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Abstract: : This paper presents a numerical approach using the discrete element method to predict strength and 

damage propagation of plates and bolted lap joints subjected to axial tension. Tensile tests on GFRP plates and 

bolted joints are carried to obtained their overall stiffness and strength. A new three-dimensional discrete element 

model constructed by a 19-ball assembly is proposed and the relationships between the macro and the micro 

mechanical properties of FRP is established through calibrations using the test results. The calibrated DEM 

model is then used to reproduce the test results. Excellent agreements are achieved between the numerical and 

the experimental results in terms of not only the overall failure loads, but also the detailed failure modes, 

including cracking and delamination. The research shows great potential of the DEM model in predicting 

strength of composite materials and presenting detailed local damage and damage propagation at micro-scale, 

which represents a significant advantage over the conventional numerical methods, such as the finite element 

method. 
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1. Introduction 

Offering advantages over other materials in physical and mechanical properties, such as strength to weight 

ratio, fatigue resistance and design flexibility, fiber reinforced polymers (FRP) have been increasingly used in 

construction industry and many other industrial applications[1]. In civil engineering, FRP is known as an effective 

and economic material for strengthening and retrofitting of existing structures, and now increasingly used as 

load-bearing materials in structures such as bridges and buildings [2-4]. Made of fibers and polymer resins, a fiber 

reinforced composite is a typical kind of heterogeneous material with diverse properties [5]. A clear understanding 

of its failure mechanism will promote wider applications of FRP with the same confidence as with the traditional 

materials. Extensive researches on FRP used in structures have been carried out world-widely mainly in the last 

two decades, including researches on FRP ranging from materials[6, 7] to structural members[8, 9] and from FRP 

at room temperature[10, 11] to elevated temperature[12-14]. Theoretical, experimental and computational studies are 

the three main research approaches. For theoretical study, two recent World Wide Failure Exercises (WWFE-II 

and III) investigated a collection of representative failure cases in order to study the capabilities and uniqueness 

among existing popular failure criteria [15-17]. The research results have shown that some of the failure criteria 



are capable of distinguishing various failure modes. However, it is also mentioned that there is not yet solid 

evidence that any failure criteria was available for predicting progressive cracking or damage, and containes all 

what is required to support designers with a convenient and reliable tool [17-20]. Experimentally, a considerable 

amount of tests were conducted to study failure modes of FRP, including failure under multifarious environments, 

such as exposure to sulfuric acid environment[21] and immersion in seawater [22]. Computationally, Finite Element 

Method(FEM) [23-27] and Boundary Element Method(BEM)[28-30]  are generally used for accurately predicting 

crack initiation and stress distribution. Francesca Nerilli and Giuseppe Vairo [27], for example, proposed a 

nonlinear FEM approach to predict the pin-bearing failure mechanisms for FRP bolted joints. These numerical 

methods have made a nice progress in predicting failure of FRP, but meanwhile they are facing challenges in 

simulating dynamic damage propagation and intersection due to the limitations inherited form the use of the 

classic continuum mechanics. The inherent multiphase structure of FRP (randomly distributed fibres, cracks, 

inclusions, etc.) results in complex failure/fracture of the constituent elements and their interfaces. The 

damage evolution and failure mechanism are complex multi-scale processes developing simultaneously 

from micro to macro scales, i.e., from debonding, cracking and fiber breakage to final failure. It has been 

widely recognized that the predictive failure models currently in use are not sufficiently accurate, especially 

when a FRP is under biaxial or triaxial forces, resulting in that most of FRP composite structures, e.g., bolted 

joints, have been conservatively designed under real loading conditions [18, 31]. In order to have a better 

understanding of composite failure and take the full advantages offered by FRP in practical design, further 

investigations on the failure mechanism are demanded. 

The Discrete Element Method (DEM) based on discontinuous mechanics is another method worth 

considering for studying composite materials. Since it was first used by Cundall and Srack[32, 33] in the study of 

discontinuous mechanical behavior of rock in 1971, DEM has been increasingly implemented in many other 

fields, such as geo-materials, granular materials, concrete, ceramics, granular-fluid and particle-gas two phase 

flow[34]. DEM utilizes discrete particles that are bonded together to represent the continuity of FRP composite 

materials. As a particle only interacts with its neighboring particles through contacts, its dynamic responses are 

primarily determined by Newton’s second law and force-displacement relationship [35, 36]  Sheng et al.[37] and 

Ismail et al.[38] used DEM to simulate the failure process and generate the stress-strain curves of composites 

under transverse tensile load, which demonstrated that DEM had the advantage of tracking failure paths at 

microscopic scale and predicting the ultimate failure strength. Yang et al.[39, 40] studied the lateral failure and 

delamination of cross-laminated composites and predicted damage density by two-dimensional discrete element 

method. Maheo et al.[41] simulated the failure of composites under uniaxial tensile loading. Le et al.[42] simulated 

the failure of FRP laminates such as fiber degumming, delamination, matrix cracking and fiber breakage. These 

existing studies showed that DEM is able to effectively determine initial crack and fiber/matrix cracking 

distribution with microscopic modeling approaches [35, 36].  

