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Abstract

Extreme environmental events endanger human life and cause serious damage to prop-

erty and infrastructure. For example, Storm Desmond (2015) caused approximately

£500m of damage in Lancashire and Cumbria, UK from high winds and flooding,

while Storm Britta (2006) damaged shipping vessels and offshore structures in the

southern North Sea, and led to coastal flooding. Estimating the probability of the

occurrence of such events is key in designing structures and infrastructure that are

able to withstand their impacts.

Due to the rarity of these events, extreme value theory techniques are used for

inference. This thesis focusses on developing novel spatial extreme value methods

motivated by applications to significant wave height in the North Sea and north

Atlantic, and extreme precipitation for the Netherlands.

We develop methodology for analysing the dependence structure of significant

wave height by utilising spatial conditional extreme value methods. Since the de-

pendence structure of extremes between locations is likely to be complicated, with

contributing factors including distance and covariates, we model dependence flexibly;

otherwise, the incorrect assumption on the dependence between sites may lead to
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inaccurate estimation of the probabilities of spatial extreme events occurring. Ex-

isting methods for spatial extremes typically assume a particular form of extremal

dependence termed asymptotic dependence, and often have intractable forms for de-

scribing the dependence of joint events over large numbers of locations. The model

developed here overcomes these deficiencies. Moreover, the estimation of joint proba-

bilities across sites under both asymptotic independence and asymptotic dependence,

the two limiting extremal dependence classes, is possible with our model; this is not

the case with other methods.

We propose a method for the estimation of marginal extreme precipitation quan-

tiles, utilising a Bayesian spatio-temporal hierarchical model. Our model parameters

incorporate an autoregressive prior distribution, and use spatial interpolation to pool

information on model parameters across neighbouring sites.
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Chapter 1

Introduction

1.1 Motivation

In the recent past, there have been numerous extreme environmental events across

the world which have caused significant damage to infrastructure and property, as

well as leading to loss of life. Examples of such events include Storm Desmond in

December 2015 causing widespread flooding across areas of North West England,

record high temperatures in Western Europe during Summer 2019 creating public

health issues, and Storm Britta in October/November 2006, which caused damage to

numerous offshore platforms and ships in the North Sea (Kettle, 2015). In this thesis,

we will concentrate on applying our methods to extreme significant wave height,

denoted by HS, corresponding to extreme winter storm events in the North Sea and

north Atlantic, and extreme precipitation in the Netherlands, but the methodology

developed here can be applied to a multitude of other applications, for example in

modelling the spatial dependence of extreme temperatures during heatwave events.

1



CHAPTER 1. INTRODUCTION 2

In our applications, the inference made on the behaviour of extremes, such as the

likelihood of certain events occurring, would help guide design criteria for offshore

structures and vessels in the case of significant wave height, and appropriate mea-

sures for preventing flooding from extreme precipitation. The former of these is of

significant interest to companies which require such information for offshore engineer-

ing purposes, such as Shell. Furthermore, we wish to be able to do this in a manner

which is theoretically justifiable, and computationally feasible. The latter of these is

important in environmental applications as the data are often high-dimensional since

interest frequently lies in the joint behaviour of variables at a number of sampling

locations.

As the population of the Earth increases and more infrastructure is built, the im-

pacts felt by extreme events become more significant. Thus, it is of key importance

that the risk to human life, as well as financial risk, is mitigated by determining the

likelihood of these events, and preparing appropriately based on this information.

However, the type of events which cause major damage generally tend to occur at

a specific location only rarely. Any such event would be in the tail of the marginal

distribution for the process at the location, or may be in the tail of the joint distribu-

tion of the process, and so accurate inference would be difficult when using classical

statistical models fitted to the whole distribution. On top of this, by the very nature

of rare events, little data will exist for them. These considerations motivate the use

of extreme value theory.

Up until fairly recently, for example by Coles and Tawn (1991), classical block

maxima methods were typically used on environmental data, relying on multivariate



CHAPTER 1. INTRODUCTION 3

extensions of the univariate theory of extremes. Since environmental data are gener-

ally of interest over an area of the Earth’s surface, this motivates the use of spatial

extremes methodology. Theoretical frameworks for considering spatial extreme events

have been present since the work of de Haan (1984) who defined the notion of a max-

stable process, but there has been a rapid development in the area since the turn of

the 21st Century. At first, these developments were largely built upon the max-stable

process framework of de Haan (1984), and subsequently Smith (1990) who developed

a model motivated by extreme rainfall events, but they have recently become both

very numerous and with various modelling properties.

Underlying the inference of spatial extremes are the notions of asymptotic depen-

dence and asymptotic independence, which are the only two limiting forms of extremal

dependence. In broad terms, asymptotic dependence means that if an extreme has

occurred at a specific location, there is a non-zero probability that an extreme will

simultaneously occur somewhere else within the sampling domain however large the

extreme events is, whilst under asymptotic independence, the larger the magnitude

of the event, the more localised it becomes spatially. Often in applications, this latter

type of behaviour is often observed, suggesting that asymptotic independence should

be incorporated into a model for spatial extreme values. These two types of extremal

dependence will lead to different estimates of probabilities of joint spatial extreme

events. Thus, the type of extremal dependence assumed in the model used has a sig-

nificant impact on the accuracy of any inference. The aim of this thesis is to develop

the first spatial extreme value models which are able to incorporate both asymptotic

dependence and asymptotic independence.
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The max-stable processes of de Haan (1984), Smith (1990) and Schlather (2002),

which we will introduce in more detail in Section 2.4.1, assume that only asymptotic

dependence is present in the spatial field, so that all extreme values are dependent on

one another. This means that any inference drawn from fitting a max-stable process

model will be conservative, since the worst-possible case of extreme behaviour will be

assumed. Wadsworth and Tawn (2012a) introduced the asymptotically independent

counterpart to max-stable processes, known as inverted max-stable processes. As a

mix of the two dependence types is more likely to be realistic, they propose to use a

mixture model of both max-stable and inverted max-stable processes.

It is this flexibility of dependence structure over space which has been the fo-

cus of recent developments in spatial extremes modelling; see Huser and Wadsworth

(2018) or Engelke et al. (2019) for examples. A large portion of this thesis will de-

velop a methodology utilising a spatial conditional extremes approach, based on that

proposed by Wadsworth and Tawn (2019), which permits both limiting types of de-

pendence. We believe that using such models will allow for more realistic modelling of

the environmental extremes that we will consider. Our models will allow the extremal

dependence structure to vary with the distance between two points, with asymptotic

dependence permitted for some distance between sites, before imposing asymptotic

independence at all larger distances. Simulation for extrapolation from the model we

propose is straightforward. By simulating from our model, we can estimate the joint

probability of extreme events of a certain magnitude occurring.

With the limiting dependence type being modelled as part of this, our estimates

should be more realistic than those from spatial extremes models such as max-stable
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processes, since we can capture the mixture of types of extremal dependence behaviour

that would be suggested by physical considerations. This has major implications

in practice, since assessing the joint impact of a storm is of significant operational

importance for Shell. An example of this is due to there being a limited amount of

helicopters being available for evacuation from offshore platforms in a storm event; not

all of these can be evacuated at once. Hence, knowledge of the joint characteristics of

the event is important to know which sites should be evacuated, or to be able to make

the structures able to withstand the storm so that there is no need for evacuation.

Conventional offshore design tends to ignore the effects of the joint spatial occurrences

of extreme events, and so our model also has this advantage of being able to consider

the probability of joint spatial extreme events.

To carry out inference on the parameters in the models we present, we will largely

make use of Bayesian inference. This is of particular importance in the spatial condi-

tional extreme value model, where maximum likelihood techniques would have been

very difficult to implement, chiefly because the global maximum is hard to find using

these techniques. A reason for this is that some of the model parameters have a level

of dependence with one another causing issues with parameter identifiability, and

different parameter combinations have similar likelihood values. Combined with the

likelihood surface often being relatively flat in our applications, this led to maximum

likelihood algorithms being tricky to implement reliably. Thus, Bayesian methods

are utilised in Chapters 5 and 6, as we feel this is the best approach to overcome

the aforementioned computational issues and provides the best information for design

engineers.
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This technique will provide a new approach to the modelling of the spatial extreme

values of HS and may provide insight into the underlying extremal dependence struc-

ture which has not been explored before. Previous studies have utilised max-stable

processes (e.g., Ross et al., 2017a) to assess the behaviour of extreme significant wave

height in the North Sea, finding that the direction from which the wave emanates has

an impact on the level of the dependence between extreme events.

Computational aspects will also be explored. A key drawback of many existing

spatial extremes methods is the computational time required to fit a model; given that

many environmental applications are high-dimensional (comprising of a large number

of sites), this creates a significant practical issue. To this end, we will investigate

the effects of using a censored likelihood scheme proposed by Wadsworth and Tawn

(2012a), which may be appropriate for asymptotically independent data (but could

also be used for asymptotically dependent data), compared to using a censored like-

lihood described by Ledford and Tawn (1996). The former is more computationally

efficient but may introduce additional bias making parameter inference significantly

worse; we investigate this by conducting a simulation study using misspecification of

asymptotically independent models. We also present work for modelling extremes of

significant wave height whereby the focus is on improving computational time without

losing accuracy of inference, since from a practical perspective, this would be highly

beneficial.

This thesis also contains details of a model for marginal inference of extreme pre-

cipitation data at a set of sites. These data were provided as part of a data challenge,

for which assessing characteristics of the data was difficult. As a consequence, we will
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provide a method of constructing a model for precipitation extremes which does not

assume any particular behaviour in the dependence structure, and relies on the use of

simple techniques for inference, which we believe is advantageous in such a scenario.

This method could be applicable in situations where data are of a poor quality in

terms of the number of missing data being large.

1.2 Thesis outline

We now provide an overview of the content of each chapter in this thesis. Firstly,

Chapter 2 provides a detailed background of the requisite extreme value theory tech-

niques in this thesis. First of all, we describe the classical univariate techniques,

such as modelling extremes via block maxima and threshold excesses, and discuss the

methods of inference using these. We then provide details of multivariate extensions

of the univariate methods. These then motivate spatial models, such as max-stable

processes, which we discuss. We conclude our overview of extreme value theory by

introducing the concept of conditional extreme value theory, that is, modelling the

behaviour of variables given that some other variable is extreme. Most of this dis-

cussion relates to the model proposed by Heffernan and Tawn (2004), before we link

this model to spatial approaches, in order to outline that this is a natural model for

spatial extremes; this type of modelling will be prominent within Chapters 4, 5 and

6.

Chapter 3 outlines a simulation study into the effect of misspecification of a spatial

extremes model under the assumption of asymptotic independence. The simulation
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study is similar to that of Huser et al. (2016), who carry out an investigation of the

performance of a wide range of likelihoods under asymptotic dependence. In our work,

we compare only the performance of censored likelihood techniques proposed by Led-

ford and Tawn (1996) and Wadsworth and Tawn (2012a), for which the latter may be

more appropriate under asymptotic independence but with both also being applicable

under asymptotic dependence. The Wadsworth and Tawn (2012a) censoring scheme

is the more computationally efficient of these two approaches. We assess the perfor-

mance by computing the bias and standard deviation of parameter estimates under

both censored likelihoods.

Chapters 4, 5 and 6 focus on the development of a conditional spatial extremes

model motivated by the conditional extremes model of Heffernan and Tawn (2004),

with a focus on the application of the model to significant wave height data. At

short inter-location distances, physical considerations suggest that the extremal de-

pendence between storm severity at two locations exhibits asymptotic dependence,

whereas with increasing distance we find asymptotic independence and eventually

perfect independence. The conditional spatial extremes model incorporates all these

forms of dependence. Compared to alternative descriptions of spatial extreme value

processes, the model is advantageous since it admits both asymptotic dependence and

asymptotic independence, and is conceptually straightforward. Moreover, our model

is able to estimate the probabilities of joint events across locations; it is generally

difficult, or impossible, to obtain a closed form expression for these joint probabilities

using existing spatial extreme value models.

In Chapter 4, we will explain the limitations of many commonly-used modelling
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approaches for spatial extremes and show how spatial models can be developed that

overcome these deficiencies by exploiting the flexible conditional multivariate extremes

models of Heffernan and Tawn (2004). We then illustrate the benefits of these new

spatial models through applications to North Sea wave analysis and to widespread

UK river flood risk analysis.

In Chapter 5, we use the spatial conditional extremes model within a Bayesian

framework to estimate the extremal dependence of ocean storm severity (quantified by

HS) for locations on spatial transects with approximate east-west (E-W) and north-

south (N-S) orientations in the northern North Sea (NNS) and central North Sea

(CNS), so the model considers space as one-dimensional. For HS transformed on to

standard Laplace marginal scale, the conditional extremes “linear slope” parameter α

decays approximately exponentially with distance for all transects. Further, the decay

of mean extremal dependence with distance is found to be faster in the CNS than

in the NNS. The persistence of mean extremal dependence is greatest for the E-W

transect in the NNS, which is likely to be due to this transect being approximately

aligned with the direction of propagation of the most severe storms in the region.

Chapter 6 presents a two-dimensional extension of the spatial conditional extremes

model, described in Chapters 4 and 5, for ocean storm severity in the North Sea and

the north Atlantic. In this model we incorporate distance-dependent parameters (with

distance between sites considered across 2-dimensional space), with some represented

as linear piecewise functions, in order to improve computational efficiency and model

flexibility. In the work presented in this chapter, we use a generalised Gaussian dis-

tribution to describe the distribution of model residuals, and estimate anisotropy of
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extremal dependence using a suitable metric for 2-dimensional distance. We apply

the model to characterise the extremal spatial dependence of a two-dimensional spa-

tial neighbourhood spanning hundreds of kilometres, and a one-dimensional transect

spanning thousands of kilometres. In doing this, we allow the flexible modelling of

the residual distributions, rather than relying on a Gaussian assumption as has been

used in previous work.

Chapter 7 concerns our approach to the EVA2017 challenge, the aim of which

was to predict extreme precipitation marginal quantiles across several sites in the

Netherlands. Our approach uses a Bayesian hierarchical structure, which combines

Gamma and generalised Pareto distributions. We impose a spatio-temporal structure

in the model parameters via an autoregressive prior. Estimates are obtained using

Markov chain Monte Carlo techniques and spatial interpolation. This approach has

been successful in the context of the challenge, providing reasonable improvements

over the benchmark metric provided by the competition organisers.

Finally, in Chapter 8 we give a summary of our conclusions from the work con-

tained in this thesis, before mentioning scope for further work in the area.

Chapters 4, 5, 6 and 7 are presented as a sequence of papers, and so are constructed

to be read as separate from one another; consequently, there may be background

methodological information repeated in these chapters.



Chapter 2

Literature Review

2.1 Univariate extreme value theory

2.1.1 Block maxima approach

First, two approaches to modelling extremes in a univariate setting are given, fol-

lowing the descriptions in Coles (2001). These methods are of key importance when

considering marginal aspects of multivariate and spatial extremes.

The first technique that will be considered is to model block maxima, that is, to

split a sequence of observations into blocks of equal length and model the maxima

of each of these. To do this, first suppose we have an independent and identically-

distributed (i.i.d.) sequence of random variables X1, . . . , Xn from some common dis-

tribution function F and denote its maximum by Mn = max{X1, . . . , Xn}; minima

can be studied in the same framework by noting that

min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}.

