements with measure-
ment orientations {ny} that follow a given parallel on the
sphere, (0k,r) = (0,2wk/N). The initial state is [1po) =
cos0/2|1) +sinf/21])), cf. Fig. 1(right). The measurement
strength of each individual measurement is gy = n = 4¢/N — 0
with ¢ being a non-negative constant (except for ny = 1). The
sequence of N — 1 weak measurements can be characterized by
an effective measurement strength neg = 1 —e ™%, 0 < 7eg < 1.

Probability distribution of the measurement-induced
geometric phase

The probability distribution of the geometric phases is reported
in Fig. 3 as a function of the parameter ¢ quantifying the
effective measurement strength. For ¢ — 0, the distribution
is peaked around Xgecom = 0 corresponding to a vanishing
backaction from the measurement process. With increasing
measurement strength, the distribution develops a main peak
which continuously evolves towards the Pachnaratnam phase
in the strong measurement limit. This peak corresponds to
the the most probable trajectory associated with a specific
readout sequence, r, = + for all k, cf. Fig. 1 (red solid line).
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A secondary peak develops for intermediate measurement
strengths due to the non-vanishing probability of obtaining
rr = — for some k.

We first turn our attention to the geometric phase asso-
ciated with a specific readout sequence, r, = + for all k
(this means that if any rp = —, that particular experimen-
tal run should be discarded). For a generic measurement
strength, it is the most probable measurement outcome, hence
the corresponding GP is the most likely one. We parametrize
the Hilbert space trajectory as [¢(t)), ¢ € [0,27], so that
|(t =7k/N)) = |¢x) for k=1,.... N — 1 and |¢(¢ € [m,27]))
is the shortest Bloch sphere geodesic between |¢n_1) and
|¥n) = |¢o), cf. Fig. 1(right). This parametrization results in
a quasi-continuous trajectory since |||Yr+1) — |¥x)|| = O(1/N)
for k < N — 1. We investigate the behavior of ygeom and link
it to the behavior of |¢(¢)) as a function of the measurement
strength 7. Since the measurements are not projective (mea-
surement strength n — 0), the state after each measurement
is not necessarily the 1-eigenstate of on,. The state trajectory
on the Bloch sphere for § = 7/4 and ¢ = 3 is shown in Fig. 1
(red solid line). The probability P = Py, —4} of measuring
the desired readouts and the corresponding geometric phase
Xgeom (cf. Eq. (6)) can be calculated analytically for N — oo
and are given by

/PeiXseom _

with 7 = V22 — n2sin? 0 and z = ¢ + im cos 0, cf. Fig. 3 (red
solid lines).

We note three qualitatively different regimes depending on
the parameter ¢ controlling the effective measurement strength.
For strong measurements (¢ — 00), one obtains Zeno-like
dynamics: the state follows meticulously the measurement
orientation. In this limit, the probability of the successful
postselection of the measurement readouts approaches 1 and
the GP is —2/2: half the solid angle enclosed by the mea-
surement orientation, Q = 27w (1 — cosf). Similarly, in the
infinitely weak measurement limit (¢ — 0), the probability
of obtaining all readouts r = + approaches 1. In this limit,
however, the result stems from the fact that the system barely
interacts with the detector (cf. Eq. (4)); rx = + is the only
possible measurement readout and back-action is practically
absent: the system remains in its initial state at all times
and accumulates no geometric phase. Finally, for intermediate
strength measurements, the system reacts to the measurement,
yet its state does not follow the measurement orientation but
has a readout-sequence-dependent non-trivial trajectory. As a
consequence, the trajectory with all readouts r, = 4+ occurs
with reduced probability and a smaller postselected geometric
phase as compared with the strong measurement limit.

As a follow up, we characterize the effect of the probability
distribution of xgeom by studying the average GP and its
behavior as a function of 1. We define the averaged geometric
phase Xgeom as

—e” “(cosh(T) + zsinh(7)/7), [7]

24X —a .,/ 2iXg
€ geom .—<€ geom >rea1izations

=3 (ol M M ) s B8
{rr}

motivated by physically measurable observables (cf. Supple-
mentary Material). Here, the sum extends over all possible
measurement readouts {rx}. Also for the averaged phase,
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Xgeom

Fig. 4. Non-monotonicity of geometric phases. Dependence of the geometric
phase on the polar angle 6 for the postselected trajectory (red solid lines) for differ-
ent values of the integrated measurement strength (cf. legend). The ideal strong
measurement dependence for ¢ — oo is presented as a grey dashed line. The
asymptotic dependence of the GP on 8 displays an abrupt transition from monotonic
to non-monotonic behavior in the vicinity of ¢ = 2.15. The behavior is underlined
by the fact that xgeom (7/2) can assume only discrete values, 0 or —m. Inset:
the probability of observing the most probable trajectory with postselected readout
sequence {ry = +} at ¢ = 2.1; the grey dashed line indicates P = 1 for ¢ — oo,
showing the dynamical quantum Zeno effect.

