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Abstract

We consider mixed 0-1 linear programs in which one is given a
collection of (not necessarily disjoint) sets of variables and, for each set,
a fixed charge is incurred if and only if at least one of the variables in the
set takes a positive value. We derive strong valid linear inequalities for
these problems, and show that they generalise and dominate a subclass
of the well-known flow cover inequalities for the classical fixed-charge
problem.

Keywords: polyhedral combinatorics; branch-and-cut; mixed-integer
linear programming

1 Introduction

It is well known that a wide range of important optimisation problems can
be modelled as mixed-integer linear programs (MILPs). A key ingredient of
modern exact MILP algorithms is the use of strong valid linear inequalities,
also known as cutting planes, to strengthen the continuous relaxation of the
problem (see, e.g., [4, 5]).

One strand of the literature on cutting planes is concerned with MILPs
that involve fixed charges (see, e.g., [1, 9–11, 14, 16–18, 21–24, 26]). A fixed
charge is an additional cost that is incurred whenever a certain variable takes
a positive value. The textbook way to model fixed charges is as follows.
Suppose that xj is a continuous non-negative variable, and the fixed charge
dj is incurred whenever xj > 0. Suppose also that we know an upper
bound uj on the value taken by xj in an optimal solution. We define a new
binary variable, say yj , taking the value 1 if and only if the fixed charge
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is incurred. We then add djyj to the cost function, and add the linear
constraint xj ≤ ujyj .

Unfortunately, when the textbook approach is used, the continuous re-
laxation of the resulting MILP is often very weak. In this situation, cut-
ting planes are essential. In particular, the so-called flow cover inequali-
ties [21, 23], and various extensions of them [9, 10, 18], have proven to be
so effective that they are now generated by default not only in commercial
MILP solvers (such as CPLEX, Gurobi and Xpress), but also in open-source
solvers (such as CBC and SCIP).

In this paper, we consider a more general situation, in which fixed charges
are associated with sets of variables. More precisely, we suppose that we
have continuous variables x1, . . . , xn, a collection of (not necessarily disjoint)
sets S1, . . . , Sm satisfying

⋃m
i=1 Si = {1, . . . , n}, and a fixed charge di for

i = 1, . . . ,m. The idea is that, for each i, the fixed charge di is incurred if
xj > 0 for any j ∈ Si. (To see how this situation could arise in practice,
consider a set of products that share a common machine. If any of the
products are to be manufactured on a given day, then the machine must be
set up at the start of that day.)

The paper has the following structure. Section 2 is a literature review. In
Section 3, we consider the case in which the sets S1, . . . , Sm are nested. We
derive a family of valid inequalities for the associated polytope, and show
that the inequalities both generalise and dominate a subclass of the flow
cover inequalities. In Section 4, we extend some of our results to the general
case, in which the sets can intersect in an arbitrary way. Throughout the
paper, N and M denote {1, . . . , n} and {1, . . . ,m}, respectively.

2 Literature Review

We now review the relevant literature. In Subsection 2.1, we briefly review
valid inequalities for fixed-charge problems. In Subsection 2.2, for reasons
which will become clear later, we review some papers on what we call opti-
mality cuts.

2.1 Valid inequalities for the fixed charge polytope

Padberg et al. [21] introduced the fixed-charge polytope, defined as the convex
hull of pairs (x, y) ∈ Rn+ × {0, 1}n satisfying∑n

j=1 xj ≤ d
xj ≤ ujyj (j = 1, . . . , n),

where d and the uj are positive integers.
A set C ⊆ N is called a cover if

∑
j∈C uj > d. Given a cover C, we let

λ denote the “excess capacity”
∑

j∈C uj − d, we let u+ denote maxj∈C uj ,
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and we define the set C∗ = {j ∈ C : uj > λ}. Padberg et al. showed that,
given a cover C and a (possibly empty) set L ⊆ N \ C, the following flow
cover inequality (FCI) is valid:∑

j∈C∪L
xj ≤ d −

∑
j∈C∗

(uj − λ)(1− yj) +
∑
j∈L

αjyj ,

where αj is max{u+, uj} − λ for j ∈ L. As a special case, when L = ∅ we
obtain: ∑

j∈C
xj ≤ d −

∑
j∈C∗

(uj − λ)(1− yj). (1)

We will call inequalities of this type simple FCIs.
The FCIs were extended to fixed-charge network flow problems in [23].

