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Abstract

Rolls Royce accumulate a large amount of sensor data throughout the testing and

deployment of their engines. The availability of this rich source of data offers exciting

opportunities to automate the monitoring and testing of the engines. In this thesis we

have developed statistical models to make meaningful insights from engine test data.

We have built a classification model to identify different types of engine running

in Pass-Off tests. The labels can be used for post-analysis and highlight problematic

engine tests. The model has been applied to two different types of engines, in which

it gives close to perfect classification accuracy. We have also created an unsupervised

approach when there are no defined classes of engine running. These models have

been incorporated into Rolls Royce systems.

Early warnings for potential issues can enable relatively cheap maintenance to

be performed and reduce the risk of irreparable engine damage. We have therefore

developed an outlier detection model to identify abnormal temperature behaviour.

The capabilities of the model are shown theoretically and tested on experimental and

real data.

Lastly, in a test decisions are made by engineers to ensure the engine complies
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with certain standards. To support the engineers we have developed a predictive

model to identify segments of the engine test that should be retested. The model is

tested against the current decision making of the engineers, and gives good predictive

performance. The model highlights the possibility of automating the decision making

process within a test.
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Chapter 1

Introduction and Objectives

1.1 Introduction

Jet engines must pass a number of tests to ensure the engines comply to rigorous

certification requirements, mostly associated with safety, as outlined by Walsh and

Fletcher (2008). Before a jet engine is released from the factory it must go through

a Pass-off test. Each test involves a series of engine manoeuvres (e.g. acceleration,

deceleration cycles and holds at fixed speed points) where several hundred engine

parameters are recorded at various sample rates. Key points in the test are manually

analysed, but the majority of the data is not currently assessed at all. In this thesis

we have developed a range of analytical methods to automatically process the entire

engine test dataset and provide suitable labels that adequately summarise segments

of engine running. We have then built methods that highlight novel behaviour in the

jet data, which may be of further interest for analysis by an engineer.

In this chapter we give a general description of the mechanics of a jet engine and

1
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Figure 1.1.1: Summary of LP, IP and HP. www.slideshare.net/egajunior/trent-1000-

presentation

the Pass-Off test. We will then outline the contributions of this thesis.

1.1.1 Jet Engines

A jet engine is composed of a fan that pumps air into the engine, the air goes through

various chambers in which it is compressed thereby increasing the air temperature.

The air then enters the combustion chamber in which fuel is injected, creating thrust.

To ensure the engine is performing efficiently at different engine speeds there is an

Engine Monitoring System (EMS). A jet engine can be split into three zones shown

in Figure 1.1.1. There is a low pressure (LP) compressor at the front, which drives

air into the turbine. Then there is intermediate pressure (IP) compressor that is

composed of alternating static and turning fan blades to compress the air. Finally

the high pressure (HP) compressor in the middle, further compresses the air.

There are hundreds of sensors in the engine with measurements taken at a rate of
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Figure 1.1.2: Station Locations. https://speechfoodie.com/jet-engine-diagram-n1-

n2/

40 Hz, measuring different engine features. First we have the engine features N1, N2

and N3, which give the rotating speed of the LP, IP, HP shafts respectively. These

can be used as proxies for thrust, and are reported as a percentage of a predefined

maximum speed. Second, there are temperature and pressure features measured at

different stations in the engine as shown in Figure 1.1.2. Finally, there are three

vibration features LPV/IPV/HPV corresponding to vibration values in each of the

LP, IP and HP zones respectively. The values are inferred from a single accelerometer

at the stiffest part of the engine (Clifton, 2009).

1.1.2 Engine tests

We have been given three engine datasets. The first dataset contains sensor data

from 93 Pass-Off tests performed on new Trent 1000 engines. Each Pass-off test was
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conducted on a single test bed at the Satoo test facility. Note that the 93 tests don’t

necessarily correspond to 93 different engines, as an engine may be retested after

alterations are performed. In each Pass-off dataset there are 22 sensor time series

measurements for various engine features. The second dataset contains sensor data

from 51 Pass-Off tests performed on XWB engines also performed at the Satoo test

facility. The sensor data from the XWB engine Pass-off tests are very similar to those

from the Trent 1000, so we will focus on the Trent 1000 data in this section. The

third dataset is a Cyclic test performed on a single XWB engine. The focus of this

thesis in on the Pass-Off test data however we will do some analysis on the Cyclic

test dataset.

Pass-Off test

A Pass-Off test is performed by a human controller who pushes the throttle to

accelerate and decelerate the engine. In the test the engine starts at a set idle speed,

then a manoeuvre is performed in which the engine can be accelerated, decelerated

and kept at fixed speeds before returning to idle speed. There are a predefined list of

manoeuvres performed in a test. During the test the engineers check the manoeuvres

at certain key points to ensure that the engine is complying with the regulatory

requirements. If they notice something unusual during a manoeuvre, they can repeat

the manoeuvre or they can stop the test. Once the engine is stopped they can make an

adjustment to the engine and then restart the test. The manoeuvre is then repeated.

For the Performance Curve (P) manoeuvre they sometimes perform only part of the

manoeuvre where an issue was identified.
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Figure 1.1.3: Perfect Pass-off test with samples taken every 40th of a second.

In Figure 1.1.3 we have plotted the N1 speed time series of a “perfect” test run,

where each manoeuvre has been performed exactly once, in the correct order, with

no stops during the test. The different manoeuvres are labelled on the time series.

We can see that the manoeuvres start and finish at idle speed 18%. The N1 speed

time series for two different Pass-Off tests are shown in Figure 1.1.4. The engine has

been stopped and manoeuvres have been repeated, so neither of the tests are perfect.

However in the two examples there is a section of the test that resembles Figure 1.1.3

i.e. where a perfect test run has been performed.

In Figure 1.1.5 we have a plot of the N1, N2 and N3 time series for Dataset 1.

The three time series follow a similar pattern but have different speed ranges. In the

data we have multiple pressure sensors located alongside the temperature sensors, we

have P20, P30, P42 and P44 (location references can be found in Figure 1.1.2). In

Figure 1.1.6, we have a plot of the different pressure measurements alongside the N1
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(a) Pass-Off Test 1 (b) Pass-Off Test 2

Figure 1.1.4: N1 speed for Pass-Off test 1 (left) and 2 (right).

Figure 1.1.5: Plots of N1 (blue), N2 (orange) and N3 (red) speed time series for

Dataset 1.
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Figure 1.1.6: Plots of P30 (black), P42 (red) and P44 (cyan) which are plotted

alongside the N1 speed (orange) time series for Dataset 1.

speed. The pressure time series follow the shape of the N1 time series though they

are on different scales. This plot highlights the well know fact that pressure reacts

immediately to changes in speed.

There are multiple temperature sensors located along the turbine. The T20

sensor measures the ambient temperature outside the engine, which typically remains

constant. In our dataset we have five temperature features. We have temperature

readings T25 and T30 at stations shown in Figure 1.1.2. We have the turbine

gas temperature (TGT) and also temperature readings of the cooling air at the

rear/front of the engine (TCAR/TCAF). In Figure 1.1.7 we have a plot of the the T30

temperature time series alongside the N1 speed. We can see that there is a delayed

temperature response with respect to the engine accelerations and decelerations, which

is also the same for the other temperature features.
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Figure 1.1.7: Plots of T30 (blue) and N1 speed (orange) time series for a perfect test.

The engine vibration values are important diagnostic engine features. The vibration

data is acquired from a vibration transducer. As stated before there are the LPV/IPV/HPV

vibration features. In Figure 1.1.8 we have a plot of the LPV and HPV time series,

alongside the N1 speed time series. There is greater noise in the vibration in comparison

to the pressure and temperature readings. When there is a change in N1 speed there

is a direct change in the vibration, this illustrates vibration reacts quickly to changes

in speed. The relationship between vibration and N1 speed is non-linear as illustrated

by the drop in vibration in the middle of manoeuvre P, which is caused by resonance.

The LPV and the HPV behaviour is very different. The LPV in general stays at a

fixed vibration value when the engine is running at a fixed speed whereas the HPV

displays drift, which is clearly not a product of the engine speed. In the engine tests

one of the regulatory conditions is that the peak vibration values are below certain

thresholds.
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(a) LPV (b) HPV

Figure 1.1.8: Plots of the LPV and HPV in blue alongside the N1 speed in orange.

Cyclic Test

A Cyclic test is performed to accumulate evidence to show that the engine build

meets certain criteria, which is passed onto the required regulatory bodies. In a

Cyclic test they start by performing a ‘Shake-down’ test to ensure they are satisfied

with the engine build. In the second part of the test they perform cycles of repeated

manoeuvres. The Cyclic tests have a planned schedule however deviations can be

made. In Figure 1.1.9 we have the N1 speed plotted for the Cyclic test. The initial

‘Shake-down’ test can be seen by the spread out and seemingly random manoeuvres,

then there are short highly repeated manoeuvres signalling the start of the engine

cycles. The data is down-sampled due to storage limitations.

In Figure 1.1.10 we have a plot of two segments of the Cyclic test. Segment 1 is

from the ‘shake-down’ phase where a range of manoeuvres are performed. Segment 2

contains clearly repeated cycles with the same N1 speed profiles. Note that there are

no defined list of manoeuvres in the Cyclic test as in the Pass-Off test.
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Figure 1.1.9: Plot of the N1 speed time series generated for the Cyclic test, with

samples taken every second.

(a) Segment 1 (b) Segment 2

Figure 1.1.10: Plots of two sections of the Cyclic test.
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1.1.3 Contributions and Thesis Outline

In this thesis we will describe the analytical tools that we have developed for the

sensor data generated during Pass-Off and Cyclic tests. The first contribution is a

classification algorithm for extracting and labelling the manoeuvres performed during

a Pass-Off test. This algorithm uses a number of different statistical techniques

to obtain informative features that are used to give effective classifications. The

algorithm is computationally efficient and can deal with data sampled at different

rates. The algorithm has been tested on various engine datasets and has been

implemented into the Rolls Royce system. We have also developed an unsupervised

approach to identify the manoeuvre classes in a Cyclic test. Our second contribution

is a robust regression model that we have developed to model the engine temperature

behaviour with respect to the engine speed. The model uses a number of functional

data analysis techniques. We derive asymptotic results and perform a simulation

study to illustrate the effectiveness of the model. Using this model we have built an

outlier detection algorithm for the jet engine data.

In Chapter 2 we give a review of previous statistical techniques developed for

engine data. In Chapter 3 we outline Functional Data Analysis techniques which we

will use extensively in the algorithms we have developed. Chapters 4-8 contain new

research, which we will outline briefly.

Chapter 2: Methodology developed for Jet engine data

This chapter contains a review of methodology developed for jet engine data. We

focus on engine health monitoring, which typically involves using sensor data to give
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early warning of potential engine issues. Early engine warnings can ensure the safety

of the engine and enable relatively cheap maintenance to be performed. There are

three main approaches to this problem. We shall also describe visualisation tools used

to identify clusters and outliers in the data. Finally we will give a brief comparison

between these methods and our approach.

Chapter 3: Functional Data Analysis

We shall give a review of four important areas of Functional Data Analysis: Functional

Principal Component Analysis (FPCA), Functional Linear Regression (FLR), Functional

Depth (FD) and Outlier detection for Functional Data. We will focus largely on

FPCA, which is an extension of principal component analysis (PCA) for functional

data. PCA is a technique that takes a set of multivariate points each of which come

from the same underlying vector of random variables, and projects the data into a new

feature space consisting of a smaller number of random variables. The new feature

space still captures a significant proportion of the variance in the original data set, as

correlated random variables can give redundant overlapping information. As expected

there is a nice symmetry between PCA and FPCA. In particular both methods have

two interesting derivations. By first looking at PCA then FPCA, the formulation

and intuition can be shown to follow naturally; making it easier to understand the

ideas behind FPCA. In this chapter we will include the formulation of FPCA, stating

the classical results and proofs. We will then briefly discuss various modifications and

extensions. We shall give a brief description of FLR and some of the popular estimates

used. We give a short review of FD, which ranks a set of curves. The ordering from
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FD can be used for a number of problems including outlier detection, classification

and clustering. We shall describe the methodology and properties that a FD measure

should satisfy. We give examples of some of the most popular FD choices. Finally,

we outline various outlier detection approaches for Functional Data.

Chapter 4: Classification of manoeuvres in a Pass-Off test

This chapter outlines an algorithm that is being used by the Rolls-Royce Control,

Monitoring & Systems UTC at the University of Sheffield and within the Rolls Royce

systems.

This chapter outlines the classification algorithm developed to extract and label

manoeuvres in a Pass-Off test. The Pass-Off test sensor data does not come with

labelled manoeuvres. We therefore built a classification algorithm that can extract

and label manoeuvres computationally efficiently and is able to achieve near perfect

classification. The algorithm can support the engineers at Rolls Royce to make engine

diagnostics for the Pass-Off tests. We have built templates for each of the seven pre-

defined manoeuvres, with respect to the N1 speed. We can also have manoeuvres that

do not match any of the pre-defined manoeuvres, which we will label as Unknown (U).

To extract the manoeuvres we use the changepoint algorithm: Pruned Exact Linear

Time (PELT) (Killick et al., 2012). We then use a modification of the Needleman-

Wunsch (NW) algorithm (Needleman and Wunsch, 1970) for continuous data alongside

Functional Principal Component Analysis (FPCA) (Ramsay and Silverman, 2005) to

score the similarity between an unlabelled manoeuvre and the templates of the pre-

defined manoeuvres. This gives us a vector of scores. We then consider using a
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Decision Tree (DT) or a Linear Discriminant Analysis (LDA) classifier to label the

manoeuvre using the vector of scores. The scores generated are very informative,

making the resulting classification very accurate. The framework was originally built

for Trent 1000 engine tests, however is has also been applied to XWB engine tests.

Chapter 5: Manoeuvre Clustering in Cyclic tests

This chapter outlines a clustering algorithm to identify manoeuvres in a Cyclic test.

Unlike the Pass-Off test we do not have labels for the manoeuvres performed in

a Cyclic test. We will therefore cluster the manoeuvres to identify the different

manoeuvre classes. In the test the engineers can perform manoeuvres that do not

match the manoeuvre classes, which can affect the clustering performance of many

standard methods. We therefore consider a density based approach known as Density-

Based Spatial Clustering of Applications with Noise (DBSCAN), which is capable

of identifying outliers and estimating the number of clusters present. We chose to

use a Dynamic Time Warping (DTW) distance as manoeuvres can vary slightly in

length and shape. DTW aligns two time series and then takes the squared difference

between the aligned time series. The DTW distances are used as inputs for the

DBSCAN algorithm. Applying the algorithm on the manoeuvres in the Cyclic tests

we obtained meaningful clusters. We test the algorithm on the manoeuvres in the

Trent 1000 and XWB Pass-Off tests, for which we have labels.
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Chapter 6: Robust Functional Linear Regression

This chapter contains content from a journal contribution with co-authors David S.

Leslie, Nicos G. Pavlidis and Steve King. The manuscript has been submitted to

“Technometrics”.

In the Pass-Off test dataset the Vibration Survey (V) manoeuvre has been repeated

multiple times, which suggests that something unusual may be occurring during this

manoeuvre. We want to use the temperature engine parameters to identify any

abnormal behaviour. However, because these manoeuvres are performed by a human

controller, there is a variability that can mask the outliers. Therefore we have built a

model to capture the relationship between the engine speed and engine temperature in

the presence of possible outliers. The engine temperature has a lag effect with respect

to the engine speed, which needs to be incorporated into the model. We will use

Functional Linear Regression, which is a widely used approach to model functional

responses with respect to functional inputs. However classical Functional Linear

Regression models can be severely affected by outliers. We therefore introduce a

Fisher-consistent robust Functional Linear Regression model that is able to effectively

fit data in the presence of outliers. The model is built using robust Functional

Principal Component and Least Squares regression estimators. The performance of

the Robust Functional Linear Regression (RFLR) model depends on the number of

principal components used, which will be chosen using a consistent robust model

selection procedure. We give consistency results for both the RFLR model and the

model selection procedure. A simulation study shows our method is able to effectively
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capture the regression behaviour in the presence of outliers.

Chapter 7: Outlier Detection using Functional Regression

This chapter contains content from a conference contribution with co-authors David

S. Leslie, Nicos G. Pavlidis and Steve King. The manuscript has been accepted at the

“Workshop on Advanced Analytics and Learning on Temporal data” at The European

Conference on Machine Learning and Principles and Practice of Knowledge Discovery

in Databases 2019.

We propose an outlier detection algorithm for temperature sensor data from jet

engine tests using robust functional regression. Effective identification of outliers

would enable engine problems to be examined and resolved efficiently. Outlier detection

in this data is challenging because a human controller determines the speed of the

engine during each manoeuvre. This introduces variability which can mask abnormal

behaviour in the engine response. We therefore use the robust Functional Linear

Regression model given in Chapter 6 to identify ‘normal’ behaviour, then use Functional

Depth to identify the outliers. The framework is tested on simulated and real engine

data.

Chapter 8: Predict Repeated Vibration Surveys

In a Pass-Off test manoeuvres can be repeated by an engineer during the test.

Typically a manoeuvre is repeated if it does not fulfil the conditions required. We have

found the Vibration Survey manoeuvre is repeated significantly more than the other

manoeuvres. For this manoeuvre the engineers check certain vibration conditions
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are satisfied. An automated approach to determine whether a manoeuvre should

be repeated has a number of benefits. We implement three different functional

classification methods, and compare the methods using ROC curves. We have found

that these approaches can give reasonably accurate predictions.



Chapter 2

Methodology developed for Jet

engine data

2.1 Introduction

Engine health monitoring (EHM) systems store sensor output throughout an engine

test. The availability of this rich data source has prompted a number of early

warning detection methods, enabling appropriate maintenance to be performed before

detrimental engine damage. During engine design certain modes of failure are identified

and either the engine design is altered to mitigate against these failures, or otherwise

an on-line monitoring system is put in place to ensure these failures are detected

early. The engineers follow a framework called Failure Mode Effect and Critical

Analysis (FMECA) (Rausand and Høyland, 2004). The framework also considers

the likelihood and impact of each of the failures and sets a guideline of actions that

should be taken for the various types of failures. Fault-specific detection schemes have

18
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therefore been built which use expert-knowledge (Merrington, 1994; Patton et al.,

2000). A more detailed survey of expert-based monitoring techniques is given by

Hanachi et al. (2018).

Statistical Process Control methods have also been deployed for jet engine monitoring.

These methods typically give a warning when engine parameters exceed certain predefined

thresholds. The thresholds are typically set using expert opinion, which may not pick

up subtle abnormalities (King et al., 2009).

The abundance of normal engine data examples has prompted novelty detection

approaches to be considered. Novelty detection models use only normal engine running

instances to build a model of normal behaviour. The model can then be validated

using abnormal engine examples. The approaches can be broken down into four key

areas. First the data is pre-processed, next visualisation tools are used to explore the

data, then a normality model is constructed, and finally a novelty threshold is set.

Visualisation tools are important in giving the engineers a tool for understanding

the data structure and the potential outliers. Clifton (2009) outline a few projection

methods that have been used to map engine data to a low dimensional space. These

projections aim to preserve the structure in the higher dimensional space. We will

describe various approaches and highlight the essential ideas between them in Section

2.2.

There are three main novelty detection approaches. The first approach transforms

the data and then applies k-means clustering to capture different types of normal

behaviour. A threshold is then set around each cluster (Nairac et al., 1999). The

second approach uses a one-class Support Vector Machine (SVM) (Hayton et al.,
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2007), which estimates a hyperplane that aims to give the best split between the

normal data and potential outliers. The third approach fits a probability density to

the data either using Kernel density (King et al., 2009) or Gaussian mixture models

(Clifton, 2009). A threshold is then set using Extreme Value Theory methods (Clifton,

2009).

The three novelty detection approaches use vibration parameters as described

in Chapter 1. Many of the approaches use Tracked Order Response (TOR) curves,

which are defined as the vibration amplitude at fundamental frequencies. For example

if the engine rotates at h Hz, then the peak vibration energy occurs at h Hz, with

corresponding harmonics at multiple of h Hz.

In this chapter we will describe the three novelty detection approaches currently

developed for engine monitoring. We shall also outline our approach to identify

abnormal engine behaviour. A brief discussion will be given on the projections used

to obtain visualisation of the data.

2.2 Data Visualisation

The Pass-Off data is high dimensional with multiple engine parameters at various

engine speeds. The data can be preprocessed and features can be extracted but these

can also be in more than three dimensions. Therefore projection methods have been

outlined to visualise the data. Visualisation approaches have been used by Clifton

(2009) and King et al. (2009) to visualise the outliers. We will use visualisation

techniques in Chapter 5 to highlight cluster structures.
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There are linear approaches that project the data using a linear transformation.

The most popular example is Principal Component Analysis (PCA) (described in

Section 3.2.1). They map the data onto the first two principal components, which

capture the largest proportion of the variance. This is a linear mapping and we can

easily incorporate new data into the projection. However if the first two components

do not capture a significant proportion of the variance this approach becomes unreliable.

Alternatively, there are topographical approaches that aim to preserve the pairwise

distances, for example Sammon’s mapping. Let x1, ..., xn ∈ Rq, then two points xi, xj

in the original space have distance dij = d(xi, xj). The projected points yi, yj ∈ R2

have distance d∗ij = d(yi, yj). The mapping is chosen that minimises the Sammon

stress metric

Esam =
1∑n

i=1

∑n
j>i d

∗
ij

n∑
i=1

n∑
j>i

(dij − d∗ij)
d∗ij

.

Typically the Euclidean distance is used and the optimisation is performed using

gradient descent (Nabney, 2002). New samples can not be incorporated into the

mapping.

NeuroScale (Lowe and Tipping, 1997) aims to minimise the Sammon stress metric

Esam using a neural network with a single layer of H hidden nodes. Each of the

hidden nodes correspond to a radial basis function (RBF). The algorithm follows a

two stage process, first the parameters of the radial basis functions are estimated

so they approximate the probability density of the training set. Then the output

weights are estimated. Unlike Sammon’s new samples can be projected using the
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neural network.

The t-Distributed Stochastic Neighbor Embedding (tSNE) by Maaten and Hinton

(2008) aims to group points using a probabilistic framework. The algorithm works

in two steps. In the first step, they estimate the probability of points being similar.

Then they look for a projection such that the probability is preserved in the low

dimensional points. The similarity of xj to xi is given by the conditional probability:

p(xj|xi) =
exp(−||xi − xj||2/2h2

i )∑
k 6=i exp(−||xi − xk||2/2h2

i )
,

where hi is the bandwidth of the Gaussian kernels. Let y1, ..., yn be the projected

points with similarity measure

p(yj|yi) =
exp(−||yi − yj||2)∑
k 6=i exp(−||yi − yk||2)

.

tSNE tries to find yi that minimises the difference between p(xi|xj) and p(yi|yj). They

define the cost function to be the Kullback-Leibler (KL) distance

n∑
i=1

KL(Pi|Qi) =
n∑
i=1

n∑
j=1

p(xj|xi)
p(xj|xi)
p(yj|yi)

,

where Pi and Qi are the conditional probability distributions over all xi and yi

respectively. We will use tSNE in Chapter 5 to visualise the clusters.
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2.3 Novelty Detection Approaches

2.3.1 K-means Model

Nairac et al. (1999) uses vibration parameters LPV, IPV and HPV. They split the

vibrations into 6 equispaced speed ranges, and take an average in each range to

obtain a vector of size 18. Given n samples x1, ..., xn ∈ R18, they apply a whitening

transformation that maps points xi to x′i = Λ−
1
2V T (xi − µ) where µ is the mean

vector; Λ is a diagonal matrix of eigenvalues for the covariance matrix Σ and V is the

corresponding matrix of eigenvectors.

The distribution of the feature vectors x′i is approximated by four spherical clusters

found using k-means. To determine a threshold they define the cluster radius ρk given

by the average distance of points in cluster k to cluster centre ck. For a new point

x∗ the normalised distance is given by δ(x∗) = mink
1
ρk
|x∗ − ck|. The distance δ(x∗)

essentially gives the number of standard deviations x∗ is from the closest cluster centre.

Nairac et al. (1999) uses the k-means model to capture different types of normal

engine behaviour, and chooses k = 4 by visual inspection of a two dimensional

projection. One significant limitation of the k-means model highlighted by Hayton

et al. (2007) is that the engines cannot be ranked by the novelty score δ(x∗) as the

distances may be evaluated with respect to different cluster centres.

2.3.2 Support Vector Machines

Support Vector Machines (SVM) estimate hyperplanes or decision boundaries that

give the largest separation of the different classes. Using the hyperplane we can
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classify points depending on which segment of the space the points appear. Typically

the data is projected into a higher dimensional space, which increases the distance

between the points.

A one-class support vector machine (SVM) is used by Hayton et al. (2007) to

build a novelty detection model. They use the fundamental TOR and then take a

weighted average in 10 equidistant speed bins. A probabilistic support vector machine

approach was given by Clifton et al. (2014), which enables uncertainty values to be

given which can improve decision making.

Matthaiou et al. (2017) also use a one-class SVM to perform novelty detection on

jet engine data. However they use different feature to those by Hayton et al. (2007).

They suggest applying a wavelet decomposition to the TOR curves (defined in Chapter

1) and then applying Kernel Principal Component Analysis on the coefficients from

the wavelet decomposition. This procedure is similar to Functional PCA, which we

will discuss in Section 3.2.