one distinguishes three qualitatively different measurement
regimes (cf. Fig. 3). In the limits of either strong or weak
measurements, all trajectories except the one corresponding
to rr = + for all k carry negligible probabilities. Therefore,
the average GP approaches the value computed for the posts-
elected trajectory in those limits. The absence of fluctuations
in the GP and the near certainty of successful postselection
in the final measurement implies that dephasing is absent
(o — 0). Only in the intermediate regime, the distribution of
trajectories is broadened; the average GP then noticeably devi-
ates from the one in the postselected trajectory and dephasing
emerges. Interestingly, the dephasing suppression factor ac-
companying the geometric phase follows the same behavior
as the probability suppression of the postselected trajectory
considered above. This indicates the fact that the postselected
trajectory yields the dominant contribution, being often the
most probable trajectory. Indeed, while the probability of this
trajectory is O(1), all other trajectories contribute each with
its own phase and a small weight.

Postselected geometric phase: topological nature of
strong to weak measurement transition

We next study the dependence of the GP of the postselected
trajectory with all outcomes r, = + on the measurement
sequence polar angle 6 for a given measurement strength.
Consider the continuous function xgeom () : [0, 7] — R. (Note
that although Xgeom is a phase and is thus defined mod 27, we
unfold it to have values in R by demanding that Xgeom(0) = 0
and that Xgeom(f) is continuous). For ¢ > 1 (i.e., Mg —
1), it behaves as the standard Pancharatnam-Berry phase,
Xgeom (0) = 7(cos@ — 1). For ¢ = 0, Xgeom(d) = 0. We
find that the regimes of infinitely weak and infinitely strong
measurements are separated by a sharp transition, cf. Fig. 4.
For § = 7 /2, the expression in the r.h.s. of Eq. (7) is real,
implying that Xgeom (6 = 7/2) can only take values 0 and —.
Thus, the interpolation of xgeom (7/2) between the infinitely
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Fig. 5. Mapping of measurement sequences onto the system’s quantum trajec-
tories: a topological transition. A 6-dependent family of trajectories on the Bloch
sphere for ¢ < cerig (left) and ¢ > cerit (right). Yellow segments represent final
projective measurements, ascertaining closed trajectories. For stronger measure-
ments (right), the S? space of the measurement orientations n is mapped through
the measurement process onto the whole S2 Bloch sphere of quantum trajectories.
For weaker measurement strengths, the S space of measurement orientations is
mapped onto a subset of the Bloch sphere. The corresponding Chern numbers are -1
and 0, respectively.

weak and infinitely strong regimes must involve a discontinuous
jump. As the measurement strength is reduced, we have
Xgeom (T/2) = —7 to a critical strength, ceit & 2.15, below
which Xgeom (7/2) = 0. Note also that Xgeom(6) is a monotonic
function for ¢ > cerit and is non-monotonic for ¢ < cerit. A
C = Cerit, Xgeom(w/2) is ill-defined as the probability of a
successful postselection (i.e., that all readouts are r, = +)
PO =m/2)=0.

We relate these observations concerning the GP to the
behavior of the induced quantum state trajectory at 0 =
w/2, cf. Fig. 5. The quantum state trajectory for 6 = 7/2
lies entirely on the equator of the Bloch sphere. For ¢ >
Cerit, the trajectory after N — 1 finite strength measurements
(|1/19:7r/2(t € [0,7r])>) traverses more than half the equator;
the last projective measurement brings it back to the original
point by the shortest geodesic, completing the circle around
the equator. The solid angle subtended by the trajectory
is then Q = 27, and Xgeom(f = 7/2) = —7. For ¢ < cerit,
|1l}7r /2(7r)> has not reached the equator ’s middle, and the last
projective measurement again brings the system state back to
the original point by the shortest geodesic, which in this case
implies retracing its path back. The trajectory then subtends

no solid angle, and the resulting phase xgeom (0 = 7/2) = 0.

Note that the existence of a sharp transition at 6 = 7/2 is
protected by the fact that My(e.,r) is real, cf. Eq. (17), which
guarantees that the trajectory always remains on the equator
and thus Xgeom(7/2) € {0, —7}.

This picture, in fact, extends beyond the trajectories on the
equator. Consider the manifold formed by all state trajectories,
which is obtained via measurement sequences at 6 € [0, 7],
cf. Fig. 5. For ¢ > ccrit, this manifold covers the Bloch sphere,
while for subcritical ¢ it does not. The GP transition then
corresponds to a change in the topology of the set of state

trajectories — thence the designation “topological transition”.