To the authors’ best knowledge, current researches on DEM composite modelling is predominately at micro 

or meso scale, such as study in fiber/matrix debonding[41], and these studies have achieved great success. At a 

larger scale, Zha, et al[34] used DEM to simulate failure of metal skinned sandwich panels subjected to uniform 

pressure and this is one of few articles on simulating large-scale members. However, the work did not provide 

the information on how they calibrated the micromechanical parameters of the model, a process that is essential 



and challenging when applying DEM to industrial problems [43], especially when the materials are anisotropic, 

such as the FRP investigated in this paper.  

This paper aims to propose a simplified 3D DEM model to simulate laminated plates and bolted joints. In 

Section 2, a 19-ball 3D unit of DEM model is proposed and equations are derived for calculating the microscopic 

stiffness constants of the FRP laminates material by considering each lamina as transversely isotropic. 

Experimental tests of GFPR plates are carried out in Section 3 to calibrate the micro contact strength through 

comparisons with the macro properties of the materials, such as the global strength, damage initiation and 

propagation. In Section 4, bolted GFRP joints with different lap length under tension are tested, and DEM models 

of the joints are developed. Comparisons are made to validate the applicability and accuracy of the method. 

Finally, conclusions and recommendations are drawn in Section 5. 

2. Three-dimensional DEM model 

2.1 Discrete element method and basic formulation 

The Discrete element method (DEM) divides an elastic solid structure into many rigid or deformable 

discrete particles linked by different contacts with, normally, rectangular, hexagonal or random arrangement. In 

this paper, the discrete element commercial software PFC3D5.0 developed by ITASCA[44] is used as the platform 

to simulate 3D composite materials, where the linear parallel-bond model is adopted to represent the interactions 

between the particles. The linear parallel bond can be envisioned by a set of independent elastic springs with 

normal and tangential stiffness , uniformly distributed over either a rectangular (in 2D) or circular (in 3D) cross-

section on the contact plane or centered at the contact point as shown in Fig. 1(a)[44]. The linear parallel bond 

includes two interfaces: an infinitesimal, linear elastic (no tension) and frictional interface that carries forces and 

a finite-size, linear elastic and bonded interface that carries forces and moments. For the liner bond, nk  and sk  

are normal and tangential stiffness, respectively; g s   is surface gap and    is friction coefficient. For the 

parallel-bond group, nk  and sk  are normal and tangential stiffness, respectively. In Fig. 1(b),  c
 denotes 

tensile strength and c  and   are the cohesion and friction angles, respectively, which are related to shear 

strength  s
 (when c =0,  s

= c ). The parallel bond resists also relative rotation, and is linear elastic until 

the strength limit is exceeded and the bond breaks. In this paper, the parallel bond is used to simulate the strength 

of the contacts. Thus, to define a linear parallel bond, four parameters are required: i.e., the normal stiffness nk , 

the tangential stiffness sk , the normal strength  n
 and the tangential strength  s

. The determination of 

these parameters is a key step of DEM simulation, which directly affects the accuracy and efficiency of the 

model. In principle, a theoretical relationship can be established between the bond stiffness (i.e. the micro 

stiffness) and the material’s global elastic stiffness (i.e. the macro stiffness). 

  



(a) contact between two particle (b) mechanism for linear parallel bond 

Fig. 1 Linear parallel bond model 

 

In a DEM model, the deformation of a material is simulated by the deformation of the springs. The formulas 

for calculating the spring constants of isotropic materials were derived by some researchers, such as Taverez and 

Plesha[45]. Liu and Liu[46] proposed a general formula for both anisotropic and isotropic materials in 2D. Liu et 

al.[47] and Zhao et al.[48] also developed an average strain energy method to correlate bond stiffness with 3D 

macro material properties. The average strain energy was calculated on the basis of relative displacement of the 

particles. Based on Liu and Liu[46], the three dimensional average strain energy can be derived as below. 

