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Abstract 

To acquire language, infants must learn how to identify words and linguistic structure in 

speech. Statistical learning has been suggested to assist both of these tasks. However, infants’ 

capacity to use statistics to discover words and structure together remains unclear. Further, it 

is not yet known how infants' statistical learning ability relates to their language 

development. We trained 17-month-old infants on an artificial language comprising non-

adjacent dependencies, and examined their looking times on tasks assessing sensitivity to 

words and structure using an eye-tracked head-turn-preference paradigm. We measured 

infants’ vocabulary size using a Communicative Development Inventory (CDI) concurrently 

and at 19, 21, 24, 25, 27, and 30 months to relate performance to language development. 

Infants could segment the words from speech, demonstrated by a significant difference in 

looking times to words versus part-words. Infants’ segmentation performance was 

significantly related to their vocabulary size (receptive and expressive) both currently, and 

over time (receptive until 24 months, expressive until 30 months), but was not related to the 

rate of vocabulary growth. The data also suggest infants may have developed sensitivity to 

generalised structure, indicating similar statistical learning mechanisms may contribute to the 

discovery of words and structure in speech, but this was not related to vocabulary size. 

 

Key Words: language acquisition, artificial grammar learning, speech segmentation, 

individual differences, statistical learning, vocabulary development
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1. Introduction 

To reach linguistic proficiency, infants must master two critical tasks; identifying words in 

speech, and discovering the constraints that shape the way those words are used. Although 

speech contains no absolute cues to word boundaries (Aslin, Woodward, LaMendola, & 

Bever, 1996) or grammatical structure (Monaghan, Christiansen, & Chater, 2007), it is 

replete with distributional information that could assist with these tasks: regular co-

occurrence of particular syllables provides a helpful description of what constitutes specific 

words in a language, whereas information about how words are used in combination helps 

illustrate how that language operates in terms of its grammatical structure. The ability to draw 

on such information (statistical learning) has therefore been suggested to play a key role in 

language acquisition (e.g., Conway, Bauernschmidt, Huang, & Pisoni, 2010; Kidd & Arciuli, 

2016; Lashley, 1951; Redington & Chater, 1997; Rubenstein, 1973).  

Infants have been found to be highly capable of detecting distributional statistics in 

speech. Indeed, children as young as 8 months old can compute transitional probabilities 

between syllables (Saffran et al., 1996), and use them to identify word boundaries in a stream 

of new words (e.g., Aslin, Saffran, & Newport, 1998; Pelucchi, Hay, & Saffran, 2009). At 

around the same age, infants can also discover simple distributional structure in artificial 

speech (i.e., an ABA or AAB structure e.g., Marcus, Vijayan, Rao, & Vishton, 1999; Gerken, 

2006; 2010), with this capacity potentially increasing in sophistication over development (see 

e.g., Gómez, 2002; Gómez & Gerken, 1999; Gómez & Maye, 2005; Lany & Gómez, 2008; 

Lany, Gómez, & Gerken, 2007; Marchetto & Bonatti 2013; 2015, for work on infants’ 

developing ability to track dependencies between adjacent and non-adjacent items).  

Taken together, these lines of research provide converging evidence that infants can 

draw on the statistical properties of language to learn about multiple linguistic features. 

Further, these studies suggest that learners may develop the capacity to employ statistical 

learning mechanisms for discovering words and basic structure at relatively similar points in 
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development (though see e.g. Frost & Monaghan, 2016; Peña et al., 2002; and Perruchet, 

Tyler, Galland, & Peereman, 2004 for the debate concerning the nature of the statistical 

mechanisms these tasks employ). However, to our knowledge, infants’ ability to perform 

these tasks together during learning remains to be demonstrated (see Marchetto & Bonatti 

2013; 2015). In the current study we address this directly, and test whether 17-month-old 

infants can discover both word boundaries and linguistic structure (non-adjacent 

dependencies) together, using co-occurrence statistics alone. Further, we examine the way 

that infants’ ability to do so relates to their language development outside of the laboratory.   

1.1 Testing acquisition of words and linguistic structure 

In both infant and adult research, learners’ capacity for joint acquisition of words and 

language structure has been assessed using artificial languages comprising non-adjacent 

dependencies – statistically reliable relationships between two items that are separated in 

speech. Non-adjacent relationships are pervasive in language, and exist at multiple levels of 

language structure, including syntax (i.e., the relationship between the auxiliary verb and the 

present participle verb form in the sun is shining), morphosyntax (i.e., co-occurring prefixes 

and suffixes, e.g., uncovered, independently), and number agreement (i.e., the lion at the zoo 

roars, the penguins at the zoo swim). Artificial grammars comprising words with 

morphological non-adjacent dependencies (with an AXC structure, where A and C reliably 

co-occur, regardless of X) provide the ideal platform for assessing word and structure 

learning together, since they contain sequences that learners need to discover (words, i.e., 

AXC strings), as well as structural regularities (i.e., A_C relationships, see e.g., Frost & 

Monaghan, 2016; Marchetto & Bonatti, 2013, 2015; Peña et al., 2002; and Perruchet et al., 

2004, for assessments of word and structure learning using AXC-style input).  

To examine the way that word and structure learning proceed in infants, Marchetto 

and Bonatti (2013; 2015) trained infants on an artificial language with an AXC structure, and 

examined their capacity for segmenting words from speech, and generalising the internal 
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morphological structure these words contained (the A-C relationships). Learning was tested 

with the head turn preference paradigm, indexed by differences in looking times to different 

items at test1. In their first set of studies, Marchetto and Bonatti (2013) examined whether the 

emergence of morphosyntactic structure learning actually precedes statistical segmentation, 

with the view that the former may act as an economical solution to identifying possible word 

candidates in speech. To this end, they pitted adjacent transitional probabilities against 

nonadjacent dependency structure at test, and examined whether infants relied on one type of 

information over the other to identify likely word candidates in speech. They report that 12- 

and 18-month-olds preferentially drew on within-word structure (A-C relationships) when 

speech was segmented with pauses. When speech was continuous (as is more typical of 

natural language), 18-month-olds relied more on transitional probabilities to identify likely 

words, whereas 12-month-olds showed no preference (they did not discriminate between the 

two types of test item).  

Their second set of studies explored related issues in 7- and 12-month-olds, and found 

that at 12 months, infants could use statistical relationships between syllables to extract words 

from continuous speech, but could only detect the non-adjacent dependencies contained in 

the words if speech was segmented (Marchetto & Bonatti, 2015). Seven-month-olds were 

unsuccessful at both segmenting words and generalising A-C structure, though they were able 

to discriminate between words and non-words after exposure to a segmented version of the 

speech stream. The authors concluded that infants’ capacity for learning can be seen to 

critically develop over time, such that by 12 months infants possess the cognitive resources to 

                                                             
1 In Marchetto and Bonatti’s (2013) study with 12- and 18-month olds, sensitivity to words and structure was 
assessed together with part-word versus rule-word comparisons; part-words occurred in speech with relatively 
higher frequencies than other items such that they were sound candidates for lexical items, and rule-words 
comprised an A-C dependency with an intervening A or C from another pairing, such that they were 
grammatical, but new. Inferences about infants’ performance were based on the direction of infants’ looking 
preferences for these comparisons. While infants did attend differentially to these stimuli, unpacking the nature 
of this difference is difficult (see related comments about interpreting looking preferences in the Results and 
Discussion sections), particularly given the combined assessment of these skills. In their 2015 study with 7- and 
12- month olds, sensitivity to words and structure was examined separately using looking times to words versus 
non-words (to assess segmentation) and rule-words versus non-words (to assess structure learning). 
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analyse the internal composition of words (but can only do so if the speech contains 

information that aids segmentation).  

These studies provide an informative first foray into infants’ capacity to discover 

words and structure using the statistical information contained in speech. Yet, in each of these 

studies, a small number of design features make performance somewhat difficult to unpack 

(see footnote 1 for an overview of the test stimuli). Further, due to methodological 

differences across the sets of studies, it is difficult to compare these datasets - meaning the 

developmental trajectory for these tasks is yet to be conclusively established. Thus, further 

research is needed to understand infants’ ability to discern statistically defined words and 

structure from speech – both in terms of the nature of these processes, and when and how 

they develop.  

