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Summary: A control theory perspective on determination of optimal dynamic treatment regimes is considered. The

aim is to adapt statistical methodology that has been developed for medical or other biostatistical applications so as to

incorporate powerful control techniques that have been designed for engineering or other technological problems. Data

tend to be sparse and noisy in the biostatistical area and interest has tended to be in statistical inference for treatment

effects. In engineering fields, experimental data can be more easily obtained and reproduced and interest is more often

in performance and stability of proposed controllers rather than modelling and inference per se. We propose that

modelling and estimation be based on standard statistical techniques but subsequent treatment policy be obtained

from robust control. To bring focus, we concentrate on A-learning methodology as developed in the biostatistical

literature and H∞-synthesis from control theory. Simulations and two applications demonstrate robustness of the

H∞ strategy compared to standard A-learning in the presence of model misspecification or measurement error.

Key words: A-learning; Anticoagulation; Control; H∞-synthesis; Misspecification; Personalized medicine; Robust-

ness.

This paper has been submitted for consideration for publication in Biometrics



Adaptive Treatment and Robust Control 1

1. Introduction

Murphy (2003) introduced to a wide statistical audience the concepts of optimal dynamic

treatment allocation. In brief, decision rules are sought to allow treatment or other actions

to adapt to accruing information in an optimal way. With increasing interest in personalized

medicine, Murphy’s ideas have been taken up widely in the biostatistical literature and

approaches such as A-learning, Q-learning and outcome-weighted learning have become

popular. These methods are closely related to reinforcement learning in the machine learning

literature, to dynamic programming in general and to other sequential methods such as the

g-computation approach of Robins (1986). Chakraborty and Moodie (2013) provide a good

overview.

Murphy’s original approach is a form of A-learning, with the A standing for advantage,

and under which contrasts between expected outcomes under different treatment regimes

are modelled. Examples include Murphy (2003); Robins (2004); Henderson et al. (2010), and

Henderson et al. (2011). In Q-learning, where Q is taken from quality, the response itself

is modelled at each decision time as a function of history to date, and optimal actions are

determined sequentially (Chakraborty et al., 2013; Laber et al., 2014; Moodie et al., 2014;

Wallace and Moodie, 2015; Song et al., 2015; Linn et al., 2017). A- and Q- learning are

reviewed by Chakraborty and Moodie (2013) and Schulte et al. (2014). Outcome weighted

learning (Zhao et al., 2012; Zhang et al., 2012) is a form of direct search based on direct

estimation of the decision rule itself (Zhao et al., 2015; Zhou et al., 2017). Most of the

methods that have been developed to date are applicable to the case of a binary treatment.

In this paper we are interested in situations in which the treatment can take a large number

of values, such as the dose of a drug, and can be considered as effectively continuous. In

principle both A- and Q-learning and other methods can still apply, and indeed have been

applied by a small number of authors (Rosthøj et al., 2012; Barrett et al., 2014; Rich et al.,



2 Biometrics, XXXXX 0000

2014). Outcome learning is more problematic, though we note promising work for single

timepoints by Chen et al. (2016) and also the tree-based approach of Laber and Zhao (2015).

Nonetheless it is clear that this area is much less well developed than the binary treatment

situation.

When treatments are considered as continuous and there are a reasonable number of deci-

sion times, there are close similarities between the dynamic treatment problems considered

in statistics and some of the problems considered by control analysts (Sontag, 1998; Taylor

et al., 2013). Control theory has been useful for a number of statistical problems, such as

optimal experimental design (Pronzato, 2008; Hooker et al., 2015), theoretical analysis of

treatment allocation (Orellana, 2010; Zhang and Xu, 2016), or for control of biomarkers

(Deshpande et al., 2014; Chakrabarty et al., 2017). Still, to our knowledge, rather few of

the vast array of control techniques have been transported into the statistical methodology

literature. To illustrate, R is probably the computing environment that is most used amongst

researchers in statistics. Yet a search of the over 14,000 contributed packages that are publicly

available through the Comprehensive R Archive Network CRAN, showed none at all related

to control theory. In contrast there are multiple toolboxes in MATLAB, which is popular

with engineers, for almost all aspects of control theory.

More specifically, few of the many robust control methodologies have been transported

for optimal dynamic treatment problems, one exception being Bekiroglu et al. (2017), who

proposed a model predictive control approach assuming a sequence of binary treatments

mimicking behavioural change experiments. This is despite the robust control framework

complying well with biostatistical optimal dynamic treatment problems, where there are

multiple sources of uncertainty, including measurement noise, model misspecification, inter-

patient variability and so on. This paper takes a step in this direction by developing so-

called H∞-synthesis for A-learning using Murphy’s regret functions. We selected A-learning
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simply to bring focus: the methods can also be applied to other optimal dynamic treatment

methodologies.

We do not consider modelling, estimation or inference, relying for these on existing A-

learning techniques. Instead, our aim is show how H∞ methods can be applied after the

modelling stage so as to develop treatment rules that are robust to a raft of departures from

the assumed model (Glover and Doyle, 1988; Doyle et al., 1989). These aims are partially

shared with some attempts by statistical researchers to develop either robust or transportable

decision rules (Orellana et al., 2010; Qian and Murphy, 2008; Zhang et al., 2012, 2013;

Wallace et al., 2016; Xu et al., 2016). As will be seen, the methods are very different.

In the next section, we present our general framework, summarise the A-learning methodol-

ogy and show how regret and state-space models can be linked. In Section 3 we concentrate on

linear state-space models and discuss a selection of treatment strategies from the statistical

and control literatures, including a summary of the H∞ approach, with fuller information

provided in online supplementary material. In Section 4 we present simulations in which the

approach developed here gives a more robust strategy than a treatment policy derived di-

rectly by application of A-learning. This advantage is confirmed in two applications presented

in Section 5. In the first, our method and standard A-learning procedures are compared using

an experimental ventilation chamber which allows evaluation and comparison of proposed

strategies. In the second, we conduct a retrospective comparison between model-based and

robust anticoagulation decision rules and those selected in practice by clinicians.

2. Preliminaries

2.1 Informal background

We assume that treatment allocations or other decisions are to be made for individual

subjects longitudinally, with the expectation that the choice will depend upon accruing
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information. For a generic subject, assessments are to be made online at times 1, . . . , T . At

time t the available information on the current state of the individual is St. This might be,

for example, a vector of biomarker values, results of a battery of psychological tests, or some

other summary of current condition or change in condition.

Immediately after St becomes known, an action At is selected, such as treatment to be

administered or discontinued, dosage to be applied, or perhaps timing of the next assessment.

For t > 1 let St = (S1, . . . St) and At−1 = (A1, . . . At−1). In addition set S1 = S1 and adopt

the convention that A0 is null. Hence the information available to the decision maker at

time t is Ht = (St, At−1) and the objective is to develop a decision function dt = dt(Ht)

that proposes an action given the information to hand. A treatment strategy then means a

sequence of decision functions d = {dt}16t6T−1 chosen to meet some overall aim generally

given under the form of an outcome of interest Y (d) to maximise. In our case we restrict

ourselves to the objective of stabilizing a patient state {St} as closely as possible to a target

s∗. For this, we take as outcome:

Y (d) = −
T∑
t=1

{St(d)− s∗}T {St(d)− s∗} = −
T∑
t=1

‖St(d)− s∗‖22, (1)

and the optimal strategy dopt is defined as the maximizer over strategies d of E [Y (d)]. For

simplicity we will assume the target to be time-fixed, but the methods can be extended

to time-varying targets if required. This is a typical objective for long-term maintenance

therapies, such as control of insulin, white blood cell count, CD4 levels or blood clotting

times, as in the example of Section 5.2.