Considering that particle i  is connected to p neighboring particles that are numbered j ( j =1, 2,…,p), 

the average strain energy density  around particle i  is written as follows: 
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where iV  is the volume of the outside cube of the inscribed particle i ; nijk  and sijk are the spring constants 

between particles i  and j  in the normal and tangential directions, respectively; niu  and siu are the normal 

and tangential displacements of particle i ; nju  and sju are the normal and the tangential displacements of 

particle j .  

Assuming that the directional cosines of the normal of the contact between particles i  and j  is ( l , m ,

n ), one has 
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Considering the displacement-strain relationship, the following equations are obtained. 
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where ( ix , iy , iz ) and ( jx , jy , jz ) are, respectively, the coordinates of particles i  and j ; ijD is the distance 

between the center of particles i  and j .  

2.2 Relationships between spring constants and the elastic constants of material 

Eq.(1-3) are the three basic equations that apply to any material and any form of particle arrangement. Lei 

et al.[36] compared and evaluated three different particle packings, namely, the 3D discrete Lattice model, the 3D 

hexagonal close packing model and the extended 2D hexagonal and square packing model. It was found that the 

extended 2D hexagonal and square model is more suitable and efficient for modelling composite lamina. In this 

iU



paper, on the basis of the nine-disc model proposed by Liu[46], which is similar to the extended 2D square model 

mentioned above, a new 9-ball model, as shown in Fig. 2, is proposed. The new 19-ball model is a reduction of 

the 27-ball cube shown in Fig. 3 by removing the connections between the central ball and the balls at the eight 

corners (vertices). 

  

Fig. 2 19-ball modelling unit Fig. 3 27-ball cube 

Six springs, respectively, along the x(xx), y(yy), z(zz), xy, xz and yz directions are introduced to represent 

the normal and tangent contact stiffness. The distances between the central ball i  and the rest 18 balls are either  

2R  or 2 2R , where R is the particle radius. The average strain energy density of the central ball of Fig.2 can 

be expressed in terms of the spring constants and the strains below by following Eq.(1)-(3). 
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where U  is the average strain energy density. V  is the volume of the representative cuboid occupied by a ball, 

which is  
3

2R . nijk  and sijk  are, respectively, the six normal and the six tangential spring constants relative 

to the respective directions shown in Fig. 2.  x , y , z , xy , yz and  zx are the engineering strain components. 

From the theory of three-dimensional elasticity, the average strain energy density[1] of an anisotropic 

material is written as 
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where 11c , 12c , …, 66c are elastic coefficients of the material; The subscripts, 1, 2 and 3, are related to the x, 

y and z directions, respectively.  

Since the average strain energy density in Eq.(4) and (5) must be equal, the following equations are obtained 

for an orthotropic material 
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where 2(4 )=2 V R R . 

Eq.(6) shows the relationship between the spring constants and the macro elastic constants for the 19-ball 

model of general orthotropic materials. As a part of validations, Eq.(6) is reduced to a two-dimensional case that 

has been investigated by Liu and Liu [46] . In a two-dimensional case, all the constants that are relative to the out-

of-plane direction, e.g., the z direction, are ignored. Thus Eq.(6) is reduced to 
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Letting nxxk = 1nk , nyyk = 2nk , nxyk = 3nk , and sxxk = syyk = sxyk = sk , it can be shown that the solutions of 

Eq.(7) are identical to the solutions of Eq.(19) in Liu and Liu[46] for a 2D orthotropic material.  

When Eq.(6) is applied to general orthotropic materials, the number of the unknown contact stiffness is 

greater than that of equations. Reasonable assumptions can be made at this stage to solve the problem. For a thin 

plate under tension, where the z axis is assumed in the thickness direction, Eq.(6) can be simplified by ignoring 

two pairs of contacts, i.e., nxzk , sxzk and nyzk , syzk  in the 19-ball model, as shown in Fig. 4, where only the 

contacts between the balls are shown. In this circumstance, 13 ,. 31 , 23 , 32  are ignored. 

 

 

 

   

Fig. 4 model showing contacts 

Assuming that  sxx syy sxyk k k , the normal and the tangential spring constants in Eq.(6) are obtained as 
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where 2(4 )=2 V R R  ,  11 2 31 c E E  ,  12 21 1 3 c E E  ,  22 1 31 c E E  ,    33 12 21 1 21    c E E  , 

44 23c G , 66 12c G  and    12 21 1 2 3= 1    E E E . It is shown that the contact stiffness has linear relationship 

with the size of the particles. It is worthy of noting that the derived formulas for calculating the contact stiffness 

between particles are not restricted to the material studied in this paper, so they can be used for any material as 

long as the 19 ball unit is used in the model.  

