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Abstract—It is challenging to acquire satellite sensor data with 

both fine spatial and fine temporal resolution, especially for 

monitoring at global scales. Amongst the widely used global 

monitoring satellite sensors, Landsat data have a coarse temporal 

resolution, but fine spatial resolution, while MODIS data have fine 

temporal resolution, but coarse spatial resolution. One solution to 

this problem is to blend the two types of data using spatio-temporal 

fusion, creating images with both fine temporal and fine spatial 

resolution. However, reliable geometric registration of images 

acquired by different sensors is a prerequisite of spatio-temporal 

fusion. Due to the potentially large differences between the spatial 

resolutions of the images to be fused, the geometric registration 

process always contains some degree of uncertainty. This paper 

analyzes quantitatively the influence of geometric registration 

error on spatio-temporal fusion. The relationship between 

registration error and the accuracy of fusion was investigated 

under the influence of different temporal distances between images, 

different spatial patterns within the images and using different 

methods (i.e., spatial and temporal adaptive reflectance fusion 

model (STARFM) and Fit-FC; two typical spatio-temporal fusion 

methods). The results show that registration error has a significant 

impact on the accuracy of spatio-temporal fusion: as the 

registration error increased, the accuracy decreased monotonically. 

The effect of registration error in a heterogeneous region was 

greater than that in a homogeneous region. Moreover, the accuracy 

of fusion was not dependent on the temporal distance between 

images to be fused, but rather on their statistical correlation. 

Finally, the Fit-FC method was found to be more accurate than the 

STARFM method, under all registration error scenarios. 

 

Index Terms—Remote sensing data, Landsat, MODIS, 

spatio-temporal fusion, registration error. 

I. INTRODUCTION 

In recent years remote sensing has developed rapidly and has 

been applied widely, for example, in land use and land cover 
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change monitoring [1], vegetation monitoring [2], carbon 

sequestration monitoring [3], revealing ecosystem climate 

feedbacks [4], evaluating forest and ecological environments [5], 

and urban monitoring [6]. With rapid changes on the Earth’s 

surface, it is becoming increasingly important to perform 

monitoring at finer spatial and temporal resolutions. Such fine 

resolution monitoring sometimes cannot be performed with a 

single sensor due to the trade-off between spatial and temporal 

resolution. Spatio-temporal fusion is one solution to this 

problem, which creates time-series images with fine temporal 

and spatial resolutions by blending images with fine temporal 

resolution (e.g., MODIS) and fine spatial resolution (e.g., 

Landsat) through computer processing. Great progress has been 

achieved in developing spatio-temporal fusion techniques [7], 

which can be divided into two main groups: weighting 

function-based and spatial unmixing-based methods. 

The basic principle of weighting function-based methods is to 

calculate the reflectance of the center fusion pixel through a 

weighting function which takes full account of the spectral, 

temporal and spatial information in similar pixels. Such methods 

have been used widely. Gao et al. [8] proposed the spatial and 

temporal adaptive reflectance fusion model (STARFM), which 

includes comprehensive consideration of the spectral difference 

between MODIS and Landsat ETM+ data, the temporal 

difference between MODIS data of the same pixel location, and 

the distance between the center pixel and similar pixels. Thus, 

different weights are applied to different pixels to predict the 

reflectance of the center pixel. Hilker et al. [9] proposed the 

spatial temporal adaptive algorithm for mapping reflectance 

change (STAARCH) to solve the problem of rapid land cover 

change that is not resolved by STARFM. Tasseled cap transform 

results were introduced to calculate the change sequence, which 

can increase the prediction accuracy effectively. To deal with 

low accuracy in heterogeneous regions, Zhu et al. [10] proposed 

the enhanced spatial and temporal adaptive reflectance fusion 

model (ESTARFM). The hypothesis made was that there is a 

linear relationship between the changes in the MODIS and 

Landsat reflectances during a given period. A conversion 

coefficient was introduced to express this relationship 

quantitatively, which ensures more accurate prediction of the 

reflectance of small and linear targets. Wang and Atkinson [11] 

proposed the Fit-FC model, which realizes spatio-temporal 

fusion through three steps; regression model fitting (RM fitting) 

spatial filtering (SF) and residual compensation (RC). It was 

found that the accuracy of the algorithm was greater than all the 

comparator methods, and the model can be implemented with 

only one pair of coarse-fine images. Weighting function-based 

methods can also be applied to predict land surface temperature 

with both fine spatial and temporal resolution [12].  

Spatial unmixing-based methods calculate the reflectance of 

corresponding classes at the fine spatial resolution by unmixing 
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pixels in the coarse spatial resolution image, where the coarse 

proportions are available (i.e., simulated from temporally close 

fine spatial resolution data) [13]. This is in contrast to the 

well-known spectral unmixing technique where the reflectance 

of class is known and the target is to predict coarse proportions. 

Zhukov et al. [14] developed a multisensor multiresolution 

technique (MMT). The first step of MMT is to classify the fine 

resolution image and upscale the thematic map to the coarse 

spatial resolution, such that the proportions of each class in each 

of the coarse pixels can be calculated. Then, the reflectance of 

each class is estimated by fitting a model using the coarse 

reflectance in a local window. Considering the variation of 

reflectance within a specific class, Maselli et al. [15] proposed a 

LAC-GAC NDVI integration method. It corrects pixels whose 

residuals exceed a certain threshold among all neighboring 

pixels. The weight of each neighboring pixel is calculated 

according to their distance to the center pixel to be corrected. 