While this transition can be intuitively understood from the
behavior of the trajectory on the equator, we prove it formally
below (cf. Methods) by considering the Chern number
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= 5= (Xgeom (T) — Xgeom(0)) € {0, —1}, 9]

1 T 2m 5
7/ d9/ dt B(0,1)
™ Jo 0

™

2
1
2
where B(6,t) is the Berry curvature

B(0,t) =Im (9 (o (t)| 96 1o (t)) — Do (v (t)] Ot [1ha(t))) -
[10]
Transitions in quantum dynamics as a function of the mea-
surement strength have been known for single qubits (29) and
more recently discovered for many-body systems (31). No-
tably, the topological nature of the transition we report here
is novel. Importantly, it implies that the transition is robust
against perturbing the protocol. For example, if one considers
sequences of measurements that follow generic closed curves
different from the parallels considered above, it would not be
possible to define Xgeom(7/2) and determine the transition
from its discrete set of values. However, as long as the family
of measurement sequences wraps the sphere, there is a Chern
number which assumes a discrete set of values (characterizing
a global property of the set of measurement-induced trajec-
tories) controlled by the measurement strength. Importantly,
the Chern number is different in the limits of weak and strong
measurements. This guarantees the existence of a critical mea-
surement strength, cerit, at which the Chern number changes
abruptly, and a concurrent jump of the phase xgeom associated
with a critical measurement sequence. Unlike the transition,
whose existence is protected by the change of the topological
invariant, the value ccit at which it takes place and the cor-
responding critical measurement sequence are non-universal
and depend on the specifics of the protocol.

Experimental implementations

In order to detect the postselected GP in an experiment, we
design a protocol based on a Mach-Zehnder interferometer
incorporating detectors in one of its arms (cf. Fig. 6(a)). An
impinging particle with an internal degree of freedom (spin
for electrons, polarization for photons) in state |1)g) is split
into two modes in the two interferometer arms. The com-
pound system-detector state is then |¥;) = |[¢o) ® (Ja = 1) +
la = —1)) ® |[4...4) /v/2, where a = %1 describes the par-
ticle being in the upper or lower arm, respectively, and
|[4...+) is the initial state of the detectors. In the upper
arm, the particle is subsequently measured by all the de-
tectors; in addition it acquires an extra dynamical phase
v controlling the interference. Running through the lower
arm, the state is left untouched. Traversing the interfer-
ometer, the state is then [¥) = |¢po) |a = —1) |[+...4) /2 +
€3 oy Tty Mo} |a = 1) [{r}) /v/2, where 7y is the
readout of the k-th measurement, and |{rx}) is the correspond-
ing collective state of all the detectors. The state with all
readouts rr = + coincides with the initial state of all the
detectors |+...4), therefore producing interference *. The

*Note that in this scheme we actually do not postselect the {ry = +} readout sequence but since
only this sequence yields no "which-path" information, it is the only one giving rise to interference.
Therefore, in the final interference, we only see the geometric phase of the {r;, = +} trajectory.
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Fig. 6. Experimental setups for observing
measurement-induced GPs. (a) Observing the
postselected GP in a Mach-Zehnder interference setup.
A particle interacts with a sequence of detectors in one
arm. The null-type of the measurements employed means
that the detectors do not change their state for r, = +
readouts. No "which-path" information is implied, hence
the GP acquired in the postselected readout sequence
{rx = +} is manifest in the interference pattern at
drains D1 and D2. (b) An equivalent setup with polarized

intensities observed at drains D1 and D2 are

N
1 i
Lo = 50 1+ Ree"” (3o H ML“W@
k=1
I ) )
_ 50 (1:|:\/PReergeom+’b"/), [11]

where, for N — 0o, v/Pe™zeom is given by Eq. (7) and Io is
the intensity of the incoming particle beam. The probability
of a successful postselection P = Py, —43 thus determines
the interference visibility, and the weak-measurement-induced
phase Xgeom is directly related to the interference phase. Note
that the null-type measurements are essential here as they
induce backaction without forming a "which-path" signature,
thus facilitating interference.

In practice, this protocol can be implemented employing
imperfect optical polarizers (cf. Fig. 6(b)). An imperfect po-
larizer can transmit (readout +) or absorb (readout —) the
impinging light. More specifically, each polarizer fully trans-
mits one given polarization (| + ng)) and partially absorbs the
orthogonal one (| — ng)). A transmitted beam corresponds
to a + readout, thus implementing a postselected null-type
measurement considered above (cf. Eq. (4)). By rotating
the polarizers and adding phase plates (e.g., quarter-wave
plates), it is possible to control the orientation | + ng) that
is fully transmitted. The larger the probability to absorb a
photon of polarization | — ny), the stronger the measurement
is. The polarization state of a beam traversing the sequence of
polarizers reproduces the postselected state with all readouts
rr, = +. Installing a set of polarizers in one of the interfer-
ometer’s arms would allow us to detect the postselected GP
through the interference pattern. The obtained signals at the
interferometer outputs D1 and D2 are

1+ P

Li2=1o (74 + %\/ﬁRe engeom+i7>

- % |14 V/Peixseontin

2

[12]

The GP can be extracted from the interference pattern con-
trolled by . The difference in the intensities compared to
Eq. (11) accounts for the loss due to the light absorption by