11
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A key result for modelling these is the Extremal Types Theorem (Fisher and Tippett,

1928):

Theorem 1 (Extremal Types Theorem): If there are sequences of constants (an >

0)∞n=1 and (bn)∞n=1 such that, for any x ∈ R,

P
(
Mn − bn
an

≤ x

)
→ G(x) (n→∞),

for some non-degenerate distributionG, thenG is either a Gumbel, Fréchet or negative

Weibull distribution, which are defined as follows (with a > 0, b ∈ R, α > 0):

• Gumbel: G(x) = exp
{
− exp

[
−
(
x−b
a

)]}
, x ∈ R;

• Fréchet: G(x) =


0, x ≤ b,

exp
{
−
(
x−b
a

)−α}
, x > b;

• Negative Weibull: G(x) =


exp

{
−
[
−
(
x−b
a

)α]}
, x < b,

1, x ≥ b.

The Extremal Types Theorem says that if appropriate normalising sequences, (an)

and (bn), exist for the sequence of block maxima, then the normalised maxima must

converge to one of the three classes of distribution given above. Moreover, F is said

to be in the domain of attraction of G. Normalisation of the maxima is critical, since

using (F (x))n (x ∈ R), which corresponds to P(Mn ≤ x), is generally impractical due

to F usually being unknown. Additionally, if Mn is not normalised appropriately, we

obtain a degenerate distribution, since then for all x < xF , where xF is the end-point

of the distribution, F n(x)→ 0 as n→∞ and a point mass at xF is obtained.
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In fact, it can be shown that all three of these distributions can be represented

as special cases of the generalised extreme value (GEV) distribution, which has the

parametric form

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

}
(x ∈ R, µ ∈ R, σ ∈ R+, ξ ∈ R\{0}),

(2.1.1)

where {z}+ = max{0, z}, with the interpretation that if ξ = 0, then

G(x) = exp

{
− exp

[
−
(
x− µ
σ

)]}
(x ∈ R, µ ∈ R, σ ∈ R+).

The GEV distribution has the max-stability property, crucial for modelling extremes.

This says that for all n ∈ N, there are constants An > 0, Bn such that

Gn(Anx+Bn) = G(x);

furthermore the GEV distribution is the only distribution that satisfies this property.

The max-stability property described above means that, up to type, the maximum

of GEV-distributed random variables must also follow a GEV distribution. Another

property of the GEV distribution is that the endpoints are defined by the parameters;

if ξ < 0, then the upper endpoint of the distribution is µ − σ/ξ. If ξ > 0, then

this value is the lower endpoint. We note that an important special case of the GEV

distribution is the standard Fréchet distribution, given by F (x) = exp(−1/x) for

x > 0, also referred to as a unit Fréchet distribution.

The calculation of quantiles forms a particularly important part of inference from

the GEV distribution; they can be used to inform about values which can be expected
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to be exceeded over a given time period. The 1− p quantile can be calculated by

zp =


µ− σ

ξ

{
1− [− log(1− p)]−ξ

}
if ξ 6= 0;

µ− σ log[− log(1− p)] if ξ = 0,

obtained by inverting (2.1.1); the interpretation is that the value zp is exceeded in the

length of one block with probability p. For example, if we have blocks corresponding to

months, then the probability that zp is exceeded in any given month is p. The standard

terminology is that zp is the return level corresponding to the return period 1/p; e.g.

if p = 0.05, then zp is the value exceeded once every 20 months on average. Coles

(2001) provides methods for obtaining the variance of estimates of zp if maximum

likelihood estimators of µ, σ and ξ have been calculated.

2.1.2 Threshold exceedance approach

An alternative way of modelling univariate extremes is to assess the characteristics

of exceedances of some suitably chosen threshold. This method has the immediate

advantage over the block maxima technique by not necessarily wasting as much data,

since only one data point in each block is used but there could be more data points in a

block that are useful for modelling extremes. We display this difference in Figure 2.1.1

using daily rainfall data from a location in south-west England, as used in Coles and

Tawn (1996); the key distinction is to note that for the chosen threshold there are

more blue points, corresponding to threshold exceedances (where this has been set to

30mm), than yearly maxima, denoted by red circles and triangles.

Such exceedances are described through the generalised Pareto distribution (GPD).
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Figure 2.1.1: Comparison of univariate extreme value approaches on daily rainfall

data at a location in south-west England from 1914-1962. Orange lines separate the

data into yearly blocks, the blue line indicates a threshold of 30mm daily rainfall, blue

circles indicate data that exceed this threshold. Red points indicate yearly maxima;

triangles denote yearly maxima which also exceed 30mm, red circles indicate those

maxima which do not exceed this threshold.
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Formally, suppose that for some large n, P(Mn ≤ x) ≈ G(x), where G is a GEV dis-

tribution and Mn is defined as before. Then for some large enough u, the threshold,

the conditional distribution function of (X − u)|{X > u} is given approximately by

H(y) = 1−
(

1 +
ξy

σu

)− 1
ξ

+

, y > 0, (2.1.2)

where σu = σ + ξ(u − µ) > 0, and denote a distribution taking the form (2.1.2) by

GPD(σu, ξ). A justification for this model in describing threshold exceedances is given

in Coles (2001), and also Pickands (1975) and Davison and Smith (1990).

The GPD distribution has some important properties. First, we note that the

parameter ξ common to both of the distributions G and H is equivalent, with the

relevant interpretations of these given in Coles (2001). Secondly, the GPD exhibits

threshold stability. Suppose that we have a threshold u0, above which a GPD(σu0 , ξ)

distribution is an appropriate model to model (X − u0)|{X > u0}. Then by the

definition of the GPD, then for any u > u0, the distribution of (X − u)|{X > u}

should still be a GPD. However, this will be a GPD(σu, ξ) distribution, where σu =

σu0 + ξ(u− u0), i.e., the scale parameter σu is dependent on the threshold u chosen.

This issue can be alleviated via the reparameterisation σ∗ = σu−ξu, which is constant

with respect to u; this way of representing the scale parameter aids with inference.

An important consideration when modelling threshold exceedances lies in the

choice of threshold u. If u is chosen to be too small then there will be a large

number of points above the threshold and the asymptotic results will not be suitable,

which creates bias. However, if u is too large then the lack of data points above the

threshold leads to parameter estimates having a high variance. Diagnostics such as
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mean residual life plots and parameter stability plots, both given in Coles (2001), may

help out in this choice. A comprehensive overview of threshold selection methods is

given by Scarrott and MacDonald (2012).

As in the case for block maxima, inference for return levels can be made. However,

as all threshold exceedances are now used (say there are N of these), slight alterations

need to be made to obtain return levels corresponding to particular periods of time.

Otherwise, the return level is simply the value exceeded, on average, once every N

exceedances. Additionally, in order to undo the conditioning for the GPD, P(X > u)

must also be estimated. Coles (2001) gives details on the procedures for both of these

aspects of the inference.

2.1.3 Point process representation

It can be shown that the two approaches to univariate extreme value theory described

above can be considered as arising from sequences of point processes. The key result

in this is as follows, and is as given by Coles (2001).

Theorem 2: Suppose that we have a sequence X1, . . . , Xn of i.i.d. random variables

and sequences (an > 0)∞n=1 and (bn)∞n=1 such that, for any x ∈ R,

P
(
Mn − bn
an

≤ x

)
→ G(x) (n→∞),

with Mn defined as in Section 2.1 and G(·) takes the form as defined in (2.1.1), with

lower endpoint xG and upper endpoint xG. Then, the sequence of point processes

given by

Nn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
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converges on regions in the form (0, 1) × [u,∞), where xG < u < xG, to a Poisson

process with intensity measure

Λ(A) = (t2 − t1)

[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

,

where A = [t1, t2]× [x, xG], where x > xG and 0 ≤ t1 < t2 ≤ 1.

For practical purposes, since the distribution of {Xi}ni=1 is usually unknown, the

following formulation, again given by Coles (2001), may be more useful. First, suppose

that the sequence of data X1, . . . , Xn as in Theorem 2. Then, for some sufficiently

large u, let

Nn =

{(
i

n+ 1
, Xi

)
: i = 1, . . . , n

}
,

and consider Nn on a region of the form (0, 1) × [u,∞). Then Nn on this region is

approximately a Poisson process with intensity measure

Λ(A) = (t2 − t1)

[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

(2.1.3)

on A = [t1, t2]× (x,∞), for x > u, 0 ≤ t1 < t2 ≤ 1.

To utilise this result, firstly the threshold u above which the Poisson process

approximation is appropriate must be decided upon; this can be done using similar

techniques to those outlined in Section 2.1.2. Then, set A = (0, 1) × [u,∞) and

let the data points that lie within A be denoted {(t1, x1), . . . , (tN(A), xN(A))}, so that

in particular there are N(A) points in the region A. For easier interpretation of

analysis, if the data arise from m blocks (e.g., m years), then the intensity (2.1.3) can

be replaced by

Λ(A) = m(t2 − t1)

[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

.
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The advantage of this is that the parameters (µ, σ, ξ) which are estimated now corre-

spond to the GEV parameters of the block maxima, rather than the m-block maxima

(e.g., annual maxima, rather than m-year maxima). Maximum likelihood estimators

can then be found using the likelihood

L(µ, σ, ξ; x) ∝ exp

{
−m

[
1 + ξ

(
u− µ
σ

)]− 1
ξ

+

}
N(A)∏
i=1

{
1 +

(
xi−µ
σ

)}− 1
ξ
−1

+

σ
. (2.1.4)

The expression given in (2.1.4) is derived from the likelihood for the Poisson process,

namely

L(µ, σ, ξ; x) = exp {−Λ(A)}
N(A)∏
i=1

λ(ti, xi),

where Λ(A) =
∫ t2
t1
λ(t, x)dt. The approach given here differs slightly from that of

fitting a GEV to the block maxima, as in Section 2.1.1, since all of the data larger

than the threshold u are used to estimate the model parameters; this should result in

more accurate inference. We also note that in this parameterisation, the parameters

are invariant to the choice of u, unlike the GPD.

2.2 Multivariate extreme value theory

2.2.1 Componentwise maxima

To motivate multivariate extreme value theory, we describe the concept of compo-

nentwise maxima, a multivariate extension of block maxima. Consider a sample of

d-dimensional observations, Xi = (Xi1, . . . , Xid), i = 1, . . . , n. Then, as in Beirlant

et al. (2004), define Mn = (Mn1, . . . ,Mnd) to be the vector of componentwise maxima
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with elements defined by

Mnj = max
1≤i≤n

Xij (j = 1, . . . , d).

The vector Mn is not necessarily a data point; each component’s maximum may arise

from different observations. Then, given an i.i.d. sample X1, . . . ,Xn from a common

distribution function F and any x ∈ Rd,

P(Mn ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) = F n(x),

taking componentwise operations in the above expression, and shall also do this for

any vector expressions in the rest of this section.

There is a multivariate analogue to the univariate case of describing how extreme

value distributions arise, as stated in Smith et al. (1990). Suppose we have vectors

an = (an1 > 0, . . . , and > 0) and bn = (bn1, . . . , bnd), such that

lim
n→∞

P
(

Mn − bn
an

≤ x

)
= G(x), (2.2.1)

for some d-dimensional distribution G which is non-degenerate in each margin. Then

G is a multivariate extreme value distribution; we note also that each of the margins

follows a univariate GEV distribution as described in Section 2.1. Furthermore, there

is a multivariate max-stable analogue; a multivariate distribution function is max-

stable if for all N ∈ N, there are vectors AN > 0 and BN such that

GN(x) = G(ANx + BN).

Just as in the univariate case, a distribution function G is a multivariate extreme value

distribution if and only if it satisfies the max-stability property and the componentwise

maxima follows a multivariate extreme value distribution up to type.
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Following Tawn (1990) or Beirlant et al. (2004), suppose we have a sequence of

d-dimensional random variables, (X1, . . . ,Xn) with unit Fréchet margins and vector

of componentwise maxima defined above. The class of limit distributions is given by

G(x1, . . . , xd) = exp(−V (x1, . . . , xd)) (x1, . . . , xd > 0); (2.2.2)

these are known as multivariate extreme value (MEV) distributions, and the vector

of componentwise maxima must follow this class of distributions. The function V in

(2.2.2) is termed the exponent measure, and is defined as

V (x1, . . . , xd) =

∫
Sd

max
1≤j≤d

(
wj
xj

)
dH(w1, . . . , wd) (x1, . . . , xd > 0), (2.2.3)

where H is a measure on the (d− 1)-dimensional unit simplex

Sd =
{
w ∈ [0, 1]d : w1 + . . .+ wd = 1 (j = 1, . . . , d)

}
,

which satisfies ∫
Sd

widH(w1, . . . , wd) = 1 (i = 1, . . . , d).

Then

The exponent measure V satisfies two important properties, the first of which is

that

V (∞, . . . ,∞, xk,∞, . . . ,∞) =
1

xk
,

so that each variable is marginally Fréchet-distributed. The other is homogeneity of

order -1, that is, for c > 0,

V (cx1, . . . , cxp) =
1

c
V (x1, . . . , xp); (2.2.4)

this property ensures that this class of distributions is max-stable.
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As a result of having to differentiate (2.2.2) with respect to each xi, likelihood

computation is very difficult for MEV distributions for even low-dimensional data,

resulting from the need to repeatedly differentiate this distribution function.

An example of an appropriate function V for the bivariate case is given by

V (x, y) =
(
x−

1
α + y−

1
α

)α
,

where x > 0, y > 0 and 0 < α ≤ 1. This form is known as the logistic model and was

first described by Gumbel (1960). It has the properties that as α→ 0, then the associ-

ated bivariate distribution function G(x, y) → exp{−max(x−1, y−1)}, corresponding

to perfect dependence and when α = 1, G(x, y) = exp{−(x−1 + y−1)}, which corre-

sponds to independence. Thus, the logistic model is able to capture a wide range of

dependence. However, this model assumes that the variables are exchangeable, and

so Tawn (1988) develops an asymmetric generalisation of the logistic model, which

has exponent measure defined by

V (x, y) =

{(
θ

x

) 1
α

+

(
φ

y

) 1
α

}α

+
1

x
(1− θ) +

1

y
(1− φ),

for x > 0, y > 0 with 0 < α ≤ 1 and 0 ≤ θ, φ ≤ 1. With this model, upon setting

θ = φ = 1, the logistic model is obtained; if θ = φ, then this model represents a

mixture of the logistic model and independence. Independence is obtained if α = 1,

θ = 0 or φ = 0, with complete dependence occurring for the case θ = φ = 1 as

α → 0. A multivariate generalisation of the asymmetric logistic model is given by

Tawn (1990).
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2.2.2 Multivariate point process approach

An alternative method of considering multivariate extremes is to adopt a point process

model, as was done earlier for the univariate instance. This multivariate approach is

described by Coles and Tawn (1991).