However, abrupt changes in reflectance between neighboring 

pixels always cause uncertainty. To cope with this problem, 

Busetto et al. [16] took the spectral similarity and Euclidean 

distance between neighboring pixels and the target pixel into 

consideration simultaneously when correcting the target pixel. 

Specifically, spectral similarity between pixels was calculated 

using spectral information in fine spatial resolution images, to 

split out pixels that are spatially close to the target pixel, but 

spectrally far from the target pixel. Wu et al. [17] proposed a 

spatial-temporal data fusion approach (STDFA) to cope with the 

heterogeneity of the ground object distribution. STDFA 

accounts for the spectral difference between pixels of the same 

land cover class and also the non-linear temporal change in the 

reflectance of each class over a period. This method used the 

surface reflectance calculation model (SRCM) to calculate the 

reflectance change of each fine pixel during the time of interest. 

The final prediction is the combination of the reflectance of the 

fine spatial resolution pixels at the known time and the 

reflectance change over the period. Wu et al. [18] then proposed 

the Modified Spatial and Temporal Data Fusion Approach 

(MSTDFA) method to increase the accuracy of STDFA by 

correcting for sensor differences and introducing an adaptive 

window size. 

The Flexible Spatiotemporal DAta Fusion (FSDAF) method 

proposed by Zhu et al. [19] combines the advantages of 

unmixing-based and weighting function-based methods. Liu et 

al. [20] proposed an Improved Flexible Spatiotemporal DAta 

Fusion (IFSDAF) method, which employs information from 

multi-time predictions, making full use of all available images. 

Besides the above two main groups of methods, learning-based 

and Bayesian-based methods have also been developed for 

spatio-temporal fusion. The SParse-representation-based 

SpatioTemporal reflectance Fusion Model (SPSTFM) proposed 

by Huang [21] selects plenty of patches for dictionary-pair 

learning and, thus, the correspondence between the coarse and 

fine spatial resolution images can be established. Song and 

Huang [22] developed a method using only one pair of coarse 

and fine images for prediction. In this method, the sparse 

representation is utilized to realize the super-resolution of fine 

temporal resolution images and a high-pass modulation is 

applied for fusion. Wei et al. [23] included prior knowledge to 

increase the accuracy of the sparse representation-based method. 

This method builds a model containing semi-coupled dictionary 

learning and structural sparsity. Recently, some learning-based 

methods applying deep convolutional neural networks (CNN) 

have also been developed. The method proposed by Song et al. 

[24] established two five-layer CNNs to achieve spatio-temporal 

fusion. As for Bayesian-based methods, Bayesian estimation 

theory was applied to spatio-temporal fusion [25]. Moreover, 

based on nonlinear geostatistical theory, Bayesian Maximum 

Entropy (BME) [26] was also developed to fuse data acquired by 

different sensors. 

No matter which spatio-temporal fusion method is adopted, 

reliable geometric registration of the images acquired by 

different sensors is a prerequisite. However, there exist 

unavoidable differences between the coarse (e.g., MODIS) and 

fine spatial resolution (e.g., Landsat) time-series images to be 

fused that make registration challenging [27]. The most obvious 

challenge is due to spatial resolution (e.g., zoom factor of around 

16 between Landsat and MODIS images). Moreover, additional 

factors exist, for example, differences in sensor characteristics 

and the Bidirectional Reflectance Distribution Function (BRDF) 

effect due to differences in viewing angles, Sun elevation and 

atmospheric conditions at the time of imaging. Furthermore, 

owing to the different observation scales, images acquired from 

various satellite sensors may also differ in projection distortion, 

especially for the pixels at the edge of the acquisition. The 

pre-processing of reprojection of images contributes to the 

registration error to a great extent. Thus, the geometric 

registration process for two or more types of observations 

always contains large uncertainty.  

Recent studies showed that geometric registration error has a 

significant influence on land cover classification and change 

detection [28]-[33]. Furthermore, in recent reviews of the 

literature on spatio-temporal fusion, it was acknowledged that 

the registration error between multi-source images plays an 

important role in spatio-temporal fusion, and it remains an open 

problem [34]-[37]. To the best of our knowledge, however, very 

few studies have focused on the extent to which geometric 

registration error can affect spatio-temporal fusion results. 

Based on existing typical and accurate spatio-temporal fusion 

methods (i.e., STARFM [8] and Fit-FC [11]), this paper 

investigated the influence of registration error between MODIS 

and Landsat images on spatio-temporal fusion under the 

conditions of varying temporal distance, spatial patterns and 

methods. Note that the spatial unmixing-based methods were not 

considered in this paper. The reason is that this type of methods 

assumes that within a coarse pixel, all pixels of the same land 

cover class share the same reflectance. Thus, the method cannot 

reproduce the intra-spectral variation. Moreover, it always 

results in visually obvious blocky artifacts. 

The remainder of this paper is organized into four sections. 

Section II quantifies the uncertainty of MODIS data due to 

registration error and briefly introduces two spatio-temporal 

fusion methods, STARFM and Fit-FC. Section III introduces the 

data including the simulation of MODIS data with registration 

errors. Then, the experimental results are provided, including the 

quantitative analysis of the influence of registration error on 

spatio-temporal fusion, and the influences of temporal distance, 

spatial patterns and methods. Section IV further discusses the 

findings from the experiments and potential future research, 

followed by a conclusion in Section V. 
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II. METHODS 

A. Uncertainty of registration error 

Error statistics were used to measure quantitatively the 

influence of registration error on data. Registration error is 

produced mainly by the geometric registration process. As 

shown in Fig. 1, it is assumed that the MODIS image shifts 
xn  

and yn  Landsat pixels in the x and y directions relative to the 

Landsat image. The length ratio between MODIS and Landsat 

pixels is S, indicating that each MODIS pixel corresponds to SS 

Landsat pixels. For each pixel in the MODIS image containing 

registration error, we can compare it to the ideal MODIS pixel 

covering SS Landsat pixels. The information on the overlap 

between the two MODIS pixels is considered to be reliable, as 

represented in Fig. 1. As can be seen from Fig. 1, for each 

MODIS pixel, the area of its overlap with the corresponding 

ideal MODIS pixel is the same. 
 

