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Abstract

A firm raises capital from multiple investors to fund a project. The project

succeeds only if the capital raised exceeds a stochastic threshold, and the firm

offers payments contingent on success. We study the firm’s optimal unique-

implementation scheme, namely the scheme that guarantees the firm the max-

imum payoff. This scheme treats investors differently based on size. We show

that if the distribution of the investment threshold is log-concave, larger investors

receive higher net returns than smaller investors. Moreover, higher dispersion in

investor size increases the firm’s payoff. Our analysis highlights strategic risk as

an important potential driver of inequality.
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1 Introduction

Firms often have worthwhile projects that require the participation of multiple in-

vestors. A key problem is that these investors face strategic risk: if not enough of

them choose to invest, the firm will not have enough capital to implement its project

and generate a return. As a result, there may be outcomes in which some or all the

investors choose not to invest because they expect that others will not invest. These

outcomes are bad for the firm and typically inefficient.

This paper studies the firm’s optimal scheme that guarantees investment as the

unique outcome. In a world without contracting constraints, where payments can be

made contingent on third parties’ choices, eliminating the possibility of bad outcomes

would impose no extra cost on the firm. But the real world is not unconstrained,

and as pointed out by the literature, bilateral contracts are often all a firm can rely

on.1 Guaranteeing investment then requires compensating investors for their strategic

risk, a risk that depends on the amount of capital each investor pledges. A natural

question arises: how does heterogeneity in investor size affect the firm’s scheme and the

returns yielded to the firm and the investors? In particular, does an optimal scheme

treat investors differently based on size, and, if so, which investors get better terms?

How does the distribution of capital among investors affect the firm’s profits and the

feasibility of investment?

Our model consists of a firm and a set of agents. The firm owns a project that

generates a surplus if implemented, and each agent has an amount of capital to invest,

which varies across the agents. The firm’s project can be implemented—i.e., the project

“succeeds”—only if the capital raised from the agents exceeds a stochastic, initially

unknown threshold.2 The firm offers each agent two payments for investing, one if the

project succeeds and another if it fails. Each agent then chooses whether to invest with

the firm or put her capital in a safe asset that pays a fixed net return. We characterize

the firm’s optimal unique-implementation scheme. This scheme specifies individual

capital amounts and the least-cost payments such that investing these amounts with

the firm is the unique Nash equilibrium outcome.3

1See Section 2 as well as the discussions in Innes and Sexton (1994) and Segal (2003).
2This threshold captures common factors such as the project involving inputs whose prices are

random, or the firm having a stochastic source of external credit to use as additional funding. More
abstractly, our model simply assumes that the probability of project success is increasing in the amount
of capital invested.

3See Section 2 for details. Our unique implementation requirement is equivalent to having the firm
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Our first main result addresses how the optimal returns that the firm offers vary

with investor size, given a fixed set of investors. We show that if the project fails, the

firm simply refunds the agents their capital, thus paying the same zero net return to

each of them.4 However, if the project succeeds, the firm pays the agents differential net

returns depending on the size of their investments. Under a distributional condition

on the investment threshold (which we discuss subsequently), we show that agents

investing larger amounts of capital receive higher net returns (per unit of capital) than

those investing smaller amounts. This pattern is consistent with evidence from private

equity, where large limited partners are given preferential terms compared to small ones

(see, e.g., Clayton, 2017). By showing that larger investors get more per unit invested,

this result also yields important implications for dynamic capital markets: we identify

a mechanism through which capital becomes dispersed, pointing to “winner-takes-all

dynamics” such as those that arise in tournament theory and models of superstars

(Lazear and Rosen, 1981; Rosen, 1981).

Our second main result concerns the optimal set of investors for the firm. Fixing

the total amount of capital, we find that the firm benefits from dealing with agents

whose capital is more unequal. Specifically, any increase in the dispersion of agents’

capital (in the sense of majorization, i.e. concentrating capital in the hands of a small

number of agents) reduces the firm’s cost of raising any given level of capital. Higher

dispersion in investor size therefore increases the firm’s expected payoff from any given

investment, as well as the range of investments that are feasible. Furthermore, as an

implication, we find that the firm targets those agents with the largest endowments of

capital, generating differences not only in agents’ net investment returns but also in

their access to investment opportunities.

Our last main result considers the relationship between the distribution of capital

and the distribution of returns. One might be tempted to conclude from our previous

results that not only larger investors are offered higher net returns, but also their return

advantage is larger when the agents’ investments are more unequal. We show that the

opposite is true, in the following sense: higher capital dispersion reduces the difference

in net returns between the largest and smallest investors. In fact, we find that this

return difference can decline to the extent that even the difference in the investors’

maximize its expected payoff in its worst possible equilibrium outcome.
4This result applies to our benchmark setting with no initial firm capital. If the firm owns initial

capital, a subset of the agents are paid a positive net return under failure; yet, as shown in Section 5,
our qualitative conclusions are unchanged.
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final capital holdings declines when initial capital becomes more unequal.

To provide intuition for these results, we next describe a simple example. Consider

a project that requires I units of capital to succeed, where the threshold I is uniformly

distributed on the interval [0, 30]. If the project succeeds, it generates a fixed surplus

A > 0 in addition to the initial investment. Suppose A is large enough that the firm

wishes to guarantee full investment by two agents, where agent 1 has 10 units of capital

and agent 2 has 20 units. The agents’ outside option is to invest in a safe asset that

pays a net return of 10%.

In this simple example, the project succeeds for sure if both agents invest with the

firm. Hence, paying each agent a net return under success equal to the safe return

of 10% would suffice to induce an equilibrium in which both agents invest. However,

an equilibrium in which neither agent invests would also exist given this (or a slightly

higher) return. To implement full investment as the unique equilibrium outcome, the

firm must make it dominant for one of the agents to invest.

Consider first a scheme that makes investment dominant for agent 1. If only agent

1 invests, the project succeeds with probability 1/3, namely the probability that the

investment threshold is I ≤ 10. To ensure that agent 1 invests no matter what agent 2

does, it thus suffices to offer her a net return under success (slightly above) r satisfying

r/3 = 10%, i.e. r = 30%. Given agent 1’s participation, it then suffices to offer agent

2 a net return of 10% for her to also invest. It follows that the firm can guarantee full

investment at a cost of 10(30%) + 20(10%) = 5.

The alternative is to make investment dominant for agent 2. If only agent 2 invests,

the project succeeds provided that I ≤ 20, which occurs with probability 2/3. Thus, it

suffices to offer agent 2 a net return under success of 15% to guarantee her participation.

Since agent 1 will then invest as well if she is offered at least 10%, the firm’s cost is

now equal to 10(10%) + 20(15%) = 4, which is lower than under the previous scheme.

Intuitively, agent 2’s larger investment provides her with more self-insurance compared

to agent 1, and this allows the firm to pay a lower compensation for risk when agent

2’s participation is made dominant. Consequently, the firm uses a scheme that pays a

higher net return to the large investor compared to the small investor. This illustrates

our first main result.

Consider next transferring capital from the small to the large investor. For example,

suppose we transfer 4 units of capital from agent 1 to agent 2, so that the capital of

agent 1 becomes 6 and that of agent 2 becomes 24. Following analogous steps to those
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above, the firm’s scheme in this case entails a net return under success of 12.5% for

agent 2 and 10% for agent 1. The firm’s cost is equal to 6(10%) + 24(12.5%) = 3.6,

which is lower than the cost of 4 prior to the transfer. Because the large investor

becomes better self-insured when her capital is increased, the overall compensation for

risk that the firm has to pay declines. We thus obtain that when the distribution of

capital is more unequal, the firm’s expected payoff is higher, and a lower surplus A

from success suffices for the investment to be profitable. This illustrates our second

main result. Our third main result is also clear in this exercise: the difference in the

agents’ net returns is smaller when their investments are more heterogeneous.

Our paper examines a general setting in which the number of agents and their

capital levels are arbitrary, as is the distribution of the investment threshold I. We

identify a condition on the distribution function of I under which our results hold

for all capital distributions. The condition is that the reciprocal of the cumulative

distribution function (cdf) be convex, a property implied by log-concavity of the cdf

and thus satisfied by most commonly used distributions.5 Our analysis elucidates the

role of this condition and how our findings change if it is not satisfied. In the example

above, the condition implies a risk premium per unit of capital which declines at a

decreasing rate with the agents’ investments, and this is why the firm minimizes costs

by first guaranteeing the participation of the large investor.

We discuss different extensions and implications of our model. We show that our

results apply to a setting in which the firm has some initial capital of its own. The

firm in this case uses its capital to fully insure small investors, thus continuing to offer

higher net returns to larger investors and delivering different levels of risk for investors

of different size. Our results also apply to a general equilibrium setting in which the

investors’ outside options are endogenously determined. Moreover, while derived for

a firm that maximizes its profits, our findings are also relevant to a social planner

concerned with agents’ welfare.

Beyond capital raising, we discuss how our model may be applied to other contract-

ing problems with externalities. These include a monopolist offering exclusive dealing

contracts to buyers to deter market entry; a firm rewarding workers to complete a joint

task; and a bank offering interest and collateral to depositors to prevent a run. Het-

erogeneity is common in these situations, and our results can be useful to understand

5These include the exponential, gamma, log-normal, Pareto, and uniform distributions (see Bagnoli
and Bergstrom, 2005).
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its implications.

A broad insight from our analysis is that strategic risk may be a driver of inequality.

A profit-maximizing mechanism favors certain agents in order to pin down their choices

and reduce the strategic risk on the part of other agents. We show that under a plausible

condition, the more favorable terms are given to those agents who are already in a more

favorable position. The mechanism therefore exacerbates initial differences among the

agents, and it also extracts increased revenues from these differences. Inequality being

undesirable for a number of reasons that we do not study, our paper uncovers important

economic forces that may be behind it. We discuss policy implications for a social

planner in Section 6.

Related literature. Our model is one of multi-agent contracting, similar to models

used in the literature on contracting with externalities pioneered by Segal (1999, 2003)

(see also Bernstein and Winter, 2012).6 These are abstract models with externalities

among the agents which are exogenously given. In contrast, we consider an applied

problem in which the externalities among the agents are endogenously determined by

the firm’s contract offers.

Our main departure from the literature is that we study agents who are heteroge-

neous in their endowments. Our analysis of course also has implications for the case

in which the agents are homogeneous: we find that the firm’s optimal scheme gives

investors differential net returns even if they all have the same amount of capital. This

is analogous to the results in Winter (2004), where an optimal team incentive scheme is

shown to discriminate among identical workers. Similar results appear in Segal (2003)

and Eliaz and Spiegler (2015), as well as in Inostroza and Pavan (2018) in the context

of persuasion. Given that an optimal scheme creates heterogeneity among homoge-

nous agents, our paper examines the natural question of how the scheme deals with

heterogeneous agents, and in doing so it reveals implications for inequality.