Given an i.i.d. sequence of d-dimensional random vectors X1,X2, . . ., with unit

Fréchet marginal distributions and whose joint distribution function lies in the do-

main of attraction of a multivariate extreme value distribution, define pseudo-radial

components

Ri =
d∑
j=1

Xij

n
(i = 1, . . . , n)

and angular components

Wij =
Xij

nRi

(i = 1, . . . , n; j = 1, . . . , d),

where Xij is the jth component of Xi. Then the point process given by

Pn =

{(
Xi1

n
, . . . ,

Xid

n

)
: i = 1, . . . , n

}
,

converges in distribution to a non-homogeneous Poisson process on the space Rd+\{0}

with intensity measure

µ(dr × dw) =
dr

r2
dH(w),

where H is the measure defined previously.

Coles and Tawn (1991) show how this point process representation leads to the

componentwise maxima technique discussed in Section 2.2.1, similarly to as in the

univariate point process approach, and note that numerical integration is often re-

quired to compute the intensity measure. Moreover, this framework can be used to
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model failure probabilities of structures arising from combinations of variables, see

Coles and Tawn (1994). However, these methods only work well for variables which

satisfy a property known as asymptotic dependence, which is defined in Section 2.3.

2.2.3 Multivariate generalised Pareto distribution

Recently, multivariate extensions of the GPD described in Section 2.1.2 have been

considered, principally by Rootzen et al. (2018a), Rootzen et al. (2018b) and Kiril-

iouk et al. (2019). In this section, we briefly outline the details of this multivariate

distribution.

Firstly, using the notation of Section 2.2.1, if we have that the limit (2.2.1) holds,

then the d-dimensional random variable X has the property that

{
X− bn

an

}
|{X � bn}

converges, as n→∞, in distribution to a random variable Y, where Y follows a mul-

tivariate generalised Pareto distribution (MGPD); denote this distribution function

by H.

It is not necessarily the case that the marginal distributions, say H1, . . . , Hd, of

Y = (Y1, . . . , Yd) are univariate GPDs. This only arises if the margins are conditioned

on being positive, so that

H+
j (y) = P(Yj > y|Yj > 0) = 1−

(
1 +

ξjy

σj

)− 1
ξj

+

(j = 1, . . . , d),

where z+ = max(0, z) as previously. However, for all j, if ξj > 0, then Hj has lower

endpoint −σj/ξj, and has no finite lower endpoint otherwise.
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The MGPD H has various technical properties of use, derived by Rootzen et al.

(2018a,b). One of these is the multivariate form of threshold stability, in the sense

that if a random variable Y ∼ H and we have u ≥ 0, σ + ξu > 0 and H(u) < 1,

then the distribution of (Y − u)|(Y � u) also follows an MGPD, with the same

shape parameters ξ as H but scale parameters σ + ξu. Further properties, such as

sum-stability and the form of the conditional marginal distributions are discussed in

Rootzen et al. (2018a,b) and Kiriliouk et al. (2019).

An important point about the MGPD is that it is possible to link the distribution

G in the limit (2.2.1) to the MGPD H; this is through the expression

H(x) =
logG{min(x,0)} − logG(x)

logG(0)
.

This link implies that the dependence structure of H is determined entirely by the

dependence structure of G from which H arises.

2.3 Extremal dependence

It is very important to consider the nature of dependence in spatial extremes; in ap-

plications, this can be vital as accurate inference of extreme events relies on assessing

the characteristics of the dependence between these. The quantities shown in this

section will be utilised in subsequent chapters.

Key to understanding this are the notions of asymptotic dependence and asymp-

totic independence. Coles et al. (1999) give measures of these for bivariate random

vectors, and we will detail these, as well as giving an example of a measure for higher-

dimensional cases. Before describing these dependence measures, we introduce the
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concept of copulas; these are useful tools in understanding the dependence between

random variables.

2.3.1 Copulas

We outline some key results on copulas, which can be found in Joe (1997). A copula

is a multivariate distribution in which each of the margins follows a Uniform(0, 1)

distribution. Then for a continuous d-dimensional distribution function F , whose

ith marginal distribution is denoted Fi, then the copula C associated with F is a

distribution function C : [0, 1]d → [0, 1] with the property

F (x) = C(F1(x1), . . . , Fd(xd)),

where x = (x1, . . . , xd) ∈ Rd. Additionally, if the margins are continuous and have

quantile functions F−1
1 , . . . , F−1

d , then for u = (u1, . . . , ud), with each ui ∈ [0, 1],

C(u) = F (F−1
1 (u1), . . . , F−1

d (ud))

is unique. Further, we also note that using the probability integral transform, the

Uniform(0, 1) margins may be transformed to any other choice of marginal distribu-

tion. The key implication of that is the copula being invariant to transformation.

Copulas for multivariate extreme value distributions defined by (2.2.2) must also sat-

isfy the max-stability property; that is,

Cm(F1(x1), . . . , Fd(xd)) = C(Fm
1 (x1), . . . , Fm

d (xd))

for all x = (x1, . . . , xd).
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2.3.2 Dependence measures

If a pair of random variables (X, Y ) follow some common marginal distribution F ,

then we define

χ = lim
z→zF

P(Y > z|X > z),

where zF is the upper end-point of F . Then the measure χ provides a natural measure

of the dependence between extreme values of X and Y ; when χ > 0 we say that the

variables are asymptotically dependent, or exhibit extremal dependence. This may

be generalised to the case where X ∼ FX and Y ∼ FY do not follow the same

marginal distribution by transforming (X, Y ) to a pair with Uniform(0, 1) margins

via the probability integral transform, i.e., (U, V ) = (FX(X), FY (Y )). Then we have

that

χ = lim
u→1

P(V > u|U > u).

By considering P(V > u|U > u), an alternative method of calculating χ is

P(V > u|U > u) =
P(U > u, V > u)

P(U > u)

=
1− 2u+ C(u, u)

1− u

= 2− 1− C(u, u)

1− u
≈ 2− logC(u, u)

log u
,

for u ≈ 1 and where C(·, ·) is the copula describing the dependence between U and V

(equivalently X and Y ). By defining

χ(u) = 2− logP(U < u, V < u)

logP(U < u)
(0 ≤ u ≤ 1),

we obtain a sub-asymptotic estimator of χ, where χ = limu→1 χ(u). The estima-

tor χ(u) is useful when assessing the nature of dependence in a dataset, where the
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asymptotic properties may not hold.

When χ = 0, we say that the variables U and V (or X and Y ) are asymptotically

independent, whilst perfectly dependent variables have χ = 1. Furthermore, the sign

of χ(u) describes whether the variables have positive or negative dependence at the

quantile level u.

However, for asymptotically independent distributions, χ cannot determine the

strength of dependence, and so an extra measure is needed. First, let F̄ (x, y) =

P(X > x, Y > y) be the joint survivor function of X and Y , so

F̄ (x, y) = 1− FX(x)− FY (y) + F (x, y) = C̄{FX(x), FY (y)},

for C̄(u, v) = 1− u− v + C(u, v). Then let

χ̄(u) =
2 logP(U > u)

logP(U > u, V > u)
− 1 =

2 log(1− u)

log C̄(u, u)
− 1 (0 ≤ u ≤ 1),

so that −1 < χ̄(u) ≤ 1. Similarly to the procedure for χ, define χ̄ = limu→1 χ̄(u),

with −1 < χ̄ ≤ 1; in particular asymptotically dependent variables have χ̄ = 1 and

variables are asymptotically independent otherwise.

To completely summarise extremal dependence, the pair of measures (χ, χ̄) is

needed. The case where (χ > 0, χ̄ = 1) suggests asymptotic dependence of the

variables, and χ is considered a measure of the strength of dependence. Conversely,

(χ = 0, χ̄ < 1) represents the class of asymptotically independent variables; in this

case, χ̄ signifies the strength of dependence between the variables.

Next, the measure χ̄ is compared to the coefficient of tail dependence, η, discussed

by Ledford and Tawn (1996). The quantity η ∈ (0, 1] arises from the representation,
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on Uniform(0, 1) margins,

C̄(u, u) ∼ L((1− u)−1)(1− u)1/η (u→ 1), (2.3.1)

where L is a slowly varying function, i.e., L(tx)/L(x) → 1 as x → ∞ for any fixed

t > 0. Then

χ̄(u) ∼ 2 log(1− u)

logL((1− u)−1) + 1
η

log(1− u)
− 1→ 2η − 1 (u→ 1);

a particular consequence being that χ̄ = 2η−1. The quantity η provides an alternative

measure of the extent of extremal independence, with η = 1 corresponding to perfect

dependence, and η = 1/2 corresponding to perfect independence.

Now suppose that we have i.i.d. Fréchet random variables X1, . . . , Xd. Then

a measure of extremal dependence is the extremal coefficient, denoted by θd, and

dropping the subscript if d = 2. The definition, as given in Schlather and Tawn

(2003), relies on the homogeneity of order −1 of the exponent measure V stated in

(2.2.4), and is as follows

P(X1 ≤ z, . . . , Xd ≤ z) = exp

(
−V (1, . . . , 1)

z

)
= exp

(
−θd
z

)
=

[
exp

(
−1

z

)]θd
,

for z > 0 with 1 ≤ θd ≤ d. Here it can be seen that the value of θd gives the effective

number of independent variables amongst X1, . . . , Xd, so that in particular, θd = 1

for perfectly dependent variables, whilst independent variables have θd = d, with

values between these limits representing different levels of dependence. For bivariate

applications, we have that limz→∞ P(Y > z|X > z) = 2 − θ on Fréchet margins,

which gives a natural way of calculating the extent of asymptotic dependence. In

Section 2.4.1, we describe values of θ permitted for some spatial extremes models,
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where dependence between the process at two locations is a function of the distance

between the two locations.

A natural multivariate extension of the dependence measure χ would be to set

χd = lim
z→∞

P(X2 > z, . . . , Xd > z|X1 > z).

Letting C ⊆ {2, . . . , d}, and noting that P(Xi > z) ∼ z−1 as z → ∞, Eastoe and

Tawn (2012) suggest the measure

χC = lim
z→∞

{
zP
(

min
i∈C

Xi > z

)}
,

and show that

P
(

min
i∈C

Xi > z

)
= LC

(
1

P(X1 > z)

)
P(X1 > z)

1
ηC ,

where LC is a slowly varying function, and 0 < ηC ≤ 1. These provide multivariate

extensions of the bivariate measures χ and η defined earlier.

2.4 Spatial extremes

2.4.1 Max-stable processes

Max-stable processes arise as an extension of multivariate extreme value distribution

methods, and are commonly used in spatial extreme value applications. Suppose that

{Wi(s)}i∈{1,...,n}, over s ∈ Rd, is a sequence of n independent replications of some

stationary continuous stochastic process W (·). For appropriate sequences (an(s) >

0)∞n=1 and (bn(s))∞n=1 ∈ R, for all s ∈ Rd, assume that

Z(s) = lim
n→∞

max1≤i≤nWi(s)− bn(s)

an(s)
(s ∈ Rd).
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If the limiting process Z(·) exists and has non-degenerate marginal distributions for

all s ∈ Rd, then Z(·) is a stationary max-stable process, where the margins follow

a GEV distribution. In the particular case where W (·) has unit Fréchet margins

then an(s) = n and bn(s) = 0 for all s, the margins of Z(·) follow a unit Fréchet

distribution; we shall work with unit Fréchet margins without loss of generality for

the remainder of this section. The joint distribution function of Z(·) for any subset

of sites {s1, . . . , sn} ∈ Rd, where n is any element of {1, 2, . . .}, is then given by

P(Z(s1) < x1, . . . , Z(sn) < xn) = G(x1, . . . , xn), (2.4.1)

whereG is of the form (2.2.2), where the exponent measure V depends on the distances

between the sites. Because Z(·) is stationary, if we consider the joint distribution

(2.4.1) for the set of sites {s1 + τ , . . . , sn + τ}, for any τ ∈ Rd, the joint distribution

obtained is equal to (2.4.1).

We now detail two approaches to the construction of max-stable processes. One

construction, by Smith (1990), is as follows. Let {(Wi, Ti) : i ≥ 1} be points of a

Poisson process Π on Rd × R+. Further suppose that the intensity of Π is given by

dΛ(w, t) = dw×t−2dt and f is a non-negative function on Rd such that
∫
Rd f(s)ds = 1.

Then

Z(s) = sup
(w,t)∈Π

tf(s−w) (s ∈ Rd) (2.4.2)

is a stationary max-stable process with unit Fréchet margins. Smith (1990) interprets

this construction as a model for rainfall arising from storms which are centred at the

points w (uniformly distributed in space), with the function f defining the shape

of these storms, and t describing the magnitude of a storm. Processes arising from
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this construction are often too smooth to provide realistic models for spatial data,

however.

Schlather (2002) gives a generalisation of (2.4.2) to permit further models in this

framework; we follow the notation as used by Davison et al. (2012). First, let o be

the origin. If W (·) is a stationary process on Rd, E[max{0,W (o)}] = µ ∈ R+, and

Π is a Poisson process on R+ which has intensity measure dΛ(t) = µ−1t−2dt, then a

stationary max-stable process is defined by

Z(s) = max
t∈Π

tmax{0,Wi(s)} (s ∈ Rd), (2.4.3)

where the Wi(·), for i = 1, 2, . . ., are i.i.d. replications of W (·). The resulting process

Z(·) has unit Fréchet margins. Here W (·), when positive, can be interpreted as

describing the shape of a storm, if that is the application at hand, with the value of

t being the magnitude of a storm event.

In practice, parameterised models of max-stable processes are used; since bivari-

ate distribution functions are typically the only closed form distribution functions

available for max-stable processes, we only provide details of their bivariate exponent

measures.

Following Smith (1990), suppose that f in (2.4.2) is a multivariate normal density

function, of dimension d, with covariance matrix Σ. Then, for locations s1, s2 ∈ Rd,

the resulting process has bivariate exponent measure

Vh(x, y) =
1

x
Φ

(
a(h)

2
+

1

a(h)
log

y

x

)
+

1

y
Φ

(
a(h)

2
+

1

a(h)
log

x

y

)
,

where Φ is the standard Gaussian distribution function and a2(h) = hΣ−1hT , with

h = s2− s1. This model is often referred to as the Smith max-stable process. Equiva-
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lently, the Smith max-stable process may be constructed in the form (2.4.3) by taking

Wi(s) = f(s −Yi), where Yi arises from a homogeneous Poisson process on Rd. In

the one-dimensional case, Σ is simply the variance of the Gaussian kernel f used in

the construction of the process.

The Smith model has bivariate extremal coefficient given by θ(h) = 2Φ{a(h)/2}

with 1 ≤ θ(h) < 2 for all finite h; we see that this has a value of 1 when ‖h‖ = 0,

and a limit of 2 as ‖h‖ → ∞, where ‖ · ‖ denotes the Euclidean norm. Thus, this

max-stable process construction gives asymptotic dependence at all finite distances,

with independence only being a limiting case at infinite distance.

Figures 2.4.1a, 2.4.1b and 2.4.1c show simulations of two-dimensional Smith pro-

cesses with standard Gumbel margins, each on the space [0, 10]×[0, 10], with respective

covariance matrices

Σ1 =

1 0

0 1

 ; Σ2 =

 1 0.5

0.5 1

 ; Σ3 =

0.7 0.5

0.5 0.7

 .
We see that the effect of a non-zero covariance term, as in Figures 2.4.1b and 2.4.1c,

is to introduce a certain orientation of the events in the process. By changing the

diagonal terms, comparing Figures 2.4.1a and 2.4.1c, it is seen that the extreme events

can be modelled as being more, or less, localised in the spatial field along the direction

of the coordinate axes depending on the magnitude of these diagonal terms.
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(a) (b)

(c) (d)

Figure 2.4.1: Simulations of two-dimensional max-stable processes with standard

Gumbel margins on the space [0, 10] × [0, 10]: (a), (b) and (c) are Smith processes

with covariance matrices Σ1,Σ2 and Σ3 respectively; (d) shows a Schlather process,

with correlation function ρ(h) = exp(−‖h‖).