They have been further generalised and strengthened in various ways [9,
10, 22, 23]. A related family of inequalities, the flow pack inequalities, were
studied by Atamtürk [1]. For a very different family of inequalities, derived
from knapsack polytopes, see our recent paper [14].

2.2 Optimality cuts

By an optimality cut, we mean a linear inequality that is satisfied by all
optimal MILP solutions, but may be violated by one or more sub-optimal
solutions. Note that some authors expand this definition to include linear
inequalities that are satisfied by at least one optimal solution. This concept
appears, sometimes under different names, in many places (e.g., [2, 3, 6, 7,
11–13,19]).

Among these works, Hooker et al. [11] is itself concerned with fixed-
charge problems. Consider a directed network in which, for each arc a,
there is a continuous flow variable xa and a binary fixed-charge variable ya.
Consider a node i. Let a be an arc entering node i, and let α, . . . , ω be the
arcs leaving i. Suppose that ya = 1 in an optimal solution. Then xa must
be positive, since, if that were not so, we could have made a cost saving by
setting ya to 0. The flow entering node i via arc a must then exit node i
via one or more of the outgoing arcs. This in turn implies that at least one
of the y variables associated with the outgoing arcs must take the value 1.
Thus, the inequality ya ≤ yα + · · · + yω is an optimality cut (called a logic
cut in [11]).

3 The Nested Case

In this section, we consider the special case in which the sets S1, . . . , Sm
are nested (that is, for all pairs {i, i′} ⊂ M , we have Si ∩ Si′ = ∅, Si ⊂ Si′

or Si′ ⊂ Si). The section is organised as follows. In Subsection 3.1, we
give some notation and terminology. In Subsection 3.2, we prove a negative
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Figure 1: Visualisation of nested sets using a directed tree.

complexity result. In Subsection 3.3, we show that our problem is closely
related to fixed-charge network flow (FCNF) problems. In Subsection 3.4,
we present our valid inequalities. Finally, in Subsection 3.5, we consider the
effect on our inequalities when optimality cuts are present.

3.1 Notation and terminology

From now on, we let P denote the convex hull of the pairs (x, y) ∈ Rn+ ×
{0, 1}m satisfying ∑

j∈Si

xj ≤ uiyi (i = 1, . . . ,m). (2)

Note that, in the nested case, we can assume without loss of generality that
Sm = N . Indeed, if there did not exist some set Si that contained all the
other sets, then P would be the Cartesian product of simpler polytopes of
the same kind.

Given i, i′ ∈M , we will call i a descendant of i′ if Si ⊂ Si′ . If, in addition,
there is no k ∈M such that Si ⊂ Sk ⊂ Si′ , we call i a child of i′. We let δ(i)
and χ(i) denote the set of descendants and children, respectively, of i. We
also let ρ(i) denote Si \

⋃
k∈χ(i) Sk. (Note that at most one of χ(i) and ρ(i)

can be empty.) We also represent the sets S1, . . . , Sm as a rooted directed
tree, as follows. There is one node for each set Si, and one node for each
j ∈ N . There is an arc from Si to Si′ if i′ is a child of i, and there is an arc
from Si to j if j ∈ ρ(i).

The above notation and terminology is illustrated in the following ex-
ample.

