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Highlight 

This review summarizes mechanisms underlying responses of fruit water accumulation 

and solute metabolism to water shortage, which may benefit the sustainable production of 

high-quality fruit under deficit irrigation. 

Abstract 

Fruit is important for human health, and applying deficit irrigation in fruit production is a 

strategy to regulate fruit quality and support environmental sustainability. Responses of 

different fruit quality variables to deficit irrigation have been widely documented, and 

much progress has been made in understanding the mechanisms of these responses. We 

review the effects of water shortage on fruit water accumulation considering water 

transport from the parent plant into the fruit determined by hydraulic properties of the 



pathway (including xylem water transport and transmembrane water transport regulated 

by aquaporins) and the driving force for water movement. We discuss water relations and 

solute metabolism that affect the main fruit quality variables (e.g. size, flavour, nutrition, 

and firmness) at the cellular level under water shortage. We also summarize the most 

recent advances in the understanding of responses of the main fruit quality variables to 

water shortage, considering the effects of variety, the severity of water deficit imposed, 

and the developmental stage of the fruit. We finally identify knowledge gaps and suggest 

avenues for future research. This review provides new insights into the stress physiology 

of fleshy fruit, which will be beneficial for the sustainable production of high-quality fruit 

under deficit irrigation. 

Keywords: Deficit irrigation, hydraulic property, primary metabolite, secondary 

metabolite, water relations. 

Introduction 

Agricultural food production is closely associated with human health and environmental 

sustainability. Although much progress has been made in global food production to feed a 

growing population, >820 million people are still undernourished due partly to unhealthy 

diets which have caused micronutrient deficiencies and are related to increased 

incidences of diet-related obesity, coronary heart disease, stroke, and diabetes (Willett et 

al., 2019). In addition, many environmental issues are exacerbated by food production, 

and one of these most important issues is water scarcity. Agricultural water use accounts 

for 70–80% of freshwater withdrawals on average globally (Davies and Bennett, 2015), 

and climate change is projected to reduce renewable surface water and groundwater 

resources in most dry subtropical regions, intensifying competition for water among 



different sectors in society (IPCC, 2014). Tackling poor health and environmental 

degradation have been challenging issues for the world, and a Great Food Transformation 

has been proposed very recently aiming at establishing a win–win diet which is both 

healthy and environmentally sustainable (Willett et al., 2019). The proposed healthy diet 

contains a predominant portion of fruit and vegetables because they are essential sources 

of sugars, acids, micronutrients, and fibre to the human diet (Tilman and Michael, 2014) 

and contain a wide range of proposed health-promoting substances such as vitamin C, 

which are thought to lower the risk of cardiovascular disease and certain cancers (Adalid 

et al., 2010). Deficit irrigation, namely applying water below the plant water 

requirements indicated by evapotranspiration, is proposed as an effective strategy for 

producing environmentally sustainable food (Willett et al., 2019). Producing fruit and 

vegetables using deficit irrigation will contribute positively to the future of both people 

and the planet. 

Apart from being a water-saving strategy (Fereres and Soriano, 2007; Chai et al., 

2016; Kang et al., 2017), deficit irrigation has become an important agronomic practice 

to regulate many fruit quality variables that are essential for human health and 

environmental sustainability (Ripoll et al., 2014; Du et al., 2015). Concentrations of 

primary metabolites (soluble sugars and organic acids) and secondary metabolites (e.g. 

vitamin C, lycopene, and β-carotene) determine the flavour and nutrition of fruits and 

consumers’ preference (Giovannucci, 2002; Beckles et al., 2012). Firmness largely 

determines the transportability and shelf-life of fruits because soft fruits are prone to 

mechanical damage and fungal or bacterial infection resulting in fruit loss (Kader, 1986; 

Beckles, 2012). Fruit water content is a crucial fruit quality variable for the processing 



industry, the development of which has been a strategic measure to reduce food loss and 

meet consumers’ year-round demands for nutrition (Arbex de Castro Vilas Boas et al., 

2017). Even a small decrease in fruit water content before harvest will substantially 

reduce the cost to the industry of dehydrating the crop (Renquist and Reid, 2001; 

Beckles, 2012; Arbex de Castro Vilas Boas et al., 2017). Responses of these fruit quality 

variables to water shortage have received increasing attention due to consumers’ growing 

demand for good-flavoured, nutritious, and safe food, and also the desire of growers and 

industry to make more profit (Du et al., 2015; Bogale et al., 2016; Wei et al., 2018; 

Coyago-Cruz et al., 2019). Despite the considerable documentation of fruit quality 

responses to soil water deficit, our mechanistic understanding of the physiological basis 

of these responses remains limited. 

Water deficit has long been known to reduce plant growth, primarily due to both 

reduced carbon assimilation caused by stomatal closure and reduced cell division and 

enlargement associated with diminished water supply, as summarized in a notable review 

written >40 years ago and focusing on growth of vegetative plant parts (Hsiao, 1973). 

More recent reviews and studies have discussed the mechanisms of plant responses to 

deficit irrigation including alteration of the root to shoot ratio, synthesis of abscisic acid 

(ABA) and other signalling molecules, and induction of antioxidants in field crops and 

fruit trees (Fereres and Soriano, 2007; Ripoll et al., 2014; Du et al., 2015; Chai et al., 

2016; Galindo et al., 2018). These studies consider biochemical and agronomic 

perspectives of deficit irrigation responses at the whole-plant level. However, a fruit is a 

large reservoir of water and solutes, and often differs from the responses of plant 

vegetative parts to deficit irrigation. Given that water is the most abundant constituent of 



most fresh fruits (Davies and Hobson, 1981), water content determines the concentration 

of solutes and hence is important for many fruit quality variables (Guichard et al., 2001). 

There has been much argument over whether crop water deficit can improve fruit quality 

by concentrating these soluble substances when fruit water accumulation is reduced while 

dry matter accumulation is largely unaffected (Mitchell et al., 1991a, b; Plaut et al., 

2004). The substances dissolved in the water in the fruit can be considered collectively as 

osmolytes, and their metabolism may alter cellular water relations and affect water 

accumulation in the fruit. Hence, we focus here on fruit water accumulation and solute 

metabolism in response to water shortage in agriculture, establishing a framework based 

on water relations for mechanistically understanding how water shortage influences the 

main quality variables of fruit. This review will focus on tomato (Solanum lycopersicum 

L.) because not only is it the second most consumed vegetable crop (after potato) 

worldwide (Bertin and Génard, 2018), but it also an important model crop in the research 

of the physiology of fleshy fruit. 

Responses of fruit water accumulation and solute metabolism 

to soil water deficit 

A mature tomato fruit is composed of ~90–95% water and 5–10% dry matter (mainly 

carbohydrates) (Davies and Hobson, 1981; Wang et al., 2011) (Fig. 1A). Soil water 

deficit affects fruit quality formation through water and dry matter accumulation by the 

fruit. 