Nevertheless, when viewed together these data suggest that the discovery of 

statistically-defined words and (word-internal) structure may be underpinned by different 

processes (i.e., statistical segmentation versus algebraic computation of structure), each with 

a slightly different developmental trajectory. This proposed distinction in processing between 

word- and structure- learning is consistent with much of the adult literature on this topic (e.g., 

Peña et al., 2002), and is in line with the suggestion that learners perform these tasks 

separately during language acquisition, drawing on separable and distinct computations for 

segmenting speech versus generalising structure (Marcus et al., 1999, Peña et al., 2002). 

However, recent advances in the adult literature have highlighted a possible methodological 

confound which may have influenced performance in the research that generated these 

conclusions. Specifically, in prior studies, generalisation of structure was typically assessed 

with comparisons involving “rule words” - a familiarised A-C dependency, with an 

intervening A or C element from a different dependency – versus an item that is infrequent or 

absent from the training speech. Structural generalisation would be evidenced by a preference 
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for rule words over the competitor item on a 2AFC test with adults, or a difference in looking 

times to rule words and part-words/non-words in infant head-turn preference studies.  

Though such comparisons permit assessment of preference for the overall structure, 

they require learners to use trained A and C items flexibly in a way that conflicts with their 

knowledge of where those syllables should occur within sequences. Frost and Monaghan 

(2016) argued that this may have constrained learners’ willingness to generalise, and 

suggested that learners may be able to do so in the absence of such conflict. Indeed, using 

amended generalisation stimuli (containing entirely novel intervening items, rather than 

repositioned A or C items), Frost and Monaghan (2016) demonstrated that adults could learn 

about words and linguistic structure at the same time, in the absence of additional information 

such as pauses between words (see Frost, Isbilen, Christiansen, & Monaghan (2019), and 

Isbilen, Frost, Monaghan, and Christiansen (2018) for replications of this effect). Thus, the 

processes underlying word and structure learning may be more similar in nature than 

previously suggested, with statistical learning about words and linguistic structure possibly 

being served by the same (or at least the same type of) mechanism. 

 With this in mind, it is possible that infants’ true capacity for learning about non-

adjacent dependencies from continuous speech may not have been detected in previous 

studies, perhaps due to limitations of the learning measure, rather than the learner. We 

propose that implementing methodological changes to the stimuli in line with those made by 

Frost and Monaghan (2016) would provide a closer approximation of infants’ capacity to 

generalise non-adjacent dependencies, shedding further light on the developmental trajectory 

for these tasks.  

1.2 Statistical learning, language development, and individual differences 

A key question in interpreting data from artificial language learning studies is what 

performance on these tasks actually means in terms of natural language development. That is, 

how does infants’ ability to detect patterns in an artificial grammar relate to how they learn 
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language in the world outside of the laboratory? Recent research with adults has indicated 

that participants’ ability to compute statistics over artificial grammars relates to their 

competence on other linguistic tasks, shedding light on the way statistical learning skills may 

shape or reflect language learning more broadly. For instance, Isbilen et al. (2018) 

demonstrated that adults’ capacity to compute statistically defined non-adjacent dependencies 

relates to their ability to learn more naturalistic language structure on a cross-situational 

learning task that taught learners a small-world version of Japanese. 

 Emerging evidence for the role of statistical learning in language acquisition also 

comes from literature on individual differences, which seeks to determine whether variation 

in learners’ performance on experimental language learning tasks relates to variation in 

natural language skills. There is growing support for the existence of a meaningful 

relationship between an individual’s statistical learning ability and their “real-world” 

language skills for both children (e.g., Kidd, 2012; Kidd & Arciuli, 2016) and adults (e.g., 

Christiansen, Conway, & Onnis, 2012; Conway et al., 2010; Misyak, Christiansen, & 

Tomblin, 2010), strengthening the possibility that statistical computations play a role in 

natural language acquisition.  

Recent work by Lany (2014) and Lany and Shoaib (2019) shed new light on this 

relationship by demonstrating that infants’ performance on a statistical language learning task 

differed as a function of their natural language ability. Lany (2014) tested infants’ ability to 

map distributional information onto semantic categories (animals and vehicles), then 

examined whether their capacity to do so was related to their vocabulary size. Co-occurrence 

of determiners and nouns during familiarisation was found to inform infants’ formation of 

semantic categories, helping them to use the new nouns as labels. However, this was only the 

case for infants with higher scores on the MacArthur-Bates CDI measure of grammar 

development (Fenson et al., 2007) – providing a promising indication that infants’ capacity 
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for statistical learning relates to their language learning outside of the lab, with more 

advanced users of natural language outperforming their peers on the statistical learning task. 

Further, Lany and Shoaib (2019) found evidence to suggest that for some 15-month-

olds, their ability to learn non-adjacent dependencies in an artificial language learning task 

(dependencies between words in segmented speech, e.g., Gómez, 2002) may be related to 

their vocabulary size at the time of testing, and possibly at prior and subsequent points in 

development (at 12 and 18 months). For some participants, there was also evidence that 

performance at 15 months predicted later sensitivity to analogous non-adjacent dependencies 

in natural language (tested at 18 months). However, the effects in this study were complex, 

with substantial differences across sexes, and the relationships described here were not 

observed uniformly across participants - most correlations were only observed for the small 

sub-sample of females (Nrange = 10-16). 

Consequently, more research with different statistical structures, and different age 

groups, is needed to understand the relationship between statistical learning and language 

development more fully. Here, we contribute to this literature by examining whether infants’ 

capacity for statistical segmentation relates to their vocabulary size. 

An important step in understanding the role of statistical learning in language 

acquisition is to look at how it relates to other language skills across time, over development, 

as well as concurrently. There is a growing body of literature suggesting that infants’ early 

linguistic skills relate to their subsequent language development (typically indexed by CDI 

scores) – giving critical insight into the extent to which particular linguistic skills serve 

language learning more broadly. For instance, research on phonetic perception suggests that 

infants’ behavioural (Tsao, Liu, & Kuhl, 2004) and neural responses (Molfese, 2000; Molfese 

& Molfese, 1985, 1997; Rivera-Gaxiola, Klarman, Garcia-Sierra, & Kuhl, 2005) to phonemic 

speech sounds may play a role in explaining the language skills of those children at later 

points in development (see Cristia, Seidl, Junge, Soderstrom, & Hagoort, 2014 for a review). 



STATISTICAL LANGUAGE LEARNING AND LANGUAGE DEVELOPMENT 

 

10 
 

Similarly, research on speech segmentation has found that infants' recognition of new words 

in spoken utterances relates to their vocabulary development, and this relationship has been 

shown for both behavioural (Newman, Bernstein Ratner, Jusczyk, Jusczyk, & Dow, 2006; 

Newman, Rowe, & Bernstein Ratner, 2016; Singh, Reznick, & Xuwhua, 2012) and neural 

(Kidd, Junge, Morrison, Spokes & Cutler, 2018; Junge, Kooijman, Hagoort, & Cutler, 2012) 

indices of speech segmentation. Research has also found a relationship between laboratory-

based word learning ability and vocabulary size (Bion, Borovsky, & Fernald, 2013). 

For statistical learning, though, it is not yet known how infants' performance on 

laboratory tests of word segmentation and structure learning relates to their language 

development (but for related preliminary evidence, see Lany and Shoaib’s (2019) study of 

nonadjacency learning from pre-segmented speech). While much research has documented 

infants’ ability to draw on statistics in speech to learn about words and within-word structure, 

infants have never been found to be capable of performing both tasks together from statistics 

alone. Further, it is not yet known how infants’ performance on these tasks relates to different 

aspects of language development. For instance, word learning and structure learning may be 

separable processes (Marchetto & Bonatti, 2015), in which case we might expect only 

statistical segmentation to relate to vocabulary development (that is, if it relates at all to 

natural language learning). Alternatively, if word learning and structure generalisation 

involve related processes, both might relate to vocabulary development.  

We thus extended the work of Marchetto and Bonatti (2013; 2015) and Frost and 

Monaghan (2016), to examine whether infants, like adults, can compute word-like and 

structure-like regularities at the same time, from the same set of distributional statistics - 

without any extra cues in the speech signal (i.e., pauses between words). Demonstrating that 

infants are able to detect both words and structure from this input would have important 

implications for the simultaneity of these tasks in language acquisition, and the statistical 

computations that may underlie them.  
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Importantly, we also tested whether infants’ statistical learning ability related to their 

natural language ability, both concurrently and over development; if the transitional 

information contained within speech does support natural language acquisition (or if 

children's language development supports their ability to compute over the statistical 

information contained in speech), it follows that infants’ capacity for statistical learning on 

this task may be related to their language development in the world outside of the laboratory. 