Here Y (d) and St(d) are counterfactuals that would arise if treatment strategy d were

selected. As our focus is not on estimation and inference, we will not introduce any spe-

cial notation for counterfactuals, nor discuss conditions required for causal inference. See

Chakraborty and Moodie (2013) for fuller information and discussion if required.
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2.2 A-learning and regret modelling

A-learning relies on modelling contrasts between expected outcomes under different decision

rules (Schulte et al., 2014; Moodie et al., 2007; Robins, 2004; Rosthøj et al., 2006). The regret

version introduced by Murphy (2003) is based on functions of the form

µt (at | Ht) = E{Y (doptt ) | Ht} − E{Y (at, d
opt
t+1) | Ht} (2)

with doptt = (doptt , . . . , doptT−1). Thus E{Y (doptt ) | Ht} denotes the expected value of Y if the

optimal policy is followed starting from t and if the patient has prior history Ht. In contrast

E{Y (at, d
opt
t+1) | Ht} is the expected value if, given the same prior history, action at is selected

at t but the optimal policy followed thereafter.

The function (2) quantifies the loss made by choosing at as the action at time t instead

of doptt (Ht), and is consequently the regret caused by taking at in comparison with the best

possible decision. Since we have assumed that the objective is to maximize the expected

value of Y , by definition the regret is non-negative and µt(at | Ht) = 0 if and only if at

corresponds to the optimal decision doptt (Ht).

The optimal decision rule is of course unknown. To estimate it, Murphy proposed two

steps:

(1) A parametric form µt (at | Ht) ' µt (at | Ht;ψ) is assumed, and an estimator ψ̂ is

constructed from the data. Usually only a subset of Ht is assumed to be important

and the dimension of ψ is kept modest.

(2) An estimator of the optimal treatment strategy value d̂optt (Ht) is derived by solving the

equation µt(at | Ht; ψ̂) = 0.

The first step is delicate and has been the focus of most research in the biostatistical area.

But once it is achieved, the second step is usually taken as straightforward provided the

regret function is parametrized so that zero is achievable. We simply choose the action that

leads to zero regret.
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2.3 Link with state-space models

To adopt a control theory point of view we need to make a link between µt (at | Ht) and

a state-space model of St. First we introduce some notation. We use St and At to denote

the supports of the state and action variables St and At respectively. Similarly, we define

S t and A t as the supports of the histories St and At. Recall that the information available

immediately prior to choice of At is Ht =
(
St, At−1

)
and that doptt (Ht) is the optimal but

unknown decision at time t. For r > t now let doptr\t = (doptt+1, . . . , d
opt
r ) be the next r−t optimal

decisions. Obviously these will depend on past values but this is suppressed in the notation.

We will make three assumptions.

A1. The target for maximisation is Y (d) given by (1), that is

Y (d) = −
T∑
t=1

‖St(d)− s∗‖22.

A2. The system evolution linking the next patient state St+1 with its history Ht and the

chosen action At can be described by a state-space model

St+1 = ft(Ht, At) + εdynt (3)

for some function ft, and with εdynt a random variable representing stochastic innovations

acting on the system dynamic and independent of (Ht, At). Without loss of generality we

assume E[εdynt ] = 0.

A3. At each time t there is an action which will allow the expected state to reach its target

value. Thus for all St ∈ S t and At−1 ∈ A t−1, there is an at ∈ At such that

ft(St, At−1, at) = s∗.

Ensuring s∗ is reachable given a state-space model is known as the reachability/controllability

problem in control theory. When the model is linear and time-invariant, a rank condition

on model components has to be satisfied (see Sontag (1998) Chapter 3). For more general

models there is no standardised way to check for controllability, and bespoke methods are

needed for the model and target to hand.
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Each of these assumptions can be relaxed to at least some extent. For example we might

adopt a non-myopic strategy by allowing the target s∗ to be time-varying and always

within the range that is achievable at any time. Then the expected state can be walked

in the desired direction rather than forcing a dramatic short-term change. The assumptions

are kept to allow us to focus on the main ideas rather than considering too much detail

and our results follow from the assumptions as given. Proofs of the propositions are in

supplementary material. The first result relies on the form of Y and the independence of

εdynt from, specifically, the immediately preceding action.

Proposition 1: Under A1 and A2, the regret function at time t ∈ {1, . . . , T −1} has the

general expression

µt (at | Ht) = ‖ft(Ht, at)− s∗‖22 −
∥∥ft(Ht, d

opt
t (Ht))− s∗

∥∥2
2

+
∑T−1

r=t+1 E
{∥∥∥fr(Sr, {At−1, at, doptr\t}) + εdynr − s∗

∥∥∥2
2
| Ht

}

−
∑T−1

r=t+1 E
{∥∥∥fr(Sr, {At−1, doptr\(t−1)}) + εdynr − s∗

∥∥∥2
2
| Ht

}
.

The addition of assumption A3 leads to a simpler result.

Proposition 2: Under A1, A2 and A3 the regret function at time t ∈ {1, . . . , T − 1} has

the general expression

µt (at | Ht) = ‖ft(Ht, at)− s∗‖22 .

After fitting a regret or other model, a decision strategy can be selected. Performance in

future practice may then be affected by at least three sources of uncertainty.

(1) Parametric uncertainty. Error due to estimation of the assumed parameter values, i.e.

ψ̂ = ψ +4, with 4 an unknown error term.
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(2) Measurement uncertainty. We may not have access to St but only to noisy observations

St = St + εmt with εmt measurement noise.

(3) Model misspecification: dynamic and model uncertainty. The regret function parametriza-

tion may not be appropriate for the training data, which we think of as model uncertainty.

Or it may be correctly specified for the training data but not fully suitable for all new

patients, which we refer to as dynamic uncertainty.

Parametric uncertainty is of course acknowledged in standard statistical approaches, at

least during the inference stage. A consequence of measurement uncertainty is that estimates

and treatment strategies can be based only on the observed history Ht = (St, At−1), where

St = (S1, . . . ,St), rather than the true history Ht. In principle measurement error can

be allowed in standard optimal dynamic treatment approaches, though in practice this

possibility seems to be overlooked. Model and, particulary, dynamic uncertainty are more

problematic from a statistical viewpoint but these are precisely the forms of disturbances

that robust control policies are designed to give protection against.

3. Treatment Strategies for Linear State-Space Models

3.1 Linear State-Space Model

The definition of a discrete optimal control problem generally requires a state-space model

describing the evolution of St and a cost function to minimize which takes as argument

acceptable treatment strategies d.