Example 1. Let n = 7 and m = 7, and suppose that S1 = {1, 2},
S2 = {3}, S3 = {1, 2, 3}, S4 = {4, 5}, S5 = {4, 5, 6}, S6 = {4, 5, 6, 7}
and S7 = {1, . . . , 7}. The corresponding tree is shown in Figure 1. One can
check that, for example, 4 is a descendent of 6 and 1 is a child of 3. One can
also check that δ(2) = ∅, δ(6) = {4, 5}, χ(3) = {1, 2}, χ(4) = ∅, ρ(3) = ∅
and ρ(5) = {6}. �
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3.2 Complexity

Our first result is that, even in the nested case, optimisation over P is
difficult.

Proposition 1 Even in the nested case, optimising a linear function over
P is NP-hard.

Proof. We reduce SUBSET SUM, shown to be NP-complete in [8], to the
problem in question. An instance of SUBSET SUM is given by positive integers
p1, . . . , pk and a “target” t. The task is to determine if there exists a subset
of {p1, . . . , pk} whose sum is t. To convert this to our problem, set n to k
and m to k + 1. For i ∈ N , set Si to {i}, set ui to pi, give xi a profit of 1
and give yi a cost of pi(1− ε), where ε is a small positive quantity. Finally,
set Sm to N , um to t, and give ym a cost of zero. Since all ui values are
integers, there exists an optimal solution in which x is integral. Then, for
any given i ∈ N , it is not worth setting yi to 1 unless xi is set to pi, in which
case we gain a profit of εpi. So the answer to SUBSET SUM is “yes” if and
only if there is a point (x, y) ∈ P with profit εt. (A suitable value for ε is
1/n.) �

In light of this result, we cannot expect to obtain a complete description
of P in terms of linear inequalities. So, we must be content with a partial
linear description.

3.3 Relation to FCNF

Given a set of nodes V and a set of arcs A, the FCNF polytope is the convex

hull of the pairs (x, y) ∈ R|A|+ × {0, 1}|A|, such that∑
j∈V

xji −
∑
j∈V

xij = bi (i ∈ V )

xij ≤ uijyij ((i, j) ∈ A).

Next, we will show that, in the nested case, there is a strong connection
between the polytope P and FCNF problems. Consider Figure 1 once more.
For i ∈ M , let fi denote the flow entering the node that represents Si,
and set the capacity of the corresponding arc to ui. We also interpret the
binary variable yi as an indicator of whether that arc is being used or not.
Finally, for j ∈ N , we let node j be a “sink” node, and we interpret xj as
representing the flow entering node j. By construction, a triple (x, y, f) ∈
Rn+×{0, 1}n×Rn+ represents a feasible flow if and only if (x, y) satisfies (2).

This observation is formalised in the following proposition.
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Proposition 2 Suppose that S1, . . . , Sm are nested. Let M ′ =
{
i ∈ M :

χ(i) = ∅
}

, and let P f be the convex hull of the triples (x, y, f) ∈ Rn+ ×
{0, 1}m × Rm+ satisfying

fi =
∑

j∈Si
xj (i ∈M ′) (3)

fi =
∑

k∈χ(i) fk +
∑

j∈ρ(i) xj (i ∈M \M ′) (4)

fi ≤ uiyi (i ∈M). (5)

Then (a) P f is an FCNF polytope of an acyclic graph, (b) P is the projection
of P f onto (x, y)-space, and (c) P is affinely congruent to P f .

Proof. By construction, the equations (3) and (4) enforce conservation
of flow in an acyclic graph, and the constraints (5) enforce arc capacities,
as well as ensuring that no flow can pass through an arc unless the arc is
open. This proves claim (a). Now, by conservation of flow, we must have
fi =

∑
j∈Si

xj for all i ∈M . Thus, if we eliminate the f variables, using the
equations (3) and (4), the constraints (5) reduce to (2). This proves claim
(b). To see that claim (c) holds, it suffices to note that there is an invertible
affine transformation which maps each extreme point of P to an extreme
point of Pf . This transformation consists of leaving x and y unchanged, and
setting fi to

∑
j∈Si

xj for all i ∈M . �

This link with FCNF polytopes has an interesting consequence:

Corollary 1 Consider the following set function, which maps sets T ⊆ N
to Z+:

φ(T ) = max

{∑
j∈T

xj :
∑
j∈Si

xj ≤ ui (i ∈M), xj ≥ 0 (j ∈ N)

}
. (6)

If the sets S1, . . . , Sm are nested, then φ is submodular.