This relationship could take two forms; statistical learning ability may relate to vocabulary 

size (i.e., children with a greater capacity for statistical learning may have larger 

vocabularies), and it may also relate to vocabulary growth (i.e., children with greater 

statistical learning ability may increase their vocabulary more rapidly over development). To 

test this possibility, we examined whether performance related to a measure of natural 

language development taken at the time of testing (UK-CDI, Alcock, Meints, & Rowland, 

2020), and at 19, 21, 24, 25, 27, and 30 months (Lincoln CDI, Meints & Fletcher, 2001).2  

We expected that infants would be able to segment the speech, and generalise the 

language structure to novel consistent items (Frost & Monaghan, 2016). Further, we expected 

that infants’ performance on the segmentation task would relate to their concurrent 

vocabulary scores (Junge et al., 2012; Kidd et al., 2018; Lany, 2014; Newman et al., 2006; 

Newman et al., 2016; Singh et al., 2012), and possibly vocabulary growth over time. Testing 

whether generalisation of the artificial language also relates to vocabulary development 

provides insight into the similarities or potential distinctions between word learning and 

grammatical generalisation.  

 

 

                                                             
2 Over the Language 0–5 Project, measures of vocabulary size were taken at a range of time points. Between 8 
and 18 months, caregivers completed the UK-CDI Words and Gestures (UK-CDI; Alcock et al., 2020). The UK-
CDI is suitable for use up until 18 months, so for subsequent time-points (between 19 - 30 months) caregivers 
completed the Lincoln CDI Words and Sentences (Meints & Fletcher, 2001). 
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2. Method 

2.1 Participants 

The experiment was completed by 71 infants (40 females, 31 males; aged between 

16.5 – 17.5 months, mean age = 517 days), recruited from Liverpool, UK. All infants were 

monolingual native English learners, born at term, with normal vision and hearing. All infants 

were typically-developing at the time of testing. Infants were tested in the laboratory at The 

University of Liverpool.  

This study forms part of a larger longitudinal project in the North West of England, 

the Language 0-5 Project (Rowland, Bidgood, Durrant, Peter, Pine, unpub). Ninety-five 

families were recruited to take part. Of these, one family was excluded due to responses on a 

family background questionnaire (persistent ear infections likely to affect hearing) and four 

withdrew before the project began. This resulted in a final sample of 90 families. Out of the 

final 90 families, nine had a family history of language delay or dyslexia. More general 

information about sample background can be found in Peter et al., (2019). 

2.2 Design 

The data were collected as part of a large-scale study of language development and 

individual differences in language acquisition. Due to the unique requirements of group-level 

and individual differences level research, studies attempting to assess both must typically 

prioritise one over the other. Here, we prioritised assessment of individual differences, and 

controlled for this statistically to test for effects at the group level. Thus, to minimise task-

related variance across learners, all participants received the same stimuli, in the same order 

(see Procedure section for further information regarding this decision, and see the results 

section for details of how we controlled for this in our analysis). Ethical approval was given 

by the University of Liverpool Research Ethics Subcommittee for Non-Invasive Procedures 

(RETH000764) for the project. 
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2.3 Materials 

2.3.1 Stimuli 

 Speech stimuli were created using Festival speech synthesiser (Black, Taylor, & 

Caley, 1990) and were based on those used by Frost and Monaghan (2016; see also 

Marchetto & Bonatti, 2013; 2015, and Peña et al., 2002). The language contained six 

monosyllabic items (ba (/bɑ/), mu (/mu/), so (/saʊ/), li (/li/), ga (/gɑ/), fe (/feɪ/) which were 

used to create two non-adjacent pairings [ba-so] and [li-fe] with two possible X items [mu] 

and [ga] which intervened the dependencies (A1X1-2C1 and A2X1-2C2), as in Marchetto and 

Bonatti (2013; 2015). Phonemes used for A, X and C items contained a mix of plosives and 

continuants, since similarities in phonological properties of non-adjacent dependent syllables 

have been shown to support acquisition of those dependencies (Newport & Aslin, 2004; but 

see Frost et al., 2019, and Onnis, Monaghan, Richmond, & Chater, 2004 for evidence this is 

not essential for learning). Each AXC string lasted approximately 700ms. There were four 

additional syllables containing a mix of plosive and continuant consonants which were 

reserved for testing generalisation to novel items (ni (/ni/), po (/paʊ/), du (/du/), ve (/veɪ/)). 

2.3.2 Training 

 A 15-minute-long continuous speech stream was created using the Festival speech 

synthesiser (Black et al., 1990) by concatenating the four AXC words (bamuso, bagaso,  

limufe, ligafe)3. This was produced using a female voice at 140 hz, with the constraint that no 

AiXjCi sequence was immediately repeated. In the speech stream, transitional probabilities 

for A-C syllables were always 1, while probabilities for A-X and X-C transitions were .5. The 

likelihood that a particular AxC word would be followed by another given word was .33. The 

                                                             
3 Marchetto and Bonatti (2013; 2015) used comparatively shorter training streams (~2-3 min), in keeping with 
the familiarisation paradigm they employed during exposure. Since the study at hand trained participants via 
incidental learning (to minimise the amount of time spent at the eye tracker prior to the test, in an effort to 
optimise inclusion rates) we used a longer training stream, in line with the standard procedure for this type of 
exposure (see e.g., Saffran, Newport, Aslin, Tunick, & Barrueco, 1997). It is possible that this may lead to 
shorter overall looking times than those observed in Marchetto and Bonatti’s (2013; 2015) studies, but this 
should not compromise our ability to compare looking across the two types of test-items on each task.  
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speech stream was edited to have a 5 second fade in and out, so that the onset and offset of 

the speech could not be used as a cue for segmentation.4 

2.3.3 Testing 

We assessed segmentation by measuring looking times to two types of trials; words 

and part-words. Word trials comprised repetitions of one of the words used in the 

familiarisation stream (e.g., bamuso bamuso bamuso...). Part-word trials contained 

repetitions of items that occurred in the training speech but straddled word boundaries, 

comprising the last syllable of one word and the first two syllables of another word (CiAjX; 

sobamu, feliga), or the last two syllables of one word and the first syllable of another (XCiA; 

gasoli, mufeba). There were therefore four word trials and four part-word trials, each of 

which was presented twice, giving 16 trials in total (see Marchetto & Bonatti, 2015).  

We assessed generalisation with trials containing repetitions of rule-words and non-

words (Frost & Monaghan, 2016; Marchetto & Bonatti, 2015). Rule-words comprised an 

Ai_Ci non-adjacency, intervened by one of the four novel syllables (so, taking the form 

AiNCi, where N indicates the novel syllable; baniso, baposo, lidufe, livefe). Non-words were 

part-words in which one syllable was replaced with a novel syllable, to ensure any preference 

observed on generalisation trials could not be attributed to the presence of a novel syllable 

alone. Novel syllables could appear in the initial or final position (so, taking the form CiAjN; 

solive, febadu, or NCiAj; posoba, nifeli) with two trials adhering to each possible non-word 

structure. There were therefore four trials of each item type, and each was repeated twice, 

giving 16 trials in total (see Marchetto & Bonatti, 2015).  

The presentation order of trials was pseudo-randomised using the same criteria as in 

Marchetto and Bonatti’s study (2015), with no immediate repetition of particular items, and a 

                                                             
4 In line with Marchetto & Bonatti (2013), and to reduce task-related variance (which may compromise 
assessment of individual differences), we used one artificial language. See Marchetto and Bonatti (2015) and 
Frost and Monaghan (2016) for evidence that using multiple counterbalanced input streams would not have 
impacted group-level results. 
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maximum of three consecutive trials of the same type (with regard to both word type, and 

left/right location of stimulus presentation). The precise presentation order for each task is 

given in the supplemental materials. 