Fruit water accumulation 



Water transport into and accumulation in the fruits contribute significantly to yield and 

quality development of fleshy fruits (Matthews and Shackel, 2005). Fruit water 

accumulation is the result of water transport via the xylem and the phloem (Fig. 2A–C) 

and water loss by fruit transpiration via the fruit cuticle (Guichard et al., 2005; Windt et 

al., 2009; Van de Wal et al., 2017). Unlike leaves that have stomata the aperture of 

which is regulated by environmental conditions and plant water status, the tomato fruit 

surface has no stomata and transpiration through the cuticle is influenced mainly by the 

air humidity (Kawabata et al., 2005). It was estimated that ~80–90% of water imported 

by tomato fruit was via the phloem and the remaining 10–20% via the xylem (Ho et al., 

1987; Guichard et al., 2005). It was also estimated that as the fruit matured, xylem 

inflow into the fruit decreased and phloem inflow increased (Ho et al., 1987). The 

relative contribution of xylem and phloem transport was found to be hardly affected by a 

mild water stress (reducing water supply by 40% compared with the control) (Plaut et al., 

2004). However, those estimates in previous studies were based on invasive experiments 

that involved mechanically damaging phloem (girdling the fruit pedicel or truss 

peduncle) or on the indirect calculation of xylem flow via the accumulation of xylem-

borne mineral calcium in the fruit (Ho et al., 1987; Plaut et al., 2004). More recent 

results based on in situ MRI of the fruit peduncle showed that at least 75% of water 

reached the fruit via the xylem (Windt et al., 2009), indicating that the xylem 

contribution reported in previous studies (10–20%) might have been significantly 

underestimated. Phloem flow into the fruit was found to be relatively insensitive to 

diurnal changes in plant water status and to air water vapour deficit (Guichard et al., 

2005; Windt et al., 2006). In contrast, xylem transport is known to be sensitive to 



changes in plant water status (Greenspan et al., 1994; van Ieperen et al., 2003). The rapid 

development of in- situ non-destructive technologies such as MRI (Windt et al., 2006, 

2009; Van de Wal et al., 2017) will be of great help, allowing reliable assessment of the 

extent to which xylem and phloem water transport contribute to fruit water accumulation 

under normal and water-limited conditions. Probably due to the perceived dominance of 

phloem transport and the insensitivity of phloem transport to water status, the xylem 

transport under water shortage has not received due attention. 

Water enters the fruit through the xylem and then into fruit cells across cell 

membranes. Water transport into the fruit depends on the resistance of the pathway 

between the fruit and the parent plant, and the driving force for water flow (Fig. 2A–C). 

The resistance includes the xylem hydraulic resistance and the resistance of cell 

membrane regulated by aquaporins (AQPs). The driving force is the water potential 

difference between the xylem of the parent plant and fruit cells. 

Hydraulic resistance of the xylem water transport pathway to the 

fruit 

It has long been recognized that xylem hydraulic resistance is increased by moderate and 

severe water deficit probably due to xylem embolism in the vegetative parts of the plant 

(Hsiao, 1973). The propagation of embolism was reported in roots, stems, and leaves of 

the tomato plants, increasing the hydraulic resistance under water deficit (Skelton et al., 

2017). Tomato fruits are connected to the shoots via the pedicel (fruit stalk) and the 

peduncle (truss stalk), which are important components of the pathway transporting water 

and carbohydrates to the fruit (Malone and Andrews, 2001; van Ieperen et al., 2003; 



Rančić et al., 2010). The hydraulic resistance of the xylem between the fruit and the 

parent plant (including the peduncle, pedicel, and also the fruit itself) has been measured 

on a range of fruits such as tomato (van Ieperen et al., 2003), grape (Choat et al., 2009; 

Knipfer et al., 2015), kiwifruit (Mazzeo et al., 2013), cherry (Brüggenwirth and Knoche, 

2015), hot pepper (Trifilò et al., 2010), and mango (Nordey et al., 2015) under well-

irrigated conditions, generally showing an increase in the hydraulic resistance in the late 

stage of fruit development. Van Ieperen et al. (2003) investigated the hydraulic resistance 

of the tomato pedicel and peduncle subjected to two levels of volumetric water content of 

the root medium (35% in the control and 2% in the low water availability treatment). The 

hydraulic resistance of the tomato pedicel and peduncle was reported to increase in both 

the early (11 days after anthesis, DAA) and late (31 DAA) fruit developmental stages in 

the low water availability treatment; the major resistance was found in the abscission 

zone that developed half way along the pedicel (van Ieperen et al., 2003). It was 

suggested that water deficit early in fruit development may influence the hydraulic 

resistance of the abscission zone because mainly primary xylem in this zone was formed 

in the early developmental stage and it was more vulnerable to water deficit (André et al., 

1999; Rančić et al., 2008). The increased hydraulic resistance might also be related to the 

changes in the structure and function of the vascular system (Lee, 1989; van Ieperen et 

al., 2003). Studying the xylem area of the tomato pedicel in response to deficit irrigation 

(the detail of the treatment was not specified), Rančić et al. (2008) found that deficit 

irrigation tended to decrease the functional xylem area in the early stage of development 

and increase it in the late stage. Possible factors responsible for the changes in hydraulic 

resistance under water shortage may include xylem embolism and clogging, mechanical 



rupture of vessels or the transformation of vessel length and diameter (van Ieperen et al., 

2003), and the water transport beyond the xylem (see the discussion of AQPs in the fruit 

below). Using microcomputed tomography (MicroCT), Knipfer et al. (2015) observed 

blockages with polysaccharide-like material in the vessel lumen in grape pedicels in the 

late developmental stage, which might account for the increased hydraulic resistance 

observed at this stage. It seems that MicroCT, together with light and electron 

microscopy, will help us identify the causes of changes in hydraulic resistance under soil 

water deficit. 

In addition to water, many solutes related to fruit quality are also believed to be 

mainly delivered to the fruit via the xylem (Davies et al., 2000). Calcium deficiency in 

the tomato fruit is thought to be associated with the occurrence of a physiological 

disorder called blossom-end rot (BER) (de Freitas et al., 2011; Sun et al., 2013). This is a 

brown or yellow water-soaked spot on the distal end of the fruit and has been frequently 

reported in tomato production, causing defects on the fruit surface and greatly reducing 

the crop quality (Kader, 1986; Taylor et al., 2004). Due to the generally increased xylem 

hydraulic resistance between the fruit and the parent plant in the late developmental stage 

(Malone and Andrews, 2001; van Ieperen et al., 2003), transport of calcium in the early 

stage will largely determine fruit calcium accumulation. It is important to address how a 

soil water deficit in the early stage of fruit development would influence fruit calcium 

uptake and thus the occurrence of BER. 

AQPs involved in the transmembrane water movement in the fruit 

AQPs, also called water channels, are proteins embedded in the membranes of a cell, 

forming a pore to allow water molecules (also small neutral solutes and gas molecules) to 



enter or leave the cell (Maurel et al., 2008). In addition to the long-distance water 

transport from the parent plant to the fruit through vascular systems, AQPs are essential 

components of the water transport pathway from the apoplast to cells in the fruit through 

mediating transcellular water movement across cell membranes (Fig. 2C). AQPs 

contribute significantly to the permeability of plant membrane systems to water and they 

have been widely studied in model plants such as Arabidopsis, maize, and tobacco, and 

predominantly in plant roots, leaves, seeds, and flowers (Maurel et al., 2008). Due to the 

important role of water accumulation in fruit growth, AQPs in fruit development have 

received increasing attention (Choat et al., 2009; Wang et al., 2017). Tyerman et al. 

(2004) proposed that a decrease of AQPs’ activity in xylem parenchyma in the late fruit 

developmental stage may account, to some extent, for the observed increased hydraulic 

resistance of the fruit (due to restrictions in the fruit xylem or reduced AQP activity in 

fruit cells). 