Two related papers that analyze heterogeneity are Bernstein and Winter (2012)

and Sákovics and Steiner (2012). Unlike our model, neither of these feature contin-

gent payments: the principal offers fixed subsidies for the agents to participate in the

mechanism, and agents’ benefits from participating and their externalities are exoge-

nous. Bernstein and Winter (2012) study how asymmetries in the agents’ bilateral

externalities affect the principal’s scheme and revenue. Instead, we look directly at

6Most such models focus on unique implementation like we do; see Section 2.3.
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differences in agents’ attributes, whose effects on the matrix of externalities may be

complex and endogenous.7 Sákovics and Steiner (2012) consider a global game with

incomplete information, where agents differ in their influence over the aggregate ac-

tion, their benefit from project success, and their cost of investment. Importantly,

these papers are silent about our main object of study, namely the per-dollar returns

on investment. These returns and their dependence on investors’ wealth are the crux

of the persistent inequality that we show is generated by the firm’s capital raising.

In this regard, the most closely related paper to ours is Akerlof and Holden (2019).8

In independent work, the authors consider a principal who has access to a production

technology and faces a set of investors. The production function achieves a global

maximum at a high level of investment, has a local maximum at a low level, and is such

that for an intermediate range the output would not suffice to compensate investors

for their outside options. The paper first analyzes a setting with many identical small

investors. If the principal seeks to raise the high investment level while offering investors

their outside option, there is an equilibrium in which investors invest less and the

principal gets zero payoff. As a result, the principal seeks to raise the low level of

investment. The authors then contrast this setting with one in which there is a large

investor in addition to the small investors. If the principal offers the large investor

a junior debt claim and promises her a fraction of the surplus generated by the high

investment, then both the large and small investors invest and high investment is the

unique equilibrium outcome.

Our paper differs from Akerlof and Holden (2019) in a number of aspects. First,

they show that by facilitating investment, a large investor can earn a high return if

he has some bargaining power vis-a-vis the principal. If the large investor is instead

a price-taker as the small ones, then all investors get the same net return regardless

of size. In contrast, in our model all the bargaining power is in the hands of the

firm, and the firm offers higher net returns to larger investors to guarantee itself a

maximum payoff. Put differently, we take a mechanism design approach to solve for an

optimal unique-implementation scheme, whereas Akerlof and Holden (2019) provide

7In fact, while in our model the magnitude of an investor’s externality is related to size, we find that
the relationship between size and contract terms depends on a distributional condition, so a higher
externality does not necessarily imply more favorable terms as in Bernstein and Winter. The difference
arises primarily from the fact that here agents’ externalities are neither bilateral nor additive. In our
framework, the externality that an agent exerts on another agent’s gains depends on who else is in
the pool of investors.

8See also Akerlof and Holden (2016).
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an equilibrium analysis that shows how outcomes vary with the environment. Second,

while their paper focuses on the role of large investors in improving overall investment,

we study how the firm and investors’ payoffs depend on the distribution of capital. In

fact, unlike in Akerlof and Holden (2019), the firm in our model benefits from targeting

larger investors, and offers them a higher net return compared to smaller investors, even

if the overall investment is kept unchanged.

Finally, our paper is also related to Andreoni (1998), which studies the role of seed

money in charitable contributions. Since the success of such fundraising relies on a

minimum threshold of funds, contributions from seed donors increase the incentives of

other donors to also contribute.

2 Model

2.1 Setup

A firm owns a project which yields a fixed surplus A > 0 if implemented. The firm can

implement the project only if the capital invested in it exceeds an initially unknown,

stochastic threshold I. We assume that I has a twice differentiable distribution function

F with support
[
0, I
]
, for some I > 0.9 Hence, if capital x is invested, with probability

F (x) the threshold satisfies I ≤ x and the project is implemented, yielding final capital

x+A.10 With the remaining probability 1−F (x) the threshold is I > x and the project

is not implemented, so the final capital is x. We will refer to project implementation

as success and to no implementation as failure.

We begin by assuming that the firm has no capital of its own, deferring the study of

how the firm would use any initial capital to Section 5. The firm raises capital from a

set of N > 1 heterogeneous agents, indexed by n ∈ S = {1, . . . , N}. Each agent n has

a capital endowment xn > 0. Instead of investing with the firm, agents can invest their

capital in a safe asset that pays a net return θ > 0.11 (All returns are net percentage

9Setting the lower bound of the support to zero simplifies the exposition. As will be clear in the
next sections, our results are unchanged so long as this bound is smaller than the largest investor’s
amount of capital, and our problem is moot otherwise.

10In Section 6, we show that our results also apply if the firm’s surplus from implementing the
project is proportional to the capital invested instead of a constant amount.

11We thus model the loss from project failure as an opportunity cost, reflecting the fact that, in
practice, there is a lag between the capital raising and the actual investment decision. This formulation
is mathematically equivalent to one in which, instead of the agents forgoing an outside option, a failure
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returns, meaning that if agent n invests xn in the safe asset, her payoff is (1 + θ)xn.)

All of this is common knowledge.

The order of moves is as follows. First, the firm offers each agent a contract speci-

fying payments in the events of project success and failure, as we describe in the next

subsection. These are publicly observable contracts to which the firm commits. Sec-

ond, the agents decide simultaneously whether to invest with the firm or put their

capital in the safe asset. Finally, the investment threshold I is realized, the project is

implemented if and only if the capital raised by the firm exceeds I, and payments are

made.

2.2 Firm’s problem

The firm wishes to guarantee its maximum possible payoff. Its problem is to choose a

payoff-maximizing scheme subject to satisfying its budget constraint and to inducing

a unique equilibrium outcome.

As further discussed in Section 2.3, we focus on contracts that are bilateral and

simple. For each n ∈ S, the firm specifies an amount of capital xn ∈ [0, xn] and returns

(rn, kn) conditional on agent n investing xn in the firm’s project. The return rn is the

net return that agent n receives if the project succeeds; the return kn is the agent’s net

return in the case of failure.

Given a scheme specifying investments (xn)n∈S and returns (rn, kn)n∈S, denote agent

n’s decision by yn ∈ {0, 1}, where yn = 1 means invest xn with the firm and yn = 0

means invest xn in the safe asset. The firm’s budget constraint requires that the total

payments offered to the agents do not exceed the firm’s final capital, regardless of the

set of agents who invest in the project and whether or not the project is implemented.

That is, for all profiles of choices Y = (y1, . . . , yN), the firm’s scheme must satisfy12

N∑

n=1

rnynxn ≤ A and
N∑

n=1

knynxn ≤ 0. (BC)

In addition, the firm’s scheme must implement the agents’ investments in a unique

outcome. The firm’s problem can be decomposed in two steps:

corresponds to an unsuccessful investment that depletes a portion of the invested capital.
12This budget constraint can be relaxed to only require budget balance on the equilibrium path

without altering our results. See our discussion in Section 2.3.
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(i) For fixed capital amounts (xn)n∈S, find the optimal return schedule (rn, kn)n∈S

guaranteeing investments (xn)n∈S.

(ii) Given step (i), find the optimal capital amounts (xn)n∈S, where xn ∈ [0, xn] for

each n ∈ S.

We address step (i) in Section 3 and step (ii) in Section 4. We next formalize step (i).

Fix capital amounts (xn)n∈S where, to avoid trivialities and without loss, we take

xn > 0 for each n ∈ S. Given (xn)n∈S, say that a return schedule (rn, kn)n∈S is incentive

inducing (INI) if Y1 ≡ (1, . . . , 1) is the unique Nash equilibrium of the game induced

by (rn, kn)n∈S. An optimal return schedule for the firm is a least-cost INI schedule. A

technical issue is that the set of INI schedules is open (since rn and kn take continuous

values); we resolve this by assuming that agents invest with the firm when indifferent

given their conjectures of others’ behavior.13 Formally, let Un(yn,Y−n) be agent n’s

expected return on xn given net returns (rn, kn), investment choice yn, and investment

choices Y−n = (y1, . . . , yn−1, yn+1, . . . , yN) of the other agents:

Un(yn,Y−n) =

[
F

(
N∑

n′=1

yn′xn′

)
rn +

(
1− F

(
N∑

n′=1

yn′xn′

))
kn

]
ynxn + θ(1− yn)xn.

Given our assumption on behavior under indifference, we define a Nash equilibrium as a

profile Y = (y1, . . . , yN) such that, for each n ∈ S, yn = 1 if 1 ∈ argmaxy∈{0,1} Un(y,Y−n)

and yn = 0 otherwise. Denote by E ((rn, kn)n∈S) the set of Nash equilibrium profiles

under schedule (rn, kn)n∈S. Then the firm’s unique implementation requirement is:

E((rn, kn)n∈S) = {Y1}. (U)

Let XN ≡
∑N

n=1 xn. An optimal return schedule (r∗n, k
∗
n)n∈S guaranteeing invest-

ments (xn)n∈S solves the following program:

V ((xn)n∈S) = max
(rn,kn)n∈S

{(
A−

N∑

n=1

rnxn

)
F (XN)−

N∑

n=1

knxn (1− F (XN))

}
(P)

subject to (BC) and (U).

13This assumption is equivalent to defining an optimal return schedule as a least-cost schedule
(rn, kn)n∈S such that, for any ε > 0, raising rn by ε for each n ∈ S yields an INI schedule.
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2.3 Discussion of assumptions

Before we solve the firm’s problem, it is worth discussing our model assumptions.

Unique implementation. We have assumed that the firm cannot coordinate the

agents to its preferred equilibrium when multiple equilibria exist. This assumption is

what motivates the requirement of unique implementation, both in our paper and in

related work (Segal, 2003; Winter, 2004; Bernstein and Winter, 2012). If the firm could

“pick” the equilibrium to be played by the agents, then it would be able to extract

the full surplus by specifying returns (rn, kn) = (θ/F (XN), 0) for each n ∈ S and some

(xn)n∈S. Under such a scheme, there is an equilibrium that implements investments

(xn)n∈S and keeps all agents to their outside option, but equilibria with lower invest-

ment also exist. The presence of multiple equilibria gives rise to the possibility that

agents may play a non-desirable one. Indeed, several experiments find that subjects

are often trapped in bad equilibrium outcomes in environments with externalities (see,

e.g., Devetag and Ortmann, 2007). This tendency bears on the fact that agents’ first

order optimism alone would not suffice to ensure the good equilibrium: even if an agent

believes in the intentions of her peer to pitch in, it may be enough for her to suspect

that the peer might be pessimistic about her for the good equilibrium to unravel.

Our unique implementation requirement is equivalent to having the firm maximize

its profits in the equilibrium outcome yielding the lowest profits for the firm.14 While

real-world firms and managers may not be directly worried about this worst-case sce-

nario, they do aim to ensure a minimum payoff. The unique implementation solution

provides insight into how these principals structure payments in order to avoid bad

outcomes, without having to specify priors over different action profiles, which may

be arguably difficult in practice. One can also view this worst-case focus as reflecting

how the agents behave: if investors are reluctant to invest in the firm’s project unless

they are sufficiently compensated in every equilibrium outcome, then the firm’s worst

equilibrium outcome would indeed prevail.

Another desirable feature of our solution concept is that it permits an analysis free

of strong assumptions on agents’ ability to predict others’ behavior. Specifically, we

will show in Section 3 that our requirement of unique implementation in Nash equilibria

yields a unique rationalizable outcome. The firm therefore only relies on agents being

14See Segal (2003) for a general argument.
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rational and this rationality being common knowledge, and not on agents being able

to make correct conjectures of others agents’ choices. This is in contrast with other

approaches such as selecting equilibria based on the risk dominance criterion, which

imposes strong demands on the ability of agents to predict how others will behave.