6 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

photons as particles and imperfect polarizers acting
as postselected weak measurements. In both setups,
we assume an extra phase difference e*” produced by
means other than measurements.

the imperfect polarizers. Note that the limit of polarizers cor-
responding to strong measurements (i.e., one polarization of
the beam is fully transmitted while the orthogonal polarization
is fully blocked) is a realization of the Pancharatnam phase
((15, 18)). The polarizers must be carefully designed such that
no additional phase difference between the two polarizations
is accumulated by the light passing through a polarizer. This
is particularly important because the topological nature of the
transition investigated above is protected by the hermiticity
of the Kraus operators, M;f’”. t

The above protocol can also be implemented using supercon-
ducting qubit hardware (23-26). In such an implementation,
the particle’s internal degree of freedom is replaced by the two
lowest levels of a superconducting Josephson junction (which
form the qubit). The lower reference arm of the interferometer
should be then replaced by an extra level that is unaffected
by the measurements.

Discussion

We have shown how sequences of generalized quantum mea-
surements may modify the phase of the state of the system
measured, inducing a purely geometric phase. In other words,
the trajectory traced by the quantum state can be directly
mapped onto the phase accrued during the sequence of mea-
surements. As opposed to geometric phases induced by an
adiabatic Hamiltonian evolution, the phases obtained here de-
pend on the measurement strength and are inherently stochas-
tic. We have put forward schematic experimental protocols
for measuring the geometric phase associated with a specific
postselected readout sequence (in other words: of a specific
postselected trajectory). We have shown that the mapping
of measurement sequences to geometric phases undergoes a
topological transition as the measurement strength is varied.
This transition is classified through a jump of a Chern number.
This transition is also manifest through an abrupt change
of the dependence of the geometric phase on the polar an-
gle, 6, of the measurement sequence from a monotonous to a
non-monotonous one. An analysis of the averaged geometric
phases in the Supplementary material shows a similar feature

TAn investigation of the weak-measurement-induced geometric phase when the Kraus operators
are non-Hermitian will be performed elsewhere.
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in the 6-dependence. Our analysis underscores for the first
time the topological nature of a strong-to-weak measurement
transition.

The transition prevails in a much broader context, which
is guaranteed by its topological nature. Since the Chern num-
bers in the limit of strong measurements and in the limit of
infinitely weak measurements are different, the transition will
take place also for measurements of different types, character-
ized by Kraus operators other than the ones we used (yet still
Hermitian). Further, while we investigated quasicontinuous
(N — 00) sequences of weak measurements, the transition will
take place for any number N > 3 of measurements (albeit the
critical measurement strength will depend on N).

We believe that the interplay between the topological nature
of the measurement and possible topological structure of the
system measured (associated with, e.g., non-Abelian quasi-
particles, band structure and dynamical evolution) opens an
intriguing horizon.

Materials and Methods

Measurement model. The measurement sequence leading to the geo-
metric phase in Eq. (3) consists of positive-operator valued mea-

surements (POVMs) defined by the Kraus operators M,(:k) =

My, (g, ), [¥) — MS’“)WJ), as described in the main text. Such
POVMs can be implemented with a detection apparatus consisting
of a second qubit, whose Hilbert space is spanned by |+) and |—)
and which is coupled to the system via the Hamiltonian

Ha(t) = M) (1 — o5))o(® /2. [13]

Here, o(s/4) denote the Pauli matrices acting on the system and de-
tector, respectively, on = n-o and n = (sin 6 cos ¢, sin @ sin ¢, cos 6),
0<6<m 0< ¢ < 2w, defines the measurement direction. The
system and detector are initially (¢ = 0) decoupled in the state

[w{™) ® |+), where
w8 =ap ol = (3). [14]

The measurement coupling A(¢) # 0 is then switched on for ¢ € [0,T]
to obtain the entangled state:

lhent) = exp [—igu - oﬁ“)a.fﬁ)/?] ™) +)
= My (0, H)[5™) [4) + My(n, )[8) =), [15]

Here, g = fOT dt\(t) determines the measurement strength n =
sin? g. The matrices M, (n,+) and My (n, —) are defined by

My (n,r) = R™*(n)My(ez, 7)R(n), [16]

where

1

Myfesi) = (o 0

) =32

are the Kraus operators for the measurement orientation along the
z axis (n = e;) and

_ (cos/2
En) = (sin9/2

(17)

e sinf/2 ) (18]

—e" ¥ cos /2

is a unitary matrix corresponding to the rotation of the measure-
ment orientation |+ n) = R~!(n)| £ e.) = R~(n)| 1 /). This
implements a null-type weak measurement as defined in the main
text.
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Geometric phase from a quasicontinuous measurement sequence
and postselection. The geometric phase xgeom obtained from the
quasicontinuous trajectory with all outcomes ry = + is given in
Eq. (7). This result is obtained starting from Eq. (3). By setting
[0) = R™1(ng) [1), the readouts r, = + and the measurement
orientations (0, pr) = (6, 27k/N), and using the explicit form of
Kraus operators in Eq. (16), one rewrites