AQPs in most plant species are generally divided into the plasma membrane 

intrinsic proteins (PIPs) (with two subgroups, PIP1 and PIP2), the tonoplast intrinsic 

proteins (TIPs), the nodulin-26-like intrinsic membrane proteins (NIPs), small basic 

intrinsic proteins (SIPs), and X-intrinsic protein (XIPs) (Reuscher et al., 2013). To date, 

47 genes encoding AQPs in tomato plants have been identified and, through phylogenetic 

analysis, these AQPs were classified into 14 PIPs, 11 TIPs, 12 NIPs, 4 SIPs, and 6 XIPs 

(Reuscher et al., 2013). Some AQPs identified were associated with fruit water 

accumulation during fruit development (Chen et al., 2001; Hu et al., 2003; Shiota et al., 

2006; Mut et al., 2008; Wang et al., 2017). SlTIP3;1, SlNIP5;1, and SlXIP1;1 transcripts 

were found exclusively in fruits during the middle stage of tomato fruit development 



(Maurel et al., 2008). Expression of AQPs is known to be regulated by environmental 

stress factors including drought (Tyerman et al., 2002; Perrone et al., 2012). However, 

information is scarce on the expression of AQPs in fruits in response to water deficit, 

although some studies have focused on the expression associated with fruit development 

under normal conditions (Chen et al., 2001; Hu et al., 2003; Shiota et al., 2006; Mut et 

al., 2008). Expression of Pr-gTIP1, Pr-dTIP1, and Pr-PIP2 in the peach fruit was found to 

be down-regulated, whereas that of Pr-PIP1 was not affected under water stress (Sugaya 

et al., 2003). These results suggest that membrane permeability may be controlled by the 

down-regulation of some AQPs, which serves as a mechanism for preventing water loss 

by the fruit under drought stress. A good understanding of expression of AQPs in tomato 

fruits under drought conditions will provide new insights into molecular breeding using 

transgenic approaches to produce fruits better adapted to drought. 

Parent plant–fruit water potential gradient 

The water potential gradient between the parent plant and the fruit is important for the 

water transport between them (Fig. 2A). Water potentials of both the parent plant and the 

fruit have been reported to undergo diurnal changes under well-watered conditions 

(Johnson et al., 1992; Guichard et al., 2001). Plant water potential reached the highest 

value at pre-dawn, followed by a gradual decrease towards midday and a gradual 

recovery afterwards. A similar diurnal pattern was seen in the fruit, but with a much 

smaller diurnal variation than in the vegetative plant parts (Johnson et al., 1992; 

Guichard et al., 2001). It has been widely reported that a reduced water supply decreases 

the water potential of the parent plant (Mitchell et al., 1991a; Pulupol et al., 1996; Ripoll 



et al., 2016 b; van de Wal et al., 2016). Using in situ psychrometry, Lee et al. (1989) 

measured the diurnal changes in stem water potential and fruit water potential 

simultaneously in a tomato plant subjected to gradual soil drying (the plant was watered 

to field capacity in the beginning and water was withheld thereafter) for ~3 d. It was 

shown that both fruit and stem water potentials decreased as the drought progressed, with 

fruit water potential remaining consistently lower than stem water potential, until the 

drought became severe (stem water potential fell to about –0.8 MPa); fruit water potential 

became higher than stem water potential as stem water potential continued to drop. A 

positive parent plant–fruit water potential gradient (parent plant water potential higher 

than fruit water potential) indicates a force driving water flow from the parent plant to the 

fruit. In contrast, a reversed gradient under severe drought suggests a driving force for 

water backflow from the fruit to the parent plant. The magnitude of water backflow also 

depends on the resistance of the parent plant–fruit water transport pathway. In other 

words, an increased water potential gradient may not lead to significant water loss if the 

resistance increases (e.g. probably due to embolism) under severe water stress. An 

integrated investigation on hydraulic resistance (discussed in the previous section) and 

driving force will be important to understand water loss and accumulation in the fruit 

under soil water deficit. A backflow could potentially result in fruit water loss (weight 

loss) and even fruit dehydration, with a serious decrease in fruit quality (Tyerman et al., 

2004). However, fruit water loss via backflow to some extent (not causing detrimental 

effects to the fruit) is beneficial for the tomatoes intended for processing because it will 

reduce the cost of artificially dehydrating the fruits in the industry. 



Solute transport into and metabolism in the tomato fruit and 

cellular water relations 

The proportion of all dissolved solids (sugars, acids, phenols, amino acids, soluble 

pectins, and minerals) in water in the tomato fruit can be measured as the soluble solids 

content (SSC) (Balibrea et al., 2006). The SSC, measured by refractometry as Brix, 

serves as the overall and most important determinant of tomato fruit organoleptic quality 

(Knee, 2002). With the exception of minerals and hormones taken up by the root, solutes 

in the fruit mainly derive from carbohydrates, which are produced from photosynthesis in 

leaves and delivered to the fruit via the phloem. The transport of carbohydrates depends 

on the phloem water flux and the concentration of the phloem sap (sucrose is dissolved in 

the water of the phloem) (Ho et al., 1987). The phloem flux into the fruit can be 

indirectly estimated using the girdling technique as discussed above. The measurement of 

phloem sap concentration is subjected to uncertainties due to the unavoidable 

contamination by xylem sap when obtaining samples of phloem sap (Ho et al., 1987; 

Windt et al., 2009; Najla et al., 2010). 

Carbohydrates are generally translocated to the fruit via the phloem in the form of 

sucrose. Sucrose in the fruit is transformed into different sugars, acids, and other 

metabolites in the fruits through a range of enzyme-catalysed biochemical reactions 

(Osorio et al., 2014). The soluble solutes are osmotically active substances and their 

metabolism has an important influence on cellular water relations (Fig. 2D). Water 

potential of the fruit cell consists of two components: osmotic potential and cell turgor 

(Fig. 2D). Osmotic potential reflects the concentration of the osmotically active solutes in 



the cell including mainly sugars and organic acids together with carotenoids, phenolics, 

and other substances. Osmotic adjustment has been widely recognized as an adaptive 

mechanism to maintain cell turgor and, in some circumstances, allow for continued 

growth under low water potentials in leaves and roots (Alian et al., 2000; Blum, 2017). 

In fruits, there is osmotic adjustment due to active solute accumulation or a simple 

cellular dehydration effect under plant water deficit. Mitchell et al. (1991a) reported that 

osmotic potential of the tomato fruits grown in sand culture decreased in response to a 

water deficit imposed by reducing the number of daily irrigation cycles throughout the 

whole season. Considering that the decrease in fruit osmotic potential was accompanied 

by the reduction in fruit water accumulation (Mitchell et al., 1991a), the decrease in 

osmotic potential might be ascribed to a concentration effect. Ripoll et al. (2016b) 

measured the osmotic potential of mature tomato fruits subjected to a moderate water 

deficit (reducing the water supply by 60% compared with the control) imposed at cell 

division, cell expansion, and maturation stages. A 23% reduction in osmotic potential 

compared with the control was observed in the fruits of tomato plants (cultivar 

‘LA1420’) subjected to water deficit at the cell division stage. This reduction in osmotic 

potential was accompanied by a 46% increase in fruit fresh mass, probably suggesting 

active solute metabolism which may have resulted in increases in both water and dry 

matter accumulation in the fruit (Ripoll et al., 2016b). 