Suppose now that each Wi(·) in the representation (2.4.3) is a stationary Gaussian

process with correlation function ρ(h); Banerjee et al. (2004) describe a multitude of
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choices for ρ(·). We then have bivariate exponent measure given by

Vh(x, y) =
1

2

(
1

x
+

1

y

){
1 +

√
1− 2xy(ρ(h) + 1)

(x+ y)2

}
.

This model was first proposed by Schlather (2002), and is thus commonly termed

the Schlather max-stable process. Like the Smith model, we see that the process

is stationary. Figure 2.4.1d displays a simulation from the Schlather model with

Gumbel margins with correlation function ρ(h) = exp(−[‖h‖ /φ]α), where φ > 0 and

0 < α < 2; in this figure, φ = 1 and α = 1. Changing φ and α leads to different

behaviour of the process, e.g., increasing φ leads to longer-range dependence, whilst

larger values of α increase the smoothness of the process.

The process is much less smooth than any realisation obtained from the Smith

model, so the model may be more realistic in some scenarios. As θ(h) → 1 as

‖h‖ → 0, the process is near perfectly dependent at small separations. However, if

each Wi(·) is a two-dimensional, stationary and isotropic process, then, as stated by

Davison et al. (2012), it is the case that θ(h) < 1.838 for all finite h, so the Schlather

model is unable to capture independence at any distance, and thus cannot capture

the whole range of asymptotic dependence. Wadsworth and Tawn (2012b) combine

features from the representations (2.4.2) and (2.4.3) to produce a model which has

the short-range dependence benefits of the Schlather model whilst also retaining the

limiting independence property of the Smith model, in the sense that points an infinite

distance apart from one another are independent.

If W (·) in (2.4.3) is of the form W (s) = exp[ε(s)−γ(s)], where ε(·) is a stationary
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Gaussian process with ε(o) = 0 almost surely, which has variogram γ(·), defined as

γ(h) =
1

2
Var {W (h)−W (o)} .

The resulting process is termed a Brown-Resnick process, after Brown and Resnick

(1977). This has bivariate exponent measure

Vh(x, y) =
1

x
Φ

(
a(h)

2
+

1

a(h)
log
(y
x

))
+

1

y
Φ

(
a(h)

2
+

1

a(h)
log

(
x

y

))
, (2.4.4)

where a2(h) = 2γ(h) and h = s2 − s1. For the Brown-Resnick process, the extremal

coefficient is given by θ(h) = 2Φ[
√
γ(h)/2]; when γ(·) is unbounded, we have that

1 ≤ θ(h) < 2 for all finite h, with θ(h)→ 2 as ‖h‖ → ∞. Hence, we obtain the whole

range of θ(h) between 1 and 2 (Davison et al., 2012), and so the Brown-Resnick max-

stable process is able to capture all levels of asymptotic dependence. A particular

case of the Brown-Resnick process, assumed in much of the literature, arises if the

variogram of ε(·) has the form ‖h/λ‖α, where λ > 0, 0 < α ≤ 2, but other forms

are possible. Then if α = 2, we obtain the Smith max-stable process as detailed

previously.

In Figure 2.4.2, we display a simulation on the line segment [0, 10] of a one-

dimensional Brown-Resnick process, using the simulation procedure of Dieker and

Mikosch (2015), setting λ = α = 1 in the above form of the variogram.
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Figure 2.4.2: A simulation of a one-dimensional Brown-Resnick max-stable process,

with variogram γ(h) = ‖h‖, on standard Gumbel margins on the line segment [0, 10].

By considering the extremal coefficients of these three types of max-stable pro-

cess, we see that these processes exclusively exhibit asymptotically dependence be-

haviour for any finite distances, with asymptotic independence only achieved in the

limit as ‖h‖ → ∞ for the Smith and Brown-Resnick models, and is not attained for

the Schlather max-stable process. Moreover, it is possible to construct max-stable

processes with θ(h) = 2 for all ‖h‖ > τ for small τ > 0, but these models are fully

independent when ‖h‖ > τ . Therefore, these processes have that η‖h‖ = 1 for ‖h‖ ≤ τ

and η‖h‖ = 1/2 for ‖h‖ > τ , with η‖h‖ being the pairwise measure η defined in Section

2.3 calculated at sites s1, s2 ∈ Rd with h = s2 − s1; consequently, these processes

cannot exhibit dependence in the class of asymptotic independence. Max-stable pro-
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cesses of this type arise if f(·) in (2.4.2) is zero when ‖(w − s)‖ > τ but f(·) > 0

otherwise.

2.4.2 Inference for max-stable processes

The pairwise likelihood is often used for max-stable processes due to the full likeli-

hood requiring the exponent measure V to be repeatedly differentiated, leading to

severe computational issues for even relatively low-dimensional applications. Hence,

inference is usually carried out using pairwise likelihood methods, as described by

Varin (2008) and Varin et al. (2011). To help explain this approach, first suppose

that we have n sampling locations, at which we observe one realisation of a spatial

process Z = [Z(s1), . . . , Z(sn)], for Z(·) defined as in Section 2.4.1, which has density

function fZ(z;θ), where θ is the vector of (unknown) parameters of interest. Suppos-

ing that we can evaluate the bivariate joint density fB of (Zr, Zt) = (Z(sr), Z(st)),

which depends on the separation of the sites sr and st, then the pairwise likelihood

for a realisation z of the process Z takes the form

L(θ; z) =
n−1∏
r=1

n∏
t=r+1

fB(zr, zt;θ,h(r, t) = sr − st) =
∏
t>r

fB(zr, zt;θ,h(r, t) = sr − st),

where zj is the jth element of z = (z1, . . . , zn). If there are m i.i.d. observations of Z,

say z(i) = (z
(i)
1 , . . . , z

(i)
n ) for i = 1, . . . ,m, then the overall pairwise likelihood is

L(θ; z(1), . . . , z(m)) =
m∏
i=1

∏
t>r

fB(z(i)
r , z

(i)
t ;θ,h(r, t)). (2.4.5)

The particular form of the likelihood for a max-stable process relies on the form

given in (2.4.1). If, for sampling locations sr, st in some spatial domain S, the bi-

variate distribution function has the form P(Z(sr) < x,Z(st) < y) = F (x, y) =
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exp{−Vh(r,t)(x, y)} for x, y > 0, where Vh(r,t) is the exponent measure of the process,

we can use the density obtained from this expression in the likelihood (2.4.5) if we

have m i.i.d. observations of Z(·), where pairs of sites are considered. In this, Vh(r,t)

may be taken to be one of the forms given in Section 2.4.1.

Denoting the maximum likelihood estimator of θ by θ̂, obtained by maximising

(2.4.5), then the variance matrix of θ̂ requires use of the so-called sandwich estimator

because of the generally incorrect assumption of pairwise independence. Details of

the sandwich estimator may be found in Varin et al. (2011).

There have been various methods proposed in order to remove the need of using

the pairwise likelihood: Genton et al. (2011) and Huser and Davison (2013) derive

triplewise forms of the distribution function for the Smith and Brown-Resnick max-

stable processes to improve efficiency, at the cost of computational time; Engelke

et al. (2015) use extremal increments of the Brown-Resnick process to form an esti-

mator which utilises Gaussian process, which may be estimated more easily in high

dimensions, and Wadsworth and Tawn (2014) make use of having information on the

occurrence of maxima in the Stephenson and Tawn (2005) likelihood, which can then

be related to the censored likelihood of a Poisson process.

2.4.3 Other recent approaches

We now describe some alternative approaches to spatial extremes modelling in the

recent literature, and provide a brief summary of each of these.
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Hierarchical modelling

One method of modelling spatial extremes is to make use of a hierarchical model

to allow Bayesian inference, such as those developed by Cooley et al. (2007) and

Cooley and Sain (2010); both of these articles apply their methods to precipitation

data. These comprise of models for the data, the underlying process and the prior

distributions, with these three modelling levels being linked together. The benefit

of using a hierarchical model is that information can be shared from neighbouring

locations, improving inference. Here, we describe the method of Cooley and Sain

(2010), and then comment on the differences in the Cooley et al. (2007) hierarchical

model.

Firstly, assuming that there are N sampling locations, the model for the data at

each location is based on the point process likelihood (2.1.4), with parameters µi, σi, ξi

corresponding to the ith sampling location and are common over events. The full

likelihood is taken as the product over all sampling locations, assuming independence

of the process between all sites, conditional on the marginal parameters {µi, σi, ξi, i =

1, . . . , N}, and combined with a prior suggested by Martins and Stedinger (2000). We

note that for the spatial processes considered in Chapters 4, 5 and 6, this conditional

independence assumption appears to be unrealistic for applications; however, Sang

and Gelfand (2010) allow conditional dependence between sites in their hierarchical

model.
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Then, the process assumes the following forms for the parameters for i ∈ {1, . . . , N}:

µi ∼ N(XT
i βµ + Ui,µ, 1/τ

2
µ);

log(σi) ∼ N(XT
i βσ + Ui,σ, 1/τ

2
σ);

ξi ∼ N(XT
i βξ + Ui,ξ, 1/τ

2
ξ ),

with N(η, ψ2) being a Gaussian distribution with mean η and standard deviation ψ;

Xi represents the covariate information for the ith sampling site, βθ is a vector of the

regression coefficients, Ui,θ is a random effect for parameter θ at location i, and τθ is

some (fixed) precision, where we take θ to represent one of µ, σ or ξ. The random

effects Uθ = (U1,θ, . . . , UN,θ) are independent for the different θ. Given θ, the random

effects are spatially dependent, following an autoregressive model across the lattice of

sites.

The hierarchical model proposed by Cooley et al. (2007) is broadly similar. How-

ever, a GPD is used to model the data, and then latent spatial processes are used

for the GPD parameters; a Gaussian process is used to model the process of the log-

transformed scale parameter and for the shape parameter. In this framework, the

mean vector of the Gaussian process is itself a function of covariates and associated

scaling parameters. Under this model, spatial interpolation to new locations can be

carried out by using conditional forms of the Gaussian processes. In order to estimate

the exceedance rate of the threshold chosen at each site, a further latent spatial pro-

cess is used, with a binomial distribution used at each location to model the number

of declustered threshold exceedances.
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Hierarchical max-stable model of Reich and Shaby (2012)

We now outline an alternative hierarchical max-stable model, introduced by Reich and

Shaby (2012). Assume that Y (s) is some block maximum with marginal distribution

GEV(µ(s), σ(s), ξ(s)), and that for all s ∈ Rd, Y (s) = µ(s)+ σ(s)
ξ(s)
{X(s)ξ(s)−1}, where

X(·) is the residual max-stable process, having Fréchet margins. Reich and Shaby

(2012) model X(s) as U(s)θ(s), with U(s) modelled by i.i.d. GEV(1, α, α) random

variables at each site s, where 0 < α < 1, accounting for non-spatial variability,

such as measurement error. The process θ(·) is taken to be the weighted sum of N

positive i.i.d. random variables A1, . . . , AN , defined below, weighted by N kernel basis

functions {wj(s) ≥ 0}, for j = 1, . . . , N , such that
∑N

j=1wj(s) = 1 for all s ∈ Rd. In

particular,

θ(s) =

[
N∑
j=1

Aj {wj(s)}
1
α

]α
(s ∈ Rd),

so that θ(·) models the spatial variation, and inherits its spatial smoothness from the

wj(s). Here, each Ak has positive stable distribution denoted PS(α), with density

f(a|α) satisfying
∫∞

0
exp(−at)f(a|α)da = exp(−tα) for t ≥ 0. Then the process X(·)

is max-stable, with Fréchet margins; Reich and Shaby (2012) prove this property.

Moreover, for any arbitrary set of m locations {s1, . . . , sm}, the joint distribution

function of X(·) is given by

P(X(si) < xi, i = 1, . . . ,m) = exp

{
−

N∑
j=1

[
m∑
i=1

(
wj(si)

xi

) 1
α

]α}
.
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The model for Y (·) is then a hierarchical random effects model, with

Y (si)|A1, . . . , AN
indep.∼ GEV[µ∗(si), σ

∗(si), ξ
∗(si)] (i = 1, . . . , n);

Aj
i.i.d.∼ PS(α) (j = 1, . . . , N),

where µ∗(s) = µ(s) + σ(s)
ξ(s)
{θ(s)ξ(s) − 1}, σ∗(s) = ασ(s)θ(s)ξ(s), ξ∗(s) = αξ(s). The

finite-dimensional joint distributions of this model are multivariate GEV distribu-

tions, as defined in Chapter 2.2.1. Generally, such joint distributions cannot be ex-

pressed in closed form for the max-stable process models in Chapter 2.4.1. Reich

and Shaby (2012) utilise MCMC methods for inference under this model, exploiting

the conditional independence they assume, with this type of inference being possible

representing another advantage of this model over the models in Chapter 2.4.1. Reich

and Shaby (2012) show that the Smith max-stable process, an asymptotically depen-

dent process, is a limiting case of the hierarchical max-stable model defined above. In

general, however, the hierarchical max-stable models obtained from this method all

exhibit asymptotic independence.

Generalised Pareto processes

Ferreira and de Haan (2014) provide a spatial process analogue of the GPD, termed

a generalised Pareto process. Firstly, we note that a simple Pareto process X(·) can

be constructed as

X(s) = RW (s),

where R is a standard Pareto random variable, and W (·) is a process which satisfies

P[sups∈SW (s) > w0] = 1 for some constant w0 > 0, and E[W (s)] > 0 for each location
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s in the space of interest S. Here, R and W (·) are independent. The resulting Pareto

process X(·) has the property that sups∈SW (s)/w0 is standard Pareto-distributed.

Furthermore, if W (s) = w0 for all s ∈ S, then the process X(·) is perfectly dependent;

however independence between two sites is not possible. Moreover, for a positive

spatial process Y (·), we have the following link between the distributions of X(·) and

Y (·):

X(s) :
d
= lim

u→∞

[
RY (s)

u

∣∣∣∣ sup
s∈S

RY (s) > u

]
.

We then have that a generalised Pareto process Z(·) can be defined from a simple

Pareto process X(·) by

Z(s) = µ(s) +
σ(s)[X(s)ξ(s) − 1]

ξ(s)
,

where µ(·), ξ(·) ∈ R, σ(·) ∈ R+.

As well as providing a natural way of describing the behaviour of spatial threshold

exceedances, Pareto processes have the advantage over max-stable process that they

only require one realisation of R and W (s) for simulation, rather than the repeated

simulations of a process which are necessary for simulating max-stable processes.

Suitable choices of W (·) can be made in order to make inference simpler than for

max-stable processes, though this is still non-trivial in most cases. We note that

Pareto processes are in the class of asymptotically dependent processes.