2.3.3 Probabilistic Model

Clifton (2009) apply a two stage pre-processing of the vibration data. First, note

that the Pass-Off test stays a large portion of the time at certain fixed speed levels

therefore the vibration values at these speeds will be overrepresented. To obtain a

balanced dataset a filtering process is performed. Given vibration value vt and speed

st at time t, they discard vt if |st − st−1| < w where w is a pre-chosen threshold. In

the second step they split the vibration values into equispaced bins as performed in

the k-means and SVM approaches.
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King et al. (2009) uses a Gaussian kernel H(x) = (2π)−
d
2 exp{−1

2
x2} to estimate

the probability density of the d-dimensional data in each speed bin:

p(x) =
1

nhd

n∑
i=1

h

(
x− µi
h

)
.

Alternatively a Gaussian Mixture Model could be used (Clifton, 2009) where

p(x) =
1

(2π)
d
2

K∑
k=1

Pk

|Σk|
1
2

exp

{
−1

2
(x− µk)TΣ−1

k (x− µk)
}

where Pk are the weights associated to each of the d-dimensional Gaussian components

with parameters (µk,Σk).

A new sample x∗ has a probability p(x∗) of coming from the same distribution as

the training set. Clifton (2009) choose a threshold using Extreme Value Theory (EVT)

methods. To obtain the threshold they assume the data is distributed according to a

one-sided Gaussian distribution. Given this assumption we could obtain a threshold

by setting a quantile for the probability density, however for sufficiently large quantiles

there are numerical issues estimating these thresholds. Therefore using EVT they

avoid these numerical issues.

2.4 Our Approach

In this chapter we have discussed three novelty detection approaches applied to

jet engine data. The three approaches use vibration data, which is preprocessed

and grouped into speed bins. These approaches have two notable limitations: they

all require labelled data and second, the preprocessing of the data loses important
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temporal information.

In this section we will give a brief description of our approach to identifying

abnormal engine behaviour. We will adopt an outlier detection approach. In this

paradigm we do not assume that the samples are labelled as normal, instead we

assume there are outliers present in our data. We will therefore adopt robust statistical

methods (Huber, 2011) to model the engine data. We will focus on the Vibration

Survey manoeuvre, which we will extract using the classification algorithm given in

Chapter 4. By comparing across the Vibration Survey manoeuvres instead of the

Pass-Off tests, we should obtain more consistent results. We will use functional data

analysis techniques (Ramsay and Silverman, 2005) to identify abnormal temperature

behaviour with respect to the engine speed. We do not pre-process the data, instead

we aim to use the temporal information to identify outliers.



Chapter 3

Functional Data Analysis

3.1 Introduction

Functional data analysis (FDA) is a popular tool for modelling and analysing time

series data. The area has grown rapidly over the last 20 years due to the increase in

sensor data collection. The sensor data is called functional if it is believed to arise

from an underlying process. For example in Figure 3.1.1 we have two functional data

examples. First we have temperature measurements from 35 cities in Canada over

a year. We can see that there is a clear process where temperatures increase over

summer and decrease over winter. The second example contains measurements of the

lower lip of 20 people during the pronunciation of the word ‘bob’. Again there is an

underlying process of saying the word ‘bob’. The FDA methodology is well suited to

these types of data as we treat the time series as discrete observations from a single

function rather than a sequence of observations. More details about the types of

functional data and applications is given by Ramsay and Silverman (2005).

27
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(a) Canadian Temperature dataset (b) Lip dataset

Figure 3.1.1: Plots of Canadian Temperature dataset containing temperature reading

over a year from 35 Canadian cities and Lip dataset of measurements of the lower lip

of 20 people during the pronunciation of the word ‘bob’.

In this chapter we will discuss four important areas of FDA: Functional Principal

Component Analysis (FPCA), Functional Linear Regression (FLR), Functional Depth

and Functional Outlier Detection. FPCA is an extension of classical Principal Component

Analysis (PCA) for functional data. FPCA can give a low-dimensional representation

for a set of curves. We will use FPCA representations in the classification algorithm in

Chapter 4, and a robust FPCA model in Chapter 6. In Section 3.2 we shall introduce

PCA and the extension to FPCA.

Functional Linear Regression (FLR) is a popular regression model for functions.

In the model one or both predictor and response variables can be functions. We will

show using a double basis expansion approach by Ramsay and Dalzell (1991) that

the FLR problem can be reduced to a multivariate regression problem. We shall also

describe some extensions to the model. A robust extension of FLR will be given in

Chapter 6 in which the predictor and response are both functions.
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We will introduce Functional Depth (FD) and describe a few of the depth functions

in the literature. The notion of depth was originally developed as a way of ordering

multivariate data, but has been extended to functional data. Functional depth can be

used in a variety of ways including outlier detection and classification (Wang et al.,

2016). We will use FD to identify outliers in Chapter 7 and as a classification tool in

Chapter 8. Lastly, we will discuss outlier detection approaches for functional data. A

majority of these approaches use functional depth. We will compare these approaches

to our outlier detection model in Chapter 7.

3.2 Functional Principal Component Analysis

Functional Principal Component Analysis (FPCA) is one of the most popular methods

for understanding and exploring functional data. The first main application of FPCA,

is dimensionality reduction; mitigating against the curse of dimensionality. The

second application is to highlight modes of variation, which can be investigated further

to uncover useful patterns in the data. We will give an introduction into FPCA

including the formulation of FPCA, and the classical results. There will also be a

discussion on how FPCA can be applied in practice using the Basis method (Ramsay

and Silverman, 2005).

We will focus on classical FPCA and briefly discuss a few extensions. The literature

in this area is vast and varied (Shang, 2014), so to simplify matters we will focus

on the case of parametric methods for regularly sampled data. There are non-

parametric approaches such as those discussed by Ferraty et al. (2012) and methods
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for longitudinal data as discussed by Yao et al. (2005).

We will start by looking at Principal Component Analysis (PCA), which is a

popular dimensionality reduction tool for multivariate data. PCA is a data-driven

projection method that transforms a set of variables (possibly correlated) to a smaller

set of variables that are uncorrelated. The uncorrelated random variables formed using

PCA can retain a large amount of the information in the original variables. FPCA is

the functional extension of PCA. As expected there is a nice symmetry between PCA

and FPCA. In particular both methods have two interesting derivations. By first

looking at PCA then FPCA, the formulation and intuition can be shown to follow

naturally; making it easier to understand the ideas behind FPCA.

3.2.1 Principal component analysis

Let X = (X1, ..., Xp) be a vector of p zero-mean random variables with covariance

matrix Σ. Let x = (x1, ..., xn) be n observations from X, where xi = (xi1, ..., xip)

for i = 1, ..., n. PCA finds a new set of independent random variables (Z1, ..., Zp)

where Zk =
∑p

j=1 αkjXj is the k-th projection, and αk = (αk1, ..., αkp) is the k-th

principal component (PC). The PC α1 is chosen such that Z1 has the highest variance.

Subsequently PCs αk are chosen to maximise the variance of the projections Zk under

the condition that αk and αl are orthogonal for k 6= l.

We will refer to α̂k as the estimated k-th principal component. The principal

component α̂1 is then chosen such that the sample variance of the projections z1j =

α̂T1 xj are maximised for j = 1, ..., n. This can be condensed into matrix form z1 =

(z11, ..., z1n) so z1 = α̂T1 x, where α̂T1 denotes the transpose of α̂1. More formally, the
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PCs α̂k are chosen so

α̂k = arg max
αT
k αk=1

αTk Σ̂αk such that αTk αl = 0 ∀l 6= k,

where Σ̂ = 1
n
xTx is the sample covariance matrix.

Lemma 3.2.1. Let x = (x1, ..., xn) be n independent realisations of a p dimensional

vector X corresponding to random variables (X1, ..., Xp), with sample covariance matrix

Σ̂. Denote z11, ..., z1n as the projection vectors of the points x1, ..., xn with respect to

the first principal component α̂1, and the normalisation condition that α̂T1 α̂1 = 1.

Then the first principal component α̂1 corresponds to the eigenvector of Σ̂ with the

largest eigenvalue.

Proof. Let α̂1 be the vector that maximises the variance: var[α̂T1 x] = α̂T1 Σ̂α̂1. Using

a Lagrange multiplier λ on the normalisation condition, we want to maximise the

objective function

L = α̂T1 Σ̂α̂1 − λ(α̂T1 α̂1 − 1).

Differentiating with respect to α̂1 gives

Σ̂α̂1 − λα̂1 = 0→ (Σ̂− λI)α̂1 = 0,

where I is a p× p identity matrix, so α̂1 is an eigenvector of Σ̂ with eigenvalue λ.

Next we will show that λ is the largest eigenvalue of Σ̂. In other words the

eigenvector with the largest eigenvalue maximises the sample variance of the projected

points z1. This can be shown as follows:
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var(z1) = α̂T1 Σ̂α̂1 = α̂T1 λα̂1 = λα̂T1 α̂1 = λ.

We have therefore found that α̂1 is equal to the eigenvector of the sample covariance

matrix Σ̂ with the largest eigenvalue λ.

We can extend this result to show that the k-th principal component α̂k corresponds

to the eigenvector of Σ̂ with the i-th largest eigenvalue λi, the proof follows a similar

argument, which again uses Lagrange multipliers. Note that as α̂k has been normalised

for all i = 1, ..., p, the variance of zi is var(zi) = λi. The total variance is given by∑p
i=1 λi.

The main aim of PCA is for dimensionality reduction: to determine a new set of

random variables that captures a large proportion of the variance in the original set

of random variables. Taking the first M principal components where M � p, can

be sufficient in capturing the majority of the variance in the data. There are various

ad-hoc methods for choosing M , for example find M such that the first M principal

components captures 90% of the variation, calculated using

∑M
i=1 λi∑p
i=1 λi

> 0.9.

Minimising the Squared Error

The PCs have been shown to maximise the sample variance of the projections zi.

However the PCs can also be shown to form a basis representation, which gives

minimal squared error between the observations and the basis representations. Let
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u = (u1, ..., up) be an orthonormal basis such that

xi =

p∑
j=1

cijuj,

with constants cij ∈ R. We want to find the best possible M -term estimate x̂
(M)
i for

each of the xi, where x̂
(M)
i is formed by taking a linear combination from a subset of

the orthonormal basis u1, ..., uM , for some M < p:

x̂
(M)
i =

M∑
j=1

cijuj.

For a fixed choice of orthonormal vectors uj, the choice of vector ci = (ci1, ..., cip) that

minimises the reconstruction error can be shown to be ci = uTxi.

We want to minimise the reconstruction error

1

n

n∑
i=1

||xi − x̂(M)
i ||2. (3.2.1)

The reconstruction can be expanded:

1

n

n∑
i=1

||xi − x̂Mi ||2 =
1

n

n∑
i=1

p∑
j=M+1

||cijuj||2

=
1

n

n∑
i=1

p∑
j=M+1

c2
ij

=
1

n

n∑
i=1

p∑
j=M+1

uTj xix
T
i uj

=

p∑
j=M+1

uTj Σ̂uj.

where Σ̂ is the sample covariance matrix defined earlier.
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To minimise uTj Σ̂uj we need to choose uj to be the eigenvectors of the sample

covariance matrix Σ̂ with the smallest eigenvalues, this can be easily proven in a

similar fashion to Lemma 3.2.1. Therefore the two derivations are equivalent.

3.2.2 Functional Principal Component Analysis

FPCA is the functional extension of PCA, and the formulations are very similar.

The notion of FPCA was first envisaged by Tucker (1958) and Rao (1958), and has

been popularised by Ramsay and Silverman (2005). The aim of FPCA is to capture

the variance between functions rather than between points. In this section we will

derive the FPCA formulation and show that the functional principal components

are equal to the eigenfunctions of the covariance operator. We will then prove two

important properties of FPCA. The first property is that the eigenfunctions give the

best representation of the data in regards to maximising the variance captured. The

second property is that the M eigenfunctions (those with the largest eigenvalues)

give the best reconstruction of the observed curves over all possible M dimensional

mappings with regards to squared error. These properties highlight the dimensionality

reduction capabilities of FPCA. We shall then outline the estimation of the functional

principal components using the Basis approach Ramsay and Silverman (2005) and we

will briefly describe three extensions to the classical model.

We will assume throughout that the mean of the underlying process is zero.

This simplifies computation however in reality the mean function also needs to be

estimated. There are consistent estimators for the mean, for example Li and Hsing

(2010). The quality of the estimators will naturally effect the resulting analysis and is
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an area that has an impact in almost all areas of functional data analysis. However,

since standard practice in the literature is to assume the processes have mean zero,

we will continue that tradition.

Deriving Functional PCA

In the following sections we will assume the observed curves are defined on the vector

space L2(I), which is the Hilbert space of square integrable functions on the compact

interval I with the inner product 〈f, g〉 =
∫
I
f(t)g(t)dt for functions f, g ∈ L2(I).

Let X(t) be a square integrable stochastic process on a compact interval I, with

covariance function C(s, t) = cov{X(s), X(t)} for all s, t ∈ I. We are then given n

observed curves x1(t), ..., xn(t) which we assume to follow the stochastic process X(t),

with sample covariance

Ĉ(s, t) =
1

n

n∑
i=1

xi(s)xi(t), (3.2.2)

and sample covariance operator

(Ĉf)(s) =

∫
I

Ĉ(s, t)f(t)dt, for f ∈ L2(I). (3.2.3)

In the following sections we will assume that the estimated covariance function,

eigenvalues and eigenfunctions converge almost surely to the true versions. There is

a vast literature to measure the quality of estimators within FPCA, with Dauxois

et al. (1982) showing that under regulatory conditions the estimated eigenfunctions

converge to the true eigenfunctions as the number of sample time series increases.

The firstM Functional Principal components (FPCs) φm form = 1, ...,M maximise
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the average variance captured from the observed curves:

1

n

n∑
i=1

< φm, xi >
2=

1

n

n∑
i=1

(∫
I

φmxidt

)2

.

subject to ||φm||2 = 1 and < φm, φk >= 0 for all k < m. In Lemma 3.2.2 we will show

that this is equivalent to maximising 〈φ, Ĉφ〉.

Lemma 3.2.2. Let x1(t), ..., xn(t) be independent realisations of the stochastic process

X(t) with sample covariance operator Ĉ. Then the first functional PC φ1 maximises

both 〈φ, Ĉφ〉 and 1
n

∑n
i=1 < φ1, xi >

2.

Proof. To prove the lemma we simply need to show that the two expressions are equal.

< φ, Ĉφ > =

∫
I

φ(t)Ĉφ(t)dt

=

∫
I

φ(t)

(∫
I

Ĉ(t, s)φ(s)ds

)
dt

=

∫
I

∫
I

φ(t)Ĉ(t, s)φ(s)dsdt

=

∫
I

∫
I

φ(t)

(
1

n

n∑
i=1

xi(t)xi(s)

)
φ(s)dsdt

=
1

n

n∑
i=1

∫
I

φ(t)xi(t)dt

∫
I

xi(s)φ(s)ds

=
1

n

n∑
i=1

(∫
I

φ(t)xi(t)dt

)2

=
1

n

n∑
i=1

< φ, xi >
2 .

We can take the sum outside of the integrals using Fubini’s theorem, which holds as

we assume φ ∈ L2(I) so is continuous on the interval I. The expressions are therefore

the same so using either statement will give the same FPCs.
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Next we will show that the first FPC φ1 is the eigenfunction of the empirical

covariance function (3.2.2) with the largest eigenvalue λ1. The result is given in

Lemma 3.2.3.

Lemma 3.2.3. Let x1(t), ..., xn(t) be independent realisations of the stochastic process

X(t), then the first FPC φ1 is the eigenfunction of the covariance operator Ĉ with the

largest eigenvalue.

Proof. Using the Lagragian multipler ρ on the normalisation condition, we want to

find the first FPC φ1 that maximises the objective function J :

J =< φ, Ĉφ > +ρ(1− < φ, φ >) =

∫
I

φ(t)Ĉφ(t)dt+ ρ(1−
∫
I

φ(t)2dt)

=

∫
I

(φ(t)Ĉφ(t)− ρφ(t)2)dt+ ρ

=

∫
I

(
φ(t)

∫
I

Ĉ(t, s)φ(s)ds− ρφ(t)2

)
dt+ ρ

=

∫
I

∫
I

φ(t)Ĉ(t, s)φ(s)dsdt− ρ
∫
I

φ(t)2dt+ ρ.

Differentiating J with with respect to φ and equating to zero, will give the function

φ that maximises J . To do so we need to use functional derivatives, details of which

can be found in (Bliss, 1925).

Write J = J1 − ρJ2 + ρ where

J1 =

∫
I

∫
I

φ(t)Ĉ(t, s)φ(s)dsdt and J2 =

∫
I

φ(t)2dt.

If we add an arbitrarily small perturbation δφ to a functional Ji we can expand

Ji[φ+ δφ] using a Taylor expansion in powers of δφ
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Ji[φ+ δφ] = Ji[φ] +

∫
I

Γ1i(t)δφ(t)dt+ · · · .

where Γ1i represents the Taylor expansion coefficients for the first order term of Ji.

In fact Γ1i is the first functional derivative of Ji with respect to φ

δJi
δφ(t)

= Γ1i(t).

For J2 it is clear that Γ12 = 2φ(t). To find the functional derivatives of J1 we note

that Ĉ(s, t) is a symmetric kernel so Ĉ(s, t) = Ĉ(t, s) we can therefore show that

Γ11 =
δJ1

δφ(t)
= 2

∫
I

Ĉ(s, t)φ(s)ds.

Combining the two results we get that

δJ

δφ(t)
=

δJ1

δφ(t)
− ρ δJ2

δφ(t)

= 2

∫
I

Ĉ(s, t)φ(s)ds− 2ρφ(t) = 0.

Dividing out the 2, we see the functional derivative of J is an eigenequation and

therefore φ must be an eigenfunction with eigenvalue ρ.

Next we need to show that φ1 corresponds to the eigenfunction with the largest

eigenvalue

< φ1, Ĉφ1 >=< φ1, λ1φ1 >= λ1 < φ1, φ1 >= λ1

where λ1 is the eigenvalue corresponding to eigenfunction φ1. By Lemma 3.2.2 φ1 has

the largest eigenvalue λ1.
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Dimensionality Reduction using Functional PCA

We will next show that the expansion of the first M FPCs φi for i = 1, ...,M gives

the best approximation of the observed curves in terms of L2 error. This property

makes Functional PCA a powerful dimensionality reduction tool. First, we need to

show that the eigenfunctions of the covariance function form a basis for the stochastic

process X(t). To do so we will use the Karhunen-Loéve theorem which states that

the observed curves can be written as a linear combination of the eigenfunctions.

Theorem 3.2.4 (Karhunen-Loéve). Let (Ω, F, P ) be a probability space, where Ω is

the sample space, with F being a σ algebra on Ω and probability measure P . Let X :

I×Ω→ R be a centred mean-square continuous stochastic process with X ∈ L2(I×Ω).

Then the eigenfunctions {φk : k = 1, 2, ...} of the covariance function C of X forms

an orthonormal basis of L2(I), so X can be decomposed into a sum of eigenfunctions

X(t) =
∞∑
k=1

Wkφk(t) (3.2.4)

where W1,W2, ... are uncorrelated random variables, where Wk =< Xt, φk > and

var(Wk) = λk.

The Karhunen-Loéve theorem shows that X can be decomposed into a linear

combination of eigenfunction of the covariance function C. We can therefore write

the observed curves as
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xi(t) =
∞∑
j=1

fijφj(t)

where fij is the principal component score
∫
I
xi(t)φj(t)dt.

Next we will show that the firstM eigenfunctions give the bestM -basis approximation

to the observed curves. The M -basis approximation is given by

x̂
(M)
i (t) =

M∑
j=1

fijφj(t). (3.2.5)

The fitting criterion which is sometimes known as the error criterion, is given by:

1

n

n∑
i=1

||xi − x̂(M)
i ||2 =

1

n

n∑
i=1

∫
I

[xi(t)− x̂(M)
i (t)]2dt. (3.2.6)

Lemma 3.2.5. Let x1, ..., xn be n independent realisations of a stochastic process X

defined over a compact interval I, with covariance operator C. Then the basis of

eigenfunctions of the covariance operator C minimises the fitting criterion.

Proof.

||xi − x̂(M)
i ||2 =

∫
I

[x(t)− x̂(M)
t ]2dt

=

∫
I

[
∞∑
j=1

fijφj(t)−
M∑
j=1

fijφj(t)

]2

dt

=

∫
I

[
∞∑

j=M+1

fijφj(t)

]2

dt

=

∫ ∞∑
j=M+1

(fijφj(t))
2dt by orthogonality

=
∞∑

j=M+1

f 2
ij

∫
I

φj(t)
2dt

=
∞∑

j=M+1

f 2
ij
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the fij’s are minimised by taking the eigenfunctions with the smallest eigenvalues,

so we pick the M eigenfunctions with the largest eigenvalues to minimise the fitting

criterion (3.2.6).

Estimating the Functional Principal Components

There are two main parametric methods for estimating the FPCs (Ramsay and

Silverman, 2005). The discretisation approach uses PCA on the time series to find

eigenvectors and then apply some smoothing to get an approximation of the FPCs.

The basis approach uses some pre-defined basis to define the eigenfunctions and the

observed curves, reducing the eigenfunction problem into an eigenvector problem. We

will focus on the basis function approach. To find the eigenfunctions of the covariance

operator, we can choose some basis functions {θk}Kk=1 where K is a pre-set number of

basis functions. We can then write each of the observed curves xi as

xi(t) =
K∑
k=1

aikθk(t).

Define the matrix x(t) = (x1(t), ..., xn(t)) and the vector of orthogonal basis

functions θ(t) = (θ1(t), ..., θK(t)). We can then write x(t) = Aθ(t) where A is a

n×K matrix. The covariance function is then

Ĉ(s, t) =
1

n
xT (s)x(t) =

1

n
θ(s)TATAθ(t)

We next define the order K symmetric matrix W such that Wij =
∫
I
θi(t)θ

T
j (t)dt

where I is the interval the functions are defined on. Note if we choose the basis
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functions to be orthogonal then W is equal to the identity matrix.

Now suppose we can write the eigenfunctions φ of Ĉ as a linear combination of

{θk}Kk=1:

φ(s) =
K∑
k=1

bkθk(s) = θ(s)T b (3.2.7)

for constants bk ∈ R and b = (b1, ..., bK).

We can then rewrite the eigenequation using decomposition (3.2.7)

∫
I

C(s, t)φ(t)dt = λφ(s) = λθ(s)T b. (3.2.8)

We can expand the LHS of (3.2.8) to obtain

∫
I

C(s, t)φ(t)dt =

∫
I

1

n
θ(s)TATAθ(t)θ(t)T bdt = θ(s)T

1

n
ATAWb. (3.2.9)

Equating (3.2.8) and (3.2.9) and cancelling out θ(s)T we get the following equality

1

n
ATAWb = λb. (3.2.10)

We also have the condition that ||φ||2 = 1 so

1 = ||φ||2 =

∫
I

(bT θ(s))(θ(s)T b)ds = bT
(∫

I

θ(s)θ(s)Tds

)
b = bTWb.

Likewise for two distinct eigenfunctions φi and φj they are orthogonal

< φi, φj >= 0 iff bTi Wbj = 0,
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where bi and bj are the coefficients of the basis expansion of φi and φj.

In (3.2.10) we have an eigenequation with a nonsymmetric matrix. Therefore we

will apply a transformation to form an eigenequation that has a symmetric matrix,

which simplifies the calculation of the eigenfunctions.

Note that W is a diagonal matrix as the basis functions are orthogonal. We can

set U = W
1
2 b then we rewrite (3.2.10) to obtain

1

n
W

1
2ATAW

1
2U = λU. (3.2.11)

Solving the eigenequation (3.2.11) we can find U and then calculate b = W− 1
2U .

To apply the basis method we first need to choose a basis. The choice of basis will

have an affect on the analysis. We will focus on two of the most popular bases; the

Fourier basis and the B-Spline basis. A Fourier basis consists of sines and cosines of

increasing frequencies:

1, sin(ωt), cos(ωt), ..., sin(mωt), cos(mωt), ...

where ω = 2π
P

for period P .

There are a few useful properties of using a Fourier basis. First, it has great

computational properties when the observations are equally spaced, as Fast Fourier

Transforms (FFT) are of order O(N log(N)), where N is the length of the time series.

More details on FFT can be found in (Brigham, 1988). It is a natural choice for

modelling periodic data, but can perform badly for non-periodic data.

A B-spline basis consists of polynomial segments joined at points known as knots;
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the segments are optimised to ensure smoothness at the knots. In a B-Spline basis

we can control the order of the polynomials, with order 3 being sufficient in most real

world applications (de Boor, 2001). We can also choose the location of the knots but

as the data is already discretised it makes sense to set the knots as the time points of

observations.

3.2.3 Extensions to FPCA

In this section we discuss three extensions of the FPCA model.

Smooth FPCA

In classical FPCA we assume that we observe time series x1:T = [x(t1), ..., x(tT )]

at time points 0 ≤ t1 < · · · < tT ≤ 1. However if the time series contains noise

this can affect the FPCA estimates. Typically we assume the observed time series

y1:T = [y(t1), ..., y(tT )] contains Gaussian noise therefore y(tj) = x(tj) + εj where εj

is random noise with E(εj) = 0 and var(εj) = σ2. The noise in the data effects the

estimation of the covariance function, and the subsequent eigenfunctions calculated.

To overcome this issue the FPCs are typically smoothed using a roughness penalty.

The ridge regression approach (Rice and Silverman, 1991) uses a roughness penalty

||D2φj|| where D is the differential operator. An alternative approach by Silverman

(1996), incorporates the penalty into the norm, which has been proven to be consistent

and contains a number of useful properties as shown by Qi and Zhao (2011).
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Multivariate FPCA

Multivariate FPCA is an extension of FPCA for multivariate functional data. Each

observation is believed to come from a multivariate stochastic process. Applying

univariate FPCA for each random function doesn’t capture the cross correlation

between the random functions. Multivariate FPCA methods that capture this cross

correlation should give better estimates of the eigenfunctions and give smaller dimensional

representations.