(ol MG M o) = (110R (My—ae/n (o=, 1)5R) " 1),
[19]

where
SR = R(ngy1)R™ " (ng)

_ cos? g + e~ 27i/N gjp2 g l(l — e’2ﬂ/N) sin @ [20]
%(1 — e 2mi/NYgin g sin? g + e 2m/N ¢og2 g

is a matrix independent of k. The quasicontinuous limit is obtained
by diagonalizing the 2x2 matrix M, —4./N (ez,+)dR and calculating
the matrix elements in Eq. (19) in the limit N — oo . This yields
Eq. (7).

Chern number for the mapping of measurement orientations onto
state trajectories. The mapping of quasicontinuous measurements
orientations onto state trajectories is topologically classified by
the Chern number in Eq. (9). The discrete values of the Chern
number are in correspondence with the different regimes of the
0-dependence of Xgeom (¢). To prove this, we parametrize each state
[o(1)), 0 € [0,7], € [0,2n], as [go(1)) = €™ (cos S |) +
sin 2@ pi®(0.6) | 1)) = ¢io(0:0) | §(©, b)) with (©,P) being co-
ordinates on the Bloch sphere. Since [¢g(27)) = [¢p(0)) and
’1/19:07,‘.(t)> = |7,ZJ9:077T(0)>, the parameters ¢t and 6 can be regarded
as a parametrization of a sphere, and the map (6,t) — (O, ®) is
equivalent to the mapping of a sphere to a sphere F : S? 3 (6,t) —
(0,®) € S2.

In the quasicontinuous limit, the Pancharatnam phase in Eq. (1)
reduces to the Berry phase accumulated by |¥) and can be com-
puted by standard methods (3) to express it as an integral of
the Berry curvature. In fact, for any 6y € [0,7], we have

Xacom(80) = [° [T d6dt B(6,t) (see Eq. (21)).

where B(6,t) is the Berry curvature introduced in Eq. (10).
Alternatively, using the mapping F : (6,t) — (O, ®), the geometric
phase can be expressed in terms of a curvature on the Bloch sphere
as

0o 27
Xgeom (60) — Xgeom (0) = / / dédt B(6,t)
0 0

%) 27
:/ / a0at 22 ®) po @), 2]
0 0

a(0,t)
with
B(©,®) :%B(e(@@),t(@w))
=—1Im (8@ <\I/(®7 (I))| 8<I> |‘Il(@7 CD)>
— 09 (¥(O, ?)| 0 |¥(O, D))
=_ %sin o(0,t), [23]
and where (6, o) - @87@ B @63 o4
a6,t) — 90 ot It 90

is the Jacobian of F.

The r.h.s.  of Eq. (22) admits a simple interpretation:
Xgeom (00) — Xgeom (0) = —Ag,, /2, where Ag, is the oriented area of
the Bloch sphere covered by the measurement-induced trajectories
[T (O(0,t),®(0,t))) with 6 € [0,00] (here the orientation of each
infinitesimal contribution is given by the sign of the Jacobian). In
particular, for 6y = 7, Ax = 47 if the surface generated by all the
trajectories wraps the Bloch sphere once, and A, = 0 if it does not
wrap around the Bloch sphere, cf. Fig. 5. This provides the two
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Xgeom(ao) = Xgeom(e()) - Xgeom(o) =

(¥(O(bo,t + dt),

D (0o, ¢ + dt))| W (O (0o, ), (00, 1))

—i / 1 ({001, (00,11 21 [9(000.0). (0. 0)
0

possible values for the Chern number (9) C € {0, —1}. Formally,
this can be proven by explicitly using the degree of the map F (32).
The degree of the map F, deg F, is the number of points (6,t) that
map to a given point (6, ®) (provided that (©, ®) is a regular point
of F) taking the orientation into account. The degree does not
depend on the specific point (6, ®) and can be expressed as

Z Sgﬂ@(@, D)

deg F = ,
8 80, 1)
0.0)eF-1[(0.9)]

23]

where F~1[(©, ®)] is the set of points (0,t) that are mapped by F
into (©, ®), and sgn is the sign function. Considering the integral
as the sum of infinitesimal contributions and grouping those by the
image points (0, ®), one then shows that

/ / d9dt 20, )) sin ©(0,t) = 47 deg F.

This topological feature is reflected in the discrete value of
Xgeom (7/2), hence in the §-dependence of xgeom. To show this, note
that Eq. (7) is symmetric under complex conjugation supplemented
by 6 — 7 — 0, i.e. Xgeom(m —0) = —Xgeom(d) mod 2w. Using
the continuity of Xgeom(6), we obtain Xgeom (T — ) = —Xgeom (0) +
2Xgeom(7/2), and hence (for 8 = 0), Xgeom (7/2) = (Xgeom(7) +
Xgeom (0))/2 = Xgeom () /2 = wC. Therefore, we have xgeom (7/2) =
wC = —m for ¢ > cerit and Xgeom (7/2) = wC = 0 for ¢ < cerit as
shown in Fig. 4.