Huser and Wadsworth (2018) model for unknown dependence type

The spatial extremes model developed by Huser and Wadsworth (2018) is able to

capture both asymptotic dependence and asymptotic independence behaviour spa-
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tially, with the caveat that the process may only model one type of these types of

behaviour across all locations. Suppose that W (·) is a positive stationary spatial

process which has Pareto marginal distributions and is asymptotically independent,

satisfying (2.3.1); Gaussian processes are an example of such a spatial process when

transformed to Pareto margins. Then the spatial dependence model proposed by

Huser and Wadsworth (2018) has the form

X(s) = RδW (s)1−δ (0 ≤ δ ≤ 1), (2.4.6)

where R is Pareto random variable, independent of W (·). If δ > 1/2, then the Rδ

component is heavier-tailed than W (·)1−δ, and we obtain an asymptotically depen-

dent process at all locations. If δ ≤ 1/2, then the process exhibits asymptotically

independent behaviour everywhere. We note that the case δ = 1/2 is treated specif-

ically by Huser and Wadsworth (2018). Also, we have that as δ → 0, the copula of

the process W (·) is obtained, whilst as δ → 1, perfect dependence is seen. The lowest

level of dependence possible in the process X(·) is defined by the corresponding W (·)

process.

An alternative representation can be obtained by taking logarithms of (2.4.6),

specifically we have X̃(s) = δR̃+ (1− δ)W̃ (s), where R̃ is a unit exponential random

variable, and W̃ (s) = log[W (s)], which is independent of R̃, has unit exponential

margins. From this characterisation, and considering R̃ as a spatial process, it is seen

that the process X̃(·) can be interpreted as a sum of a perfectly dependent process,

arising from R̃, and an asymptotically independent process, this being contributed

by W̃ (·). Here, δ is fixed for all distances between sites; in Chapters 4, 5 and 6,
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we describe models where the dependence type can be modelled flexibly for different

distances, in essence by allowing δ to change with the distance between sites.

For inference, Huser and Wadsworth (2018) take W (·) to be a Gaussian process,

since it has a relatively simple representation in high dimensions compared to other

spatial processes. We note that since joint distributions are still required to be cal-

culated for inference, the model still is computationally difficult for a large number

of sampling locations. The authors also point out that since positive association of

extremes still occurs as the distance between sites becomes infinitely large if δ > 1/3,

the model is better suited to small spatial regions.

2.5 Conditional extremes methods

We now introduce an alternative method of approaching multivariate extreme value

problems. Heffernan and Tawn (2004) first proposed a conditional extremes model,

which has since been generalised by Heffernan and Resnick (2007), with the aim that

extrapolation to events of practical interest is made much easier than the methods

Chapter 2.2 has outlined. Here, we give an overview of the model, its theoretical

justification, and its properties, as conditional extremes modelling forms the basis of

the content in Chapters 4, 5 and 6.
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2.5.1 Theoretical background

General results

We first provide some theoretical justification for the conditional extremes model,

following results from Heffernan and Tawn (2004). Suppose that we have a vector

of random variables Y = (Y1, . . . , Yd) which have Gumbel margins (although any

marginal distribution with exponential upper tail may be chosen), and that interest

lies in the behaviour of P(Y−i ≤ y−i|Yi = yi) for i ∈ {1, . . . , d}, where Y−i denotes the

vector Y with its ith component removed. Now, assume that for any i ∈ {1, . . . , d}

we have functions a|i : R→ Rd−1,b|i : R→ Rd−1 such that

Z|i =
Y−i − a|i(yi)

b|i(yi)

has the property that

P(Z|i ≤ z|i|Yi = yi)→ G|i(z|i) (yi →∞), (2.5.1)

where the joint distribution function G|i has non-degenerate margins.

It follows under weak assumptions that (2.5.1) implies that for yi > 0

P(Z|i ≤ z|i, Yi − ui > yi|Yi > ui)→ G|i(z|i) exp(−yi) (ui →∞), (2.5.2)

so that the random variables Yi−ui and Z|i are independent in the limit. The limiting

result holds by virtue of the exponential upper tail of the Gumbel distribution and

its memoryless property, as well as the limit (2.5.1).

We note at this point that alternatively, Heffernan and Resnick (2007) show that

another representation can be attained by normalising Y−i by ui instead; however,
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the Heffernan and Tawn (2004) method is easier from a statistical perspective, and

so we concentrate on this approach.

To obtain marginal distributions of G|i, define for j ∈ {1, . . . , d}, j 6= i,

Gj|i(zj|i) = lim
yi→∞

P(Zj|i ≤ zj|i|Yi = yi),

where

Zj|i =
Yj − aj|i(yi)
bj|i(yi)

,

and ai|j(·), bi|j(·) are the components of a|i(·), respectively b|i(·), associated with Yj.

Then with this definition, Gj|i is the marginal distribution of the joint distribution

G|i related to the variable Yj.

To choose the normalising functions a|i(·) and b|i(·), we look at the behaviour

of Fj|i(yj|yi) = P(Yj < yj|Yi = yi), as Gj|i must be non-degenerate for each j 6= i.

Heffernan and Tawn (2004) then give the following result on properties that a|i and

b|i must satisfy.

Theorem 3: Suppose that Y has a continuous joint density function. Then if for

any i, a|i(·), and b|i > 0 that satisfy the limit (2.5.1), then the components associated

with Yj, for j 6= i satisfy the following (up to type):

• limyi→∞ Fj|i(aj|i(yi)|yi) = pj|i, where pj|i ∈ (0, 1) is a constant.

• bj|i(yi) = hj|i[aj|i(yi)|yi]−1, where

hj|i(yj|yi) =
fj|i(yj|yi)

1− Fj|i(yj|yi)
(yj ∈ R),

with fj|i being the density arising from Fj|i.
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We note that the normalising functions are not unique, and that these functions

are identifiable only up to type. Details of this can be found in Heffernan and Tawn

(2004).

Examples of normalising functions and general form

We now describe some examples of normalising functions described by Theorem 3,

and the general form given by Heffernan and Tawn (2004) that these must take. To

motivate this, Table 2.5.1, which is adapted from Table 1 of Heffernan and Tawn

(2004), lists examples of functions aj|i, bj|i under various conditions.

Dependence type aj|i(yi) bj|i(yi) Form of G|i

Perfect positive dependence yi 1 Degenerate

Asymptotic dependence (MEV distribution) yi 1 ‡

Asymptotic independence (multivariate Gaussian) ρ2
ijyi

√
yi Gaussian

Complete independence 0 1 Gumbel

Table 2.5.1: Table of normalising constants aj|i, bj|i, as well as the forms of the limiting

distribution G|i for a variety of cases of dependence between variables; ‡ refers the

reader to Heffernan and Tawn (2004) for details of this limiting form. This table has

been adapted from Table 1 of Heffernan and Tawn (2004).

To provide an example of how to find such normalising functions, assume that we

have a vector of random variables (XF , YF ), which has Fréchet marginal distributions,
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and joint distribution function

GF (x, y) = exp
{
−
(
x−

1
α + y−

1
α

)α}
(x, y > 0; 0 < α < 1).

Since log(XF ) transforms XF (equivalently, YF ) to follow a Gumbel marginal distri-

bution, call this transformed variable XG (equivalently YG), we have that

GG(x, y) = P(XG < x, YG < y) = P(XF < ex, YF < ey) = e−V (ex,ey),

where V (x, y) = (x−
1
α + y−

1
α )α. Letting y = a(x) + b(x)z and fXG be the density of

XG, then

lim
x→∞

P
(
YG − a(x)

b(x)
≤ z|XG = x

)
= lim

x→∞

∂
∂x
GG(x, y)

fXG(x)

∣∣∣∣∣
y=a(x)+b(x)z

This limiting term has the form

∂
∂x
GG(x, y)

fXG(x)
=

exp{−[exp(−x/α) + exp(−y/α)]α − x
α
}{exp(−x/α) + exp(−y/α)}α−1

exp{−x− exp(−x)}
,

(2.5.3)

where upon substituting y = a(x) + b(x)z, (2.5.3) is equivalent to

exp

{
−
[
exp

(
−x
α

)
+ exp

(
−a(x) + b(x)z

α

)]α
− x

α
+ x+ exp(−x)

}
×
[
exp

(
−x
α

)
+ exp

(
−a(x) + b(x)z

α

)]α−1

= exp

{
−
[
exp

(
−x
α

)
+ exp

(
−a(x) + b(x)z

α

)]α
+ exp(−x)

}
× exp

(
−x
α

+ x
)

exp
(x
α
− x
){

1 + exp

[
−a(x)− x+ b(x)z

α

]}α−1

.

Here, the first exponential term in the final equality approaches unity as x→∞, and

so we need to ensure that the final term of the final line above is a non-degenerate

distribution function as x→∞; clearly we require that a(x) = x, and where b(x) = c,
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for some constant c > 0 which can be arbitrarily chosen as c = 1. These choices of

a(x) and b(x) are then equivalent to finding functions a|1, b|1 in the bivariate case

of Theorem 3, and a logistic distribution is obtained as the limiting distribution G|i,

that is, G|i(z) = {1 + exp(−z/α)}α−1.

The normalising functions suggested in this example and by Table 2.5.1 take a

particular form. Heffernan and Tawn (2004) give these forms as

a|i(yi) = ã|iyi + I{ã|i=0,b̃|i<0}[c̃|i − d̃|i log(yi)]; (2.5.4)

b|i(yi) = y
b̃|i
i , (2.5.5)

where ã|i, and similar terms, are vector constants and I denoting an indicator function

on the subscripted set. The vectors ã|i, b̃|i, c̃|i, d̃|i have components such that ãj|i, d̃j|i ∈

[0, 1], b̃j|i ∈ (−∞, 1), c̃j|i ∈ R, where j 6= i. We note that the purpose of the indicator

function in (2.5.4) is to account for the possible presence of negative association

between variables.

Heffernan and Resnick (2007) generalise this formulation; they show that under

weak assumptions for the joint distribution of Y−i, the normalising functions a|i(·)

and b|i(·) must be regularly varying with specific constraints; in particular, if Laplace

marginal distributions are used, then each component of a|i must be regularly varying

of index 1, and each component of b|i(·) regularly varying of index less than 1.

Keef et al. (2013b) provide an alternative formulation if using Laplace, rather

than Gumbel, marginal distributions, that the normalising functions take the form

a|i(yi) = α|iy, b|i(yi) = y
β|i
i . In this instance, for each j 6= i, αj|i ∈ [−1, 1], βj|i ∈

(−∞, 1); if −1 ≤ αj|i < 0 corresponds to negative association between the j and
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ith variables (conditional on the ith variable being sufficiently large), with positive

association of these variables occurring if 0 < αj|i ≤ 1. This representation will be

used in subsequent chapters.

2.5.2 Conditional extremes models

Having introduced the theoretical background of the conditional extremes approach

of Heffernan and Tawn (2004), we now describe how this is used for modelling the

behaviour of extremes, and interpretation of the model.

Heffernan and Tawn (2004) model and properties

The limiting distribution in (2.5.1), along with its independence property, are key to

application of the model. Assume that for i = 1, . . . , d, there is some threshold ui for

which the limit (2.5.2) holds exactly; i.e., for yi > 0,

P(Y−i < a|i(yi) + b|i(yi)z|i, Yi − ui > yi|Yi > ui) = G|i(z|i) exp(−yi).

The conditional extremes dependence model, with Laplace margins and setting a|i(yi) =

α|iyi,b|i = y
β|i
i as proposed by Keef et al. (2013b), is thus given by

Y−i|{Yi = yi} = α|iyi + y
β|i
i Z|i, (2.5.6)

for all yi > ui, where Z|i is independent of Yi, and hence amounts to a non-linear

regression model once Yi is sufficiently large.

There is no specific form implied for the distribution of Z|i in order to calculate α|i

and β|i; indeed Heffernan and Tawn (2004) outline how this may be modelled empir-

ically. It is, however, convenient to use a (d − 1)-dimensional multivariate Gaussian
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distribution for ease of computation in the estimation of α|i and β|i. Other sugges-

tions for modelling Z|i, whilst retaining computational ease of estimating α|i and β|i,

include using a mixture of multivariate Gaussian distributions via a Dirichlet process

(Lugrin et al., 2016b), and using a Gaussian copula on kernel-smoothed marginal dis-

tributions (Towe et al., 2019). In general, Heffernan and Tawn (2004) give that the

mean and standard deviation vectors of Y−i|Yi = yi > ui are given by α|iyi + y
β|i
i µ|i

and y
β|i
i σ|i respectively, where µ|i and σ|i are vectors of the marginal means and

standard deviations. Thus, if for a pair of variables (Yi, Yj), Zj|i is taken to follow a

Gaussian distribution with mean µj|i and standard deviation σj|i (i.e., Z|i follows a

multivariate Gaussian distribution with some appropriate covariance structure), then

Yj|i ∼ N(αj|iyi + y
βj|i
i µj|i, y

2βj|i
i σ2

j|i).

A drawback of the model is the issue of self-consistency of parameters when con-

ditioning upon different variables, i.e., that each model of Y−i|Yi for i = 1, . . . , d is

consistent with the others. Heffernan and Tawn (2004) describe a variety of properties

necessary for this to hold under asymptotic dependence, however they note that con-

ditions for the asymptotic independence case are difficult to characterise. Hence, it is

suggested that no additional structure is imposed to ensure self-consistency, since the

data are from a valid joint distribution, thus there should not be any great departure

from self-consistency upon conditioning. Moreover, Heffernan and Tawn (2004) find

that the performance of the model suffers when imposing self-consistency conditions.

Liu and Tawn (2014) discuss self-consistency further, describing how definitions of

self-consistency may be different for different subsets of the sample space and con-
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straints required for these.

Simulation from Heffernan and Tawn (2004) model

Heffernan and Tawn (2004) provide details on how to simulate easily from the condi-

tional extremes model (2.5.6), conditioning on a particular variable. Their simulation

algorithm allows estimation of probabilities of events via Monte Carlo approximation

from the samples generated. However, we focus on the rejection sampling method

of Keef et al. (2013b) which generates events that may arise from any variable being

large.

Using the same notation as above, denote the sample space by Y = {y ∈ Rd :

yi > ui for some i = 1, . . . , d}, and partition this space into subsets Yi = {y ∈ Rd :

(yi > ui) ∩ (yi = max[y])} for i = 1, . . . , d, where max(y) denotes the maximum

component of y. Suppose that we wish to simulate M events; then the number of

samples which lie in Yi follows a multinomial distribution which has M samples and

event probabilities P(Y ∈ Yi)/P(Y ∈ Y) for each i = 1, . . . , d. Probabilities of the

type P(Y ∈ Yi) may be calculated by using the fitted conditional extremes model,

as described by Heffernan and Tawn (2004). The simulation algorithm of an event of

the form Y|(Y ∈ Yi) is then prescribed by Keef et al. (2013b) as follows.

1. Generate E ∼ Exp(1), and set Y ∗i = ui + E.

2. Independently of Y ∗i , choose a realisation Z∗|i of the residuals Z|i; this is appro-

priate only if estimating G|i by the empirical distribution of Z|i.

3. Set Y ∗j = aj|i(Y
∗
i ) + bj|i(Y

∗
i )Z∗j|i, for j = 1, . . . , d, j 6= i, using the fitted parame-
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ters for a|i(·) and b|i(·).