 
Fig. 1. Registration error between Landsat and MODIS images. 

 

Based on the above analysis, the reliability of MODIS data 

containing registration error can be represented by the 

proportion of overlap with the corresponding ideal MODIS pixel. 

Meanwhile, the data error U can be represented by the 

proportion of the non-overlapping portion in each MODIS pixel. 

Thus, the data error can be defined quantitatively as: 

2

( )( )
1 

x yS - n S - n
U - 

S
 .                          (1) 

The value range of U is [0, 1]. As registration error increases in 

the x or y direction, U increases gradually. If registration errors 

xn and yn  at the Landsat pixel level are replaced by xn   and yn   

at the MODIS pixel level, that is, the registration errors in x and y 

direction are xn   and yn   MODIS pixels as follows, 

, 
yx

x y

nn
n n

S S
                                 (2) 

then Eq. (1) can be simplified as 

1 (1 )(1 )x yU - n - n    .                          (3) 

In this paper, the ratio S=16 was considered, suggesting that 

each MODIS pixel contains 1616 Landsat pixels. In the 

registration error simulation process, the deviation of the two 

directions is assumed to be the same, that is, n (n=0, 1…, 15) 

Landsat pixels. If n  ( n =n/16) is used to represent the 

registration error at the MODIS pixel level (i.e., the registration 

error is n  of a MODIS pixel), the error in Eq. (3) can be 

expressed as 
2 21 (1 ) 2U - n n n       .                     (4) 

When the registration error increases to be close to 16 Landsat 

pixels or 1 MODIS pixel, the data error will be close to 1, 

resulting in a large influence on spatio-temporal fusion. To 

reveal how the error in the MODIS data varies with the 

registration displacement, the relation between U and n  in Eq. 

(4) is drawn in Fig. 2. It is clear that as the registration error 

increases, the data error increases correspondingly. 
 

 
Fig. 2. Data error of the registration displacement on MODIS data. 

B. STARFM 

As one of the most classical spatio-temporal fusion methods, 

STARFM has been applied widely in recent years. It is assumed 

that for each Landsat pixel, the land cover type does not change 

from one date t0 to another date tk. That is, the difference 0  

or k  between the reflectances observed in the Landsat and 

MODIS images at t0 or tk are equal. Therefore, the reflectance of 

the Landsat image at tk can be expressed as follows:  

0 0( , , ) ( , , ) ( , , ) ( , , )i j k i j k i j i jL x y t M x y t L x y t M x y t      (5) 

where ( , )i jx y  is the pixel location of the Landsat and MODIS 

images, and 0t  and kt  are the acquisition dates of the known 

image  and the image to be predicted.  

However, not all MODIS pixels are homogeneous and land 

use types can change abruptly and, in any case, change 

eventually. STARFM considers the information in neighboring 

pixels to increase accuracy. Specifically, it takes the spectral, 

temporal and spatial information of neighboring pixels into 

account, and constructs a weighting function to calculate the 

reflectance of the target pixel. The final formula for calculating 

the reflectance of the target pixel is as follows: 

/ 2 /2

0 0

1 1 1

( , , )

( ( , , ) ( , , ) ( , , ))

w w k

w w n

ijk i j k i j i j

i j k

L x y t

W M x y t L x y t M x y t
  

   
   (6) 

where n is the number of similar pixels, and w  is the size of the 

local search window and / 2 /2( , )w wx y  is the location of the 

center of the moving window. 
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The performance of STARFM depends greatly on the size of 

the characteristic patch, the spatial heterogeneity of the region, 

and more importantly, the magnitude of the land cover changes 

in the temporal domain. 

C. Fit-FC 

The Fit-FC method was proposed as a response to several 

problems faced in practical situations such as the difficulty in 

obtaining sufficient, high-quality images on dates close to the 

date to be predicted and strong phenological changes between 

the known and prediction dates. A local regression model is used 

to enhance the connection between the coarse image on the 

known date and the date to be predicted, thus, increasing the 

accuracy of the prediction. The methodology of Fit-FC is 

divided into three main steps; regression model fitting (RM 

fitting), spatial filtering (SF) and residual compensation (RC). 

1) RM fitting. Regression model fitting is performed based on 

the local spatial variation in land cover. In a local window, the 

coarse band pixel reflectances acquired on different dates are 

expressed as a linear relationship. The moving window is 

applied to all pixels and all coarse bands. This coefficient set 

calculated from the regression model constructed for the coarse 

data can be applied to fine spatial resolution images to obtain the 

initial prediction result, as shown in Eq. (7): 

 RM 0 1 0 0( , ) ( , ) ( , )b b bF a X l F x l b X l  .                 (7) 

In Eq. (7), 0x  is the location of the center Landsat pixel of the 

window, and 0X  is the location of the center MODIS pixel 

where 0x  falls within 0X . 0( , )ba X l  and 0( , )bb X l  are local 

linear regression coefficients estimated based on the regression 

model constructed for the MODIS data, and 1 0( , )bF x l  is the 

reflectance of the Landsat pixel located at 0x  in band bl  of the 

known fine spatial resolution image. 
2) SF. To reduce the brick effect in the prediction of the first 

step, a spatial filter is used where different weights are assigned 

to neighboring pixels to correct the reflectance of the center 

pixel, as shown in Eq. (8): 

SF 0 RM

1

( , ) ( , )
m

b i i b

i

F x l W F x l


 .                       (8) 

In Eq. (8), m is the number of similar pixels, iW  is the weight, 

and RM ( , )i bF x l  is the result of step 1. 