3. DEM model for FRP plates 

3.1 Experimental tests on GFRP laminates 

In order to calibrate the micro parameters of the laminated plates for the DEM model, laboratory tensile 

tests were carried out on GFRP laminates. The laminates used in this study are EXTREN 500 Series pultruded 

GFRP manufactured by Strongwell. In nature, the material of 500 Series is constructed by glass fibres and 

polyester resin matrix whose weight percentage are respectively about 30% and 70%. The glass fibre 

reinforcement has two forms, including rovings and continuous filament mat (CFM). The rovings are 

unidirectional parallel fibre bundles and mainly determine the longitudinal strength and stiffness of the plates, 

while the CFM contributes to these properties in the transverse direction and is usually placed within the stacking 

sequence [49]. Resin matrix includes 10% of calcium carbonate or kaolin filler. The plate is a laminate of five 

identical layers. Specimens with and without hole were cut from the composite for testing. The longitudinal cuts 

of the specimens without holes (Fig.5a) are either parallel or perpendicular to the roving direction, so that their 

elastic modules and ultimate strengths in the two directions can be determined, respectively. Plates with holes 

with longitudinal cuts in the roving diretion is desined as shown in Fig.5(b) to figure out shear properites in the 

plane.  

 

(a) GFRP plate without hole 



 

(b) GFRP plate with a hole 

Specimen length: L=200mm 

Specimen thickness: H=6.4mm 

Specimen width: W1=40mm  

 Hole diameter: D=10mm 

Specimen width: W2=25mm 

Grip length: GL=50mm 

Fig. 5 Details of GFRP specimens used in the tension plate tests 

The tensile tests of the GFRP laminates were completed on a 300kN universal testing machine under 

displacement control at a rate of 1mm/min. In order to accurately measure the deformation of the specimens, 

especially of the joints tested later, the IMETRUM non-contact video gauge, as shown in Fig. 6, was used to 

capture high resolution images of the dynamic deformation process. The basic principle of the non-contact video 

gauge is utilizing the image speckle recognition and the two-dimensional image processing techniques to 

accurately identify and track the deformation of the surface of the object under test, and accurately measure the 

relative displacement of the target points, as shown by Fig. 7.  

 

 

Fig. 6 Test equipments Fig. 7 Displacement tracking 

Two groups of plates, i.e., with and without central holes, were tested for stiffness, strength and damage 

propagation. In each group, there were 3 nominally identical laminates. In the tensile tests of the plates without 

holes, the development of the transverse cracks caused fracture of the outer layer and then final brittle failure 

of the laminate as shown in Error! Reference source not found. (a). The failure mode of the plates with holes 

in Error! Reference source not found.(b) shows transverse cracks across the central hole, where the cross-

section is weakened. The transverse cracks propagated quickly, and a total failure occurred causing dramatic 

reduction of the bearing capacity. Since the holes were not exactly centralized resulting in slightly 

unsymmetrical deformation. 

Sample 

Universal test machine 

Clamping device 

Video measuring system 



  

(a) without hole 

 

(b) with hole 

Fig. 8 Failure modes of plate with and without hole  

The test results are shown in Table 1 where the data provided by the Manufacture and the test results of 

Turvey and Szulik[49] are also presented. Comparing to the data provided by the manufacturer and the same 

group plates tested by Turvey and Szulik[49]. It can be seen from the table that some of the test results from both 

this research and Turvey and Szulik[49]’s work are significantly different to the ones from the manufacturer 

datasheet that represent the minimum property values of the material. Nevertheless, we believe that our test 

results are reasonable representations of typical properties of the material and use them to calibrate the micro 

contact properties for the DEM model. 

Table 1 Test results and comparison 

 Test Manufacturer Turvey and Szulik 

Plates without 

holes 

Elasticity modulus 1E  17.46GPa 17.20GPa 23.13GPa 

Elasticity modulus 2E  5.52GPa 5.52 GPa — 

Shear modulus 12G    — 2.93GPa — 

Poisson's ratio 21  0.303mm/mm 0.330mm/mm — 

Longitudinal strength  x  293.0MPa 207.0MPa 300.0MPa 

Transverse strength  y  95.4MPa 48.3MPa — 

Plates with holes Tension capacity  21.6kN — — 

3.2 DEM model of GFRP laminates 

Instead of simulating individual fibres within the matrix of each layer, which is practically possible if the 

distribution of the fibres are known, though it will be more computational intensive, each of the FRP layer is 

considered as a homogenous and transversely isotropic material that are bonded together to form the laminate. 