Primary metabolites affecting fruit flavour and nutrition 

The primary metabolites in the tomato fruits are sugars (sucrose, fructose, and glucose) 

and organic acids (malic acid and citric acid) (Davies and Hobson, 1981). Sugars are the 

most abundant solute and make up about half of fruit dry weight. Sucrose unloaded in the 



fruit is degraded into hexoses or their derivatives through a series of enzyme-catalysed 

reactions for various metabolic and biosynthetic processes (Ho, 1996; Osorio et al., 

2014). The cleavage of sucrose is the rate-limiting step in various metabolic and 

biosynthetic pathways (Fig. 2D). Sucrose cleavage is also the most important aspect of 

solute metabolism influencing osmotic potential (Balibrea et al., 2006) because the 

hydrolysis of one sucrose molecule into two molecules of hexose (glucose and fructose) 

will double the osmotic contribution of sucrose, facilitating increased water flux into fruit 

cells (Ruan et al., 2010; Beckles et al., 2012). This reaction is catalysed by invertase 

(INV; EC 3.21.26), which falls into one of three categories depending on the subcellular 

location of the enzyme: cell wall invertase (CWIN); vacuolar invertase (VIN); and 

cytoplasmic (neutral) invertase (NIN) (Ruan et al., 2010) (Fig. 2D). The activities of 

these enzymes in tomato fruits have been investigated extensively throughout fruit 

development and in different tomato cultivars (Islam et al., 1996; Schaffer and Petreikov, 

1997; Steinhauser et al., 2010, 2011; Yin et al., 2010; Beckles et al., 2012; Osorio et al., 

2014). There is a shift of sucrose unloading from a symplasmic route at an early stage of 

fruit development to a predominantly apoplasmic route during the late stage (Ruan and 

Patrick, 1995). As discussed above, the cleavage of sucrose unloaded inside the cell 

increases the concentration of osmotically active solutes, lowering the osmotic potential 

of the cell and facilitating water influx to fruit cells. The opposite effect would occur if 

sucrose is hydrolysed into hexoses in the apoplast. The increased concentration of 

osmotically active solutes outside the cell would lower the osmotic potential of the 

apoplast, impeding the water movement into the cell. Hence, it might be interesting to 

study the effect of water stress applied at different fruit developmental stages on the 



activities of these enzymes. The implications for sucrose hydrolysis are significant, as it 

alters the composition of soluble sugars and hence fruit sweetness (ranking of sugar 

sweetness: fructose>sucrose>glucose) (Knee, 2002). It also influences cellular water 

relations in the fruit and hence fruit water uptake that determines fruit size and 

concentrations of solutes. 

An increased accumulation of starch was reported in immature (Mitchell et al., 

1991a; Biais et al., 2014) and mature (Ripoll et al., 2016a) tomato fruits under water and 

salt stresses. Consistent with the observation of starch accumulation, an increased activity 

of ADP-glucose pyrophosphorylase (AGPase), which catalyses an important regulatory 

step in starch synthesis, was reported in the immature fruit under salinity treatment (Yin 

et al., 2010). This phenomenon at first sight appears contrary to the concept of osmotic 

regulation under water and salt stresses because the conversion of sucrose to starch 

lowers the amount of the osmotically active solutes (Fig. 2D). The implication of storing 

carbohydrates as starch rather than as hexose in immature fruits is unclear under water 

and salt stresses (Mitchell et al., 1991a). This conversion in fruit cells may help maintain 

a favourable sucrose concentration gradient between the source and the sink to facilitate 

the sucrose import into the fruit (Mitchell et al., 1991a). The continued transport of 

sucrose to the fruit may potentially sustain the growth of fruit under water shortage 

(Ripoll et al., 2016a). The accumulated starch in young fruits may be converted to 

soluble sugars in the late stages, resulting in a higher level of soluble sugars in mature 

fruits. 

Organic acids including malic and citric acids comprise ~13% of fruit dry weight 

(Davies and Hobson, 1981). The physiological mechanism of the response of acid 



accumulation to water stress is understudied. The influence of water stress on fruit acidity 

has been attributed to a simple concentration effect by many authors (Etienne et al., 

2013). Another mechanism likely to affect fruit acidity is osmotic adjustment which 

involves active synthesis of sugars and organic acids under water stress. Compared with 

sugar metabolism, the metabolism of malate and citrate involved more complex enzyme-

catalysed biochemical pathways including the carboxylation of phosphoenolpyruvate 

(PEP), decarboxylation of oxaloacetate, the tricarboxylic acid (TCA) cycle, and the 

glyoxylate cycle (Etienne et al., 2013) (Fig. 2D). It was shown that citrate content 

increased as tomato fruit approached maturity under both well-watered condition and 

mild drought (receiving 50% of irrigation compared with the control) without a 

significant difference in activities of related enzyme examined between the two 

conditions (Biais et al., 2014). 

Biais et al. (2014) investigated the metabolism of hexoses, organic acids, and 

amino acids, together with activities of 36 enzymes involved in regulating metabolism 

throughout tomato fruit development under a reduced water supply (receiving 50% water 

supply compared with the control). Among the metabolites tested, glucose and starch 

were found to be increased under water stress, whereas there was no pronounced 

difference in other metabolites between control and water-stressed conditions. 

Interestingly, no pronounced difference was seen in any enzymatic activities between the 

control and the drought treatment. The lack of correlation between metabolites and 

enzyme activities suggested that apart from the solute metabolism in the fruit, there might 

also be continued import of sucrose into the fruit from the parent plant (Ho, 1996; 

Balibrea et al., 2006; Biais et al., 2014). Given the relative insensitivity of enzymatic 



activity in response to water deficit among a series of physiological events (Hsiao, 1973), 

it is also likely that the stress level in the study of Biais et al. (2014) was not severe 

enough to elicit the enzyme responses. The study of Biais et al. (2014) will most 

certainly encourage researchers to look into how plant water stress affects the metabolism 

and the regulatory mechanisms, in combination with the transport of photosynthates. 

Investigating the enzyme profile could provide a foundation for deciphering the genes 

that encode different enzymes and genetically modifying them for fruit quality 

improvement under deficit irrigation. A number of approaches involving genomics, 

transcriptomics, and proteomics (‘omics’ studies) (Nakabayashi and Saito, 2015; 

Abdelrahman et al., 2018)will broaden the understanding of tomato fruit development 

under abiotic stresses. It is of significant scientific importance in that it bridges the 

genotype–phenotype gap to allow better understanding of plant stress responses (Hall, 

2006). It also has practical implications in providing information on a vast array of 

metabolites that determine fruit quality under water stress and other abiotic stresses 

(Biais et al., 2014). The metabolism of sugars and acids largely determines the sugar/acid 

ratio, which is associated with fruit flavour. High sugar concentrations and relatively high 

acid concentrations produce the best flavour; low sugar and high acid concentrations, 

high sugar and low acid concentrations, and both low sugar and acid concentrations 

produce bitter-tasting,  bland-tasting, and tasteless fruits, respectively (Cuartero and 

Fernández-Muñoz, 1999). 

Secondary metabolites affecting fruit nutrition 



Since an unhealthy diet has been recognized as an important factor contributing to poor 

health globally, people are interested in food that brings potential health benefits (Adalid 

et al., 2010; Willett et al., 2019). Tomato fruit has been identified as a type of 

nutraceutical food because it produces health-promoting secondary metabolites such as 

vitamin C, carotenoids (mainly lycopene and β-carotene), polyphenols, volatiles, and 

alkaloids (Tohge et al., 2014). These compounds are associated with a decrease in 

mortality caused by certain cancers and cardiovascular disease (Carr and Frei, 1999). 

Due to the high levels of consumption around the world, tomato has been reported to be 

the primary source of lycopene, the second most important source of β-carotene (after 

carrots), and the second most important source of vitamin C (after oranges) (Martí et al., 

2018) in the diet of many people. 