3) RC. Residuals inevitably exist in the regression model, and 

need to be considered in the final prediction results. Based on the 

assumption that similar pixels share similar residuals, the 

residuals of the center pixel can be corrected using the residuals 

of neighboring pixels. The calculation is in the same way as that 

in Eq. (8). 
The final prediction is the sum of the above SF and RC 

predictions. Fit-FC can be conducted using only one pair of 

MODIS-Landsat images, and is especially suitable where strong 

phenological changes exist. 

D. Accuracy evaluation indices 

Quantitative evaluation was conducted using the indices of 

Root Mean Square Error (RMSE), Correlation Coefficient (CC) 

and Universal Image Quality Index (UIQI). They were 

calculated for each band separately and the values for all bands 

were then averaged. The calculation for a single band image is 

introduced below. 

(1) Root Mean Square Error (RMSE) 

RMSE measures the difference between the fusion image and 

the reference image [39], and its ideal value is 0. That is, the 

smaller the RMSE, the more accurate the prediction. RMSE is 

defined as 

( , ) ( , )

1 1

1 M N

i j i j

i j

RMSE
MN  

    F X              (9) 

where F  and X  represent the fusion prediction and reference 

image (with the same spatial size of MN), respectively. 

Reflectance varies in magnitude across bands. To reduce the 

influence of the magnitude of reflectance, it is more appropriate 

to use the Relative Root Mean Square Error (RRMSE) [40]. 

RRMSE is defined as 

( , )i j

RMSE
RRMSE 

X
                              (10) 

where ( , )i jX  is the mean value of the reflectance of the reference 

image.  

(2) Correlation Coefficient (CC) 

CC is an objective evaluation index reflecting the correlation 

between the fusion image and the reference image [41]. The 

ideal value is 1. The more similar the two images, the closer the 

CC is to 1. CC is defined as 

( , ) ( , )

1 1

2 2

( , ) ( , )

1 1 1 1

M N

i j F i j X

i j

M N M N

i j F i j X

i j i j

CC

 

 

 

   

       


       



 

F X

F X

         (11) 

where F  and X  represent the mean values of F  and X . 

(3) Universal Image Quality Index (UIQI) 

The UIQI proposed by Wang et al. [42] was applied to 

evaluate the similarity between the fusion image and the 

reference image.  The closer the UIQI is to 1, the more accurate 

the prediction. UIQI is defined as 

2 2 2 2

2 2FX F X F X

F X F X F X

UIQI
    

     
  

 
               (12) 

where FX  represents the covariance between F  and X , and 

F  and X  are the standard deviations of F  and X . 

III. EXPERIMENTAL RESULTS 

A. Data 

Two datasets were used in this paper. The first dataset covers 

an irrigation area in Coleambally, New South Wales, Australia 

(called Region 1 hereafter), while the second dataset covers the 

southern research area of the Boreal Ecosystem-Atmosphere 

Study (BOREAS) with short growing season and extreme 

phenological changes (called Region 2 hereafter). Four Landsat 

8 OLI images with a spatial size of 942942 pixels were used for 

Region 1. The Landsat images contain six bands (blue, green, 

red, NIR, SWR1 and SWR2 bands). For Region 2, three Landsat 

7 ETM+ images with a spatial size of 815815 pixels were used. 

As shared by Gao et al. [8], the images contain three bands, 
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(a)                                               (b)                                               (c)                                             (d) 

    
(e)                                               (f)                                               (g)                                             (h) 

Fig. 3. Region 1 data (NIR, red, and green bands as RGB). (a)-(d) are Landsat images at t1, t2, t3 and t4, respectively. (e)-(h) are the corresponding MODIS images. 

 

   
(a)                                              (b)                                               (c) 

   
(d)                                              (e)                                               (f) 

Fig. 4. Region 2 data (NIR, red, and green bands as RGB). (a)-(c) are Landsat images at t1, t2, and t3, respectively. (d)-(f) are the corresponding MODIS images. 

 
Table 1 Summary of the experimental data 

Region Acquisition date 

Region 1 

t1: 2013.07.06 

t2: 2013.08.14 
t3: 2013.09.08 

t4: 2013.11.18 

Region 2 
t1: 2001.05.24 
t2: 2001.07.11 

t3: 2001.08.12 

 

(including green, red and NIR bands). Table 1 lists the properties 

of the images. 

Among the set of images, we chose the Landsat data at t1 in 

Regions 1 and 2 as the known image with which to predict the 

Landsat images on the other dates in the two regions. The 

Regions 1 and 2 data are shown in Figs. 3 and 4, respectively. It 

is seen that the two regions differ significantly in spatial 

variation. The local spatial heterogeneity in Region 1 is visually 

greater than that in Region 2, where spatial heterogeneity refers 

to the spatial complexity and variability of the system or system 

attributes [38]. 