2.4 Procedure 

Infants were familiarised with the experimental language for 15 minutes via incidental 

learning (Gómez, Bootzin, & Nadel, 2006; Saffran, Newport, Aslin, Tunick & Barrueco, 

1997), with infants playing quietly with the experimenter (i.e., with no verbal 

communication) while the speech stream played at a comfortable volume in the background. 

During the incidental learning phase, caregivers completed questionnaires for another 

component of the Language 0-5 project (these questionnaires are not relevant for the current 

study, so will not be discussed further).  

Following familiarisation, we assessed infants’ learning using an adaptation of the 

classic head turn preference paradigm (Kemler Nelson et al., 1995), modified to incorporate 

an eye-tracker, which measured infants’ looking times to each test trial. Eye movements were 

recorded using an SR Research Eyelink 1000 plus (SR Research: Ottawa, Ontario, Canada) in 

remote mode using the remote arm configuration with a target sticker, which permits stable 

tracking while accommodating some level of movement. Infants were seated in a car seat in 

front of the eye-tracker (affixed to a 17” LCD monitor), which was uniquely positioned for 

each child such that the display distance was 580-620mm. Trials began after successful five-

point calibration. 

Sound stimuli were played through speakers positioned behind the monitor, to the left 

and right sides of the screen. Test items were paired with a visual stimulus (an animated clip 

of a slow-moving hand, as in Marchetto & Bonatti, 2015), set against a black background, 

which appeared onscreen on either the left or the right, in accordance with the location of the 

sound. Individual test trials occurred twice; once to the left, and once to the right. On each 

trial, infants heard repetitions of a test-item, separated by a 500ms pause, with items played in 
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the same voice and at the same rate as in familiarisation. Trials could last for a maximum of 

65 seconds (Marchetto & Bonatti, 2013, 2015), and were gaze contingent, such that trials 

terminated if an infant looked away from the visual stimulus for more than 2 seconds. After 

each trial ended, a fixation stimulus appeared at the centre of the screen to re-direct infants’ 

attention, and the next trial began after infants had attended to this for 2 seconds. 

To minimise item and task order related variance, which would add noise to our 

individual differences analyses, all infants completed the segmentation trials first followed by 

the generalisation trials, and all trials were presented in the same pseudo-randomised order  

(for more justification of this decision, which is necessary for adapting group-based 

experimental procedures for individual differences designs, see e.g. Panter et al., 1992 for a 

summary of the effects of item and test order on the reliability of comparisons across 

individuals, and see Cooper et al., 2017, for details of how to apply these considerations to 

individual differences research in cognition. For information on how we controlled for this 

statistically in our group-level analysis, see the Results section). The segmentation and 

generalisation phases were separated by a brief comfort break, during which infants watched 

a short cartoon (a 135 s excerpt of Pingu - chosen for its lack of linguistic content). For each 

infant, familiarisation and testing took place in the same laboratory. Caregivers were asked to 

refrain from communicating verbally with their infant during both familiarisation and testing, 

and were asked to avoid directing infants’ attention at test. 

This experiment formed part of a large longitudinal cohort study assessing language 

development in children. Thus, infants tested for this study had participated in studies 

assessing various aspects of language learning prior to this session. However, none of these 

studies contained the same words or grammar-like rules as this study, and none of them 

examined infants’ capacity for statistical language learning. On the day of testing, infants did 

not complete any other behavioural studies prior to participating in the study at hand. 

3. Results  
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3.1 Data preparation 

Filtering criteria were applied to the data: Trials shorter than 700 ms (the approximate length 

of a test item) were excluded from analysis, as were trials with looking times greater than 

2SD beyond the mean looking time for that trial. In their study, Marchetto and Bonatti (2015) 

excluded trials with looking times shorter than 1000 ms. However, we implemented a lower 

minimum cut-off to maximise the amount of useable trials, and to align this cut-off with the 

stimuli such that looking times could be more confidently linked to attending to the test 

items. All data that permitted comparison of looking to the different types of experimental 

trials were included in the analysis; that is, infants were only excluded if they failed to 

provide data for at least one of each trial type after the data were filtered. For segmentation, 

data for 70 participants was included in the analysis, and the mean number of trials included 

per child = 11 (range = 2-16). For generalisation, data for 61 participants was included in the 

analysis, and the mean number of trials included per child = 9 (range = 2-14). See the 

supplemental materials for replications of the main group-level analyses for each task with 

the full, unfiltered datasets (all critical effects are replicated with the raw dataset). 

3.2 Data Analysis 

We first examined infants’ performance on the segmentation and generalisation trials, 

assessing looking behaviour on each of these tasks separately. We then examined whether 

infants’ performance on these tasks related to their concurrent CDI scores. In subsequent 

analyses, we investigated the relationship between statistical learning ability (speech 

segmentation) and vocabulary development over time.  

Note that for both segmentation and generalisation, due to possible effects of trial 

order we do not make inferences based on overall group means; instead, we report pre-

planned analyses that control for trial order statistically (see sections 3.2.1, 3.2.2, and 3.2.3).  

3.2.1 Segmentation 
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Overall, infants’ average looking time for word trials was M = 4346.33 ms (SD = 

3663.24), and for part-word trials was M = 3498.33 ms (SD = 2744.31).  

Linear mixed-effects analysis was performed on the data for the segmentation trials 

(Baayen et al., 2008), which modelled the probability (log odds) of looking times considering 

variation across participants and materials, as well as across the two types of test items 

(words and part-words), to determine whether these differentially affected looking behaviour.  

The model was built incrementally, and was initially fitted specifying random effects 

of subject, gender, and stimuli location, to account for variation in performance across 

participants and across items displayed on either the left or right of the screen. Random 

intercepts and slopes were omitted if the model failed to converge with their inclusion. We 

then added fixed effects and interactions for trial order and test item type; these were added 

incrementally, and were retained in the model if significant. Trial order was included as a 

fixed effect as we predicted a habituation-related decline in looking times to stimuli over the 

course of the task (it was also important to control for this given that all infants received the 

same trial order, due to the individual differences nature of the design). Importantly, we 

added this to our model first so that subsequent comparisons could test whether there was a 

difference in looking to word versus part-word trials over and above any effects of trial 

order.5 Experimental effects are thus effects that are observed once variation associated with 

order has been accounted for, and are therefore not due to performance on any particular trial. 

A summary of the final model (i.e., the most complex model at the end of this incremental 

process) is reported in Table 1. 

The linear mixed-effects analysis revealed a significant effect of trial order, with 

looking times decreasing as anticipated over the course of the session (model fit improvement 

over model containing random effects: c2(1) = 105.48, p < .001). Crucially, there was a 

                                                             
5 For supplementary exploratory analysis which statistically controls for trial order differently, through 
residualisation, see the supplementary materials. All effects were replicated using this approach. 
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significant effect of trial type, over and above the effect of trial order, indicating that infants 

responded differently to words and part-words (model fit improvement over model 

containing random effects and a main effect of trial order: c2 (1)  = 5.128, p = .023), 

suggesting that they had segmented the words from the speech stream.  

Likelihood ratio test comparisons indicated that model fit was significantly improved 

when we added the interaction term for trial type and trial order, with infants’ looking times 

to words and part-words changing over the course of the task (model fit improvement over 

model containing just main and random effects: c2 (1)  = 9.843, p = .002). This interaction is 

likely to be a product of habituation, as the difference in looking times for word versus part-

word trials reduces over the course of the session (see Figure 1).   

 

Table 1. Summary of the linear mixed-effects model of (log odds) looking times on the 

segmentation trials.  

Fixed effects Estimated 
coefficient 

 
SE 

 
Wald confidence intervals 
    2.50%         97.50% 
 

 
t value 

      

(Intercept) 4824.26 405.97 4028.576 5619.948 11.883 

Trial -158.44 33.96 -224.995 -91.883 -4.666 

Trial type 1631.96 424.41 800.142 2463.785 3.845 

Trial * Trial type -146.72 47.04 -238.925 -54.515 -3.119 
      

 
Random effects 

 
Variance 

 
Std. Dev. 