Initial tests on the size of particle were carried out, which shown that by dividing the plates into 4-6 layers (4-6 

particles across the thickness), satisfactory results can be achieved without significantly increase the 

computational costs. It was decided to use 5 layers in the model, which was also because, by inspection, the 

tested laminates were made of 5 identical laminas. For the model of the plates with hole, the diameter of the hole 

is 10mm, the same as that of tested specimens. These models are shown in Fig.9 Error! Reference source not 

found.(a), where the longitudinal, the width and the thickness directions are defined as the x-, y- and z-directions, 

respectively.  



On the basis of the simplified 19-ball model in Section 2.2, there are four normal and four tangential contact 

stiffness that can be calculated from Eq.(8) using the tested elastic constants presented in Table 1 and assuming 

that 3 2E E , 23 12G G  for the transversely isotropic material. The calculated stiffness for the balls within each 

of the lamina are summarized below in Table 2. 

Table 2 contact stiffness  

Normal stiffness 

MPa/m 

nxxk  nyyk  nxyk  nzzk  

18.318×106 2.941×106  3.159×106  6.900×106  

Tangential stiffness 

MPa/m 

sxxk  syyk  sxyk  szzk  

1.006×106  1.006×106  1.006×106  11.631×106  

 

On the contacts, there are also four normal strength, i.e.,  nxx  , nxy  , nyy  , nzz  , and four tangential 

strength, i.e.,  sxx , sxy ,, syy  and  szz  required to be determined.  

    

(a) five-layer model 

        

(b) single layer model 

Fig. 9 3D model of laminates 

For the thin plate subjected to uniaxial tension in the fibre direction, numerical simulations have been 

carried out for the multi-layer models to calibrate the strength of the bonds in the x-y plane. Through parametric 

analysis of this model, it is found that tangential strength plays a negligible role in the tensile capacity and failure 

mode of the plates, thus a relatively large value, e.g., 100e2MPa in this case, was assigned to it to avoid any 

premature shear failure of the material. Therefore, the parameters to be calibrated are reduced to the three normal 

strengths. The calibration process is described in Section 3.3. 

Fig. 150 compares the load-deformation curves obtained from the tests and the DEM modelling for the 

plates with and without holes. The above calibrated contact stiffness were used as the bond stiffness of the 

particles in the DEM models. It can been seen that the stiffness of plates calculated from the DEM models match 

well with the stiffness of plates from the tests. 
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(a) plates without holes (b) plates with holes 

Fig. 10 Load-deformation curves of the plates with and without holes 

3.3 Strength in the xx and yy directions in the x-y plane 

Under tensile loading, tensile strength in the xx direction are represented by  nxx  and  nxy . The relative 

values of the two strengths offer three possible breaking sequences in the xx and the xy directions, as shown in 

Fig. 1(a-c). These include (a) when  nxx  and  nxy  are proportional to each other such that the two contacts 

break simultaneously; (b) when  nxx  is sufficiently smaller such that the xx contact breaks first; and (c) when 

 nxy  is sufficiently smaller such that the xy contact breaks first. Through extensive simulations, it was found 

that the three breaking sequences were mainly related to the three stress-strain relations shown in Fig. 102(a-c). 

When the two contacts break at the same time, the stress increases linearly to the breaking point, then drops 

abruptly to zero (Fig. 102a). In this case, the values and proportionality of  nxx  and  nxy  can be calibrated by 

comparing with the test results. When the xx contact breaks first, the stress reaches its limit specified by  nxx  

followed by an abrupt drop and a ‘small strain hardening’ to a second peak related to  nxy (Fig.12b). The second 

peak is normally lower then the first one if  nxy  is not excessively high. When the xy contact break first, there 

is a small drop in stress during the loading stage before reaching the final breaking point (Fig.12c), where  

has a great influence on the failure mode and the peak value. In Fig. 102, the yellow and green zones denote the 

contributions from  nxx  and  nxy  , respectively. 