[26]

Monte Carlo numerical simulations. The results for the averaged GP
have been obtained using a Monte Carlo simulation of the sum over
different measurement readouts {ry},_; _ny_;. We simulated
the sequences of measurement readouts taking their probabilities

2
Pirprn=t} = |Woldn—1)|* = [@ol MGV TV . M o) | =

[(so] My(nn_1,7N_1) ... My(n1,71) |tho)|? into account. Namely,
the quasicontinuous trajectory was represented by N = 500 mea-
surements (N — 1 = 499 weak measurements and one strong post-
selected measurement). For the k-th measurement, we calculated

[97,(rk)) = My (g, i) [¥r—1) o [$x) (|x) is the normalization
of |1ﬂk>, which in turn has been defined in Eq. (2)) and randomly

determined the measurement readout r, = 4+/— according to prob-
abilities p(ry) = (¥} (7#)|¥}, (7)) Then, for the selected 7, the

normalized state [1g) = |w;€(r;€)>/ p(ry) was calculated; after
which the next measurement was simulated. After simulating N -1
weak measurements, z(,,} = z(realization) = ({1o|¥n— N =
P{TN:Jr}e%XECC’m({Tk}) was determined. After repeating this sim-
ulatlion Nrealizations times, ei2Xgeom —a — <52ixgcom>realizations =

N z(realization) was calculated. Fig. 3 was
realizations

obtained using

realizations
Nrealizations = 4000.

Data availability. All the data regarding the postselected geomet-
ric phase have been produced by means of an analytical formula,
Eq. (7).
of postselection and the averaged geometric phase (Fig. 3) have

The distribution of the geometric phases in the absence

8 | 10.1103/PhysRevLett.60.1351

2] 27
—Im/ / d0dt (8 (T(O, B)| 8, | W (O, B)) — 0, (V(©, B)| 9 | (O, B)))
0 0

6o 27 B
/ / d6dt B(0,1),
0 0

[21]

been plotted based on the data produced by Monte Carlo sim-
The code
implementing the simulations and the relevant data can be found

ulations according to the algorithm described above.

at https://github.com/KyryloSnizhko/top-geom-meas.
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Supplementary material

In this supplementary material, we focus on the full distribution of trajectories and we define and study the averaged geometric phase (GP).
Subsequently, we propose an experimental protocol for the detection of such an averaged phase based on Mach-Zehnder interferometry.
Throughout this Supplementary material, we use the same notation introduced in the manuscript.

1. Averaged geometric phase and its topological transition

The most sensible way to define the averaged geometric phase for the full distribution of trajectories is by appealing to averaging physically
measurable observables. Below, we propose a possible experimental setup for detecting the GP, which introduces a direct protocol for
averaging over numerous closed trajectories. The averaged geometric phase Xgeom is then defined through
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where xgeom is the geometric phase associated with each single trajectory as introduced in the paper, e~™® is a suppression factor

representing the suppression of the visibility of interference in the experimental setup (cf. Section 2 below) and the sum extends over all
possible measurement readouts {ry}. The suppression factor accounts for two effects: (i) the probability of a successful postselection in
the final strong measurement that ensures that the state trajectory is closed, and (ii) “dephasing” due to Xgeom having a spread of values
for different trajectories. The behavior of the averaged GP Xgeom as a function of the measurement strength has been reported in the
paper (cf. Fig. (3) therein).

The dependence of the averaged GP Xgeom(0) on the polar angle 6 of the measurement sequence presents a transition as a function of
the measurement strength in analogy to the case of postselected measurement sequences (cf. Fig. 7). Yet, the features of the transition are
different. We begin by noting that Xgeom is defined only mod 7 (cf. Eq. (27)) , i.e., Xgeom is defined on a circle S1 of circumference .
This makes a difference for the possible values of Xgeom at 6 = w/2: We have )_(geom(()) = 0 as in the postelected case but at the equator
0 = m/2, where the possible values of Xgeom are only 0 and —=, both values correspond to e?*Xgeom = 1 implying Xgeom (8 = 7/2) = 0.
Hence, Xgeom (0) obeys periodic boundary conditions Xgeom (7/2) = Xgeom (0), allowing us to identify the points § = 0 and § = 7/2 such
that 6 can be defined on a circle St of circumference /2. Therefore, Xgeom : S13560— Xgeom € ST maps a circle onto a circle and can
be classified by an integer-valued winding number m (how many times the function Xgeom(#) winds around the circle S1 of length m
as 0 varies from 0 to 7/2). In the limit of infinitely weak measurements, we have Xgeom(0) = 0, yielding m = 0. In the limit of strong
projective measurements, however, Xgeom (6) = m(cos @ — 1), yielding m = —1. If the function Xgeom(#) would depend continuously on the
measurement strength, m would be preserved by increasing the measurement strength, which is incompatible with the two limiting cases
of strong and infinitely weak measurements. Therefore, one expects a sharp transition at an intermediate measurement strength ¢ = Cerit,
marking the jump between these two different behaviors of Xgeom (). At this critical measurement strength, Xgeom(6) is ill-defined for a
certain polar angle Ocrit. At these critical parameters (Ocrit &~ 7/3 with cerit & 3.35), the visibility e~ vanishes, cf. Fig. 7 (inset).