Although many studies have reported the responses of secondary metabolites in 

fruits to water shortage, showing inconsistent results (Table 1), very little is known about 

the mechanisms underlying these responses. Ripoll et al. (2014) have reviewed the 

current understanding of the potential mechanisms of water shortage influencing fruit 

secondary metabolites. These ideas included (i) influencing photosynthesis and hence the 

availability of carbohydrates that served as the major source of precursors for secondary 

metabolites in fruits; (ii) inducing oxidative stress [i.e. the enhanced production of 

reactive oxygen species (ROS)], which stimulates the synthesis and accumulation of 

antioxidants in fruits; and (iii) inducing photo-oxidative stress in leaves that affect 

secondary metabolism in fruits (Ripoll et al., 2014). To avoid redundancy, this review 

will deal with only the effects of water shortage on the metabolism of vitamin C, 



lycopene, and β-carotene in tomato fruits and briefly review proposed hypotheses in the 

literature which remain to be rigorously examined. 

Vitamin C can be transported from leaves to fruits via the phloem or synthesized 

in situ in fruits (Gest et al., 2013). Translocation of labelled vitamin C from leaves to 

fruit has been reported to occur in green immature tomato fruit, and not in mature red 

fruits (Badejo et al., 2012). Manipulation of the source/sink ratio did not affect fruit 

vitamin C accumulation (Massot et al., 2010), indicating that fruit vitamin C 

concentrations were not substrate limited (Gautier et al., 2009). Shading the fruits can 

decrease fruit vitamin C content, suggesting the importance of local fruit microclimate 

(sun exposure) for vitamin C content (Gautier et al., 2009). Reduced foliage development 

under water deficit may increase fruit sunlight exposure, which is favourable to the 

accumulation of vitamin C (Dumas et al., 2003; Gautier et al., 2009; Massot et al., 

2010). De-leafing higher up the plant stem has been used as an important cultural 

practice to increase light penetration in tomato plants (Peet and Welles, 2005). It has long 

been speculated that water shortage may indirectly influence fruit vitamin C 

concentration by reducing plant vegetative growth and enhancing the exposure of fruits to 

the light (Martí et al., 2018). In addition to water availability, temperature also plays an 

important role in affecting lycopene metabolism. Temperatures below 12 °C and above 

32 °C have been known to strongly inhibit or stop lycopene biosynthesis (Dumas et al., 

2003). The increased exposure of fruits to sunlight inevitably changes the temperature of 

the fruit surface. This raises an intriguing question as to how radiation load and 

temperature interact to influence lycopene formation in response to restricted foliage 

development under water shortage. 



Tomato is a typical climacteric fruit which is characterized by a burst of ethylene 

at the onset of ripening (Pesaresi et al., 2014; Tohge et al., 2014). Plant water deficit may 

increase the ethylene content of tomato fruit (Basiouny et al., 1994). Based on the 

observation that deficit irrigation increased the ethylene evolution and colour intensity of 

tomato fruits, Pulupol et al. (1996) speculated that ‘the redder colour of the deficit 

irrigation fruit may have been the result of a higher ethylene production of these fruits’. 

Although Pulupol et al. (1996) acknowledged that a cause–effect relationship does not 

necessarily exist between lycopene formation and ethylene burst, many authors (Wang et 

al., 2011; Chen et al., 2014; Bogale et al., 2016) refer to this idea when interpreting their 

observed lycopene responses to deficit irrigation. Although peak lycopene formation was 

found to be coinciding with an ethylene burst under well-irrigated conditions (Ishida et 

al., 1993), more definitive data are required to substantiate the hypothesis on a causal 

relationship between ethylene formation and lycopene synthesis under deficit irrigation. 

It was observed that the β-carotene/lycopene ratio increased in mature fruits of 

tomato plants subjected to water deficit imposed since plant establishment(Riggi et al. 

(2008),suggesting that plant water deficit may have different influences on β-carotene 

and lycopene accumulation. Lycopene and β-carotene are involved in the biosynthesis of 

some hormones closely related to plant water deficit, such as ABA (Srivastava and 

Handa, 2005). Given that lycopene is the precursor for β-carotene formation and β-

carotene is the precursor for ABA formation (Liu et al., 2015) (Fig. 2D), the increased β-

carotene/lycopene ratio under water stress suggested that the carotenoid biosynthetic 

pathway was more oriented towards β-carotene and hence ABA than towards lycopene 

under water shortage (Riggi et al., 2008). The complex  network involving the 



metabolism of β-carotene, lycopene, and ABA has been identified, and how 

environmental factors such as light intensity, CO2, and temperature influence this 

metabolism network has been widely studied, as reviewed by Liu et al. (2015). 

Biosynthetic pathways of secondary metabolites including vitamin C (Wheeler et al., 

1998) and carotenoids (Fraser and Bramley, 2004; Tohge et al., 2014; Liu et al., 2015) 

have been identified. Research can be directed towards looking into how water deficit 

affects the metabolites of theses pathways and the regulatory enzymes in the fruit to 

understand the biochemical basis of fruit drought responses using the ‘omics’ approaches 

as discussed above. 

Minerals affecting fruit nutrition 

Minerals are also essential components of tomato fruits, making up ~8% of fruit dry 

matter (Davies and Hobson, 1981). The most abundant minerals in the tomato fruit are 

Ca, K, Mg, and P, and trace elements such as Cu, Mn, and Zn are present in small 

amounts (Davies and Hobson, 1981; Capel et al., 2017). These elements are important 

for human health, and their content and ratio in the fruit may influence the formation of 

other quality traits (Dorais et al., 2001). The majority of K and Mg is delivered to the 

fruit via the phloem and Ca via the xylem (Dorais et al., 2001). K has been proposed to 

be associated with sucrose unloading from the phloem in the fruit cells (Mitchell et al., 

1991a). An adequate supply of Ca is not only associated with preventing BER (discussed 

before), but is also essential for fruit firmness and shelf-life due to its function in 

maintaining cell wall stability (Gerendás and Führs, 2013). P is related to the pH of fruit 

juice (Dorais et al., 2001). Fruit sugar content and acidity are often more closely 



correlated with cation ratios (Ca:Mg ratio and K:Mg ratio) rather than with the 

concentration of a mineral alone (Etienne et al., 2013; Gerendás and Führs, 2013). The 

granular and floury texture of the fruit is influenced by the K:Ca ratio (Dorais et al., 

2001). 

The reported responses of fruit mineral contents to deficit irrigation were 

inconsistent (Mitchell et al., 1991a; Pulupol et al., 1996; Wei et al., 2018), and a deeper 

knowledge of the regulatory mechanisms is required to understand these responses. 

Pulupol et al. (1996) reported that concentrations of K+, Ca2+, and Mg2+ in fruit were 

higher under deficit irrigation than under well-irrigated conditions on a fresh weight 

basis, but they were not significantly different on a dry weight basis. These results can be 

ascribed to the reduced fruit water content (concentration effect) under deficit irrigation 

(Pulupol et al., 1996). Mitchell et al. (1991a) investigated the content of Na+, K+, Ca2+, 

Mg2+, Cl–, and SO4
2– of the tomato fruit in response to soil water deficit and found that 

fruit K+ level was significantly reduced (on both a dry and fresh weight basis) by water 

deficit. Interestingly, the decrease in K+ was not accompanied by a decrease in net carbon 

accumulation under deficit irrigation in the fruit. The proposed mechanism is that rather 

than the K+ concentration of bulk tissue, the concentration of K+ in certain cellular or 

extracellular compartments is more important in regulating the sugar unloading in the 

sink organ under water deficit (Mitchell et al., 1991a). Wei et al (2018) did a detailed 

investigation of concentrations of NH4+, K+, Ca2+, Mg2+, NO3–, SO4
2–, and PO4

3– in the 

tomato fruit juice together with important fruit quality traits including fruit firmness, 

acidity, and sugar/acid ratio in response to water deficit. Although studies on these 

responses are still descriptive without elucidating the underlying genetic, biochemical, 



and physiological mechanisms, they could provide a basis for a deeper analysis on the 

relationship between mineral contents and fruit quality attributes. The studies of the 

complicated relationship may involve transport of irons via the xylem and the phloem 

into the fruit, their distribution at the cellular level in the fruit, and their interactions with 

other metabolomic processes in the fruit under water stress. Capel et al. (2017) identified 

the main quantitative trait loci (QTLs) controlling fruit mineral contents which will help 

to understand the genetic basis of fruit nutritional quality attributes and the interactions 

with drought and other environmental stresses. 