   

(a) break at the same time  (b) contact xx breaks firstly (c) contact xy breaks firstly 

Fig. 11 Three situations of contacts breaking of xx and xy 

 nxy



   

(a) break at the same time  (b) spring xx breaks firstly (c) spring xy breaks firstly 

Fig. 102 Strain-stress curves of the three breaking sequences 

 

From the laboratory tests, there were no noticeable drops during the entire loading process. On the basis of 

the above discussion, it is, therefore, assumed that the xx contact breaks earlier than the xy contact does. Thus, a 

large value is assigned to  nxy  (1000MPa in this paper) to ensure that it will not break before the xx contact. 

 nxx  is calibrated by changing its value to match the longitudinal strength  x  (the first peak value) of the 

plates from the tests, as shown in Fig. 113(a). It shows that  x  increases linearly with  nxx . Thus, when 

 nxx  is 330Mpa,  x  reaches 303.9Mpa which is close to both the strength of the plate tested in this paper and 

by  Turvey and Szulik. By following a similar procedure, Fig. 113(b) can be plotted to show the correlation 

between the transverse strength  y   and  nyy   of the plate, where when  nyy   is about 55MPa,  y   is 

close to the test result, i.e., 95.8MPa. 
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(a)  nxx  changes (b)  nyy  changes 

Fig. 113 Calibration of contact strength against the strength of the plates 

3.4 Strength of the xy contact  

For plates with a hole, stress concentration exists around the hole during the loading process. Six evenly 

contacts numbered ① to ⑥, as shown in Fig. 124(a), are chosen in the calibrations. On the cross section across 

the hole, the longitudinal stress is maximum at the boundary of the hole and the minimum at the transverse edge 

of the plate, as shown in Fig. 124 (b). The xy contacts along the boundary of the hole is subjected to the highest 

stress and are prone to breaking first, resulting in progressive failure along in the transverse direction of the plate 

due to the brittleness of the material. Hence the strength in the xy contact plays a significant role in resisting 

tension of the plates with holes. There are two possible failure modes in this model, one of which is that the xy 

contact at the boundary of the hole on the smallest cross section of the plate fails first, and the other is that the 



xx contact at a similar position breaks first, as shown in Fig. 135 (a) and (b), respectively, where the blue and the 

green denote, respectively, the contacts that are not damaged and have failed in shear. Fig. 14 shows the influence 

of  nxy  on the failure load. When  nxy  is smaller than 50Mpa, the xy contact breaks first and  nxy  has a 

significant influence on the tension capacity maxF . When  nxy  is larger than 50MPa, the xx contact breaks first, 

and the curve goes down and then becomes plateaued, suggesting that maxF  is mainly determined by  nxx   at 

this stage.  From the calibration results, when  nxy  =50MPa, the failure load is close to the test values of 

20.8kN (Fig.16). Table 3 summarizes the strength of the micro contacts within the x-y plane from the above 

calibrations. 
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(a) tested contacts (b) Stress- strain curves of tested contacts 

Fig. 124 Stress distribution around hole 

 

 

(a) xy contacts break firstly 
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(b)xx contacts break firstly 

 Fig. 135 Two possible failure modes Fig. 146 Calibration of contact strength against the 

capacity of the plates 

 

Table 3 Calibrated contact strength in x-y plane 

Calibrated strength 
 nxx   nyy   nxy  

330MPa 55MPa 50MPa 

 

Table 4 presents the predicted strength of the laminates using the DEM model with the contact properties 

shown in Tables 2 and 3 and compare them with the test results. It can be found that the predictions of the DEM 

model agree well with the experiment results for both laminates. The maximum error is within 4%. It indicates 



that the calibrated stiffness and strength are suitable for simulating plates made of the GFRP. For a different 

material, e.g., Carbon-based FRP or Basalt-based FRP, the contact strength should be re-calibrated by following  

 

Table 4 Comparison of DEM model against experiment results for plates with and without holes 

 Experiments DEM Error 

Plates without holes 
Longitudinal strength  293.0MPa 303.9MPa 3.6%  

Transverse strength 95.4MPa 95.8MPa 0.42%  

Plates with holes Tension capacity 21.6kN 20.8kN -3.7% 

 

4. DEM model for GFRP bolted joints 

4.1 Tensile test of GFRP bolted joints 

The calibrations presented in Section 3 enable good agreement between the modelling and the laboratory 

tests to be achieved for the composite plates with and without holes. The failure of joints, however, is more 

complicated and significant deformation in the thickness direction, such as delamination and bending occurs. In 

order to study the mechanic behavior of GFRP bolted joints and further validate the DEM model proposed in 

the previous sections, laboratory tests were conducted on two groups of bolted joints of 25mm and 40mm lap 

length, respectively. Each group has three identical specimens, the geometry of which is shown in Fig.17. The 

bolts are manually tightened with a small tightness of 3Nm applied to ensure integrity. The low bolt torque is 

used to quantify the lower bound load capacity of the joint. As expected, an appropriately higher bolt torque can 

increase the strength of the joint. The tests were carried out following the same procedure as the tests of the 

plates and the deformation of the lapping area was measured.  