B. Experimental setup 

Fig. 5 shows the methodology and experimental design. It 

should be stressed that we simulated MODIS data that have a 

registration error with Landsat data, as this allows greater 

control on the analysis of the performance where the registration 

error and reference are known perfectly. Specifically, based on 

the Landsat images at t1 and tk (k=2, 3, 4), Landsat images with n 

(n=0, 1…, 15) pixels registration error were produced by 

registration error simulation. That is, the simulated images were 

produced by shifting n Landsat pixels both horizontally and 

vertically. MODIS images on two dates were then synthesized 

by upscaling the Landsat images (the ratio is 16, i.e., each block 

of 16 by 16 Landsat pixels was aggregated to a MODIS pixel) 

with registration error on two dates. Fig. 3(e)-(h) and Fig. 4(d)-(f) 

show the simulated MODIS data without registration error for 

Regions 1 and 2, respectively. STARFM and Fit-FC were 
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Fig. 5. Process of data simulation and experimental setup. 

 

    
 

                         
(a)                                                (b)                                             (c)                                              (d) 

Fig. 6. Results of STARFM for Region 1 at t2. (a) is the reference image. (b), (c) and (d) are the STARFM results with 0, 7, 15 Landsat pixels registration error. 
 

    
 

                         
(a)                                                (b)                                             (c)                                              (d) 

Fig. 7. Results of Fit-FC for Region 1 at t2. (a) is the reference image. (b), (c) and (d) are the Fit-FC results with 0, 7, 15 Landsat pixels registration error. 

 

implemented to fuse the Landsat and MODIS (containing 

registration error) images at t1, and MODIS image (containing 

registration error) at tk. The fusion results under the condition of 

n Landsat pixel(s) registration error were produced, and the 

accuracy was evaluated by comparing with the real Landsat 

image at tk. Note that the case of n Landsat pixels registration 
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(a)                                                                                        (b) 

  
(c)                                                                                        (d) 

  
(e)                                                                                        (f) 

Fig. 8. Accuracy evaluation of the STARFM and Fit-FC predictions for Region 1 at t2. (a), (c) and (e) are RRMSE, CC, UIQI, respectively, of the STARFM result. (b), 
(d) and (f) are RRMSE, CC, UIQI, respectively, of the Fit-FC result. 

 

error is equivalent to n/16 MODIS pixel registration error (at 

sub-pixel level relative to a MODIS pixel). Only sub-pixel level 

misregistration errors were considered in this paper as reported 

misregistration errors are typically one-pixel or less [31]. 

Five sub-sections (Sections III-C-G) are included in the 

remainder of Section III. Sections III-C and III-D provide the 

predictions (taking the predictions at t2 as an example) and 

quantitative assessment results for Regions 1 and 2, respectively. 

Sections III-E-G analyzes the influences of three factors on the 

prediction accuracy of spatio-temporal fusion. Specifically, 

Section III-E focuses on the influence of temporal distance. 

Section III-F defines a metric to quantify the heterogeneity of 

spatial patterns and discusses its impact on spatio-temporal 

fusion. Section III-G investigates the differences in prediction 

accuracy caused by different methods. 

C. Region 1 

The STARFM and Fit-FC methods were implemented to 

predict Landsat images at t2, t3, and t4 for Region 1. The 

prediction of the Landsat image at t2 was taken as an example for 

detailed description. STARFM and Fit-FC were applied to fuse 

the Landsat and MODIS (containing registration error) images at 

t1, and MODIS image (containing registration error) at t2. The 

STARFM predictions of the Landsat images at t2 and the 

corresponding subareas are shown in Fig. 6. With an increase in 

the registration error, the hue of the red target at the center of the 

first sub-area changes gradually. Specifically, the target in the 

javascript:showjdsw('showjd_1','j_1')
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(a)                                              (b)                                               (c)                                            (d)                                               (e) 

Fig. 9. Results of STARFM and Fit-FC for Region 2 at t2. (a) is the reference image. (b) and (c) are the STARFM results produced with 0 and 15 Landsat pixels 

registration error. (d) and (e) are the Fit-FC results produced with 0 and 15 Landsat pixels registration error. 

 
Table 2 The CC between the image at the known time (i.e., t1) and prediction time (i.e., t2 ,t3 or t4) 

  t2 t3 t4 

Region 1 

Blue 0.7969 0.5051 -0.0615 

Green 0.7502 0.4464 0.1130 

Red 0.7659 0.4756 -0.0524 
NIR 0.7952 0.5813 0.3601 

SWR1 0.7135 0.4444 0.1293 

SWR2 0.6965 0.4970 0.1415 
Mean 0.7531 0.4916 0.1050 

Region 2 

Green 0.7036 0.7735 
 

Red 0.6828 0.7182 
 

NIR 0.7823 0.7913 
 

Mean 0.7229 0.7610 
 

 

reference image is bright red, and the STARFM result is 

relatively similar to the reference image when there is no 

registration error. When the registration error increases to 15 

Landsat pixels, however, the target turns to be dark red, which 

deviates greatly from the reference. The Fit-FC predictions at t2 

for another area are shown in Fig. 7. It can still be noticed that 

with an increase in image registration error, the hue of the two 

triangle targets changes gradually. The color of the reference 

image is magenta and dark red. The color fades gradually as the 

registration error increases. When the registration error increases 

to 15 Landsat pixels, the color is quite different from the 

reference. 

From the visual perspective, with an increase in registration 

error, the difference between the fusion image and the reference 

image increases. As shown in Fig. 8, three indices were used to 

evaluate quantitatively the accuracy of the fusion predictions. 

The conclusion is consistent with that drawn from visual 

analysis. That is, the accuracy decreases obviously when the 

registration error increases. Moreover, the accuracy changes for 

all six bands, which share the same trend. Taking the red band as 

an example, when the registration error increases from 0 to 15 

Landsat pixels, the RRMSE predicted by STARFM increases by 

0.0800 from 0.2277 to 0.3077. The CC decreases from 0.8772 to 

0.7810 and the UIQI decreases by 0.0923. 