Solute metabolism and water accumulation affecting fruit firmness 

Appropriate firmness of fruit will benefit growers and retailers due to reduced fruit loss 

during shipping, storage, and retailing (Kader et al., 1986; Brummell and Harpster, 

2001). Development of fruit firmness involves water accumulation and solute 

metabolism that together determine cell turgor. Cell turgor in the pericarp of tomato fruits 

has been directly measured using a pressure probe (Shackel et al., 1991; Davies et al., 

1998, 2000; Thompson et al., 1998), and a decrease in turgor was shown during fruit 

ripening (Shackel et al., 1991). Firmness of the tomato fruit increased in the first couple 

of weeks after fruit set, was then stable until the mature green stage, and finally decreased 

sharply during ripening (fruit softening) (Tran et al., 2017). Given that the drop in turgor 

coincided with the decrease in fruit firmness, Guichard et al. (2001) proposed that 

infrequent irrigation may result in fruit cell turgor loss affecting fruit epidermal wall 

elasticity. Following this idea, many authors (Patanè and Cosentino, 2010; Barbagallo et 

al., 2013; Chen et al., 2014; Yang et al., 2016) have attributed the changes in fruit 

firmness under plant water stress to changes in cell turgor and epidermal wall elasticity. 



Positive, null, and negative effects of deficit irrigation on fruit firmness have been 

reported (Table 1), probably suggesting different turgor or cell wall responses to deficit 

irrigation. Davies et al. (1998) showed that cell turgor of the tomato fruit pericarp 

remained unaffected, whereas cell turgor in leaves generally declined as the water was 

withheld from the plant for 3 d. Although firmness was not measured in this study, the 

unresponsive turgor might imply a null firmness response to deficit irrigation. Much 

work concerning the biochemical basis of fruit firmness has emphasized cell wall 

chemistry catalysed by a series of enzymes (Minoia et al., 2016). Pectin methylesterase 

(PME; EC 3.1.1.11) is an important enzyme in the degradation of the middle lamella 

which leads to fruit softening. PME activity in the fruits of seven cherry tomato varieties 

generally decreased with reduced water supply as plants were subjected to three watering 

regimes (100, 75, and 50% evapotranspiration) with slight varietal differences 

(Barbagallo et al., 2008). Regrettably, fruit firmness was not measured in this study and 

there was therefore no assessment of a relationship between firmness and PME activity. 

Fruit firmness is also thought to be associated with morphological characteristics of the 

fruit, including locule number, skin toughness, and heterogeneity of cell distribution in 

the pericarp (Chaïb et al., 2007; Aurand et al., 2012). The mechanisms underpinning the 

development of firmness of tomato fruit have yet to be elucidated during fruit 

development under well-irrigated conditions, let alone under water deficit. Future 

research to understand more about the mechanisms behind fruit firmness development 

might be directed towards the response of turgor (Shackel et al., 1991; Thompson et al., 

1998), wall chemistry of fruit pericarp cells (Gall et al., 2015; Houston et al., 2016), and 



fruit morphological development (Chaïb et al., 2007; Aurand et al., 2012) to plant water 

deficit. 

In addition to water availability, other environmental factors (e.g. temperature and 

light intensity) also play important roles in fruit quality formation. The temperature of the 

air affects the partitioning of photosynthates between the vegetative parts and fruits, and 

metabolism catalysed by enzymes which are sensitive to temperature in the fruit (Adams 

et al., 2001; Dorais et al., 2001). Air temperature also influences water transport into the 

fruit by affecting fruit osmotic potential and xylem sap viscosity (Bussières, 1995). The 

temperature of the root zone influences the uptake of water and nutrients by the tomato 

plants. Day–night temperature differential (DIF) has been widely used to manipulate fruit 

quality primarily based on the effect of temperature on the transport of dry matter into the 

fruit (de Koning et al., 1988) and fruit respiration consuming dry matter (Shamshiri et 

al., 2018). It was shown that a large DIF early in fruit development accelerated fruit 

ripening and increased fruit size (Dorais et al., 2001). Light intensity influences leaf 

photosynthesis and thus dry matter availability to the fruits (Dorais et al., 2001). Fruit 

exposure to light directly affects the synthesis of pigments (e.g. lycopene) and vitamin C 

(as discussed above). Although a large number of studies have reported the effect of a 

single environmental stress (including drought) on fruit quality, much work remains to be 

done to understand how fruit quality responds to drought in conjunction with other 

environmental stresses (Ripoll et al., 2014). 

Modelling work 

Models can be used to simulate important physiological parameters including leaf 

expansion, stomatal conductance, transpiration, and photosynthesis which are related to 



soil and leaf water status in the soil–plant–atmosphere continuum (SPAC) (Sadras and 

Milroy, 1996; Williams et al., 1996; Tuzet et al., 2003; Landsberg and Waring, 2017). 

The physiology of the plant vegetative parts in SPAC directly or indirectly influence fruit 

quality through water and dry matter supply to the fruit. A biophysical model (the Virtual 

Fruit Model) (Fishman and Génard, 1998) and extended models could simulate the water 

and dry matter accumulation in the tomato fruit which is associated with the water status 

of the parent plant indicated by stem water potential (Liu et al., 2007; Constantinescu et 

al., 2016). These mechanistic models have been applied under water deficit to address 

important genetic and agronomic questions (Baldazzi et al., 2013), and could serve as 

powerful tools to determine thresholds of plant water status for fruit quality formation in 

response to drought. Future challenges include adding the impacts of drought and other 

environmental stresses on physiological processes and parameters at the cellular level, 

such as cell cycle adjustment, cell mechanical properties, and osmotic regulation, to 

current models (Baldazzi et al., 2013). 

Responses of main fruit quality variables to deficit irrigation 

and factors affecting these responses 

In practice, deficit irrigation strategies have been applied as sustained deficit irrigation 

(SDI; water application is below the evapotranspiration requirement throughout the 

season) or regulated deficit irrigation (RDI; water application is below  the 

evapotranspiration requirement at a specific stage of plant development) (Costa et al., 

2007; Galindo et al., 2018). Studies assessing the responses of fruit quality variables in 

tomato to deficit irrigation have shown positive, null, and negative results (Table 1). The 



inconsistency is associated with differences in tomato variety, timing and intensity of 

deficit irrigation application, and growth conditions of the tomato plants, as discussed 

below. 