 

 

Length: L=100mm 

Hole diameter: D=10mm 

Specimen width: W=40mm  

Grip length: GL=50mm 

Specimen thickness: H=6.4mm 

Overlap length: E=25mm/40mm 

Fig. 15 Geometry of bolted joints 

The test results showed that the lap length had impact on the failure mode of bolted joints. The mode for 

the joint with 25mm lap length showed clear cleavage failure at the near end of the bolted region, as shown in 



Fig. 18 (a). It failed mainly due to brittle cracking initiated from the boundary of the hole and perpendicular to 

the edge of the plate. For the joint with lap length of 40mm, delamination in plates was the main reason for the 

failure. Transverse fracture occurred near the bolt, and progressive delamination developed with visible rotation 

caused by the eccentric tensile forces acting on the plate ends (Fig. 18b). The load verves deformation curves in 

Fig. 17 show that the three specimens of each lap length have similar slopes in the elastic stage. Comparing the 

failure of the joints of the two groups, the joints with 25mm lap length fails brittlely while the joints with 40mm 

lap length show obvious ductility. The average tensile capacities of the joints with lap length of 25mm and 40mm 

are 16.8kN and 17.1kN, respectively.  

 (a) E=25mm 

 (b) E=40mm 

Fig. 16 Failure modes of bolted joints in test 
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(a) E=25mm (b) E=40mm 

Fig. 17 Load-deformation curves 

4.2 Calibration for strength of the zz contact  

Since bending occurs when the joint is subjected to tension, significant peeling and shearing take place on 

the interfaces of the laminates. The contact strength of the interfaces can now be calibrated using the test results, 

which cannot be done when using the previous plate models under pure tension. 

The full scale of the DEM models of the tested joints with the two lap lengths are shown in as shown in Fig. 

18. The bolt is modeled by a rigid clump of 10mm diameter and the nuts at the two ends of the bolt restrict the 

out-of-plane displacement of the particles around the hole. Since the tightness of the bolts is small in the tests, 

the effect of the pre-stress in the z direction is ignored in this paper in order to reduce the complexity of the 

model. The contacts between the two plates and between the bolt and the particles of plates around the surface 

of the hole are frictional with a recommended friction coefficient of 0.5. 



 

 

 

 

       

 

Fig. 18 DME model of bolted joints 

To simulate the failure mode of bolted joints numerically, the normal and tangential strengths of the 

interfaces between the 5 layers play an important role. Because the bolted joint with E=25mm mainly failed of 

in-plane cleavage due to the tension in the yy direction and the tangential strength  szz  mainly controls inter-

laminar shear strength of plates, it is reasonable to assume that  szz  is sufficiently big to maintain integrity.  

 nzz  is changed the to simulate the E=25mm joint to achieve the target load capacity and the observed failure 

mode, as shown in Fig. 19. When  nzz  increases to 60MPa, the tension capacity reaches 16.4kN and maintains 

almost constantly afterwards. By taken this value for the interfacial normal strength, the predicted failure modes 

are also comparable to the observations from the experimental tests.  
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Fig. 19 Calibration of interfacial normal strength 

For the 40mm lap length joint, the tests shown clear delamination that are largely attributed to the shear 

strength, 
 szz  , of the interface. The interfacial shear strength is calibrated here aiming at achieving both 

comparable load capacity with the test results and comparable failure mode, including delamination. The 

parametric evaluations are presented in Fig. 20Error! Reference source not found.. There are two loading 

stages of the curve. At the first stage, the load capacity can be improved rapidly by increasing
 szz  , which 

indicates that 
 szz  plays a significant role in preventing delamination at this stage. At the second stage, 

 szz ’s 

contribution in increasing load capacity becomes insignificant and damage has occurred due to other loss of 

strength.  After comparing both the load capacity and the failure modes observed from the experiments. 
 szz

=100MPa is chosen as the interfacial shear strength of the laminates. 
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Fig. 20 Calibration of interfacial normal strength 