D. Region 2 

STARFM and Fit-FC were implemented for Region 2. Fig. 9 

is the prediction at t2 for both methods under different 

registration errors. By intra-comparison, no matter whether 

STARFM or Fit-FC was applied, as the registration error 

changes from 0 to 15 Landsat pixels, the fusion results change 

accordingly. The white patch in the STARFM result expands 

gradually, as for the pink patch in the Fit-FC result. 

Quantitative evaluation of the fusion results for Region 2 at t2 

is shown in Fig. 10. It is clear that the accuracy for all three 

bands decreases when the registration error increases. For 

example, for the NIR band, with the registration error increasing 

from 0 to 15 Landsat pixels, the RRMSE of STARFM and 

Fit-FC increases by 0.0138 and 0.0120, respectively. The CC 

and UIQI decrease by 0.0400 and 0.5140 for STARFM, and 

0.0333 and 0.0349 for Fit-FC. 

E. The influence of temporal distance 

Intuitively, the spatio-temporal fusion prediction will be more 

accurate if the temporal distance between the prediction time 

and the known time is smaller. To test this, the accuracies of 

STARFM and Fit-FC were evaluated according to different 

temporal distances, and the results are shown in Fig. 11. The 

temporal distances between t2, t3, t4 and t1 are 39, 64, 135 days, 

respectively. No matter which method was used, the RMSE, CC 

and UIQI at t2 are closer to the ideal value, revealing more 

accurate prediction.  

For Region 2, the same method was applied for the 

comparison of fusion results of different dates, as shown in Fig. 

12. The temporal distance between t2 and t1 is 48 days, while that 

between t3 and t1 is 80 days. Fig. 12 shows that using either 

javascript:showjdsw('showjd_1','j_1')
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(a)                                                                                        (b) 

  
(c)                                                                                        (d) 

  
(e)                                                                                        (f) 

Fig. 10. Accuracy evaluation of STARFM and Fit-FC for Region 2 at t2. (a), (c) and (e) are RRMSE, CC, UIQI of the STARFM result. (b), (d) and (f) are RRMSE, CC, 
UIQI of the Fit-FC result. 

 

STARFM or Fit-FC, the fusion result at t3 is more accurate on 

the contrary. It can be concluded that the accuracy of fusion is 

not directly related to the temporal distance between the dates of 

the prediction and the known image. 

To further investigate the factors affecting the predictions at 

different times, we compared the relations between the Landsat 

data at known and prediction times statistically. The CC between 

the image at the known and prediction time for the two regions is 

listed in Table 2. As can be seen from Table 2, the CC decreases 

from t2 to t4 for Region 1. The CC of t2 is the closest to the ideal 

value, and correspondingly, the prediction of t2 is the most 

accurate among the three periods. For Region 2, although the 

temporal distance between t3 and t1 is physically longer, the 

statistical correlation between the images on the two dates is 

greater, resulting in more accurate prediction. Therefore, the 

accuracy of spatio-temporal fusion is not related directly to the 

temporal distance between the prediction and known time, but to 

the correlation between the two images instead which can be 

quantified statistically. For either STARFM or Fit-FC, no matter 

how the registration error changes, the prediction accuracy will 

be greater when the correlation between the images on the two 

dates is greater. 

F. The influence of spatial patterns 

The spatial patterns of the two studied regions were 

characterized using the semivariogram. Specifically, the 

semivariograms of the green, red and NIR bands of the two 

known images (images at t1) were calculated. The lag varies 
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(a)                                                                                           (b) 

  
(c)                                                                                           (d) 

  
(e)                                                                                           (f) 

Fig. 11. Accuracy evaluation result for different temporal distance in Region 1. (a), (c) and (e) are RMSE, CC, UIQI of the STARFM result. (b), (d) and (f) are RMSE, 
CC, UIQI of the Fit-FC result. 

 

Table 3 The variances of the two regions, the unit of variance is 10-4 (the square 
of the surface reflectance) 

 
Green Red NIR 

Region 1 2.38 8.07 70.21 

Region 2 1.05 2.48 8.65 

 

from 0 to 100 Landsat pixels. The results for the three bands in 

the two regions are shown in Fig. 13. 

It is obvious that the overall semivariogram of Region 1 is 

larger than that of Region 2, indicating that there is greater local 

variance and greater local heterogeneity in reflectance in Region 

1. Meanwhile, the sample variances of the corresponding bands 

in the two regions were calculated to quantify the magnitude of 

variation, as shown in Table 3. 

The sample variance of the image in Region 1 is much larger 

than that of Region 2, especially for the NIR band, which is as to 

be expected given the semivariograms. To investigate how the 

spatial pattern affects the accuracy of spatio-temporal fusion 

when registration error exists, it is necessary to fix other factors 

such as temporal distance between the known and prediction 

times. The above analysis of the influence of temporal distance 

showed that the correlation between the images on two dates can 

influence the image fusion results. Therefore, to exclude the 

influence of temporal distance, we selected images in the two 

regions that had similar between-date correlations. The mean CC 

of the green, red and NIR band at t2 is 0.7704 in Region 1, while 

the mean CC of the three bands at t3 in Region 2 is 0.7601. Since 

the difference is not large, the two times were selected and these 
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(a)                                                                                           (b) 

  
(c)                                                                                           (d) 

  
(e)                                                                                           (f) 

Fig. 12. Accuracy evaluation result for different temporal distance in Region 2. (a), (c) and (e) are RMSE, CC, UIQI, respectively, of the STARFM result. (b), (d) and 

(f) are RMSE, CC, UIQI, respectively, of the Fit-FC result. 