With the {rp = +} readout sequence being the most probable, one naively expects the transition to take place near ccrit =~ 2.15.
However, precisely at the postselected transition (cerit & 2.15, fcrit = 7/2), the probability of this readout sequence vanishes, rendering
phase averaging over the remaining trajectories a crucial factor. The actual transition happens at Cerit = 3.35 and Ocrit = 7/3, when the
contribution of the {r;, = +} readout sequence is cancelled against the phase-averaged contribution of the remaining sequences.

2. Detection of the averaged geometric phase via Mach-Zehnder interferometry

In order to observe the averaged measurement induced GP, we propose an interferometric setup along the lines of the detection scheme
described for the detection of the postselected GP in the manuscript. Here, however, a different approach to coupling the detectors to
the polarization of the beam in the interferometer arms is needed. Indeed, we need to account for all readout sequences {ry}. Given
the initial detector state +, a readout ry, = — may serve as a "which-path" detection, undermining the interference (the readout r, = +
used for the postselected trajectory in the manuscript does not provide “which-path” information due to the properties of the null-type
measurement we use). The only way to overcome this handicap is to couple each detector to the two interferometer arms, making it
impossible to deduce from the readout signal which arm the particle went through. This is demonstrated in Fig. 8. The k—th detector
couples to on, = o - ng in the upper arm and to 0_n, = —on, in the lower arm of the interferometer. In addition, the particle’s inner
degree of freedom in the lower arm is flipped before and flipped back after the sequence of measurements. As a result, for any given
readout sequence {ry}, the trajectory on the Bloch sphere corresponding to the lower arm is exactly opposite to that of the upper arm
(i-e., it is inverted with respect to the origin). It follows that the solid angle Q2 subtended by the trajectories and the geometric phase
Xgeom accumulated through the upper and the lower arms have opposite signs but same magnitudes. Moreover, the probabilities P(,, } for
yielding the specific readout sequence {ry} are exactly the same in the two arms. This measurement scheme is thus completely devoid of
"which-path" signals. Provided that the N-th measurement is postselected to yield rny = + and the runs with rn = — do not contribute
to the readings at drains D1 and D2, the resulting intensities are
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where the second term in the parentheses is the interference term expressible as Re e?712iXgeom = (cf. FEq. (27)). We provide a formal
derivation of this result below. This Gedankenexperiment to detect the averaged GP could be implemented in a variety of systems, e.g.,
optical systems with absorptive polarizers or quantum dot detectors in electronic interferometers.

A. Output intensity of the averaged-phase interferometric detector. The observed intensity in the detection scheme presented in Fig. 8 is
given by Eq. (28). This result is obtained by analyzing the evolution of the compound system-detector state across the interferometer.
The collective state of the particle and all the detectors after the initial beam splitter of the interferometer is |¥;) = |10) @ [la = 1) +
la = —1)] ® |[+...4+) /v/2, where a = %1 describe the particle being in the upper or lower arm respectively, and |+...4) is the initial state of
all the detectors. A “flip” (cf. Fig. 28) applied at the beginning and at the end of the lower arm acts on the system via Rfl(no)ag(f)R(no).
The interaction of the system with each of the detectors is described by the Hamiltonian
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Fig. 7. Non-monotonicity and discontinuity of averaged geometric phases. We show the dependence of the averaged geometric phase on the polar angle ¢ at different
values of the integrated measurement strength (cf. legend) for the averaged geometric phase (blue dot-dashed lines) compared to that of the postselected geometric phase (red
solid lines). The ideal strong measurement dependence for ¢ — oo is presented as a grey dashed line. The dependence of the averaged GP on 6 displays an abrupt transition
from monotonic to non-monotonic behavior in the vicinity of ¢ = 3.35. The critical strength for the averaged geometric phases differs from that of the postselected geometric
phase. The behavior is underlined by the fact that x geom (€) can assume only discrete values, 0 or —7, at = 7 /2. Inset: The suppression factor e = (blue dot-dashed line)
in the protocol with averaging at ¢ = 3.3 compared to the probability of observing the most probable trajectory with postselected readout sequence {7}, = +} (red solid line)
at ¢ = 2.1; the grey dashed line indicates P = e~ % = 1 for ¢ — oo, an asymptotic strong measurement. The plots for the protocol with averaging have been obtained by
Monte Carlo simulations with N = 500 measurement steps per sequence and Nycalizations = 500000 realizations.
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Fig. 8. Experimental setups for observing the averaged measurement induced GPs. Scheme for observing the averaged GP, Xgcom, in @ Mach-Zehnder interference
setup. The detectors interact with the particle in both interferometer arms according to different Hamiltonians, H,, and H _,, cf. Eq. (29). Together with the flip of the particle’s
internal degree of freedom in the lower arm, this ensures that no “which-path” detection takes place, and all readout sequences {r, } contribute to the interference pattern at
D1 and D2. For any given readout sequence {r}, }, the GP accumulated by the particle is opposite in the two arms of the interferometer. We assume an extra phase difference
€' produced by means other than measurements.
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Ay, = MO~ (0 - )0 ]o i /2, [29]
where the Pauli z matrix a§“> acts on the degree of freedom describing the occupation of the upper and lower arms of the interferometer.
The role of Hy, is to let the detector interact simultaneously with the upper and lower arms via Hyn, and H_j,, respectively, such
that the occupation of one of the two arms is not detected and ensuring that the system in the upper and the lower arms accumulate
opposite geometric phases. After the interaction with all the detectors and the action of the final flip (but before the particle passing