   

Subject (Intercept) 750093 866.1    
        Trial_type (slope) 47847 218.7    

L_or_R (Intercept) 93709 306.1     

  
784 observations, 70 participants. R syntax for the final model is: lmer (total_looking ~ trial*seg_trial_type + 
(1|L_or_R) + (1+seg_trial_type|subject), data = seg_filt_data, REML = TRUE) 
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Figure 1. Mean overall looking times to word and part-word trials over the task, with 

SE. Trial number (1-16) is broken down into trial number by trial type (1-8), to illustrate the 

relative difference between looking on the first, second, etc. trial of each type (though we did 

not alternate perfectly between types of trial, and trial order was statistically controlled for in 

the analysis). We note that individual differences analysis (reported in section 3.2.4) shows 

that segmentation performance was not homogeneous; see this section for a visualisation of 

looking behaviour split by looking preference, and for evidence of the stability of the effects 

over the task (thus, initial trial performance does not drive the observed effects of trial type). 

See supplementary figure iii for an illustration of looking behaviour residualised against trial.   

 

3.2.2 Generalisation 

Overall, infants’ average looking time for rule-word trials was M = 3030.70 ms (SD = 

2374.70), and for non-word trials was M = 3663.46 ms (SD = 3025.75). 

 Linear mixed-effects analysis was performed on the data for the generalisation trials 

(Baayen et al., 2008), which modelled the probability (log odds) of looking times considering 
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variation across participants and materials, and across the two types of test items (rule-words 

and non-words), to determine whether infants looked differently to rule-words and non-words 

at test. A summary of the final model is reported in Table 2. As with the segmentation 

analysis, the model was built incrementally, and was initially fitted specifying random effects 

of subject, gender, and stimulus location, to account for variation in performance across 

participants and across items displayed on either the left or right of the screen. Random 

effects and slopes were omitted if the model failed to converge with their inclusion. We then 

added fixed effects and interactions for trial and test item type, with significant main 

effects/interactions being retained in the model.  

As expected, there was again a significant effect of trial order, with looking times 

decreasing over the course of the session (model fit improvement over model containing 

random effects: c2 (1) = 24.011, p < .001). Critically, there was a significant effect of trial 

type indicating that infants responded differently to rule-words and non-words (model fit 

improvement over model containing random effects and a main effect of trial: c2 (1) = 8.626, 

p = .003), suggesting that infants were sensitive to the structure of the words in the speech 

stream (see Figure 2).  

Again, likelihood ratio test comparisons indicated that model fit was significantly 

improved when we added trial type, trial order and the interaction term for trial type and trial, 

with infants’ looking to rule-words and non-words changing over the course of the task 

(model fit improvement over model containing just main and random effects: c2 (1)  = 

6.1982, p = .013). This interaction could relate to a preference switch during the task, as the 

difference in looking times between trial types seems to fluctuate over the course of the 

session. Alternatively, this could be due to participants not converging on a stable 

representation. 

In sum, as a whole our sample discriminated between words and part-words in our 

segmentation task, and between non-words and rule-words in our generalisation task. 



STATISTICAL LANGUAGE LEARNING AND LANGUAGE DEVELOPMENT 

 

22 
 

 

 

Table 2. Summary of the linear mixed-effects model of (log odds) looking times on the 

generalisation trials.  

 
Fixed effects 
 

Estimated 
coefficient 

 
SE 

 
Wald confidence intervals 
    2.50%         97.50% 
 

 
t value 

      

(Intercept) 4989.306 299.051 4403.176 5575.435 16.684 

Trial -180.353 32.765 -244.571 -116.133 -5.504 

Trial type -1572.388 425.741 -2406.824 -737.951 -3.693 

Trial * Trial type 125.89 49.86 28.164 223.609 2.525 
      

 
Random effects 

 
Variance 

 
Std. Dev. 

   

Subject (Intercept) 445891 667.8    
   Gen_trial_type (slope) 47285 217.5    
      

  
549 observations, 61 participants. R syntax for the final model is: lmer (total_looking ~ trial*gen_trial_type + 
(1+gen_trial_type|subject), data = gen_filt_data , REML = TRUE) 
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Figure 2. Mean looking times to non-word versus rule-word trials over the course of 

the task, with standard error. Trial number (1-16) is broken down into trial number by trial 

type (1-8), to illustrate the relative difference between looking on the first, second, etc. trial 

of each type. 

3.2.3. Indexing performance with Cohen’s d 

In order to examine the relationship between infants’ statistical learning skills and 

their natural language abilities, we required a measure of individual infants’ performance on 

the task, indicating the size of the difference in looking times between test stimuli, but also 

taking into account the variance in looking times for each child. For this purpose, we 

computed a measure of effect size (Cohen’s d) for each participant. For the segmentation 

data, these were calculated by subtracting looking times to words from looking times to part-

words, then dividing this by the pooled standard deviation of looking times across all 

segmentation trials (per infant). A positive effect size would indicate a preference for part-

words (novelty preference) whereas a negative effect size would indicate a preference for 

words (familiarity preference). An effect size around zero would indicate no clear preference. 

For the generalisation data, effect sizes were calculated by subtracting looking times 

to rule-words from looking times to non-words, then dividing this by the pooled standard 

deviation of looking times across all generalisation trials (per infant). A positive effect size 
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would indicate a preference for looking toward the non-words (i.e., a novelty preference to 

sequences not conforming to the A_C non-adjacency structure), whereas a negative effect 

size would indicate a preference for looking toward the generalised, rule-word items (thus, a 

familiarity preference to the A_C structures). 

As yet, there is no established method for mapping individual differences in looking 

preferences onto representations of knowledge. However, Cohen’s d allowed us to ascertain 

differences between individuals, while taking into account individual variation in looking 

behaviour across the task. Both the size and direction of this difference in looking could be 

indicative of the nature and extent of learning. For instance, children may demonstrate 

familiarity or novelty preferences according to the extent to which the stimuli are treated as 

linguistically relevant, or novel. Note that processing mechanisms that result in patterns of 

familiarity or novelty preference will exert opposite effects on learning, so observations of no 

preference in some children may be a consequence of these opposing forces balancing out 

over the task, instead of tipping the scales in a particular direction. Equally, the size of the 

effect could indicate learning, with higher scores possibly denoting greater (and consistent) 

preferences. Here, we assume that children who show a consistent novelty preference across 

trials have encoded the information better than those who show no overall preference or a 

consistent familiarity preference, on the basis that a novelty preference indicates better 

encoding of the familiarised stimuli than no preference or a familiarity preference.6 

Figures 3 and 4 below illustrate infants’ performance on the segmentation and 

generalisation tasks, respectively, for children with each type of preference (and for children 

with no overall preference). There was no significant correlation between Cohen's d scores 

for segmentation and generalisation performance (Pearson’s r = -.02, N = 61, p = .892), 

                                                             
6 See Lany & Shoaib (2019) for related individual differences analysis of looking times data with similar 
assumptions, but using mean difference scores, rather than Cohen’s d.   
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suggesting that infants' looking behaviour on the segmentation and generalisation trials was 

not statistically related. 

 

 

 

 

 

 

 

 

Figure 3. Mean overall looking times to word and part-word trials over the course of the 

segmentation task with SE, given for participants with a familiarity preference (preferring 

words, d < -0.2), no preference (d = -0.2 - 0.2), and a novelty preference (preferring part-

words, d > 0.2), respectively. Effect size boundaries for defining preference groups were 

determined based on Cohen (1992). We note the stability of the familiarity and the novelty 

effects across the task.  

 

 

 

 

 

 

 

Figure 4. Mean overall looking times to non-word and rule-word trials over the generalisation 

task with SE, given for participants with a familiarity preference (preferring rule-words, d < -
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0.2), no preference (d = -0.2 – 0.2), and a novelty preference (preferring non-words, d > 0.2), 

respectively. Effect size boundaries were determined based on Cohen (1992).  

3.2.4 Statistical learning and vocabulary development 

3.2.4.1 Relationship with concurrent vocabulary 

We first determined the relationship between infants’ statistical learning and their 

concurrent vocabulary, by correlating infants’ statistical learning scores (Cohen’s d) with 

their UK CDI scores (expressive and receptive) at 17 months. CDIs were completed either on 

the day of the experiment, or within the week prior to testing.  