A state-space model follows from Proposition 2. As soon as we assume a parametric

formulation for the regret function µt (at | Ht) = µt (at | Ht;ψ), we automatically have

a parametric form for ft(Ht, at) = ft (Ht, at;ψ). For this work, we restrict ourselves to

parametric regret functions of the form:

µt (at | Ht;ψ) = ‖s∗ − FS(ψ)S
r

t − FA(ψ)A
q

t−1 − Fa(ψ)at‖22, (4)
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where S
r

t = (St, St−1, . . . , St−r+1)
T, A

q

t−1 = (At−1, At−2, . . . At−q)
T and FS(ψ), FA(ψ) and

Fa(ψ) are time-constant matrices of appropriate dimension. This means that

ft(Ht, at;ψ) = FS(ψ)S
r

t + FA(ψ)A
q

t−1 + Fa(ψ)at.

Our regret estimator is µt

(
at | Ht; ψ̂

)
, with ψ̂ an estimator of ψ obtained using any of the

existing methods. Note that even for a correctly specified model ψ̂ may be inconsistent in

the presence of ignored measurement error in the training data. Proposition 2 leads from

the regret to an uncertain linear time-invariant model for the true state St and its observed

version St:

St+1 = FS(ψ̂)S
r

t + FA(ψ̂)A
q

t−1 + Fa(ψ̂)at + εglobt

St = St + εmt . (5)

Here εglobt is the error caused by using ft(Ht, at; ψ̂) instead of the true model ft(Ht, at) + εdynt

as the state space model. It can be decomposed as

εglobt = ft(Ht, at)− ft(Ht, at;ψ)

+ ft(Ht, at;ψ)− ft(Ht, at; ψ̂)

+ εdynt

The first term is the error when we assume a wrong parametric form for the model (model

uncertainty), the second is the error due to estimation from the possibly noisy training data

(parametric uncertainty), and the third is stochastic disturbance acting on the system which

cannot be taken into account (dynamic uncertainty).

In (5) the term εmt represents measurement error at time t, which we collect with εglobt in

the vector

wt =

 εglobt

εmt

 . (6)

having twice the dimension of St.
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3.2 Treatment strategies

A decision strategy that aims to produce zero regret would respect ft(St, At−1, d
opt
t (Ht)) = s∗,

which under (5) would allow the decision rule to be expressed as a linear combination of the

elements in Ht. In control terminology this would be described as a deadbeat strategy. These

are little used in practice, because there is often high variability from one time step to the

next and because of a lack of robustness to any form of uncertainty, including the variants

summarised in Section 2.3. Uncertainty is of course the rule rather than the exception in

real applications. Consequently it is common to accept some underperformance under ideal

conditions in return for robustness in non-ideal circumstances.

One quick and simple alternative would be to change Y (d). For example, we might replace

the outcome Y (d) in (1) with a penalised version

Y (d, λ) = −
T∑
t=1

∥∥St(d, w∗t−1)− s∗∥∥22 − λ‖d(Ht−1)‖22, (7)

with λ a positive constant. Here St(d, w
∗
t−1) is the solution of equation (5) for the treatment

strategy d, and the sequence w∗t−1 := (w∗1, ..., w
∗
t−1) is a realisation of wt up to time t − 1.

Using (7) allows a penalty to be applied to overly-aggressive treatments, assuming that

treatments are parametrized so that small absolute values are preferred, and easily adapted

otherwise. Moreover, the use of a linear state-space representation (5) and the addition of a

Tikhonov regularization term in equation (7) leads our approach to be robust to some level

of misspecification in the way treatment action is modeled (El Ghaoui and Lebret (1997)

and Sra et al. (2012) Chapter 14). At a more theoretical perspective, for a given disturbance

realization w∗T , adding a quadratic penalty term to the input ensures the existence and

uniqueness of the treatment strategy minimizing Y (d, λ) as well as its continuous dependence

with respect to observations. This is a classic result from Linear-Quadratic theory (see Sontag

(1998)).

An alternative approach is to concentrate on directly parametrizing the decision rule itself,
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say dt(Ht, β), and then seek the β that gives the optimal policy within this reduced class of

rules, with as few additional assumptions as possible. An important paper in this class is

the robust procedure of Zhang et al. (2013), which builds on Zhang et al. (2012). In brief,

for each candidate value of β we look for the subset of patients in a training data set whose

actual treatments are consistent with the rules dt(Ht, β) at all t. Then we find the β for

which such subsets give good responses. In a little more detail, let Cj = 1 if all decisions for

patient j match those given by dt(Ht, β), with Cj = 0 otherwise. Then in its simplest form

this approach would choose the value of β that maximizes

1

n

n∑
j=1

CjYj
πj(β)

,

where Yj is the observed value of (1) for patient j in a training set of size n, and 1/πj(β)

is a weight function selected to provide consistent estimation. In finite samples of course

rather few patients will have Cj = 1, especially if there are multiple timepoints and multiple

treatment possibilities. More efficient versions are available which make use of more patient

information (Zhang et al., 2013) but nonetheless the method is not realistic when there are

many treatment options, and is not possible for continuous treatments.

There are a vast number of control theory approaches for bringing robustness. Many, as

above, involve writing down a parametric expression for the decision rule and then either

theoretically or empirically seeking the parameter values that lead to desirable performance.

For example, a simple proportional integral controller is conventionally expressed in the form

dt(Ht, K1, K2) = −K1St −K2

t−1∑
r=1

(Sr − s∗),

where matrices K1 and K2 determine how the rule responds to short and long term re-

sponses respectively. A proportional integral derivative controller extends this by including

an additional term corresponding to the current rate of change, and there are many further

variants.

The method that we will concentrate on for the remainder of this paper is taken from
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H∞-synthesis in control theory. Recall that in (5) and (6) we collected all uncertainties in

a vector wt, including measurement error, estimation and modelling errors. We have not so

far made any assumptions about wt other than the additive effect in (5). This is sufficient

for the H∞ approach, which assumes there is an acceptable set D of decision rules and looks

within this set for the rule dinf that minimizes the maximum possible output-to-noise ratio

over all possible non-zero realisations w∗t of wt. Thus

dinf = arg min
d∈D

sup
w∗T−1 6=0

{∑T
t=1

∥∥St(d, w∗t−1)− s∗∥∥22 + λ‖d(Ht−1)‖22∑T−1
t=1 ‖w∗t ‖

2
2

}
. (8)

The goal of this strategy is to reach the target value while uniformly minimizing the impact

of exogenous perturbation on the system. There is no claim of course that dinf will always

lead to good performance when the disturbances are large, but it will provide a least-bad

strategy.

To progress, we obviously need to be able to solve the optimization problem in (8). This

is feasible if we are willing to restrict the set of acceptable strategies D to linear feedback

form

dt(Ht) = K1
1S

r

t−1 +K2
1A

q

t−1 +K3
1O

f
t

Of
t+1 = K1

2S
r

t−1 +K2
2A

q

t−1 +K3
2O

f
t , (9)

where Of is an inner state-variable, appearing only in (9) and driven by it. Such restriction

of D ensures we have necessary and sufficient testable criteria for the existence of a solution

for the problem (8), as described in supplementary material. Further, the coefficient matrices

{Kj
i } can be derived and hence dinf can be obtained, as also summarised in supplementary

material. In practice, given the cost function in (8) and the state-space equation (5), easy-

to-use software is available, such as the hinfsyn function in MATLAB. This produces a

frequency-domain transfer function that can be used to derive the coefficient matrices in (9)

and hence provide a dynamic treatment rule.
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4. Simulations

4.1 Experimental design

We have defined dinf to be the H∞ strategy. Let dnom be the regret-based strategy based

on the nominal model assumed in (4). To compare dnom and dinf through simulation we

generated 100 training data sets with scalar states and actions. Each set consisted of 100

longitudinal data sequences of length T = 15. True states St were generated using (3) with

mean functions

ft(st, at;ψ) = f ∗t (st, at;ψ) + gt(st, at),

where gt is included in order to simulate model misspecification. Treatments At were drawn

uniformly between -2 and 2, and all targets s∗ were set to zero. After each training data set

was generated, a regret model µi (at | Ht;ψ) was specified and the parameters estimated from

the training data using the regret-regression approach developed by Henderson et al. (2010).