 

two groups of results were used for comparison. Fig. 14 shows 

the accuracies for the heterogeneous region (Region 1) and the 

homogeneous region (Region 2). 

As the registration error increases from 0 to 15 Landsat pixels, 

the RMSE values of the heterogeneous and homogeneous 

regions predicted by STARFM increase by 0.0076 and 0.0017, 

respectively. For the CC, the values decrease by 0.1007 and 

0.0378 for the heterogeneous and homogeneous regions, 

respectively. Regarding UIQI, the values decrease 

correspondingly by 0.0996 and 0.0487. Focusing on the CC of 

Fit-FC, the values decrease by 0.0994 and 0.0307 for the 

heterogeneous and homogeneous regions, respectively. 

Obviously, the accuracy decrease of the heterogeneous region is 

much greater than that of the homogeneous region. The results 

suggest that the registration error has a greater impact on the 

heterogeneous region than for the homogeneous region. 

G. The influence of methods 

Fig. 15 shows the accuracies of STARFM and Fit-FC for 

Region 2. It is obvious that under the condition of the same 

registration error, the accuracy of Fit-FC is larger than that of 

STARFM. For example, when the registration error is 7 Landsat 

pixels, the RMSE of STARFM at t2 and t3 is 0.0008 and 0.0015 

larger than that of Fit-FC. Checking the CC and UIQI at t3, the 

Fit-FC method produces values 0.0421 and 0.0440 larger than 

STARFM. Thus, it can be concluded that no matter how the 

registration error changes, the prediction accuracy of Fit-FC is 

consistently greater than that of STARFM. 
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Fig. 13. The semivariogram of the two regions. 

 

  
(a)                                                                                                (b) 

  
(c)                                                                                                (d) 

  
(e)                                                                                                (f) 

Fig. 14. Accuracy evaluation of the results for the heterogeneous region (Region 1) and the homogeneous region (Region 2). (a), (c) and (e) are RMSE, CC, UIQI, 

respectively, of the STARFM result. (b), (d) and (f) are RMSE, CC, UIQI, respectively, of the Fit-FC result. 
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(a)                                                                                           (b) 

  
(c)                                                                                           (d) 

  
(e)                                                                                           (f) 

Fig. 15. Accuracy evaluation of the result of STARFM and Fit-FC for Region 2. (a), (c) and (e) are RMSE, CC, UIQI, respectively, at t2. (b), (d) and (f) are RMSE, CC, 
UIQI, respectively, at t3. 

 

IV. DISCUSSION 

The issue of registration error in remote sensing images was 

investigated previously using geostatistics, where the 

terminology of locational error was used instead [43], [44]. The 

locational error produced by misregistration (i.e., lateral 

displacement) between images was shown to lead to a 

cross-correlated measurement error (i.e., error in the attribute or 

measured variable). It was also shown that the cumulative 

distribution function of the observed variable (i.e., the MODIS 

data with registration error) is the same as that of the underlying 

true variable (i.e., ideal MODIS data without registration error) 

[43]. The measurement error is the difference between the 

observed and underlying variables. Generally, there are three 

important findings from this paper which are confirmatory of 

specific points from the geostatistical literature. 

1) Atkinson [43] suggested that the cross-correlated 

locational error does not result in changes to the 

semivariogram at large lags [43]. This means the 

variances (i.e., a priori variance or semivariogram at 

infinite lag) of both the observed and underling variables 

are actually the same, as was indeed the case for the 

MODIS data in this paper. The data used in this paper are 

in accordance with this conclusion exactly. As displayed 

in Fig. 16, the variances of the MODIS images with 0-15 

Landsat pixels registration error do not show obvious 

differences, which are very close to the variance of the 

ideal MODIS image. 
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(a)                                                           (b) 

Fig. 16. Variance of MODIS images with 0-15 Landsat pixels registration error. 
(a) Region 1 t1. (b) Region 2 t1. 

 

2) As reported by [43] and elaborated by Gabrosek and 

Cressie [44], locational error results in a predictable 

change in the covariance between the observed and 

underlying variables. This was seen in the observed 

correlation between the two types of MODIS data in this 

paper (correlation equals the covariance divided by the 

variance, and variance is constant in relation to locational 

error, as mentioned above), where the correlation 

decreases obviously as the registration error increases. 

To reflect this point more clearly, the CC between the 

ideal MODIS image and MODIS image with registration 

error is shown in Fig. 17. It can be found that although 

the variance of the MODIS image itself does not vary 

obviously (as shown in Fig. 16), its correlation with the 

ideal MODIS image varies greatly. More precisely, as 

the registration error increases, the CC decreases 

dramatically. 
 

  
(a)                                                           (b) 

Fig. 17. CC between the ideal MODIS image and MODIS images with various 

registration errors. (a) Region 1 t1. (b) Region 2 t1. 

 

3) As a result of (2), the measurement error variance is a 

function of, and predictable given, the spatial 

heterogeneity [43], [44]. Specifically, the measurement 

error variance is greater for a specific registration when 

the heterogeneity is greater. Thus, the effect of 

misregistration is greater for heterogeneous regions. This 

is exactly the conclusion drawn from the experimental 

results in Fig. 14. 