For speech segmentation, children’s effects were expressed along a continuum from 

preferences for familiar words (negative effect) to preferences for novel, part-word stimuli 

(positive effect), see panels A and B of Figure 5. Overall, there was a significant positive 

correlation between statistical learning performance and vocabulary size, both for expressive 

(Pearson’s r = .32, N = 68, p = .008) and receptive (Pearson’s r = .32, N = 68, p = .007) 

scores – suggesting statistical language learning skills and vocabulary may be critically 

related. Of particular note is the direction of this relationship; data indicate that participants 

with larger vocabularies (indexed by larger CDI scores) showed larger preferences for novel, 

rather than familiar, items at test, whereas the opposite was true for children with smaller 

vocabularies. This result in line with Hunter and Ames’ (1988) model, which suggests that 

children with larger vocabularies are more advanced in their linguistic development than 

children with smaller vocabularies, and are thus more inclined to show a novelty preference. 

To verify the possible maturational distinction between familiarity versus novelty 

seekers on our segmentation task a ternary split was applied to the data, dividing the sample 

into familiarity seekers, novelty seekers, and infants with no preference. A Cohen’s d of 0.2 

is traditionally considered a small effect size (Cohen, 1992). Therefore, children with a 

Cohen’s d of -0.2 or below were classed as having a familiarity preference, while children 
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with a Cohen’s d greater than -0.2 but less than 0.2 were classed as having no preference, and 

children with a Cohen’s d of 0.2 or above were classed as having a novelty preference.  

We modelled a series of exploratory comparisons on these data to determine whether 

the direction of a child’s preference (or lack thereof) related to their vocabulary size. 

Bootstrapped (r = 10000) multiple regression models were fit to the concurrent receptive 

(F(2, 76) = 4.75 [-4.69, 11.42], p = .011, R2 = 0.11) and expressive (F(2, 76) = 3.19 [-6.61, 

10.11], p = .047, R2 = 0.08) vocabulary scores (square brackets contain 95% CI). These 

models indicated that children with a familiarity preference had a significantly smaller 

receptive vocabulary (𝛽 = -78.53 [-137.52, -19.39], SE = 30.13, t = -2.61, p = .009) than 

children with no preference, whereas children with a novelty preference had a significantly 

larger receptive vocabulary (𝛽 = 111.62 [25.74, 197.23], SE = 43.75, t = 2.55, p = .011) than 

those who had no preference at test (and by extension, than the children with a familiarity 

preference). For expressive vocabulary, these differences were in the same direction 

(familiarity preference versus no preference: 𝛽 = -32.36 [-70.16, 5.55], SE = 19.31, t = -1.68, 

p = .094; novelty preference versus no preference (𝛽 = 51.3 [-18.21, 119.79], SE = 35.21, t = 

1.46, p = .145), however these did not reach statistical significance. 

For structure generalisation, there was again a continuum of effects, but statistical 

learning performance and concurrent vocabulary size were not significantly correlated for 

either expressive (Pearson’s r = -.04, N = 59, p = .762) or receptive (Pearson’s r = -.09, N = 

59, p = .508) scores (see Figure 5, panels C and D), and were not explored further. 
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Figure 5. Scatterplots to show the relationship between concurrent vocabulary scores and 

performance on the segmentation (panel A: receptive; panel B: expressive) and generalisation 

trials (panel C: receptive; panel D: expressive). 

3.2.4.2 Relationship with later language development: Segmentation only 

To assess the relationship between segmentation performance and vocabulary 

acquisition, growth curve analyses (GCA; Mirman, 2014) were performed using lme4 1.1.21 

(Bates, Mächler, Bolker, & Walker, 2015) in R 3.5.2 (R Core Team, 2018). Separate models 

were fitted to the receptive and expressive vocabulary scores, which were derived from the 

Lincoln CDI scores taken at 19, 21, 24, 25, 27, and 30 months. As in the previous analyses, 

the Cohen’s d segmentation score was entered as a fixed predictor. To identify the 
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appropriate polynomial order for the age parameter, two separate models were fitted to the 

data, then compared. The first included age as a centred first-order linear variable, along with 

the fixed effect of segmentation score. The second entered age as a second-order orthogonal 

polynomial, in addition to the linear term included in the first model. Both models were fitted 

with random intercepts for subject, but with no random slopes to maximise comparability. 

Model comparison (log-likelihood) indicated a significant difference in model fit (𝜒#(2) 

= 38.46, p < .001), with the model containing a second order (quadratic) age parameter (AIC 

= 3601; BIC = 3631) more likely than the alternative with a first-order linear term for age 

(AIC = 3636; BIC = 3658). Thus, our GCA model contained an orthogonal quadratic age 

parameter crossed with the fixed effect of segmentation score. The model was fitted with the 

maximal random effects structure supported by the data (Barr, Scheepers, Levy & Tily, 

2013), which included the random intercept of subject, without random slopes. Confirmatory 

tests were performed using log likelihood-ratios via sequential model decomposition (Bates 

et al., 2015) with bootstrapped simulations (R = 10000) to obtain 95% CIs and p-values for 

model estimates (Luke, 2017). The marginal and conditional pseudo-𝑅# are also reported for 

the growth curve model, which represent the proportion of the variance explained by fixed 

effects alone and the full model, respectively (e.g., Nakagawa, Johnson, & Schielzeth, 2017). 

For receptive vocabulary, the GCA demonstrated a significant linear increase in scores 

across development (𝛽 = 224.07 [198.34, 249.77], SE = 13.12, 𝜒# = 127.76, p < .001), but 

also a quadratic shift in this slope over time (𝛽 = -40.34 [-53.37, -27.21], SE = 6.67, 𝜒# = 

54.31, p < .001, see Figure 6). While segmentation ability did not have a significant main 

effect on the intercept (𝛽 = 59.47 [9.75, 109.29], SE = 25.39, 𝜒# = 2.13, p = .155), it did 

interact with the linear term of age (𝛽 = -47.33 [-90.74, -3.72], SE = 22.2, 𝜒# = 4.55, p = 

.039), suggesting that the predictive effect of statistical segmentation ability on vocabulary 

decreased over development. The fixed effects accounted for 46.85% of the variance in the 

data, increasing to 93.36% with the inclusion of the random effects (𝑅%#  = 0.47; 𝑅&# = 0.93). 
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Figure 6. The relationship between segmentation (Cohen's d) at 17 months and 

receptive vocabulary scores over time (19-30 months). Panel A maps the trajectory of 

vocabulary development for individual participants (given in grey) and for participants 

providing high (red; > 0; novelty preference) versus low (blue; < 0; familiarity preference) 

segmentation scores. Panel B depicts the relationship between segmentation and receptive 

vocabulary scores at each individual time point. 

Similarly, for expressive vocabulary, GCA model fit was significantly improved with 

the addition of a second-order quadratic age term (𝜒#(8) = 22.86, p < .001, AIC = 3821, BIC 

= 3851), compared to a model with only a first-order linear term (AIC = 3840; BIC = 3863). 
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There was a significant linear increase in scores across development (𝛽 = 384.07 [346.15, 

422.04], SE = 19.36, 𝜒# = 137.55, p < .001) and a quadratic change in this slope over time (𝛽 

= -46.86 [-66.31, -27.26], SE = 9.96, 𝜒# = 34.03, p < .001, see Figure 7). Unlike for receptive 

vocabulary, segmentation ability had a significant positive effect on the intercept (𝛽 = 70.56 

[6.44, 134.85], SE = 32.76, 𝜒# = 4.55, p = .039), with children who demonstrate larger 

segmentation effects at 17 months having larger expressive vocabularies. Segmentation 

scores showed no interaction with the linear (𝛽 = -4.8 [-67.91, 58.75], SE = 32.31, 𝜒# = 0.03, 

p = .856) or quadratic terms of age (𝛽 = 12.14 [-19.90, 44.76], SE = 16.5, 𝜒# = 0.55, p = 

.464). The model explained 56.04% of the variance in the data without the random effects, 

and 92.81% when they were included (𝑅%#  = 0.56; 𝑅&# = 0.93). 
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Figure 7. The relationship between segmentation scores (Cohen's d) at 17 months and 

expressive vocabulary scores over time. Panel A maps the trajectory of vocabulary 

development for individual participants (given in grey) and for participants providing high 

(red; > 0; novelty preference) versus low (blue; < 0; familiarity preference) segmentation 

scores. Panel B depicts the relationship between segmentation and expressive vocabulary 

scores at each time point. 

