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Abstract

Rolls Royce accumulate a large amount of sensor data throughout the testing and
deployment of their engines. The availability of this rich source of data offers exciting
opportunities to automate the monitoring and testing of the engines. In this thesis we
have developed statistical models to make meaningful insights from engine test data.

We have built a classification model to identify different types of engine running
in Pass-Off tests. The labels can be used for post-analysis and highlight problematic
engine tests. The model has been applied to two different types of engines, in which
it gives close to perfect classification accuracy. We have also created an unsupervised
approach when there are no defined classes of engine running. These models have
been incorporated into Rolls Royce systems.

Early warnings for potential issues can enable relatively cheap maintenance to
be performed and reduce the risk of irreparable engine damage. We have therefore
developed an outlier detection model to identify abnormal temperature behaviour.
The capabilities of the model are shown theoretically and tested on experimental and
real data.

Lastly, in a test decisions are made by engineers to ensure the engine complies



IT

with certain standards. To support the engineers we have developed a predictive
model to identify segments of the engine test that should be retested. The model is
tested against the current decision making of the engineers, and gives good predictive
performance. The model highlights the possibility of automating the decision making

process within a test.
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Chapter 1

Introduction and Objectives

1.1 Introduction

Jet engines must pass a number of tests to ensure the engines comply to rigorous
certification requirements, mostly associated with safety, as outlined by Walsh and
Fletcher (2008). Before a jet engine is released from the factory it must go through
a Pass-off test. Each test involves a series of engine manoeuvres (e.g. acceleration,
deceleration cycles and holds at fixed speed points) where several hundred engine
parameters are recorded at various sample rates. Key points in the test are manually
analysed, but the majority of the data is not currently assessed at all. In this thesis
we have developed a range of analytical methods to automatically process the entire
engine test dataset and provide suitable labels that adequately summarise segments
of engine running. We have then built methods that highlight novel behaviour in the
jet data, which may be of further interest for analysis by an engineer.

In this chapter we give a general description of the mechanics of a jet engine and
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Figure 1.1.1: Summary of LP, IP and HP. www.slideshare.net/egajunior /trent-1000-

presentation

the Pass-Off test. We will then outline the contributions of this thesis.

1.1.1 Jet Engines

A jet engine is composed of a fan that pumps air into the engine, the air goes through
various chambers in which it is compressed thereby increasing the air temperature.
The air then enters the combustion chamber in which fuel is injected, creating thrust.
To ensure the engine is performing efficiently at different engine speeds there is an
Engine Monitoring System (EMS). A jet engine can be split into three zones shown
in Figure 1.1.1. There is a low pressure (LP) compressor at the front, which drives
air into the turbine. Then there is intermediate pressure (IP) compressor that is
composed of alternating static and turning fan blades to compress the air. Finally
the high pressure (HP) compressor in the middle, further compresses the air.

There are hundreds of sensors in the engine with measurements taken at a rate of
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Figure 1.1.2: Station Locations. https://speechfoodie.com/jet-engine-diagram-nl-

n2/

40 Hz, measuring different engine features. First we have the engine features N1, N2
and N3, which give the rotating speed of the LP, IP, HP shafts respectively. These
can be used as proxies for thrust, and are reported as a percentage of a predefined
maximum speed. Second, there are temperature and pressure features measured at
different stations in the engine as shown in Figure 1.1.2. Finally, there are three
vibration features LPV/IPV/HPV corresponding to vibration values in each of the
LP, IP and HP zones respectively. The values are inferred from a single accelerometer

at the stiffest part of the engine (Clifton, 2009).

1.1.2 Engine tests

We have been given three engine datasets. The first dataset contains sensor data

from 93 Pass-Off tests performed on new Trent 1000 engines. Each Pass-off test was
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conducted on a single test bed at the Satoo test facility. Note that the 93 tests don’t
necessarily correspond to 93 different engines, as an engine may be retested after
alterations are performed. In each Pass-off dataset there are 22 sensor time series
measurements for various engine features. The second dataset contains sensor data
from 51 Pass-Off tests performed on XWB engines also performed at the Satoo test
facility. The sensor data from the XWB engine Pass-off tests are very similar to those
from the Trent 1000, so we will focus on the Trent 1000 data in this section. The
third dataset is a Cyclic test performed on a single XWB engine. The focus of this
thesis in on the Pass-Off test data however we will do some analysis on the Cyclic

test dataset.

Pass-Off test

A Pass-Off test is performed by a human controller who pushes the throttle to
accelerate and decelerate the engine. In the test the engine starts at a set idle speed,
then a manoeuvre is performed in which the engine can be accelerated, decelerated
and kept at fixed speeds before returning to idle speed. There are a predefined list of
manoeuvres performed in a test. During the test the engineers check the manoeuvres
at certain key points to ensure that the engine is complying with the regulatory
requirements. If they notice something unusual during a manoeuvre, they can repeat
the manoeuvre or they can stop the test. Once the engine is stopped they can make an
adjustment to the engine and then restart the test. The manoeuvre is then repeated.
For the Performance Curve (P) manoeuvre they sometimes perform only part of the

manoeuvre where an issue was identified.
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Figure 1.1.3: Perfect Pass-off test with samples taken every 40th of a second.

In Figure 1.1.3 we have plotted the N1 speed time series of a “perfect” test run,
where each manoeuvre has been performed exactly once, in the correct order, with
no stops during the test. The different manoeuvres are labelled on the time series.
We can see that the manoeuvres start and finish at idle speed 18%. The N1 speed
time series for two different Pass-Off tests are shown in Figure 1.1.4. The engine has
been stopped and manoeuvres have been repeated, so neither of the tests are perfect.
However in the two examples there is a section of the test that resembles Figure 1.1.3
i.e. where a perfect test run has been performed.

In Figure 1.1.5 we have a plot of the N1, N2 and N3 time series for Dataset 1.
The three time series follow a similar pattern but have different speed ranges. In the
data we have multiple pressure sensors located alongside the temperature sensors, we
have P20, P30, P42 and P44 (location references can be found in Figure 1.1.2). In

Figure 1.1.6, we have a plot of the different pressure measurements alongside the N1
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Plots of Pressure parameters and N1 speed
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Figure 1.1.6: Plots of P30 (black), P42 (red) and P44 (cyan) which are plotted

alongside the N1 speed (orange) time series for Dataset 1.

speed. The pressure time series follow the shape of the N1 time series though they
are on different scales. This plot highlights the well know fact that pressure reacts
immediately to changes in speed.

There are multiple temperature sensors located along the turbine. The T20
sensor measures the ambient temperature outside the engine, which typically remains
constant. In our dataset we have five temperature features. We have temperature
readings T25 and T30 at stations shown in Figure 1.1.2. We have the turbine
gas temperature (TGT) and also temperature readings of the cooling air at the
rear/front of the engine (TCAR/TCAF). In Figure 1.1.7 we have a plot of the the T30
temperature time series alongside the N1 speed. We can see that there is a delayed
temperature response with respect to the engine accelerations and decelerations, which

is also the same for the other temperature features.
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Plots of T30 and N1 speed
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Figure 1.1.7: Plots of T30 (blue) and N1 speed (orange) time series for a perfect test.

The engine vibration values are important diagnostic engine features. The vibration
data is acquired from a vibration transducer. As stated before there are the LPV/IPV/HPV
vibration features. In Figure 1.1.8 we have a plot of the LPV and HPV time series,
alongside the N1 speed time series. There is greater noise in the vibration in comparison
to the pressure and temperature readings. When there is a change in N1 speed there
is a direct change in the vibration, this illustrates vibration reacts quickly to changes
in speed. The relationship between vibration and N1 speed is non-linear as illustrated
by the drop in vibration in the middle of manoeuvre P, which is caused by resonance.
The LPV and the HPV behaviour is very different. The LPV in general stays at a
fixed vibration value when the engine is running at a fixed speed whereas the HPV
displays drift, which is clearly not a product of the engine speed. In the engine tests
one of the regulatory conditions is that the peak vibration values are below certain

thresholds.
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Plots of LPV and N1 speed Plots of HPV and N1 speed
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Figure 1.1.8: Plots of the LPV and HPV in blue alongside the N1 speed in orange.

Cyclic Test

A Cyclic test is performed to accumulate evidence to show that the engine build
meets certain criteria, which is passed onto the required regulatory bodies. In a
Cyclic test they start by performing a ‘Shake-down’ test to ensure they are satisfied
with the engine build. In the second part of the test they perform cycles of repeated
manoeuvres. The Cyclic tests have a planned schedule however deviations can be
made. In Figure 1.1.9 we have the N1 speed plotted for the Cyclic test. The initial
‘Shake-down’ test can be seen by the spread out and seemingly random manoeuvres,
then there are short highly repeated manoeuvres signalling the start of the engine
cycles. The data is down-sampled due to storage limitations.

In Figure 1.1.10 we have a plot of two segments of the Cyclic test. Segment 1 is
from the ‘shake-down’ phase where a range of manoeuvres are performed. Segment 2
contains clearly repeated cycles with the same N1 speed profiles. Note that there are

no defined list of manoeuvres in the Cyclic test as in the Pass-Off test.
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N1 speed plot of Cyclic Test

percentage speed
=

30
| ' | ‘
10
0 " L L.._.._......,.....__Il._ MU § LRI WY BRE ) R 14 PP W 1 .J
0 05 15 2 25 3 35
time (seconds) «10°

Figure 1.1.9: Plot of the N1 speed time series generated for the Cyclic test, with

samples taken every second.
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Figure 1.1.10: Plots of two sections of the Cyclic test.
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1.1.3 Contributions and Thesis Outline

In this thesis we will describe the analytical tools that we have developed for the
sensor data generated during Pass-Off and Cyclic tests. The first contribution is a
classification algorithm for extracting and labelling the manoeuvres performed during
a Pass-Off test. This algorithm uses a number of different statistical techniques
to obtain informative features that are used to give effective classifications. The
algorithm is computationally efficient and can deal with data sampled at different
rates. The algorithm has been tested on various engine datasets and has been
implemented into the Rolls Royce system. We have also developed an unsupervised
approach to identify the manoeuvre classes in a Cyclic test. Our second contribution
is a robust regression model that we have developed to model the engine temperature
behaviour with respect to the engine speed. The model uses a number of functional
data analysis techniques. We derive asymptotic results and perform a simulation
study to illustrate the effectiveness of the model. Using this model we have built an
outlier detection algorithm for the jet engine data.

In Chapter 2 we give a review of previous statistical techniques developed for
engine data. In Chapter 3 we outline Functional Data Analysis techniques which we
will use extensively in the algorithms we have developed. Chapters 4-8 contain new

research, which we will outline briefly.

Chapter 2: Methodology developed for Jet engine data

This chapter contains a review of methodology developed for jet engine data. We

focus on engine health monitoring, which typically involves using sensor data to give
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early warning of potential engine issues. Early engine warnings can ensure the safety
of the engine and enable relatively cheap maintenance to be performed. There are
three main approaches to this problem. We shall also describe visualisation tools used
to identify clusters and outliers in the data. Finally we will give a brief comparison

between these methods and our approach.

