In-situ forming ph and thermosensitive injectable hydrogels to stimulate angiogenesis:Potential candidates for fast bone regeneration applications

Kocak, F.Z. and Talari, A.C.S. and Yar, M. and Rehman, I.U. (2020) In-situ forming ph and thermosensitive injectable hydrogels to stimulate angiogenesis:Potential candidates for fast bone regeneration applications. International Journal of Molecular Sciences, 21 (5). ISSN 1661-6596

Full text not available from this repository.

Abstract

Biomaterials that promote angiogenesis are required for repair and regeneration of bone. In-situ formed injectable hydrogels functionalised with bioactive agents, facilitating angiogenesis have high demand for bone regeneration. In this study, pH and thermosensitive hydrogels based on chitosan (CS) and hydroxyapatite (HA) composite materials loaded with heparin (Hep) were investigated for their pro-angiogenic potential. Hydrogel formulations with varying Hep concentrations were prepared by sol–gel technique for these homogeneous solutions were neutralised with sodium bicarbonate (NaHCO3) at 4 °C. Solutions (CS/HA/Hep) constituted hydrogels setting at 37 °C which was initiated from surface in 5–10 minutes. Hydrogels were characterised by performing injectability, gelation, rheology, morphology, chemical and biological analyses. Hydrogel solutions facilitated manual dropwise injection from 21 Gauge which is highly used for orthopaedic and dental administrations, and the maximum injection force measured through 19 G needle (17.191 ± 2.296N) was convenient for manual injections. Angiogenesis tests were performed by an ex-ovo chick chorioallantoic membrane (CAM) assay by applying injectable solutions on CAM, which produced in situ hydrogels. Hydrogels induced microvascularity in CAM assay this was confirmed by histology analyses. Hydrogels with lower concentration of Hep showed more efficiency in pro-angiogenic response. Thereof, novel injectable hydrogels inducing angiogenesis (CS/HA/Hep) are potential candidates for bone regeneration and drug delivery applications. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Item Type:
Journal Article
Journal or Publication Title:
International Journal of Molecular Sciences
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1700/1706
Subjects:
ID Code:
142545
Deposited By:
Deposited On:
23 Mar 2020 15:05
Refereed?:
Yes
Published?:
Published
Last Modified:
17 Jul 2020 12:25