Timing of moves. We have assumed that the agents make their investment choices

simultaneously, i.e. under imperfect information. This simultaneous game is a simple

(and stark) way to capture the fact that investors in reality may have limited informa-

tion about others’ investment choices, and their decisions may not be sequential insofar

as they can be revised.

Our analysis however also applies to a sequential game. Suppose that the firm

approaches the agents sequentially, with each agent observing the investment decisions

of her predecessors.15 Naturally, by offering rn = θ/F (XN) and kn = 0 to each agent

n ∈ S, the firm can induce investments (xn)n∈S as the unique subgame-perfect Nash

equilibrium and extract the full surplus. But such a solution appears unrealistic, as it

requires investors to believe that others who have not yet moved will choose to invest

with the firm. Without these beliefs, guaranteeing investments (xn)n∈S amounts to

making each of these a dominant strategy in the underlying subgame of the sequential

game, a solution concept that is used in Innes and Sexton (1994) among others. One

can show such an approach yields the same results as our unique implementation

requirement in the simultaneous game.

The sequential moves specification is of interest in itself. This specification imposes

the weakest demands on agents’ information and behavior: when making their invest-

ment decisions, agents are not required to know the structure of the remaining game,

the contracts offered to other agents, or how much capital other agents own. In fact,

agents need not even know whether other agents are rational, as they simply establish

whether they want to invest with the firm given the capital already accumulated, no

matter what happens next.16 In terms of our application, the sequential moves setting

offers additional predictions on the order in which the firm should approach investors

to maximize profits. Our results imply that, under the condition of Proposition 2,

15The discussion that follows is valid regardless of whether the firm commits to the rules of the
game (i.e., the contracts and the order of moves) ex ante or not.

16Interestingly, since such a decision rule allows the investors to extract more surplus, it is to their
benefit—and they would want to tell the firm when negotiating the terms—that they are reluctant to
rely on speculations about the behavior of future investors.
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it is optimal for the firm to first lock large investors and only then approach smaller

investors.

Bilateral, simple contracts. Following the literature (Segal, 2003; Winter, 2004),

we have assumed that the firm can rely on bilateral contracts only. That is, contracts

cannot directly condition on third parties’ actions: the payment to an agent does not

depend on other agents’ investment decisions except insofar as these decisions affect

whether the project gets implemented. The motivation for this restriction stems from

the difficulty to verify in practice the capital pledged by third parties. If an agent sues

for breach of contract, a court can require the agent to prove that she invested with

the firm (or else she lacks standing to sue), and it can plausibly verify whether or not

the firm implemented some large project. It is less clear whether the court can identify

the firm’s other investors and the amounts that they may or may not have invested.

We focus on situations in which it cannot.17

Another assumption is that the firm uses “simple” contracts. Specifically, our

analysis abstracts from menu contracts in which the firm offers an agent n different

returns (rn(x′n), kn(x′n)) for different amounts x′n that the agent may choose to invest.

In a simple contract, the firm specifies an amount xn and returns (rn, kn) conditional on

the agent investing that amount (and zero returns otherwise). Naturally, only simple

contracts are relevant if agents’ decisions are binary, as is the case when there are

indivisibilities in investment.18 Moreover, even when investment is fully divisible, we

provide conditions in the Online Appendix under which simple contracts are without

loss of optimality.19

Budget constraint. We have required that the firm satisfy its budget constraint

both on and off the equilibrium path. That is, the firm must be able to follow through

on its commitments to the agents regardless of which agents decide to invest in the

project.20 An alternative possibility would be to allow the firm to offer any returns

(rn, kn)n∈S that satisfy its budget constraint on the equilibrium path (i.e. under the

17If instead contracts can condition on third parties’ choices, then it can be shown that the firm
would be able to extract the full surplus.

18Indivisibilities are common in applications where capital takes the form of a specific resource or
skill, or where the project requires a number of discrete investments. See Section 6 for some examples.

19See Segal (2003) for an analysis of menu contracts in a more general setting.
20This is analogous, for example, to the requirements in Holmström (1982).
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investments (xn)n∈S), and each agent n ∈ S would then assess the credibility of her

offer (rn, kn) according to her conjecture of others’ behavior. We show in the Online

Appendix that, given our focus on unique implementation, both possibilities yield the

same results. We regard the stronger budget-balance condition as more plausible, since

the irrational behavior of some investors cannot serve the firm with an excuse for not

fulfilling its contracts with other investors.

3 Return Schedule

In this section, we address step (i) of the firm’s problem: for fixed capital amounts

(xn)n∈S, we study the firm’s optimal return schedule that guarantees these investments,

namely the schedule that solves program (P). Without loss, we take xn > 0 for each

n ∈ S. We begin by restating constraint (U) in program (P) using the following

equivalence:

Lemma 1. (U) holds if and only if there exists a permutation π = (n1, . . . , nN) of the

set of agents such that, for each i ∈ S, agent ni is willing to invest with the firm if

agents (n1, . . . , ni−1) invest with the firm, no matter what the other agents do.

An optimal return schedule makes it iteratively dominant for each agent to invest

with the firm. To see why this follows from (U), note that uniqueness of the full-

participation equilibrium Y1 implies that there is an agent n1 who is willing to invest

with the firm when no other agent does. Moreover, existence of this equilibrium implies

that n1 is also willing to invest when all other agents do. We show that as a result,

n1 is willing to invest with the firm no matter what the other agents do. The reason

is that n1’s expected payoff from investing is a weighted average of her returns under

success and under failure, where the weights are the probabilities of each event and

thus achieve their highest and lowest values when all and none of the other agents

invest. Having established this property for n1, we then use an induction argument to

complete the proof of the “only if” claim in Lemma 1.21

Given this result, an optimal schedule specifies some permutation π = (n1, . . . , nN)

of the set of agents and returns (ri, ki) for each agent ni ∈ S satisfying the criterion in

21The proof of Lemma 1 is general in that it does not rely on specific externalities between the
agents. The result will also apply to the setting studied in Section 5 in which the firm owns some
initial capital.
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Lemma 1. We proceed by first characterizing the optimal returns (r∗i , k
∗
i )i∈S and then

solving for an optimal permutation π∗ = (n∗1, . . . , n
∗
N).

3.1 Optimal returns

Given a permutation π = (n1, . . . , nN), denote the aggregate capital of the first i agents

in the permutation by Xi ≡
∑i

j=1 xnj
, where we omit the dependence on π to ease the

exposition. (Note that, as previously defined, XN corresponds to the total amount of

capital.) We obtain:

Proposition 1. Suppose that there exists an optimal return schedule guaranteeing

investments (xn)n∈S. Any such schedule specifies some permutation π = (n1, . . . , nN)

and returns (r∗i , k
∗
i )i∈S such that, for each i ∈ S, agent ni is indifferent over investing

with the firm if agents (n1, . . . , ni−1) invest with the firm and agents (ni+1, . . . , nN) do

not. Moreover, the following returns are optimal:

r∗i =
θ

F (Xi)
and k∗i = 0.

An optimal schedule implies a permutation π = (n1, . . . , nN) such that the first

agent in the permutation is indifferent between investing and not when no other agent

invests, the second agent is indifferent between investing and not when the first agent

invests and the others do not, and so on. For intuition, recall that by Lemma 1, there

is a permutation π = (n1, . . . , nN) in which each agent ni is willing to invest when

agents (n1, . . . , ni−1) invest, no matter the rest. This implies that for each i ∈ S and

each j ∈ {i, . . . , N},
r∗iF (Xj) + k∗i (1− F (Xj)) ≥ θ. (1)

Now note that the firm’s budget constraint (BC) requires ki ≤ 0 for each i ∈ S;22

given no initial capital of its own, the firm cannot credibly commit to pay an agent

a positive return under failure. Since the agents can obtain a net return θ > 0 by

investing in the safe asset, condition (1) then requires that the firm offer a strictly

22(BC) requires that the sum of net returns under failure be non-positive for all profiles of choices.
Since any one agent being the only investor is a possible choice profile, this constraint in turn requires
that each agent’s net return under failure be non-positive.

14



positive net return ri > 0 under success. It follows that for each i ∈ S,

r∗i > 0 ≥ k∗i , (2)

and thus the schedule induces strategic complementarities. That is, under an opti-

mal return schedule, each agent ni’s expected payoff from investing with the firm is

increasing in the other agents’ investments.

The strategic complementarities in turn simplify the agents’ participation con-

straints. Given the inequalities in (2), we obtain that condition (1) is satisfied for

each i ∈ S and each j ∈ {i, . . . , N} if and only if it is satisfied for each i ∈ S and

j = i. Intuitively, the firm can induce agent ni to participate no matter what agents

(ni+1, . . . , nN) do if it can induce agent ni to participate when all such other agents do

not. Furthermore, we show that by optimality, condition (1) must hold with equality

for each i ∈ S and j = i: otherwise, the firm could lower a return ri and increase its

payoff while preserving the agents’ incentives to participate and relaxing its budget

constraint. Therefore, we obtain

r∗iF (Xi) + k∗i (1− F (Xi)) = θ (3)

for each i ∈ S. This yields the first part of Proposition 1, which, in the literature’s

jargon, shows that any optimal scheme is a “divide and conquer” scheme.23

The second part of Proposition 1 uses the binding participation constraints in (3)

to derive optimal returns. We show that it is optimal to set (r∗i , k
∗
i ) = (θ/F (Xi) , 0)

for each i ∈ S.24 The idea is intuitive. The firm conditions on all agents (n1, . . . , nN)

investing in the project, whereas, as shown in (3), each agent ni conditions on only

agents (n1, . . . , ni) investing. Hence, for all i ∈ S, the firm assigns a higher probability

to success than agent ni does, which means that the firm values ri relative to ki more

than agent ni. As a consequence, the firm benefits from reducing ri, and thus increasing

ki, as much as it can, subject to its budget constraint (BC) and the participation

constraints in (3).

Formally, we show that if a return schedule specifies ki < 0 for some i ∈ S, we can

23See Segal (2003). Divide and conquer strategies are also discussed in the literature on exclusionary
contracts, including Rasmusen, Ramseyer and Wiley (1991), Innes and Sexton (1994), and Segal and
Whinston (2000).

24Given (BC), if the agents were protected by limited liability, then the firm would be constrained
to offer ki = 0 for all i ∈ S. Here we obtain these same returns under failure but by optimality.

15



perform a perturbation in which we slightly increase ki and reduce ri so as to keep the

left-hand side of (3) unchanged. The perturbed schedule satisfies the firm’s budget

constraint and preserves the agents’ incentives to participate. Moreover, we show that

the perturbation increases the firm’s expected payoff in (P). It follows that it is optimal

to set k∗i = 0 and thus, by (3), r∗i = θ/F (Xi) for each i ∈ S.25

Proposition 1 has important implications for the agents’ payoffs. The proposition

shows that the firm treats the agents symmetrically under failure: each agent is re-

funded her capital if the project is not implemented. However, in the case of success,

returns differ across the agents. Given the permutation π = (n1, . . . , nN), agents who

are positioned towards the beginning of the permutation are offered a higher net re-

turn (per unit of capital invested) than those positioned later in the permutation. The

reason is that agents with a higher rank i condition on a larger set of other agents

investing with the firm; thus, given the strategic complementarities, their participation

constraints are less costly to satisfy. Clearly, in light of this result, a key question is

how an optimal permutation π∗ ranks the agents given the heterogeneity in the size of

their investments. We turn to this question in the next subsection.