Chapter 3: Functional Data Analysis

We shall give a review of four important areas of Functional Data Analysis: Functional
Principal Component Analysis (FPCA), Functional Linear Regression (FLR), Functional
Depth (FD) and Outlier detection for Functional Data. We will focus largely on
FPCA, which is an extension of principal component analysis (PCA) for functional
data. PCA is a technique that takes a set of multivariate points each of which come
from the same underlying vector of random variables, and projects the data into a new
feature space consisting of a smaller number of random variables. The new feature
space still captures a significant proportion of the variance in the original data set, as
correlated random variables can give redundant overlapping information. As expected
there is a nice symmetry between PCA and FPCA. In particular both methods have
two interesting derivations. By first looking at PCA then FPCA, the formulation
and intuition can be shown to follow naturally; making it easier to understand the
ideas behind FPCA. In this chapter we will include the formulation of FPCA, stating
the classical results and proofs. We will then briefly discuss various modifications and
extensions. We shall give a brief description of FLR and some of the popular estimates

used. We give a short review of FD, which ranks a set of curves. The ordering from
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FD can be used for a number of problems including outlier detection, classification
and clustering. We shall describe the methodology and properties that a FD measure
should satisfy. We give examples of some of the most popular FD choices. Finally,

we outline various outlier detection approaches for Functional Data.

Chapter 4: Classification of manoeuvres in a Pass-Off test

This chapter outlines an algorithm that is being used by the Rolls-Royce Control,
Monitoring & Systems UTC at the University of Sheffield and within the Rolls Royce
systems.

This chapter outlines the classification algorithm developed to extract and label
manoeuvres in a Pass-Off test. The Pass-Off test sensor data does not come with
labelled manoeuvres. We therefore built a classification algorithm that can extract
and label manoeuvres computationally efficiently and is able to achieve near perfect
classification. The algorithm can support the engineers at Rolls Royce to make engine
diagnostics for the Pass-Off tests. We have built templates for each of the seven pre-
defined manoeuvres, with respect to the N1 speed. We can also have manoeuvres that
do not match any of the pre-defined manoeuvres, which we will label as Unknown (U).
To extract the manoeuvres we use the changepoint algorithm: Pruned Exact Linear
Time (PELT) (Killick et al., 2012). We then use a modification of the Needleman-
Wunsch (NW) algorithm (Needleman and Wunsch, 1970) for continuous data alongside
Functional Principal Component Analysis (FPCA) (Ramsay and Silverman, 2005) to
score the similarity between an unlabelled manoeuvre and the templates of the pre-

defined manoeuvres. This gives us a vector of scores. We then consider using a
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Decision Tree (DT) or a Linear Discriminant Analysis (LDA) classifier to label the
manoeuvre using the vector of scores. The scores generated are very informative,
making the resulting classification very accurate. The framework was originally built

for Trent 1000 engine tests, however is has also been applied to XWB engine tests.

Chapter 5: Manoeuvre Clustering in Cyclic tests

This chapter outlines a clustering algorithm to identify manoeuvres in a Cyclic test.
Unlike the Pass-Off test we do not have labels for the manoeuvres performed in
a Cyclic test. We will therefore cluster the manoeuvres to identify the different
manoeuvre classes. In the test the engineers can perform manoeuvres that do not
match the manoeuvre classes, which can affect the clustering performance of many
standard methods. We therefore consider a density based approach known as Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), which is capable
of identifying outliers and estimating the number of clusters present. We chose to
use a Dynamic Time Warping (DTW) distance as manoeuvres can vary slightly in
length and shape. DTW aligns two time series and then takes the squared difference
between the aligned time series. The DTW distances are used as inputs for the
DBSCAN algorithm. Applying the algorithm on the manoeuvres in the Cyclic tests
we obtained meaningful clusters. We test the algorithm on the manoeuvres in the

Trent 1000 and XWB Pass-Off tests, for which we have labels.
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Chapter 6: Robust Functional Linear Regression

This chapter contains content from a journal contribution with co-authors David S.
Leslie, Nicos G. Pavlidis and Steve King. The manuscript has been submitted to
“Technometrics”.

In the Pass-Off test dataset the Vibration Survey (V) manoeuvre has been repeated
multiple times, which suggests that something unusual may be occurring during this
manoeuvre. We want to use the temperature engine parameters to identify any
abnormal behaviour. However, because these manoeuvres are performed by a human
controller, there is a variability that can mask the outliers. Therefore we have built a
model to capture the relationship between the engine speed and engine temperature in
the presence of possible outliers. The engine temperature has a lag effect with respect
to the engine speed, which needs to be incorporated into the model. We will use
Functional Linear Regression, which is a widely used approach to model functional
responses with respect to functional inputs. However classical Functional Linear
Regression models can be severely affected by outliers. We therefore introduce a
Fisher-consistent robust Functional Linear Regression model that is able to effectively
fit data in the presence of outliers. The model is built using robust Functional
Principal Component and Least Squares regression estimators. The performance of
the Robust Functional Linear Regression (RFLR) model depends on the number of
principal components used, which will be chosen using a consistent robust model
selection procedure. We give consistency results for both the RFLR model and the

model selection procedure. A simulation study shows our method is able to effectively
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capture the regression behaviour in the presence of outliers.

Chapter 7: Outlier Detection using Functional Regression

This chapter contains content from a conference contribution with co-authors David
S. Leslie, Nicos G. Pavlidis and Steve King. The manuscript has been accepted at the
“Workshop on Advanced Analytics and Learning on Temporal data” at The European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases 2019.

We propose an outlier detection algorithm for temperature sensor data from jet
engine tests using robust functional regression. Effective identification of outliers
would enable engine problems to be examined and resolved efficiently. Outlier detection
in this data is challenging because a human controller determines the speed of the
engine during each manoeuvre. This introduces variability which can mask abnormal
behaviour in the engine response. We therefore use the robust Functional Linear
Regression model given in Chapter 6 to identify ‘normal’ behaviour, then use Functional
Depth to identify the outliers. The framework is tested on simulated and real engine

data.

Chapter 8: Predict Repeated Vibration Surveys

In a Pass-Off test manoeuvres can be repeated by an engineer during the test.
Typically a manoeuvre is repeated if it does not fulfil the conditions required. We have
found the Vibration Survey manoeuvre is repeated significantly more than the other

manoeuvres. For this manoeuvre the engineers check certain vibration conditions
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are satisfied. An automated approach to determine whether a manoeuvre should
be repeated has a number of benefits. We implement three different functional
classification methods, and compare the methods using ROC curves. We have found

that these approaches can give reasonably accurate predictions.



Chapter 2

Methodology developed for Jet

engine data

2.1 Introduction

Engine health monitoring (EHM) systems store sensor output throughout an engine
test. The availability of this rich data source has prompted a number of early
warning detection methods, enabling appropriate maintenance to be performed before
detrimental engine damage. During engine design certain modes of failure are identified
and either the engine design is altered to mitigate against these failures, or otherwise
an on-line monitoring system is put in place to ensure these failures are detected
early. The engineers follow a framework called Failure Mode Effect and Critical
Analysis (FMECA) (Rausand and Hgyland, 2004). The framework also considers
the likelihood and impact of each of the failures and sets a guideline of actions that

should be taken for the various types of failures. Fault-specific detection schemes have

18
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therefore been built which use expert-knowledge (Merrington, 1994; Patton et al.,
2000). A more detailed survey of expert-based monitoring techniques is given by
Hanachi et al. (2018).

Statistical Process Control methods have also been deployed for jet engine monitoring.
These methods typically give a warning when engine parameters exceed certain predefined
thresholds. The thresholds are typically set using expert opinion, which may not pick
up subtle abnormalities (King et al., 2009).

The abundance of normal engine data examples has prompted novelty detection
approaches to be considered. Novelty detection models use only normal engine running
instances to build a model of normal behaviour. The model can then be validated
using abnormal engine examples. The approaches can be broken down into four key
areas. First the data is pre-processed, next visualisation tools are used to explore the
data, then a normality model is constructed, and finally a novelty threshold is set.

Visualisation tools are important in giving the engineers a tool for understanding
the data structure and the potential outliers. Clifton (2009) outline a few projection
methods that have been used to map engine data to a low dimensional space. These
projections aim to preserve the structure in the higher dimensional space. We will
describe various approaches and highlight the essential ideas between them in Section
2.2.

There are three main novelty detection approaches. The first approach transforms
the data and then applies k-means clustering to capture different types of normal
behaviour. A threshold is then set around each cluster (Nairac et al., 1999). The

second approach uses a one-class Support Vector Machine (SVM) (Hayton et al.,
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2007), which estimates a hyperplane that aims to give the best split between the
normal data and potential outliers. The third approach fits a probability density to
the data either using Kernel density (King et al., 2009) or Gaussian mixture models
(Clifton, 2009). A threshold is then set using Extreme Value Theory methods (Clifton,
2009).

The three novelty detection approaches use vibration parameters as described
in Chapter 1. Many of the approaches use Tracked Order Response (TOR) curves,
which are defined as the vibration amplitude at fundamental frequencies. For example
if the engine rotates at h Hz, then the peak vibration energy occurs at h Hz, with
corresponding harmonics at multiple of A Hz.

In this chapter we will describe the three novelty detection approaches currently
developed for engine monitoring. We shall also outline our approach to identify
abnormal engine behaviour. A brief discussion will be given on the projections used

to obtain visualisation of the data.

2.2 Data Visualisation

The Pass-Off data is high dimensional with multiple engine parameters at various
engine speeds. The data can be preprocessed and features can be extracted but these
can also be in more than three dimensions. Therefore projection methods have been
outlined to visualise the data. Visualisation approaches have been used by Clifton
(2009) and King et al. (2009) to visualise the outliers. We will use visualisation

techniques in Chapter 5 to highlight cluster structures.
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There are linear approaches that project the data using a linear transformation.
The most popular example is Principal Component Analysis (PCA) (described in
Section 3.2.1). They map the data onto the first two principal components, which
capture the largest proportion of the variance. This is a linear mapping and we can
easily incorporate new data into the projection. However if the first two components
do not capture a significant proportion of the variance this approach becomes unreliable.
Alternatively, there are topographical approaches that aim to preserve the pairwise
distances, for example Sammon’s mapping. Let xy, ..., z, € R?, then two points z;, x;
in the original space have distance d;; = d(z;, ;). The projected points y;,y; € R?
have distance dj; = d(yi,y;). The mapping is chosen that minimises the Sammon

stress metric

*

B = s FY
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Typically the Euclidean distance is used and the optimisation is performed using
gradient descent (Nabney, 2002). New samples can not be incorporated into the
mapping.

NeuroScale (Lowe and Tipping, 1997) aims to minimise the Sammon stress metric
E.n using a neural network with a single layer of H hidden nodes. Each of the
hidden nodes correspond to a radial basis function (RBF). The algorithm follows a
two stage process, first the parameters of the radial basis functions are estimated
so they approximate the probability density of the training set. Then the output

weights are estimated. Unlike Sammon’s new samples can be projected using the
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neural network.