The fusion results of different temporal distances reveal that 

the essential factor affecting the prediction accuracy is the 

correlation between the data, not their temporal distances. This 

finding provides important guidance for selecting appropriate 

known fine spatial resolution data (e.g., Landsat data) for 

spatio-temporal fusion in practical applications. It is known that 

there exists a periodicity in the phenology of vegetation and the 

growth of vegetation changes periodically as a function of 

temperature and sunshine. For areas dominated by vegetation, 

therefore, it is generally assumed that images acquired at the 

same time of the year will tend to be more similar. The factor of 

temporal distances, however, should not be ignored, as land 

cover changes can sometimes be larger when the known fine 

spatial resolution data are temporally distant. As acknowledged 

widely, the restoration of land cover changes is one of the 

greatest challenges in spatio-temporal fusion. Therefore, when 

selecting known fine spatial resolution data, it is important to 

find the right balance between the correlation structure and land 

cover changes according to different areas and land cover 

classes. 

It can be seen from the experimental results that when 

registration error exists, the accuracy of spatio-temporal fusion 

is mainly a function of four variables: displacement (quantified 

registration error), spatial heterogeneity of the study area, initial 

correlation between the data of different times, and the fusion 

method. For an accurate fusion method, it will be interesting to 

investigate how a model could be developed that predicts the 

decrease in accuracy of spatio-temporal fusion for a given (i) 

displacement, (ii) heterogeneity, and (iii) initial correlation. This 

would allow up-front characterization of the accuracy of 

spatio-temporal fusion, whether it is likely to be sufficiently 

accurate for a given purpose, and how much effort to put into 

registration. For example, if the decrease in accuracy is below a 

defined threshold, it may be possible to relax the requirement for 

reliable geometric registration to some extent. How to 

quantitatively evaluate the accuracy of spatio-temporal fusion 

and determine the threshold reliably are critical issues. 

The large influence of registration error on spatio-temporal 

fusion should not be ignored. The accuracy of geometric 

registration seriously restricts the effectiveness and accuracy of 

different spatio-temporal fusion methods in most cases. 

Moreover, image registration error is always present to some 

degree and negatively affects a wide range of remote sensing 

techniques, not only spatio-temporal fusion. Thus, in future, it 

will be of great significance to further develop techniques that 

can reduce registration error prior to processing and, in the 

context of this paper, develop new spatio-temporal fusion 

techniques that are robust to the effects of geometric registration 

error.  On the one hand, the registration error can be estimated 

and reduced prior to fusion, and the corrected or enhanced data 

can be used post-hoc in spatio-temporal fusion. For example, the 

MODIS data with registration error can be compared to the data 

simulated by upscaling the Landsat data with various 

displacements, and the optimal solution can be determined as the 

displacement minimizing the differences or maximizing the 

correlation. The estimation of registration error may also be 

performed at the Landsat spatial resolution, where the MODIS 

data can be downscaled to the Landsat resolution. In this strategy, 

however, it is not clear how the uncertainty in downscaling will 

affect the final displacement estimation, as smoothing exists in 

downscaling. On the other hand, it will also be worthwhile to 

develop new techniques that can integrate the estimation of 

registration error and spatio-temporal fusion into a single 

framework, where the uncertainty of both parts can be controlled 

jointly. Gabrosek and Cressie [44] developed a method called 

kriging after adjusting for locational error (KAALE) to 

incorporate location error of spatial data in interpolation, where 

the expectations and covariances in standard kriging are adjusted 
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for location error. It would be of great interest to extend KAALE 

to the change of support problem (COSP), as studied in the 

spatio-temporal fusion problem in this paper. Area-to-point 

kriging [45] has been shown to be an excellent choice for COSP. 

Thus, the integration of KAALE and area-to-point kriging 

provides an interesting avenue to cope with registration error in 

downscaling for future research. 

This paper investigated quantitatively the influence of 

registration error on two typical and accurate spatio-temporal 

fusion methods (i.e., STARFM and Fit-FC). Besides these two 

methods, many favorable methods developed in future will also 

deserve similar study. In addition, this paper focuses on fusion of 

MODIS and Landsat data. Such research can also be conducted 

for fusing data from other satellites, such as Sentinel-2 and 

Sentinel-3 [11]. Finally, this paper simulates only the ideal 

horizontal and vertical registration error, while in reality, the 

registration error could be more complex. Therefore, it would be 

worthwhile to account for more complex geometric registration 

errors and analyze their effects on spatio-temporal fusion in the 

future. 

V. CONCLUSION 

The misregistration of images at different spatial resolutions 

is a critical issue in spatio-temporal fusion. This paper 

investigated the influence of registration error on 

spatio-temporal fusion based on fusing the reflectances of 

Landsat and MODIS images for two regions. The quantitative 

effect of registration error was evaluated under the influence of 

different temporal distances, different spatial patterns and 

different methods. The findings are summarized below. 

1) Registration error has a significant impact on the 

accuracy of spatio-temporal fusion, and the accuracy 

decreases with an increase in the registration error. 

2) Registration error has a greater impact in heterogeneous 

regions than homogeneous regions. As the registration 

error increases from 0 to 15 Landsat pixels, the UIQI 

decreased by more than 0.09 in a heterogeneous region, 

and around 0.03 in a homogeneous region. 

3) The accuracy of spatio-temporal fusion does not 

necessarily increase with a decrease in the temporal 

distance between the dates of the prediction and of the 

known Landsat image, but is rather related to the 

correlation between the images of two dates instead. The 

larger the correlation between the image for prediction 

and the known image, the greater the prediction accuracy. 

However, it should be stressed that separating 

seasonality from abrupt changes is crucial, and abrupt 

changes are likely to accumulate the greater temporal 

separation between the prediction and known images, 

even if the correlation between them increases due to 

seasonality. 

4) The Fit-FC method is consistently more accurate than the 

STARFM method, no matter how the registration error 

changes. 

The findings of this paper will provide important guidance for 

developing methods in the field of spatio-temporal fusion. 
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