A useful property of the returns in Proposition 1 is that they maximally relax the

firm’s budget constraint. Specifically, since k∗i = 0 for each i ∈ S, these returns mini-

mize not only the firm’s total costs but also its costs under success,
∑N

i=1 rixni
, for some

permutation π. It follows that an optimal return schedule guaranteeing investments

(xn)n∈S exists if and only if a schedule with returns (r∗i , k
∗
i ) = (θ/F (Xi), 0) for some

permutation π satisfies (BC) given (xn)n∈S. As formalized in the next corollary, the

latter requires that the firm’s surplus A from success be large enough.

Corollary 1. An optimal return schedule guaranteeing investments (xn)n∈S exists if

and only if there exists a permutation π = (n1, . . . , nN) such that

θ

N∑

i=1

xni

F (Xi)
≤ A.

We end our discussion of Proposition 1 with a remark. As noted above, the firm’s

scheme induces a supermodular game among the agents, namely one characterized by

strategic complementarities. As a result, our requirement of unique implementation in

Nash equilibria also yields unique implementation in rationalizable strategies.

25These returns are strictly optimal for i ∈ {1, . . . , N − 1} and weakly optimal for i = N .
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Remark 1. Take an optimal return schedule guaranteeing investments (xn)n∈S. Then

these investments constitute the unique Nash equilibrium as well as the unique ratio-

nalizable outcome.

3.2 Optimal permutation

We now turn to the question of how an optimal permutation ranks the agents. As-

sume hereafter that the condition in Corollary 1 holds, so an optimal return sched-

ule guaranteeing investments (xn)n∈S exists. By Proposition 1, it is optimal for the

firm to specify some permutation π = (n1, . . . , nN) of the set of agents and returns

(r∗i , k
∗
i ) = (θ/F (Xi), 0) for each agent ni ∈ S. Substituting in the firm’s expected

payoff yields

V ((xn)n∈S) =

(
A− θ

N∑

i=1

xni

F (Xi)

)
F (XN) (4)

for some permutation π = (n1, . . . , nN). It follows from (4) and Corollary 1 that a

permutation π is optimal if and only if it minimizes the firm’s costs under success,

given by

θ
N∑

i=1

xni

F (Xi)
. (5)

The next proposition shows that (5) is minimized by ranking the agents in decreasing

order of the size of their investments, provided that a condition on the investment

threshold distribution holds. This condition is that 1/F (x) be convex (over the rel-

evant range), and it is satisfied by most commonly used distributions, as we explain

subsequently (see Remark 2).

Proposition 2. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0. Then for any

investments (xn)n∈S with XN ≤ X, an optimal permutation is π∗ = (n∗1, . . . , n
∗
N) such

that

xn∗1 ≥ . . . ≥ xn∗N (6)

Consequently, larger investors receive higher net returns than smaller investors.

The logic for the optimal permutation is as follows. Given a permutation π =

(n1, . . . , nN), Proposition 1 shows that an optimal return schedule compensates each

agent ni ∈ S on the marginal unit of capital invested in the project. Specifically,
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for each unit invested by agent ni, the firm pays the agent a return under success

r∗i = θ/F (Xi). As discussed in Section 3.1, the agent’s return thus decreases with Xi;

moreover, if 1/F (·) is convex, θ/F (Xi) decreases at a decreasing rate with Xi. This

means that the firm benefits from moving down the return curve as quickly as possible:

the faster capital is accumulated along the sequence (xn1 , . . . , xnN
), the lower is the

sum of returns xn1θ/F (X1) + xn2θ/F (X2) + . . . + xnN
θ/F (XN) that the firm has to

pay under success. It follows that it is optimal to rank the agents in decreasing size

order, from the largest investor to the smallest one.

Intuitively, to guarantee investment, the firm has to compensate the agents for the

strategic risk that they face in addition to the fundamental risk. The risk premium

for agent ni is proportional to 1/F (Xi), which depends on the agent’s rank i and her

investment xni
. For any given rank, a large investor demands a lower risk premium

than a small one because her large investment secures itself. That is, given Xi−1 fixed,

a larger investment xni
allows to reduce the risk premium 1/F (Xi−1+xni

) that the firm

has to pay on each unit of capital invested by ni. Now the magnitude of this reduction

depends on Xi−1: if 1/F (·) is convex, the risk premium decreases most sharply with

ni’s investment when the aggregate investment Xi−1 of preceding agents is small, and

thus when ni’s rank i is low. As a consequence, placing large investors early in the

permutation minimizes the total risk premia that the firm has to pay when 1/F (·) is

convex.26

Figure 1 illustrates the result using the example described in the Introduction. We

take F uniform over [0, 30] and θ = 10%. The figure depicts the return curve θ/F (Xi),

showing that the return that the firm pays under success declines at a decreasing rate

with each additional unit of capital invested in the project. For N = 2 agents with

investments x1 = 10 and x2 = 20, Proposition 2 implies that the optimal permutation

is π∗ = (2, 1). That is, the firm sets n∗1 = 2 and n∗2 = 1 as agent 2’s investment is

larger than agent 1’s. As shown in the left panel of Figure 1, the optimal returns under

success are r∗1 = 15% for agent n∗1 = 2 and r∗2 = 10% for agent n∗2 = 1, yielding a cost

for the firm of 20(15%) + 10(10%) = 4. If the firm instead ranks the agents according

to π = (1, 2), as in the right panel of Figure 1, then the returns are r1 = 30% for agent

n1 = 1 and r2 = 10% for agent n2 = 2, yielding a higher cost of 10(30%)+20(10%) = 5.

As stated in Proposition 2, our characterization of an optimal permutation has

26Conversely, if 1/F (·) is concave, the firm would benefit from placing large investors late in the
permutation. See Section 6.
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Example

Suppose F uniform on [0, 3], ✓ = 10%, integer capital units

• Pay 30% on first unit, 15% on second, 10% on third

• If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 4. If reverse order in permutation, cost is 5
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓
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◆
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x2 � x1

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there
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Figure 3: Price of coordination for N = 2 agents with aggregate capital X2 = 30, F uniform
over [0, 30], and ✓ = 10%, as
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increases from 10 to 30.

H of capital in S, and let bS be the set of N agents induced by bH. The set of viable

projects in bS is larger than that in S.
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and
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explanations. Our model reveals a di↵erent mechanism, which operates directly via an
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innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns

20

0

0.1

1 1.4 1.8 2.2 2.6 3

Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓
N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

x2 � x1

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there

18

Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓
N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

�
xn⇤

1
� xn⇤

2

�

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there

18

Figure 3: Price of coordination for N = 2 agents with aggregate capital X2 = 30, F uniform
over [0, 30], and ✓ = 10%, as

�
xn⇤

1
� xn⇤

2

�
increases from 10 to 30.

H of capital in S, and let bS be the set of N agents induced by bH. The set of viable

projects in bS is larger than that in S.

0 10 20 30

Our model therefore predicts that innovation will be higher in more unequal soci-
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profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and
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explanations. Our model reveals a di↵erent mechanism, which operates directly via an
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suggests that wealth inequality could have positive e↵ects on social welfare by increasing
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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Suppose F uniform on [0, 3], ✓ = 10%, integer capital units

• Pay 30% on first unit, 15% on second, 10% on third

• If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 4. If reverse order in permutation, cost is 5
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to
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Figure 1: Return curve for F uniform over [0, 30] and θ = 10%. Given N = 2 agents with
investments x1 = 10 and x2 = 20, the left panel shows the returns paid by the firm under
the optimal permutation π∗ = (2, 1). The right panel shows these returns under π = (1, 2).

direct implications on investors’ returns: given Proposition 1, it implies that larger

investors receive higher net returns than smaller ones. The analysis therefore provides

an explanation for the patterns of returns often observed in practice. As mentioned

in the Introduction, our results are consistent with evidence from private equity. Tan

(2016) and Clayton (2017), for example, point out an increasing tendency of private

equity firms to give preferential treatment to limited partners based on size. The

empirical findings in Dyck and Pomorski (2016) reveal that large investors receive

higher net returns than small investors even when restricting attention to private equity

investments without any preferential access.27

Proposition 2 suggests that the observed differences in returns across investors may

arise as a firm’s profit-maximizing solution to a coordination problem in investment.

A natural question is whether other factors could instead explain the evidence. For

example, a simple theory of transaction costs may justify firms’ offering better terms

to larger investors. However, the differential returns across investors are sizable, so

these transaction costs would have to be too large to provide a justification. In fact,

this discontinuity is a testable implication of our theory that distinguishes it from

other explanations such as transaction costs: we find that small differences in agents’

investments can yield large differences in the net returns that they receive.

27From private conversations with industry experts, we find that similar patterns are observed in
debtor-in-possession financing, often in the form of fee reductions for large investors.
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By showing that larger investors get more per unit invested, Proposition 2 also has

implications for dynamic capital markets. In particular, we will establish in Section 4.1

that the agents from whom the firm induces larger investments are precisely those who

have larger endowments of capital to begin with. Therefore, as we discuss in that

section, the differential treatment of investors described in Proposition 2 will imply

that any differences in initial capital among the agents will be exacerbated by the

firm’s optimal scheme.

We close this section with two remarks. The result in Proposition 2 is shown to

hold under a condition on the distribution of the investment threshold. First, it is

worth noting that this condition is implied by log-concavity:

Remark 2. If F (x) is log-concave, then 1/F (x) is convex.

Many familiar distributions have a log-concave cdf, including exponential, gamma,

log-normal, Pareto, and uniform (see Bagnoli and Bergstrom, 2005).28

Second, one may wonder about the necessity of our condition on F . We can show

that if 1/F (x) is non-convex for some x ∈ [0, X], X > 0, then there exist investments

(xn)n∈S with XN ≤ X such that a permutation that ranks the agents in decreasing

size order is not optimal. Hence,

Remark 3. Convexity of 1/F (x) over the relevant range is not only sufficient but also

necessary for the statement in Proposition 2 to hold.

Our emphasis is on the case in which 1/F (x) is convex because, as noted, most

of the distributions that are frequently used satisfy this property. In fact, 1/F (x)

cannot be globally concave (since 1/F (x)→∞ as x→ 0), and thus an analysis under

1/F (x) concave must be conditioned on the range of capital [min{xn|n ∈ S}, XN ] given

(xn)n∈S. We discuss this possibility in Section 6.

4 Distribution of Capital

So far we have focused on step (i) of the firm’s problem, taking the amounts of capital

(xn)n∈S that the firm raises as given. We now consider step (ii): given that an optimal

return schedule guaranteeing investments (xn)n∈S is characterized by Proposition 1 and

28Log-concavity of the cdf is implied by, but weaker than, log-concavity of the probability density
function.
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Proposition 2, we study the optimal investments that the firm induces. Put differently,

we ask: how does the distribution of capital among the agents impact the firm’s payoff?