The t-Distributed Stochastic Neighbor Embedding (tSNE) by Maaten and Hinton
(2008) aims to group points using a probabilistic framework. The algorithm works
in two steps. In the first step, they estimate the probability of points being similar.
Then they look for a projection such that the probability is preserved in the low

dimensional points. The similarity of x; to z; is given by the conditional probability:

T Y exp(— i — wy|[2/2h3)

where h; is the bandwidth of the Gaussian kernels. Let yq,...,y, be the projected

points with similarity measure

e lmuld)
Zk;ﬁi exp(—||yi — ykl?)

p(y;lyi)

tSNE tries to find y; that minimises the difference between p(x;|x;) and p(y;|y;). They

define the cost function to be the Kullback-Leibler (KL) distance

n n

Z KL(P|Q;) = Z ZP(%|%)p($]’x’)
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where P; and (); are the conditional probability distributions over all z; and y;

respectively. We will use tSNE in Chapter 5 to visualise the clusters.
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2.3 Novelty Detection Approaches

2.3.1 K-means Model

Nairac et al. (1999) uses vibration parameters LPV, IPV and HPV. They split the
vibrations into 6 equispaced speed ranges, and take an average in each range to
obtain a vector of size 18. Given n samples z1, ..., x, € R'® they apply a whitening
transformation that maps points z; to @, = A~2V7(x; — p) where y is the mean
vector; A is a diagonal matrix of eigenvalues for the covariance matrix 3 and V' is the
corresponding matrix of eigenvectors.

The distribution of the feature vectors z} is approximated by four spherical clusters
found using k-means. To determine a threshold they define the cluster radius py given
by the average distance of points in cluster k£ to cluster centre c,. For a new point
x* the normalised distance is given by d(z*) = min pik|x* — ¢k|. The distance §(z*)
essentially gives the number of standard deviations z* is from the closest cluster centre.

Nairac et al. (1999) uses the k-means model to capture different types of normal
engine behaviour, and chooses £ = 4 by visual inspection of a two dimensional
projection. One significant limitation of the k-means model highlighted by Hayton
et al. (2007) is that the engines cannot be ranked by the novelty score §(z*) as the

distances may be evaluated with respect to different cluster centres.

2.3.2 Support Vector Machines

Support Vector Machines (SVM) estimate hyperplanes or decision boundaries that

give the largest separation of the different classes. Using the hyperplane we can
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classify points depending on which segment of the space the points appear. Typically
the data is projected into a higher dimensional space, which increases the distance
between the points.

A one-class support vector machine (SVM) is used by Hayton et al. (2007) to
build a novelty detection model. They use the fundamental TOR and then take a
weighted average in 10 equidistant speed bins. A probabilistic support vector machine
approach was given by Clifton et al. (2014), which enables uncertainty values to be
given which can improve decision making.

Matthaiou et al. (2017) also use a one-class SVM to perform novelty detection on
jet engine data. However they use different feature to those by Hayton et al. (2007).
They suggest applying a wavelet decomposition to the TOR curves (defined in Chapter
1) and then applying Kernel Principal Component Analysis on the coefficients from
the wavelet decomposition. This procedure is similar to Functional PCA, which we

will discuss in Section 3.2.

2.3.3 Probabilistic Model

Clifton (2009) apply a two stage pre-processing of the vibration data. First, note
that the Pass-Off test stays a large portion of the time at certain fixed speed levels
therefore the vibration values at these speeds will be overrepresented. To obtain a
balanced dataset a filtering process is performed. Given vibration value v; and speed
s; at time ¢, they discard vy if |s; — s;—1| < w where w is a pre-chosen threshold. In
the second step they split the vibration values into equispaced bins as performed in

the k-means and SVM approaches.



CHAPTER 2. METHODOLOGY DEVELOPED FOR JET ENGINE DATA 25

King et al. (2009) uses a Gaussian kernel H(z) = (2m)"2 exp{—312?} to estimate

the probability density of the d-dimensional data in each speed bin:

p(z) = #éh (“”2“)

Alternatively a Gaussian Mixture Model could be used (Clifton, 2009) where

K
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where Py are the weights associated to each of the d-dimensional Gaussian components
with parameters (g, 2).

A new sample z* has a probability p(z*) of coming from the same distribution as
the training set. Clifton (2009) choose a threshold using Extreme Value Theory (EVT)
methods. To obtain the threshold they assume the data is distributed according to a
one-sided Gaussian distribution. Given this assumption we could obtain a threshold
by setting a quantile for the probability density, however for sufficiently large quantiles
there are numerical issues estimating these thresholds. Therefore using EVT they

avoid these numerical issues.

2.4 Our Approach

In this chapter we have discussed three novelty detection approaches applied to
jet engine data. The three approaches use vibration data, which is preprocessed
and grouped into speed bins. These approaches have two notable limitations: they

all require labelled data and second, the preprocessing of the data loses important
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temporal information.

In this section we will give a brief description of our approach to identifying
abnormal engine behaviour. We will adopt an outlier detection approach. In this
paradigm we do not assume that the samples are labelled as normal, instead we
assume there are outliers present in our data. We will therefore adopt robust statistical
methods (Huber, 2011) to model the engine data. We will focus on the Vibration
Survey manoeuvre, which we will extract using the classification algorithm given in
Chapter 4. By comparing across the Vibration Survey manoeuvres instead of the
Pass-Off tests, we should obtain more consistent results. We will use functional data
analysis techniques (Ramsay and Silverman, 2005) to identify abnormal temperature
behaviour with respect to the engine speed. We do not pre-process the data, instead

we aim to use the temporal information to identify outliers.



Chapter 3

Functional Data Analysis

3.1 Introduction

Functional data analysis (FDA) is a popular tool for modelling and analysing time
series data. The area has grown rapidly over the last 20 years due to the increase in
sensor data collection. The sensor data is called functional if it is believed to arise
from an underlying process. For example in Figure 3.1.1 we have two functional data
examples. First we have temperature measurements from 35 cities in Canada over
a year. We can see that there is a clear process where temperatures increase over
summer and decrease over winter. The second example contains measurements of the
lower lip of 20 people during the pronunciation of the word ‘bob’. Again there is an
underlying process of saying the word ‘bob’. The FDA methodology is well suited to
these types of data as we treat the time series as discrete observations from a single
function rather than a sequence of observations. More details about the types of

functional data and applications is given by Ramsay and Silverman (2005).
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(deg C)

Lip position

Mean Temperature

(a) Canadian Temperature dataset (b) Lip dataset

Figure 3.1.1: Plots of Canadian Temperature dataset containing temperature reading
over a year from 35 Canadian cities and Lip dataset of measurements of the lower lip

of 20 people during the pronunciation of the word ‘bob’.

In this chapter we will discuss four important areas of FDA: Functional Principal
Component Analysis (FPCA), Functional Linear Regression (FLR), Functional Depth
and Functional Outlier Detection. FPCA is an extension of classical Principal Component
Analysis (PCA) for functional data. FPCA can give a low-dimensional representation
for a set of curves. We will use FPCA representations in the classification algorithm in
Chapter 4, and a robust FPCA model in Chapter 6. In Section 3.2 we shall introduce
PCA and the extension to FPCA.

Functional Linear Regression (FLR) is a popular regression model for functions.
In the model one or both predictor and response variables can be functions. We will
show using a double basis expansion approach by Ramsay and Dalzell (1991) that
the FLR problem can be reduced to a multivariate regression problem. We shall also
describe some extensions to the model. A robust extension of FLR will be given in

Chapter 6 in which the predictor and response are both functions.
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We will introduce Functional Depth (FD) and describe a few of the depth functions
in the literature. The notion of depth was originally developed as a way of ordering
multivariate data, but has been extended to functional data. Functional depth can be
used in a variety of ways including outlier detection and classification (Wang et al.,
2016). We will use FD to identify outliers in Chapter 7 and as a classification tool in
Chapter 8. Lastly, we will discuss outlier detection approaches for functional data. A
majority of these approaches use functional depth. We will compare these approaches

to our outlier detection model in Chapter 7.

3.2 Functional Principal Component Analysis

Functional Principal Component Analysis (FPCA) is one of the most popular methods
for understanding and exploring functional data. The first main application of FPCA,
is dimensionality reduction; mitigating against the curse of dimensionality. The
second application is to highlight modes of variation, which can be investigated further
to uncover useful patterns in the data. We will give an introduction into FPCA
including the formulation of FPCA, and the classical results. There will also be a
discussion on how FPCA can be applied in practice using the Basis method (Ramsay
and Silverman, 2005).

We will focus on classical FPCA and briefly discuss a few extensions. The literature
in this area is vast and varied (Shang, 2014), so to simplify matters we will focus
on the case of parametric methods for regularly sampled data. There are non-

parametric approaches such as those discussed by Ferraty et al. (2012) and methods
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for longitudinal data as discussed by Yao et al. (2005).

We will start by looking at Principal Component Analysis (PCA), which is a
popular dimensionality reduction tool for multivariate data. PCA is a data-driven
projection method that transforms a set of variables (possibly correlated) to a smaller
set of variables that are uncorrelated. The uncorrelated random variables formed using
PCA can retain a large amount of the information in the original variables. FPCA is
the functional extension of PCA. As expected there is a nice symmetry between PCA
and FPCA. In particular both methods have two interesting derivations. By first
looking at PCA then FPCA, the formulation and intuition can be shown to follow

naturally; making it easier to understand the ideas behind FPCA.

3.2.1 Principal component analysis

Let X = (Xi,...,X,) be a vector of p zero-mean random variables with covariance
matrix X. Let x = (z1,...,x,) be n observations from X, where z; = (21, ..., T;p)
for i = 1,...,n. PCA finds a new set of independent random variables (Zi, ..., Z,)
where Z;, = Z?Zl ay;X; is the k-th projection, and ay = (o, ..., up) is the k-th
principal component (PC). The PC « is chosen such that Z; has the highest variance.
Subsequently PCs «ay, are chosen to maximise the variance of the projections Z; under
the condition that aj and «; are orthogonal for k # [.

We will refer to &y as the estimated k-th principal component. The principal
component ¢&; is then chosen such that the sample variance of the projections z;; =
&7 x; are maximised for j = 1,...,n. This can be condensed into matrix form z; =

(211, ..., 21n) 50 21 = &Lz, where &I denotes the transpose of &;. More formally, the
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PCs &y, are chosen so

Qp = arg max aff]ak such that ozfozl =0 VI#k,

T, _
oy ap=1

T

where ¥ = 127z is the sample covariance matrix.

n

Lemma 3.2.1. Let x = (x1,...,x,) be n independent realisations of a p dimensional
vector X corresponding to random variables (Xq, ..., X,), with sample covariance matriz
3. Denote 211, ..., z1n as the projection vectors of the points x1, ..., x, with respect to
the first principal component &y, and the normalisation condition that &féa, = 1.

Then the first principal component &y corresponds to the eigenvector of S with the

largest eigenvalue.

Proof. Let & be the vector that maximises the variance: var[alz] = élef]&l. Using

a Lagrange multiplier A on the normalisation condition, we want to maximise the

objective function

L=a"Sa — Mafay —1).

Differentiating with respect to &y gives

A ~

Edl—/\dl :0—>(E—)\I)&1 :07

where [ is a p X p identity matrix, so &; is an eigenvector of S with eigenvalue .
Next we will show that A is the largest eigenvalue of $. In other words the
eigenvector with the largest eigenvalue maximises the sample variance of the projected

points z;. This can be shown as follows:
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var(z) = &l Ya; = 6l Aa, = Aala, = A

We have therefore found that ¢, is equal to the eigenvector of the sample covariance

matrix 3 with the largest eigenvalue A. O

We can extend this result to show that the k-th principal component &y, corresponds
to the eigenvector of & with the i-th largest eigenvalue );, the proof follows a similar
argument, which again uses Lagrange multipliers. Note that as &, has been normalised
for all i = 1,...,p, the variance of z; is var(z;) = A;. The total variance is given by

f:1 Ai-

The main aim of PCA is for dimensionality reduction: to determine a new set of
random variables that captures a large proportion of the variance in the original set
of random variables. Taking the first M principal components where M < p, can
be sufficient in capturing the majority of the variance in the data. There are various

ad-hoc methods for choosing M, for example find M such that the first M principal

components captures 90% of the variation, calculated using

fo\il Ai
p—/\i

=1

> 0.9.