4. If Y ∗i < maxj∈{1,...,d}\{i} Y
∗
j , return to step 1; stop otherwise.

A benefit of simulation being carried out in this manner is that the probability of

a given variable having the largest non-exceedance probability is able to be different

across variables; this means that different levels of dependence between variables can

be accounted for. However, when using this procedure for the simulation of spatial

fields, Wadsworth and Tawn (2019) note a number of deficiencies in this method,

such as only being able to simulate conditional upon extreme values at sampling

locations rather than arbitrary sets of locations, and possibly requiring a large number

of rejections to obtain suitable samples. Wadsworth and Tawn (2019) propose a

simulation algorithm for the spatial extension of the conditional extremes model to

overcome these simulation issues, as well as other issues, by utilising importance

sampling rather than the rejection sampler of Keef et al. (2013b).

2.5.3 Linking conditional extremes to the Brown-Resnick max-

stable process

Finally, we look at how conditioning on extremes events can be used to better under-

stand the properties of existing max-stable process models; this motivates the use of

the conditional spatial extremes models introduced later in this thesis. We calculate

limiting conditional distributions of the Brown-Resnick max-stable process, as defined

in Section 2.4.1, and find that we obtain natural closed form expressions upon doing

so.
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Bivariate case

For data (X, Y ) arising from a Brown-Resnick process with Laplace margins as defined

in Section 2.4.1, suppose we are interested in the behaviour of P(Y − u < z|X = u),

with limiting distributional form G(z) as u→∞, noting that

lim
u→∞

∂
∂x
P(Y < x+ z,X < x)|x=u

1
2
e−u

= G(z). (2.5.7)

To transform between a Fréchet-distributed variable XF to a variable XL following a

Laplace distribution, we consider, for e
− 1
XF > 0.5,

1− 1

2
e−XL = e

− 1
XF ⇒ XL = − log

{
2
(

1− e−
1
XF

)}
, XF = − 1

log(1− e−XL/2)
.

(2.5.8)

By (2.5.8) we have that XF ∼ 2eXL as XL →∞; this arises by considering log(1−w)

for w ≈ 0.

Thus,

GL(x, y) = P(XL < x, YL < y) ∼ P(XF < 2ex, YF < 2ey) = e−V (h(x),h(y)),

where V is as defined by (2.4.4), dropping the subscript h, and h(w) = 2ew, noting

the distinction of this function from the vector h. Hence,

∂GL(x, y)

∂x
= −h′(x)V1(h(x), h(y))e−V (h(x),h(y)), (2.5.9)

where h′(w) ∼ 2ew (taking the derivative with respect to w) as w → ∞, and V1 is

the derivative of V with respect to the first argument. Dropping the argument from

the function a2(h) = γ(h)/2, with γ(·) as defined in Section 2.4.1, for notational

convenience, we have

V (s, t) =
1

s
Φ

{
a+

1

2a
log

(
t

s

)}
+

1

t
Φ

{
a+

1

2a
log
(s
t

)}
,
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so V1 takes the form

V1(s, t) =− 1

s2
Φ

{
a+

1

2a
log

(
t

s

)}
− 1

2as2
φ

{
a+

1

2a
log

(
t

s

)}
+

1

2sta
φ

{
a+

1

2a
log
(s
t

)}
,

where Φ is the standard Gaussian distribution function and φ is the standard Gaussian

density function. Recalling that h(w) = 2ew, we have

V1(h(x), h(y)) ≈− 1

(2ex)2
Φ

{
a+

1

2a
(y − x)

}
− 1

2a(2ex)2
φ

{
a+

1

2a
log (y − x)

}
+

1

2a(2ex)(2ey)
Φ

{
a+

1

2a
log (x− y)

}

Then, letting x = u, y = u+ z,

V1(h(u), h(u+ z)) ∼ e−2u

[
−1

4
Φ
(
a+

z

2a

)
− 1

8a
φ
(
a+

z

2a

)
+
e−z

8a
φ
(
a− z

2a

)]
.

Now, note that

e−zφ
(
a− z

2a

)
=

e−z√
2π

exp

{
−1

2

(
a− z

2a

)2
}

=
e−z√

2π
× exp

{
−1

2
a2 +

z

2
− 1

2

( z
2a

)2
}

=
1√
2π

exp

{
−a

2

2
− z

2
− 1

2

( z
2a

)2
}

=
1√
2π

exp

{
−1

2

[
a2 + z +

( z
2a

)2
]}

=
1√
2π

exp

{
−1

2

(
a+

z

2a

)2
}

= φ
(
a+

z

2a

)
.
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Hence, for large u,

∂
∂x
P(Y < u+ z,X < u)

1
2
e−u

∼ −h
′(u)V1(h(u), h(u+ z))e−V (h(u),h(u+z))

1
2
e−u

∼
−(2eu)×

{
−1

4
e−2uΦ

(
a+ z

2a

)}
1
2
e−u

= Φ
(
a+

z

2a

)
,

where the second line is due to the fact that limu→∞ V (h(u), h(u + z)) = 0. Thus,

we have that G(z) = Φ
(
a+ z

2a

)
, i.e., the limiting marginal distribution is a Gaussian

distribution. Moreover, note that the conditional normalising functions are given by

a|i(yi) = yi and b|i(yi) = 1, so the process is asymptotically dependent for all values

of h.

Trivariate case

For data W = (W1,W2,W3) on Fréchet margins arising from a three-dimensional

Brown-Resnick process, Huser and Davison (2013) give that

P(W1 ≤ w1,W2 ≤ w2,W3 ≤ w3) = GF (w1, w2, w3) = exp {−V (w1, w2, w3)} ,

(2.5.10)

where

V (w1, w2, w3) =
1

w1

Φ2 {η(w1, w2), η(w1, w3);R1}

+
1

w2

Φ2 {η(w2, w1), η(w2, w3);R2}

+
1

w3

Φ2 {η(w3, w1), η(w3, w2);R3} .
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Here, Φ2(·, ·;R) is a bivariate normal distribution function with mean 0, unit variances

and correlation matrix R, and

η(wi, wj) =

√
γij
2
−

log
(
wi
wj

)
√

2γij
,

with γij = γ(si − sj) for si ∈ Rd, and where γ(·) is the variogram of the process.

Furthermore, we have

R1 =
γ12 + γ13 − γ23

2
√
γ12γ13

, R2 =
γ12 + γ23 − γ13

2
√
γ12γ23

, R3 =
γ13 + γ23 − γ12

2
√
γ12γ23

.

In this case, we interested in the behaviour as u→∞ of

P(Y − 1u < z|X = u)→ G(z) (2.5.11)

for variables (X,Y) on Laplace margins, where X = X1 and Y = (X2, X3). We

calculate expression (2.5.11) via

lim
u→∞

∂
∂x
P(Y < 1u+ z, X < x)|x=u

1
2
e−u

= G(z).

We again utilise the result of (2.5.8) and set h(w) = 2ew, giving

GL(x1, x2, x3) = exp {−V (h(x1), h(x2), h(x3))} ,

so that

∂GL(x1, x2, x3)

∂x1

= −h′(x1)V1(h(x1), h(x2), h(x3))e−V (h(x1),h(x2),h(x3)).

Now, define a′i(·) [or, where appropriate, a(i)(·)] to be the partial derivative of a(·)
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with respect to the ith argument of a, we have

V1(x1, x2, x3) = − 1

x2
1

Φ2 {η(x1, x2), η(x1, x3);R1}

+
η1(x1, x2)

x1

Φ
(1)
2 {η(x1, x2), η(x1, x3);R1}

+
η1(x1, x3)

x1

Φ
(2)
2 {η(x1, x2), η(x1, x3);R1}

+
η2(x2, x1)

x2

Φ
(1)
2 {η(x2, x1), η(x2, x3);R2}

+
η2(x3, x1)

x3

Φ
(1)
2 {η(x3, x1), η(x3, x2);R3} .

Since

η1(xi, xj) =
1√
2γij
×
{
− 1/xj
xi/xj

}
= − 1

xi
√

2γij
and η2(xi, xj) =

1

xj
√

2γij
,

then V1 can be reformulated as

V1(x1, x2, x3) = − 1

x2
1

Φ2 {η(x1, x2), η(x1, x3);R1}

− 1

x2
1

√
2γ12

Φ
(1)
2 {η(x1, x2), η(x1, x3);R1}

− 1

x2
1

√
2γ13

Φ
(2)
2 {η(x1, x2), η(x1, x3);R1}

+
1

x1x2

√
2γ12

Φ
(1)
2 {η(x2, x1), η(x2, x3);R2}

+
1

x1x3

√
2γ13

Φ
(1)
2 {η(x3, x1), η(x3, x2);R3} . (2.5.12)

Now, note that for continuous random variables V and W ,

∂

∂v
P(V < v,W < w) = P(W ≤ w|V = v)fV (v),

where fV is the density function of V , so if (V,W ) follow a bivariate normal distribu-
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tion with standard Gaussian margins and correlation matrix R1,

Φ
(1)
2 {η(x1, x2), η(x1, x3);R1} = P(W ≤ η(x1, x3)|V = η(x1, x2))× φ{η(x1, x2)}

= Φ

{
η(x1, x3)−R1η(x1, x2)√

1−R2
1

}
φ {η(x1, x2)} ; (2.5.13)

this follows since if (T1, T2) ∼ N(0,Σ), where Σ is the 2 × 2 correlation matrix with

off-diagonal elements ρ, then E(T1|T2 = t2) = ρt2 and Var(T1|T2 = t2) = 1−ρ2, so that

T1|T2 = t2 ∼ N(ρt2, 1 − ρ2). Then perform the obvious standardisation. Moreover,

similar terms to (2.5.13) can be found for other terms requiring the partial derivative

of the bivariate normal density. Hence, (2.5.12) becomes

V1(x1, x2, x3) = − 1

x2
1

Φ2 {η(x1, x2), η(x1, x3);R1}

− 1

x2
1

√
2γ12

φ {η(x1, x2)}Φ

[
η(x1, x3)−R1η(x1, x2)√

1−R2
1

]

− 1

x2
1

√
2γ13

φ {η(x1, x3)}Φ

[
η(x1, x2)−R1η(x1, x3)√

1−R2
1

]

+
1

x1x2

√
2γ12

φ {η(x2, x1)}Φ

[
η(x2, x3)−R2η(x2, x1)√

1−R2
2

]

+
1

x1x3

√
2γ13

φ {η(x3, x1)}Φ

[
η(x3, x2)−R3η(x3, x1)√

1−R2
3

]
.
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Substituting h(w) = 2ew, then we have

V1(h(x1), h(x2), h(x3)) = − 1

(2ex1)2
Φ2 {η(2ex1 , 2ex2), η(2ex1 , 2ex3);R1}

− 1

(2ex1)2
√

2γ12

φ1 {η(2ex1 , 2ex2)}Φ1

[
η(2ex1 , 2ex3)−R1η(2ex1 , 2ex2)√

1−R2
1

]

− 1

(2ex1)2
√

2γ13

φ1 {η(2ex1 , 2ex3)}Φ1

[
η(2ex1 , 2ex2)−R1η(2ex1 , 2ex3)√

1−R2
1

]

+
1

2ex12ex2
√

2γ12

φ1 {η(2ex2 , 2ex1)}Φ1

[
η(2ex2 , 2ex3)−R2η(2ex2 , 2ex1)√

1−R2
2

]

+
1

2ex12ex3
√

2γ13

φ1 {η(2ex3 , 2ex1)}Φ1

[
η(2ex3 , 2ex2)−R3η(2ex3 , 2ex1)√

1−R2
3

]
.

Let aij =
√
γij/2 = aji; then we have that

η(2exi , 2exj) =

√
γij
2
−

log
(

2exi
2exj

)√
2γij

= aij −
(xi − xj)

2aij
.

Also let x1 = u, x2 = u + z2, x3 = u + z3, so that, by a similar calculation found in

the bivariate case,

e−z2φ1{η(2ex2 , 2ex1)} = e−z2φ{η(2eu+z2 , 2eu)}

= e−z2φ

{
a21 −

z2

2a21

}
= φ

{
a12 +

z2

2a12

}
.
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This leads to

V1(h(u), h(u+ z2), h(u+ z3)) = − 1

4e2u
Φ2

{
a12 +

z2

2a12

, a13 +
z3

2a13

;R1

}
− 1

8a12e2u
φ

{
a12 +

z2

2a12

}
Φ

[
a13 + z3

2a13
−R1(a12 + z2

2a12
)√

1−R2
1

]

− 1

8a13e2u
φ

{
a13 +

z3

2a13

}
Φ

[
a12 + z2

2a12
−R1(a13 + z3

2a13
)√

1−R2
1

]

+
1

8a12e2u
φ

{
a12 +

z2

2a12

}
Φ

[
a23 + (z3−z2)

2a23
−R2(a12 − z2

2a12
)√

1−R2
2

]

+
1

8a13e2u
φ

{
a13 +

z3

2a13

}
Φ

[
a32 + (z2−z3)

2a23
−R3(a13 − z3

2a13
)√

1−R2
3

]
.

Then the limiting form is given by

G(z) = lim
u→∞

−h′(u)V1(h(u), h(u+ z2), h(u+ z3))e−V (h(u),h(u+z2),h(u+z3))

1
2
e−u

= lim
u→∞
−4e2u × V1(h(u), h(u+ z2), h(u+ z3))

= Φ2

{
a12 +

z2

2a12

, a13 +
z3

2a13

;R1

}
− 1

2a12

φ

{
a12 +

z2

2a12

}
Φ

[
a13 + z3

2a13
−R1(a12 + z2

2a12
)√

1−R2
1

]

− 1

2a13

φ

{
a13 +

z3

2a13

}
Φ

[
a12 + z2

2a12
−R1(a13 + z3

2a13
)√

1−R2
1

]

+
1

2a12

φ

{
a12 +

z2

2a12

}
Φ

[
a23 + (z3−z2)

2a23
−R2(a12 − z2

2a12
)√

1−R2
2

]

+
1

2a13

φ

{
a13 +

z3

2a13

}
Φ

[
a32 + (z2−z3)

2a23
−R3(a13 − z3

2a13
)√

1−R2
3

]
. (2.5.14)

Whilst it is not obvious that the final four terms in the limit (2.5.14) analytically sum

to zero, numerical tests we have carried out suggest these terms do cancel each other

out for each of a wide range of parameters that we have tested. Thus, the limiting

distribution appears to be given by Φ2

{
a12 + z2

2a12
, a13 + z3

2a13
;R1

}
. Hence, we see
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that Gaussian closed-form expressions arise for the limiting conditional distributions

of established multivariate, equivalently spatial, methods for extremes. In particular,

we see that the form ofG for higher dimensions is a multivariate Gaussian distribution,

thus the assumptions of the Heffernan and Tawn (2004) model would be correct in

this instance, despite the original process being a Brown-Resnick max-stable process.

Moreover, upon extending this to the spatial case, the residual process Z would follow

a Gaussian process. The overall spatial process would be asymptotically dependent,

since we require normalising functions a|i(yi) = yi, and b|i(yi) = 1. This motivates

our use of the Heffernan and Tawn (2004) conditional extreme value model for use in

spatial applications, since we can see that with a Gaussian process assumed for Z, our

model is a natural extension of the Brown-Resnick max-stable process model when

considered conditionally.