To address this question, we use the majorization partial ordering of vectors (Hardy,

Littlewood and Pólya, 1934):

Definition 1. For two N-vectors x = (x1, . . . , xN) and x̂ = (x̂1, . . . , x̂N), vector x̂

majorizes x if the components of x̂ and x have the same total sum and, for all m, the

sum of the m smallest components is weakly smaller in x̂ than in x.

Majorization provides a formal definition of dispersion. Given a total invest-

ment XN , the investments in x̂ = (x̂1, . . . , x̂N) are more unequal than those in x =

(x1, . . . , xN) if the vector x̂ majorizes x. This concept is analogous to that of mean-

preserving spread for probability distributions.29

4.1 Optimal investments

The next proposition shows that for any given total investment XN , the firm benefits

from the individual investments (xn)n∈S being more unequal:

Proposition 3. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0, and consider in-

vestments (xn)n∈S with XN ≤ X. Let the investments (x̂n)n∈S majorize (xn)n∈S. The

firm’s expected payoff under (x̂n)n∈S is higher than that under (xn)n∈S.

For intuition, consider the example from the Introduction, with F uniform over

[0, 30] and θ = 10%. Suppose first that the firm raised capital from N = 3 agents with

x1 = x2 = x3 = 10. By our results in the previous section and as can be seen in Figure 1,

the firm’s optimal scheme would then entail costs equal to 10(30%+15%+10%) = 5.5.

Now suppose that two of these investors were “merged” into a single larger investor,

so the firm raises capital from N = 2 agents with x1 = 10 and x2 = 20 (which is

equivalent to N = 3 agents with x1 = 10, x2 = 20, and x3 = 0). The firm’s costs under

an optimal scheme would then be lower, equal to 20(15%) + 10(10%) = 4. The reason

is that merging the agents reduces the strategic uncertainty: while each separate agent

faces uncertainty about the investment decision of the other agent, the merged agent

29For any x > 0, let Hx(x) and Hx̂(x) denote the number of components of x and x̂ respectively that
do not exceed x. Then Hx̂(x) is a mean-preserving spread of Hx(x) if it is second-order stochastically
dominated by Hx(x). By the results in Rothschild and Stiglitz (1970) and Machina and Pratt (1997),
our analysis goes through without change with this definition of inequality.
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knows that she will invest the whole capital amount in the firm’s project. This allows

the firm to guarantee the same total investment at a lower risk premium.

Proposition 3 shows that this logic holds more generally. We find that any increase

in the dispersion of investments, as formalized by the notion of majorization, increases

the firm’s payoff. To see why this is the case, take (xn)n∈S. Any capital amounts (x̂n)n∈S

that majorize (xn)n∈S can be derived from (xn)n∈S by performing a finite sequence of

transfers from smaller to larger investors, increasing the gap between them (see Hardy

et al., 1934). We show that each such transfer makes the firm better off. Fixing an

optimal permutation π = (n1, . . . , nN) under (xn)n∈S, a transfer from a small to a large

investor allows the firm to move down the optimal return curve θ/F (Xi) more quickly

and thus reduce its costs. Intuitively, the transfer lowers the required risk premium by

increasing the self-insurance of the large investor. This implies that the firm’s payoff

under the induced amounts (x̂n)n∈S is higher than that under (xn)n∈S given optimal

returns and the original permutation π. Clearly, changing to a permutation that is

optimal under (x̂n)n∈S can only raise the firm’s payoff further. It follows that this

operation always benefits the firm.

In the limit, the operation in Proposition 3 would concentrate all the capital in

one of the agents. In fact, if the firm raised capital from only one agent, this agent

would face no strategic risk, and the firm would be able to raise the total investment

XN by offering a net return under success equal to θ/F (XN). The firm’s costs in this

case would be minimized and equal to XNθ. The firm’s costs are higher when raising

capital from multiple agents because of the coordination problem governing the agents’

interaction. The price of coordination is the additional cost above XNθ that the firm

pays when dealing with N > 1 agents, given by θF (XN)
∑N

i=1 xn∗i

(
1

F (Xi)
− 1

F (XN )

)
for

Xi =
∑i

j=1 xn∗j . Proposition 3 implies that the price of coordination is lower the more

unequal the agents’ investments. Figure 2 provides an illustration using the example

discussed above.

Returning to the firm’s problem, the result in Proposition 3 immediately tells us

what are the optimal investments (x∗n)n∈S that the firm induces from the agents given

their endowments of capital (xn)n∈S. For any given total investment XN , we find that

the firm raises as much capital as it can from the agents with the largest endowments.

This solution yields the most unequal investments (xn)n∈S that are feasible given the

agents’ endowments (xn)n∈S, and so it is optimal by Proposition 3.
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)
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⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns

20

0

0.1

1 1.4 1.8 2.2 2.6 3

Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓

N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

x2 � x1

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there

18

Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓

N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

�
xn⇤

1
� xn⇤

2

�

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there
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Figure 3: Price of coordination for N = 2 agents with aggregate capital X2 = 30, F uniform
over [0, 30], and ✓ = 10%, as

�
xn⇤

1
� xn⇤

2

�
increases from 10 to 30.

H of capital in S, and let bS be the set of N agents induced by bH. The set of viable

projects in bS is larger than that in S.

0 10 20 30

Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns

20

Figure 2: Return curve for F uniform over [0, 30] and ✓ = 10%. If there are N = 3 agents
with capital amounts x1 = x2 = x3 = 10, the firm’s costs under an optimal scheme are equal
to 10(30%+15%+10%). If there are N = 2 agents with capital amounts x1 = 10 and x2 = 20,
the firm’s costs under an optimal scheme are equal to 20(15%) + 10(10%).

XN by o↵ering a net return under success equal to ✓/F (XN). The firm’s costs in this

case would be minimized and equal to XN✓. The firm’s costs are larger when raising

capital from multiple agents because of the coordination problem governing the agents’

interaction. The price of coordination is the additional cost above XN✓ that the firm

pays when dealing with N > 1 agents, given by

✓F (XN)
NX

i=1

xn⇤
i

✓
1

F (Xi)
� 1

F (XN)

◆

for Xi =
Pi

j=1 xn⇤
j
. Proposition 3 implies that the price of coordination is lower the

more unequal is the distribution of agents’ investments. Figure 3 provides an illustration

using the example discussed above.

Proposition 3 has immediate implications on the feasibility of investment. Since a

more unequal distribution of capital among the agents increases the firm’s payo↵ from

any given investment, such a distribution also reduces the minimum surplus A that is

required from a project for investment to be profitable. As a consequence, we find that

a larger range of projects can be undertaken when the population of investors is more

heterogeneous.
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Figure 2: Price of coordination for F uniform over [0, 30], θ = 10%, and N = 2 agents with
total investment X2 = 30, as we increase

(
xn∗1 − xn∗2

)
from 10 to 30.

Corollary 2. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0, and agents’ endowments

satisfy
∑N

n=1 xn ≡ XN ≤ X. Consider a permutation π = (n1, . . . , nN) that ranks the

agents in decreasing endowment order, i.e. with i ≤ i′ if and only if xni
≥ xni′ . For

any given total investment XN ≤ XN , an optimal scheme specifies investments (x∗ni
)i∈S

satisfying

x∗ni
=





xni
if i < i∗,

x∗ni∗
if i = i∗,

0 otherwise,

where i∗ ≡ max{i ∈ {0, . . . , N + 1} :
∑

i<i∗ xni
≤ XN} and x∗ni∗

≡ XN −
∑

i<i∗ xni
.

Moreover, letting X∗i ≡
∑i

j=1 x
∗
nj

and noting that the investments x∗ni
are a function of

XN , the optimal total investment X∗N then solves:

max
XN∈[0,XN ]

(
A− θ

N∑

i=1

x∗ni

F (X∗i )

)
F (XN) . (7)

Given the optimal individual investments as a function of XN , the second part

of Corollary 2 completes our characterization of the firm’s optimal scheme by solving

for the optimal total investment X∗N . The program in (7) follows directly from our

characterization in Proposition 1 and Proposition 2.
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Corollary 2 has several important implications. First, since agents with larger

endowments of capital make larger investments in the firm’s project, our findings in

Section 3 imply that agents with larger endowments receive higher net returns on their

investments than those with smaller endowments. As such, our analysis highlights a

mechanism through which capital becomes dispersed. We find that the firm’s optimal

scheme exacerbates differences in agents’ initial capital. In fact, the results point to

“winner-takes-all dynamics,” whereby agents with large capital endowments become

relatively larger over time, even when differences in initial endowments may be small.

These effects resemble those that arise, albeit for different reasons, in tournament

theory and models of superstars (Lazear and Rosen, 1981; Rosen, 1981).30

Second, we find that the firm’s optimal scheme may imply differences among the

agents not only in their net returns from investment but also in their access to invest-

ment opportunities. Specifically, if the total capital available XN exceeds the amount

X∗N that the firm optimally raises, then the firm targets the largest investors and

excludes smaller investors from the project.

Finally, our results have implications on the feasibility of investment. Since a more

unequal distribution of capital among the agents increases the firm’s payoff from any

given total investment, such a distribution also reduces the minimum surplus A that

is required from a project for investment to be profitable. As a consequence, we find

that a larger range of investments can be undertaken when the population of investors

is more heterogeneous.

4.2 Distribution of returns

Our last main result concerns the relationship between the distribution of agents’ in-

vestments and the distribution of their net investment returns. Consider an optimal

return schedule guaranteeing investments (xn)n∈S. By Proposition 1 and Proposition 2,

the schedule specifies a permutation π∗ = (n∗1, . . . , n
∗
N) ranking the agents in decreasing

size order and yields each agent ni an expected net return F (XN)r∗i . Since r∗i ≥ r∗i′

for i ≤ i′, the range of net returns is equal to the difference between the largest and

smallest investors’ net returns, F (XN) (r∗1 − r∗N). We find that if the distribution of

30In a dynamic setting, further considerations may come into play, as the firm could potentially
offer returns as a function of an agent’s history of investments. See Rey and Tirole (2007) for an
insightful related study in the context of cooperatives. A dynamic analysis is beyond the scope of this
paper.
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investments becomes more unequal, the range of net returns declines:

Proposition 4. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0, and consider invest-

ments (xn)n∈S with XN ≤ X. Let the investments (x̂n)n∈S majorize (xn)n∈S. The range

of net returns offered by the firm under (x̂n)n∈S is smaller than that under (xn)n∈S.

Recall that any investments (x̂n)n∈S that majorize (xn)n∈S can be obtained from

the latter by performing a finite sequence of transfers from smaller to larger investors.

To prove the proposition, we show that any such transfer keeps the smallest investor’s

net return unchanged (and equal to θ) while reducing the largest investor’s net return

(strictly if the transfer increases this investor’s capital). These effects apply regardless

of whether the identities of the smallest and largest investors change, and they imply

that the range of net returns becomes smaller. In this sense, we find that the firm’s

scheme is less discriminatory when the agents are more heterogeneous.

The example from the Introduction offers an illustration. For F uniform over [0, 30]

and θ = 10%, compare two agents who invest the capital amounts (x1, x2) = (10, 20)

against two agents investing (x̂1, x̂2) = (6, 24). Under an optimal return schedule,

agent 1 and agent 2 receive expected net returns of 10% and 15% respectively in the

former case, whereas in the latter case these expected net returns are 10% and 12.5%.