Minimising the Squared Error

The PCs have been shown to maximise the sample variance of the projections z;.
However the PCs can also be shown to form a basis representation, which gives

minimal squared error between the observations and the basis representations. Let
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u = (u1, ..., u,) be an orthonormal basis such that

P

€T; = E Cijuja

J=1

33

with constants ¢;; € R. We want to find the best possible M-term estimate ﬁ:EM) for

each of the x;, where :%Z(M) is formed by taking a linear combination from a subset of

the orthonormal basis uq, ..., uys, for some M < p:

M

i(M) = Ciills
i ij Uy -

J=1

For a fixed choice of orthonormal vectors u;, the choice of vector ¢; = (¢, ..., ¢;p) that

minimises the reconstruction error can be shown to be ¢; = u”x;.

We want to minimise the reconstruction error

1 n
DD
" =1

The reconstruction can be expanded:

1 n R 1 n P
S IR LI S S P
i=1 i=1 j=M+1
I en <
iy oy
i=1 j=M+1
1~ &
== D wwiay
i=1 j=M+1
p A~
= Z U?EU,J'.
j=M+1

where Y is the sample covariance matrix defined earlier.

(3.2.1)
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To minimise U?Euj we need to choose u; to be the eigenvectors of the sample
covariance matrix > with the smallest eigenvalues, this can be easily proven in a

similar fashion to Lemma 3.2.1. Therefore the two derivations are equivalent.

3.2.2 Functional Principal Component Analysis

FPCA is the functional extension of PCA, and the formulations are very similar.
The notion of FPCA was first envisaged by Tucker (1958) and Rao (1958), and has
been popularised by Ramsay and Silverman (2005). The aim of FPCA is to capture
the variance between functions rather than between points. In this section we will
derive the FPCA formulation and show that the functional principal components
are equal to the eigenfunctions of the covariance operator. We will then prove two
important properties of FPCA. The first property is that the eigenfunctions give the
best representation of the data in regards to maximising the variance captured. The
second property is that the M eigenfunctions (those with the largest eigenvalues)
give the best reconstruction of the observed curves over all possible M dimensional
mappings with regards to squared error. These properties highlight the dimensionality
reduction capabilities of FPCA. We shall then outline the estimation of the functional
principal components using the Basis approach Ramsay and Silverman (2005) and we
will briefly describe three extensions to the classical model.

We will assume throughout that the mean of the underlying process is zero.
This simplifies computation however in reality the mean function also needs to be
estimated. There are consistent estimators for the mean, for example Li and Hsing

(2010). The quality of the estimators will naturally effect the resulting analysis and is
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an area that has an impact in almost all areas of functional data analysis. However,
since standard practice in the literature is to assume the processes have mean zero,

we will continue that tradition.

Deriving Functional PCA

In the following sections we will assume the observed curves are defined on the vector
space L?(I), which is the Hilbert space of square integrable functions on the compact
interval I with the inner product (f,g) = [, f(t)g(t)dt for functions f,g € L*(I).
Let X (t) be a square integrable stochastic process on a compact interval I, with
covariance function C(s,t) = cov{X(s), X (t)} for all s,t € I. We are then given n
observed curves z1(t), ..., x,(t) which we assume to follow the stochastic process X (),

with sample covariance

Clls,t) = lei(s)xi(t), (3.2.2)

(Cf)(s) = /1 C(s,t)f(t)dt, for fe L*(I). (3.2.3)

In the following sections we will assume that the estimated covariance function,
eigenvalues and eigenfunctions converge almost surely to the true versions. There is
a vast literature to measure the quality of estimators within FPCA, with Dauxois
et al. (1982) showing that under regulatory conditions the estimated eigenfunctions
converge to the true eigenfunctions as the number of sample time series increases.

The first M Functional Principal components (FPCs) ¢y, for m = 1, ..., M maximise
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the average variance captured from the observed curves:

1 o , 1< 2
— < P, Ty >7= — m zdt .
a2 <ot 3 (fownit
=1 =1
subject to ||dn]|? = 1 and < ¢, ¢, >= 0 for all k < m. In Lemma 3.2.2 we will show

A

that this is equivalent to maximising (¢, C'¢).

Lemma 3.2.2. Let z4(t), ..., x,(t) be independent realisations of the stochastic process
X (t) with sample covariance operator C. Then the first functional PC' ¢1 mazximises

both (¢,Cd) and L 37 | < by, 2; >2.

Proof. To prove the lemma we simply need to show that the two expressions are equal.

<¢,Cop>= /Iaﬁ(t)éqﬁ(t)dt

We can take the sum outside of the integrals using Fubini’s theorem, which holds as
we assume ¢ € L*(I) so is continuous on the interval I. The expressions are therefore

the same so using either statement will give the same FPCs. [
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Next we will show that the first FPC ¢; is the eigenfunction of the empirical
covariance function (3.2.2) with the largest eigenvalue A;. The result is given in

Lemma 3.2.3.

Lemma 3.2.3. Let z1(t), ..., x,(t) be independent realisations of the stochastic process
X(t), then the first FPC ¢y is the eigenfunction of the covariance operator C' with the

largest eigenvalue.

Proof. Using the Lagragian multipler p on the normalisation condition, we want to

find the first FPC ¢; that maximises the objective function J:

J=<¢é¢>+mr—<¢¢>%:[¢wéwwﬁ+m1—ﬂ¢@ww

= [totco(t) - potty)a + o

1

:/@@/a w@@_w@§ﬁ+p
//¢ s)dsdt — /¢ 2dt + p.

Differentiating J with with respect to ¢ and equating to zero, will give the function
¢ that maximises J. To do so we need to use functional derivatives, details of which
can be found in (Bliss, 1925).

Write J = J; — pJo + p where

J, = //qﬁ o(s)dsdt and Jy = /(b

If we add an arbitrarily small perturbation d¢ to a functional J; we can expand

Ji[¢ + 0¢] using a Taylor expansion in powers of d¢



CHAPTER 3. FUNCTIONAL DATA ANALYSIS 38

b+ 66) = Té) + / Fu(B)06(t)dt + -

where I'y; represents the Taylor expansion coefficients for the first order term of J;.

In fact I'y; is the first functional derivative of J; with respect to ¢

o
3o(t)

For Jy it is clear that I'o = 2¢(¢). To find the functional derivatives of J; we note

that C(s,t) is a symmetric kernel so C(s,t) = C(t, s) we can therefore show that

5J1 = AS S S
rnzwd/p( 1)6(s)ds.

Combining the two results we get that

0J 0Jy 0Jy
56(t) — op(t)  Foe(t)

—2/Cst s)ds — 2pp(t) =

Dividing out the 2, we see the functional derivative of J is an eigenequation and
therefore ¢ must be an eigenfunction with eigenvalue p.
Next we need to show that ¢, corresponds to the eigenfunction with the largest

eigenvalue

< ¢1,é¢1 >=< gbl, /\1¢)1 >= A\ < ¢1, ¢1 >= )\
where \; is the eigenvalue corresponding to eigenfunction ¢,. By Lemma 3.2.2 ¢; has

the largest eigenvalue A;.
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Dimensionality Reduction using Functional PCA

We will next show that the expansion of the first M FPCs ¢; for i = 1,..., M gives
the best approximation of the observed curves in terms of L? error. This property
makes Functional PCA a powerful dimensionality reduction tool. First, we need to
show that the eigenfunctions of the covariance function form a basis for the stochastic
process X (t). To do so we will use the Karhunen-Loéve theorem which states that

the observed curves can be written as a linear combination of the eigenfunctions.

Theorem 3.2.4 (Karhunen-Loéve). Let (2, F, P) be a probability space, where Q is
the sample space, with F' being a o algebra on  and probability measure P. Let X :
IxQ — R be a centred mean-square continuous stochastic process with X € L*(Ix Q).
Then the eigenfunctions {¢y : k = 1,2,...} of the covariance function C' of X forms

an orthonormal basis of L*(I), so X can be decomposed into a sum of eigenfunctions

X(t) = Wie(t) (3.2.4)
k=1
where Wi, Wy, ... are uncorrelated random variables, where Wy, =< X, ¢ > and

var(Wg) = .

The Karhunen-Loéve theorem shows that X can be decomposed into a linear
combination of eigenfunction of the covariance function C'. We can therefore write

the observed curves as
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i(t) = fi05(t)
j=1
where f;; is the principal component score [, 2;(t)¢;(t)dt.
Next we will show that the first M eigenfunctions give the best M-basis approximation

to the observed curves. The M-basis approximation is given by

() =D fioi(t). (3.2.5)

The fitting criterion which is sometimes known as the error criterion, is given by:

1 ¢ oy 1 n/ (M) 12
— S —_— (1) — 20D ()24t 3.9.6
SIS oy (OB 3:20)

Lemma 3.2.5. Let x4, ...,x, be n independent realisations of a stochastic process X
defined over a compact interval I, with covariance operator C'. Then the basis of

eigenfunctions of the covariance operator C' minimises the fitting criterion.

Proof.

00 M

-/ Zfijcbj(t)—Zfijfﬁj(t)] it

Lj=1 J=1

:/1 _ i fz‘jﬁbj(t)rdt

Lj=M+1

:/Z (fi;0;(t))*dt by orthogonality

j=M+1

= 3 5 [owra

j=M+1

:foj

J=M+1
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the f;;’s are minimised by taking the eigenfunctions with the smallest eigenvalues,
so we pick the M eigenfunctions with the largest eigenvalues to minimise the fitting

criterion (3.2.6).

Estimating the Functional Principal Components

There are two main parametric methods for estimating the FPCs (Ramsay and
Silverman, 2005). The discretisation approach uses PCA on the time series to find
eigenvectors and then apply some smoothing to get an approximation of the FPCs.
The basis approach uses some pre-defined basis to define the eigenfunctions and the
observed curves, reducing the eigenfunction problem into an eigenvector problem. We
will focus on the basis function approach. To find the eigenfunctions of the covariance
operator, we can choose some basis functions {0 }%_, where K is a pre-set number of

basis functions. We can then write each of the observed curves z; as

zi(t) = anbi(t).

K
k=1
Define the matrix x(t) = (x1(¢t),...,xz,(t)) and the vector of orthogonal basis
functions 6(t) = (61(t),...,0k(t)). We can then write x(t) = A6(t) where A is a
n X K matrix. The covariance function is then
A L 7 LRV
C(s,t) = T (s)x(t) = 59(3) AT AQ(t)

We next define the order K symmetric matrix W such that Wy; = [ 6;(t)07 (t)dt

where [ is the interval the functions are defined on. Note if we choose the basis
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functions to be orthogonal then W is equal to the identity matrix.

Now suppose we can write the eigenfunctions ¢ of C' as a linear combination of

{Qk}?zlz

$(s) =D bpbi(s) = 0(s)"b (3.2.7)

for constants b, € R and b = (by, ..., bx).