The two treatment policies dnom and dinf were then obtained and applied so as to generate a

further 100 longitudinal data sequences of the same length T = 15. Actions were determined

by policy but states generated using the same state-space model as for the training data. We

modelled the different kinds of uncertainty as follows.

(1) Model misspecification. To add stochastic disturbance at time t, we took an N(0, σ2
dyn)

distribution for εdynt . In order to imitate model uncertainty, we took as assumed regret

functions

µt (at | Ht, ψ) = {f ∗t (Ht, at;ψ)− s∗}2 ,

so that the functions gt are missing.

(2) Measurement uncertainty. At each time t, we took St = St + εmt where εmt ∼ N(0, σ2
m).

(3) Parametric uncertainty. Instead of ψ, we used in generating dnom and dinf the estimator

ψ̂ obtained from the training data set.
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We took the assumed state evolution model to be

f ∗t (st, at;ψ) = ψ1st + ψ2at + ψ3st−1 + ψ4at−1, (10)

with true parameter values (ψ1, ψ2, ψ3, ψ4) = (0.6, 0.2, 0.25, 0.15). For model uncertainty

we assumed an interaction was ignored so gt(st, at) = g1 × st−1at−1. We took four different

values for the coefficient g1, namely 0, 0.005, 0.02 or 0.04, We used three levels each for the

variances of the stochastic perturbations and measurement noise, σ2
dyn = 0, 0.1 or 0.3 and σ2

m

= 0, 0.1 or 0.3 respectively. Figure 1 gives examples of generated data under these scenarios.

[Figure 1 about here.]

For each scenario and treatment rule we estimated the quantities

ERR {d} = −Egt ,σ2
dyn, σ

2
m
{Y (d)} , VERR {d} = vargt ,σ2

dyn, σ
2
m
{Y (d)} . (11)

The first quantity, ERR, is the negative of the original criterion, and so ideally minimized

by dopt. The second, VERR, is the variance of the outcome computed on the patient set.

4.2 Sensitivity analysis and adaptive selection method for λ

We now consider the role of the penalty parameter λ in the H∞ strategy (8), and denote

the decision rule as dinfλ so as explicitly to acknowledge the dependence on λ. In the upper

section of Figure 2 we show ERR
{
dinfλ

}
for different values of

(
g1, σ

2
dyn, σ

2
m

)
as λ is varied.

The pattern is similar in all three panels, with the quality of dinfλ quickly increasing with λ

before starting to slowly decreases later. This calls for an adaptive method to select λ.

Given training data Hj
T =

(
SjT , A

j

T−1

)
for j = 1, 2, . . . n, we propose an algorithm based

on scoring the number of occasions at which the H∞ strategy is retrospectively assumed to

provide a better decision than that chosen in practice. We total, over all time points t and

all training data individuals j, the number of occasions on which either

Sjt+1 > s∗ and dinfλ (Hj
t) < Ajt
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or

Sjt+1 < s∗ and dinfλ (Hj
t) > Ajt .

We retain the value of λ that corresponds to the highest score. To illustrate, the lower section

of Figure 2 shows how the scores change with λ. The optimal values of λ in the lower plots

would all lead to acceptable decision rules, in that the corresponding ERR
{
dinfλ

}
in the

upper plots are in the low, flat, regions.

[Figure 2 about here.]

4.3 Results

Results are presented in Table 1. Those for dinf are based on use of the algorithm of the

previous subsection for choice of penalty λ. The quantity denoted “Ratio” is the mean value

of

T−1∑
t=1

gt(St, At)
2

f ∗t (St, At)2
,

which is the ratio of the unknown over the known part of the model computed on the training

set. It is used to quantify the level of misspecification.

When there is little or no model misspecification or uncertainty, dnom slightly outperforms

dinf , as expected, though the performance of dinf is still good. However, as noise and

misspecification levels increase, dinf is much better than dnom in maintaining the true St close

to target s∗. Further, the low values of VERR for dinf suggest uniform good performance

despite high inter-subject variability.

[Table 1 about here.]
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5. Applications

5.1 Ventilation chamber experiment

We tested the dnom and dinf strategies using an experimental ventilation chamber (Taylor,

2004), which allows us to generate training data for the modelling and estimation phase, and

then test data following any of the recommended strategies. Unlike a simulation experiment

there is no known true model, and unlike a standard application we have the opportunity to

test different strategies.

The aim is to control the internal temperature of the chamber by adjusting the voltage

applied to a heating element. Internal temperature is additionally affected by external

temperature, which is not under our control, and by air flow, which is determined in part

by external conditions and in part by two fans inside the chamber, one outlet and one inlet.

In the experiments we considered air flow to represent environmental conditions, with the

outlet fan used to give run-to-run variability and the inlet fan used to add time-varying

noise.

In the following our true state St is the difference between ventilation chamber temperature

and outside temperature, At is the chosen input voltage to the heater, and εdynt represents

exogenous disturbance due to air flow and potential other unmeasured variables.

To demonstrate use of the heater, the target was set to be 6 C warmer than the outside

temperature i.e s∗ = 6. The first step was to derive from training data an appropriate regret

model within the class (4) and estimate its parameters. As training data we generated 30

trajectories, each of 15 sampling times, and with the input heater voltage At set at either

2V or 4V. The initial choice was random with equal probabilities, and then at samples 5 and

10 we randomly either changed to the alternative voltage or left it at the current value. The

outlet fan input was set at a different level for each trial, selected randomly in the interval

1–3V and held constant throughout the trial. For time-varying disturbances we changed
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the voltage to the inlet fan each second, with the changes drawn from a centered Gaussian

distribution with standard deviation 0.2V. Five examples of state and action training data

are given in Figure 3.

[Figure 3 about here.]

We found that a very simple regret model

µt (at | Ht;ψ) = (s∗ − ψ1St − ψ2at)
2

was adequate for the data, with ψ̂1 = 0.7 and ψ̂2 = 0.5 estimated by using the regret

regression approach proposed by Henderson et al. (2010). From this, we obtain the regret-

based decision rule

dnomt

(
Ht | ψ̂

)
=
s∗ − ψ̂1St

ψ̂2

and the uncertain state-space model

St+1 = ψ̂1St + ψ̂2at + εglobt ,

which is used to define dinf using the methodology of Section 3.

Next we performed additional trials in which the input voltage, now on a continuous scale,

was selected using either the regret or H∞ strategies, dnom and dinf respectively. We took

two versions of the H∞ strategy, one with λ = 0.01 and one with λ = 0.001. In each of the

three cases we performed ten new trials, this time of 30 sampling points each. In all cases

the target remained at s∗ = 6 and we set the fan inputs in the same way as for the training

data.