One approach by Ramsay and Silverman (2005) concatenates the multiple functions

into one function and then applies univariate FPCA, this approach assumes the

variability of the different functions are similar and that they have measurements on

the same units. However this approach can give poor estimates if the functions have

different scales of variability. Chiou et al. (2014) calculate normalisation constants

that aim to captures the cross-correlation between functions, and ensure the functions

are defined on the same scale. Happ and Greven (2018) outline a multivariate

Karhunen-Loéve theorem. They define a relationship between the multivariate and

the univariate eigenfunctions, enabling the multivariate FPCs to be estimated easily.

Robust FPCA

Classical estimators assume the data arises from a certain distribution or model.

However if the distribution is misspecified these estimators can give poor estimates.

The motivation behind robust estimators is to obtain reasonable estimates under

the assumed distribution, whilst being ‘robust’ to small deviations from this model.

Additionally, large deviation should not cause arbitrarily large errors.
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There are two concepts commonly used to assess a robust estimator. First, is

the efficiency which can be defined in terms of relative efficiency with respect to a

classical counterpart, or absolute efficiency with respect to an underlying distribution.

Second, is the breakdown point which assesses the proportion of the data that can be

arbitrarily corrupted before the estimator gives arbitrarily large values.

Definition 3.2.6 (Efficiency). Let TR and TC be unbiased robust and classical estimators

respectively for the same parameter θ then the relative efficiency is given by:

e(TR, TC) =
E[(TR − θ)2]

E[(TC − θ)2]
=
var(TR)

var(TC)
.

The relative efficiency gives the ratio of variance between two estimators. The absolute

efficiency is given by:

e(TR) =
1/I(θ)

var(TR)
,

where I(θ) is the Fisher Information. The absolute efficiency can be shown to be less

than or equal to 1 using the Cramér-Rao bound. The absolute efficiency is simply the

minimum possible variance for an unbiased estimator divided by the variance of the

estimator TR.

Definition 3.2.7 (Breakdown point). Let x1, ..., xn be samples in the set Z and T (Z)

is an estimator. If m < n samples are corrupted, giving a corrupted set Z ′, we can

define

bias(m;T, Z) = supZ′(||T (Z ′)− T (Z)||),
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where the supremum is over all possible collections Z ′. Then the breakdown point of

T at Z is given by

ν(T, Z) = min{m/n; bias(m;T, Z) =∞}. (3.2.12)

The breakdown point is used to determine the sensitivity of an estimator in the

presence of partially corrupted data. It determines the maximum proportion of the

data that can be corrupted before the estimator gives an arbitrarily large error.

We defined Functional principal component analysis (FPCA), which gives the M -

dimensional projection of the data that maximises the sample variance. The objective

function of FPCA uses a square loss function, which is known to be highly influenced

by outliers (Huber, 2011). In recent years robust approaches have been developed

to minimise the influence of outliers. There are two approaches. The first is to use

robust estimates of the covariance function, then taking the eigenfunctions of the

robust covariance function (Locantore et al., 1999). An alternative approach is to

use Projection Pursuit (PP) (Hyndman and Ullah, 2007; Sawant et al., 2012; Bali

et al., 2011; Boente and Salibian-Barrera, 2015). The PP approach aims to find

low dimensional projections of high-dimensional points which maximises a certain

objective function. This approach avoids the curse of dimensionality and is able to

ignore irrelevant features. However it requires a high amount of computing time. A

special case of PP is PCA, which aims to find projections that maximise the variance.

We will use the PP approach by Bali et al. (2011) in Chapter 6. A description of the

PP approach is given below.
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The objective of FPCA is to find projections that maximise the variance. These

projections are shown to be the eigenfunctions of the covariance operator. Bali et al.

(2011) replaces the variance with an M-estimator of scale σ̃n. To estimate this scale

value they use the Bi-square loss function:

χc(y) = min{3(y/c)2 − 3(y/c)4 + (y/c)6, 1},

where c is a tuning parameter. The M-estimator of scale σ̃n is then a solution to

1

n

n∑
i=1

χc

(
xi − µ̃n
σ̃n

)
= δ,

where µ̃n is a robust estimator of location and c = 1.56 and δ = 0.5 are tuning

constants, to ensure Fisher-consistency at the Normal distribution with a 50% breakdown

point. A re-weighting algorithm can be used to estimate σ̃n:

σ̃(k+1)
n =

1

mδ

n∑
i=1

w

(
xi − µ̃n
σ̃

(k)
n

)
(xi − µ̃n)2,

where w(x) = χc(x)/x2 for x 6= 0.

To apply PP they use the CR algorithm by Croux and Ruiz-Gazen (1996), which

applies PP for multivariate data. Bali et al. (2011) take N equidistant points on each

curve xi to obtain vector ~xi and then apply the CR algorithm on the ~xi vectors. Let

~xi be location centred then at step k−1 the CR algorithm returns (k−1)-th direction

α̂k−1 and then update

~x
(k)
i = ~x

(k−1)
i − (α̂T(k−1)~x

(k−1)
i )α̂(k−1),
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for 1 ≤ i ≤ n and k > 1. The CR algorithm searches for the k-th direction considering

n trial directions in the set

An,k =

{
~xk1
||~xk1||

, ...,
~xkn
||~xkn||

}
.

Then the k-th direction is given by

α̂k = arg max
a∈An,k

σ̃n

(
aT~x

(k)
1 , ..., aT~x(k)

n

)
.

It has been shown by Croux and Ruiz-Gazen (1996) that the M-estimator of scale

has a 50% breakdown point and can obtain high levels of efficiency by decreasing

the parameter δ. Note that the CR algorithm can fail when the sample size n is low

relative to number of measurement points N , prompting a modified algorithm called

GRID (Croux et al., 2007).

3.3 Functional Linear Regression

There are three types of functional linear regression models: Scalar-on-function - for

scalar response and functional predictors, function-on-scalar - for functional response

and scalar predictors and function-on-function - response and predictor are functions.

In this section we will focus on the function-on-function models. A comprehensive

review of each of these areas is given in Morris (2015).

In this section we will introduce the classical Functional Linear Regression model

for functional responses. The classical FLR model by Ramsay and Dalzell (1991)

models the relationship between predictor xi(t) and response yi(t) as:



CHAPTER 3. FUNCTIONAL DATA ANALYSIS 50

yi(t) = α(t) +

∫
I

xi(s)β(s, t)ds+ εi(t), (3.3.1)

where α(t) is the intercept function, β(s, t) is the regression function and εi(t) is the

error process. For a fixed t, we can think of β(s, t) as the relative weight placed on

xi(s) to predict yi(t). For simplicity we will assume the mean functions µX(t) = 0

and µY (t) = 0 which thereby means α(t) = 0.

FLR in the function-on-function case can be modelled parametrically (Yao et al.,

2005; Chiou et al., 2016) or nonparametrically (Ferraty et al., 2012; Ivanescu et al.,

2015; Scheipl et al., 2015). The nonparametric model uses a kernel estimator. In

this section we will focus on the parametric approach, which models the regression

function in terms of pre-defined basis functions.

We will represent xi(t) and yi(t) in terms of (M,K) pre-chosen basis functions

φXj (t), φYj (t) respectively:

x
(M)
i (t) =

M∑
m=1

zimφ
X
m(t) and y

(M)
i (t) =

K∑
k=1

wikφ
Y
k (t).

where zim, wik ∈ R.

We define φX(t) = [φX1 (t), ..., φXM(t)], φY (s) = [φY1 (s), ..., φYK(s)], z
(M)
i = [zi1, ..., ziM ]

and w
(K)
i = [wi1, ..., wiK ]. We will then model the regression surface using a double

basis expansion (Ramsay and Silverman, 2005):

β(s, t) =
M∑
m=1

K∑
k=1

Bkmφ
X
m(s)φYk (t) = φX(s)TBMKφY (t), (3.3.2)

for an M ×K regression matrix BMK . We can then write:
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yi(t) = z
(M)
i BMKφY (t) + εi(t). (3.3.3)

Letting εi(t) = qiφ
Y (t) we can reduce Equation (3.3.3) to:

w
(K)
i = z

(M)
i BMK + qi. (3.3.4)

This parametrisation of the residual function is also used by Chiou et al. (2016).

We can then estimate BMK using standard multivariate regression methods typically

assuming Gaussian qi.

We have shown the FLR problem can be reduced into a LR problem with multiple

responses. Typically the FPCA basis for X and Y is chosen in the FLR problem.

This ensures only a small number of basis functions are required and can help obtain

consistency results. Chiou et al. (2016) use a standard Least Squares estimator, which

they prove to be consistent.

3.3.1 Historical FLR

In the classical FLR model (3.3.1) we integrate over all time points. However we may

want to make predictions using only past time points. For example in an engine test

the current engine behaviour should only depend on the previous engine behaviour.

The historical FLR model by Malfait and Ramsay (2003) looks at this problem in

the general setting. The model incorporates a lag threshold δ, which imposes that

values more than δ time units back will have no effect in the regression model. Let

s0(t) = max{0, t− δ} then the historical FLR model is given by:
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yi(t) =

∫ t

s0(t)

xi(s)β(s, t)ds+ εi(t), for t ∈ [0, 1], (3.3.5)

Let θ(s, t) = (θ1(s, t), ..., θK(s, t)) beK basis functions, which we will use to approximate

the regression function β(s, t):

β̂(s, t) = Bθ(s, t), (3.3.6)

where B is a K-dimensional vector of coefficients. We can then define

Ψ(t) =

∫ t

s0(t)

x(s)θ(s, t)ds (3.3.7)

where x(s) = (x1(s), ..., xn(s)). We can then formulate the problem as

yi(t) =
K∑
k=1

Bik

∫ t

s0(t)

xi(s)θk(s, t)ds+

∫ t

s0(t)

xi(s)εa(s, t)ds+εi(t) =
K∑
k=1

BikΨik(t)+ε′i(t),

(3.3.8)

where εa(s, t) = β(s, t) − β̂(s, t) is the approximation error and ε′i(t) is the residual

error. Optimal B will be a solution to

∫ 1

0

ΨT (t)Ψ(t)dt ·B =

∫ 1

0

ΨT (t)y(t)dt (3.3.9)

which is evident from Equation (3.3.8). Malfait and Ramsay (2003) find an approximate

solution to Equation (3.3.9) by using a finite elements method over a finite grid of

points.

This model requires a certain type of basis function making it less flexible than

the classical FLR model. Furthermore the classical FLR model can be reduced to a
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LR problem and uses a potentially small number of basis functions. On the other

hand the historical FLR model requires finite elements methods to be used, which

scale with the size of the data. We wanted to use this model in our regression model

in Chapter 6, but were unable to work around these limitations.

A special case of the Historical FLR model, is the Concurrent Functional dependent

variable model (CFDV) (Ramsay and Silverman, 2005), which considers function on

function dependence, where the response function at time t only depends on the

predictor functions at time t. Under the CFDV model the functions are assumed to

have the following relationship:

yi(t) = β(t)xi(t) + εi(t). (3.3.10)

This model is more general than a linear regression model as the regression function

β(t) is a function of time. However the model is unable to capture temporal relationships

across time unlike the classical FLR model.

3.3.2 Model Selection for FLR

The FLR model relies on parameters M and K, there are a number of ways to choose

these terms when we use FPCA bases. Chiou et al. (2016) choose the number of

components that capture 95% of the variance. This is a commonly used rule of

thumb in the FPCA literature (Shang, 2014). However the estimation of β(s, t) also

depends on M and K and therefore should be incorporated into the choice of these

terms. Yao et al. (2005) outline two ways of estimating M,K. The first is a leave-
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one-curve-out cross validation approach. The second suggestion is an AIC criterion.

However both methods focus on X and Y individually. Matsui (2017) suggests a

Bayesian Information Criterion (BIC) to choose M,K. Matsui (2017) outlines a BIC

procedure for the Quadratic FLR, which is an extension of the FLR model containing

an additional quadratic term. In Section 6.2 we use the formulation by Matsui (2017)

to determine a BIC model selection procedure for the FLR problem and give a robust

BIC extension.

3.4 Functional Depth

Depth is a non-parametric tool for making inferences of multivariate data (Zuo and

Serfling, 2000). Depth functions order a set of data, which can be used to determine

quantiles. The idea has been extended to order functional data (Nieto-Reyes and

Battey, 2016). We will use depth in Chapter 7 to identify outliers and as a classification

tool in Chapter 8.

Depth functions order a set of data points with respect to the underlying probability

distribution. The depth function gives a centre-outward sorting. Points close to the

centre of the data distribution are given a higher depth, and points farther away are

given a lower depth. However this ordering does not consider the direction, so two

points equidistant from the centre but in opposite directions are given the same depth

value.

The first and most intuitive depth function for multivariate data was the Halfspace

depth (HD), introduced by Tukey (1974). The HD assigns a depth value to a point z
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Figure 3.4.1: Scatter plot of samples from a multivariate normal distribution, with

point in red closer to the centre than the green point.

with respect to samples x = (x1, ..., xn) by determining a hyperplane that splits the

point z from the majority of samples x. The depth is then given by the number of

points that lie within the halfspace containing z. More formally, let x1, ..., xn ∈ Rk

be samples of a random variable X with cumulative distribution function Fx then the

Halfspace depth for a sample z ∈ Rk is given by

HD(z, Fx) =
1

n
min

u∈Rk,||u||=1
#{xi, i = 1, ..., n : uTxi ≥ uT z}. (3.4.1)

In Figure 3.4.1, we have an example of data samples from a bivariate Gaussian

distribution. We can see that the sample highlighted in green will have a small depth

value and the sample in red is closer to the centre so will have larger depth. In this

scenario the idea of depth is very intuitive.

Zuo and Serfling (2000) outline 4 properties for a multivariate depth function,
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which have been extended by Nieto-Reyes and Battey (2016) to give a statistical

definition of depth for functional data. They state a functional depth should satisfy

6 properties.

Definition 3.4.1 (Functional Depth). Let B be a Borel σ-algebra of a measure space

H over sample space Ω. We assume there exists a metric d such that (H, d) is a

separable metric space. As in Section 4.4 we will work in the Hilbert space defined

on the unit interval: H = L2([0, 1]). The random variable X : (Ω, B) → H has a

corresponding probability measure PX . Let P be the space of all probability measures

on B, then for z ∈ H the function D(·, ·) : H × P → R is a statistical functional

depth if

z 7→ D(z, PX) ∈ R,

satisfy the following 6 properties:

1. (Distance Invariance) D(f(x), Pf(X)) = D(x, PX) for any x ∈ H and f : H → H

such that d(f(x), f(y)) = afd(x, y) for any y ∈ H and af ∈ R. - This property

states that depth does not change up to a scaling factor. For example if the

functions are in Degrees Fahrenheit rather than Celsius, the depth values should

remain the same.

2. (Maximality at centre) For any p ∈ P which contains a unique centre of

symmetry θ ∈ H. This property states there exists a deepest point.

3. (Strictly decreasing with respect to the deepest point) For any p ∈ P such that

D(z, p) = maxx∈H D(x, p) exists, D(x, p) < D(y, p) < D(z, p) holds for any
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x, y ∈ H such that min{d(y, z), d(y, x)} > 0 and max{d(y, z), d(y, x)} < d(x, z).

This condition ensures that samples that belong to successively larger envelopes

around the deepest point, are assigned smaller depth values.

4. (Upper semi-continuity in x) D(x, p) is upper semi-continuous as a function of

x. In other words, for all x ∈ H and ε > 0 there exists a δ > 0 such that

supyD(y, p) ≤ D(x, p) + ε where y satisfies the condition d(x, y) < δ. This is a

technical condition, based on the fact that each depth is linked to a cumulative

distribution function.

5. (Receptivity to convex hull width across the domain) D(x, PX) < D(f(x), Pf(X))

for any x ∈ C(H, p) with D(x, p) < supyD(y, p) and f : H → H such that

f(y(v)) = α(v)y(v) for a certain α(v) ∈ (0, 1), where C(H, p) is the convex hull

of h with respect to p defined in Nieto-Reyes and Battey (2016). There may be

subsets of the interval I, where the functions exhibit little variability. This can

lead to different ranking arising from measurement error. The condition is that

the depth function gives more weight to regions of I with more variability when

assigning depth.

6. (Continuity in p) For all x ∈ H, p ∈ P and ε > 0 there exists δ(ε) > 0 such

that |D(x, q) − D(x, p)| < ε p-almost surely for all q ∈ P with dP (q, p) <

δ p-almost surely, where dP (·, ·) metricises the topology of weak convergence.

This condition ensures that asymptotically the empirical depth converges to the

population depth.

Nieto-Reyes and Battey (2016) suggest using these properties to choose the depth
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functions we use. Gijbels and Nagy (2017) highlight that these conditions can be

restrictive and unattainable for depth functions in practice and offer alternative

conditions. Next we give some examples of functional depths from L2([0, 1]) to R.

3.4.1 Fraiman Muniz depth

The Fraiman Muniz (FM) depth by Fraiman and Muniz (2001), takes the empirical

distribution Fn,t for sample x1(t), ..., xn(t) and calculates the depth at time t as

D(z(t)|x(t)) = 1− |0.5− Fn,t(z(t))|. Then the overall depth for z is given by

I =

∫ 1

0

D(z(t)|x(t))dt. (3.4.2)

3.4.2 Random Projection depth

Cuevas et al. (2007) outlines a random projection (RP) approach. In the RP approach

a random function a is used to project the functions xi:

< a, xi >=

∫ 1

0

a(t)xi(t)dt.

The projected values can be sorted using order statistics, which gives the depth value

with respect to projection a. They apply multiple projections then suggest averaging

over the depth values from each of the projections, to obtain the RP depth. Random

projections are an effective dimensionality reduction approach, which has been used

effectively in many applications. However in this context it is unclear whether the

RP depth satisfies the properties of a functional depth.
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3.4.3 h-modal depth

Cuevas et al. (2007), outlines the h-modal depth. For a Gaussian kernel G with

bandwidth h, the h-modal depth D(z|x, h) is given by

D(z|x, h) = E(G||z − x||) ≈ 1

n

n∑
i=1

G(||z − xi||). (3.4.3)

We will define || · || as the standard norm in L2. They suggest taking the bandwidth

h to be the 15th percentile of the empirical distribution of {||xi − xj||, i, j = 1, ..., n}.

Note that we are not trying to estimate the density, but the support so could use

a range of values of h as long as they are not too small. Nagy (2015) has proven

consistency results for the h-modal depth in the general case of Banach-valued data.

Nieto-Reyes and Battey (2016), shows that the h-modal depth satisfies condition 2 to

6 but not condition 1.

3.4.4 Band Depth

The Band depth (BD) was introduced by López-Pintado and Romo (2009), which

intuitively states a function z is central with respect to P if z is contained with high

probability inside the envelope of j copies of X.

Let the band:

B(x1, ..., xn) =

{
(t, y) : t ∈ I, min

i=1,...,n
xi(t) ≤ y ≤ max

i=1,...,n
xi(t)

}
.

We define Sj = {w : w ⊂ {x1, ..., xn}, |w| = j} as the set of all subsets of {x1, ..., xn}

of size j. Then the Band depth is given by:
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BD(z|x1, ..., xn) =
J∑
j=2

(
n

j

)−1 ∑
w∈Sj

1{z ⊂ B(w)}. (3.4.4)

This essentially counts the number of times z(t) crosses each possible set of bands.

The number of bands J is preselected and is typically taken to be 2 or 3 to minimise

the computational cost. For frequently crossing data, the BD values will be low.

Therefore a Modified Band Depth (MBD) was outlined, which uses a count function:

A(z, x1, ..., xn) =

{
t ∈ I : min

i=1,...,n
xi(t) ≤ z(t) ≤ max

i=1,...,n
xi(t)

}
, (3.4.5)

to give the MBD:

MBD(z|x1, ..., xn) =
J∑
j=2

(
n

j

)−1 ∑
w∈Sj

λ(A(z, w))

λ(I)
. (3.4.6)

where λ is a Lebesgue measure. The MBD gives the proportion of times z(t) is outside

the bands. Nieto-Reyes and Battey (2016) shows that the BD and MBD do not satisfy

conditions 3 and 5.

3.4.5 Multivariate Functional Depth

The multivariate Functional Depth developed by Claeskens et al. (2014), uses the

Tukey halfspace depth to build a depth function for multivariate functional data. Let

D(·) be the Halfspace depth function (3.4.1) defined in Rk. Then the multivariate

functional depth for z with respect to the observed curves x1, ..., xn is defined as:

MFD(z|x1, ..., xn) =

∫
D(x1(t), ..., xn(t))w(t)dt, (3.4.7)
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where w(t) is a weight function. The weight function can be chosen using prior

knowledge about the data or can be chosen using the depth values. In practice we

observe the curves at discrete time points t1, ..., tN . Therefore the depth values are

calculated independently at each time point.

3.4.6 Other Depth functions

There are a number of other depth functions including the Random Tukey Depth

(RTD) (Cuesta-Albertos and Nieto-Reyes, 2007), Spatial depth (Chakraborty and

Chaudhuri, 2014), Halfregion depth (López-Pintado and Romo, 2011), Extremal depth

(Narisetty and Nair, 2016) and the functional Tukey depth (Dutta et al., 2011).

3.5 Outlier Detection for Functional Data

A number of approaches have been developed to identify outliers for functional data.

The problem is challenging due to the range of outliers that can arise. Hubert et al.

(2015) define five types of outliers in functional data. The first are isolated outliers

that are abnormal in a small region of the function and second there are persistent

outliers that effect the function over a large region. Shift outliers have a similar

shape but have been shifted along the time-axis. Shape outliers are not necessarily

abnormal at each time point but seen collectively, can be highlighted as abnormal.

Finally, there are amplitude outliers have the same shape but a shift in scale.

Most outlier detection methods for functional data use functional depth. Febrero-

Bande et al. (2008) use functional depth directly and identify outliers by identifying
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samples with depth value below a threshold. We will describe this approach in Section

3.5.1. An alternative method is to build a Functional Boxplot (FB) (Sun and Genton,

2011) using the Band depth (López-Pintado and Romo, 2009), then as in classical

boxplot samples that lie outside 1.5 times the quantiles are labelled as outliers. We

describe this approach in Section 3.5.2. Alternatively we can use methods based

on outlyingness measures such as the Outliergram by Arribas-Gil and Romo (2014)

described in Section 3.5.3. An outlyingness measure can be extended to multivariate

functional data (Dai and Genton, 2018a). The Functional Outlier Map (FOM) by

Rousseeuw et al. (2018) forms a scatter plot of two outlyingness measures, which we

will describe in Section 3.5.4.

In Chapter 7 we will introduce an outlier detection framework for functional data.

We will compare our framework to these standard approaches.

3.5.1 Direct approach

Febrero-Bande et al. (2008) use functional depth (described in Section 3.4) to identify

outliers in functional data. The approach assigns a depth value to samples ri(t).

Samples with small depth values lie far away from the other samples. Curves with

a depth value below a certain threshold are then labelled as outliers. They then

discard the outliers and using the rest of the curves they recalculate the depth values

excluding the outliers, this deals with possible masking effects. The threshold C is

chosen such that P (D(ri|r, h) ≤ C) = δ, where δ is a pre-chosen percentile typically

taken to be 0.01. To estimate the threshold C they use a bootstrapping approach,

which estimates a value of C for different random sets of samples and then aggregates
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these estimates. We call this approach Direct as it uses a threshold directly on the

depth values. We will compare our outlier detection approach outlined in Chapter 7

to the Direct approach given in Algorithm 1.

Algorithm 1 Direct Approach

1: INPUTS: Curves r = {r1, ..., rn}, number of bootstraps v of size k < n and
percentile δ,

2: for i = 1 : n do
3: Calculate depth value di = D(ri|r)
4: end for
5: Set bandwidth h be 15% percentile of depth values d
6: for j = 1 : v do
7: Take a subset of k samples Vj from {r1, ..., rn}
8: Calculate depths for samples in Vj then take Cj to be equal to δ percentile
9: end for

10: Estimate C = 1
v

∑v
j=1Cj

11: Set r∗ = r and counter = 0
12: for ri in r∗ do
13: if D(ri|r∗, h) < C then
14: Sample i is labelled as an outlier.
15: r∗ = r∗\ri and counter = counter + 1.
16: end if
17: end for
18: if counter > 0 then
19: go to Step 11
20: end if
21: RETURN: List of outliers and depth values d.

3.5.2 Functional Boxplot

Sun and Genton (2011) outline a Functional Boxplot (FB), which uses the Band depth

described in Section 3.4. The median function is taken to be the “deepest” curve i.e.

the sample that has the largest depth value. To determine the quantiles we will first

define the α-central region of data Cα(X) i.e. the region containing the α% most
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central observations:

Cα(X) =

{
(t, z(t)) : min

l=1,...,dαne
x(l) ≤ z(t) ≤ max

r=1,...,dαne
x(r)(t)

}
.

For the functional boxplot we compute the region C0.5, which contains 50% of the

most central curves. The quantile curves of the region C0.5 can be found using the

depth values. To identify outliers they define fences by inflating the quantile curves

of C0.5 by a factor of 1.5. Observations that cross or lie outside the fences are then

labelled as outliers. The Functional Boxplot gives a good visualisation of the data but

is not effective in identifying isolated or shape outliers as shown by Dai and Genton

(2018b). Examples of Functional Boxplots are given in Figure 7.3.2.

3.5.3 Outliergram

The outliergram by Arribas-Gil and Romo (2014) uses two measures. The first is

the Modified Band Depth (MBD) defined in Section 3.4. The MBD for a curve xk

with respect to a set of curves x1, ..., xn will be denoted by bk = MBD(xk|x1, .., xn).