We can then rewrite the eigenequation using decomposition (3.2.7)

/1 C(s,t)p(t)dt = Ap(s) = A0(s)"b. (3.2.8)

We can expand the LHS of (3.2.8) to obtain

/ s, )(t)dt = / L 00T AT A0 ()0 (1) bt 9(5)T%ATAWZ). (3.2.9)

I n

Equating (3.2.8) and (3.2.9) and cancelling out 6(s)” we get the following equality

1
EATAWb = \b. (3.2.10)

We also have the condition that [|¢]|> = 1 so

1= ol = [ @ots) o) s = [ o(siocs)7as ) o=

I

Likewise for two distinct eigenfunctions ¢; and ¢; they are orthogonal

< i, ¢, >=0 iff b]Wbh; =0,
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where b; and b; are the coefficients of the basis expansion of ¢; and ¢,.

In (3.2.10) we have an eigenequation with a nonsymmetric matrix. Therefore we
will apply a transformation to form an eigenequation that has a symmetric matrix,
which simplifies the calculation of the eigenfunctions.

Note that W is a diagonal matrix as the basis functions are orthogonal. We can

set U = W2b then we rewrite (3.2.10) to obtain

1
“WiATAWIU = AU. (3.2.11)
n

Solving the eigenequation (3.2.11) we can find U and then calculate b = WaU.

To apply the basis method we first need to choose a basis. The choice of basis will
have an affect on the analysis. We will focus on two of the most popular bases; the
Fourier basis and the B-Spline basis. A Fourier basis consists of sines and cosines of

increasing frequencies:

1, sin(wt), cos(wt), ..., sin(mwt), cos(mwt), ...

where w = %’T for period P.

There are a few useful properties of using a Fourier basis. First, it has great
computational properties when the observations are equally spaced, as Fast Fourier
Transforms (FFT) are of order O(N log(N)), where N is the length of the time series.
More details on FFT can be found in (Brigham, 1988). It is a natural choice for
modelling periodic data, but can perform badly for non-periodic data.

A B-spline basis consists of polynomial segments joined at points known as knots;
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the segments are optimised to ensure smoothness at the knots. In a B-Spline basis
we can control the order of the polynomials, with order 3 being sufficient in most real
world applications (de Boor, 2001). We can also choose the location of the knots but
as the data is already discretised it makes sense to set the knots as the time points of

observations.

3.2.3 Extensions to FPCA

In this section we discuss three extensions of the FPCA model.

Smooth FPCA

In classical FPCA we assume that we observe time series z1.0 = [z(t1), ..., 2(t7)]
at time points 0 < t; < --- < tp < 1. However if the time series contains noise
this can affect the FPCA estimates. Typically we assume the observed time series
yr.r = [y(t1), ..., y(t7)] contains Gaussian noise therefore y(t;) = z(t;) + €; where ¢;
is random noise with E(e;) = 0 and var(e;) = 0. The noise in the data effects the
estimation of the covariance function, and the subsequent eigenfunctions calculated.
To overcome this issue the FPCs are typically smoothed using a roughness penalty.
The ridge regression approach (Rice and Silverman, 1991) uses a roughness penalty
|D?¢;|| where D is the differential operator. An alternative approach by Silverman
(1996), incorporates the penalty into the norm, which has been proven to be consistent

and contains a number of useful properties as shown by Qi and Zhao (2011).
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Multivariate FPCA

Multivariate FPCA is an extension of FPCA for multivariate functional data. Each
observation is believed to come from a multivariate stochastic process. Applying
univariate FPCA for each random function doesn’t capture the cross correlation
between the random functions. Multivariate FPCA methods that capture this cross
correlation should give better estimates of the eigenfunctions and give smaller dimensional
representations.

One approach by Ramsay and Silverman (2005) concatenates the multiple functions
into one function and then applies univariate FPCA, this approach assumes the
variability of the different functions are similar and that they have measurements on
the same units. However this approach can give poor estimates if the functions have
different scales of variability. Chiou et al. (2014) calculate normalisation constants
that aim to captures the cross-correlation between functions, and ensure the functions
are defined on the same scale. Happ and Greven (2018) outline a multivariate
Karhunen-Loéve theorem. They define a relationship between the multivariate and

the univariate eigenfunctions, enabling the multivariate FPCs to be estimated easily.

Robust FPCA

Classical estimators assume the data arises from a certain distribution or model.
However if the distribution is misspecified these estimators can give poor estimates.
The motivation behind robust estimators is to obtain reasonable estimates under
the assumed distribution, whilst being ‘robust’ to small deviations from this model.

Additionally, large deviation should not cause arbitrarily large errors.
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There are two concepts commonly used to assess a robust estimator. First, is
the efficiency which can be defined in terms of relative efficiency with respect to a
classical counterpart, or absolute efficiency with respect to an underlying distribution.
Second, is the breakdown point which assesses the proportion of the data that can be

arbitrarily corrupted before the estimator gives arbitrarily large values.

Definition 3.2.6 (Efficiency). Let Tr and T be unbiased robust and classical estimators
respectively for the same parameter 6 then the relative efficiency is given by:
E[(Tg —0)*] wvar(Tg)

(T T) = (7= 7] = var(Te)

The relative efficiency gives the ratio of variance between two estimators. The absolute

efficiency is given by:

where 1(0) is the Fisher Information. The absolute efficiency can be shown to be less
than or equal to 1 using the Cramér-Rao bound. The absolute efficiency is simply the
manimum possible variance for an unbiased estimator divided by the variance of the

estimator Tg.

Definition 3.2.7 (Breakdown point). Let x1, ..., z,, be samples in the set Z and T(Z)
is an estimator. If m < n samples are corrupted, giving a corrupted set Z', we can

define

bias(m; T, Z) = supz (||T(Z") — T(Z)]]),
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where the supremum is over all possible collections Z'. Then the breakdown point of

T at Z is given by

v(T, Z) = min{m/n; bias(m; T, Z) = oco}. (3.2.12)

The breakdown point is used to determine the sensitivity of an estimator in the
presence of partially corrupted data. It determines the maximum proportion of the

data that can be corrupted before the estimator gives an arbitrarily large error.

We defined Functional principal component analysis (FPCA), which gives the M-
dimensional projection of the data that maximises the sample variance. The objective
function of FPCA uses a square loss function, which is known to be highly influenced
by outliers (Huber, 2011). In recent years robust approaches have been developed
to minimise the influence of outliers. There are two approaches. The first is to use
robust estimates of the covariance function, then taking the eigenfunctions of the
robust covariance function (Locantore et al., 1999). An alternative approach is to
use Projection Pursuit (PP) (Hyndman and Ullah, 2007; Sawant et al., 2012; Bali
et al.,, 2011; Boente and Salibian-Barrera, 2015). The PP approach aims to find
low dimensional projections of high-dimensional points which maximises a certain
objective function. This approach avoids the curse of dimensionality and is able to
ignore irrelevant features. However it requires a high amount of computing time. A
special case of PP is PCA, which aims to find projections that maximise the variance.
We will use the PP approach by Bali et al. (2011) in Chapter 6. A description of the

PP approach is given below.
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The objective of FPCA is to find projections that maximise the variance. These
projections are shown to be the eigenfunctions of the covariance operator. Bali et al.
(2011) replaces the variance with an M-estimator of scale 7,. To estimate this scale

value they use the Bi-square loss function:

Xe(y) = min{3(y/c)* — 3(y/c)* + (y/c)*, 1},

where c¢ is a tuning parameter. The M-estimator of scale 7, is then a solution to

E;Xc( &n )_5a

where ji,, is a robust estimator of location and ¢ = 1.56 and § = 0.5 are tuning

constants, to ensure Fisher-consistency at the Normal distribution with a 50% breakdown

point. A re-weighting algorithm can be used to estimate 7,,:

) (i — fin)?,

To apply PP they use the CR algorithm by Croux and Ruiz-Gazen (1996), which

_ Ly
k+1 mz:: (

where w(z) = x.(z)/x? for x # 0.

applies PP for multivariate data. Bali et al. (2011) take N equidistant points on each
curve x; to obtain vector Z; and then apply the CR algorithm on the Z; vectors. Let
Z; be location centred then at step k— 1 the CR algorithm returns (k— 1)-th direction

i1 and then update
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for 1 <7 <nandk > 1. The CR algorithm searches for the k-th direction considering

n trial directions in the set

7k =k
= { i)
1z I

Then the k-th direction is given by

~ ~ —(k —
O = argmax oy <aTl'g ), ...,GTQESALk)> .
(ZEAn,k

It has been shown by Croux and Ruiz-Gazen (1996) that the M-estimator of scale
has a 50% breakdown point and can obtain high levels of efficiency by decreasing
the parameter 9. Note that the CR algorithm can fail when the sample size n is low

relative to number of measurement points N, prompting a modified algorithm called

GRID (Croux et al., 2007).

3.3 Functional Linear Regression

There are three types of functional linear regression models: Scalar-on-function - for
scalar response and functional predictors, function-on-scalar - for functional response
and scalar predictors and function-on-function - response and predictor are functions.
In this section we will focus on the function-on-function models. A comprehensive
review of each of these areas is given in Morris (2015).

In this section we will introduce the classical Functional Linear Regression model
for functional responses. The classical FLR model by Ramsay and Dalzell (1991)

models the relationship between predictor z;(t) and response y;(t) as:
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yi(t) = a(t) + /Ix,;(s)ﬁ(s, t)ds + €(t), (3.3.1)
where a(t) is the intercept function, 3(s,t) is the regression function and ¢;(t) is the
error process. For a fixed t, we can think of 3(s,t) as the relative weight placed on
z;(s) to predict y;(t). For simplicity we will assume the mean functions p*(t) = 0
and pY (t) = 0 which thereby means «a(t) = 0.

FLR in the function-on-function case can be modelled parametrically (Yao et al.,
2005; Chiou et al., 2016) or nonparametrically (Ferraty et al., 2012; Ivanescu et al.,
2015; Scheipl et al., 2015). The nonparametric model uses a kernel estimator. In
this section we will focus on the parametric approach, which models the regression
function in terms of pre-defined basis functions.

We will represent x;(t) and y;(t) in terms of (M, K) pre-chosen basis functions

¢ (t), o) (t) respectively:

" K
=Y Zimé(t) and yM (1) = > widy (1)
m=1 k=1

where z;,,, wi, € R.

We define 6% () = [ (t), ... 63 ()], ¥ (5) = [6] (5), s O (5)], 2™ = [200, ooy 2ird]

(K)

and w;"’ = [wj1, ..., w;x|. We will then model the regression surface using a double

basis expansion (Ramsay and Silverman, 2005):

=3 Btk ()0} (1) = 0¥ ()" BME oY (1), (3.3.2)

m=1 k=1

for an M x K regression matrix BM%. We can then write:
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yit) = 2" BMEGY (1) + €(t). (3.3.3)

Letting €;(t) = ¢;¢" (t) we can reduce Equation (3.3.3) to:

wi = M BME | g (3.3.4)

This parametrisation of the residual function is also used by Chiou et al. (2016).

We can then estimate BME

using standard multivariate regression methods typically
assuming Gaussian g;.

We have shown the FLR problem can be reduced into a LR problem with multiple
responses. Typically the FPCA basis for X and Y is chosen in the FLR problem.
This ensures only a small number of basis functions are required and can help obtain

consistency results. Chiou et al. (2016) use a standard Least Squares estimator, which

they prove to be consistent.