Results are summarised in Table 2 for both the total response over the whole test period

and over the 15 final sampling times. The latter was chosen to represent steady state after

transition from the initial conditions. In terms of average mean square error (MSE) and mean

maximum absolute error (MAE), the H∞ controllers gave better results for both choices of λ
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than the regret rule dnom . The difference in performance was more pronounced at the steady

state, that is, once the system is stabilized near the target value.

[Table 2 about here.]

5.2 Warfarin data analysis

We now consider a more typical application of A-learning methodology, which is the choice

of drug dose for patients prescribed Warfarin as long-term anticoagulation prophylaxis. At

each observation time t we take the measured state St to be the log-transform of the blood

clotting speed, measured through the international normalized ratio (Baglin et al., 2006).

We take the input At to be the prescribed Warfarin dose in mg. If clotting time is too low

there is a risk of thrombosis and an increase in dose is suggested. If clotting time is too high

there is a risk of hemmorrhage and a decrease of dose might be warranted. A typical example

of patient history is given in Figure 4.

[Figure 4 about here.]

Our purpose is to make a retrospective comparison between dose levels that could have

been suggested using regret-based or H∞ strategies with those actually chosen by the

healthcare providers. The available data consists of the records of 152 patients receiving

Warfarin anticoagulation in Newcastle-upon-Tyne during 2013. Our analyses of the records

indicated no effect of time intervals between clinic visits and so we consider the data as being

in discrete time, indexed by clinic visit number. For our approach we need a sufficient number

of observations for each patient, so we narrowed the analysis to the 120 patients with at least

20 successive measurements. To have data sequences of the same length for comparison, we

took only the first T = 20 entries for each of these patients. We randomly divided the

patients into a training set of 20 patients for calibrating the required models and a testing

set of 100 patients for comparing treatment strategies. This balance was selected because of
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our focus on treatment comparison rather than modelling and inference. We repeated the

random selection ten times.

The international normalized ratio is usually considered as acceptable if it lies between

two and three, so we choose as target value s∗ = log(2.5). For each training set we fit the

very simple regret model

µt(at | Ht, ψ) = (s∗ − ψ1St − ψ2at)
2 .

More complex functions taking into account past outputs and inputs showed little consistency

between the training sets, which is unsurprising given their small size. Once ψ has been

estimated, we define dnom and dinf as presented in Section 3 for each patient and for each

decision time, using λ = 0.001 for dinf .

For the comparison, we divided the decisions in the test data into three groups, corre-

sponding to when the healthcare provider chose a dose ahpt at time t that seemed to be good,

that seemed to be too low, and that seemed to be too high. We assumed a decision to be

good if measured blood clotting speed at the next observation time was within the target

range of log(2) to log(3). There were 52% of decisions in this category and in these cases we

quantified the difference between the chosen dose and each of d = dnom and d = dinf by

GDj,t(d) =
|d(Hj,t)− ahpj,t|

2{d(Hj,t) + ahpj,t}
for patient j at time t.

For 18% of decision times ahpt was followed by a clotting time above the upper limit of the

target range. Here we assume that a lower dose would have been preferred and use

HDj,t(d) = 1{d(Hj,t) < ahpj,t}

as performance measure. For the remaining 30% of decisions ahpt was followed by a clotting

time below the lower limit of the target range and for these we assume that a higher dose

would have been preferred and measure performance through

LDj,t(d) = 1{d(Hj,t) > ahpj,t}.
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Table 3 presents the mean values of these statistics, averaged over patients and decision

times, for each of our ten random splits of the data. When the actual decision is acceptable

dnom gives results that are on average closer to those selected by the healthcare provider

than are decisions dinf . In both cases the mean differences are low however. Otherwise, if the

actual decision is poor then dinf outperformed dnom in all ten trials. The actual dinf decisions

were invariably more cautious than dnom when the latter was to recommend a relatively large

change in dose.

In the absence of model or dynamic uncertainty the regret-based policy would be optimal.

In this case the estimated proportion of visits for which the INR would be in the target range

is 67%, which is to be compared with the previously-mentioned observed value of 52%.

[Table 3 about here.]

6. Discussion

We have tried to show how H∞ methods can be of use in dynamic treatment allocation, after

the modelling and estimation stages. We envisage that these and other control methods will

be of most use in applications involving quantitative choice of drug dosage for patients with

chronic conditions, in which the aim is to maintain a biomarker at, or close to, some target

level. The warfarin application of Section 5.2 provides a typical example. Although not

considered in the paper, covariates can easily be taken into account because the H∞ method

simply takes as input an assumed model. Thus we can build a covariate-dependent model on

training data, and simply input the model with individual-specific covariates at the decision

stage. We do not propose control methods when treatment options are binary or categorical

or when there are few decision times.

For simplicity we have concentrated on the simple cost function (1). More involved, per-

haps asymmetric, costs might be considered in future work, though sometimes a simple
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transformation of the response data might be sufficient, such as the use of the logarithm of

blood clotting speed in Section 5.2. Function (1) as given leads naturally to the little-used

deadbeat control and would probably not be selected in engineering applications because of

lack of robustness, as seen in our simulations. We will investigate alternative cost functions,

including integral-of-error components, in future work. We also concentrated in this work on

linear regret models with constant coefficients but note that the methods can be extended

readily to linear Q-learning models. In principle extension to non-linear models and to include

time-varying coefficients is possible, though H∞ control is less well developed for these cases.

There are, however, other robust control methods that could be transportable, including the

non-minimal state-space family (Taylor et al., 2013). Model predictive control is another area

that might very fruitfully be exploited by statisticians. In this approach, at each decision

time a sequence of future decisions is planned rather than just the next, and the sequence is

allowed to change dynamically as new information is provided. It is in some ways close to the

history-adjusted marginal structural modelling methods of van der Laan et al. (2005) and

Petersen et al. (2007), though presented in quite a different manner. In the other direction,

we suspect that there is not widespread familiarity within the control community of the

latest statistical methods for dealing with noisy or missing observations, or for the careful

consideration of causal effects (Wilson et al., 2018). As control methods are now being

used far beyond traditional engineering applications, and in particular in biomedical areas

where data may be sparse and repeatability is problematic, full attention to modelling and

estimation is becoming ever more important and requires properly grounded and efficient

statistical methodology.
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Figure 1. Example of generated observations for a patient when one value among(
g1, σ

2
dyn, σ

2
m

)
is varied while the others are set to 0. The upper plots show the observed

responses St and lower show the actions At, which are the same in all examples. This figure
appears in color in the electronic version of this article, and any mention of color refers to
that version.
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Figure 2. The achieved ERR
{
dinfλ

}
(upper panels) and decision scores (lower panels) as

the penalty λ is varied. The dashed horizontal lines are the values obtained with dnom and
the vertical lines correspond to the λ values giving the highest score.
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Figure 3. Example training trials for ventilation chamber experiment.
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Figure 4. An example of patient history: log(INR) (circle), prescribed dose (star) and
target value s∗ (solid line).
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Table 1
Simulation results for both treatment strategies for model (10). ERR and VERR are defined in Eq. (11).(

σ2
dyn, σ

2
m

)
(0, 0) (0, 0.1) (0, 0.3) (0.1, 0) (0.3, 0) (0.1, 0.1) (0.1, 0.3) (0.3, 0.1) (0.3, 0.3)