The second score is the Modified Edigraph Index (MEI), which for a sample xk with

respect to x1, ..., xn is given by:

ek = MEI(xk|x1, ..., xn) =
1

n

n∑
i=1

λ({t ∈ I|xi(t) ≥ xk(t)})
λ(I)

,

for a Lebesgue measure λ on R. The ek gives the mean proportion of time xk lies

below all the other sample curves.

If sample xk has an MEI value ek close to 0.5 then the curve is located in the

centre. However if the MBD value bk is small this would indicate xk is a shape outlier
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as the sample is only contained in a small number of bands.

Arribas-Gil and Romo (2014) show that

bk = a0 + a1ek + a2

n∑
i=1

n∑
j=1

λ(Eik ∪ Ejk)
λ(I)

,

where Eik = {t ∈ I|xi(t) ≥ xk(t)}, for certain values of a0, a1, a2 ∈ R. This

relationship shows the points (bi, ei) should lie on a parabola. Using the distance

di = a0 + a1ei + n2a2e
2
i − bi they use a univariate boxplot rule to determine lower

thresholds D1 − 1.5 × IQR and upper threshold D3 + 1.5 × IQR where D1 and

D3 are the first and third quantiles respectively and IQR is the interquartile range

of the distances d1, ..., dn. The points (bi, ei) are shifted down by the threshold

D3 + 1.5 × IQR, and the scatter plot of the shifted values forms the outliergram.

Examples of outliergrams is given in Figure 7.3.2.

3.5.4 Functional Outlier Map

The Functional Outlier Map (FOM) by Rousseeuw et al. (2018) uses directional

outlyingness measures to identify outliers. The FOM map tries to identify the ‘average’

and ‘variance’ outlyingness of a sample with respect to a set of data. They suggest a

scatter plot of two measures to identify outliers. They use the Functional Directional

Outlyingness and the variability of the Directional Outlyingness.

The Directional Outlyingness (DO) at time t is given by:
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DO(xi(t), x(t)) =


xi(t)−med(x(t))

sa(x)
,

med(x(t))−xi(t)
sb(x)

,

(3.5.1)

where sa(x) and sb(x) are M-estimators of scale above and below the medianmed(x(t))

respectively.

The Functional DO (FDO) is given by:

FDO(xi, x) =

∫
I

DO(xi(t), x(t))w(t)dt (3.5.2)

where w(·) is a weight function with the condition
∫
I
w(t) = 1. The FDO of a function

xi can be considered the ‘average outlyingness’ of its functional values. In practice

the function xi is observed at time points t1, ..., tT , then the discrete version of FDO

is given by:

FDOT (xi, x) =
T∑
j=1

DO(xi(tj), x(tj))w(tj). (3.5.3)

The variability of the DO values is then given by:

V DO(xi, x) =
stdevj({DO(xi(tj), x(tj)), j = 1, ..., T}

1 + FDOT (xi, x)
). (3.5.4)

The Functional Outlier Map (FOM) is the scatter plot of the points (V DOd(xi, x), V DO(xi, x))

for i = 1, ..., n.

Defining the combined functional outlyingness (CFO) of xi as
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CFOi = CFO(xi, x) =
√

(FDO(xi, x)/med(FDOT ))2 + (V DO(xi, x)/med(V DO))2,

(3.5.5)

where

med(FDOT ) = med(FDOT (x1, x), ..., FDOT (xn, x)),

med(V DO) = med(V DO(x1, x), ..., V DO(xn, x)).

Let LCFOi = log(0.1 + CFOi) then the function xi is flagged as an outlier if

LCFOi −med(LCFO)

MAD(LCFO)
> Φ−1(0.995). (3.5.6)

This threshold can be seen as the functional version of the threshold used for multivariate

data. Examples of Functional Outlier Maps are given in Figure 7.3.2.



Chapter 4

Classification of manoeuvres in a

Pass-Off test

4.1 Introduction

In Chapter 1 we have described the Pass-Off test and the manoeuvres that are

performed in the test. The N1 speed profiles (described in Chapter 1) for two Pass-Off

tests are given in Figure 4.1.1, with labelled manoeuvres. We can see tests can differ

due to engine stops and manoeuvre repeats. Surprisingly the manoeuvres are not

labelled. We have therefore built a classification algorithm that is able to extract and

label the manoeuvres with almost perfect accuracy. The algorithm is computationally

efficient given the large volume of sensor data generated during the engine tests. The

labels can be used to highlight problematic tests, for example where a large number

of manoeuvre repeats have been performed. These tests can be investigated further

by the engineers. We also noted that the novelty detection algorithms outlined in

68
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Chapter 2 use Pass-Off test data without consideration of the large differences between

the tests. Therefore comparisons between the tests can be unreliable. On the other

hand the manoeuvres are generally consistent between tests meaning novelty detection

for specific manoeuvres can give more reliable models. The classification algorithm

can be split into three main parts: manoeuvre extraction; feature extraction using

Needleman-Wunsch and Functional Principal Component Analysis and classification

using either a decision tree or Linear Discrimant Analysis classifier.

In the classification algorithm we will use the N1 speed time series as the manoeuvres

have distinctive speed profiles. The N1 speed is primarily piecewise linear. We can

therefore use the Pruned Exact Linear Time (PELT) changepoint algorithm (Killick

et al., 2012) to identify changes in speed. Using the fact that a manoeuvre starts and

ends at idle speed, changepoints preceded or acceded by an idle speed segment can

be used as indicators for the start and end of a manoeuvre. In Section 4.2.1 we will

describe the PELT algorithm and explain how we can use the algorithm to extract

the manoeuvres.

The labelling of the Pass-Off test manoeuvres is a time series classification problem,

in which there are two standard approaches (Susto et al., 2018). First, there are

Feature-based methods where features are calculated and used as inputs into a classifier.

Second, we can use distance-based methods which typically use a distance measure

such as Dynamic Time Warping (DTW) (Senin, 2008). A standard approach is to

compare an unlabelled time series to some pre-labelled time series and then classify

using 1-nearest neighbour. DTW is computationally inefficient as it is of the order

O(MN) for two time series of length M and N . We adopt the first approach, which
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focuses on constructing informative features.

In Chapter 1 we have outlined templates for the piecewise linear manoeuvres. The

templates are the fixed speed levels the manoeuvre must reach. The Performance

Curve (P) manoeuvre occasionally does not match its template, because engineers

may sometimes add or miss out steps. For example in Figure 4.1.1 we have the

N1 speed plots for Pass-Off tests 18 and 21, which contain P manoeuvres that do

not match the template. We want a distance measure to compare an extracted

manoeuvre against each of the templates, and we require that it copes with missing

steps. We therefore use the Needleman Wunsch (NW) algorithm, which finds the

optimal alignment between two sequences that may contain potential gaps. The NW

algorithm gives a similarity score corresponding to the alignment. The standard NW

algorithm and a probabilistic alternative will be described in Section 4.3.

We have defined a manoeuvre as a segment of engine running that starts and ends

at idle speed. However sometimes the ‘Running and Handling’ manoeuvre labelled

as (R) in Figure 1.1.3, does not end at idle speed. We will therefore create another

manoeuvre that combines the ‘Running and Handling’ with the ‘Performance curve’

labelled as (RP). Now all manoeuvres start and end at idle speed.

There are two manoeuvres, called the Fast Acceleration/Deceleration (F) and the

Vibration Survey (V), which do not have fixed speed levels. For these two manoeuvres

we use Functional Principal Component Analysis (FPCA) to build templates as

described in Section 3.2. A manoeuvre can then be modelled with respect to the

FPCA representations. We will use the difference between the manoeuvre profile and

the FPCA representations, as features in the classification algorithm.
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Below we have listed the various manoeuvres in a Pass-Off test, with the corresponding

colouring, labels and templates we will use in the classification algorithm.

A (26)

B (51)

C (86, 80, 66, 52)

R Running & Handling (86, 26, 86)

P Performance Curve (96, 90, 86, 79, 72, 60, 51, 38, 27)

RP Running & Handling/Performance Curve (86, 26, 86, 96, 90, 86, 79, 72,

60, 51, 38, 27)

F Fast Acceleration/Deceleration

V Vibration Survey

U Unknown.

For each manoeuvre we will obtain NW scores with respect to each of the piecewise

linear manoeuvres and FPCA scores with respect to manoeuvres F and V. These

scores will be used as inputs for a classifier. We need a training set to build the

FPCA representations and train the classifiers. The true classifications have been

obtained by manually labelling manoeuvres. We will consider two classifiers, the first

is a standard decision tree (Rokach and Maimon, 2005). The second classifier uses

Linear Discriminant Analysis to fit a Gaussian model for each class. For the Unknown

manoeuvres we set an uninformative prior Gaussian distribution with a significantly
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(a) Pass-Off test 18 (b) Pass-Off test 21

Figure 4.1.1: Labelled N1 speed plots for Pass-Off test 18 (left) and 21 (right).

larger variance than in the other classes. The large variance ensures manoeuvres that

don’t match any of the pre-defined manoeuvres will be labelled as Unknown.

To train and test the classification algorithm we will use the 93 Pass-Off tests we

have been given from Trent 1000 engines. Using k-fold cross-validation we will assess

the classification performance of the models. We shall also highlight insights that can

be made using the labels. This approach is general enough to be applied to other

engine types as we will demonstrate on XWB engine Pass-Off tests in Section 4.7.

4.2 Manoeuvre Extraction

4.2.1 Changepoints

A changepoint is defined as a time point where the statistical properties of the time

series before and after this time point are different. We will describe the Pruned
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Exact Linear Time (PELT) changepoint algorithm in Section 4.2.1, which we will use

to find changes in the piecewise linear structure of the N1 speed time series. Using the

changepoints we can extract the manoeuvre segments and filter out the fixed speed

segments within each manoeuvre.

Let y1:T = (y(t1), ..., y(tT )) be a time series, which contains m changepoints τ1:m =

(τ1, ..., τm) where τ0 = 0 and τm+1 = T . We have m+1 segments, where each segment

i contains points y(τi−1+1):τi . We assume the points in each segment are sampled

from different distributions. For each stationary segment of the time series (between

consecutive changepoints), we want to estimate a statistical model. The problem is

we don’t know the location of the changepoints. We can estimate the number and

location of the changepoints as a solution to the following optimisation problem:

min
m

min
1≤τ1<...<τm≤T−1

m+1∑
i=1

[C(y(τi−1+1):τi)] + βm, (4.2.1)

where C is the negative log-likelihood function associated with the statistical model

we want to estimate and β is a penalty to stop overfitting. This penalty determines

the trade off between model accuracy and complexity. There are two main model

selection tools. The first is the Akaike Information Criterion (AIC) penalty (Akaike,

1998), which sets β = 2p where p is the number of parameters to estimate in the cost

function C. The AIC penalty is the same irrespective of the length of the time series,

and is known to overestimate the number of changepoints. The Bayesian Information

Criterion (BIC) penalty (Schwarz, 1978) which sets β = p log(T ), considers both the

number of parameters p and the length of the time series T . The BIC penalty can
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underfit the data, but is typically the preferred choice in the changepoints literature,

and is used by Killick et al. (2012).

Pruned Exact Linear Time algorithm

We can use dynamic programming to solve the problem in (4.2.1). The Pruned Exact

Linear time (PELT) (Killick et al., 2012) approach, is a modification of the Optimal

Partitioning algorithm by Jackson et al. (2005), in which they have added a pruning

step to improve computational efficiency.

Define F (s,m′) as the minimum of (4.2.1) with respect to the changepoints τ1:m′

for data y1:s with a fixed number of changepoints m′. We define

F (s) = min
m′

F (s,m′) (4.2.2)

then for t < s we have the following recursive relationship

F (s) = min
1<τ1<...<τm′<τm′+1=s

{
m′+1∑
i=1

[C(y(τi−1+1):τi) + β]

}

= min
t

{
min

1<τ1<...<τm′=t

m′∑
i=1

[C(y(τi−1+1):τi) + β] + C(y(t+1):s) + β

}

= min
t

{
F (t) + C(y(t+1):s) + β

}
(4.2.3)

In (4.2.3) we have defined F (s) with respect to F (t), conditional on the fact that

t is the optimal location of the last changepoint in the time series y1:s. Optimal

Partitioning uses the recursion (4.2.3) to build a dynamic programming algorithm

to find F (s) for s = 1, ..., T . The overall computational complexity of Optimal

Partitioning isO(T 2). The PELT algorithm adds a pruning step to Optimal Partitioning,

which can reduce the computational complexity to O(T ). Rather than minimising
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over all t in (4.2.3), we minimise over a subset of time points, chosen using a pruning

condition. Assuming there exists some constant K such that for all t < s < t∗,

C(y(t+1):s) + C(y(s+1):t∗) +K ≤ C(y(t+1):t∗),

If

F (t) + C(y(t+1):s) +K ≥ F (s).

then at a future time t∗ > s, t will never be the optimal last changepoint prior to t∗.

Using this condition we can introduce a pruning step, which enables us to optimise

over a subset of points, as we know certain points cannot be changepoints by this

condition. In the worst case there is no pruning and we get Optimal Partitioning.

Pruning will obviously decrease computations as the number of terms to minimise

over decreases. It has been shown to get linear computational complexity, when using

a cost function C equal to the negative log-likelihood, where the constant K = 0.

Changes in Regression

In this section we will show how PELT can be used to find the changepoints in

the N1 speed time series. We will use these changepoints to extract manoeuvre

segments, and the fixed speed segments within the manoeuvres. The N1 speed time

series is piecewise linear. To apply PELT on a piecewise linear time series we need a

suitable cost function C. Assume we have a time series y1:T with time index t1:T and

changepoints τ1:m. In each segment i we have a pair of coefficients α
(i)
0 , α

(i)
1 ∈ R such

that

yj ∼ N(α
(i)
0 + α

(i)
1 tj, σ

2), if yj is in segment i.



CHAPTER 4. CLASSIFICATION OF MANOEUVRES IN A PASS-OFF TEST 76

Under this model we consider two possible cost functions. Assuming we have

a constant variance σ2, the maximum log-likelihood cost function is given by the

Residual Sum of Squares (RSS) (4.2.4). If we assume the variance σ2 can change,

and therefore needs to be estimated, we get the maximum log-likelihood cost function

given in Equation (4.2.9).

For a segment y1:s, we apply Ordinary Least Squares with respect to the index

t1:s, we then get an estimate of the intercept α̂0 (4.2.7) and the slope α̂1 (4.2.6), we

can then write the RSS cost function as

C(y1:s) =
s∑
i=1

{yi − (α̂0 + α̂1ti)}2. (4.2.4)

If we assume the variance σ2 can change, we get the second cost function, given by

the log-likelihood

l(α0, α1, σ
2) = −s

2
log(2π)− s log(σ)− 1

2σ2

s∑
i=1

{yi − (α0 + α1ti)}2 (4.2.5)

the maximum likelihood estimators (MLEs) can be shown to be

α̂1 =

∑s
i=1(ti − t̄)(yi − ȳ)∑s

i=1(ti − t̄)2
(4.2.6)

α̂0 = ȳ − α̂1t̄ (4.2.7)

σ̂2 =
1

s

s∑
i=1

(yi − (α̂0 + α̂1ti))
2 (4.2.8)

where t̄ and ȳ are the means of t1:s and y1:s respectively. Applying the MLEs we get

a maximum log likelihood

l(α̂0, α̂1, σ̂
2) = −s

2
log(2π)− s log(σ̂)− s

2
(4.2.9)

For the penalty β we use a BIC penalty which is equal to p log(T ) where p is the

number of parameters estimated when we set a changepoint, and T is the length of
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Figure 4.2.1: Plot of a section of the Performance curve in Pass-Off test 1 with

changepoints found using PELT with RSS cost function (red) and a BIC penalty.

the time series. For the Pass-Off tests we have found using the cost function (4.2.9)

typically under fits the number of true changes in the N1 speed time series. We

therefore use the RSS cost function (4.2.4) to identify changes in the piecewise linear

structure.

In Figure 4.2.1, we have a plot of a section of a Performance curve with the

changepoints plotted in red, the changepoints have been calculated using PELT with

the RSS cost function (4.2.4) and a BIC penalty. We can see that the least squares

cost function is able to pick up the changes in slope effectively. Our implementation

of the changepoints algorithm can be found in the R-package (Killick et al., 2018).
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4.2.2 Extracting Fixed Speed segments

Given a N1 speed time series y from a Pass-off test, we apply the PELT changepoint

method outlined in Section 4.2.1. The PELT algorithm outputs the changepoints,

which we use to create a vector of the mean and length of each of the segments. To

label fixed speed segments we apply linear regression to each segment, and using the

slope coefficient α1, we label a segment as fixed speed if |α1| < 0.3. The choice of

threshold 0.3 is made empirically, from looking at the fixed speed extraction in the

first few Pass-Off tests. The threshold works well in practice.

Looping through the vector of means for the fixed speed segments u = (u1, ..., ul),

if ui−1 = [18 ± 2]% and ui > 21, we start a manoeuvre vector M = (uj). We have

the manoeuvre start time tstart. We can keep concatenating values to the time series

till we get to uk+1 = [18± 2]%. For the manoeuvre we get a sequence representation

M = (uj, ..., uk) where uj−1 = [18 ± 2]% and uk+1 = [18 ± 2]% and ui > 21% for

all i = j, ..., k. We now have the manoeuvre vector M , and the end time of the

manoeuvre tend.

4.3 Needleman Wunsch

We apply PELT to extract fixed speed segments of a manoeuvre. Taking the mean

of each segment we obtain a sequence of the fixed speed levels reached. We can then

classify a manoeuvre by matching the sequence against different template sequences.

Each template sequence corresponds to the fixed speeds that a defined manoeuvre

should reach. However in some manoeuvres fixed speed segments may be missing.
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We therefore need an algorithm that can correctly label a manoeuvre with respect

to the list of templates even if some sections are missing. To address this challenge

we have used the Needleman Wunsch algorithm. In this section we will discuss the

Needleman Wunsch algorithm for a fixed alphabet. Later we will discuss extensions

for continuous values.

The Needleman and Wunsch (1970) (NW) algorithm was the first computationally

efficient sequence alignment algorithm that is guaranteed to find the optimal alignment

between sequences from a fixed alphabet. NW is a dynamic programming algorithm

with the capability of placing gaps in places where there may have been an insertion

or deletion.

LetG = (G1, ..., Gp) andH = (H1, ..., Hq) be two sequences with elementsGi, Hj ∈

L for some alphabet L. For example in DNA sequencing L = {A, T, C,G}. The NW

algorithm finds the alignment between G and H that maximises the NW score, defined

as:

s = Aa+Bb+ Cc (4.3.1)

where A is the number of matches with scores a, B is the number of mismatches

with scores b and C is the number of gaps with scores c. The score s is therefore

the objective function we are trying to maximise. To get a meaningful alignment

we need to choose the values a, b and c appropriately. There is no consensus in the

sequence alignment literature on how the scores a, b and c should be chosen. This

choice ultimately depends on the characteristics of the application. The score values
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a, b and c are chosen to be constant as matches and mismatches are clearly defined

in the discrete case.

To align the two sequences we generate a (p + 1) × (q + 1) similarity matrix Z.

The matrix considers all possible alignments of the two sequences including gaps. To

fill in the matrix we use a gap score c < 0 and a similarity measure:

S(Gi, Hj) =


a, if Gi = Hj

b, if Gi 6= Hj


where a > 0, b < 0. The matrix Z contains elements:

Zr0 = −r · c for r = 0, ..., p

Z0k = −k · c for k = 0, ..., q

Zi,j = max{Zi−1,j−1 + S(Gi, Hj), Zi,j−1 + c, Zi−1,j + c}

for i = 1, ..., p and j = 1, ..., q.

Note the last entry Zp+1,q+1 gives the NW score s (4.3.1) for the two sequences.

• If Zi,j = Zi−1,j−1 +S(Gi, Hj) we have made a diagonal move and have chosen to

align Gi with Hj however the score depends on whether they match or mismatch

• If Zi,j = Zi,j−1 + c then we have made a horizontal move and aligned Hj−1 to a

gap.

• If Zi,j = Zi−1,j + c then we have made a downwards move and aligned Gi−1 to

a gap.

To get the alignment we can trace-back along the matrix Z. We start in the

bottom right-hand corner, and we create a path to the top left. We make a diagonal



CHAPTER 4. CLASSIFICATION OF MANOEUVRES IN A PASS-OFF TEST 81

move if a match or mismatch was made to get to that value when we constructed the

matrix Z. We make movements left or up corresponding to gaps, i.e. if a gap penalty

was made to get to that value. This is easier to understand by looking at an example.

In Figure 4.3.1 we have the Z matrix for sequences GATTACA and GCATGCU, with

arrows indicating the trace-back. Note that there can be multiple alignments that

give the same optimal score. The coloured arrows indicate the route that was used

to get to the score in the bottom corner of Z. We have chosen a = 1, b = −2 and

c = −1. If two elements mismatch we give a score −2, alternatively we can align

elements to gaps giving a score of −2. These two possibilities are equally weighted as

2c = b. The optimal paths can be formed using either mismatches or two gaps. By

changing the scores we can give preference to mismatches or gaps. Using ‘:’ to denote

a gap, one of the optimal paths gives the alignment

GCATG : CU

G : ATTACA

In Theorem (4.3.1) we will show that the NW algorithm gives an optimal alignment.

Theorem 4.3.1. Let G = (G1, ..., Gp) and H = (H1, ..., Hq) be two sequences with

values from the alphabet L. Applying the NW algorithm, with similarity measure

S(·, ·) where matches are given a score a, mismatches are given a score b and there is

a gap penalty c, with a > b and a > c. Then the NW alignment maximises the score

(4.3.1).

Proof. We will use proof by induction, let p = 1 and q = 2 then the similarity matrix
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Figure 4.3.1: Example of a matrix Z aligning sequences GATTACA and GCATGCU,

with scores a = 1, b = −2 and c = −1.

Z is easily calculated with

Z1,1 = S(G1, H1) =


a, if G1 = H1

b, if G1 6= H1


and

Z2,1 =


a+ c, if G1 = H1 or H2

b+ c, if G1 6= H1 and H2.


Tracing back through the matrix we will get an optimal alignment, maximising

the score (4.3.1). So we know the optimal path for Z1,1 and Z2,1. It follows similarly

when p = 2 and q = 1, so we have an optimal path for Z1,2.

Assume that the paths found using NW from Zp−1,q−1, Zp,q−1 and Zp−1,q are

optimal with regards to the score (4.3.1), we can then calculate Zp,q using

Zp,q = max{Zp−1,q−1 + S(Xp, Yq), Zp−1,q + c, Zp,q−1 + c}.
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We have extended each of the three paths from Zp−1,q−1, Zp,q−1 and Zp−1,q, and taken

the path that maximises the score (4.3.1). As the three previous paths were optimal

the extended path must also be optimal. By the law of induction the result follows.

4.3.1 Thresholding Needleman Wunsch

The Needleman Wunsch algorithm is effective at finding alignments between sequences

from an alphabet. However we will be using means of fixed speed segments which

are continuous. We will therefore need to adapt the similarity measure to account for

this variability. From inspection of the fixed speed segments we have found that the

means of the fixed speed segments can fluctuate. Typically the means differ by ±2%

from those in the templates. Different fixed speed levels always differ by more than

5%.

From Section 4.2 we have shown how a manoeuvre is extracted. From the extraction

we have the sequence representation M = (uj, ..., uk) where uj−1 = [18 ± 2]% and

uk+1 = [18 ± 2]% and ui > 21% for all i = j, ..., k. We also have the extracted

manoeuvre time series ytstart:tend
, where tstart and tend are the start and end times of

the manoeuvre.

We have a defined sequence of fixed speeds for the piecewise linear manoeuvres, for

example manoeuvre ‘A’ has a template sequence ΥA = (26). Applying the Needleman

Wunsch algorithm on the extracted sequenceM and the different templates ΥA,ΥB, ...,ΥRP

gives scores sA, sB, ..., sRP respectively. To apply NW we use a threshold similarity

measure
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S(Υi,Mj) =


1, if |Υi −Mj| < δ

−1, otherwise

 ,

to compare the template Υ and the extracted vector of fixed speeds M . We have used

a gap penalty of c = −1. To ensure we correctly match fixed speed levels we have

added a tolerance δ = 3.

4.3.2 Probabilistic Needleman Wunsch

The NW algorithm outlined in Section 4.3.1 is highly dependent on the choice of the

similarity measure and gap penalty, which are not very interpretable. The parameters

a, b and c have been chosen arbitrarily. We would ideally want to tune the parameters,

yet it is unclear how this can be done. Secondly we have chosen a matching threshold

δ again without any tuning. This is a big weakness in the Thresholding NW approach.

We have therefore built a probabilistic Needleman Wunsch algorithm, where we

make some assumptions on the underlying model generating the sequences. We can

therefore choose parameters for the generative model, instead of choosing parameters

for NW directly. To make the NW algorithm more interpretable we fit a likelihood

model to the scores, motivated by the ideas of Holmes and Durbin (1998).

In our case we have continuous values for the means of the fixed speed segments

in the N1 speed time series. We therefore want to build a model where the values

are drawn from a continuous distribution. The distribution these values come from

depends on whether we are in a match, mismatch or gap state. We choose a simple

sequence generation model, with certain probabilities of entering the three states. For
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simplicity we have assumed the probability of being in a particular state is independent

of the previous state.

Using a template sequence Υ we build a model for how the means of a fixed speed

sequence of a manoeuvre can be generated. To ensure clear subscripting we introduce

a function η(t) which is the highest index in the template assigned up to point t. We

take the extracted manoeuvre sequence M , at time t there are 4 possibilities

• With probability a we are in the state match, then Mt ∼ N(Υη(t−1)+1, 1).

• With probability b we are in the state mismatch, then Mt ∼ N(ω, ψ2).

• With probability c1, we are in the state M insertion, where an extra Mt is

emitted, then Mt ∼ N(ω, ψ2).