3.3.1 Historical FLR

In the classical FLR model (3.3.1) we integrate over all time points. However we may
want to make predictions using only past time points. For example in an engine test
the current engine behaviour should only depend on the previous engine behaviour.
The historical FLR model by Malfait and Ramsay (2003) looks at this problem in
the general setting. The model incorporates a lag threshold §, which imposes that
values more than ¢ time units back will have no effect in the regression model. Let

So(t) = max{0,t — 0} then the historical FLR model is given by:
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t
yilt) = / v4(5)B(s,)ds + ei(t), for t € [0, 1], (3.3.5)
so(t)
Let 0(s,t) = (01(s,1), ..., 0k(s, 1)) be K basis functions, which we will use to approximate

the regression function (s, ):

B(s,t) = BO(s,t), (3.3.6)

where B is a K-dimensional vector of coefficients. We can then define

U(t) :/(t)x(s)e(s,t)ds (3.3.7)

where x(s) = (x1(s), ..., z,(s)). We can then formulate the problem as

t t K
yi(t) = Bl-k/ xi(s)ék(s,t)ds%—/ zi(S)ea(s, t)ds+e€;(t) = ZBik\IJik(t)+e;(t),
so(t) s0(t) k=1

(3.3.8)

11

where €,(s,t) = S(s,t) — B(s,t) is the approximation error and €,(t) is the residual

error. Optimal B will be a solution to

/1 V() U(t)dt - B = /1 UT(t)y(t)dt (3.3.9)
0 0
which is evident from Equation (3.3.8). Malfait and Ramsay (2003) find an approximate
solution to Equation (3.3.9) by using a finite elements method over a finite grid of
points.

This model requires a certain type of basis function making it less flexible than

the classical FLR model. Furthermore the classical FLR model can be reduced to a
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LR problem and uses a potentially small number of basis functions. On the other
hand the historical FLR model requires finite elements methods to be used, which
scale with the size of the data. We wanted to use this model in our regression model
in Chapter 6, but were unable to work around these limitations.

A special case of the Historical FLR model, is the Concurrent Functional dependent
variable model (CFDV) (Ramsay and Silverman, 2005), which considers function on
function dependence, where the response function at time t only depends on the
predictor functions at time t. Under the CFDV model the functions are assumed to

have the following relationship:

yi(t) = B()zi(t) + e(t). (3.3.10)

This model is more general than a linear regression model as the regression function
B(t) is a function of time. However the model is unable to capture temporal relationships

across time unlike the classical FLR model.

3.3.2 Model Selection for FLR

The FLR model relies on parameters M and K, there are a number of ways to choose
these terms when we use FPCA bases. Chiou et al. (2016) choose the number of
components that capture 95% of the variance. This is a commonly used rule of
thumb in the FPCA literature (Shang, 2014). However the estimation of 3(s,t) also
depends on M and K and therefore should be incorporated into the choice of these

terms. Yao et al. (2005) outline two ways of estimating M, K. The first is a leave-
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one-curve-out cross validation approach. The second suggestion is an AIC criterion.
However both methods focus on X and Y individually. Matsui (2017) suggests a
Bayesian Information Criterion (BIC) to choose M, K. Matsui (2017) outlines a BIC
procedure for the Quadratic FLR, which is an extension of the FLR model containing
an additional quadratic term. In Section 6.2 we use the formulation by Matsui (2017)
to determine a BIC model selection procedure for the FLR problem and give a robust

BIC extension.

3.4 Functional Depth

Depth is a non-parametric tool for making inferences of multivariate data (Zuo and
Serfling, 2000). Depth functions order a set of data, which can be used to determine
quantiles. The idea has been extended to order functional data (Nieto-Reyes and
Battey, 2016). We will use depth in Chapter 7 to identify outliers and as a classification
tool in Chapter 8.

Depth functions order a set of data points with respect to the underlying probability
distribution. The depth function gives a centre-outward sorting. Points close to the
centre of the data distribution are given a higher depth, and points farther away are
given a lower depth. However this ordering does not consider the direction, so two
points equidistant from the centre but in opposite directions are given the same depth
value.

The first and most intuitive depth function for multivariate data was the Halfspace

depth (HD), introduced by Tukey (1974). The HD assigns a depth value to a point z
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Figure 3.4.1: Scatter plot of samples from a multivariate normal distribution, with

point in red closer to the centre than the green point.

with respect to samples © = (x4, ..., z,) by determining a hyperplane that splits the
point z from the majority of samples x. The depth is then given by the number of
points that lie within the halfspace containing z. More formally, let z1,...,z, € R*
be samples of a random variable X with cumulative distribution function F, then the
Halfspace depth for a sample z € R* is given by

1

HD(z,F,) =~ min  #{z,i=1,...n:u"z; >u'z}. (3.4.1)

N weRk,||ul|=1
In Figure 3.4.1, we have an example of data samples from a bivariate Gaussian
distribution. We can see that the sample highlighted in green will have a small depth
value and the sample in red is closer to the centre so will have larger depth. In this
scenario the idea of depth is very intuitive.

Zuo and Serfling (2000) outline 4 properties for a multivariate depth function,
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which have been extended by Nieto-Reyes and Battey (2016) to give a statistical
definition of depth for functional data. They state a functional depth should satisfy

6 properties.

Definition 3.4.1 (Functional Depth). Let B be a Borel o-algebra of a measure space
H over sample space Q). We assume there exists a metric d such that (H,d) is a
separable metric space. As in Section 4.4 we will work in the Hilbert space defined
on the unit interval: H = L*([0,1]). The random variable X : (Q, B) — H has a
corresponding probability measure Px. Let P be the space of all probability measures
on B, then for z € H the function D(-,-) : H x P — R is a statistical functional

depth if

2+ D(z, Px) € R,
satisfy the following 6 properties:

1. (Distance Invariance) D(f(z), Pyx)) = D(x, Px) foranyx € Hand f: H - H
such that d(f(z), f(y)) = ayd(x,y) for any y € H and ay € R. - This property
states that depth does not change up to a scaling factor. For example if the
functions are in Degrees Fahrenheit rather than Celsius, the depth values should

remain the same.

2. (Maximality at centre) For any p € P which contains a unique centre of

symmetry 0 € H. This property states there exists a deepest point.

3. (Strictly decreasing with respect to the deepest point) For any p € P such that

D(z,p) = max,ey D(z,p) exists, D(x,p) < D(y,p) < D(z,p) holds for any
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x,y € H such that min{d(y, z),d(y,z)} > 0 and max{d(y, z),d(y, z)} < d(z, z).
This condition ensures that samples that belong to successively larger envelopes

around the deepest point, are assigned smaller depth values.

4. (Upper semi-continuity in x) D(x,p) is upper semi-continuous as a function of
x. In other words, for all x € H and ¢ > 0 there exists a § > 0 such that
sup, D(y,p) < D(z,p) + € where y satisfies the condition d(x,y) < §. This is a
technical condition, based on the fact that each depth is linked to a cumulative

distribution function.

5. (Receptivity to convex hull width across the domain) D(x, Px) < D(f(z), Ps(x))
for any » € C(H,p) with D(x,p) < sup, D(y,p) and f : H — H such that
fy(v)) = a(v)y(v) for a certain a(v) € (0, 1), where C'(H,p) is the convex hull
of h with respect to p defined in Nieto-Reyes and Battey (2016). There may be
subsets of the interval I, where the functions exhibit little variability. This can
lead to different ranking arising from measurement error. The condition is that
the depth function gives more weight to regions of I with more variability when

assigning depth.

6. (Continuity in p) For all z € H, p € P and ¢ > 0 there exists d(¢) > 0 such
that |D(z,q) — D(z,p)| < € p-almost surely for all ¢ € P with dp(q,p) <
d p-almost surely, where dp(-,-) metricises the topology of weak convergence.
This condition ensures that asymptotically the empirical depth converges to the

population depth.

Nieto-Reyes and Battey (2016) suggest using these properties to choose the depth
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functions we use. Gijbels and Nagy (2017) highlight that these conditions can be
restrictive and unattainable for depth functions in practice and offer alternative

conditions. Next we give some examples of functional depths from L*([0, 1]) to R.

3.4.1 Fraiman Muniz depth

The Fraiman Muniz (FM) depth by Fraiman and Muniz (2001), takes the empirical
distribution F,; for sample xy(t),...,2,(t) and calculates the depth at time ¢ as

D(z(t)|x(t)) =1 —10.5 — F,:(2(t))]. Then the overall depth for z is given by

I= /0 D(=(t)]x(t))dt. (3.4.2)

3.4.2 Random Projection depth

Cuevas et al. (2007) outlines a random projection (RP) approach. In the RP approach

a random function a is used to project the functions z;:

<a,r; >= /1 a(t)z;(t)dt.
0
The projected values can be sorted using order statistics, which gives the depth value
with respect to projection a. They apply multiple projections then suggest averaging
over the depth values from each of the projections, to obtain the RP depth. Random
projections are an effective dimensionality reduction approach, which has been used
effectively in many applications. However in this context it is unclear whether the

RP depth satisfies the properties of a functional depth.
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3.4.3 h-modal depth

Cuevas et al. (2007), outlines the h-modal depth. For a Gaussian kernel G with

bandwidth A, the h-modal depth D(z|z, h) is given by

D(z|x,h) = E(G||z — z||) = %ZG(HZ — z4]). (3.4.3)

i=1

We will define || - || as the standard norm in L?. They suggest taking the bandwidth
h to be the 15th percentile of the empirical distribution of {||z; — z||,7,7 =1, ...,n}.
Note that we are not trying to estimate the density, but the support so could use
a range of values of h as long as they are not too small. Nagy (2015) has proven
consistency results for the h-modal depth in the general case of Banach-valued data.
Nieto-Reyes and Battey (2016), shows that the h-modal depth satisfies condition 2 to

6 but not condition 1.

3.4.4 Band Depth

The Band depth (BD) was introduced by Lépez-Pintado and Romo (2009), which
intuitively states a function z is central with respect to P if z is contained with high

probability inside the envelope of j copies of X.

Let the band:

B(zy,...,x,) = {(t, y):tel, ‘_nllin zi(t) <y < max xl(t)} :

We define S; = {w : w C {x1,...,x,}, |w| = j} as the set of all subsets of {z1,...,2,}

of size j. Then the Band depth is given by:
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BD(z|a1, osa) = Y (;l)_ 3 1z c Bw)) (3.4.4)

Jj=2 wES;

This essentially counts the number of times z(t) crosses each possible set of bands.
The number of bands .J is preselected and is typically taken to be 2 or 3 to minimise
the computational cost. For frequently crossing data, the BD values will be low.

Therefore a Modified Band Depth (MBD) was outlined, which uses a count function:

Az, 21,0y ) = {t el: ‘IIIlinnl’i(t) < z(t) < max xi(t)}, (3.4.5)

i=1,....,n

to give the MBD:

MBD(z|zy, ..., x,) = ; (?) 3 W. (3.4.6)

J wES]-

where ) is a Lebesgue measure. The MBD gives the proportion of times z(t) is outside
the bands. Nieto-Reyes and Battey (2016) shows that the BD and MBD do not satisfy

conditions 3 and 5.