(a) g1 = 0

Ratio 0 0 0 0 0 0 0 0 0
ERR

{
dinf

}
0.03 0.03 0.08 0.22 1.74 0.23 0.28 1.75 1.84

ERR {dnom} 0.00 0.97 10.36 4.22 7.67 6.80 11.36 9.08 9.35

VERR
{
dinf

}
0.00 0.00 0.00 0.02 0.840 0.02 0.03 0.84 0.99

VERR {dnom} 0.00 9.90 98.75 48.08 48.95 64.08 99.84 66.30 122.89

(b) g1 = 0.005

Ratio 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.26 0.26
ERR

{
dinf

}
0.03 0.03 0.08 0.22 1.75 0.23 0.28 1.76 1.85

ERR {dnom} 0.00 1.64 11.40 4.30 6.80 7.17 7.66 6.53 11.20

VERR
{
dinf

}
0.00 0.00 0.00 0.02 0.85 0.02 0.03 0.86 1.03

VERR {dnom} 0.00 19.81 139.15 72.41 47.24 73.94 90.88 43.04 87.23

(c) g1 = 0.02

Ratio 0.96 0.97 0.94 0.95 0.94 0.96 0.99 0.93 0.96
ERR

{
dinf

}
0.01 0.03 0.08 0.21 1.74 0.22 0.28 1.74 1.82

ERR {dnom} 0.00 2.20 11.10 4.10 6.12 4.09 10.03 4.34 7.08

VERR
{
dinf

}
0.00 0.00 0.00 0.01 0.85 0.02 0.03 0.82 0.96

VERR {dnom} 0.000 25.51 89.48 55.07 49.84 44.56 120.07 37.35 24.26

(d) g1 = 0.04

Ratio 1.89 1.89 1.88 1.99 2.15 1.92 1.87 1.79 1.93
ERR

{
dinf

}
0.01 0.02 0.09 0.21 1.72 0.22 0.28 1.69 1.80

ERR {dnom} 0.33 3.44 10.56 4.40 6.00 3.90 9.87 5.89 8.52

VERR
{
dinf

}
0.00 0.00 0.00 0.01 0.79 0.01 0.03 0.75 0.89

VERR {dnom} 3.45 43.15 104.40 42.01 55.46 34.62 87.99 59.23 80.17
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Table 2
Summary of test data, using complete sequences (Total) or the final 15 sampling points only (SS), assumed to

represent steady state. MSE is mean squared error between state and target, and MAE is the maximum absolute
error.

Method Test no.
Total SS

MSE MAE MSE MAE

Nominal

1 1.61 4.69 0.18 0.62
2 2.16 5.34 0.21 0.91
3 1.43 4.34 0.32 1.03
4 1.52 4.75 0.22 0.73
5 2.73 5.51 0.14 0.67
6 1.37 4.61 0.26 0.90
7 1.56 4.57 0.17 0.73
8 1.68 4.78 0.25 0.73
9 1.64 4.69 0.20 0.61
10 2.18 5.45 0.14 0.77

Mean 1.79 4.79 0.21 0.77

H∞, λ = 0.01

1 1.49 4.41 0.07 0.50
2 1.27 4.43 0.14 0.75
3 1.23 4.22 0.17 0.78
4 1.11 4.28 0.15 0.72
5 1.22 4.03 0.15 0.63
6 1.19 4.67 0.13 0.52
7 1.67 4.83 0.13 0.73
8 1.38 4.57 0.11 0.50
9 1.20 4.09 0.10 0.50
10 1.41 4.82 0.11 0.56

Mean 1.31 4.43 0.13 0.62

H∞, λ = 0.001

1 0.71 3.63 0.10 0.58
2 1.17 4.16 0.21 0.85
3 1.27 4.25 0.15 0.72
4 1.39 4.64 0.12 0.60
5 1.81 4.77 0.11 0.61
6 1.09 4.25 0.15 0.60
7 1.67 4.69 0.09 0.57
8 1.49 4.43 0.09 0.44
9 2.55 5.39 0.09 0.48
10 1.22 4.69 0.13 0.69

Mean 1.44 4.49 0.12 0.61
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Table 3
Comparison measures between actual and model-based dose levels for Warfarin data. Columns GD(.) measure

average relative distance between good true dose decisions and those proposed by d = dnom and d = dinf . Columns
HD(.) and LD(.) relate to true decisions which led to a dose which is assumed to be too high or too low respectively.

The tabulated values in these columns are the proportions of occasions in which the model-based dose decision is
assumed to be better. Low values of GD are preferred, high values of LD and HD.

Trial GD(dnom) GD(dinf ) HD(dnom) HD(dinf ) LD(dnom) LD(dinf )
1 0.009 0.012 0.42 0.53 0.70 0.77
2 0.009 0.013 0.47 0.59 0.66 0.74
3 0.010 0.014 0.70 0.73 0.44 0.54
4 0.009 0.013 0.45 0.56 0.61 0.70
5 0.009 0.014 0.43 0.54 0.65 0.71
6 0.008 0.012 0.46 0.55 0.66 0.73
7 0.009 0.013 0.48 0.58 0.62 0.70
8 0.010 0.014 0.57 0.68 0.57 0.63
9 0.010 0.014 0.47 0.59 0.66 0.75
10 0.009 0.012 0.45 0.54 0.64 0.75
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Proof of Propositions 1 and 2

To compute the regret function we need

Y (doptt ) = −
t∑

r=1

‖Sr − s∗‖22 −
T∑

r=t+1

‖Sr − s∗‖22

= −
t∑

r=1

‖Sr − s∗‖22 −
T−1∑
r=t

∥∥∥fr(Sr,{At−1, doptr\(t−1)

}
) + εdynr − s∗

∥∥∥2
2

and

Y (at, d
opt
t+1) = −

t∑
r=1

‖Sr − s∗‖22 − ‖St+1 − s∗‖22 −
T∑

r=t+2

‖Sr − s∗‖22

= −
t∑

r=1

‖Sr − s∗‖22 −
∥∥∥ft(Ht, at) + εdynt − s∗

∥∥∥2
2

−
T−1∑
r=t+1

∥∥∥fr(Sr,{At−1, at, doptr\t

}
) + εdynr − s∗

∥∥∥2
2
.

On conditioning upon Ht and taking expectations we obtain

E
[
Y (doptt ) | Ht

]
= −

t∑
r=1

‖Sr − s∗‖22 −
T−1∑
r=t

E
[∥∥∥fr(Sr,{At−1, doptr\(t−1)

}
) + εdynr − s∗

∥∥∥2
2
| Ht

]

and

E
[
Y (at, d

opt
t+1) | Ht

]
= −

t∑
r=1

‖Sr − s∗‖22 − E
[∥∥∥ft(Ht, at) + εdynt − s∗

∥∥∥2
2
| Ht

]

−
T−1∑
r=t+1

E
[∥∥∥fr(Sr,{At−1, at, doptr\t

}
) + εdynr − s∗

∥∥∥2
2
| Ht

]
.
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Hence

µt (at | Ht) = −
T−1∑
r=t

E
[∥∥∥fr(Sr,{At−1, doptr\(t−1)

}
) + εdynr − s∗

∥∥∥2
2
| Ht

]
+E

[∥∥∥ft(Ht, at) + εdynt − s∗
∥∥∥2
2
| Ht

]
+

T−1∑
r=t+1

E
[∥∥∥fr(Sr,{At−1, at, doptr\t

}
) + εdynr − s∗

∥∥∥2
2
| Ht

]

=
T−1∑
r=t+1

E
[∥∥∥fr(Sr,{At−1, at, doptr\t

}
) + εdynr − s∗

∥∥∥2
2
| Ht

]

−
T−1∑
r=t+1

E
[∥∥∥fr(Sr,{At−1, doptr\(t−1)

}
) + εdynr − s∗

∥∥∥2
2
| Ht

]
+E

[∥∥∥ft(Ht, at) + εdynt − s∗
∥∥∥2
2
| Ht

]
− E

[∥∥∥ft(Ht, d
opt
t (Ht)) + εdynt − s∗

∥∥∥2
2
| Ht

]
.