Chapter 3

Comparison of censored likelihood

methods under asymptotic

independence

This chapter will present an investigation into the effects of different censored pair-

wise likelihoods for data simulated from asymptotically independent random fields

with known parameters. The purpose of the investigation will be to compare the

performance of the censored likelihood method proposed by Ledford and Tawn (1996)

against a suggested method justified for asymptotically independent data by Wadsworth

and Tawn (2012b); the latter of these is computationally easier but may introduce

additional bias. As a measure of performance, we shall compute dependence measures

η(h) and χ(u;h), as described in Section 2.3, based on the estimated parameters in

each case, and ascertain their root mean square error (RMSE), bias and standard

deviation from the true values of these. The investigation will comprise of both fit-

65
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ting an inverted Brown-Resnick max-stable process, defined in Section 3.2, pairwise

likelihood to data simulated from a Gaussian process (both of which are asymptoti-

cally independent processes), and vice-versa. A similar study under the assumption

of asymptotic dependence has been performed by Huser et al. (2016), using a wider

range of likelihood approaches than will be presented here.

3.1 Censored likelihood methods

Recall that, from Section 2.4.1, pairwise likelihood methods are commonly utilised

for inference on max-stable processes (MSPs). Since inverted max-stable processes

(IMSPs) are constructed from the max-stable process models introduced in Section

2.4.1, they suffer from the same computational issues that MSPs have. Thus, pairwise

likelihood approaches are also used for inference on IMSPs.

However, fitting a pairwise likelihood for all available data will induce bias in

parameter estimation. The class of IMSPs are spatial copulas which permit a wide

range of forms of η(h), informing about the rate of convergence to χ(u;h) = 0. As

such, data below an appropriate threshold are not informative about this behaviour.

In practice, a censored likelihood approach is taken to overcome this issue, using

only the full bivariate density in a region of the (pairwise) sample space assumed to

provide a good approximation to the limiting model and using alternative likelihood

contributions elsewhere. We will consider two constructions of such censoring methods

for extreme values.

Suppose the random field of interest is X(·), over some spatial domain S, and
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consider a realisation x of the random field, using similar notation to Section 2.4.2.

Let Fij(·, ·;θ) be the pairwise distribution function given by F (xi, xj;θ), and denote by

fij(·, ·;θ) its associated pairwise density function. Choosing some suitable censoring

threshold v, one possible pairwise censoring approach proposed by Ledford and Tawn

(1996) has pairwise likelihood contributions given by

L
(LT )
ij (θ) =



Fij(v, v;θ) if max(xi, xj) ≤ v;

∂
∂dzj

Fij(v, xj;θ) if xi < v, xj > v;

∂
∂dzi

Fij(xi, v;θ) if xj < v, xi > v;

fij(xi, xj;θ) if min(xi, xj) > v.

(3.1.1)

These contributions may then be used in a likelihood of the form (2.4.2) to provide

the censored likelihood.

An alternative censoring scheme that we shall consider is given by Wadsworth and

Tawn (2012b), where the pairwise censored likelihood contributions are

L
(WT )
ij (θ) =


fij(xi, xj;θ) if max(xi, xj) > v;

Fij(v, v;θ) if max(xi, xj) ≤ v,

(3.1.2)

with the same notation used as for the Ledford and Tawn (1996) censoring scheme.

This form is motivated for data arising from processes which exhibit asymptotic inde-

pendence, since then approximating the likelihood by the full likelihood is appropriate

when just one of the variables is large, as an asymptotically independent process is

likely to be extreme in just one component. Thus, despite the fact that using the

full likelihood in such instances may introduce more bias to parameter estimates than
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using partial contributions, such as those suggested by Ledford and Tawn (1996), it

may be the case that the bias introduced is sufficiently small that the computational

benefits of only calculating two likelihood contributions may outweigh any additional

error in parameter estimation.

In order to investigate this, we will simulate data from two asymptotically inde-

pendent processes, a Gaussian process, and an inverted Brown-Resnick max-stable

process. We then specify the censored likelihoods described above arising from an

inverted Brown-Resnick process or Gaussian process, respectively, so that each data

set has a misspecified censored likelihood; this is done as data usually arise from an

unknown process, so misspecification provides a more natural assessment of perfor-

mance. By computing the bias, variance and root mean square errors of comparing

estimated values of dependence measures with the true values of these measures, then

a direct comparison of the two censoring schemes under misspecification can be made

and conclusions drawn on which method is preferred.

3.2 Inverted max-stable processes and resulting prop-

erties

Recalling that max-stable processes provide a framework for modelling spatial ex-

tremes under the assumption of asymptotic dependence, Wadsworth and Tawn (2012b)

provide a method of obtaining a random field which exhibits asymptotically indepen-

dent behaviour. By inverting the copula associated with a max-stable process, a

corresponding inverted max-stable process (IMSP) which has asymptotically inde-
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pendent behaviour can be found. The copula is inverted by transforming the original

copula by a monotonically decreasing function; the particular result that we use here

is that if ZF (·) is a max-stable process with unit Fréchet margins, then for s ∈ S,

where S is the spatial domain of interest,

Z∗E(s) =
1

ZF (s)
(3.2.1)

defines an IMSP with standard exponential margins. Then, for an MSP with bivariate

distribution function given by P(ZF (s1) < x,ZF (s2) < y) = exp(−V (x, y)) for s1, s2 ∈

S and exponent measure defined as in Section 2.4.1, the associated IMSP obtained

through (3.2.1) has the property that

P(Z∗E(s1) > x,Z∗E(s2) > y) = exp {−K(x, y)} = exp

{
−V

(
1

x
,

1

y

)}
. (3.2.2)

In particular, for a Brown-Resnick max-stable process, we have that

V

(
1

x
,

1

y

)
=: K(x, y) = xΦ

{
a

2
+

1

a
log

(
x

y

)}
+ yΦ

{
a

2
+

1

a
log
(y
x

)}
, (3.2.3)

using the notation of Section 2.4.1. As a result of (3.2.2), we note that the distribution

function of an IMSP on exponential margins is

FE(x, y) = 1− exp(−x)− exp(−y) + exp {−K(x, y)} . (3.2.4)

We also have that

K1(x, y) :=
∂K(x, y)

∂x
= Φ

(
a

2
+

1

a
log

x

y

)
+

1

a
φ

(
a

2
+

1

a
log

x

y

)
− y

ax
φ

(
a

2
+

1

a
log

y

x

)

and, similarly,

K2(x, y) :=
∂K(x, y)

∂y
= Φ

(
a

2
+

1

a
log

y

x

)
+

1

a
φ

(
a

2
+

1

a
log

y

x

)
− x

ay
φ

(
a

2
+

1

a
log

x

y

)
.
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Hence, we obtain

∂K(x, y)

∂x∂y
= K12(x, y) =

1

a2y

(
a

2
+

1

a
log

x

y

)
φ

(
a

2
+

1

a
log

x

y

)
+

1

a2x

(
a

2
+

1

a
log

y

x

)
φ

(
a

2
+

1

a
log

y

x

)
− 1

ay
φ

(
a

2
+

1

a
log

x

y

)
− 1

ax
φ

(
a

2
+

1

a
log

y

x

)
.

Note that the above derivation utilises the fact that φ′(z) = −zφ(z). We can then

use these in the bivariate density function, derived from (3.2.4), given by

fE(x, y) = K1(x, y)K2(x, y)e−K(x,y) −K12(x, y)e−K(x,y). (3.2.5)

3.3 Dependence measures for asymptotically inde-

pendent processes

We now describe the forms of the dependence measures for IMSPs and Gaussian

processes, which we shall use as the basis of comparison of the misspecified models.

Recall the dependence measures χ̄, η and θ defined in Section 2.3.2, for which we shall

utilise spatial counterparts in the subsequent analyses of this chapter.

Firstly, to calculate η(h) theoretically for an IMSP Z∗E(·), we use the property that

η(h) = 1/θ(h) (Wadsworth and Tawn, 2012b), where θ(h) is the extremal coefficient

of the associated MSP; for a Brown-Resnick max-stable process and h > 0, this is

given by

θ(h) = 2Φ

(√
γ(h)

2

)
, (3.3.1)
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where γ(·) is the semi-variogram of the process. In particular for this study, this will

be assumed to have the form

γ(h) =

(
h

λ

)α
(λ > 0, α ∈ (0, 2]).

We can also calculate χ(u;h) by considering

χ(u;h) =
P(Z∗E(s1) > F−1

E (u), Z∗E(s2) > F−1
E (u))

1− u
=

exp[−K(F−1
E (u), F−1

E (u))]

1− u

= (1− u)K(1,1)−1,

where h = ‖s2 − s1‖, FE is a standard exponential distribution and K is defined as

in (3.2.3). The final equation follows by considering F−1
E (u) = − log(1 − u) and the

homogeneity of order −1 of K. In this expression, h may be considered as fixed with

respect to the choice of s1 and s2, and calculated for a range of thresholds u ∈ [0, 1].

For a Gaussian process XG(·), we have that

η(h) =
1 + ρ(h)

2
,

as given by Ledford and Tawn (1996) where ρ(·) is the underlying covariance function

and calculate χ(u;h) for h = ‖s2 − s1‖ (where s1, s2 ∈ S) by

χ(u;h) =
P(XG(s1) > F−1

G (u), XG(s2) > F−1
G (u))

1− u
,

where FG is a standard normal distribution function. If XG(·) is a centred Gaus-

sian process, this quantity may be calculated numerically using the joint distribution

function with mean vector 0, and covariance matrix determined by ρ(·).
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3.4 IMSP censored likelihoods fitted to Gaussian

process data

To check the performance of the two censoring methods described above, we calculate

the dependence measures η(h) and χ(u;h), based on the theoretical results from

Section 3.3 for the model which has been simulated from, and compare these to

the corresponding measures calculated from parameter estimates arising from the

misspecified model fitted via the two censored likelihood schemes. When fitting these,

we use (3.2.4) and (3.2.5), where we have

∂F (zi, zj)

∂zi
= e−zi −K1(zi, zj)e

−K(zi,zj),

and K and K1 defined as in Section 3.2. A similar result holds for ∂F
∂zj

, with K2 also

defined as before. When using the censoring methods outlined in Section 3.1, we set

v to be the 0.95 quantile.

Data are simulated from a one-dimensional Gaussian process at 31 uniformly-

spaced locations on the line segment S = [0, 12] and we fit the incorrect model using

the censored likelihoods (3.1.1) and (3.1.2). When simulating the Gaussian process,

we use the exponential covariance function ρ(h) = exp(−h/φ), where h = ‖sj − sk‖

for each sampling location si ∈ S.

Before presenting the results of a more thorough simulation study, we look at

examples of the comparison between the theoretical values of η(h) and χ(u;h) for data

simulated from the Gaussian process detailed above. For these examples, a Gaussian

process has been simulated with 1000 replications and with φ = 2 in the exponential
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covariance function ρ(·). Figure 3.4.1 shows an example comparison of theoretical

values of η(h) for the inverted Brown-Resnick max-stable processes with parameters

estimated by both censoring schemes, setting v = 0.95, along with the corresponding

true value of η(h) for the true Gaussian process model, given in Section 3.3. Figure

3.4.2 then shows an example of a comparison of theoretical χ(u;h) for the estimated

inverted Brown-Resnick max-stable processes, along with the theoretical values for

the true model; this has been performed with h = 4. Note that the estimates in

Figures 3.4.1 and 3.4.2 have been calculated from only one simulation of the process;

the simulation studies below utilise 100 of these simulations.
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Figure 3.4.1: Comparison of theoretical values of η(h) using estimated parameter

values of α and λ. The red line corresponds to the theoretical result under the

estimate obtained from the Wadsworth and Tawn (2012b) censoring scheme, the blue

line corresponds to the theoretical result under the estimate obtained from the Ledford

and Tawn (1996) censoring scheme and the orange line represents the theoretical value

of η(h) for the simulated Gaussian process, using n = 1000 replicates.
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Figure 3.4.2: Comparison of theoretical values of χ(u;h) using estimated parameter

values of α and λ with h = 4 and 0.9 ≤ u ≤ 1. The red line corresponds to the

theoretical result under the estimate obtained from the Wadsworth and Tawn (2012b)

censoring scheme, the blue line corresponds to the theoretical values of χ(u;h) under

the estimate obtained from the Ledford and Tawn (1996) censoring scheme and the

orange line represents the theoretical value of χ(u;h) for the simulated Gaussian

process, using n = 1000 replicates.

3.4.1 Results for η(h)

To compare the performance of the censoring schemes in relation to computing η(h),

n = 100 Gaussian processes, each with 1000 replications, are simulated with range

parameters φ = 2 and φ = 5 using the exponential covariance function. Then the

bias,

B = E[η̂(h)]− η0(h),
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and variance, given by

V = E[(η̂(h)− E[η̂(h)])2] = Var(η̂(h)),

are calculated. These can then be used to calculate the root mean square error,

defined by

RMSE[η̂(h)] =
√
B2 + V =

√∑n
i=1(η̂i(h)− η0(h))2

n
.

In the above, η̂k(h) denotes the estimate of η(h) at a given distance h from simulation

k ∈ {1, . . . , n} under one of the censoring schemes, whilst η0(h) represents the true

value (under the Gaussian process) of η(h). Figures 3.4.3 - 3.4.5 show the bias,

variance and RMSE of the estimates under the two censoring schemes for the case

where φ = 2. In each figure, results from applying the Ledford and Tawn (1996)

censoring method are shown in blue, and results from the Wadsworth and Tawn

(2012b) method displayed in red.
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Figure 3.4.3: Plot of bias of η̂(h) with exponential covariance function parameter φ = 2

in the simulated Gaussian processes, from simulations with n = 1000 replicates. The

dashed black line indicates zero bias.
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Figure 3.4.4: Plot of variance of η̂(h) with exponential covariance function parameter

φ = 2 in the simulated Gaussian processes, from simulations with n = 1000 replicates.
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Figure 3.4.5: Plot of RMSE of η̂(h) with exponential covariance function parameter

φ = 2 in the simulated Gaussian processes, from simulations with n = 1000 replicates.

Figure 3.4.3 shows that while both censoring methods have led to estimates of η(h)

that have negative bias, it is the Ledford and Tawn approach which has less bias, with

both tending towards zero bias as the distance h increases. This is expected, since

both the misspecified model estimates and the true model have η(h)→ 1/2 as h→∞.

However, it is seen in Figure 3.4.4 that the Wadsworth and Tawn censoring scheme

has lower variance for each distance, though the variance of each is very small at

all distances. Thus, the best comparison is perhaps made through comparing the

RMSEs of estimation of η(h) under the two schemes, though we note that the bias

is the dominating factor in its value. Using Figure 3.4.5, we see that the Ledford

and Tawn approach has a smaller RMSE up to a distance of h ≈ 10, beyond which

the estimates arising from implementing the Wadsworth and Tawn censoring scheme

become preferred. However, η0(h = 10) ≈ 0.504, so that the process is approximately
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independent at these distances and so differences in estimation of η̂(h) are likely to be

negligible. In general, the difference between the RMSEs of η̂(h) arising from the two

censoring schemes appears to be relatively small for each h, so using the Wadsworth

and Tawn approach would not necessarily be wholly inappropriate in this instance.