Although segmentation abilities were shown to predict both expressive and receptive 

vocabulary, the GCAs suggest that the nature of this relationship may differ across these two 

measures over time. However, this difference could be due to limitations in the CDI scales: 
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The relationship between segmentation and receptive vocabulary is seen to plateau around 

ceiling from 25 months onward, but for expressive vocabulary this is not the case. Thus, it is 

possible that the receptive measure was unable to capture variance in vocabulary at these later 

time-points. This is illustrated in Figure A1 (see appendices); receptive vocabulary scores 

appear to be normally distributed up to ~25 months, but are negatively skewed thereafter. 

Additional exploratory analyses were conducted to establish the specific age points at 

which segmentation ability statistically predicted receptive vocabulary size. Separate 

bootstrapped multiple regression models were fitted to the data at 24, 25, 27, and 30 months. 

These models contained the fixed effect of segmentation ability (there was no within-subject 

random variance to control for). The results (given in tables A1a and A1b, see appendices) 

suggest that segmentation significantly predicted receptive vocabulary at 24 months (p = 

.031) and marginally at 25 months (p = .053), but not at 27 and 30 months.  

The prior GCA model was thus refitted using only the receptive vocabulary scores 

from 19 to 25 months. Adding a second-order polynomial term for age did not improve 

model fit (𝜒#(8) = .87, p = .649). As in the previous models, vocabulary linearly increased 

with age (𝛽 = 31.79, [27.66, 35.95], SE = 2.11, 𝜒# = 113.05, p < .001). Importantly, 

segmentation ability positively predicted vocabulary size (𝛽 = 55.91, [1.40, 110.57], SE = 

27.85, 𝜒# = 4.05, p = .051); children with larger segmentation scores at 17 months had 

superior receptive vocabularies across these time points. There was no significant interaction 

between age and segmentation score (𝛽 = -6.87 [-13.90, 0.2], SE = 3.6, 𝜒# = 3.57, p = .064), 

suggesting the predictive effect of segmentation on receptive vocabulary size was consistent 

between 19 and 25 months. Fixed effects accounted for 34.81% of the variance, whereas the 

entire model (with maximal random effects) explained 93.9% of the variance (𝑅%#  = 0.35; 𝑅&# 

= 0.94). 
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4. Discussion 

We examined 17-month-old infants' ability to learn statistically-defined non-adjacent 

dependencies from continuous speech, to shed light on whether word segmentation and 

structure learning may proceed together during language acquisition, from distributional 

statistics alone (i.e., in the absence of additional cues) - as has recently been demonstrated for 

adults (Frost & Monaghan, 2016). Demonstrating that infants share this same capacity for 

statistical learning of words and structure would provide critical insight into the nature of the 

processes that may underlie these tasks in natural language learning, and the time-course in 

which they may operate. Crucially, we also investigated the way that infants’ statistical 

learning abilities related to their concurrent natural language skills, and subsequent language 

development, to help shape our understanding of the way in which statistical learning skills 

may serve (or be served by) language learning more broadly. 

We expected to show that infants could compute over the statistical properties of the 

speech in order to segment it into individual items (Marchetto & Bonatti, 2013; 2015). 

Analysis of the segmentation data revealed a significant effect of word type on infants' 

looking times, indicating that infants attended differently to words and part-words at test. 

This suggests that infants could indeed compute over the statistical properties of the speech to 

segment it into word candidates, which they could distinguish from competitor items. These 

data therefore replicated the finding that infants can segment a continuous stream of artificial 

speech on the basis of the statistical information contained within the input (e.g., Saffran et 

al., 1996, Aslin et al., 1998). Further, these data provide critical support for prior 

demonstrations of infants’ ability to do so by computing over non-adjacent, as well as 

adjacent, statistics (Marchetto & Bonatti 2013; 2015; see also e.g., Frost & Monaghan, 2016; 

Peña et al., 2002; Perruchet et al., 2004 for demonstrations of this in adults).  

In previous studies of morphosyntactic (within-word) non-adjacent dependency 

learning, segmentation was typically assessed with word and non-word comparisons (where 
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non-words were sequences that had not occurred during habituation), or with comparisons 

that tested preferences for words and rule-words together, investigating word- and structure-

learning simultaneously (Marchetto & Bonatti, 2013; 2015). Here, we tested each task in 

isolation, and increased the difficulty of the segmentation task by using words and part-words 

- statistical competitors comprising the end of one word and the start of another (rather than 

random combinations of syllables; see e.g., Saffran et al., 1996). Using this more difficult and 

more robust assessment, we confirmed that infants could segment speech by computing over 

non-adjacent statistical regularities.  

We note that the group-level looking preference observed for the segmentation task is 

different to that observed by Marchetto and Bonatti (2015), with higher mean looking times 

for word than part-word trials. As this study used a fixed trial order (see section 2.4), we do 

not make any inferences about this preference – and instead draw upon our LMER analyses 

that take trial order into account. Nevertheless, we note that the directional difference 

observed between Marchetto and Bonatti’s (2015) work and our conceptual replication could 

be due to a number of possibilities, including trial order, exposure duration (Endress & 

Bonatti, 2007, found increasing habituation to words over part-words and generalised words 

with longer exposure), the different types of test-pair comparisons used, and potential overall 

differences related to participants’ linguistic maturity at the group level (see Hunter & Ames, 

1988) – perhaps due to the linguistic knowledge that infants bring to the task, as shaped by 

their prior experience with relevant language structure (our infants were acquiring English, 

which is morphologically poor). Future studies which counterbalance presentation order and 

examine infants’ learning cross-linguistically will be key to disentangling these possibilities.  

Critically, infants’ segmentation performance (indexed by Cohen’s d) was found to 

correlate significantly with their concurrent vocabulary size, both for receptive and 

expressive vocabulary, providing further evidence that infants' capacity for speech 

segmentation in the laboratory relates meaningfully to their real-word language skills (Junge 
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et al., 2012; Kidd et al., 2018; Newman et al., 2006; Newman et al., 2016; Singh et al., 2012), 

and extending this finding to statistical segmentation of non-adjacent dependencies. These 

data indicate that infant's statistical language learning abilities may shape, or be shaped by, 

infant's language proficiency (see also Lany, 2014, and Lany and Shoaib, 2019). This 

demonstration that statistical learning of non-adjacencies supports segmentation of an 

artificial language stream serves as striking evidence that such artificial language learning 

studies are probing key mechanisms in natural language development. 

Of particular note is the direction of the learning effects on the segmentation task, and 

the way that the polarity of Cohen’s d scores related to infants’ CDI scores; infants with 

lower CDI scores demonstrated a familiarity effect (preferring words), whereas infants with 

higher CDI scores demonstrated a novelty effect (preferring part-words). This difference is 

suggestive of a maturational preference-switch (from familiarity to novelty), similar to that 

demonstrated in the ERP segmentation literature (Kidd et al., 2018). This result is in line with 

the prior suggestion that infants’ looking preferences are dynamic, with directional switches 

resulting from differences in levels of stimulus encoding (see e.g., Houston-Price & Nakai, 

(2004); Hunter & Ames (1988), and see e.g., Jusczyk & Aslin (1995) and Saffran et al. 

(1996) for a demonstration of preferential differences on speech segmentation tasks that 

could (at least in part) be due to differences in exposure and stimulus encoding).  

The results from the growth curve analyses indicate that the relationship observed 

between statistical segmentation ability and vocabulary size at the time of testing persists 

over development, with segmentation performance significantly statistically predicting 

receptive vocabulary up to 24 months, and expressive vocabulary up to 30 months. Thus, we 

propose that infants’ statistical learning ability may be an informative predictor of their 

vocabulary size at a later point in development - possibly even over a year later. However, in 

the study at hand, segmentation performance is not seen to positively influence the rate of 

vocabulary acquisition - with no apparent relationship between segmentation scores and 
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growth for expressive vocabulary (i.e., a stronger preference on the segmentation task did not 

predict faster learning). For receptive vocabulary, there was a negative relationship between 

segmentation scores and growth, which is likely due to receptive scores reaching ceiling at 

the later time points.  