By Assumption A2, εdynt is independent of Ht and so

E
[∥∥∥ft(Ht, at) + εdynt − s∗

∥∥∥2
2
| Ht

]
= E

[
‖ft(Ht, at)− s∗‖22 | Ht

]
+ E

[∥∥∥εdynt

∥∥∥2
2
| Ht

]
= ‖ft(Ht, at)− s∗‖22 + E

[∥∥∥εdynt

∥∥∥2
2

]
.

Similarly

E
[∥∥∥ft(Ht, d

opt
t (Ht)) + εdynt − s∗

∥∥∥2
2
| Ht

]
=
∥∥ft(Ht, d

opt
t (Ht))− s∗

∥∥2
2

+ E
[∥∥∥εdynt

∥∥∥2
2

]
.

Taking the difference of these last two quantities, we have indeed as Proposition 1 claims

µt (at | Ht) = ‖ft(Ht, at)]− s∗‖22 −
∥∥ft(Ht, d

opt
t (Ht))− s∗

∥∥2
2

+
T−1∑
r=t+1

E
[∥∥∥fr(Sr,{At−1, at, doptr\t

}
) + εdynr − s∗

∥∥∥2
2
| Ht

]

−
T−1∑
r=t+1

E
[∥∥∥fr(Sr,{At−1, doptr\(t−1)

}
) + εdynr − s∗

∥∥∥2
2
| Ht

]
.

Turning to Proposition 2, let us define a blip function for any strategy d† as
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νd
†

t (at | Ht) = ‖ft(Ht, at)− s∗‖22 −
∥∥∥ft(Ht, d

†
t(Ht))]− s∗

∥∥∥2
2

+
T−1∑
r=t+1

E
[∥∥∥fr(Sr,{At−1, at, d†r\t}) + εdynr − s∗

∥∥∥2
2
| Ht

]

−
T−1∑
r=t+1

E
[∥∥∥fr(Sr,{At−1, d†r\(t−1)}) + εdynr − s∗

∥∥∥2
2
| Ht

]
.

By construction we have νd
opt

t (at | Ht) = µt (at | Ht), and for all strategies d† not necessarily

optimal νd
†
t (at | Ht) > µt (at | Ht). Thus necessarily νd

†
t

(
d†(Ht) | Ht

)
= 0 implies that

d†(Ht) = dopt(Ht). Now, we introduce the treatment strategy d∗ defined by

fr(sr, ar−1, d
∗
r(sr, ar−1)) = s∗

for t 6 r < T − 1 and for all sr ∈ S r and ar−1 ∈ A r−1. Existence of such a strategy is

guaranteed by Assumption A3. Hence, for r > t,

E
[∥∥fr(Sr,{At−1, at, d∗r\t}) + εdynr − s∗

∥∥2
2
| Ht

]
= E

[∥∥εdynr

∥∥2
2
| Ht

]
= V ar(εdynr )

and

E
[∥∥fr(Sr,{At−1, d∗r\(t−1)}) + εdynr − s∗

∥∥2
2
| Ht

]
= E

[∥∥εdynr

∥∥2
2
| Ht

]
= V ar(εdynr ).

Thus

νd
∗

t (at | Ht) = ‖ft(Ht, at)− s∗‖22 − ‖ft(Ht, d
∗
t (Ht))− s∗‖22

+
T−1∑
r=t+1

E
[∥∥fr(Sr,{At−1, at, d∗r\t}) + εdynr − s∗

∥∥2
2
| Ht

]
−

T−1∑
r=t+1

E
[∥∥fr(Sr,{At−1, d∗r\(t−1)}) + εdynr − s∗

∥∥2
2
| Ht

]
= ‖ft(Ht, at)− s∗‖22 − ‖ft(Ht, d

∗
t (Ht))− s∗‖22

= ‖ft(Ht, at)− s∗‖22 .

From this, it is easy to see that νd
∗
t (d∗t (Ht) | Ht) = 0 which implies d∗ = dopt and so

µt (at | Ht) = ‖ft(Ht, at)− s∗‖22

as required.
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Construction of dinf via the use of H∞ theory

In this section, we explain how to use H∞ theory to implement our robust control strategy.

In the first subsection, we reformulate the cost function defining dinf as an H∞ control

problem. Then, in the second subsection we briefly summarise the theory for H∞-synthesis

in the context of a linear, discrete and time-invariant state-space model to construct dinf in

practice. See Francis (1987), Glover and Doyle (1988) or Doyle et al. (1989) for more detail.

Equations in the main paper are referenced here as (M1), (M2) and so on.

Reformulation of the treatment strategy design problem as an H∞ control synthesis problem

First of all, to comply with classic control notation we need to reformulate the St evolution

process, the cost function and the observation process as a linear time-invariant state-space

model with no delay terms. This is

Xt+1 = AXt +B1wt +B2at

Vt = C1Xt +D12at

St = C2Xt +D21wt,


(1)

where:

(1) Xt = (St, . . . , St−r, At−1, . . . , At−q, s
∗)T is the realised extended state vector at time

t, containing the current and past state and past input values that determinine St+1

together with s∗; and

(2) Vt =

 St − s∗

λat

 is the instantaneous cost we want to minimize at each timestep,

assuming at close to zero is preferred.
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To comply with the state-space model (M5) and cost Y (d, λ) of equation (M7), the coefficient

matrices in (1) need to be

A =



FS(ψ) FA(ψ) 0

(Ir−1 0r−1,1) 0r−1,q 0r−1,1

01,r 01,q 0

0q−1,r (Iq−1 0q−1,1) 0q−1,1

01,r 01,q 1


, B1 =

 1 0

0r+q,1 0r+q,1

 , B2 =



Fa(ψ)

0r−1,1

1

0q,1



for the extended state-space representation and:

C1 =

 1 01,r+q−1 −1

0 01,r+q−1 0

 , D12 =

 0

λ

 , C2 =

(
1 01,q+r

)
, D21 = (0 1)

for the cost function and observation process respectively. From this, dinf is defined as the

minimizer of

sup
w∗T−1

{∑T
t=1

∥∥Vt(d, w∗t−1)∥∥22∑T
t=1 ‖w∗t ‖

2
2

}1
2

, (2)

where Vt(d, w
∗
t−1) is the objective value obtained at time t when the strategy d and the

sequence of disturbances w∗t−1 are applied to (1), as in (M8) of the main paper.