The range of net returns is therefore smaller under the more unequal distribution of

capital: (12.5− 10)% < (15− 10)%.

Of course, the range of agents’ initial capital amounts is larger under the more

unequal distribution. In the example, this range is 20 − 10 under (x1, x2) and 24 − 6

under (x̂1, x̂2). The net effect of heterogeneity on the range of final capital is thus

unclear, as final capital holdings depend on both the agents’ investments and their

net returns. In the example, the range of final capital is larger under (x̂1, x̂2): 24(1 +

12.5%) − 6(1 + 10%) > 20(1 + 15%) − 10(1 + 10%). More generally, either direction

is possible depending on parameters. That is, perhaps surprisingly, we find that by

reducing the range of net returns, a more unequal distribution of initial capital can

lead to a more equal distribution of final capital.31

31For an example, take F (x) = x5 for x ∈ [0, 1], θ = 10%, and capital amounts (x1, x2) = ( 1
3 ,

2
3 )

and (x̂1, x̂2) = (1
4 ,

3
4 ). The range of final capital is 0.81 under (x1, x2) and 0.79 under (x̂1, x̂2).
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5 Firm’s Initial Capital

Our model has considered a firm which owns no initial capital, so any payments it

offers to the agents must be self-financed by its project. In this section, we study how

the firm’s problem changes when the firm has some capital of its own. We show that

our main qualitative results continue to hold, with larger investors receiving higher net

returns than smaller ones. What is new is that the firm now uses its funds to insure

part of the investment, and we are able to provide a characterization of the level of

insurance offered to different investors depending on their size.

Suppose the firm has initial capital W > 0 and wishes to raise an additional amount

XN from the set S of N agents. Consider a scheme specifying investments (xn)n∈S and

returns (rn, kn)n∈S, where without loss we take xn > 0 for each n ∈ S. The firm’s

budget constraint now requires that, for all profiles of agents’ choices Y = (y1, . . . , yN),

the scheme satisfy

N∑

n=1

rnynxn ≤ W + A and
N∑

n=1

knynxn ≤ W. (BCW )

If W ≥ θXN , the problem is trivial: the firm can offer net returns (rn, kn) = (θ, θ)

to each agent n ∈ S and fund its project at the safe rate. As all the agents are given

full insurance, there is no coordination problem among them. In what follows, we thus

assume that the firm’s capital is limited, satisfying W < θXN .

The firm’s problem is the same as that in (P) but with the budget constraint given

by (BCW ) above (and with the total investment in the project now including the firm’s

capital W in addition to the capital XN raised from the agents). To solve this problem,

observe first that Lemma 1 continues to hold in this setting. Given investments (xn)n∈S,

the firm’s return schedule must thus specify a permutation π = (n1, . . . , nN) such that,

for each i ∈ S, agent ni is willing to invest when agents (n1, . . . , ni−1) invest, no matter

the rest. The key difference relative to the analysis of Section 3.1 is that the firm can

now pay positive returns under failure, and hence, in principle, offer returns satisfying

ki > ri to some agent ni ∈ S. Such an agent’s expected payoff from investing with

the firm would be decreasing in the other agents’ investments. That is, unlike when

W = 0, inducing strategic substitutabiliy is now feasible.

Nevertheless, we are able to show that an optimal return schedule for the firm

induces strategic complementarities among all the agents. Suppose by contradiction
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that ki > ri for some agent ni ∈ S in any optimal schedule. Such an agent’s par-

ticipation requires ki > θ, and so by (BCW ) and W < θXN , there must exist j 6= i

with kj < θ < rj. Furthermore, by analogous logic as in Section 3.1, agent ni must be

indifferent over investing with the firm when all other agents invest, whereas agent nj

must be indifferent conditioning on only agents (n1, . . . , nj−1) investing. This means

that agent ni conditions on weakly more other agents investing, and hence on a weakly

higher probability of success, than agent nj. We thus consider a perturbation that

reduces ki and increases ri while at the same time increasing kj and reducing rj. We

show that this perturbation either contradicts the optimality of the original schedule

or allows us to construct another optimal schedule which satisfies ri ≥ ki for all i ∈ S.

Using the strategic complementaries, we obtain the following characterization:

Proposition 5. Consider the firm’s problem with initial capital W > 0. Suppose

1/F (x) is convex for x ∈ [0, X], X > 0, and there exists an optimal return schedule

guaranteeing investments (xn)n∈S with W +XN ≤ X. Then an optimal such schedule

specifies a permutation π∗ = (n∗1, . . . , n
∗
N) satisfying

xn∗1 ≥ . . . ≥ xn∗N

and returns (r∗i , k
∗
i )i∈S satisfying

k∗i =
min{θxn∗i ,Wi}

xn∗i
and r∗i =

θ − k∗i (1− F (W +Xi))

F (W +Xi)
,

where Xi =
i∑

j=1

xn∗j , WN ≡ W, and Wi ≡ max{W −
N∑

j=i+1

k∗jxn∗j , 0} for i ∈ {1, . . . , N−1}.

An optimal scheme for the firm includes full-insurance contracts, with returns under

success and failure equal to the safe rate θ. That is, we find that the firm uses its initial

capital W to fully insure some of the capital XN that it raises from the agents. Since

W is limited, only an amount of capital W/θ can be insured. Once W is depleted,

the firm faces the same problem that we solved in the previous sections, and hence it

guarantees investment using a schedule analogous to that characterized in Proposition 1

and Proposition 2.

Proposition 5 shows that the smallest investors are the ones who receive insurance.

The intuition is simple. The firm’s cost of fully insuring the portion of capital W/θ is
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equal to W and thus independent of how this capital is distributed among the agents.

In contrast, the firm’s cost of raising the additional capital XN −W/θ does depend

on its distribution: by Proposition 3, this cost is minimized when XN −W/θ is raised

from the largest investors. Consequently, it follows that it is optimal for the firm to

raise the fully insured portion W/θ from the smallest investors.

The characterization in Proposition 5 shows that our results in Section 3 and Sec-

tion 4 are robust to the firm owning initial capital.32 In addition, this characterization

offers predictions on the levels of risk afforded to investors of different size. Interest-

ingly, empirical studies find that large investors hold riskier portfolios than small in-

vestors, and some of the explanations discussed in the literature include capital market

imperfections and investors’ risk aversion declining with wealth (see Carroll, 2000).33

We contribute to this discussion from a different perspective, that of optimal design.

Proposition 5 indeed predicts a high-risk, high-return investment for large investors and

a low-risk, low-return investment for small investors. Here, however, the distinction

arises as an optimal solution to the firm’s problem of raising capital in the presence of

strategic risk.

6 Discussion

Below we discuss some extensions and applications of our model and results.

Social planner and policy implications. We have solved the problem of a firm

that seeks to maximize its profits while guaranteeing a unique outcome. We point out

here that our results also have implications for a social planner who internalizes agents’

welfare.

Consider the problem of a planner who maximizes the probability of project success,

subject to budget and unique implementation constraints as those in program (P). Be-

cause the budget constraint requires limiting the cost of raising capital, the solution to

this problem coincides with that of the firm when the budget constraint is tight enough,

namely when the surplus A from project success is sufficiently small. Specifically, the

planner may have to give higher net returns to larger investors compared to smaller

32Note that the smallest investors who receive full insurance also receive a lower net return on their
investment compared to other investors, since θ ≤ F (W +XN )r∗i + (1−F (W +XN ))k∗i for any i ∈ S.

33Capital market imperfections may cause entrepreneurs to finance their activities with their own
capital and to earn a high return on their investments.
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investors in order to be able to finance the investment in the project. Furthermore, the

planner may benefit from a more unequal distribution of capital among the agents, as

such a distribution allows to reduce costs and make the investment viable.

Of course, things change if we take different social welfare functions, and in partic-

ular if we include a concern for inequality. Our analysis shows that the need to address

strategic risk gives rise to an important tradeoff between equality and efficiency.

Policy responses aimed at limiting inequality should support small investors, who

we find will be at a disadvantage relative to larger investors. A direct measure would

be to prevent the use of differential returns based on investor size, either by regulation

or by design. For example, in the context of venture capital, all participants of the

same investment round receive the same price, as the firm has only one valuation at

any given point in time. Our model and results show that constraining differential

pricing can protect small investors from getting worse terms than others, possibly at

the expense of a lower revenue for the firm or greater strategic uncertainty.

Intermediaries that bundle the capital of small private investors into a single larger

investment could also help limit inequality, provided that they do not extract any addi-

tional surplus by charging high fees. Additionally, regulators can generate instruments

to facilitate coordination. For example, it may be possible to promote platforms where

small investors can make commitments to invest that are legally binding but contin-

gent on a minimum total investment. Such instruments would reduce the strategic risk

which, we have shown, drives inequality.

Threshold distribution. Our analysis has focused on situations in which the dis-

tribution F of the investment threshold satisfies the condition of 1/F (x) being convex.

As noted in Section 3.2, 1/F (x) cannot be globally concave, and it is indeed globally

convex for most commonly used distribution functions. Yet, it is worth considering

how our results would change if the condition on F is not met.

Given capital amounts (xn)n∈S, suppose 1/F (x) is concave over the whole relevant

range, namely for x ∈ [min{xn|n ∈ S}, XN ]. Then our results in Proposition 2 would be

reversed: given optimal returns (r∗i , k
∗
i )i∈S as characterized in Proposition 1, we would

find that an optimal permutation π∗ = (n∗1, . . . , n
∗
N) ranks the agents in increasing

as opposed to decreasing size order. The intuition is the same as in Proposition 2

but also reversed: the firm benefits from placing large investors in the permutation

according to when the risk premium drops most sharply with investment, and if 1/F (x)
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is concave, this occurs at the end of the permutation, when Xi =
∑i

j=1 xnj
is largest.

The implication is that larger investors would now receive lower net returns than smaller

investors, as opposed to the case in which 1/F (x) is convex. The contrasting results

that we obtain in the two cases offer predictions that could be empirically tested.

Regarding the analysis in Section 4, we maintained the assumption of 1/F (x) convex

throughout that section for consistency with our results in Section 3. However, our

results on the distribution of capital in Section 4 are more general. In fact, if 1/F (x) is

concave over the whole relevant range, one can follow the same proof strategy used for

Proposition 3 to verify that the result sill applies, namely that the firm benefits from

distributions of capital which are more unequal.

General equilibrium. We have taken a standard mechanism design approach by

considering a single firm that makes take-it-or-leave-it offers to the agents. We assumed

that the agents have the same outside option and differ only in their wealth, which is

the focus of our study. From a theoretical perspective, this monopolistic setting permits

a clean analysis where differential returns are not driven by considerations other than

wealth. From an applied perspective, while there are multiple entrepreneurs with whom

an investor may choose to contract in practice, these markets are far from competitive.

Entrepreneurs do not sell “identical goods,” and shifting from one enterprise to another

is costly. Indeed, investors spend substantial time and effort on understanding the

nature of the enterprise they may invest in (see, e.g., Fried and Hisrich, 1994), which

creates a holdup problem and grants entrepreneurs a certain degree of monopoly power.