Proof. Wolsey ( [26], Th. 4) proved the following. Let G = (V,A) be a
directed graph, let u ∈ RA+ be a vector of arc capacities, and let p ∈ RA+ be
a vector of arc profits. Given any S ⊂ V , the maximum-profit flow through
the arcs leaving S is a submodular function of the set of arcs that are open.
To apply this result to our problem, it suffices to set S to the set of nodes
representing S1, . . . , Sm, and set pj to 1 for each arc that connects a node
in S1, . . . , Sm to a node in N . �

3.4 The new inequalities

From now on, we assume w.l.o.g. that, for each i ∈ M such that ρ(i) = ∅,
the condition ui ≤

∑
k∈χ(i) uk holds. (If it did not hold, then one could

decrease ui without losing any feasible solutions.)
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Now, let T ⊆ N be any set such that φ(T ) = ui for some i ∈ M . The
following inequality is trivially valid and supporting for P :∑

j∈T
xj ≤ ui. (7)

We will use sequential lifting [20, 25] to strengthen (7). More precisely, let
I =

{
k ∈ M : Sk ∩ T 6= ∅

}
, let c denote |I|, and let s(1), . . . , s(c) be an

arbitrary ordering of the elements of I. We will compute a valid inequality
of the form ∑

j∈T
xj ≤ ui −

c∑
k=1

βk
(
1− ys(k)

)
, (8)

where the (non-negative) coefficients βk are computed according to the given
ordering.

The coefficients βk can be calculated as follows. Let φ(T, k) denote the
maximum value that

∑
j∈T xj can take when ys(k) = 0. If φ(T, k) = ui, then

βk = 0. Otherwise, let ∆(k) =
{
i ∈ {1, . . . , k − 1} : s(i) ∈ δ

(
s(k)

)}
and set

βk = ui − φ(T, k)−
∑

`∈∆(k)

β`. (9)

Note that, for fixed T and k, one can compute φ(T, k) and βk in O(m+n)
time. Thus, for fixed T , one can compute all lifting coefficients in O

(
m(m+

n)
)

time. The following example shows that it is possible for this procedure
to yield many inequalities that define facets of P . It also shows that it is
possible for different lifting sequences to lead to different facets.

Example 2. Suppose that n = 3, m = 5, Si = {i} for i = 1, 2, 3, S4 =
{1, 2}, S5 = {1, 2, 3}, ui = 4 for i = 1, 2, 3, u4 = 7 and u5 = 10. Taking
T = {1, 2}, the inequality (7) is x1 + x2 ≤ 7. We have I = {1, 2, 4, 5}.
Lifting in the order 1, 2, 4, 5, we obtain ∆(1) = ∆(2) = ∅, ∆(3) = {1, 2} and
∆(4) = {1, 2, 3}. This yields β1 = β2 = 7 − 4 = 3, β3 = 7 − 0 − 3 − 3 = 1
and β4 = 7− 0− 3− 3− 1 = 0. The resulting valid inequality is

x1 + x2 ≤ 3y1 + 3y2 + y4. (10)

One can check that different lifting orders yield seven additional inequalities:

x1 + x2 ≤ 3y1 + 3y2 + y5

x1 + x2 ≤ 3y1 + 4y4

x1 + x2 ≤ 3y1 + 4y5

x1 + x2 ≤ 3y2 + 4y4

x1 + x2 ≤ 3y2 + 4y5

x1 + x2 ≤ 7y4

x1 + x2 ≤ 7y5.
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One can also check (either by hand or with the help of a software package
such as PANDA [15]) that all eight lifted inequalities define facets of P . Fi-
nally, one can check that a further sixteen facets of P can be obtained by
taking T = {1, 2, 3} and using different lifting sequences. �

We also have the following lemma:

Lemma 1 The inequalities (8) generalise and dominate the simple flow
cover inequalities (1).