through the last beam splitter) the global state of the system and detectors reads |\I/f> = [[¥1)]a=1) + |1h—1) |a = —1)]/v/2, where
1) = 3 g K MY M o) €7 and 1) = 3 Hmed) B (mo)ot™) Rino) MG . M R (no)o ™) R(no) [vo),

where [{ry}) is the state of the collection of detectors the particle interacted with determined by the readout sequence {ry}, v is an

extra phase that controls the interference pattern, and the Kraus operators Mg@rk) = My, (ng,rg) = R~ (ny) My, (e.,m,)R(ny) and
./\;ll(:k) = My, (—ny, 1) = R’l(nk)agf)Mn(ez7 rk)ag(;S)R(nk), The intensity of the output signals at D1 and D> are

No=1Io (Us| (108 |0y /2.

We now employ the fact that the last measurement is projective and postselected to rny = 4, with the ry = — readout
not taken into account in calculating Ii 2. Therefore, M%N) = Po = [¢¥o) (o] = |no) (no| and ./\;lxN) = |-ng) (—ng| =
R~ (no)o'¥ R(ng) |no) (no| B—'(no)o’) R(no), leading to
) = > 1) o) x (ol M7 M o) 7). [30]
{rr}
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In order to simplify the expression for [1)_1), we use the property
(o R~ (m0)ot™) R(no) MG T M R (n)t) R(no) o) = (wo\ MGV mi \wo>) : [32]

which we prove hereafter. Then, one immediately arrives at Eq. (28) for I 2.

Computation of the phase accumulated through the lower arm.  The evolution of the state through the lower arm entering the intensities
at the interferometer drain is computed via the property in Eq. (32), which we prove here. We recall from the Methods in the manuscript
(cf. Egs. (19,20) therein) that

o = ) o) = (“Gd TR MG ), -
and
Myes 1) = (5 1) Maten )= (5 ) 4]
Using the hermiticity of My (e.,ry), and the identities
ol RoS) = e 2N () sp=16(%) = = 2mi/N 5 () 5RT (M [35]
ol My ez, )0l = My(ez, ), [36]

for R, we can write
(ol B~ (n0)ot” R(no) MG~ ... MU R~ (o)t Rino) o)
= (ez] U£S)6RU;S)M"I(627TN—I)UéS)é-RU;S)M"](eZ’TN—Q)OéS)6R"'6RU(IS)M77(eZ»Tl)U;S)éROéS) lez)
= e 2MN/N (o, 0 R0 My (e, rv—1)0 VS RYL6RT 6L My (e, 11)0 ) 6RT L ez)

= (e:|6RT M, (es,7N_1)0RT My (e, 7n_2)0RT ...6RT M, (ez,m1)0RT |ez)
= ((ez| S RMy(ez,m1)0RM; (e, r2)0R...6RMy(ez,rn_1)0R |e2))" . [37]

Using the explicit representation of
1
ey =(5) 38)
(cf. Eq. (14) in the manuscript), we consider
(ez| 6 RMy(ez,m1)0RMy (e, m2)0R...6RMy(ez,rN_1)0R |ez)

= ((ez| 6RM;,(ez, 1) RMy, (e, 72)0R...6 RMy (e, 7n_1)0R |ez)) T
= (e:|SRMy(ez,rn—_1)0RMpy(ez,7N_2)0R...6RMy(ez,m1)0R|ez), [39]

where T denotes transposition, and in the last step we used §RT = §R and My (es, )T = My(e.,r), cf. (33, 34). Finally, noticing that
(| SRM;(ex, 7 —1)0RM;(ex, rn—2)3Re..SRMy (e, 11)0R |ez) = (o] MUN T . M) Jyo) [40]

one obtains Eq. (32), as desired.
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