The lack of relationship between segmentation ability and vocabulary growth could 

be interpreted in a number of ways. One possibility is that individual differences in statistical 

learning are unrelated to individual differences in vocabulary acquisition. However, this is 

unlikely; the data reveal a strong relationship between statistical learning and concurrent 

vocabulary, and the GCA show a significant effect on the intercept over development - 

indicating that these abilities are indeed related. A second possibility is that both differences 

in statistical learning and differences in vocabulary acquisition are due to another underlying 

factor not assessed here, for instance individual differences in neural maturation (general 

cognitive ability), speed of processing, or possible differences arising from variation in the 

socioeconomic background of infants (see e.g., Schwab & Lew-Williams, 2018). Testing the 

possible influence of additional variables would require assessing a broader array of cognitive 

skills, and factoring infants’ performance on these additional tasks into the analyses. 

 A third alternative is that differences in statistical learning contribute to differences in 

the rate of vocabulary acquisition at the earliest stages of language development, so are not 

captured here. It may be the case that infants’ strategies for segmentation change over 

development, with infants relying more on statistical learning to develop their early lexicon, 

then incorporating other strategies when they become available, or when infants reach a certain 

level of proficiency (see e.g., Conway et al. (2010), and Frost, Monaghan, & Christiansen 

(2019) for evidence that learners may make use of both bottom-up and top-down strategies for 

speech segmentation). The notion of a developmental shift in infants’ speech segmentation 

strategy is not new; there is much research to suggest that early segmentation is stress-based, 

before infants turn to the statistical properties of the input (e.g., Johnson & Juscyzk, 2001; 
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Johnson & Seidl, 2009; Thiessen & Saffran, 2003). It is conceivable that infants then adapt 

their segmentation strategy further upon reaching a certain level of maturity; for instance, by 

drawing on representations for highly familiar items to help identify word boundaries for 

neighbouring items (e.g., Bortfeld, Morgan, Golinkoff, & Rathbun 2005). An early advantage 

of statistical learning for vocabulary acquisition could explain why children with good 

statistical learning abilities have bigger vocabularies in the study at hand, though further 

research examining the relationship between statistical learning and vocabulary growth earlier 

in development is required to test these claims.  

Contrary to prior suggestions (Marchetto & Bonatti, 2013; 2015), there was some 

evidence that infants could generalise the non-adjacent dependencies contained within 

continuous speech to grammatically consistent but previously unseen sequences (trained 

dependencies with a novel intervening syllable). Previous studies have demonstrated 

generalisation only when pauses separated sequences containing the dependencies (e.g., 

Marchetto & Bonatti, 2013; 2015). The apparent necessity of this pause has been interpreted 

as requiring speech segmentation to be resolved before generalisation over the grammatical 

structure can occur. However, in the current study we showed that this additional pause cue 

was not necessary, and that generalisation could occur in the same brief learning period as 

segmentation, from the same input. 

There are two key possible explanations for the generalisation effects seen here. The 

first is that 17-month-old infants are able to generalise non-adjacent dependencies under the 

right testing circumstances, with conflicting use of syllables across test items preventing 

participants from distinguishing between rule-words and part-words in prior studies (e.g., 

Marchetto & Bonatti, 2015, see Frost & Monaghan, 2016). Thus, the data could indicate that 

without this conflicting information, generalisation of the non-adjacencies can be observed in 

infancy in the absence of additional cues to the language structure (e.g., Mueller et al., 2008, 

2010) – perhaps proceeding together with speech segmentation. 
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However, an alternative possibility is that generalisation performance could be a 

product of test order, with infants acquiring within-word structure over the course of the tasks 

rather than during familiarisation; infants heard segmentation trials first, and so received 

additional exposure to the words from the speech stream ahead of the generalisation task. 

Since words were presented in isolation on the segmentation trials, infants were not 

necessarily required to learn about the structure of those words while segmenting them from 

speech in order to succeed on this task. This is unlikely to explain infants' generalisation 

performance entirely, though, as infants also received equivalent exposure to part-words 

during the segmentation testing - meaning the segmentation task may have strengthened the 

child’s representations of both words and part-words (which formed non-words) to a similar 

degree. Nevertheless, it remains a possibility that completing this task first could have 

influenced subsequent generalisation performance. Future studies addressing generalisation 

immediately after training (i.e., without the segmentation task) will enable us to firmly 

disentangle infants' capacity for generalisation from possible effects of task order. Follow-up 

studies with and without inter-item pauses in the speech stream will also permit a more 

thorough investigation of infant's capacity to learn structure from speech.  

Finding evidence for both segmentation and generalisation could suggest that both 

tasks may be supported similarly by the same statistical properties of the input. However, the 

relationship between these tasks, and their differing links to vocabulary development, does 

not permit us to confirm that the same statistical operations are applying to both tasks (Frost 

& Monaghan, 2017). We note, though, that the relative draw toward familiar versus novel 

items may have been somewhat different across these tasks, which could restrict the degree to 

which these scores could be compared directly; whereas the segmentation task involves a 

straightforward familiarity (words) versus novelty (part-words) comparison, the 

generalisation task is perhaps more complex, and could be interpreted as pitting less novelty 

(rule-words) against more novelty (non-words).  
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 Nevertheless, the results indicate some distinctions between these tasks. First, 

whereas both tasks individually demonstrate learning, the correlation between segmentation 

and generalisation performance was not significant, meaning there was no observable 

relationship between performance on these tasks. Second, while the relationship between 

vocabulary size and segmentation performance was significant, for generalisation this was 

not the case; CDI scores did not correlate with performance. This is not the same as a 

dissociation, and the lack of correlation could have been due to the lower sensitivity of the 

generalisation task compared to the segmentation task (cf. mean and SD of estimates in 

Tables 1 and 2), rather than an absence of a relationship altogether. The alternative - that 

segmentation and generalisation are radically different types of tasks (Marchetto & Bonatti, 

2015; Peña et al., 2002) - would predict that only vocabulary scores should relate to 

segmentation performance here, whereas generalisation performance ought only to relate to 

tasks associated with distinct grammatical processing. The present results may be seen to 

better align with the latter, however future tests of these children’s grammatical processing 

abilities would be required to address this directly.  

In sum, this study provides further evidence that infants can segment speech by 

computing over the statistical properties of the input (in this case, non-adjacent 

dependencies). We find evidence to suggest that children can also detect non-adjacent 

dependency structure in continuous speech, and generalise this to novel consistent items, 

though further research is required to establish this conclusively. Crucially, we have shown 

that laboratory-based studies of children’s language learning, in terms of abstract word 

segmentation from non-adjacent structures in continuous artificial speech, have real-world 

counterparts in children’s language development. Furthermore, we have shown that an 

individual differences approach to interpreting the effect size on these artificial language 

learning tasks differentiates children who present with familiarity and novelty preferences, 

with the direction of the effect corresponding with children’s vocabulary size (but not with 
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their vocabulary growth). This insight into individual differences in performance shows that 

such variation is meaningful, rather than noise, and contributes to further interpretation of 

novelty and familiarity preferences with respect to language maturation. 
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Appendices 

 

Table A1a. Summary of the bootstrapped regression models conducted for segmentation 
scores and vocabulary at 24, 25, 27, and 30 months 

Age Term β SE t p 

24 Months Intercept 517.61 [484.39, 550.93] 16.98 30.49 < .001 

 Segmentation 59.24 [4.38, 111.69] 27.37 2.16 .031 

25 Months Intercept 547.45 [514.79, 581.23] 16.95 32.30 < .001 

 Segmentation 50.3 [-0.4, 101.57] 26.01 1.93 .053 

27 Months Intercept 580.33 [554.15, 607.93] 13.72 42.30 < .001 

 Segmentation 34.88 [-16.3, 85.14] 25.88 1.35 .178 

30 Months Intercept 618.94 [598.3, 640.4] 10.74 57.63 < .001 

 Segmentation 30.87 [-10.07, 70.8] 20.63 1.50 .135 

 

Table A1b. Summary of fit for the bootstrapped regression models conducted for 
segmentation scores and vocabulary at 24, 25, 27, and 30 months 

Age Model Fit 

24 Months F(1, 52) = 3.97 [-5.06, 10.93], p = .052, R2 = 0.071 

25 Months F(1, 49) = 2.73 [-4.11, 7.97], p = .105, R2 = 0.053 

27 Months F(1, 49) = 1.6 [-4.6, 6.13], p = .212, R2 = 0.032 

30 Months F(1, 45) = 1.85[--3.99, 6.24], p = .181, R2 = 0.039 
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Figure A1. Histograms depicting the distribution captured by the CDI measures for 

expressive and receptive vocabulary scores across development. 