3.4.5 Multivariate Functional Depth

The multivariate Functional Depth developed by Claeskens et al. (2014), uses the
Tukey halfspace depth to build a depth function for multivariate functional data. Let
D(-) be the Halfspace depth function (3.4.1) defined in R*. Then the multivariate

functional depth for z with respect to the observed curves xq, ..., x, is defined as:

MED(2|21, o) = / D(@r(8), oo 2 () (), (3.4.7)
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where w(t) is a weight function. The weight function can be chosen using prior
knowledge about the data or can be chosen using the depth values. In practice we
observe the curves at discrete time points t,...,ty. Therefore the depth values are

calculated independently at each time point.

3.4.6 Other Depth functions

There are a number of other depth functions including the Random Tukey Depth
(RTD) (Cuesta-Albertos and Nieto-Reyes, 2007), Spatial depth (Chakraborty and
Chaudhuri, 2014), Halfregion depth (Lépez-Pintado and Romo, 2011), Extremal depth

(Narisetty and Nair, 2016) and the functional Tukey depth (Dutta et al., 2011).

3.5 Outlier Detection for Functional Data

A number of approaches have been developed to identify outliers for functional data.
The problem is challenging due to the range of outliers that can arise. Hubert et al.
(2015) define five types of outliers in functional data. The first are isolated outliers
that are abnormal in a small region of the function and second there are persistent
outliers that effect the function over a large region. Shift outliers have a similar
shape but have been shifted along the time-axis. Shape outliers are not necessarily
abnormal at each time point but seen collectively, can be highlighted as abnormal.
Finally, there are amplitude outliers have the same shape but a shift in scale.

Most outlier detection methods for functional data use functional depth. Febrero-

Bande et al. (2008) use functional depth directly and identify outliers by identifying
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samples with depth value below a threshold. We will describe this approach in Section
3.5.1. An alternative method is to build a Functional Boxplot (FB) (Sun and Genton,
2011) using the Band depth (Lépez-Pintado and Romo, 2009), then as in classical
boxplot samples that lie outside 1.5 times the quantiles are labelled as outliers. We
describe this approach in Section 3.5.2. Alternatively we can use methods based
on outlyingness measures such as the Outliergram by Arribas-Gil and Romo (2014)
described in Section 3.5.3. An outlyingness measure can be extended to multivariate
functional data (Dai and Genton, 2018a). The Functional Outlier Map (FOM) by
Rousseeuw et al. (2018) forms a scatter plot of two outlyingness measures, which we
will describe in Section 3.5.4.

In Chapter 7 we will introduce an outlier detection framework for functional data.

We will compare our framework to these standard approaches.

3.5.1 Direct approach

Febrero-Bande et al. (2008) use functional depth (described in Section 3.4) to identify
outliers in functional data. The approach assigns a depth value to samples 7;(t).
Samples with small depth values lie far away from the other samples. Curves with
a depth value below a certain threshold are then labelled as outliers. They then
discard the outliers and using the rest of the curves they recalculate the depth values
excluding the outliers, this deals with possible masking effects. The threshold C' is
chosen such that P(D(r;|r,h) < C) = 6, where 0 is a pre-chosen percentile typically
taken to be 0.01. To estimate the threshold C they use a bootstrapping approach,

which estimates a value of C' for different random sets of samples and then aggregates
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these estimates. We call this approach Direct as it uses a threshold directly on the
depth values. We will compare our outlier detection approach outlined in Chapter 7

to the Direct approach given in Algorithm 1.

Algorithm 1 Direct Approach

1: INPUTS: Curves r = {ry,...,7,}, number of bootstraps v of size k < n and
percentile ¢,

2: forv=1:ndo

3: Calculate depth value d; = D(r;|r)

4: end for

5: Set bandwidth h be 15% percentile of depth values d
6: for j=1:v do

T: Take a subset of k& samples V; from {rq,...,7,}

8: Calculate depths for samples in V; then take C; to be equal to ¢ percentile
9: end for

10: Estimate C'= 177, C}

11: Set r* = r and counter = 0

12: for r; in r* do

13: if D(r;|r*,h) < C then

14: Sample i is labelled as an outlier.

15: r* = r*\r; and counter = counter + 1.

16: end if

17: end for

18: if counter > 0 then

19: go to Step 11

20: end if

21: RETURN: List of outliers and depth values d.

3.5.2 Functional Boxplot

Sun and Genton (2011) outline a Functional Boxplot (FB), which uses the Band depth
described in Section 3.4. The median function is taken to be the “deepest” curve i.e.
the sample that has the largest depth value. To determine the quantiles we will first

define the a-central region of data C,(X) i.e. the region containing the a% most
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central observations:

For the functional boxplot we compute the region Cy 5, which contains 50% of the
most central curves. The quantile curves of the region Cys can be found using the
depth values. To identify outliers they define fences by inflating the quantile curves
of Cy5 by a factor of 1.5. Observations that cross or lie outside the fences are then
labelled as outliers. The Functional Boxplot gives a good visualisation of the data but
is not effective in identifying isolated or shape outliers as shown by Dai and Genton

(2018b). Examples of Functional Boxplots are given in Figure 7.3.2.

3.5.3 Outliergram

The outliergram by Arribas-Gil and Romo (2014) uses two measures. The first is
the Modified Band Depth (MBD) defined in Section 3.4. The MBD for a curve zy,
with respect to a set of curves z1, ..., z,, will be denoted by b, = M BD(xy|xy, .., 2,).
The second score is the Modified Edigraph Index (MEI), which for a sample z; with
respect to 1y, ..., x, is given by:

er = MEI(zg|z1, ...y xn) = %Z M{t € [’J;Z\Et[))z xk(t)})7

i=1

for a Lebesgue measure X\ on R. The e, gives the mean proportion of time xj lies
below all the other sample curves.
If sample x; has an MEI value e close to 0.5 then the curve is located in the

centre. However if the MBD value by, is small this would indicate x;, is a shape outlier
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as the sample is only contained in a small number of bands.

Arribas-Gil and Romo (2014) show that

ka%ﬂ”h@c‘*‘@ii%,
i=1 j=1
where Ey = {t € I|z;(t) > xx(t)}, for certain values of ag,a;,as € R. This
relationship shows the points (b;, e;) should lie on a parabola. Using the distance
d; = ag + ae; + ngage? — b; they use a univariate boxplot rule to determine lower
thresholds D; — 1.5 x IQR and upper threshold D3 + 1.5 x IQR where D; and
D3 are the first and third quantiles respectively and IQR is the interquartile range
of the distances di,...,d,. The points (b;,e;) are shifted down by the threshold
D3 + 1.5 x IQR, and the scatter plot of the shifted values forms the outliergram.

Examples of outliergrams is given in Figure 7.3.2.

3.5.4 Functional Outlier Map

The Functional Outlier Map (FOM) by Rousseeuw et al. (2018) uses directional
outlyingness measures to identify outliers. The FOM map tries to identify the ‘average’
and ‘variance’ outlyingness of a sample with respect to a set of data. They suggest a
scatter plot of two measures to identify outliers. They use the Functional Directional
Outlyingness and the variability of the Directional Outlyingness.

The Directional Outlyingness (DO) at time ¢ is given by:
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DO(ai(t), x(t)) = (3.5.1)

where s,(x) and s,(x) are M-estimators of scale above and below the median med(z(t))

respectively.

The Functional DO (FDO) is given by:

FDO(z;,z) = /DO(a:i(t),x(t))w(t)dt (3.5.2)

where w(-) is a weight function with the condition [, w(t) = 1. The FDO of a function
x; can be considered the ‘average outlyingness’ of its functional values. In practice
the function z; is observed at time points tq, ..., tr, then the discrete version of FDO

is given by:

FDOrp(z;,x) = Z DO(z(t;), x(t;))w(t;). (3.5.3)

The variability of the DO values is then given by:

stdev;({DO(z;(t;), x(t;)),j =1,..,T}

VDO(x;,x) = 14+ FDOg(z;, x)

). (3.5.4)

The Functional Outlier Map (FOM) is the scatter plot of the points (V DOy(z;, ), VDO(x;, x))
fori=1,....,n.

Defining the combined functional outlyingness (CFO) of z; as
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CFO; = CFO(x,7) = \/(FDO(z;, z) /med(FDO7))? + (VDO(x;, z) /med(V DO))2,

(3.5.5)
where
med(FDOr) = med(FDOr(xy, ), ..., FDOp(z,, X)),
med(V DO) = med(VDO(xy,z), ..., VDO(z,,x)).
Let LCFO; =log(0.1 + CFO;) then the function z; is flagged as an outlier if
LOFO; = med(LOFO) _ g1 g9 (3.5.6)

MAD(LCFO)

This threshold can be seen as the functional version of the threshold used for multivariate

data. Examples of Functional Outlier Maps are given in Figure 7.3.2.



Chapter 4

Classification of manoeuvres in a

Pass-Off test

4.1 Introduction

In Chapter 1 we have described the Pass-Off test and the manoeuvres that are
performed in the test. The N1 speed profiles (described in Chapter 1) for two Pass-Off
tests are given in Figure 4.1.1, with labelled manoeuvres. We can see tests can differ
due to engine stops and manoeuvre repeats. Surprisingly the manoeuvres are not
labelled. We have therefore built a classification algorithm that is able to extract and
label the manoeuvres with almost perfect accuracy. The algorithm is computationally
efficient given the large volume of sensor data generated during the engine tests. The
labels can be used to highlight problematic tests, for example where a large number
of manoeuvre repeats have been performed. These tests can be investigated further

by the engineers. We also noted that the novelty detection algorithms outlined in

68
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Chapter 2 use Pass-Off test data without consideration of the large differences between
the tests. Therefore comparisons between the tests can be unreliable. On the other
hand the manoeuvres are generally consistent between tests meaning novelty detection
for specific manoeuvres can give more reliable models. The classification algorithm
can be split into three main parts: manoeuvre extraction; feature extraction using
Needleman-Wunsch and Functional Principal Component Analysis and classification
using either a decision tree or Linear Discrimant Analysis classifier.

In the classification algorithm we will use the N1 speed time series as the manoeuvres
have distinctive speed profiles. The N1 speed is primarily piecewise linear. We can
therefore use the Pruned Exact Linear Time (PELT) changepoint algorithm (Killick
et al., 2012) to identify changes in speed. Using the fact that a manoeuvre starts and
ends at idle speed, changepoints preceded or acceded by an idle speed segment can
be used as indicators for the start and end of a manoeuvre. In Section 4.2.1 we will
describe the PELT algorithm and explain how we can use the algorithm to extract
the manoeuvres.

The labelling of the Pass-Off test manoeuvres is a time series classification problem,
in which there are two standard approaches (Susto et al., 2018). First, there are
Feature-based methods where features are calculated and used as inputs into a classifier.
Second, we can use distance-based methods which typically use a distance measure
such as Dynamic Time Warping (DTW) (Senin, 2008). A standard approach is to
compare an unlabelled time series to some pre-labelled time series and then classify
using 1-nearest neighbour. DTW is computationally inefficient as it is of the order

O(MN) for two time series of length M and N. We adopt the first approach, which
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focuses on constructing informative features.

In Chapter 1 we have outlined templates for the piecewise linear manoeuvres. The
templates are the fixed speed levels the manoeuvre must reach. The Performance
Curve (P) manoeuvre occasionally does not match its template, because engineers
may sometimes add or miss out steps. For example in Figure 4.1.1 we have the
N1 speed plots for Pass-Off tests 18 and 21, which contain P manoeuvres that do
not match the template. We want a distance measure to compare an extracted
manoeuvre against each of the templates, and we require that it copes with missing
steps. We therefore use the Needleman Wunsch (NW) algorithm, which finds the
optimal alignment between two sequences that may contain potential gaps. The NW
algorithm gives a similarity score corresponding to the alignment. The standard NW
algorithm and a probabilistic alternative will be described in Section 4.3.