Proof. Let n, d, u and C be given, as in Subsection 2.1. To put this into
our framework, set m to n + 1, and set Si to {i} for i = 1, . . . , n. Also set
Sm and N to {1, . . . , n + 1}, um to d, and T to C. We have I = C ∪ {m}.
Let r denote d−

∑
j∈C∗(uj − λ), and note that r > 0. One can check that,

if we lift ym last, we obtain:

n∑
i=1

xj ≤ d −
∑
j∈C∗

(uj − λ)(1− yj) − r(1− ym).

This dominates (1). �

An interesting question is whether there can exist facet-defining inequal-
ities of the form (8) that cannot be obtained by lifting sequentially.

3.5 Optimality cuts

We end this section with some remarks on optimality cuts. Note that if
yi takes the value 0 in an optimal solution, then yk should also take the
value 0 for all k ∈ χ(i). Therefore, one can strengthen the LP relaxation
by adding the optimality cut yk ≤ yi for all i, k ∈ M such that k ∈ χ(i).
Given the connection between our problem and FCNF problems mentioned
in Subsection 3.2, these can be viewed as a special kind of logic cuts.

Note that, once these optimality cuts have been added, the convex hull
of the feasible pairs (x, y) is no longer an FCNF polytope. Nevertheless, our
procedure for generating valid inequalities still applies. It turns out, how-
ever, that most lifting sequences no longer yield facets. Indeed, a necessary
condition for obtaining a facet is that, for each i ∈ I with δ(i) 6= ∅, the
descendants of i are lifted before i itself is lifted. The effect of this is that,
for a given T , one of the valid inequalities dominates all of the others. This
is illustrated in the following example.

Example 2 (cont.) We add the optimality cuts y1 ≤ y4, y2 ≤ y4, y3 ≤ y5

and y4 ≤ y5. Taking T = {1, 2} and lifting in the order 1,2,4,5, as before,
we obtain inequality (10). Together with the optimality cuts, this inequality
dominates the other seven inequalities mentioned in Example 2. One can
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verify that it also defines a facet of the modified polytope. �

In other words, the optimality cuts eliminate some of the facets of the
polytope P . The effect is to make the polytope simpler. Note that Lemma
1 still holds for the modified polytope.

4 The General Case

In this last section, we consider the general case, in which the sets Si do not
need to be nested. It turns out that this case is much more complicated, in
several respects.

A first complication is that one can no longer assume that Sm = N . For
example, if n = 3, m = 2, S1 = {1, 2} and S2 = {2, 3}, then the polytope P
is not the Cartesian product of simpler polytopes.

A second complication is that optimising over P becomes even more
difficult.

Proposition 3 In the general case, optimising a linear function over P is
NP-hard in the strong sense.

Proof. We reduce the maximum independent set problem, proven to be
strongly NP-hard in [8], to the problem in question. Let G = (V,E) be a
graph with n nodes and p edges. Set m to n+ p. For i = 1, . . . , n, set Si to
{i}, give xi a profit of 3 and give yi a cost of 2. For r = 1, . . . , p, let Sr+i
contain the end-nodes of the rth edge. Set all u values to 1. There exists an
independent set of size k in G if and only if there is a solution with profit
k. �

A third complication is that one can sometimes decrease one or more u
values, by solving a series of LPs. This is shown in the following example.

Example 3. Let n = 3, m = 7, S1 = {1}, S2 = {2}, S3 = {3}, S4 = {1, 2},
S5 = {1, 3}, S6 = {2, 3} and S7 = {1, 2, 3}. Also, let u1 = u2 = u3 = 2,
u4 = u5 = u6 = 3 and u7 = 5. Recall the function φ from Subsection 3.3.
Solving the LP (6) with T = S7, we find that φ(S7) = 4.5. Hence u7 can be
reduced from 5 to 4.5. �

This example also shows that, even when the original vector u is integral, it
is possible for φ(T ) to be fractional for a given T ⊆ N .