• With probability c2, we are in the state M gap, where Mt is not emitted.

f(Mt,Υη(t−1)+1|match) =
1√
2π

exp

{
−1

2
(Mt −Υη(t−1)+1)2

}
(4.3.2)

f(Mt,Υη(t−1)+1|mismatch) =
1

ψ
√

2π
exp

{
− 1

2ψ2
(Mt − ω)2

}
(4.3.3)

f(Mt|M insertion) =
1

ψ
√

2π
exp

{
− 1

2ψ2
(Mt − ω)2

}
(4.3.4)

f(Υt|M gap) = 1 (4.3.5)

where f is the probability density function.

In the probabilistic model we set a = 0.7, b = 0.1, c1 = 0.1 and c2 = 0.1. We

have therefore assumed there is a higher probability of being in a match state than a

mismatch or gap state. We have set the hyper-parameters ω = 50 and ψ = 10, where



CHAPTER 4. CLASSIFICATION OF MANOEUVRES IN A PASS-OFF TEST 86

ω is the midpoint as the percentage speed ranges from [0, 100]. Whilst ψ captures the

large variance in speeds.

The score s gives the best alignment of the two sequences assuming the manoeuvres

sequences are generated by this model. For this model the similarity measure is given

by

S(Υi,Mj) = max {af(Mj,Υi|match), bf(Mj,Υi|mismatch), c1f(Mj|M insertion), c2f(Υi|M gap)}

We can fill the similarity matrix Z by going along the diagonal if the probability

of matching or mismatching is maximal in the similarity measure (??). Likewise we

place gaps if the gap probabilities are maximal.

Applying Probabilistic Needleman Wunsch on the extracted sequence M and the

different templates ΥA,ΥB, ...,ΥRP gives scores pA, pB, ..., pRP respectively. Thresholding

NW and Probabilistic NW both give the same alignments, we therefore don’t get more

information by using both scores.

4.3.3 Example

In this section we give an example of the alignment using Needleman-Wunsch (NW).

We will use a Performance Curve (P) shown in Figure 4.3.2. The P manoeuvre was

extracted using the PELT changepoint algorithm discussed in Section 4.2.2. The P

manoeuvre has a sequence of fixed speed levels M = [87, 97, 91, 85, 79, 73, 61, 52, 27].

We will show the alignment given by NW for sequence M and the template for

manoeuvre P : ΥP = [96, 90, 86, 79, 72, 60, 51, 38, 27]. We set the scores a = 1, b = −1
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Figure 4.3.2: Plot of a a Performance curve with labelled fixed speed levels.

and c = −1 for the Thresholding NW, which gives a score of sP = 6 and alignment

M =[87, 97, 91, 85, 79, 73, 61, 52, , 27]

ΥP =[ , 96, 90, 86, 79, 72, 60, 51, 38, 27]

4.4 Functional PCA Templates

In Section 4.3 we obtained scores for the manoeuvres which are based on fixed speed

levels. Manoeuvres F and V do not contain fixed speed levels. We will therefore

build templates for these manoeuvres in a different way. We will use Functional

PCA as outlined in Chapter 3.2 to build the templates. We have discussed how

Functional PCA can be applied using the Basis method. In reality we don’t have the

functions xi(t) instead we have realisations of the functions, giving a time series for
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each function xi(t). The realisations can be made at different times with different

number of observations for each function. We can fit a basis to these time series

to obtain an approximation of the curves x̃i(t). Using the Basis method outlined in

Chapter 3.2, we can calculate the eigenfunctions.

We will use 30 samples of manoeuvres F and V to build the FPCA models. The 30

samples are shown in Figure 4.4.1. The two manoeuvres have a clear shape which will

be represented by a mean function. Taking out the mean we get the mean corrected

time series shown in Figures 4.4.2. There is a lot of variation that will be picked up

by the eigenfunctions. For the F manoeuvres the quick deceleration causes a huge

amount of variance in the residuals, as the change from acceleration to deceleration

can occur in slightly different places.

We used a Fourier basis formed of 201 functions. This basis worked well in

modelling the F and V manoeuvres however other bases could have been used. Next we

needed to choose the number of principal components we wanted to model the curves.

We chose the first K eigenfunctions that ensure 95% of the variance is captured. For

both the F and V manoeuvres we found that four eigenfunctions was sufficient. The

templates are formed of mean functions µF (t), µV (t) and eigenfunctions φFi (t), φVi (t)

for manoeuvres F and V respectively, where t ∈ [0, 1] and i = 1, ..., 4.

Next we will show how we will generate the scores sF , sV using the templates

for manoeuvres F and V. For an unlabelled manoeuvre function z(t), we generate a

representation of z(t) with respect to manoeuvre V:
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(a) Vibration Surveys (b) Fast acc/dec

Figure 4.4.1: Plots of 29 Vibration surveys (V) and Fast acc/dec (F) manoeuvres.

(a) Vibration Surveys (b) Fast acc/dec

Figure 4.4.2: Plots of 29 mean corrected Vibration surveys (V) and Fast acc/dec (F)

manoeuvres.
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(a) Reconstruct Vibration Survey (b) Reconstruct Performance Curve

Figure 4.4.3: Plot of FPCA reconstruction of a Vibration Survey (left) and a

Performance Curve (right), using FPCA representations of V (pink) and F (green).

ẑV (t) = µV (t) +
4∑
i=1

giφ
V
i (t)

where gi =
∫ 1

0
(z(t)−µV (t))φVi (t)dt. The reconstruction error gives the required score

sV =
∫ 1

0
[ẑV (t) − z(t)]2dt. If z(t) is a V manoeuvre it should be well represented by

the mean and eigenfunctions, giving a small reconstruction error. This feature makes

the reconstruction error a good score to help identify a manoeuvre as a V. We can do

the same analysis to measure the fit z(t) to a F manoeuvre. We now have two scores

sF and sV corresponding to the representations for manoeuvres F and V.

In Figure 4.4.3 we have a plot of the reconstruction of a manoeuvre V and P

using the FPCA representations for F and V. We can see that manoeuvre V is well

represented by its FPCA model, but not by the FPCA representation for F. For

manoeuvre P, neither FPCA representations give a good fit. From these figures we

can see that the FPCA fit is an informative metric.
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4.5 Classifiers

In Section 4.3 we have outlined the Needleman-Wunsch (NW) algorithm. For an

unlabelled manoeuvre z(t) we extract the fixed speed segments and take the mean in

each segment to obtain a vector u. We apply the Needleman-Wunsch algorithm to

align the vector u with the templates ΥA,ΥB, ...,ΥRP to obtain a corresponding vector

of NW scores sA, sB, ..., sRP . For manoeuvre F and V we use the Functional PCA

templates to obtain representations zF (t) and zV (t). Taking the squared difference of

the representations with respect to z(t) we obtain the scores sF and sV as outlined

in Section 4.4. The vector of scores (sA, sB, ..., sRP , sF , sV ) is used as an input vector

for a classifier. We will outline two classifiers.

4.5.1 Decision Tree

In this section we will apply a Decision tree classifier (Rokach and Maimon, 2005) to

label the manoeuvres. Decision trees are a popular method for classifying samples

using a given set of features. A decision tree is comprised of a root node which splits

into test nodes. The leaves of the tree are called the decision nodes which set the

classification of the sample. A decision tree once built will take a vector of features

and using a set of decision rules will output a classification.

To build a decision tree we need a training set comprised of labelled samples with

the corresponding feature vectors. We will build a decision tree using the Classification

And Regression Trees (CART) method (Breiman et al., 1984). To illustrate the

general structure of these decision trees we use a training set of the first 40 Pass-Off



CHAPTER 4. CLASSIFICATION OF MANOEUVRES IN A PASS-OFF TEST 92

Table 4.5.1: The number of each manoeuvre in the training set.

Manoeuvre A B C R P RP F V U Total

Number in training Set 108 53 8 38 52 36 51 86 49 481

tests. The training set is comprised of 481 manoeuvres, with each manoeuvre having

a vector of scores. The number of occurrences for each manoeuvre is given in Table

4.5.1. Note that there is only one instance of an RP manoeuvre, which is insufficient

to classify the manoeuvre. We have therefore combined 35 R and P manoeuvres that

occurred sequentially in a test.

Taking the training set of labelled manoeuvres and scores, we use the CART

algorithm to build a decision tree. We chose the decision tree using a 10-fold cross-

validation approach. In k-fold cross-validation we split the data into k folds of equal

size. We leave out one fold and train the classification algorithm on the remaining (k-

1)-folds. We then test on the left out fold. We perform the same procedure, leaving

out a different fold each time. We obtain k scores, which we can average over to

obtain the average classification accuracy. We can then estimate the mean number

of misclassifications, and the standard error. We have used the Rpart package in R

(Therneau et al., 2011), to form these decision trees. We then picked a tree using the

1-Standard Error approach (Breiman et al., 1984), which chooses the smallest tree that

is within one standard error of the tree with the minimum number of misclassifications.

The resulting decision trees using Thresholding and Probabilistic NW are shown in

Figure 4.5.1.
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(a) Tree using NW scores (b) Tree using Probabilistic NW scores

Figure 4.5.1: Pruned Trees using NW (left) and Probabilistic NW (right) scores and

applying 10-fold Cross Validation.

The CART algorithm identifies that features for the Unknown manoeuvres differ

from the other manoeuvres, which is why they are classified by the last decision node.

The decision node’s typically use the scores generated for that particular manoeuvre.

For example manoeuvre V is classified using the score sV . Both the decision trees

in Figure 4.5.1 give 3 misclassifications for the manoeuvres in Test 41 to 93. Two of

these misclassifications occur in Test 46, which we will discuss in Section 4.5.3.

4.5.2 Linear Discriminant Analysis

The decision tree classifier outlined in Section 4.5.1 is an effective classifier. However

the classifier has a notable weakness. The Unknown manoeuvres are not explicitly

modelled, which can make the DT liable to misclassify Unknown manoeuvres that

do not match those in the training set. We therefore consider Linear Discriminant

Analysis (LDA) to classify the manoeuvres, which gives an associated probability for

each classification. In this model we explicitly model the Unknown manoeuvres. We
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will show for Test 46 that misclassifications by the Decision tree approach, can be

identified by the LDA method. A more thorough comparison will be given in Sections

4.6 and 4.7.

Let ni be the number of samples of class i in a training set, for i ∈ Θ where

Θ = {A,B,C,R, P,RP, F, V }. We assume the score vectors in each class follows a

multivariate normal distribution. We estimate the parameters of these distributions

using maximum likelihood estimation (MLE) obtaining estimated mean vector µ̂i and

covariance matrix Σ̂i for class i. We set the prior probability of class i

P (class i) =
ni∑
k∈Θ nk

(4.5.1)

Then using Bayes theorem we can calculate the probability an unlabelled manoeuvre

with score vector x∗ coming from class i:

P (class i|x∗, µ̂i, Σ̂i) =
P (x∗|µ̂i, Σ̂i)P (class i)∑
k P (x∗|µ̂k, Σ̂k)P (class k)

. (4.5.2)

We have seen that the Unknown manoeuvres can have different shapes and lengths.

It therefore doesn’t make sense to fit a distribution to the scores of the Unknown

manoeuvres, as in practice an Unknown manoeuvre may be performed that wasn’t

observed in the Training phase. We want to classify a manoeuvre as Unknown if

P (class i|x∗) is very small for all manoeuvres i. We therefore model the Unknown

manoeuvres using a Gaussian distribution with very high variance, which gives it a

flat density. The covariance matrix ΣU = 1000 ∗ I has sufficiently large variance. The

mean is inconsequential so is taken to be the zero vector.
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4.5.3 Comparing the DT and LDA classifiers

Using the manoeuvres from the first 40 Pass-Off tests, we will train the DT and LDA

classifiers. We will use Pass-Off test 46 shown in Figure 4.5.2 to illustrate how the

LDA classifier gives improved classification performance. The LDA classifier gives a

vector of probabilities for each type of manoeuvre. We have found that the classifier

gives probability 0 to all manoeuvres except one. The manoeuvre with probability 1

is in almost all cases the truth. The degeneracy in the probability values seem to arise

due to the vector of scores generated for each type of manoeuvre being so distinct.

There is effectively no overlap in the probability densities.

To identify unusual samples, we can use the Mahalanobis distance (MD). To

calculate MD we use the means µ̂i and covariance matrices Σ̂i for i ∈ Θ. These terms

have already been calculated for the LDA classifier, meaning there is no additional

computational cost. The MD is given by:

MD(x|µ̂i, Σ̂i) =

√
(x− µ̂i)T Σ̂−1

i (x− µ̂i) (4.5.3)

The MD gives a score which can be used to identify unusual samples. It uses the

covariance information, so considers the spread of the distribution when giving a

score. It is also unitless and scale-invariant, which is particularly useful in our case

as we can compare the MD directly for manoeuvres in different classes.

In Table 4.5.2, we have the true labels for the manoeuvres in Test 46, alongside

the labels using the DT and LDA classifiers. We have also included the MD of the

manoeuvres with respect to the class assigned by LDA. We can see that there are
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Figure 4.5.2: Pass-Off test 46, labelled using DT classifier.

three misclassifications by DT, and one by LDA. Both classifiers mislabelled the first

Running and Handling (R) manoeuvre, which is not surprising given it has a different

profile to a normal R manoeuvre. Looking at the probabilities in Table 4.5.2, there

are two cases that have zero probabilities. These are the manoeuvres that have been

misclassified by the DT, but correctly identified by the LDA. One manoeuvre is a

Vibration Survey, but was mislabelled as it gave a score of 8.66, which was above the

8.1372 threshold in the DT. Likewise there is a misclassification of the R manoeuvre

before the P manoeuvre, which occurs for the same reason. However the LDA classifier

is able to correctly classify these manoeuvres. The MD highlights unusual cases for

example one of the R manoeuvres has a significantly large MD value, which highlights

it is worth further inspection even though the LDA is able to correctly classify the

manoeuvre.
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Table 4.5.2: Table of labels given for Test 46, shown in Figure 4.5.2, with colours

matching the manoeuvre classes. We have the true labels, and the labels using

the Decision Tree (DT) and Linear Discriminant Analysis (LDA). We also have the

Mahalanobis distance with respect to the manoeuvre class given by LDA.

True Labels DT Labels LDA Labels Mahalanobis

Stops Stops Stops -

Stops Stops Stops -

A A A 0.438

B B B 0.986

Stops Stops Stops -

A A A 3.719

F F F 2.283

R U U 361.567

Stops Stops Stops -

A A A 3.167

B B B 1.266

Stops Stops Stops -

A A A 1.094

F F F 0.654

R U R 732.006

P P P 0.261

V U V 55.322

U U U 12.186

U U U 4.905

U U U 12.398

Stops Stops Stops -

U U U 11.914

U U U 5.387

U U U 9.381
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Table 4.6.1: The number of each manoeuvre in the 93 Pass-Off tests.

Manoeuvre A B C R P RP F V U Total

Number of Instances 231 110 10 89 123 85 111 199 107 1030

4.6 Testing on Trent 1000 engines

We have outlined a classification algorithm for manoeuvres in a Trent 1000 Pass-Off

test. In this section we will assess the classification accuracy of the model. We will

use k-fold cross-validation to assess the classification accuracy.

In Table 4.6.1 we have the total number of each manoeuvre in the 93 Pass-Off tests.

We can see that manoeuvres A and V are performed significantly more than the other

manoeuvres. We can also see a large number of manoeuvres can be categorised as

Unknown. The RP manoeuvre only occurs once, which is insufficient for the DT and

LDA classifiers. We therefore create an additional 84 instances of RP manoeuvres by

combining R and P manoeuvres performed together in the tests.

We will use standard 10-fold cross-validation. The mean percentage of misclassifications

of the test data is (0.184%, 0.0464%) with variances (0.00045%,0.000066%) for the

DT and LDA classifiers respectively. We can see that both classifiers give high

classification accuracy, however the LDA classifier does significantly outperform the

DT classifier. The DT in particular struggles classifying manoeuvre C, as there only

a few instances.
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4.7 Testing on XWB engines

In Section 4.6, we have shown the classification algorithm is effective in classifying the

manoeuvres in a Trent 1000 Pass-Off test. Naturally we ask whether this algorithm

can be used for Pass-Off tests for different engines. We therefore considered testing

the classification algorithm on XWB Pass-Off tests.

We found that using the classification algorithm directly on the XWB Pass-Off

test data gives poor classification performance. The manoeuvres have different speed

ranges and slightly different shapes. We therefore need to create new templates as

done before. There also a few other subtle details to outline. First the manoeuvre ‘B’

is not performed but a new manoeuvre, which we have labelled as ‘D’ is performed.

Second the Running and Handling (R) manoeuvre does not return to idle speed so

will not be treated as a manoeuvre. Third the F and V manoeuvres have a different

profile to those performed in the Trent 100 engines, as shown in Figure 4.7.2.
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The list of manoeuvres for the XWB Pass-Off tests are given below.

A (22)

D (85)

P Performance Curve (96, 92, 90, 86, 79, 72, 66, 57, 22)

RP Running & Handling/Performance Curve (92, 22, 92, 96, 92, 90, 86, 79,

72, 66, 57, 22)

F Fast Acceleration/Deceleration

V Vibration Survey

U Unknown.

Using the templates given above for the piecewise linear manoeuvres and those

we constructed using FPCA for manoeuvres F and V we can classify the manoeuvres

in an XWB Pass-Off test. We built a LDA classifier using all the data and obtain

43 misclassifications. There are two main causes of these misclassifications the first

are the spike manoeuvres, which can be seen in Test 25 shown in Figure 4.7.3. These

spike manoeuvres do not appear in the Trent 1000 engine tests, but appear in some of

the XWB engine tests. Second, the fixed speed levels can be very small and therefore

difficult to extract as shown in Test 54 in Figure 4.7.3. However the vast majority of

the manoeuvres are effectively classified. Third, looking at the F and V manoeuvres

in Figure 4.7.1 we can see that there is a higher variance in comparison to the F

and V manoeuvres in the Trent 1000 Pass-Off tests shown in Figure 4.4.1. We can
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Table 4.7.1: The number of each manoeuvre in the 54 XWB Pass-Off tests.

Manoeuvre A D P RP F V U Total

Number of Instances 86 73 24 55 58 92 42 430

(a) Fast acc/dec (b) Vibration Survey

Figure 4.7.1: Plot of first 20 F and V manoeuvres

remedy this issue by aligning the curves using curve registration approaches (Ramsay

and Silverman, 2005). There are two standard approaches, the first uses warping

functions to find an alignment however this can be computationally expensive. The

second approach is to align using landmarks or features of the curves. For the F and V

manoeuvres there is a distinctive point of deceleration, these points can be identified

using the PELT algorithm outlined in Section 4.2.1. In Figure 4.7.2 we have a plot of

the F and V manoeuvres aligned at the deceleration points, which are clearly easier

to model using Functional PCA.
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(a) Fast acc/dec (b) Vibration Survey

Figure 4.7.2: Plot of first 20 Fast acc/dec (F) and Vibration Survey (V) manoeuvres

aligned at the deceleration point.

(a) Pass-Off test 25 (b) Pass-Off test 54

Figure 4.7.3: Labelled N1 speed plots for XWB Pass-Off test 25 (left) and 54 (right).
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4.8 Heatmap

The classification algorithm we have developed can be used to highlight problematic

engine tests, which we will illustrate using a heatmap. We count the number of

each manoeuvre performed in each Pass-Off test, and then put these values into a

heatmap. The heatmap highlight instances of manoeuvres that have been performed

a large number of times. The colouring gives a quick visual comparison and highlights

tests in which a large number of manoeuvre repeats occurred. An example heatmap

is given in Figure 4.8.1 for the first 10 Pass-Off tests. We can see that Pass-Off test

4 has been stopped 13 times and Vibration Survey (V) has been repeated 12 times.

This is clearly a problematic test relative to the other tests. Manoeuvre V has been

repeated in the majority of the Pass-Off tests, highlighting possible engine issues were

detected during this manoeuvre. The number of stops performed can also be a good

indicator of problems that have arisen during the test. For example Pass-Off test 2

has been stopped 6 times, which indicates multiple engine tweaks were performed.

4.9 Conclusion

We have built a classification algorithm to extract and label the manoeuvres in a

Pass-Off test. The PELT changepoint algorithm is used to extract the manoeuvre

segments from the N1 speed time series. Using templates for each manoeuvre class,

we have calculated Needleman-Wunsch (NW) and FPCA scores. We have also built a

Probabilistic NW algorithm that can align two real-valued sequences. The scores are

treated as features that can be input into a classifier. Two classifiers are considered: an
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off-the-shelf Decision Tree (DT) and a Linear Discriminant Analysis (LDA) classifier.

Using 10-fold cross validation, we have shown that the LDA classifier has higher

classification accuracy than the DT classifier. We can also use the Mahalanobis

distance to highlight manoeuvres that may be performed in an unusual way. The

labels from the classification algorithm can determine problematic Pass-Off tests,

which can be visualised via a heatmap. We have tested the classification approach

on Trent 1000 engine and have found the algorithm gives exceptional classification

performance. We also tested the approach on XWB engines, which gives good classification

performance however the manoeuvres in the XWB engines introduce further difficulties.

In summary, the classification algorithm is fast, exploiting the efficiency of PELT, NW

and FPCA and gives near perfect classification. However the algorithm requires prior

information to build the templates and needs a training set for the classifiers.
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Chapter 5

Manoeuvre Clustering in Cyclic

tests

5.1 Introduction

In a Pass-Off test engineers perform a sequence of pre-defined manoeuvres, whereas

in the Cyclic engine tests (described in Chapter 1) the manoeuvres are not pre-

defined. In both tests the engineers follow a schedule plan but deviations can occur.

In particular manoeuvres can be performed that do not match those in the schedule.

We have previously referred to these manoeuvres as Unknown. We do not know the

manoeuvres classes for the Cyclic test. We therefore propose a clustering algorithm.

There is potential to use the output of the clustering algorithm to build templates. We

could then create a classification algorithm as we did for the Pass-Off test manoeuvres

in Chapter 4.

The Cyclic test is performed to assess the degradation of the engine performance

106
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over time. We would ideally want an online monitoring system to flag signs of engine

degradation. The different manoeuvres performed makes it difficult to identify engine

degradation. Therefore the aim is to use the clusters to identify engine deterioration

by comparing the behaviour within each cluster over time.

We will split a Cyclic test into manoeuvres, each of which is a time series starting

and ending at idle speed. We then calculate the pairwise distances between each

pair of manoeuvres, but to do so we need to deal with the varying lengths. We will

therefore use Dynamic Time Warping (DTW), which is capable of comparing two

time series of different lengths. We then cluster using the pairwise distances.

In Section 5.2 we discuss density based clustering algorithms. In particular we

outline the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

algorithm that is able to cluster data in the presence of outliers. There are alternative

approaches such as robust k-means (Garćıa Escudero et al., 2015), hierarchical (Balcan

et al., 2014) and spectral clustering (Bojchevski et al., 2017) methods that aim to

mitigate the effect of outliers. However these approaches do not explicitly identify

the outliers and are unable to determine the number of clusters endogenously. In

Section 5.3 we describe Dynamic Time Warping (DTW), which is capable of giving

the distance between two time series of different lengths. The clustering approach

is outlined in Algorithm 3, which uses Dynamic Time Warping with a density based

clustering algorithm to determine manoeuvre classes in an engine test. In Section

5.5 we apply the clustering algorithm on the Cyclic test data. We also apply the

visualisation tool: tSNE, described in Chapter 2 to see the cluster structures. We have

chosen tSNE as it only requires the pairwise distances and gives good visualisations in
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practice. In Sections 5.6 and 5.7 we test the clustering algorithm on the manoeuvres

from the Trent 1000 and XWB engine Pass-Off tests, which were previously analysed

in Chapter 4. We can then assess the effectiveness of the clustering algorithm using

the true labels. Finally we discuss the results and possible extensions in Section 5.8.

5.2 Density Based Clustering

There are a number of density based clustering algorithms (Kriegel et al., 2011).

Typically we assume that the data is sampled from an unknown probability density

p(x). Density based clustering approaches are non-parametric, where clusters are

assigned by regions where the density of points is above a threshold. The most

famous is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

algorithm (Ester et al., 1996), which uses a distance parameter ε and a minimum

cluster size m. The algorithm finds clusters in which the points are mutually density-

connected, i.e. that every point in the cluster is within ε of another point in the cluster

and the points are density-reachable i.e. a point can be connected to another point in

the cluster by a chain of points where each link is less than ε. DBSCAN approximates

the density of each cluster using uniform kernel distributions. A point is an outlier if

there are less than m points in this ε-neighbourhood.

The DBSCAN procedure is outlined in Algorithm 2. Note that DBSCAN does

not require the number of clusters to be known unlike k-means. DBSCAN can find

clusters of arbitrary shape and can effectively identify outliers for a well chosen ε.

However there are some notable weaknesses: DBSCAN results depend heavily on the
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choice of ε. The standard approach is to calculate the m-nearest neighbour distances

and by ordering and plotting the distances, we form an elbow plot to determine ε.

Alternatively we can take a 95% percentile of the m-nearest neighbour distances as

suggested by Daszykowski et al. (2001). Another potential weakness is that a single-

link can cause two potentially disjoint clusters to merge together.

Algorithm 2 DBSCAN

1: INPUTS: Data points x1, ..., xn, distance ε and minimum cluster size m,
2: Initialisations:
3: Set S = {x1, ..., xn} and cluster = 0
4: while While |S| > 0 do
5: Take a random point xi ∈ S
6: Find all points in S that are density-reachable to xi and put into a set H
7: if |H| < m then
8: Label all points in H as noise (-1)
9: S = S \H

10: else
11: cluster = cluster + 1
12: Assign all points in H to cluster
13: S = S \H
14: end if
15: end while
16: RETURN: cluster assignment.