This does not mean that investors’ only outside option is a risk-free asset, but we believe

modeling the outside market as one in which investors are price-takers approximates

reality better than a model in which they can costlessly switch entrepreneurs.

That said, it is still of interest to explore how our analysis translates to a competitive

market setting. With that goal, we study in the Online Appendix a simple extension of

our model in which two firms compete for the capital of two heterogeneous investors.

In this oligopolistic environment, the investors’ outside options are not necessarily the

same, as they are endogenously determined by the firms’ equilibrium offers which can

condition on investor size. Analogous to our analysis of the one-firm problem, we study

equilibria where the firms’ offers yield a unique outcome in the interaction between the

investors (given an assumption on behavior under indifference) and where, upon a firm’s

deviation, the investors play the equilibrium that is worst for the firm. We show that
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under weak conditions, our main qualitative results continue to hold: in equilibrium,

larger investors receive higher expected returns than smaller investors, on a per-dollar

basis.

Proportional surplus. Our model has assumed that project success yields a fixed

surplus A > 0, and only the probability of success varies with the amount of capital

invested in the project. More generally, the surplus from project success may also be a

function of the investment. Consider a simple case in which success yields a net surplus

Rx if capital x is invested in the project, for some R > θ. Given a scheme specifying

investments (xn)n∈S and returns (rn, kn)n∈S, the firm’s budget constraint then requires

that, for all profiles Y = (y1, . . . , yN),

N∑

n=1

rnynxn ≤
N∑

n=1

Rynxn and
N∑

n=1

knynxn ≤ 0. (BCR)

Relative to the original budget constraint (BC), this constraint places further re-

strictions on the firm’s scheme. In fact, note that given R, (BCR) implies (BC) under a

fixed surplus AR ≡ RXN , as both constraints require that the sum of payments under

success do not exceed this amount. But (BCR) adds restrictions, by requiring that the

payment to any agent under success be no larger than the surplus generated by the

project when only such an agent has invested. That is, the firm’s budget constraint

now requires maxn∈S rn ≤ R.

Despite this difference, we can show that our analysis continues to apply to this

setting. Specifically, given R, consider the firm’s problem in (P) when project success

yields a fixed surplus equal to AR. As just explained, this is a relaxed problem rel-

ative to the firm’s proportional surplus problem that is subject to (BCR). Hence, it

follows that if the solution to (P) described in Proposition 1 and Proposition 2 satisfies

(BCR)—namely, if this solution specifies r∗n∗1 ≤ R—then it is also a solution to the

firm’s proportional surplus problem. Moreover, note that among all return schedules

guaranteeing investments (xn)n∈S subject to (BC), the solution to (P) minimizes the

highest return that the firm has to pay to any agent n ∈ S under success. Therefore, if

the solution described in Proposition 1 and Proposition 2 specifies r∗n∗1 > R, no schedule

can guarantee investments (xn)n∈S while satisfying (BCR).
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Applications. We have formulated our problem in the context of a firm that raises

capital to fund a project. There are various examples that may fit this description. As

mentioned, our results resonate with evidence from private equity investments. The

project in our model could also concern the building of a property to which agents

contribute with purchase commitments, or fund-raising for a charity as in Andreoni

(1998). We next discuss some further applications that relate to other literatures.

Exclusive contracts: A number of influential papers study how an incumbent firm may

coordinate buyers on signing exclusive dealing contracts (see Rasmusen, Ramseyer and

Wiley, 1991; Innes and Sexton, 1994; Segal and Whinston, 2000). Our analysis can be

applied to this question. Consider an incumbent monopolist offering exclusive dealing

contracts to buyers of different size, namely who differ in the number of units that

they demand.34 A potential entrant enters the market only if the total demand that

has contracted with the monopolist is below a stochastic threshold, and the monopolist

offers prices contingent on entry to guarantee a given total demand. Our results suggest

that under certain conditions on the threshold distribution, the monopolist will offer

lower unit prices to larger buyers compared to smaller ones. Moreover, the more

heterogeneous the buyer population, the higher the monopolist’s incentive to offer

exclusive dealing contracts to fight market entry.

Joint task: Consider a team incentive problem similar to that in Winter (2004) but

allowing for heterogeneity. A principal contracts with multiple agents who can con-

tribute towards a joint task. Agents differ in their ability, with more skilled agents

being able to make larger contributions than less skilled ones. Suppose that the prob-

ability of completing the joint task is increasing in the sum of agents’ contributions,

and the principal offers rewards contingent on task completion in order to guarantee

a level of participation. Applying our results to this setting suggests that optimal re-

wards will be convex: the principal compensates agents with high ability more than

proportionally relative to those with lower ability.

Bank runs: A sizable literature studies bank runs and how to prevent them. Consider

a simple setting in which N agents have their funds deposited in a bank and can

withdraw them at any time. Suppose there is a random threshold such that if the total

withdrawal exceeds it, a bank run occurs and the bank collapses. To exclude a run,

34Note that due to compatibility and cost considerations, these demands are often indivisible.
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the bank can offer depositors collateral (to be paid in the case of a run) or a higher

interest rate on deposits (absent a run). A conjecture that can be derived from our

analysis is that large depositors will be treated more favorably than small ones even

on a per-dollar basis, whether it is collateral or an increased interest rate that is used

to prevent the run.

A Proofs

This Appendix provides proofs for the results in Section 3 and Section 4. Supplemen-

tary proofs and results can be found in the Online Appendix. We abbreviate Nash

equilibrium by NE.

A.1 Proof of Lemma 1

As defined in Section 3.1, denote the aggregate capital of the first i agents in a permu-

tation π = (n1, . . . , nN) by Xi ≡
∑i

j=1 xnj
.

(=⇒) We begin by proving that (U) implies a permutation as described in the lemma.

Suppose (U) holds. Note that there must exist an agent n1 who is willing to invest

with the firm when no other agent does. If this was not true, there would be a NE in

which no agent invests, contradicting (U). Hence, we have:

r1F (X1) + k1 (1− F (X1)) ≥ θ. (8)

Additionally, agent n1 must be willing to invest with the firm when all other agents

do. Otherwise, there would not be a NE in which all agents invest with the firm,

contradicting (U). Hence, we also have:

r1F (XN) + k1 (1− F (XN)) ≥ θ. (9)

For any set of agents SI ⊆ S, let X(SI) ≡
∑

i∈SI
xni

be the aggregate capital of

the agents in SI . Since F (X1) ≤ F (X1 +X(SI)) ≤ F (XN) for SI ⊆ {2, . . . , N},
equations (8) and (9) imply

r1F (X1 +X(SI)) + k1 (1− F (X1 +X(SI))) ≥ θ
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for all SI ⊆ {2, . . . , N}. Therefore, agent n1 is willing to invest with the firm no matter

what the other agents do.

We now proceed by induction: for any i ∈ {2, . . . , N − 1}, suppose that there is an

agent ni who is willing to invest with the firm if agents (n1, . . . , ni−1) invest, regardless

of what the other agents do. Then there must be an agent ni+1 who is willing to invest

with the firm if agents (n1, . . . , ni) invest and the other agents do not. Otherwise,

there would be a NE in which agents (n1, . . . , ni) invest with the firm and agents

(ni+1, . . . , nN) do not, contradicting (U). Thus, we have

ri+1F (Xi+1) + ki+1 (1− F (Xi+1)) ≥ θ. (10)

Moreover, by (U), agent ni+1 must also be willing to invest with the firm when all

other agents do:

ri+1F (XN) + ki+1 (1− F (XN)) ≥ θ. (11)

Since F (Xi+1) ≤ F (Xi+1 +X(SI)) ≤ F (XN) for SI ⊆ {i+ 2, . . . , N}, equations (10)

and (11) imply

ri+1F (Xi+1 +X(SI)) + ki+1 (1− F (Xi+1 +X(SI))) ≥ θ

for all SI ⊆ {i + 2, . . . , N}. Therefore, agent ni+1 is willing to invest with the firm if

agents (n1, . . . , ni) invest with the firm, regardless of what the other agents do.

(⇐=) We next prove that a permutation as described in the lemma implies (U).

First, note that since each agent ni ∈ S is willing to invest if (n1, . . . , ni−1) invest no

matter what the rest does, it must be that each agent ni is willing to invest when all

other agents invest. Hence, there exists a NE in which all agents invest.

Next, to show uniqueness, suppose towards a contradiction that there exists a NE in

which some agents do not invest with the firm. Recall that all such agents must strictly

prefer not to invest. Call the set of non-investing agents SNI . We claim that SNI must

be empty. Clearly, n1 cannot be in SNI , as n1 is willing to invest with the firm no

matter what the other agents do. So n1 must be in the set of agents who invest, call it

SI . Now proceed by induction: for any i ∈ {2, . . . , N − 1}, suppose agents (n1, . . . , ni)

are in SI . Then by the permutation stated in the lemma, agent ni+1 is willing to invest

with the firm, and thus she cannot be in SNI either. The claim follows.
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A.2 Proof of Proposition 1

We begin by proving the first part of the proposition. By Lemma 1, any optimal

return schedule specifies some permutation π = (n1, . . . , nN) and returns (ri, ki)i∈S
which satisfy, for each i ∈ S and each j ∈ {i, . . . , N},

riF (Xj) + ki (1− F (Xj)) ≥ θ. (12)

As argued in the text, the firm’s budget constraint (BC) requires ki ≤ 0 for each i ∈ S.

Given this and θ > 0, equation (12) then requires ri > 0 for each i ∈ S. It follows

that ri > 0 ≥ ki for each i ∈ S, and thus the left-hand side of (12) is increasing in

F (Xj). Since F (Xj) is increasing in j, it follows that (12) holds for each i ∈ S and

each j ∈ {i, . . . , N} if and only if, for each i ∈ S,

riF (Xi) + ki (1− F (Xi)) ≥ θ. (13)

We show that optimality requires (13) to hold with equality for each i ∈ S. Suppose

by contradiction that there is an optimal return schedule under which (13) holds as a

strict inequality for some i′ ∈ S. Then consider a perturbation in which we reduce ri′

by ε > 0 arbitrarily small while keeping all other returns unchanged. Since (13) was a

strict inequality for i′, this constraint continues to be satisfied for all i ∈ S. It is also

clear that the budget constraint (BC) is relaxed by the perturbation. Moreover, note

that the firm’s expected payoff is

(
A−

N∑

i=1

rixni

)
F (XN)−

N∑

i=1

kixni
(1− F (XN)) , (14)

which is decreasing in ri for any i ∈ S. Therefore, we obtain that the perturbation

increases the firm’s expected payoff while preserving the agents’ incentives to partici-

pate and the firm’s budget constraint, and thus the original return schedule cannot be

optimal.

We next prove the second part of the proposition. By the claims above, any optimal

return schedule specifies some permutation π = (n1, . . . , nN) and returns (ri, ki)i∈S
satisfying

riF (Xi) + ki (1− F (Xi)) = θ (15)
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for each i ∈ S. We show that it is optimal to set ki = 0 for each i ∈ S, which combined

with (15) implies ri = θ/F (Xi) for each i ∈ S. Suppose by contradiction that this

is not the case, i.e. any optimal schedule has ki′ < 0 for some i′ ∈ S. (Recall that

by the firm’s budget constraint, ki ≤ 0 for all i ∈ S.) Then consider the following

perturbation: for any such i′, we increase ki′ by ε > 0 arbitrarily small and reduce ri′

by εηi′ , where

ηi′ ≡
1− F (Xi′)

F (Xi′)
.