4.3 Discrete element model for bolted joints 

Based on calibrated strength above, two joint model are established and validation and analysis are 

discussed in this section. The numerical results for the E=25 joint are shown in Fig. 21Error! Reference 

source not found. and are compared with the experimental tests. Fig. 21 (a) is the full scale model of the joint 

showing the final failure mode. Fig. 21Error! Reference source not found.(b) presents the comparisons 

between the load-displacement from the model and the test results, which shows very good agreement. The 

predicted maximum load from the model is 16.4kN, representing a 2.4% error in comparison with the test 

result of 16.8kN. The close-up view of the failure of the test specimen is shown in Fig. 21Error! Reference 

source not found.(c). The joint fails by brittle cleavage, which is also captured by the DEM model inError! 

Reference source not found. Fig. 21 (d). The simulation also show some micro/small cracks around the hole, 

which are hardly observed on the specimen by the naked eyes. Fig. 21 (f) shows the side view of the DEM 

model illustrating rotation of the joint, which agrees well with the test shown in Fig. 21 (e). There is noticeable 

rotation, while no visible delamination.    
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(a) entire model for E=25 bolted joint (b) load-deformation curve 

  

(c) cracking in test  (e) rotation in test 



  

  

(d) cracking in DEM model (f) rotation in DME model 

Fig. 21 Modelling of the 25mm lap length joints 

Fig. 22Error! Reference source not found. shows the failure for the E=40 bolted joint. Because 

delamination was observed from the experiments, various side views of the model are discussed. From Fig. 

22(a)Error! Reference source not found., the model does not show any cracks on the top surface, while visible 

damage are shown by the larger displacements of the lighter colored particles concentrated at the center of the 

up-plate. The DEM model also shows plastic deformation of the joint due to the longer lap length, as shown in 

Fig. 22Error! Reference source not found.(b). The predicted tension capacity from the model is 16.7kN, 

representing only 2.3% error in comparison with the test value of 17.1kN. Fig. 22 (c) and (d) show comparable 

rotational and bending deformation of joint. The sectional view of the joint in Fig. 22 (e-f) reveals the internal 

damage due to delamination. The three cuts of Fig. 22 (e) are taken along the length direction at y= 0.01m, 0.02 

and 0.03m,  respectively. The three cuts in Fig. 22 (f) are taken transversely at x=0.100m, 0.106m and 0.112m. 

In the figures, the red zz contacts denote that the interfacial shear strength has been exceeded and deamination 

has occurred. It is found that longest interfacial delamination occurs at the middle longitudinal section, as shown 

in the Section 2 of Fig. 22Error! Reference source not found.(e). The three transvers sections (Sections 4-6) 

show that the some cracks propagate to one side of the bolt and some to the other side, which is consistent with 

the crack formation observed in the tests.  
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(a) entire model for E=40 bolted joint (b) load-deformation curve 



  

(c)  delamination and bending in test (d) delamination in DEM model 

  

(e) longitudinal sections (f) transverse sections 

Fig. 22 Modelling of the 40mm lap length joints 

5. Conclusions 

In this study, a new 19-ball 3D DEM model has been developed to model general orthotropic materials. 

Explicit relationships between the macro elastic constants and the micro contact stiffness were established. The 

model was the reduced to transversely isotropic, so that it could be used for modelling pultruded GFRP with 

homogenized material properties. The derived stiffness formulas are applicable to any other orthotropic or 

transversely isotropic materials   

In order to celibate the micro contact properties of the DEM model, uniform thin plates, thin plate with a 

central hole and bolted joints were tested experimentally to obtain strength of the micro contacts between 

particles. A well defined calibration process has been developed. The procedure can applied to laminates made 

of other composites. However, improved calibration process for the contact properties of more complex materials 

requires further investigations. 

To the authors’ best knowledge, the work reported in this paper is the first attempt to simulate bolted joints 

by DEM and demonstrate the potential of the method. Obviously, to apply the method robustly to larger scale 

and more complex structures, significant future research is required. Inevitably, computation cost is one of the 

concerns, though currently a high performance computer are capable of handling billions of particles, 

optimization of the algorithms through parallel or/and GPU computing can significantly reduce the cost. 

Combination of DEM with other numerical approaches is obviously another option, by which only the parts that 

require micro/meso scale analysis are modelled by DEM, while other parts are simulated by, e.g., FEM.  

It can be concluded that form the work presented in this paper DEM is a powerful alternative to other 

numerical methods, especially when details analysis of material damage are required, though future research is 

still required.   
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