Genetic variation of fruit quality responses to deficit irrigation 

Over 75 000 tomato accessions have been identified and maintained around the world 

(Pesaresi et al., 2014). Over recent years, assessments of larger numbers (s>100 in some 

studies) of tomato genotypes have demonstrated large genotypic differences in responses 

of fruit quality variables to deficit irrigation (Ripoll et al., 2016a,b; Albert et al., 2016a, 

b; Constantinescu et al., 2016; Guida et al., 2017; Aghaie et al., 2018; Diouf et al., 

2018). The fresh weight of larger fruits tended to be more negatively affected by the 

reduced water supply than that of smaller fruits (Albert et al., 2016b; Constantinescu et 

al., 2016; Diouf et al., 2018). Presumably smaller fruit have lower osmotic potential and 

water potentials and could compete more effectively for water in response to a reduced 

water supply. Diouf et al. (2018) evaluated fruit weight, SSC, and firmness of >250 lines 

(fresh weight ranging from ~10 g to 110 g) from the multiparent advanced generation 

intercross (MAGIC) tomato population as water supply was reduced by 25% and 50% at 

the time of the first and the second flowering truss, respectively. It was shown that 20 out 

of >200 tested tomato genotypes increased fruit fresh weight and SSC simultaneously 

under water deficit, which might suggest additional active sugar accumulation in the fruit 

under a limited water supply (Diouf et al., 2018). The genetic determinants of typical 

fruit quality responses have been identified by QTLs in tomato fruits (Albert et al., 

2016a, b), providing useful information for breeding tomato varieties that are better 

adapted to water shortage. These varieties are promising for the tomato industry to 



increase profits and can also act as good models for plant physiologists to uncover the 

mechanisms of fruit water accumulation and solute metabolism under water shortage. 

The intensity of deficit irrigation 

Responses of fruit quality variables to the severity of deficit irrigation have been widely 

evaluated based on soil water content (Patanè and Cosentino, 2010), soil water tension 

(Marouelli and Silva, 2007; Zheng et al., 2013), or  evapotranspiration (Machado and 

Oliveira, 2005; Chen et al., 2013, 2014; Martí et al., 2018), with a view to defining a 

threshold value where fruit quality variables start to respond. However, the plant or fruit 

water status in these studies was not measured and it is therefore not known whether and 

to what extent fruit itself has sensed the water deficit experienced by the plant. Plant 

water status (generally indicated by leaf/stem water potential) or fruit water status is a 

function of the integrated effect of soil water status and atmospheric conditions 

(McCutchan and Shackel, 1992; Boyer, 1995). A few studies have measured the pre-

dawn and midday leaf water potential of the tomato plant, or scheduled deficit irrigation 

based on the variation in plant water potential (Mitchell et al., 1991a; Pulupol et al., 

1996; Ripoll et al., 2016a, b; Van de Wal et al., 2016; Coyago-Cruz et al., 2019). 

However, fruit quality variables have not been correlated with plant water status in those 

studies. Quantification of biochemical and hydraulic properties will provide much greater 

insights into the variation of fruit quality under water shortage if such work is conducted 

in combination with a measure of fruit water status (Davies et al., 1998). Methods 

currently available for measuring leaf or stem water potential (e.g. pressure chambers) 

may result in uncertainties when applied in fruits due to their complex structure 

(Rodríguez et al., 2018). Manageable and reliable approaches for measuring fruit water 



status are required, such as in situ psychrometry (Johnson et al., 1992; Hou et al., 2019) 

and the ZIM-probe (Martínez-Gimeno et al., 2017) for continuous and non-destructive 

water status measurements. 

Timing of deficit irrigation application 

A deficit irrigation treatment has been applied to tomato and other crops at different crop 

developmental stages as RDI (Du et al., 2015; Galindo et al., 2018). The initial objective 

of imposing RDI in the 1970s was to inhibit the vegetative growth of fruit trees and hence 

reduce pruning costs (Fereres et al., 2003). Later researchers found that RDI imposed at 

appropriate stages of crop development may have positive effects on crop quality and 

maintain yield (Fereres et al., 2003; Du et al., 2015). The development of tomato plants 

includes vegetative growth, flowering, and fruit growth and ripening stages (Nuruddin et 

al., 2003; Kuşçu et al., 2014). Fruit growth consists of cell division (the number of cells 

formed determines the growth potential of the fruit ) and cell expansion (the increase in 

cells size contributes to the final fruit size) (Wolf and Rudich, 1988; Gillaspy et al., 

1993). Fruit ripening is characterized by a series of biochemical reactions, including the 

rapid accumulation of sugars, synthesis of lycopene (contributing to the red colour of the 

fruit), loss of chlorophyll, degradation of starch, and fruit softening (Guichard et al., 

2001; Beckles et al., 2012; Pesaresi et al., 2014). Fruit ripening is divided into different 

stages by colour changes as mature green, breaker, turning, pink, and red (red firm and 

red ripe) stages (Helyes et al., 2006; Beckles et al., 2012) (Fig. 1B). Fruit quality is 

formed continuously over an extended period of time as fruits initiate and grow. Tomato 

fruits at different stages of development have been found to be differentially sensitive to 



soil water deficit (Nuruddin et al., 2003; Johnstone et al., 2005; Wang et al., 2011; Chen 

et al., 2013, 2014; Kuşçu et al., 2014; Kumar et al., 2015; Nangare et al., 2016; Ripoll et 

al., 2016b; Coyago-Cruz et al., 2019). For example, Johnstone et al. (2005) observed 

that water deficit did not affect fruit SSC once a tomato fruit reached the pink stage (30–

60% of the surface showing colour other than green). This phenomenon might be related 

to the developmental changes in the hydraulic connection between the fruit and the parent 

plant as discussed above. 

In a tomato plant with indeterminate growth, fruits from different trusses at 

different positions are always at different developmental stages (Chen et al., 2014; Ripoll 

et al., 2016b; Coyago-Cruz et al., 2019). Often fruits of a lower truss at a particular 

position are mature whereas fruits of a higher truss are setting (Chen et al., 2014; 

Coyago-Cruz et al., 2019). Once deficit irrigation is imposed, it has impacts on fruits at 

different developmental stages on the same plant. In much crop science research, people 

can focus on the trusses which are at the developmental stages of interest. In practice, 

there might be a problem in deciding the timing of imposing deficit irrigation, 

particularly in those indeterminate varieties developing many trusses over a growing 

season. The timing of deficit irrigation application may be best determined by evaluating 

the overall quality of all fruits harvested from a single plant. 

In addition to fruit quality, yield is also an important concern in agricultural 

practice. Yield depends on fruit fresh weight and fruit number. Similar to fresh weight 

(discussed above), the response of fruit number to water deficit is also inconsistent 

(Pulupol et al., 1996; Nuruddin et al., 2003; Bogale et al., 2016; Arbex de Castro Vilas 

Boas et al., 2017). Improvement of fruit quality is generally accompanied by yield loss, 



and the degree of yield reduction is dependent on intensity (Ozbahce and Tari, 2010; 

Patanè et al., 2011; Shao et al., 2015; Zhang et al., 2017) and timing (Nuruddin et al., 

2003; Wang et al., 2011; Chen et al., 2013; Kuşçu et al., 2014) of the water deficit 

imposed. For some cultivars, yield was maintained and even increased and meanwhile 

fruit quality was improved under water deficit (Albert et al., 2016b). Trade-offs of yield 

and quality can be achieved by considering the appropriate cultivar and the timing and 

intensity of deficit irrigation in order to maximize the profits of tomato growers. 

Deficit irrigation can be applied in combination with other cultural practices such 

as fertilization, pruning, de-leafing, and grafting, which also have a significant impact on 

tomato fruit quality (Dorais et al., 2001; Beckles, 2012; Bertin and Génard, 2018). For 

instance, fertigation, which is the application of nutrients in the irrigation water, has been 

widely used as a sustainable method of supplying nutrients to crops (García-Caparrós et 

al., 2019). The level, type, and ratio of mineral nutrients can be manipulated to improve 

tomato fruit quality (Dorais et al., 2001; Chapagain et al., 2003; Mahajan and Singh, 

2006). 