A fourth complication is that the polytope P is no longer an FCNF poly-
tope in general. In fact, the function φ is no longer submodular.

Example 3 (cont.) We have φ(S4) = φ(S5) = 3, φ(S4∪S5) = φ(S7) = 4.5,
and φ(S4 ∩ S5) = φ(S1) = 2. Since 3 + 3 < 4.5 + 2, φ is not submodular. �
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On the positive side, the function φ remains subadditive.

Proposition 4 In the general case, φ is subadditive.

Proof. Let S, T be subsets of N . Let x∗ be the vector that maximises∑
j∈S∪T xj in (6). Let x1, x2 ∈ X be defined as follows

x1
j =

{
x∗j , if j ∈ S
0, if j /∈ S

x2
j =

{
0, if j ∈ S
x∗j , if j /∈ S.

We have

φ(S ∪ T ) =
∑

j∈S∪T
x∗j =

∑
j∈S

x1
j +

∑
j∈T\S

x2
j ≤

∑
j∈S

x1
j +

∑
j∈T

x2
j ≤ φ(S) + φ(T ).

�

A fifth complication is that the closed formula (9) that we presented
in Subsection 3.3 can no longer be used to compute the lifting coefficients.
Moreover, even when the correct coefficients are used, the resulting inequal-
ity is no longer guaranteed to be facet-defining.

Example 3 (cont.) Suppose we take T = {1, 2, 3}. The inequality (7) is
x1 + x2 + x3 ≤ 4.5. We have I = M . If we lift 4, 5 and 6 first, the formula
(9) yields β1 = β2 = β3 = 4.5− 2 = 2.5, which yields the invalid inequality
x1 +x2 +x3 ≤ −3+2.5(y4 +y5 +y6). If we lift exactly (by solving a sequence
of small mixed 0-1 LPs, as in [20,25]), then we obtain β1 = 2.5, β2 = 2 and
β3 = 0. The resulting valid inequality x1 + x2 + x3 ≤ 2.5y4 + 2y5 does not
define a facet of P . �

In fact, we do not know whether lifting can be performed in polynomial time
in the general case, and we do not have a necessary and sufficient condition
for a lifted inequality (8) to define a facet. On the positive side, it turns out
that the lifted inequalities still define facets of P in many cases.

Example 3 (cont.) Suppose we change u7 from 5 to 4. Taking T =
{1, 2, 3} again, the inequality (7) is x1 + x2 + x3 ≤ 4. Lifting in the order
1, 2, 3, 7, 4, 5, 6, we get

x1 + x2 + x3 ≤ y1 + y2 + y3 + y7. (11)

Lifting in the order 1, 2, 5, 6, 3, 4, 7, we get

x1 + x2 + x3 ≤ y1 + y2 + y5 + y6. (12)

One can check that these two inequalities define facets of P . One can also
check that, using different lifting sequences, one can obtain an additional 42
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facets. �

Finally, we mention that, as in the nested case, when optimality cuts are
present, most lifting sequences no longer yield facets. Interestingly, however,
we can now obtain more than one facet for a given T .

Example 3 (cont.) Suppose that, as before, u7 = 4 and T = {1, 2, 3}. We
add the optimality cuts y1 ≤ y4, y1 ≤ y5 and so on. One can check that the
inequalities (11) and (12) remain facet-defining, and so do the following two
inequalities:

x1 + x2 + x3 ≤ y1 + y3 + y4 + y6

x1 + x2 + x3 ≤ y2 + y3 + y4 + y5.

�

An interesting open question is whether, in the general case, one can ob-
tain facet-defining inequalities with fractional coefficients, even if the original
u values are integers.
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