5.3 Dynamic Time Warping

In this section we will describe the Dynamic Time Warping (DTW) distance (Senin,

2008). We will use this distance measure to obtain the pairwise distances between

the manoeuvre samples. Given two sequences a = (a1, ..., aN) and b = (b1, ..., bM),

we build a distance matrix C ∈ RN×M of all pairwise distances between a and b. An

alignment path can be defined as s = (s1, .., sL) where sl = (Nl,Ml) and M ≤ L ≤ N ,

which satisfies the following conditions:
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1. Boundary: p1 = (1, 1) and pL = (N,M)

2. Monotonicity: 1 = N1 ≤ · · · ≤ NL = N and 1 = M1 ≤ · · · ≤ML = M

3. Step size: Nl+1 −Nl < δ and Ml+1 −Ml < δ for a threshold δ.

We define the cost of an alignment s as

cp(a, b) =
L∑
l=1

c(aNl
, bMl

) where c(aNl
, bMl

) = |aNl
− bMl

|.

The optimal path is given by:

DTW (a, b) = min
s∈S
{cp(a, b)}

where S is the set of all alignment paths that satisfy the conditions given above.

To find the optimal path we use a dynamic programming procedure similar to

Needleman-Wunsch discussed in Section 4.3. We build a global cost matrix D where

• D(1, j) =
∑j

l=1 c(a1, bl) for j = 1, ...,M

• D(i, 1) =
∑i

l=1 c(al, b1) for i = 1, ..., N

• D(i, j) = min{D(i− 1, j− 1), D(i− 1, j), D(i, j− 1)}+ c(ai, bj)} for i = 1, ..., N

and j = 1, ...,M .

The computational cost of DTW is O(NM) due to the construction of the global cost

matrix. The optimal path is found by backtracking from (N,M).

Additional constraints can be added:

• Step function - the alignment path can only move up to w consecutive times in

a certain direction.
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• Weighting - we can penalize horizontal or vertical directions inD, this is equivalent

to penalising gaps in Needleman and Wunsch (1970).

• Global path constraints - allow alignments only in a band or a parallelogram

region, this will notably reduce the computational cost.

The DBSCAN model relies on two parameters m and ε, which are codependent.

We follow the standard procedure of selecting m, which is relatively intuitive. Then

we select ε using an elbow plot of the m-nearest neighbour distances. The clustering

algorithm is outlined in Algorithm 3.

Algorithm 3 Manoeuvre Clustering algorithm

1: INPUTS: Time series x1, ..., xn and minimum cluster size m,
2: Initialisations:
3: Set empty matrix W .
4: for i = 1 : n do
5: for j = i+ 1 : n do
6: Obtain distance Wij = DTW (xi, xj).
7: end for
8: end for
9: for l = 1 : n do

10: Calculate m-nearest neighbour distances for xl : dl.
11: end for
12: Order distances dl and concatenate to form a vector d
13: Plot d to obtain an elbow plot and choose parameter ε at elbow
14: Apply DBSCAN(ε,m) using distance matrix W
15: RETURN: cluster assignment.

5.4 Cluster Evaluation

For the Trent 1000 and XWB Pass-Off tests we have labels for the manoeuvres, which

we can use to assess the effectiveness of the clustering algorithm given in Algorithm

3. There are a number of evaluation techniques to assess the clustering performance
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with respect to the true classes (Manning et al., 2008). The most intuitive is the

purity, where each cluster is assigned to the class, which appears most frequently in

the cluster. Then the purity is given by counting the number of correctly assigned

samples divided by the total number of samples n. Let w = (w1, ..., wK) be the true

class groupings and c = (c1, ..., cJ) be the cluster groupings, then the purity is given

by:

purity =
1

n

K∑
k=1

max
j
|wk ∩ cj|.

Purity does not penalise for increasing number of clusters, i.e. the purity is equal to

1 if every point is assigned to a unique cluster.

Alternatively there are information-metrics such as the Mutual Information (MI),

which quantifies the amount of information gained about the classes when we are told

the cluster assignments. For classes w and cluster assignment c the MI is given by:

MI(w; c) = H(w)−H(w|c),

where H(·) is the entropy. However the MI like the purity measure does not penalise

large number of clusters. Therefore we use the Normalised Mutual Information (NMI):

NMI(w, c) =
2MI(w; c)

H(w) +H(c)
.

The normalisation term [H(w) +H(c)]/2 tends to increase as the number of clusters

increases. Using NMI we can compare across different cluster assignments. We can

show 0 ≤ NMI(w, c) ≤ 1, where a value of 1 corresponds to the cluster assignment
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being identical to the class assignment. We will use the NMI measure to evaluate the

clustering performance for the Trent 100 and XWB engines.

5.5 Clusters in Cyclic Test Data

There are 281 manoeuvres in the Cyclic test. We do not need to extract the manoeuvres

as in the Pass-Off test as there is a marker to identify the start and end of each

manoeuvre. We will set the minimum cluster size m = 10. We apply Algorithm 3 to

identify clusters in the Cyclic test manoeuvres. In Figure 5.5.1 we have an elbow plot

of the ordered log 10-nearest neighbourhood distances. There is an evident elbow at

a distance of log(1000). Therefore the choice of ε = 1000 seems reasonable for the

DBSCAN algorithm. Using ε = 1000 the algorithm identifies four clusters and labels

42 of the manoeuvres as noise. The manoeuvres labelled as noise typically appear at

the beginning of the test as shown in Figure 5.5.2, which contains the N1 speed plot for

the whole Cyclic test. The various clusters are coloured, with the noise manoeuvres

in red. The noise manoeuvres at the start of the test are part of the ‘shake-down’ test

performed before the cycles are performed. It’s also worth noting that the manoeuvre

classes tend to occur in groups.

In Figure 5.5.3 we have a plot of the aligned time series in each cluster. All the

clustered manoeuvres have two fixed speed levels and a spike. The manoeuvres have

distinctive speed levels, which suggest the classification approach outlined in Chapter

4 would be effective.

We can visualise the clusters using the tSNE mapping discussed in Chapter 2. A
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Figure 5.5.1: Ordered log 10-nearest neighbour distances with red line at 1000.

tSNE mapping plot of the clusters is given in Figure 5.5.4, with the points coloured

based on the clusters from Algorithm 3. We can see the clusters are well separated,

although there are some points that are near the clusters that may have been labelled

as noise. We did a sensitivity analysis of the clustering results for different choices of

ε. For large ε then clusters merged together and noise manoeuvres were mislabelled,

whilst for small ε we overestimated the number of noise manoeuvres. Choosing ε =

1000± 100 gave the same clustering results.

The manoeuvres are performed sequentially. To capture the time-dependent nature

of the data we use a video showing the points arising over time, which can be found

online (Hullait, 2019).
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Figure 5.5.2: Cyclic test plot with manoeuvres coloured in with respect to the four

clusters and the the noise manoeuvres are coloured in red, using DBSCAN with

ε = 1000.
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure 5.5.3: Plots of aligned manoeuvre in each of the 4 clusters found using ε = 1000

in the DBSCAN algorithm.

Figure 5.5.4: tSNE mapping for each manoeuvre in the Cyclic test with the four

clusters coloured, including noise points in red
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5.6 Clusters in Trent 1000 Pass-Off tests

The clustering procedure described in Algorithm 3 is effective in identifying manoeuvre

classes in the Cyclic test. In this section we will test the clustering algorithm on

manoeuvres in the Trent 1000 Pass-Off tests. In the test the engineers can perform

8 predefined manoeuvres: A,B,C,R,P,RP,F,V and occasionally perform an unspecified

manoeuvre U. We can use the true manoeuvre labels to assess the clustering performance.

We have 981 manoeuvres in the 93 Pass-Off test datasets. The manoeuvres

lengths are significantly longer than those in the Cyclic tests, and therefore using

Dynamic Time Warping would be computationally impractical. We therefore shrink

the manoeuvre time series by down-sampling by taking observations at every 200

points. This reduction is size maintains the general shape of the manoeuvres.

The elbow plot of the log 10-nearest neighbour distances is given in Figure 5.6.1,

and by inspection we choose ε = log(4000). Then applying DBSCAN we obtain 9

clusters shown in Figures 5.6.2. These clusters pick up the different classes defined

earlier. However it splits P manoeuvres into two clusters, and likewise for the R

manoeuvres. Cluster 7 is a manoeuvre we would have labelled as Unknown, whilst

cluster ‘C’ defined in Chapter 4 does not appear as a cluster. The output from

the clustering algorithm suggests that cluster 7 should perhaps be included in the

classification algorithm as there are 17 instances of the manoeuvre.

In Figure 5.6.3 we have two plots of the tSNE mapping of the manoeuvres labelled

with respect to the cluster assignment and with respect to the true labels. We can see

that most of the clusters are distinct. Clusters 4 and 6 both contain P manoeuvres
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Table 5.6.1: The number of each manoeuvre in Trent 1000 dataset identified as noise

by DBSCAN.

Manoeuvre A B C R P RP F V U Total

Number Noise 4 2 10 26 8 1 25 3 90 169

however we can see the groups are distinctive, which explains the samples being split

into two clusters. Clusters 8 and 9, look to be overlapping, which we would expect

given they are both examples of R manoeuvres.

We have the true labels of the manoeuvres in the Pass-Off test, which we can use

to assess the clustering performance. We will use the Normalised Mutual Information

(NMI), outlined in Section 5.4. The NMI value is 0.8453, which shows that the

clustering algorithm is able to distinguish the different classes effectively. The classification

algorithm outlined in Chapter 4 achieves a NMI value of 0.9921, which is notably

higher.

The algorithm overestimates the number of Unknown manoeuvres, labelling 169

manoeuvres as noise, when there are in fact 108 Unknown manoeuvres. The overestimation

is likely due to the choice of ε. In Table 5.6.1 we have a breakdown of the number of

each manoeuvre type that was labelled as noise. We can see manoeuvre R and F are

the most troublesome to cluster. The mislabelled RP manoeuvre is expected given

there is only one instance. The P manoeuvres that are labelled as Unknown arise due

to missing steps.
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Figure 5.6.1: Ordered log k-nearest neighbour distances with line at ε = log(4000) for

Trent 1000 manoeuvres.

5.7 Clusters in XWB Pass-Off tests

In this section we apply the clustering algorithm on the manoeuvres performed in the

XWB Pass-Off tests. We follow the same process as for the Trent 1000 manoeuvres in

Section 5.6. We have 430 manoeuvres, that come from 7 classes: A,D,P,RP,F,V and

U. In Algorithm 3 we choose the ε parameter using an elbow plot of the log 10-nearest

neighbour distances. Looking at the elbow plot in Figure 5.7.1 there is not a clear

‘elbow’ point, however ε = log(4000) is reasonable and is consistent with the choice

of ε for the Trent 1000 engines. Applying DBSCAN we obtain 5 clusters shown in

Figures 5.7.3. The classes are in general well identified, however the algorithm has

merged the F and V manoeuvres together.

In Figure 5.7.2 we have a plot of the tSNE mapping of the manoeuvres coloured

using the cluster labels and using the true labels. We can see that most of the classes
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6
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(g) Cluster 7 (h) Cluster 8

(i) Cluster 9

Figure 5.6.2: Plots of manoeuvre clusters found using ε = 4000 in the DBSCAN

algorithm for Trent 1000 manoeuvres.

are distinct, however the classes containing manoeuvres F and V are very close, which

explains why they have been grouped together in Cluster 2. We have 42 Unknown

manoeuvres however DBSCAN identifies 62 cases. In Table 5.7.1 we have a breakdown

of the number of each manoeuvre class which were labelled as noise. As in the Trent

1000 Pass-Off tests the F manoeuvres are often mislabelled. Next we will use the

Normalised Mutual Information (NMI) given in Section 5.4 to evaluate the cluster
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(a) Cluster Labels (b) True Labels.

Figure 5.6.3: tSNE mapping of the manoeuvre in the Trent 1000 Pass-Off tests using

cluster labels (left) and using true labels (right).

Figure 5.7.1: Ordered log k-nearest neighbour distances with line at ε = 4000 for

XWB manoeuvres.

performance. We have obtained a NMI value of 0.8137 that is notably smaller than

the NMI value from the classification algorithm labels: 0.9012. The NMI value is also

notably smaller than for the Trent 1000 manoeuvres.
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(a) Cluster Labels (b) True Labels.

Figure 5.7.2: tSNE mapping of the manoeuvre in the XWB Pass-Off tests using cluster

labels (left) and using true labels (right).

Table 5.7.1: The number of each manoeuvre in XWB dataset identified as noise by

DBSCAN.

Manoeuvre A D P RP F V U Total

Number Noise 1 6 5 1 10 2 37 62
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5

Figure 5.7.3: Plots of XWB manoeuvre in 5 clusters found using ε = 4000 in the

DBSCAN algorithm.
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5.8 Discussion

We have built a general clustering procedure to identify manoeuvres types in a Cyclic

test, which can also be applied to Pass-Off tests. The algorithm is able to effectively

cluster the manoeuvres in the presence of outliers. The algorithm is relatively simple

using a standard distance function and a classical clustering algorithm. The approach

does not require prior information or a training set unlike the classification algorithm

in Chapter 4. The clusters highlight high serial correlation within the Cyclic test, as

manoeuvre types typically occur in groups, which we have not taken into account in

the clustering algorithm. We can use the clusters identified to define the manoeuvre

classes in a Cyclic test.

We have used the DTW to obtain distances between samples. This distance

measure can deal with time series of different lengths and slight differences in shape.

We then use a density based clustering algorithm: DBSCAN, to identify the clusters.

DBSCAN gives effective clustering results whilst being able to identify outliers, which

we know to be present in the test datasets. However DBSCAN relies on a parameter

ε. We choose ε using an elbow plot, however a more rigorous approach is required,

highlighted by the overestimation of the number of Unknown manoeuvres.

The clustering algorithm was applied on manoeuvres in a Cyclic test. The clusters

look reasonable, with samples in the same cluster typically following the same structure.

The tSNE mapping shows the clusters are separable mitigating the potential issue of

a single-link effect. Applying the algorithm on the manoeuvres in the Pass-Off tests,

we have found the different class structure are identified. However in some cases the
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classes merge or multiple clusters are formed for the same manoeuvre class. One way

of mitigating this issue is to have an associated uncertainty measure for the cluster

assignments. Ideally we would have a probability for a point being assigned to each

cluster. Using the probability of a manoeuvre being in each cluster can aid in splitting

or merging potential clusters.



Chapter 6

Robust Functional Linear

Regression

The material in this chapter is under submission at Technometics journal.

6.1 Introduction

Functional Linear Regression (FLR) in the function-on-function case (Ramsay and

Dalzell, 1991) is a widely used technique for modelling functional responses with

respect to functional inputs. The FLR model is able to capture complex dependency

structures as it uses information across time (Morris, 2015). However classical FLR

models can be severely affected by outliers as we will demonstrate via a simulation

study in Section 6.4. We therefore develop a robust FLR (RFLR) model, which

is able to effectively fit the data in the presence of outliers. The model is built

using the robust Functional Principal Component model by Bali et al. (2011) and

127
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the multivariate Least Trimmed Squares (MLTS) estimator by Agulló et al. (2008).

The RFLR model can be used to identify abnormal functional responses, i.e. samples

in which the functional behaviour between the predictor and response curve deviates

from normal.

Our study of FLR is motivated by a need to identify unusual temperature behaviour

in jet engine sensor data collected during Pass-Off tests. In Chapter 1 we described the

Pass-Off test and in Chapter 4 we built an algorithm to extract and label manoeuvres

performed in the test. One of the key manoeuvres in a Pass-Off test is the Vibration

Survey (V). In this manoeuvre the engine is accelerated slowly to a certain speed

then slowly decelerated. We have 199 Vibration Survey datasets for the Trent 1000

engines and 92 for the XWB engines. The datasets include speed parameters such as

the N1 speed and the turbine pressure ratio (TPR), and various temperature features

including the turbine gas temperature (TGT). In Figure 6.1.1 we have plots of the

TPR and TGT for 30 V manoeuvres in the Trent 1000 Pass-Off tests. To anonymise

the data we have transformed the time index onto the interval [0, 1] and the sensor

measurements to the range [0, 100].

For the classification algorithm in Chapter 4 we used the N1 speed parameter.

The N1 speed gives stable measurements as it only relies on the shaft speed of the

fan. However the N1 speed does not give a direct measurement of thrust. We will

therefore instead use the TPR, which gives the actual thrust produced by the engine.

The V manoeuvres are performed by a human controller, which causes variability

in the TPR curves as can be seen in Figure 6.1.1. This variability will naturally

affect the TGT curves and may mask the unusual behaviour produced by the engine.
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(a) TPR (b) TGT

Figure 6.1.1: Plots of 30 TPR (left) and TGT (right) time series.

We therefore require a method of detecting outliers in the presence of the controller

induced variability. We expect that the relationship between the engine speed and

engine temperature for different V manoeuvres should be the same irrespective of the

way the manoeuvre is performed. For example given a certain engine acceleration

we would expect a certain temperature response. If however the response differs

from expectation this could be indicative of an engine issue. In Chapter 7 we will

show how RFLR can be used for outlier detection, which we use to identify abnormal

temperature behaviour in the jet engine datasets.

6.2 Robust Functional Linear Regression

In Section 3.3 we have defined the FLR model, which can be estimated using a pre-

chosen basis. In particular we can use FPCA bases to estimate parameters of the

model. In this section we will use robust FDA techniques to build a robust FLR

model. This will allow us to fit a normality model even in the presence of outliers.
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We shall also propose a robust BIC procedure for model selection. We will replace

classical FPCA with robust FPCA estimates by Bali et al. (2011) which ensure that

outliers do not unduly affect the FPCA estimates.

Let xi(t) and yi(t) be pairs of predictor and response functions respectively in

L2(I) for i = 1, ..., n. We define the robust FPCs φ̃Xm(t) (m = 1, ...,M) and φ̃Yk (t)

(k = 1, ..., K) for xi and yi respectively. These orthonormal functions form a basis

such that

xi(t) ≈
M∑
m=1

z̃imφ̃
X
m(t), yi(t) ≈

K∑
k=1

w̃ikφ̃
Y
k (t),

are good approximations for xi(t) and yi(t).

We define ỹi(t) = w̃iφ̃
Y (t) and assume that εi = q̃iφ̃

Y (s). We can now write

w̃i = z̃iB̃ + q̃i. (6.2.1)

To obtain a robust estimate of the regression matrix B̃, we will use the Multivariate

Least Trimmed Squares (MLTS) estimator by Agulló et al. (2008), to mitigate the

affect of outliers with respect to the regression relationship. Given α ∈ [0, 1] we can

define r = [αn] as the α proportion of samples rounded to the nearest integer, and

the set S = {S ⊂ {1, ..., n}, |S| = r}. The objective of MLTS is to find a subset S

such that

S = arg min
S∈S

∑
i∈S

||w̃i − z̃iB̃||2.

This is robust as outliers will not be in the subset by definition so shall not affect the

model estimation. We will choose a subset of size r = [0.8n].
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Bayesian Information Criterion

In this section we formulate a Bayesian Information Criterion (BIC) to determine the

basis size M and K, similarly to Matsui (2017). We will outline a robust extension

of the BIC in Section 6.2.1. A component of the BIC is the log likelihood, often

expressed as a squared error term. It is tempting to use the squared error resulting

from Equation (3.3.4). However the objective is to fit the data yi which comes in the

form of a discrete time series, so we should use a likelihood of this data instead of a

squared error term of basis coefficients.

We have a set of models J = {(M,K)|M = 1, ...,Mmax, K = 1, ..., Kmax}, where

Mmax and Kmax are pre-set maximum number of FPCs that will be considered in

the model. Let vector ~yi be the values of yi(t) evaluated at discrete time points:

~yi = [yi(t1), ..., yi(tT )]. Let z
(M)
i be the first M principal scores of xi(t) with respect

to the FPCs φX(t) and let φ(K) be the matrix with (k, i) entry φYk (ti). We assume

there exists a true model (M0, K0) with associated M0 ×K0 matrix BM0K0 such that

~yi = (z
(M0)
i )TBM0,K0φ(K0) + εi, (6.2.2)

where the error εi = [εi(t1), ..., εi(tT )] is assumed for simplicity to be sampled from

N(0, v2IT ), where IT is the identity matrix of size T .

For Model (M,K) we define θM,K = (BM,K , vM,K) and the prediction ŷM,K
i =

(z
(M)
i )TBM,Kφ(K). We want to identify this true model (M0, K0), which we can use

to obtain consistent estimates of θM0,K0 .

For Model (M,K) we can define the likelihood for sample i as
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f(~yi|θM,K) =
1

(2π)
T
2 (vM,K)T

exp

{
− [~yi − ŷM,K

i ]T [~yi − ŷM,K
i ]

2(vM,K)2

}
, (6.2.3)

and the log-likelihood l(θM,K) =
∑n

i=1 log(f(~yi|θM,K)). As in Eilers and Marx (1996)

BICn(M,K) = −2l(θM,K) + w(M,K) log(n) (6.2.4)

where the penalty ω(M,K) = MK+1, in which MK is the number of free parameters

in the model and the 1 comes from v. We will denote (M∗, K∗)n = arg min(M,K)∈J BICn(M,K),

which is dependent on the sample size n.

To summarise, we estimate the FPCs for X and Y and solve the FLR model for

different models (M,K). We then choose model (M∗, K∗)n that minimises the BIC

criterion.

6.2.1 Robust Bayesian Information Criterion for FLR

The BIC model selection method is known to be non-robust (Machado, 1993). In

particular outliers can significantly affect the loglikelihood estimation. We therefore

outline a robust BIC (RBIC) model, which, similar to MLTS, maximises over a subset

of samples S. RBIC can therefore give good model selection performance in the

presence of outliers.

We will define θ̃M,K = (B̃M,K , ṽM,K) as robust estimated parameters for model

(M,K) and the robust prediction ỹM,K
i = (z̃

(M)
i )T B̃M,K φ̃(K). We define the trimmed

likelihood for model (M,K) and set S as

l̃(θ̃M,K , S) =
∑
i∈S

(
[~yi − ỹM,K

i ]T [~yi − ỹM,K
i ]

(ṽM,K)2

)
+ rT log(2π) + 2rT log(ṽM,K). (6.2.5)
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We will define SM,K = arg minS∈S l̃(θ̃
M,K , S), where S = {S ⊂ {1, ..., n}, |S| = r}

for r = [0.8n]. Then

RBICn(M,K) = −2 min
S∈S

l̃(θ̃M,K , S) + ω(M,K) log(r) (6.2.6)

= −2l̃(θ̃M,K , SM,K) + w(M,K) log(r) (6.2.7)

We will denote (M̃, K̃)n = arg min(M,K)∈J RBICn(M,K), and we will assume that

this minimum is unique.

In Algorithm 4 we outline the calculation of the robust FLR model, which incorporates

the RBIC procedure. In the algorithm we estimate the model for different values of

(M,K) and choose the model with the minimum RBIC value. We consider M =

1, . . . ,Mmax and l = 1, ..., Kmax where Mmax, Kmax are chosen to ensure that 99.99%

of the variance in the raw data is captured.

Algorithm 4 Robust FLR procedure

1: INPUTS: Centred time series (xi, yi) of length T for i = 1, ..., n,
2: Estimate {φ̃X1 (t), ..., φ̃XMmax

(t)}, {φ̃Y1 (t), ..., φ̃YKmax
(t)} (Bali et al., 2011).

3: for M = 1, ...,Mmax do
4: for K = 1, ..., Kmax do
5: Estimate the regression matrix BM,K using MLTS (Agulló et al., 2008).
6: Calculate RBICn(M,K) = arg min(M,K)∈J RBICn(M,K) (6.2.6)
7: end for
8: end for
9: Select model (M̃, K̃)n.

10: RETURN: B̃ from model (M̃, K̃)n and {φ̃X1 (t), ..., φ̃X
M̃

(t)}, {φ̃Y1 (t), ..., φ̃Y
K̃

(t)}.

6.3 Asymptotic Results

In Section 6.2 we proposed a Robust FLR model for the function-on-function problem.

A minimum criteria for a good model is consistency, i.e. that given an ideal scenario of
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unlimited data that the estimator will be equal or arbitrarily close to the truth. In this

section we shall prove consistency and Fisher-consistency for the robust FLR model.

We shall follow a similar approach to Kalogridis and Aelst (2019) who developed

a robust FLR model for the scalar-on-function problem. We shall also prove the

consistency of the RBIC model selection method outlined in Section 6.2.

Definition 6.3.1. Let X1, X2, ..., Xn be a sequence of real-valued random variables.

An estimator Tn := T (X1, X2, ..., Xn) of a parameter θ is said to be (asymptotically)

consistent if for all ε > 0

lim
n→∞

P (|Tn − θ| > ε) = 0.

Definition 6.3.2. Let X1, X2, ..., Xn be a sequence of real-valued random variables

with an associated cumulative distribution function Fθ, which depends on an unknown

parameter θ. Let the estimator Tn := T (Fn) of a parameter θ, be a function of the

empirical distribution function Fn. We say this estimator is Fisher-consistent for

the parameter θ if

T (Fθ) = θ

Remark 6.3.3. Fisher consistency is equivalent to (asymptotic) consistency if the

empirical distribution function Fn converges pointwise to the true distribution function

Fθ. This can be shown to be the case for iid real multivariate random variables using

the Glivenko-Cantelli theorem (Pollard, 2012).
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6.3.1 Consistency of the Robust FLR

To prove Fisher-consistency we need to define appropriate probability measures on the

predictor X(t), response Y (t) and the residual ε(t). We will then define conditions by

which the robust FPCA and MLTS regression are Fisher-consistent, which will then

ensure the Fisher-consistency of β̃(s, t). We shall also prove consistency of β̃(s, t)

using Remark 6.3.3. Following the ideas set by Kalogridis and Aelst (2019), we make

6 assumptions:

(C1) X has a finite-dimensional Karhunen-Loéve decomposition: λXm = 0 for m > M0.