In order to present the theoretical results and numerical methods required for H∞ synthe-

sis, it is convenient to work in the frequency domain. As we are working in discrete time we

make use of the z-transform version of (2). The z-transform of the sequence {Xt} is

X̃(z) = X0 +X1z +X2z
2 + . . . . (3)

Formally, z is an indeterminate, but in practice it is almost always possible to take equation

(3) to define X̃ as a function which is analytic in the whole complex plane except for poles.

Define the z-transforms w̃(z), ã(z), Ṽ (z) and S̃(z) similarly. Multiplying the equations in (1)

by zt and summing gives, in the presence of zero initial conditions, the equivalent complex
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frequency domain model as

zX̃(z) = AX̃(z) +B1w̃(z) +B2ãt(z)

Ṽ (z) = C1X̃(z) +D12ã(z)

S̃(z) = C2X̃(z) +D21w̃(z).

Let P (z) be a matrix-valued transfer function linking the transformed output to the trans-

formed input after substitution for X̃(z), ie Ṽ (z)

S̃(z)

 = P (z)

 w̃(z)

ã(z)

 .

From (1), P (z) is given by

P (z) =

 0 D12

D21 0

+

 C1

C2

 (zI − A)−1
(
B1 B2

)
=

 P11(z) P12(z)

P21(z) P22(z)

 .

Now let the decision rule d be represented by a feedback transfer function K = K(z) that

links the transformed input ã(z) to the transformed observables S̃(z), i.e. ã(z) = K(z)S̃(z).

In turn let G(K, z) be the transfer function that links the transformed objective Ṽ (z) to

the uncontrolled disturbances assuming the inputs are controlled through K(z), namely

Ṽ (z) = G(K, z)w̃(z) where

G(K, z) = P11(z) + P12(z)K(I − P22(z)K)−1P21(z).

With H∞ the set of bounded analytic functions on the unit disc D, the H∞-norm of a

function f(z) is given by

‖f‖H∞ = sup
z∈D
|f(z)| for f ∈ H∞.

Since Ṽ (z) = G(K, z)w̃(z), the sub-multiplicative property of subordinate norms leads to

‖Ṽ ‖2/‖w̃‖2 6 ‖G(K, .)‖H∞ . Plancherel’s theorem gives the same inequality in the temporal

domain and since there are disturbances w which make the difference between the left and
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right side arbitrarily small, it follows that for a given K, we have:

‖G(K, .)‖H∞ = sup
w∗T−1 6=0

{∑T
t=1

∥∥Vt(d, w∗t−1)∥∥22∑T
t=1 ‖w∗t ‖

2
2

}1
2

.

This is the ratio we want to minimize. Hence we have turned our variational problem in the

temporal domain into an optimization problem in the frequency domain. We are looking for

the transfer function K, such that the norm ‖G(K, .)‖H∞ , known as the L2-gain, is minimal,

which is the problem H∞ theory aims to address.

The decision rule, or equivalently transfer function K, which minimizes the L2-gain is

generally not unique and usually there is no explicit expression. Instead, in practice the

aim is to seek policies which do not necessarily achieve the minimal L2-gain but for which

the L2-gain is bounded above by a small constant. For linear systems, as given and under

assumptions, the global minimum exists and can be estimated numerically with an arbitrary

level of precision. Nonetheless, in control theory it is often considered sufficient to find a

policy Kγ which gives

‖G(Kγ, .)‖H∞ 6 γ (4)

for a given γ > 0. Necessary and sufficient criteria for the existence of such a Kγ together

with an outline of how to obtain it are the subjects of the next subsection.

Finding policy K

We need some technical conditions and definitions in order to determine whether at least one

control law satisfying (4) exists, and if so to find Kγ. In this subsection we give an outline

of the ideas and method. It is based on Francis (1987), Glover and Doyle (1988) and Doyle

et al. (1989), which together provide full information.

First some terminology. A linear time-invariant system is controllable if it is possible to

reach any location in the state-space in finite time by suitable choice of input. The weaker

stabilizable assumption requires that any non-controllable states are stable, which means
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that if the system reaches or begins in that state then it stays close thereafter. A system is

observable if it is always possible to determine the current state xt given the system outputs

{yi : i = 0, 1, . . . , t}. A system is detectable if any non-observable state is stable.

Now we give some requirements for the matrices involved in (1):

(1) (A, B1) is stabilizable and (C1, A) is detectable.

(2) (A, B2) is stabilizable and (C2, A) is detectable.

(3) DT
12

(
C1 D12

)
=

(
0 Ij1

)
.

(4)

 B1

D21

DT
21 =

 0

Ij2

 .

In the third and fourth conditions, which can be achieved by an appropriate scaling, Ij1 and

Ij2 are identity matrices of appropriate dimension.

Next we introduce the matrix space RIC. This is the space of 2p square Hamiltonian

matrices H of the form

H =

 F R

Q −F T

 ,

with Q and R symmetric. Moreover, H should have no eigenvalues on the imaginary axis

and, further, the vector space corresponding to the eigenvalues of H with a negative real

part should be complementary to the image

Im

 0

Ip

 ,

where Ip is the p × p identity matrix. The space RIC is introduced because it allows

the derivation of conditions ensuring the existence and uniqueness of solutions to so-called

algebraic Riccati matrix equations. These are expressed in the following paraphrase of Lemma

1 of Doyle et al. (1989). Suppose

H =

 F R

Q −F T

 ∈ RIC.
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Then there exists a unique solution to the algebraic Riccati equation

F TX +XF +XRX −Q = 0,

denoted X∞ = Ric(H).

Solutions to algebraic Riccati equations of the above form are in turn needed to ensure the

existence of Kγ and the subsequent derivation of an expression for it. Following Doyle et al.

(1989) it can be shown that there exists a Kγ such that

‖G (Kγ, .)‖H∞ < γ

if and only if the matrices

H∞ :=

 A γ−2B1B
T
1 −B2B

T
2

−CT
1 C1 −AT

 , J∞ :=

 A γ−2C1C
T
1 − C2C

T
2

−BT
1 C1 −AT


belong to RIC space, and the solutions X∞ and Y∞ of the algebraic Riccati equations

Ric(H∞) and Ric(J∞) are such that ρ (X∞Y∞) < γ2, where ρ is the spectral radius, i.e. the

largest absolute eigenvalue.

The first condition only requires the computation of the eigenvalues of H∞ and J∞ in order

to be verified. It then ensures existence of the solutions introduced in the second condition,

which can be obtained through reasonably straightforward matrix manipulations.

Once X∞ and Y∞ have been obtained, there is a simple expression for a valid control law:

Kγ =

 A∞ −Z∞L∞

F∞ 0

 ,

where

A∞ = A+ γ−2B1B
T
1 X∞ +B2F∞ + Z∞L∞C2,

F∞ = −BT
2 X∞,

L∞ = −Y∞CT
2 ,

Z∞ = (I − γ−2X∞Y∞)−1.

Glover and Doyle (1988) and Doyle et al. (1989) suggest the following iterative method for

computing in practice the optimal policy K: (a) select a positive number γ; (b) test if there is
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a Kγ such that ‖G(Kγ, .)‖H∞ < γ by calculating the eigenvalues of H∞ and J∞; (c) increase

or decrease γ accordingly. The limiting value of γ is reached when either ρ (X∞Y∞) = γ2 or

there are no solutions X∞ or Y∞. Any scaling should of course be reversed before application

of the selected K.
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