We have defined a manoeuvre as a segment of engine running that starts and ends
at idle speed. However sometimes the ‘Running and Handling’ manoeuvre labelled
as (R) in Figure 1.1.3, does not end at idle speed. We will therefore create another
manoeuvre that combines the ‘Running and Handling” with the ‘Performance curve’
labelled as (RP). Now all manoeuvres start and end at idle speed.

There are two manoeuvres, called the Fast Acceleration/Deceleration (F) and the
Vibration Survey (V), which do not have fixed speed levels. For these two manoeuvres
we use Functional Principal Component Analysis (FPCA) to build templates as
described in Section 3.2. A manoeuvre can then be modelled with respect to the
FPCA representations. We will use the difference between the manoeuvre profile and

the FPCA representations, as features in the classification algorithm.



CHAPTER 4. CLASSIFICATION OF MANOEUVRES IN A PASS-OFF TEST 71

Below we have listed the various manoeuvres in a Pass-Off test, with the corresponding

colouring, labels and templates we will use in the classification algorithm.

M (26)

| &

& (86, 0, 66, 52)

IR Running & Handling (86, 26, 86)

. Performance Curve (96, 90, 86, 79, 72, 60, 51, 38, 27)

RP Running & Handling/Performance Curve (86, 26, 86, 96, 90, 86, 79, 72,

60, 51, 38, 27)
E Fast Acceleration/Deceleration
B8 Vibration Survey

. Unknown.

For each manoeuvre we will obtain NW scores with respect to each of the piecewise
linear manoeuvres and FPCA scores with respect to manoeuvres F and V. These
scores will be used as inputs for a classifier. We need a training set to build the
FPCA representations and train the classifiers. The true classifications have been
obtained by manually labelling manoeuvres. We will consider two classifiers, the first
is a standard decision tree (Rokach and Maimon, 2005). The second classifier uses
Linear Discriminant Analysis to fit a Gaussian model for each class. For the Unknown

manoeuvres we set an uninformative prior Gaussian distribution with a significantly
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Figure 4.1.1: Labelled N1 speed plots for Pass-Off test 18 (left) and 21 (right).

larger variance than in the other classes. The large variance ensures manoeuvres that
don’t match any of the pre-defined manoeuvres will be labelled as Unknown.

To train and test the classification algorithm we will use the 93 Pass-Off tests we
have been given from Trent 1000 engines. Using k-fold cross-validation we will assess
the classification performance of the models. We shall also highlight insights that can
be made using the labels. This approach is general enough to be applied to other

engine types as we will demonstrate on XWB engine Pass-Off tests in Section 4.7.

4.2 Manoeuvre Extraction

4.2.1 Changepoints

A changepoint is defined as a time point where the statistical properties of the time

series before and after this time point are different. We will describe the Pruned
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Exact Linear Time (PELT) changepoint algorithm in Section 4.2.1, which we will use
to find changes in the piecewise linear structure of the N1 speed time series. Using the
changepoints we can extract the manoeuvre segments and filter out the fixed speed
segments within each manoeuvre.

Let y1.0 = (y(t1), ..., y(tr)) be a time series, which contains m changepoints 7., =
(71, .., Tm) Where 79 = 0 and 7,51 = T. We have m+ 1 segments, where each segment
¢ contains points ¥(r,_,41).r,- We assume the points in each segment are sampled
from different distributions. For each stationary segment of the time series (between
consecutive changepoints), we want to estimate a statistical model. The problem is
we don’t know the location of the changepoints. We can estimate the number and
location of the changepoints as a solution to the following optimisation problem:

m—+1

mn <R ;[O(y(”lﬂ):”)] +om, (4.2.1)
where C' is the negative log-likelihood function associated with the statistical model
we want to estimate and [ is a penalty to stop overfitting. This penalty determines
the trade off between model accuracy and complexity. There are two main model
selection tools. The first is the Akaike Information Criterion (AIC) penalty (Akaike,
1998), which sets 5 = 2p where p is the number of parameters to estimate in the cost
function C'. The AIC penalty is the same irrespective of the length of the time series,
and is known to overestimate the number of changepoints. The Bayesian Information

Criterion (BIC) penalty (Schwarz, 1978) which sets 5 = plog(T'), considers both the

number of parameters p and the length of the time series 7. The BIC penalty can
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underfit the data, but is typically the preferred choice in the changepoints literature,

and is used by Killick et al. (2012).

Pruned Exact Linear Time algorithm

We can use dynamic programming to solve the problem in (4.2.1). The Pruned Exact
Linear time (PELT) (Killick et al., 2012) approach, is a modification of the Optimal
Partitioning algorithm by Jackson et al. (2005), in which they have added a pruning
step to improve computational efficiency.

Define F'(s,m’) as the minimum of (4.2.1) with respect to the changepoints 1.,/

for data yi., with a fixed number of changepoints m’. We define

F(s) = min F(s,m’) (4.2.2)

m/

then for t < s we have the following recursive relationship

m’—',—l
F(s) = min { Y(rioa+1)m +5]}

1<m < <7 <71 4 1=5 T
i=

t I<mi <. <7, 1=t
=1

= min { min Z[O(y(nqﬁ-l):ﬁ) + 6]+ Cly Y(t+1): s) + B}
= min {F(t) + C(ya+1ys) + B} (4.2.3)

In (4.2.3) we have defined F(s) with respect to F'(t), conditional on the fact that
t is the optimal location of the last changepoint in the time series y;.,. Optimal
Partitioning uses the recursion (4.2.3) to build a dynamic programming algorithm
to find F(s) for s = 1,...,7. The overall computational complexity of Optimal
Partitioning is O(T?). The PELT algorithm adds a pruning step to Optimal Partitioning,

which can reduce the computational complexity to O(T'). Rather than minimising
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over all ¢ in (4.2.3), we minimise over a subset of time points, chosen using a pruning

condition. Assuming there exists some constant K such that for all ¢t < s < t*,

If

F(t) + C(Yr1ys) + K = F(s).

then at a future time t* > s, t will never be the optimal last changepoint prior to t*.
Using this condition we can introduce a pruning step, which enables us to optimise
over a subset of points, as we know certain points cannot be changepoints by this
condition. In the worst case there is no pruning and we get Optimal Partitioning.
Pruning will obviously decrease computations as the number of terms to minimise
over decreases. It has been shown to get linear computational complexity, when using

a cost function C' equal to the negative log-likelihood, where the constant K = 0.

Changes in Regression

In this section we will show how PELT can be used to find the changepoints in
the N1 speed time series. We will use these changepoints to extract manoeuvre
segments, and the fixed speed segments within the manoeuvres. The N1 speed time
series is piecewise linear. To apply PELT on a piecewise linear time series we need a
suitable cost function C. Assume we have a time series y;.7 with time index ¢1.7 and
changepoints 7y.,,. In each segment ¢ we have a pair of coefficients a(()i), ozgi) € R such

that

y; ~ N(a(()i) + agi)tj, o?), if y; is in segment 1.
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Under this model we consider two possible cost functions. Assuming we have
a constant variance o2, the maximum log-likelihood cost function is given by the

2 can change,

Residual Sum of Squares (RSS) (4.2.4). If we assume the variance o
and therefore needs to be estimated, we get the maximum log-likelihood cost function
given in Equation (4.2.9).

For a segment y;.;, we apply Ordinary Least Squares with respect to the index

t1.s, we then get an estimate of the intercept ¢q (4.2.7) and the slope &; (4.2.6), we

can then write the RSS cost function as

Clyrs) = Z{yl — (Go + anty)}>. (4.2.4)

2

If we assume the variance o can change, we get the second cost function, given by

the log-likelihood

(o, a1,0%) = —g log(2m) — slog(o) — 202 Z{yz — (g + anty)}? (4.2.5)

the maximum likelihood estimators (MLEs) can be shown to be

G — Zfzzl(lezt?_(yg); 9) (4.2.6)
o 5 G (4.2.7)

5'2

®w |~ <

> (i — (G0 + dnt,))? (4.2.8)

i=1

where ¢ and ¢ are the means of t;., and y;.; respectively. Applying the MLEs we get

a maximum log likelihood
N N ~92 S N S
l(&g, Gn,6%) = —3 log(2m) — slog(a) — 5 (4.2.9)

For the penalty 8 we use a BIC penalty which is equal to plog(T") where p is the

number of parameters estimated when we set a changepoint, and T is the length of
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o8 Performance curve with changepoints
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Figure 4.2.1: Plot of a section of the Performance curve in Pass-Off test 1 with

changepoints found using PELT with RSS cost function (red) and a BIC penalty.

the time series. For the Pass-Off tests we have found using the cost function (4.2.9)
typically under fits the number of true changes in the N1 speed time series. We
therefore use the RSS cost function (4.2.4) to identify changes in the piecewise linear
structure.

In Figure 4.2.1, we have a plot of a section of a Performance curve with the
changepoints plotted in red, the changepoints have been calculated using PELT with
the RSS cost function (4.2.4) and a BIC penalty. We can see that the least squares
cost function is able to pick up the changes in slope effectively. Our implementation

of the changepoints algorithm can be found in the R-package (Killick et al., 2018).
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4.2.2 Extracting Fixed Speed segments

Given a N1 speed time series y from a Pass-off test, we apply the PELT changepoint
method outlined in Section 4.2.1. The PELT algorithm outputs the changepoints,
which we use to create a vector of the mean and length of each of the segments. To
label fixed speed segments we apply linear regression to each segment, and using the
slope coefficient «y, we label a segment as fixed speed if |o;| < 0.3. The choice of
threshold 0.3 is made empirically, from looking at the fixed speed extraction in the
first few Pass-Off tests. The threshold works well in practice.

Looping through the vector of means for the fixed speed segments u = (uq, ..., 1),
if wi—y = [18 £2]% and w; > 21, we start a manoeuvre vector M = (u;). We have
the manoeuvre start time tg,.+. We can keep concatenating values to the time series
till we get to ury1 = [18 & 2]%. For the manoeuvre we get a sequence representation
M = (uj,...,u) where u;_; = [18 £ 2]% and uyy1 = [18 £ 2|% and w; > 21% for
all i+ = j,...,k. We now have the manoeuvre vector M, and the end time of the

manoeuvre tend.

4.3 Needleman Wunsch

We apply PELT to extract fixed speed segments of a manoeuvre. Taking the mean
of each segment we obtain a sequence of the fixed speed levels reached. We can then
classify a manoeuvre by matching the sequence against different template sequences.
Each template sequence corresponds to the fixed speeds that a defined manoeuvre

should reach. However in some manoeuvres fixed speed segments may be missing.



CHAPTER 4. CLASSIFICATION OF MANOEUVRES IN A PASS-OFF TEST 79

We therefore need an algorithm that can correctly label a manoeuvre with respect
to the list of templates even if some sections are missing. To address this challenge
we have used the Needleman Wunsch algorithm. In this section we will discuss the
Needleman Wunsch algorithm for a fixed alphabet. Later we will discuss extensions
for continuous values.

The Needleman and Wunsch (1970) (NW) algorithm was the first computationally
efficient sequence 