(C2) Y has a finite-dimensional Karhunen-Loéve decomposition: λYk = 0 for k > K0.

(C3) The residual ε(t) = q̃φ̃Y (t) where q̃ is a Gaussian random variable with mean 0

and covariance matrix Σ.

(C4) β(s, t) lies in a linear subspace spanned by {φ̃Xm}
M0
m=1 and {φ̃Yk }

K0
k=1.

(C5) The random variables {ξ̃Xj }
M0
j=1 are absolutely continuous and have joint density

g1(x) satisfying g1(x) = h1(||x||E) for x ∈ RM0 and some measurable function

h1 : R→ R+.

(C6) The random variables {ξ̃Yj }
K0
j=1 are absolutely continuous and have joint density

g2(y) satisfying g2(y) = h2(||y||E) for y ∈ RK0 and some measurable function

h2 : R→ R+.

We define || · ||E as the Euclidean norm.
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Let PX be the image measure of X i.e. PX(U) = P (X ∈ U) for a Borel set U , and

likewise for PY . We can define the cumulative distribution functions

FX(a1, ..., aM0) := PX(ξ̃X1 ≤ a1, ..., ξ̃
X
M0
≤ aM0),

FY (b1, ..., bK0) := PY (ξ̃Y1 ≤ b1, ..., ξ̃
Y
K0
≤ bK0).

Let Fε denote the distribution function of ε(t), which can be defined in the same

way as PX and PY . We can write the functional of the robust estimator β̃(s, t) as:

β̃(Fε, FX , FY )(s, t) =

K0∑
k=1

M0∑
m=1

B̂km(Fε, FX , FY )φ̃Xm(FX)(s)φ̃Yk (FY )(t). (6.3.1)

The functional is Fisher-consistent if β̃(Fε, FX , FY )(s, t) = β(s, t) for s, t ∈ I, which

in turn follows from B̃km(Fε, FX , FY ) = Bkm, φ̂Yk (FY )(t) = φYk (t) and φ̂Xm(FX)(t) =

φXm(s). Conditions C1-C4 are to ensure the FLR problem can be defined by a finite

number of terms. Kalogridis and Aelst (2019) show that Conditions C5 and C6 are

sufficient for the Fisher-consistency of the robust FPCA estimators by Bali et al.

(2011).

Lemma 6.3.4. Assume C1-C6 holds then β̃(Fε, FX , FY )(s, t) is Fisher-consistent.

Proof. Conditions C1-C2 and C5-C6 ensure Fisher-consistency of the robust FPCA

estimators as shown by Bali et al. (2011), so φ̃Y (FY )(t) = φY (t) and φ̃X(FX)(t) =

φX(t). By conditions C1-C2 we can write

Y (t) = cφ̃Y (FY )(t), X(t) = Zφ̃X(FX)(t)
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Then

∫
I

X(s)β̃(Fε, FX , FY )(s, t)ds =

∫
I

Zφ̃X(FX)(s)φ̃X(FX)(s)T B̃(Fε, FX , FY )φ̃Y (FY )(t)ds using C4

= ZB̃(Fε, FX , FY )φ̃Y (FY )(t).

Using condition C3 we can write ε(t) = q̃φ̃Y (t) therefore

ZB̃(Fε, FX , FY )φ̃Y (FY )(t) + ε(t) = ZB̃(Fε, FX , FY )φ̃Y (FY )(t) + q̃φ̃Y (FY )(t),

multiplying by φ̃Y (FY )(t) and integrating over t we obtain

ZB̃(Fε, FX , FY ) + q̃.

Agulló et al. (2008) show that Condition C3 implies the MLTS estimator is Fisher-

consistent so B̃(Fε, FX , FY ) = B. Therefore β̃(Fε, FX , FY )(s, t)ds = β(s, t).

Corollary 6.3.5. If {x1(t), y1(t)}, ..., {xn(t), yn(t)} are iid samples with cumulative

distribution function (FX , FY ). Then, assuming C1-C6 holds, β̃(s, t) is consistent.

Note that xi(t) and yi(t) are defined on a finite number of eigenfunctions, so are

defined by finite score vectors. Therefore Corollary 6.3.5 follows from Lemma 6.3.4

and Remark 6.3.3, which states almost sure convergence of the empirical distribution

for iid multivariate random variables. In this case Fisher-consistency is equivalent to

consistency.



CHAPTER 6. ROBUST FUNCTIONAL LINEAR REGRESSION 138

6.3.2 Consistency of RBIC

We defined RBIC for the FLR problem in Section 6.2.1. In this section we will

prove consistency of RBIC for the FLR problem. We will assume there is a true

model, which we previously defined as (M0, K0). We can then define overspecified and

underspecified models in reference to this true model. We make some assumptions on

the behaviour of the likelihood for these two model classes to prove consistency. We

also denoted (M̃, K̃)n = min(M,K)∈J RBICn(M,K), which we will assume is unique.

We will split the candidate models in J into two sets, one is the overspecified

models that include the true model J+ = {(M,K) ∈ J |M ≥ M0 and K ≥ K0} and

underspecified models J− = J c+ ∩ J . Recall that r = [αn] for some α ∈ (0, 1), and the

likelihood l̃ in (6.2.5) depends on r terms.

Assumption 1 For (M,K) ∈ J−, there exists some εM,K > 0 such that

lim
n→∞

P

[
1

r
(l̃(θ̃M0,K0 , SM0,K0)− l̃(θ̃M,K , SM,K)) > εM,K

]
= 1.

This is a reasonable assumption as the underspecified models should give a poorer fit

to yi than the true model.

Assumption 2 For (M,K) ∈ J+, there exists some γM,K > 0 such that

lim
n→∞

P
[
l̃(θ̃M,K , SM,K)− l̃(θ̃M0,K0 , SM0,K0) > γM,K

]
= 0.

This assumption states that the difference in the trimmed loglikelihood is less than

a finite γ. The likelihood for the overspecified models and the true model should

be close, given the true model is contained within the overspecified models, so the

difference in the penalty terms will outweigh the difference in the likelihoods for large
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enough n.

Note that in Assumption 1 we consider the average difference between the log-

likelihoods, whereas in Assumption 2 we look at the total difference.

Theorem 6.3.6. Given Assumptions 1 and 2 hold, and the true model (M0, K0) ∈ J

then (M̃, K̃)n is a consistent estimator of (M0, K0).

Proof. For j ∈ J−, we will show

lim
n→∞

P ({RBICn(M,K)−RBICn(M0, K0)} > 0) = 1. (6.3.2)

By definition we can show that:

lim
n→∞

P (RBICn(M,K)−RBICn(M0, K0) > 0)

= lim
n→∞

P

(
−2

(
l̃(θ̃M,K , SM,K)− l̃(θ̃M0,K0 , SM0,K0)

r

)
> −(ω(M,K)− ω(M0, K0)) log(r)

r

)
.

We will label Hr = −2
(
l̃(θ̃M,K ,SM,K)−l̃(θ̃M0,K0 ,SM0,K0 )

r

)
and Gr = (ω(M,K)−ω(M0,K0)) log(r)

r
.

Using εM,K from Assumption 1, we can see that −Gr < 2εM,K for sufficiently large r.

Using this and Assumption 1 we can show

lim
n→∞

P (Hr > −Gr) ≥ lim
n→∞

P (Hr > 2εM,K) = 1.

Therefore limn→∞ P (RBICn(M,K)−RBICn(M0, K0) > 0) = 1 for (M,K) ∈ J−.

For (M,K) ∈ J+\{(M0, K0)}, we know that 1
2
(ω(M,K) − ω(M0, K0)) log(r) > 0

and is monotonically increasing. Therefore there exists N such that for r ≥ N

1

2
(w(M,K)− w(M0, K0)) log(r) > γM,K . (6.3.3)
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We can show that

lim
n→∞

P (RBICn(M,K)−RBICn(M0, K0) < 0)

= lim
n→∞

P

(
[l̃(θ̃M,K , SM,K)− l̃(θ̃M0,K0 , SM0,K0)] >

1

2
(ω(M,K)− ω(M0, K0)) log(r)

)
≤ lim

n→∞
P
(

[l̃(θ̃M,K , SM,K)− l̃(θ̃M0,K0 , SM0,K0)] > γM,K
)

= 0 by Assumption 2.

Note that BIC is a special case of RBIC where r = n, so is also consistent by

Theorem 6.3.6.

6.4 Simulation Study

In this section we will provide a simulation study to investigate the finite sample

properties of RBIC and robust FLR (RFLR) in comparison to BIC and classical

FLR (CFLR). In the simulation study we will generate data using a FLR process and

corrupt a certain number of samples, which will be the outliers. The outliers have been

designed to be undetectable, if the response curves are considered independently of

the predictor curves. Therefore standard functional data outlier detection algorithms

such as those we will discuss in Section 3.5 will perform poorly.

The main motivation for the RFLR model is to obtain good model fitting in the

presence of outliers. In this simulation study we compare the fitting error (FE) given

in (6.4.1), for the non-outlier samples using the robust model, which uses RFLR

and RBIC with the classical approach using CFLR and BIC. We define the indicator
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variable ui = 1 if sample i is an outlier and 0 otherwise. Letting ŷi(t) be the estimation

of yi(t) and given that proportion a of the samples have been contaminated then FE

is given by:

FE =
1

(1− a)n

n∑
i=1

(1− ui)||yi − ŷi||2. (6.4.1)

Next we compare the outlier detection capabilities of robust and classical approaches

using the receiver operating characteristic (ROC) curve to determine the sensitivity/specificity

trade-off for different thresholds. If we have perfect outlier detection for all thresholds

then the area under the curve (AUC) of the ROC curve would be 1. We can therefore

use the AUC value as a measure of outlier detection accuracy regardless of threshold.

FPCA is performed by taking the principal components of a 200 cubic B-spline

representation of each of the predictor and response curves (Ramsay and Silverman,

2005). The robust FPCA approach outlined in Section 6.2 is performed using the CR

algorithm proposed by Croux and Ruiz-Gazen (1996) on the same B-spline coefficients.

The MLTS estimator is calculated using the heuristic given by Agulló et al. (2008)

using different trimming proportions (1− α) for α ∈ [0, 1].

6.4.1 Scenarios

We will generate samples x(t) using a FPCA based model with mean function µX(t) =

−10(t− 0.5)2 + 2 for t ∈ [0, 1] and eigenfunctions:

φX1 =
√

2 sin(πt), φX2 =
√

2 sin(7πt), φX3 =
√

2 cos(7πt).
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The principal scores are sampled from Gaussian distributions with mean 0 and variances

40, 10 and 1 for the eigenfunctions respectively. Note that we do not create any outliers

in the FPCA decompositions of the predictor curves. We generate 400 predictor curves

x1(t), ..., x400(t), which are observed at T = 500 equidistant points in the interval [0, 1].

The samples y(t) will have eigenfunctions:

φY1 =
√

2 sin(12πt), φY2 =
√

2 sin(5πt), φY3 =
√

2 cos(2πt),

and mean function µY (t) = 60 exp(−(t−1)2). We will generate β(s, t) = φX(s)TBφY (t)

where B will have random entries between [−3, 3]. We generate non-outlier curves:

yi(t) = µY (t) +

∫
I

β(s, t)(xi(s)− µX(s))ds+ εi(t),

where the residual function εi(t) = qiφ
Y (t) + di where qi and di are sampled iid from

N(0, 0.1). We will consider three cases when the proportion of outliers are a = 0.1, 0.2

and 0.3.

In Scenario 1 outliers will be generated by replacing B with B1 = B+R where R

has random entries sampled from N(0, 0.5) giving β1(s, t) = φX(s)TB1φ
Y (t). Outliers

y′i(t) are given by

y′i(t) = µY (t) +

∫
I

β1(s, t)(xi(s)− µX(s))ds+ εi(t).

In Scenario 2 we generate outliers by adding a random B-spline function p(t)

defined on an interval of length 1/10. Letting β2(s, t) = φX(s)TB2[φY (t), p(t)], for

3× 4 matrix B2 = [B, l] for l ∼ N(2, 1), then the outliers y′′i (t) are given by
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y′′i (t) = µY (t) +

∫
I

β2(s, t)(xi(s)− µX(s))ds+ εi(t).

Note that the outliers in Scenario 1 affect the regression function across the entire

interval whereas the outliers in Scenario 2 only affect a small interval of the curves.

In Figure 6.4.1 we have a plot of the predictor curves xi(t) and response curves

yi(t) with outliers from Scenario 1 and Scenario 2. The figure shows the outliers

are masked by the variability in the curves and therefore cannot by identified using

standard outlier detection algorithms. To make the outliers clearer we have plotted

the residuals of the response curves using the true regression function and mean

functions. In the bottom row of Figure 6.4.1 we can see that the outliers in Scenario

2 are localised to a fixed interval whereas in Scenario 1 the outliers affect the response

curve at all time points.

The RFLR model depends on the proportion of trimming α. To investigate the

effect of the trimming we will consider trimming proportions α = 0.1, 0.2 and 0.3.

We shall also investigate the performance using BIC and RBIC with fixed trimmed

sample size of r = [0.8n].

We sample 400 predictor and response curve datasets and generate classical and

robust models to calculate the average FE (6.4.1). In Tables 6.4.1 and 6.4.2 we present

the results for Scenario 1 and 2 respectively. The CFLR model gives a smaller FE

value in the case of no-outliers a = 0, however the robust model still gives good model

fits. If we compare the FE using BIC and RBIC, we can see that BIC gives better

model choices when a = 0. This is due to BIC using all the data and in particular



CHAPTER 6. ROBUST FUNCTIONAL LINEAR REGRESSION 144

Table 6.4.1: Average fitting errors (FE) for 100 replications for Scenario 1, using

classic FPCA and robust FPCA with different amount of trimming in the MLTS

estimator and using models selected by BIC and RBIC.

Trim Model a=0 a=0.1 a=0.2 a=0.3

Classic α = 0.0 BIC 5.326 18.441 48.771 101.320

Robust α = 0.1 BIC 8.283 14.166 21.118 33.907

α = 0.1 RBIC 9.285 9.179 10.674 28.393

α = 0.2 BIC 8.288 14.178 15.750 16.623

α = 0.2 RBIC 9.292 9.207 9.535 13.436

α = 0.3 BIC 8.294 14.199 15.815 16.518

α = 0.3 RBIC 9.301 9.214 9.544 12.334

using samples in the tails of the distribution. In the presence of outliers the robust

model outperforms the classical model, and as expected the difference in FE increases

as the number of outliers increases. We should also note that RBIC is giving better

model choices than BIC when outliers are present. Next, we can see using trimming

proportion α = 0.1 we obtain significantly large FE values when a = 0.3. However

the FE values for α = 0.2 and 0.3 are very similar in the case of a = 0.3. The outliers

generated can have different sizes, therefore in the α = 0.2 robust model only small

outliers are present, which only affect the model fitting slightly .
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Table 6.4.2: Average fitting errors (FE) for 100 replications for Scenario 1, using

classic FPCA and robust FPCA with different amount of trimming in the MLTS

estimator and using models selected by BIC and RBIC.

Trim Model a=0 a=0.1 a=0.2 a=0.3

Classic α = 0.0 BIC 5.326 17.252 48.906 85.063

Robust α = 0.1 BIC 8.283 15.242 21.524 28.758

α = 0.1 RBIC 9.285 9.074 9.919 18.546

α = 0.2 BIC 8.288 16.745 20.652 21.928

α = 0.2 RBIC 9.292 9.191 8.997 13.628

α = 0.3 BIC 8.294 16.808 20.695 21.750

α = 0.3 RBIC 9.301 9.233 9.018 11.439



CHAPTER 6. ROBUST FUNCTIONAL LINEAR REGRESSION 146

6.5 Conclusion

We have built a robust Functional Linear Regression (FLR) model for functional

responses and introduced a robust model selection procedure. The robust procedure

has been shown to be Fisher and asymptotically consistent. Then using a simulation

study we have shown that the robust model significantly outperforms the classical

model in the presence of outliers. In Chapter 7 we will show the residuals from the

robust FLR model can be used to identify outliers.
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(a) xi(t) (b) xi(t)

(c) y
(1)
i (t) (d) y

(2)
i (t)

(e) r
(1)
i (t) (f) r

(2)
i (t)

Figure 6.4.1: Left: Plots of the predictor curves xi(t), response curves y
(1)
i (t) and

residuals curves r
(1)
i (t) for Scenario 1. Right: Plots of the predictor curves xi(t),

response curves y
(2)
i (t) and residuals curves r

(2)
i (t) for Scenario 2. The residual curves

are generated using the true regression function and mean functions. In each scenario

there are 5 outliers each in a distinctive colour.



Chapter 7

Outlier Detection using Functional

Regression

The material in this chapter has been presented at the “Workshop on Advanced Analytics

and Learning on Temporal data” at The European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases 2019.

7.1 Introduction

In Chapter 6 we have outlined a function-on-function robust Functional Linear Regression

(RFLR) model. One of the motivations for the model was to identify outliers in the

temperature behaviour in the jet engines. We will use the RFLR model to define

“normal” engine behaviour. We can then use the residuals from this model to identify

outlying behaviour. To identify outliers we will apply functional depth, which we have

defined in Section 3.4. The depth values give an ordering of the samples. We will show

148
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in conjunction with the RFLR model that the depth values give a good separation of

the normal and abnormal samples.

In Chapter 2 we have outlined the novelty detection approaches used for jet engine

data. The standard approaches require a training set of ‘normal’ samples to build a

normality model. They then apply novelty detection using an appropriate distance

measure and threshold. We instead use Functional Data Analysis (FDA) methods to

identify Vibration Survey (V) manoeuvres that display unusual temperature behaviour

in response to the variable (human-controlled) TPR time series. We will robustly build

a normality model thereby not requiring a set of ‘normal’ samples. FDA techniques

have been used effectively to model sensor data (Morris, 2015), as they combine

information across samples and exploit the underlying behavioural structure. However

this is to the best of our knowledge the first time these techniques are being used for

modelling jet engine data.

In Section 3.5 we discussed various outlier detection approaches for functional data.

None of the outlier detection approaches are able to model the dependency between

the functional response and functional input, and may therefore miss important

outliers. RFLR can model this dependency structure, which can improve the detection

of outliers. We therefore suggest an outlier detection algorithm which uses RFLR

to model the dependency structure. Using residuals from the model we can apply

standard outlier detection approaches. The outliers in the residuals will be samples

that display abnormal temperature behaviour with respect to engine speed.

We shall outline our outlier detection approach in Section 7.2. We will use the same

simulation setup given in Chapter 6, which focused on the fit of the RFLR model to



CHAPTER 7. OUTLIER DETECTION USING FUNCTIONAL REGRESSION150

the normal samples. In Section 6.4 the simulations will focus on outlier detection. In

Section 7.4 we apply the outlier detection algorithm on jet engine data from Pass-Off

tests performed on Trent 1000 and XWB engines. We focus on outlier detection of the

V manoeuvres extracted using the classification algorithm in Chapter 4. Manoeuvre

V is a natural choice given the smooth trajectories and the large number of samples.

7.2 Outlier Detection using RFLR

The RFLR model produces estimates of the responses ỹi(t) = z̃iB̃φ̃
Y (t) for i = 1, ..., n.

For an outlier we expect the residual curve ri(t) = yi(t)− ỹi(t) to deviate in behaviour

from the other residuals. Traditionally, we would use the integrated square error to

identify outliers. However using functional depth is more effective in identifying shape

outliers. We apply the outlier detection approach by Febrero-Bande et al. (2008) to

the residuals from the RFLR model. We describe the outlier detection algorithm in

Algorithm 5.

We need to choose a depth function for the outlier detection algorithm. We have

chosen to use the h-modal depth (Cuevas et al., 2007) to rank samples ri, as it satisfies

most of the desirable properties of a functional depth defined in Section 3.4. The h-

modal depth also captures distance i.e. a sample that is twice as far from the centre

as another sample will have a proportionally lower depth value. For a given kernel

Gh (typically Gaussian with bandwidth h), the h-modal depth of ri with respect to

r = {r1, ..., rn} is given by:
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D(ri|r, h) = E(Gh(||ri − r||)) ≈
1

n

n∑
l=1

G

(
||ri − rl||

h

)
. (7.2.1)

Further details are given in Section 3.4. The h-modal depth has two useful properties.

First, it uses a distance metric therefore samples further away from the centre will be

given a smaller depth value. Second, in the case of multiple “normal” types behaviour,

the h-modal depth works effectively as it doesn’t assume there is one centre. Febrero-

Bande et al. (2008) also show in their simulation studies that the h-modal depth

outperforms the FM and random projection depth functions in regards to false outlier

detection rate.

The h-modal depth has one further appealing property. Suppose z = aT θ(t) and

xi = bTi θ(t). Then

||z − xi||22 =

∫
I

[z(t)− xi(t)]2 dt

=

∫
I

[
aT θ(t)− bTi θ(t)

]2
dt

=

∫
I

[
(a− bi)T θ(t)

]2
dt

= [a− bi]T
∫
I

θ(t)θ(t)Tdt [a− bi]

= [a− bi]T I [a− bi]

= [a− bi]T [a− bi]

= ||a− bi||2

where || · || without the suffix is the finite dimensional Euclidean norm. The h-modal



CHAPTER 7. OUTLIER DETECTION USING FUNCTIONAL REGRESSION152

depth in Equation (7.2.1) becomes a standard multivariate Kernel density estimation

with respect to the basis coefficients. This means that we can calculate the depth

using only the basis coefficients.

Algorithm 5 Outlier Detection using Robust FLR

1: INPUTS: Centred curves {xi(t), yi(t)} for i = 1, ..., n and percentile δ,
2: Use Algorithm 4 to obtain φ̃Yk (t), z̃m and B̃.
3: for i = 1 : n do
4: Calculate residual curves ri(t).
5: end for
6: Calculate depth values d for (r1(t), ..., rn(t))
7: Set bandwidth h be 15% percentile of depth values d
8: for i = 1 : n do
9: if D(ri|r, h) < C then

10: Sample i is labelled as an outlier.
11: end if
12: end for
13: RETURN: List of outliers and depth values d.

7.3 Simulation Study

We will use the same simulation study given in Chapter 6. In Chapter 6 we focused on

the model fit of the robust estimators. In this section we will test the outlier detection

capabilities of the robust FLR. We will compare the depth based outlier detection

(Direct) (Febrero-Bande et al., 2008) to the FLR models. In Figure 7.3.1 we have

ROC curve generated for one of the repetitions in Scenario 1 and 2 in which we have

contaminated 20% of the samples. In both scenarios the robust model outperforms

the classical model. We can also see that using the Direct approach performs poorly.

The ROC curves also show that the robust and classical models are more effective

in identifying the outliers in Scenario 1 and 2. By only using the specificity and
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(a) Scenario 1 (b) Scenario 2

Figure 7.3.1: ROC curve for one instance of Scenario 1 and 2 with 20% of the samples

contaminated.

sensitivity for a fixed threshold a lot of information is being lost, therefore a better

comparison would be the area under the curve (AUC). Using the AUC metric we

can understand the model outlier detection capabilities overall, in particular how well

are the outliers separated from the other samples. We have taken the average AUC

values over the 100 iterations performed for Scenario 1, which are shown in Table

7.3.1. We have considered the average AUC values for trimming levels α = 0.1, 0.2

and 0.3. The robust models give larger AUC values than the classical model. However

the different trimming levels does not seem to have a significant effect on the AUC

values. In Scenario 2 we have the results in Table 7.3.2. The same patterns appear

as in Scenario 1 except the the AUC values are notably smaller.
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Table 7.3.1: Average AUC values over 100 replications for Scenario 1, using Direct

compared to classic FPCA with BIC, and using robust FPCA with RBIC. We will use

trimming levels α = 0.1, 0.2, 0.3 and contaminate different proportions of the samples

a = 0.1, 0.2, 0.3.

Trim a=0.1 a=0.2 a=0.3

Direct - 0.532 0.538 0.550

Classic α = 0.0 0.960 0.898 0.797

α = 0.1 0.995 0.991 0.953

α = 0.2 0.996 0.996 0.987

α = 0.3 0.996 0.996 0.990
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Table 7.3.2: Average AUC values over 100 replications for Scenario 2, using Direct

compared to classic FPCA with BIC, and using robust FPCA with RBIC and

trimming levels α = 0.1, 0.2 and 0.3.

Trim a=0.1 a=0.2 a=0.3

Direct - 0.512 0.548 0.554

Classic α = 0.0 0.922 0.838 0.734

α = 0.1 0.985 0.964 0.932

α = 0.2 0.980 0.980 0.966

α = 0.3 0.980 0.980 0.968
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(a) Functional Boxplot (b) Functional Boxplot

(c) Outliergram (d) Outliergram

(e) FOM (f) FOM

Figure 7.3.2: Plots of the Functional Boxplots, the Outliergrams and the Functional

Outlier Map (FOM) for the residuals using CFLR (left) and RFLR (right) for one

instance of Simulation 1 with 20% of the data contaminated. In the Functional

Boxplot the median function is in black, the 0.5-central region C0.5 is in purple with

the fences in blue, the outliers are coloured in red. In the Outliergrams the thresholds

are the dotted lines and outliers lie outside the thresholds. In the FOM plots have a

parabolic threshold given by dotted line.
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7.4 Jet Engine data

Our motivation behind the robust FLR model is to identify outliers in the temperature

parameters for manoeuvres performed in a Pass-Off test. We have already extracted

the manoeuvres from the Pass-Off test data using the classification algorithm given

in Chapter 4. We will focus on the Vibration Survey (V) manoeuvre, which has a

distinctive shape with a slow acceleration and a slow deceleration, with examples

shown in Figure 6.1.1. For the Trent 1000 Pass-Off tests we have 199 V manoeuvres.