Conclusions and directions for future research 

Water scarcity resulting from global climate change and excess water use by farmers is 

posing a serious threat to agricultural food production. Under such a scenario, fruit crops 

will inevitably experience severe limitations in water availability. Deficit irrigation has 

been used to manipulate many fruit quality variables, although no consensus has been 

reached on the sensitivity of these variables to deficit irrigation. Due to the importance of 

fruit as a component of a healthy diet, formation of the primary and secondary 



metabolites in the fruits under deficit irrigation deserves more attention from 

agronomists. The development of other quality variables such as fruit water content and 

fruit firmness under deficit irrigation must also be researched because they are closely 

related to food safety and food loss in the food chain. However, the conflicting results 

shown in practice have demonstrated our limited understanding of the physiological basis 

of the formation of these variables, and how they change due to differences in variety, 

and the timing and intensity of application of deficit irrigation. Going forward, it is 

essential to integrate studies of biochemical, hydraulic, and morphological characteristics 

of fruit to aid in mechanistic understanding of the influence of deficit irrigation on fruit 

quality variables. Research on fruit water accumulation and solute metabolism associated 

with fruit quality in crops where water is freely available has paved the way for such 

research under drought conditions. The advances of new technologies including in situ 

imaging technologies (e.g. MRI and MicroCT), an ‘omics’ approach, and the 

development of non-destructive methods of assessment of fruit water status could help 

address the questions remaining (e.g. sensitivity of different fruit quality variables to 

deficit irrigation and water deficit threshold for fruit quality formation). A good 

understanding of the physiological basis of fruit quality responses to deficit irrigation will 

help us achieve the ambition of a win–win diet comprising high-quality food which is 

less damaging to our planet. 
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Table 1. A summary of reported effects of deficit irrigation on main fruit quality 

variables 



Quality variable Effect of 

deficit 

irrigation 

Reference 

SSC  + Nuruddin et al., 2003; Machado and Oliveira, 2005; Favati 

et al., 2009; Patanè and Cosentino, 2010; Patanè et al., 

2011; Wang et al., 2011; Chen et al., 2013, 2014; Kuşçu  et 

al., 2014; Albert et al., 2016a; Lahoz et al., 2016; Nangare 

et al., 2016; Guida et al., 2017; Wang et al., 2017; Zhang et 

al., 2017; Diouf et al., 2018 

 / Nuruddin et al., 2003; Patanè and Cosentino, 2010; Chen et 

al., 2013, 2014; Kuşçu  et al., 2014; Wang et al., 2011; 

Wang et al., 2017;  Zhang et al., 2017 

 – Albert et al., 2016a; Diouf et al., 2018  

Sugars + Veit-Köhler et al., 1999; Wang et al., 2011; Chen et al., 

2013, 2014; Ripoll et al., 2016b; Van de Wal et al., 2016; 

 / Wang et al., 2011; Chen et al., 2013, 2014; Ripoll et al., 

2016b 

 – Ripoll et al., 2016b 

Organic acids + Wang et al., 2011; Chen et al., 2013, 2014; Ripoll et al., 

2016b 

 / Wang et al., 2011; Chen et al., 2013, 2014; Shao et al., 

2015; Ripoll et al., 2016b; Van de Wal et al., 2016 

 – Shao et al., 2015; Wang et al., 2017 

Sugar/acid ratio + Wang et al., 2011; Chen et al., 2013, 2014; Shao et al., 

2015 

 / Wang et al., 2011; Chen et al., 2013, 2014; Wang et al., 

2017; Shao et al., 2015;  Wang and Xing, 2017 

Vitamin C + Favati et al., 2009; Patanè and Cosentino, 2010; Patanè et 

al., 2011; Wang et al., 2011; Chen et al., 2013, 2014; Shao 

et al., 2015; Bogale et al., 2016; Zhang et al., 2017; Martí 

et al., 2018  



 / Veit-Köhler et al., 1999; Favati et al., 2009; Patanè and 

Cosentino, 2010; Wang et al., 2011; Chen et al., 2013, 

2014; Shao et al., 2015; Wang et al., 2017; Ripoll et al., 

2016b; Guida et al., 2017; Zhang et al., 2017; Martí et al., 

2018  

 – Patanè and Cosentino, 2010; Bogale et al., 2016 

Lycopene + Favati et al., 2009; Wang et al., 2011; Bogale et al., 2016 

 / Wang et al., 2011; Ripoll et al., 2016b; Martí et al., 2018 

 – Riggi et al., 2008; Barbagallo et al., 2013; Bogale et al., 

2016; Ripoll et al., 2016b 

β-carotene + Favati et al., 2009; Pernice et al., 2010; Bogale et al., 2016 

Ripoll et al., 2016b 

 / Riggi et al., 2008; Bogale et al., 2016; Ripoll et al., 2016b; 

Martí et al., 2018 

 – Riggi et al., 2008; Pernice et al., 2010; Atkinson et al., 

2011 

Firmness + Patanè and Cosentino, 2010; Wang et al., 2011; Chen et al., 

2013, 2014; Shao et al., 2015; Nangare et al., 2016  

 / Patanè and Cosentino, 2010; Wang et al., 2011; Zheng et 

al., 2013; Chen et al., 2013, 2014; Van de Wal et al., 2016; 

Zhang et al., 2017 

 – Ozbahce and Tari, 2010; Zheng et al., 2013; Zhang et al., 

2017 

BER + Nuruddin et al., 2003; Taylor et al., 2004;  

 / Nuruddin et al., 2003; Machado and Oliveira, 2005 

Positive (+), null (/), and negative (–) effects were based on whether there was a significant difference 

between the deficit irrigation treatment and the well-irrigated control. Sugars, organic acids, vitamin C, 

lycopene, and β-carotene were measured on a fresh or dry weight basis. 

Fig. 1. (A) The composition of a mature tomato fruit. The figure is made based on 

information from Davies and Hobson 1981.The constituents of tomato fruit - the 

influence of environment, nutrition, and genotype. Critical Reviews in Food Science and 



Nutrition 15, 205–280. Reprinted by permission of the publisher (Taylor & Francis Ltd, 

http://www.tandfonline.com). (B) The development of a tomato fruit and formation of the 

main quality variables. The figure is made by integrating information from Gillaspy et 

al.(1993) (Republished with permission of American Society of Plant  

Biologists, from Fruits: a developmental perspective. Gillaspy G, Ben-David H, 

Gruissem W. The Plant Cell 5, 1439–1451.1993 of copyright; permission conveyed 

through Copyright Clearance Center, Inc) and Helyes et al. (2006). 

Fig. 2. The framework of water shortage affecting main fruit quality variables, 

integrating plant water relations (A), water transport into the fruit (B and C), and the 

simplified metabolic pathways of main compounds in the fruit (D). Ψplant, plant water 

potential; Ψfruit, fruit water potential; Ψs, cell osmotic potential; Ψp, cell turgor; R, total 

hydraulic resistance of the pedicel and fruit; Rpedicel, pedicel hydraulic resistance; Rfruit, 

fruit hydraulic resistance; PIPs, aquaporins in the plasma membrane; TIPs, aquaporins in 

the tonoplast; G-1-P, glucose-1-phosphate, which is an important intermediate for starch 

synthesis; ADPG, ADP glucose; F-6-P, fructose-6- phosphate produced from glycolysis, 

precursor for ascorbic acid synthesis; IPP, isopentenyl diphosphate; DMAPP, 

dimethylallyl diphosphate; IPP and DMAP are precursors for lycopene and β-carotene 

synthesis. Detailed information on biosynthetic pathways can be found in Biais et al. 

(2014) (sugars, starch, and organic acids), Wheeler et al. (1998) [ascorbic acid (vitamin 

C)], and Liu et al. (2015) (lycopene and β-carotene). Solid arrows represent one reaction 

and dashed arrows multiple reactions. 
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