Since we had ki′ < 0, the perturbed schedule continues to satisfy the firm’s budget

constraint (BC). Moreover, by construction, the left-hand side of (15) is unchanged by

the perturbation, so the agents’ incentives to participate are preserved. Finally, note

that the perturbation changes the firm’s expected payoff in (14) by

ε
(F (XN)− F (Xi′))

F (Xi′)
,

which is positive (and strictly positive if i′ ∈ {1, . . . , N − 1}). Therefore, the pertur-

bation increases the firm’s expected payoff while preserving the agent’s incentives to

participate and the budget constraint. Since we can perform this perturbation when-

ever ki < 0 for some i ∈ S, this contradicts the assumption that an optimal schedule

with ki = 0 for each i ∈ S does not exist.

Finally, we prove that if an optimal return schedule given investments (xn)n∈S exists,

there exists an optimal schedule specifying some permutation π = (n1, . . . , nN) and

returns (r∗i , k
∗
i ) = (θ/F (Xi), 0) for each i ∈ S. As shown above, any optimal schedule

specifies some permutation π = (n1, . . . , nN) and returns (ri, ki)i∈S such that (15) holds

for each i ∈ S. It is clear that for each agent ni, the return ri that satisfies this binding

participation constraint is decreasing in ki. Thus, given a permutation π, setting ki

as high as possible for each i ∈ S, subject to (BC), minimizes the firm’s costs under

success,
∑N

i=1 rixni
. It follows that setting ki = 0 for each i ∈ S maximally relaxes the

firm’s budget constraint. As we have shown that setting (r∗i , k
∗
i ) = (θ/F (Xi), 0) for

some permutation π is optimal subject to the budget constraint, this proves the claim.

A.3 Proof of Proposition 2

Assume that 1/F (x) is convex for all x ∈ [0, XN ]. We proceed in two steps.
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Step 1. Define

Ψ (a, b, c) ≡ 1

c

(
1

F (a+ b)
− 1

F (a+ b+ c)

)
− 1

b

(
1

F (a+ c)
− 1

F (a+ b+ c)

)
. (16)

We show that for any a ≥ 0 and b > c > 0 satisfying a+ b+ c ≤ XN ,

Ψ (a, b, c) ≤ 0. (17)

To prove this claim, observe that

Ψ (a, b, c) =
1

c

∫ b+c

b

F ′ (a+ z)

(F (a+ z))2dz −
1

b

∫ b+c

c

F ′ (a+ z)

(F (a+ z))2dz.

Define ψ (z̃) = cz̃+b2−c2
b

. Note that ψ is linear with ψ (c) = b, ψ (b+ c) = b + c, and

ψ′(z̃) = c
b
. Hence, a change of variables yields:

Ψ (a, b, c) =
1

b

∫ b+c

c

(
F ′ (a+ ψ(z̃))

(F (a+ ψ(z̃)))2 −
F ′ (a+ z̃)

(F (a+ z̃))2

)
dz̃. (18)

Note that given b > c, ψ (z̃) ≥ z̃ for all z̃ in the integration region. Given a ≥ 0 and

a+ b+ c ≤ XN , the assumption that 1/F (x) is convex for all x ∈ [0, XN ] then implies

that the integrand in (18) is (weakly) negative. The claim follows.

Step 2. By Step 1, (17) holds for any a ≥ 0 and b > c > 0 satisfying a+ b+ c ≤ XN .

Using (16), this inequality can be rewritten as

b

F (a+ b)
+

c

F (a+ b+ c)
≤ c

F (a+ c)
+

b

F (a+ b+ c)
. (19)

We now show that there is an optimal permutation π∗ = (n∗1, . . . , n
∗
N) satisfying

xn∗1 ≥ . . . ≥ xn∗N . (20)

Suppose that some permutation π = (n1, . . . , nN) is optimal. If π satisfies (20), we

are done. Suppose instead that (20) is not satisfied. Take the lowest index j < N

for which xnj
< xnj+1

. We perform a perturbation in which we swap agents nj and

nj+1. Note that this swap has no effect on Xi for any i < j or i > j + 1. Hence, the
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perturbation only affects the terms j and j + 1 of the sum in the firm’s costs in (5).

Under the original permutation, these terms sum to:

xnj

F
(
Xj−1 + xnj

) +
xnj+1

F
(
Xj−1 + xnj

+ xnj+1

) . (21)

The perturbation changes the sum of these terms to:

xnj+1

F
(
Xj−1 + xnj+1

) +
xnj

F
(
Xj−1 + xnj

+ xnj+1

) (22)

Letting a = Xj−1, b = xnj+1
, and c = xnj

, it follows from (19) that the sum in (22)

is no larger than the sum in (21). Therefore, the perturbation (weakly) reduces the

firm’s costs and thus increases the firm’s expected payoff. Note that we can proceed

by performing this perturbation for the next pair of agents with (higher) indices (i, i+

1) such that xni
< xni+1

, repeating until the permutation satisfies (20). Since each

perturbation increases the firm’s expected payoff and the original permutation was

optimal, we obtain that a permutation satisfying (20) is optimal.

A.4 Proof of Proposition 3

The capital amounts (x̂n)n∈S can be obtained from the original amounts (xn)n∈S by

performing a finite sequence of transfers from smaller to larger investors (Hardy et

al., 1934). Thus, it suffices to show that each such transfer makes the firm better

off. Without loss of generality, consider the first such transfer. Let the permutation

π = (n1, . . . , nN) be optimal under (xn)n∈S. Take any two agents nj and n` where j < `

and, thus, xnj
≥ xn`

. For any ∆ ∈ (0, xn`
], let (x̂n)n∈S be the result of transferring

∆ units of capital from agent n` to agent nj. We will show that the firm’s minimized

costs under (x̂n)n∈S are lower than its minimized costs under (xn)n∈S when keeping the

permutation π unchanged. Since the transfer does not change the probability of project

success (as it does not affect the total amount of capital invested in the project), it will

follow that the firm’s expected payoff under (x̂n)n∈S is higher than that under (xn)n∈S

when keeping the permutation π unchanged. Clearly, changing to a permutation that

is optimal under (x̂n)n∈S can only increase the firm’s payoff from these investments

further, so this is sufficient to prove the claim.

To show that the transfer from agent n` to agent nj reduces the firm’s costs when
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keeping the permutation unchanged, note first that the costs from returns paid to

agents ni with ranks i < j or i > ` are unaffected. The change in the firm’s minimized

costs in (5), divided by the constant θ > 0, is thus equal to

∆

F (Xj + ∆)
− ∆

F (X`)
−

`−1∑

i=j

[
xni

F (Xi)
− xni

F (Xi + ∆)

]
. (23)

Replacing F (Xj + ∆) by F (Xj) and xni
by xni+1

, (23) is no larger than

∆

F (Xj)
− ∆

F (X`)
−

`−1∑

i=j

xni+1

[
1

F (Xi)
− 1

F (Xi + ∆)

]
.

This expression can be rewritten as

∆
`−1∑

i=j

xni+1
Λi,

where

Λi =
1

xni+1

[
1

F (Xi)
− 1

F
(
Xi + xni+1

)
]
− 1

∆

[
1

F (Xi)
− 1

F (Xi + ∆)

]

=
1

xni+1

∫ Xi+xni+1

Xi

F ′ (z)

(F (z))2dz −
1

∆

∫ Xi+∆

Xi

F ′ (z)

(F (z))2dz.

Define ψ (z̃) =
xni+1 z̃−Xi(xni+1−∆)

∆
. Note that ψ is linear with ψ (Xi) = Xi, ψ (Xi + ∆) =

Xi + xni+1
, and ψ′(z̃) =

xni+1

∆
. Hence, a change of variables yields:

Λi =
1

∆

∫ Xi+∆

Xi

(
F ′ (ψ(z̃))

(F (ψ(z̃)))2 −
F ′ (z̃)

(F (z̃))2

)
dz̃. (24)

Since ∆ ≤ xn`
and xn`

≤ xni+1
for all j ≤ i ≤ ` − 1, we have ∆ ≤ xni+1

for all

j ≤ i ≤ ` − 1. Thus, one can verify that ψ (z̃) ≥ z̃ for all z̃ in the integration region

and j ≤ i ≤ ` − 1. Given Xi ≥ 0 and Xi + xni+1
≤ XN for all j ≤ i ≤ ` − 1, the

assumption that 1/F (x) is convex for all x ∈ [0, XN ] then implies that the integrand

in (24) is (weakly) negative. It follows that Λi ≤ 0 for all j ≤ i ≤ `− 1, so the change

in costs in (23) is no larger than a (weakly) negative number. The claim follows.
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A.5 Proof of Proposition 4

Let π = (n1, . . . , nN) and π̂ = (n̂1, . . . , n̂N) be optimal permutations under (xn)n∈S and

(x̂n)n∈S respectively, where we consider only agents with strictly positive investments.

The smallest investor’s expected net return is the same under (xn)n∈S and (x̂n)n∈S, as

it is equal to F (XN) θ
F (XN )

= θ regardless of how XN is distributed among the agents.

The largest investor’s expected net return is equal to F (XN) θ
F (xn1 )

under (xn)n∈S and

F (XN) θ
F (x̂n̂1

)
under (x̂n)n∈S. Recall that the capital amounts (x̂n)n∈S can be obtained

from (xn)n∈S by performing a finite sequence of transfers from smaller to larger investors

(Hardy et al., 1934). It follows that x̂n̂1 ≥ xn1 , and since F is increasing, the largest

investor’s net return is weakly lower under (x̂n)n∈S compared to (xn)n∈S. The claim

follows.
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bridge: Cambridge University Press, 1934.

Holmström, Bengt, “Moral Hazard in Teams,” The Bell Journal of Economics, 1982,

13 (2), 324–340.

Innes, Robert and Richard J. Sexton, “Strategic Buyers and Exclusionary Con-

tracts,” American Economic Review, 1994, 84 (3), 566–584.

Inostroza, Nicolas and Alessandro Pavan, “Persuasion in Global Games with

Application to Stress Testing,” 2018. Working paper.

Lazear, Edward P. and Sherwin Rosen, “Rank-Order Tournaments as Optimum

Labor Contracts,” Journal of Political Economy, 1981, 89 (5), 841–864.

Machina, Mark and John Pratt, “Increasing Risk: Some Direct Constructions,”

Journal of Risk and Uncertainty, 1997, 14, 103–127.

Rasmusen, Eric B., J. Mark Ramseyer, and John S. Wiley Jr., “Naked Ex-

clusion,” American Economic Review, 1991, 81, 1137–45.

Rey, Patrick and Jean Tirole, “Financing and Access in Cooperatives,” Interna-

tional Journal of Industrial Organization, 2007, 25, 1061–1088.

Rosen, Sherwin, “The Economics of Superstars,” American Economic Review, 1981,

71 (5), 845–858.

41



Rothschild, Michael and Joseph E. Stiglitz, “Increasing Risk: I. A Definition,”

Journal of Economic Theory, 1970, 2, 225–243.
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