For the XWB Pass-Off tests we have 92 V manoeuvres. We do not have labels for

whether any of the individual engines have outliers but we do have log books from

the engine test, which we can use obtain insights into the abnormal V manoeuvres.

We have five temperature readings T25, T30, TGT, TCAR and TCAF, from sensors

measuring temperature in different parts of the engine. All the temperature features

for Trent 1000 engine are shown in Figure 7.4.1. The TCAR is particularly interesting

as it has two distinct curve behaviours. It is also worth noting that the temperature

values are distinctively higher at the end of the manoeuvre than at the beginning

even though the engine speeds are the same. This highlights the trajectory-dependent

behaviour that we seek to model. The V manoeuvres time series are of similar length.

To standardise we have fitted a B-spline basis of 400 basis functions to each to ensure

the time series are well approximated. Then we have taken 1000 equally spaced points

on the B-spline representations to be our inputs xi(t) and yi(t).

We will be applying the outlier detection algorithm described in Algorithm 5,

which uses RFLR. We will compare these outliers with those detected using CFLR
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and BIC in Algorithm 5. We can look at the residuals curves to determine if the

outliers do indeed look abnormal. We will apply the depth based outlier detection

(Direct) (Febrero-Bande et al., 2008) directly on the temperature curves (with a

default threshold of δ = 0.01), and on the TPR speed curves. If abnormal speed

profiles cause abnormal temperature profiles as we have conjectured then the outliers

using the Direct approach should be the same for the TPR and the temperature

parameters. In particular we want to show that our robust functional regression

model is able to determine outliers that would otherwise be missed by investigating

the temperature curves directly.

7.4.1 Vibration Surveys in Trent 1000 engines

In this section we will apply the outlier detection model using robust FLR on the V

manoeuvres extracted from the Trent 1000 Pass-Off tests. In Table 7.4.1, we have the

outliers detected using the Direct approach, using a classical approach with CFLR

and BIC and finally using our outlier detection approach with robust FLR given

in Algorithm 5. For each of the three approaches we determined a threshold using

δ = 0.01. We can see that the outliers in the TPR are the same as the outliers in the

temperature features. This suggests the outliers being identified are arising from the

controller induced variability. We therefore need to model the dependency between

the control feature (TPR) and the temperature features.

The residual curves from the classical approach are shown in Figure 7.4.2, with

the outliers coloured in blue. It is not clear from this plot that the outliers are truly

different from the other data. In Figure 7.4.3 we have the residual curves using RFLR.
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We can see that the RFLR model fits the majority of the temperature curves well.

The outliers that are picked up clearly look abnormal, with significant deviations

from the general behaviour. The RFLR model is therefore able to identify interesting

behaviour, which may otherwise have been undetected. Engineers have informed us

that Sample 24 comes from an engine in which they detected damaged hardware. All

the other outliers in the RFLR column of Table 7.4.1 were also noted to come from

engines that displayed odd behaviour during the Pass-Off test. This is not the case

for the outliers reported in the CFLR column.

In Figure 7.4.1 we have a plot of the temperature parameters with the outliers

identified using the curves directly in green, those using the RFLR model in red

and those detected by both in purple. We can see that the outliers from the RFLR

model do not necessarily appear as abnormal if we look at the temperature curves

directly. Sample 106 is identified as an outlier by multiple temperature features and

also when the depth based outlier detection is used on the temperature curves directly.

Comparing the outliers identified using a classical approach, we can see Sample 24

is identified as an outlier multiple times using the classical and robust approaches.

However most of the outliers from the classical approaches differ from the outliers

detected using the robust approach. We can also see that the outliers using the

RFLR are significantly more distinctive than the outliers using CFLR.

7.4.2 Vibration Surveys in XWB engines

In this section we will give the results from the robust FLR model applied to V

manoeuvres extracted from XWB Pass-Off tests. We will perform the same analysis
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(a) TPR (b) T25

(c) T30 (d) TGT

(e) TCAR (f) TCAF

Figure 7.4.1: Plots of the TPR, T25, T30, TGT, TCAR and TCAF time series from

Vibration Surveys performed on Trent 1000 engines with outliers using robust FLR

in red; those using the curves directly in green and those for both in purple.
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(a) T25 (b) T30

(c) TGT (d) TCAR

(e) TCAF

Figure 7.4.2: Plots of the residuals of the T25, T30, TGT, TCAR and TCAF with

outliers using classical FLR in blue.
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(a) T25 (b) T30

(c) TGT (d) TCAR

(e) TCAF

Figure 7.4.3: Plots of the residuals of the T25, T30, TGT, TCAR and TCAF with

outliers using robust FLR in red.
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Temp Direct CFLR RFLR

TPR 33, 106, 167 - -

T25 33, 106, 167 24, 182 24, 70, 106

T30 33, 106, 167 24, 182, 192 24, 44, 70, 106, 196

TGT 33, 106, 167 119, 153 44, 70, 106, 117

TCAR 33, 106 36, 91, 106 70, 106

TCAF 33, 167 65, 167, 170, 171 24, 70, 106

Table 7.4.1: Outliers detected for temperature features (Temp) using outlier detection

on the temperature features directly (Direct), and the outliers found using CFLR and

RFLR.

as we did for the V manoeuvres in the Trent 1000 tests discussed in Section 7.4.1. In

Table 7.4.2, we have the outliers detected using the Direct approach, using a classical

approach with CFLR and BIC and finally using our robust FLR approach given in

Algorithm 5. For each of the three approaches we determined a threshold using

δ = 0.01. We can see that the outliers in the TPR are the same as the outliers in

the temperature features except for the TCAR parameter. We need to model the

dependency between the engine speed and the temperature parameters, as we did for

the Trent 1000 V manoeuvres.

The residuals curves from the classical approach are shown in Figure 7.4.5, with

the outliers coloured in blue. In the Trent 1000 examples we saw a range of samples

identified as outliers. However for the XWB V manoeuvres we consistently identify
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Sample 31 as an outlier, which suggests it requires further investigation.

In Figure 7.4.6 we have the residual curves using RFLR. We can see that the

RFLR model identifies some very abnormal samples, with significant deviations from

the general behaviour. We only have 92 samples from the XWB engine tests, which

is significantly smaller than the 199 samples used in Section 7.4.1. Therefore using

δ = 0.01 will expectedly give fewer outliers.

In Figure 7.4.4 we have a plot of the temperature parameters with the outliers

identified using the Direct approach in green; those using the RFLR model in red and

those detected by both in purple. We can see that the outliers from the RFLR model

do not necessarily appear as abnormal if we look at the temperature curves directly.

Samples 10 and 14 have an abnormal TPR profile, which has lead to a number of

abnormal temperature profiles. There is little overlap in the outliers detected using

the classical and robust approaches. There is agreement between the two approaches

for the TCAR parameter. Samples 37 has significantly larger temperature values than

the other samples, whilst Sample 31 has a decrease in temperature during an engine

acceleration which is very abnormal.

7.5 Conclusion

The robust Functional Linear Regression (RFLR) model we outlined in Chapter 6

has been used to identify outliers. Using the residuals of the RFLR model and

functional depth we can identify abnormal response curves with respect to a predictor

curve. We have shown via a simulation study that we are able to label isolated
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(a) TPR (b) T25

(c) T30 (d) TGT

(e) TCAR (f) TCAF

Figure 7.4.4: Plots of the TPR, T25, T30, TGT, TCAR and TCAF time series for

Vibration Surveys performed on XWB engines with outliers using robust FLR in red;

those using the curves directly in green and those for both in purple.
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(a) T25 (b) T30

(c) TGT (d) TCAR

(e) TCAF

Figure 7.4.5: Plots of the residuals of the T25, T30, TGT, TCAR and TCAF for

Vibration Surveys in XWB tests with outliers using classical FLR in blue.
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(a) T25 (b) T30

(c) TGT (d) TCAR

(e) TCAF

Figure 7.4.6: Plots of the residuals of the T25, T30, TGT, TCAR and TCAF for

Vibration Surveys in XWB tests with outliers using robust FLR in red.
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Temp Direct CFLR RFLR

TPR 10, 14 - -

T25 10 31 16

T30 10,14 31 16

TGT 10, 14 31 16

TCAR 37 31, 37 31, 37

TCAF 10, 14 31 3, 16, 19

Table 7.4.2: Outliers detected for temperature features (Temp) using outlier detection

on the temperature features directly (Direct), and the outliers found using CFLR and

RFLR for Vibration Surveys in XWB tests.

and persistent shape outliers. The robust FLR model outperforms standard outlier

detection procedures and classical FLR. Using jet engine sensor data as a motivating

application for robust FLR we have identified unusual temperature behaviour. We

have applied the outlier detection model on Vibration Survey manoeuvres from both

the Trent 1000 and XWB Pass-Off tests. We highlighted that unusual speed profiles

cause abnormal temperature profiles. Therefore the dependency of the temperature

and speed behaviour needed to be modelled. We have identified interesting outliers

that would not have been detected if we modelled the engine temperature independently

of the engine speed.



Chapter 8

Prediction of Vibration Survey

repeats

8.1 Introduction

In a Pass-Off test an engineer can choose to repeat a manoeuvre. They may repeat

due to the manoeuvre not meeting certain specifications or perhaps they noticed

something during the test. We consider a data driven approach to identify repeated

Vibration Survey manoeuvres. We use the Vibration Surveys due to there being a

large number of repeats. Given the large number of repeated and non-repeated cases,

a classification approach is a natural choice. We know that the key diagnostic for a

Vibration Survey being repeated is the vibration behaviour, therefore we will use the

vibration parameters as predictors. We will consider three functional classification

methods and highlight the strengths and weaknesses of each approach.

A tool that can identify whether a manoeuvre should or should not be repeated

169
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can aid the engineers to make more informed decisions during the test, for example

to highlight issues or to verify their concerns. We can also determine features that

are meaningful to detect engine issues.

We have been given 93 Pass-Off tests from Trent 1000 engines tested in SATU,

in which 199 Vibration Survey manoeuvres were performed. Each Vibration Survey

is labelled as non-repeated, if another Vibration Survey is not performed later in the

test, and repeated otherwise. Of the 199 Vibration Surveys, 86 are non-repeated and

113 are repeated. We have three vibration parameters, denoted as LPV, IPV and

HPV (described in Chapter 1). We found treating the vibration values as a function

of speed gives similar looking curves as seen in Figures 8.1.1. Capturing the behaviour

between speed and vibration has also been suggested in previous jet engine models

outlined in Chapter 2.

For each Vibration Survey we have six curves associated to the LPV, IPV and

HPV during acceleration and deceleration. We will define the vibration with respect

to the N1 speed. In Figure 8.1.1, we have 30 acceleration and deceleration curves for

the vibration engine parameter.

We have investigated three functional data classification methods (Ramsay and

Silverman, 2005) for this problem. The first method is a Centroid-classifier, which

aims to find a projection that has good theoretical classification accuracy. This model

is simple and easy to apply, as discussed in Section 8.2. Second, we applied the DD-

classifier in Section 8.3, which uses depth functions to create a scatter plot, enabling

standard classification techniques to be applied, including k-nearest neighbour and

support vector machines. Lastly, we applied a Logistic Functional Linear Regression



CHAPTER 8. PREDICTION OF VIBRATION SURVEY REPEATS 171

(a) LPV deceleration (b) LPV acceleration

(c) IPV deceleration (d) IPV acceleration

(e) HPV deceleration (f) HPV acceleration

Figure 8.1.1: Plot of 30 LPV, IPV and HPV curves during acceleration and

deceleration of the Vibration Survey.
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(LFLR) model, which is an extension of the Functional Linear Regression model

described in Section 3.3. Logistic regression is the standard method used for problems

with binary outcomes (Mousavi and Sørensen, 2018). We also considered a lasso

penalty on the LFLR model that can enable key features to be identified. The

model has two nice features. First, it is fast as we can reduce the dimensionality

by working with basis coefficients. Second, the model gives associated probabilities

for the classifications, which gives a measure of uncertainty. Finally, we will compare

the classification accuracy of the three models using ROC curves.

8.2 Centroid classifier

The first functional classifier we will consider is by Delaigle and Hall (2012). Their

aim is to project the data function X onto a one dimensional space. By choosing an

appropriate projection function, they aim to minimise the classification error in the

one-dimensional problem. They suggest a possible projection function and a distance

measure to classify the one-dimensional projections. The idea is that if the two classes

of data are projected into distinctive groups then it will be relatively easy to classify

using an appropriate distance measure.

Let (xi, li) be data pairs, where xi is a function defined on the interval I and li is

the corresponding label. They assume that the functions for non-repeated curves lie

around a mean µ0 and functions for repeated curves lie around a mean µ1, which we

estimate with sample means x̄0 and x̄1. They suggest the projection
∫
I
xi(t)φ(t)dt,

where φ(t) is a projection function that needs to be chosen. They outline two estimates
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Figure 8.2.1: Density plot of score values from Centroid classifier applied to LPV

deceleration curves.

of φ with good classification properties, with details available in Delaigle and Hall

(2012). We shall use the first estimate, which is a weighted sum of Functional Principal

Components (Ramsay and Silverman, 2005).

The centroid classifier takes an unlabelled function x and gives label 0 or 1 if the

test statistic

T (x) =

[∫
x(t)φ(t)dt−

∫
x(t)µ1(t)dt

]2

−
[∫

x(t)φ(t)dt−
∫
x(t)µ0(t)dt

]2

. (8.2.1)

is positive or negative respectively.
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8.3 Depth Depth-Classifier

The second functional data classifier that we will be investigating, is called the Depth

Depth classifier or DD-classifier (Li et al., 2012). This classifier does not assume that

vibration functions for repeated and non-repeated manoeuvres lie around different

mean functions as in the Centroid classifier in Section 8.2. Instead the classifier uses

Functional depth, which was described in Section 3.4. The DD-classifier assumes that

the curves in the two classes have different distributions. Therefore the depth values

with respect to the repeated and non-repeated manoeuvres should be different.

The DD-classifier takes samples z1, ..., zm with label 0 and w1, ..., wk with label

1, for some m, k ∈ N. We assume the samples zi come from a distribution F0 and

samples wi come from the distribution F1. We obtain the depth values d0 and d1

with respect to samples z1, ..., zm and sample w1, ..., wk respectively. Each sample has

two depth values, which gives a scatter plot. If F0 and F1 are the same distribution

then the points on the scatter plot will lie along a line angled at 45 degrees. Once

the scatter plot is made, we can use different classification techniques for multivariate

data, including k-Nearest Neighbour (k-NN), Support Vector Machines (SVM) and

kernel methods.

In Figure 8.3.1, we have a scatter plot using the Halfspace depth for the LPV

deceleration curves. If the depth function for repeated and non-repeated manoeuvres

were different the points would be away from the diagonal. We can therefore see

that the depth functions for repeated and non-repeated manoeuvres are very similar.

There are a large number of repeated manoeuvres on the left and then a mixture, but
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mainly non-repeated manoeuvres on the right. Note that the repeated manoeuvre

samples that lie near the origin, are the samples that are furthest away from the

centre of the distribution of the curves. We would expect that the most unusual curves

(smallest depth values) will arise from the repeated manoeuvres, which is indeed the

case. There are a few non-repeated samples near the origin. These are cases where

the model believes these manoeuvres should have been repeated. In Figure 8.3.1 we

have density plots of the d0 values for repeated and non-repeated cases. We can see

that the non-repeated manoeuvres and the repeated manoeuvres have very similar

distribution of depth values. There is no clear split between the two classes in terms

of these depth values, which makes classification difficult.

Using a multivariate depth function we can use information across all 6 curves. We

make a scatter plot of the depth values in Figure 8.3.2. We can see a better split of the

groups than using individual vibration curves. Using information across the vibration

curves evidently improves the separation of the curves. Looking at the density plot

of the depth with respect to the non-repeated manoeuvres in Figure 8.3.2, we can see

that there is less of an overlap between the depth values.

8.4 Logistic Functional Linear Regression

In Logistic Functional Linear Regression (LFLR) (Mousavi and Sørensen, 2018), we

have a binary response Y , with predictor function X(t). Let y = (y1, ..., yn)T be

n observations, with corresponding predictor functions x(t) = (x1(t), ..., xn(t))T for

t ∈ I. Then the Logistic FLR model gives the conditional probability:
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(a) Scatter Plot (b) Density Plot

Figure 8.3.1: Scatter plot of the depth value labelled by non-repeated (0) and

repeated (1) manoeuvres (left). Density plot of depth values with respect to non-

repeated manoeuvres (depth0) (right). The depth values are obtained from the LPV

deceleration time series.

(a) Scatter Plot (b) Density Plot

Figure 8.3.2: Scatter plot of the multivariate depth values labelled by non-repeated

(0) and repeated (1) manoeuvres (left). Density plot of depth values with respect to

non-repeated manoeuvres (depth0) (right).
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π(x) = P (Y = 1|X = x) =
exp{α +

∫
I
β(t)x(t)dt}

1 + exp{α +
∫
I
β(t)x(t)dt}

(8.4.1)

with regression function β(t). Using the logit transform, we have

η(x) = logit(π(x)) = log

(
π(x)

1− π(x)

)
= α +

∫
I

β(t)x(t)dt. (8.4.2)

For a pre-defined basis θ, we let x(s) = Wθ(s) for coefficient matrix W , and β(s) =

θ(s)T b for coefficient vector b, then

η = α +Wb. (8.4.3)

We will consider using two basis classes for θ(s). The first basis is the Functional

Principal Components of x(s) and the second is a B-spline basis.

Given n independent samples, we can write the likelihood as

L(α, β) =
n∏
i=1

πyii (1− πi)1−yi =
n∏
i=1

exp(yi{α +
∫
I
β(t)xi(t)dt})

1 + exp{α +
∫
I
β(t)xi(t)dt}

. (8.4.4)

This model can be easily extended to multiple predictors, by concatenating the basis

coefficients.

The LFLR classifier can be modified in a number of ways. One possibility is

to incorporate a regularisation term to stop the classifier overfitting, which we can

perform using a lasso penalty. The lasso penalty can be incorporated into the regression

equation (8.4.3):

η = α +Wb+ λ|b|,
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(a) FPCA (b) B-spline

Figure 8.4.1: Density plot of probability values obtained used FPCA basis and depth

values (left) and using B-spline basis with depth and lasso (right).

where λ is a tuning parameter which penalises large values of b. The lasso model can

also be seen as a model selection procedure as it shrinks a majority of the coefficient

terms in b to zero. If we use a B-spline basis with a lasso penalty we can perform

domain selection to identify segments of the vibration curves that are informative.

We can easily add exogenous variables d to the model (8.4.3):

η = α +Wb+ γd,

where γ is another regression term. We have seen in Section 8.3 that the depth values

can be informative. We can therefore add the depth values into the model.
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8.5 Results

We have outlined three different classification algorithms to label repeated and non-

repeated Vibration Surveys. We also outlined a number of variants, in particular

for the LFLR classifier in which we can incorporate depth value information and a

lasso penalty. The LFLR model reduces to a standard logistic problem of the basis

coefficients. We can therefore apply LFLR using standard logistic regression. We

concatenate the basis coefficients for each vibration curve, enabling all the vibration

curves to be used simultaneously. We consider two basis types: FPCA bases functions,

using the first six eigenfunctions that capture 95% of the variance. We also considered

a B-spline basis using 61 functions, which fits the vibration curves sufficiently well,

and can highlight informative segments of the vibration data. We have found both

basis choices give similar results, if we incorporate a Lasso penalty with the B-spline

basis.

For the Centroid-classifier we will also use six eigenfunctions. For the DD-classifier

we considered multiple depth functions including the Halfspace depth and the h-modal

depth for the univariate curves. We found that the results were similar for different

depth functions. We have chosen to use the Halfspace depth as it can be extended

into a Multivariate Functional depth (Claeskens et al., 2014), enabling information to

be used across all the vibration time series.

We will use a leave-one-out procedure to test each of these models. To compare

the classification performance of the three algorithms, we will look at the ROC curves

and the Area Under the Curve (AUC) as we did in Chapter 7.
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Table 8.5.1: The AUC values for the version of each classifier that gave maximum

AUC values. The Centroid classifier used the lpv decel time series. The DD classifier

in the univariate case used the LPV acceleration time series and in the multivariate

case used all the time series. The LFLR classifier used a FPCA basis with depth

values and used a B-spline basis with depth and Lasso penalty.

Model Centroid DD uni DD multi LFLR-FPCA LFLR-Bspline

AUC 0.6886 0.7364 0.8859 0.7208 0.753

The Centroid classifier requires univariate time series. We applied it to each

vibration time series and found the LPV deceleration time series gives the maximum

AUC value. For the DD classifier we applied it to the univariate curves and found the

LPV acceleration curve gave the largest AUC value. We also applied the Multivariate

Functional depth using all the vibration time series. The multivariate DD classifier

significantly outperforms the univariate cases. The improvement in classification

arises due to information being used across each of the vibration curves.

Finally we tested the LFLR classifier using both an FPCA and a B-spline basis.

We considered two variants using depth value information and a lasso penalty. The

FPCA based model with depth values was the best performing model. For the B-

spline basis using depth also improved the model and gave significantly better results

using a Lasso penalty. In Table 8.5.1 we have the results for the model cases that

give the largest AUC value for each classifier. We can see that DD classifier using

multivariate depth significantly outperforms the other models.

In Figure 8.5.1 we have the ROC curves for the three classifiers using the best
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Figure 8.5.1: The ROC curve for the five classifiers given in Table 8.5.1.

case models. The ROC curves were formed using values given by the leave-one-out

procedure. The four curves in Figure 8.5.1 are sufficiently far from the diagonal

indicates that they are able to give meaningful classifications. We can see the DD

classifier using multivariate depth significantly outperforms the other models. However

the LFLR with a B-spline basis can highlight segments of the vibration curves that

are informative. For example in Figure 8.5.2, we can see that the HPV deceleration

regression function, has non-zero weight for vibration values at lower speeds. The HPV

acceleration is more sporadic with spikes in various parts of the speed spectrum.
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(a) Regression function for hpv accel (b) Regression function for hpv decel

Figure 8.5.2: Plots of the regression functions for the hpv accel (left) and hpv decel

(right) curves, using a B-spline basis with lasso penalty.



Chapter 9

Conclusion and Further work

A large amount of sensor data is generated during engine testing. Currently only a

small percentage of this data is being used by the engineers, which typically involves

checking the engine behaviour at certain segments of the tests. In this thesis we have

developed a range of statistical tools to make inferences from jet engine sensor data.

These tools have been built to aid the engineers at Rolls Royce to make assessments

on the engine health.

In a Pass-Off test engineers perform manoeuvres corresponding to various engine

accelerations and decelerations. The manoeuvres must pass certain conditions. The

manoeuvres can be repeated and the test can be stopped to enable changes to be

made. These manoeuvres are not currently labelled. We therefore developed an

automated classification algorithm that is able to extract and identify the different

manoeuvre types. The algorithm has been shown to give high classification accuracy

and has been tested on two different engine types. The labels can then be used to

identify problematic engine tests, for example tests that were stopped multiple times

183
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and manoeuvres were repeated. There is scope to use the classification information

to obtain summary statistics. These statistics can be used to assess the effectiveness

of the engine test, identify patterns that can be used to characterise different engine

behaviours, and potentially use these models to make predictions.

In the Cyclic engine test engineers perform manoeuvres which are referred to

as cycles. The purpose of a Cyclic test is to repeatedly perform manoeuvres on

an engine to assess the engine degradation over time. Unlike the Pass-Off tests,

there are no pre-defined manoeuvres in the Cyclic test. We therefore cannot apply a

classification approach. Instead we have built a clustering algorithm to identify the

different manoeuvre types. The algorithm gives distinct clusters that look reasonable

from visual inspection. We tested the clustering approach on the Pass-Off test data,

as we have labels for the true classes. In general the algorithm identifies the different

classes effectively. Our main aim was to use the clustering results from the Cyclic

test to identify degradation in the engine behaviour. Building an algorithm to model

the engine degradation in a Cyclic test is a natural further step. We have attempted

a few approaches, but were not able to identify any clear signs of decreased engine

performance.

We have found that the Vibration Survey manoeuvre was the most repeated

manoeuvre in the Pass-Off tests. We therefore suspect some of the repeated manoeuvres

will display unusual engine behaviour. The manoeuvres are performed by a human-

controller, which causes variability between manoeuvre profiles. This variability can

mask abnormal behaviour. We therefore built a Robust Functional Linear Regression

(RFLR) model to capture the relationship between engine temperature and speed. By
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modelling the dependency between engine temperature and speed we can mitigate the

variability introduced by the human-controller. Using the residuals from the RFLR

model we identified distinct outliers that were not picked up by standard outlier

detection approaches. The RFLR model was built for univariate curves however

there is clearly correlation between different temperature parameters. Therefore a

multivariate RFLR model that can capture the correlation between the different

temperature parameters will be more effective in identifying outliers. This extension

of the RFLR model would require a multivariate robust FPCA model.

Currently an engine test is performed by a group of engineers who decides whether

a manoeuvre should be repeated and whether the test should be stopped. These

decisions could be aided using data-driven statistical models. We focused on the

Vibration Survey manoeuvre, which has been repeated a large number of times. We

have modelled the prediction of a Vibration Survey manoeuvre being repeated in

the test as a classification problem. The decision to repeat a Vibration Survey is

typically made using the information from the vibration parameters. Therefore we

used the vibration parameters as predictors. We considered three different approaches

and found that one of the models was able to give high classification accuracy. One

extension would be to build a decision tool for each manoeuvre type. Also rather

than considering the two class case of manoeuvres being repeated and not-repeated, we

could consider a third option for whether the test should be stopped after a manoeuvre.
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