We also considered the case where φ = 5 in the exponential covariance function of

the simulated Gaussian process. We see from the triangular points in Figures 3.4.6 and

3.4.7 that the bias and variance follow the same pattern of behaviour as with φ = 2,

leading to the behaviour of the RMSE shown by the triangular points in Figure 3.4.8

being similar to that shown in Figure 3.4.5. As before, estimates from the Ledford and

Tawn (1996) censoring method are shown in blue, and Wadsworth and Tawn (2012b)

estimates are coloured red. The main distinction appears to be that the difference in

RMSE is perhaps smaller for φ = 5 than for φ = 2 at small distances, but is then

larger for h greater than approximately 2, for which η0(h = 2) ≈ 0.835, so that this

difference could be important in assessing the nature of dependence. We note that

the values of RMSE approach zero for estimates from both censoring schemes more

slowly than for φ = 2. Hence, here the Ledford and Tawn (1996) scheme would be

preferred in this case. Similar simulation runs were also carried out for φ = 1, shown

by squares in Figures 3.4.6, 3.4.7 and 3.4.8, suggesting that the RMSE of estimates

decays to zero more quickly than either the cases where φ = 2 or φ = 5; this is likely

tied to the fact that η0(h) → 1/2 more quickly when φ = 1 than with the other

parameter values.

Figure 3.4.9 displays the estimates of η(h) and χ(u;h) when using a smaller sample

size, in this case using n = 200 replicates in each simulated Gaussian process. It was
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found that the bias of the estimates continues to dominate the variance; the variance

does increase as sample size decreases but only by a small amount. The principal

effect of reducing the sample size appears to be that the RMSE decreases to zero with

increasing h more slowly. This effect can be seen by comparing Figures 3.4.5 and

3.4.9, noting that the maximum values of the RMSEs in the estimates are similar as

well, but appear to be slightly larger. Moreover, the maximum differences between

the two RMSEs of the estimates is seen to increase by a small amount, and occurs for

larger h than in the n = 1000 case. Sample sizes of n = 100 and n = 500 were also

used; this led to very similar behaviour of the RMSE as described when comparing

n = 200, with bias dominating the variance in each case. The effects upon setting

n = 100 were slightly more pronounced than those described for the n = 200 case,

with the effects less pronounced when n = 500. An even smaller sample size may lead

to a case where variance would not be dominated by the bias, but this has not been

tested.
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Figure 3.4.6: Plot of bias of η̂(h) with exponential covariance function parameters

φ = 1 (square points) and φ = 5 (triangular points) in the simulated Gaussian

processes, from simulations with n = 1000 replicates. The black dashed line indicates

zero bias.
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Figure 3.4.7: Plot of variance of η̂(h) with exponential covariance function parameters

φ = 1 (square points) and φ = 5 (triangular points) in the simulated Gaussian

processes, from simulations with n = 1000 replicates.



CHAPTER 3. CENSORED LIKELIHOOD COMPARISON 81

0 2 4 6 8 10 12

0.
00

0.
04

0.
08

Eta(h) RMSE comparison

Distance (h)

R
M

S
E

●

●

Estimate

WT
LT

Figure 3.4.8: Plot of RMSE of η̂(h) with exponential covariance function parameters

φ = 1 (square points) and φ = 5 (triangular points) in the simulated Gaussian

processes, from simulations with n = 1000 replicates.
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Figure 3.4.9: Plot of RMSE of η̂(h) with exponential covariance function parameter

φ = 2 in the simulated Gaussian processes, from simulations with n = 200 replicates.
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3.4.2 Results for χ(u;h)

We now consider the comparison of χ(u;h), under the two censoring schemes, for

thresholds u = 0.95, 0.99, 0.995, taking φ = 2 in this comparison. We display the

resulting bias, variance and RMSE, which are computed similarly to those for η(h) in

3.4.1, for the case u = 0.95 with h = 0.4, 0.8, . . . , 12 (taking u as fixed each time) in

Figures 3.4.10, 3.4.11 and 3.4.12. As in Section 3.4.2, the results from applying the

Ledford and Tawn (1996) censoring method are shown in blue, with results from the

Wadsworth and Tawn (2012b) method displayed in red. Since the results for bias and

variance for thresholds u = 0.99, 0.995 were broadly similar for those for u = 0.95,

we simply show the resulting RMSEs of estimation of χ(u;h) in Figures 3.4.13 and

3.4.14, denoting the true value in each case by χ0(u;h).

We see in Figure 3.4.10 that the Ledford and Tawn (1996) censoring scheme gen-

erally has a lower magnitude of bias in estimation of χ(0.95;h) for most values of h;

it is only at the largest values of h considered here that the two values of bias become

approximately equal and are close to zero. Again, this is expected since χ(u;h)→ 0

as h→∞ for both the true model and the misspecified models. Moreover, it is seen

that the Wadsworth and Tawn (2012b) censoring scheme has negative bias for its

estimates of χ(0.95;h) at all points, whilst the Ledford and Tawn censoring scheme

exhibits positive bias. However, the variance of χ̂(0.95;h) seen in Figure 3.4.11, whilst

very small for both censoring schemes, is lower for all h under the Wadsworth and

Tawn (2012b) method. Consequently, the RMSEs shown in Figure 3.4.12 show that,

apart from h ≤ 0.4, for which χ0(0.95;h) > 0.515, the RMSE of χ̂(0.95;h) is lower
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for the Ledford and Tawn method when h is lower than a value of approximately

h = 4, above which the RMSE of the Wadsworth and Tawn approach is lower. For

h > 4, χ0(0.95;h) < 0.09, suggesting that the process is approaching independence,

for which χ(u;h) = 1−u, as well as having χ̂(0.95;h) take values in a similar range for

these distances, so that these results are perhaps to be expected with few conclusions

to be drawn from this behaviour.

Looking at the results of the RMSEs for u = 0.99 and u = 0.995 from Figures

3.4.13 and 3.4.14, we see that there is a similar pattern for the behaviour of the

RMSE of χ̂(u;h) for the two censored likelihoods. Again, the estimates arising from

the Ledford and Tawn approach are lower up to a certain value of h, these being

h ≈ 5 when u = 0.99 (for which χ0(0.99;h) ≈ 0.018) and h ≈ 6 when u = 0.995 (here,

χ0(0.995;h) ≈ 0.0075), before the estimates from the Wadsworth and Tawn (2012b)

method are lower. However, when this arises, both values of the RMSE are very close

to zero, and so the differences are negligible, again arising from the fact that χ0(u;h)

takes very small values for these values of h and u.

Results from simulating from a Gaussian process with φ = 5 in the exponential

covariance function suggest that the behaviour of the RMSE with distance h is largely

similar, with the main difference being that the distance h at which the Wadsworth

and Tawn censored likelihood begins to performs better with respect to RMSE is

larger in this case. Again, this is due to the fact that both the estimates and true

values of χ(u;h) will be close to zero for the value of h where this occurs. Figures for

this case have been omitted.
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Figure 3.4.10: Plot of bias of χ̂(u;h) for u = 0.95 with exponential covariance function

parameter φ = 2 in the simulated Gaussian processes, from simulations with n = 1000

replicates.
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Figure 3.4.11: Plot of variance of χ̂(u;h) for u = 0.95 with exponential covariance

function parameter φ = 2 in the simulated Gaussian processes, from simulations with

n = 1000 replicates.
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Figure 3.4.12: Plot of RMSE of χ̂(u;h) for u = 0.95 with exponential covariance

function parameter φ = 2 in the simulated Gaussian processes, from simulations with

n = 1000 replicates.
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Figure 3.4.13: Plot of RMSE of χ̂(u;h) for u = 0.99 with exponential covariance

function parameter φ = 2 in the simulated Gaussian processes, from simulations with

n = 1000 replicates.



CHAPTER 3. CENSORED LIKELIHOOD COMPARISON 86

●
●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 2 4 6 8 10 12

0.
00

0.
02

0.
04

0.
06

Chi(u;h) RMSE comparison − u = 0.995

Distance (h)

R
M

S
E

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Estimate

WT
LT

Figure 3.4.14: Plot of RMSE of χ̂(u;h) for u = 0.995 with exponential covariance

function parameter φ = 2 in the simulated Gaussian processes, from simulations with

n = 1000 replicates.

Figure 3.4.15 shows the behaviour of χ(0.95;h) when estimating from 100 simu-

lations of Gaussian processes with n = 200 replications instead. In this case , the

variance becomes a more important component in calculating the RMSE of the esti-

mates. Indeed, as well as the RMSE being higher for both sets of estimates for all

h, it appears that the Wadsworth and Tawn (2012b) estimates have a lower RMSE

for most values of h. This effect is also seen for u = 0.99 and u = 0.995. When

setting n = 100, this effect becomes greater, with the Wadsworth and Tawn estimates

performing better for a larger range of h. The converse occurs for n = 500.
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Figure 3.4.15: Plot of RMSE of χ̂(u;h) for u = 0.95 with exponential covariance

function parameter φ = 2 in the simulated Gaussian processes, from simulations with

n = 200 replicates.

3.5 Gaussian process censored likelihoods fitted to

inverted max-stable process data

We now consider the effects of carrying out a similar analysis to that considered in

Section 3.4, but with the misspecification considered in the opposite manner. That is,

we simulate data from an inverted Brown-Resnick MSP with semi-variogram defined

by (3.3.1) and then use these data in the censored pairwise likelihoods corresponding

to a Gaussian process, which has exponential covariance function as in Section 3.4; as

such we will make performance comparisons using the estimates of φ obtained. Use-

ful expressions for these censored likelihoods are as follows. The pairwise distribution

functions and pairwise densities for a Gaussian process are straightforward; these are
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just the bivariate normal distribution function and density with appropriate covari-

ance matrix arising from the chosen covariance function. These functions may then

be evaluated as appropriate in the censoring methods. The partial derivative terms

require more work; we use the following result, assuming that (X, Y ) are random

variables from a centred Gaussian process with unit variances and correlation ρ and

joint distribution function FXY :

∂

∂y
FXY (u, y)|y=z =

∂

∂y

∫ u

−∞

∫ y

−∞
fY (v)fX|Y (x|v)dvdx|y=z

= fY (z)

∫ u

−∞
fX|Y (x|z)dx

= φ(z)Φ

(
u− zρ√

1− ρ

)
where φ is the standard normal density function, and Φ is the standard normal dis-

tribution function. In the above calculation, fX|Y and fY represent the conditional

density X|Y and marginal density of Y respectively, the latter of which is a standard

normal density function. We can use this result on some spatial domain S by consid-

ering X as the Gaussian process marginally at a site si ∈ S, and similarly Y as the

Gaussian process at sj; this is then used in the relevant censored pairwise likelihood

contributions.

Again, we simulate data at 31 uniformly-spaced points over the line segment

S = [0, 12]. This was performed by simulating 100 Brown-Resnick max-stable pro-

cesses, each with n = 1000 replications, using the simulation method of Dieker and

Mikosch (2015), and then computing the corresponding inverted max-stable process.

We will display results, setting v to be the 0.95 quantile in the censored likelihoods in

3.1, from processes simulated using combinations of Brown-Resnick max-stable pro-



CHAPTER 3. CENSORED LIKELIHOOD COMPARISON 89

cess parameters (α = 1, λ = 1), but we note that results calculated from parameter

combinations (α = 0.5, λ = 0.5), (α = 0.5, λ = 1) and (α = 1, λ = 2) suggest that

increasing (respectively, decreasing) λ leads to the value of h at which the Wadsworth

and Tawn approach is to be preferred becomes larger (respectively, smaller). Chang-

ing the value of α appeared to have no significant effects on the behaviour of the

estimates.

The same results of changing the sample size were found as in Section 3.4; for

estimates of η(h) there was little change in the RMSE of the estimates due to bias

continuing to dominate the variance, whilst the Wadsworth and Tawn (2012b) ap-

proach tends to perform better than the Ledford and Tawn (1996) method when

estimating χ(u;h) for many values of h, due to the variance of the estimates becom-

ing a more important factor. Estimates of dependence measures from applying the

Ledford and Tawn censoring method are again shown in blue, and results from the

Wadsworth and Tawn method displayed in red, throughout this section.

3.5.1 Results for η(h)

As in Section 3.4.1, we first display results comparing the bias, variance and root

mean square of estimates of the dependence measure η(h) from our fitted models,

compared to the true value at each h; plots of these may be found in Figures 3.5.1,

3.5.2 and 3.5.3.

Figure 3.5.1 shows that the magnitude of the bias of η̂(h) when estimated using

the Ledford and Tawn (1996) censored likelihood is lower than that for the Wadsworth

and Tawn (2012b) method for h < 4. However, for h ≈ 5 and greater, the magnitude
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of the bias is lower for the Wadsworth and Tawn method. However, η(h) < 0.6 for

h > 6, indicating that independence is being approached for such distances suggesting

a possible reason for this behaviour. It can be seen that the variance of η̂(h) is larger

when the Ledford and Tawn method is applied for all distances h, albeit the values at

each h are very small so that there is little difference between these estimates. Finally,

we see from Figure 3.5.3 that for all h less than approximately 4.4, the RMSE of η(h)

is lower when estimated using the Ledford and Tawn censored likelihood, but the

Wadsworth and Tawn (2012b) estimates have a lower value of RMSE for all other

distances.
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Figure 3.5.1: Plot of the bias of η̂(h) with α = 1, λ = 1 set in the simulation of

the true inverted Brown-Resnick max-stable process, from simulations with n = 1000

replicates. The black dashed line indicates zero bias.
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Figure 3.5.2: Plot of the variance of η̂(h) with α = 1, λ = 1 set in the simulation of

the true inverted Brown-Resnick max-stable process, from simulations with n = 1000

replicates.
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Figure 3.5.3: Plot of the RMSE of η̂(h) with α = 1, λ = 1 set in the simulation of the

true inverted Brown-Resnick max-stable processes, from simulations with n = 1000

replicates.
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3.5.2 Results for χ(u;h)

We now look at the results obtained for χ̂(u;h) when using the Gaussian process cen-

sored likelihoods on inverted Brown-Resnick MSP data; Figures 3.5.4, 3.5.5 and 3.5.6

show the bias, variance and RMSE, respectively, of χ̂(u;h) obtained from estimates

of φ under the two censoring approaches when u = 0.95. The magnitude of the bias

is lower for the estimates which are calculated from the results of the Wadsworth and

Tawn censoring scheme when, approximately, h > 2.4. The variance of the estimates

of χ(u;h) is seen to be lower for all h, which combined with the results from the bias

means that the RMSE of χ̂(u;h) is lower when using the Ledford and Tawn (1996)

approach for h < 2, with the resulting RMSE lower for the Wadsworth and Tawn

(2012b) approach for all h > 2.4, with the RMSE tending towards zero as h→∞ in

both instances, and the difference between them becoming smaller for increasing h.

This is expected, however, as χ(u;h) ≈ 0 for large h so definitive conclusions may be

hard to draw from this.

Figures 3.5.7 and 3.5.8 show the RMSE of χ̂(u;h) when u = 0.99 and u = 0.995 re-

spectively follows similar behaviour to that described above, with the only differences

being that the value of h at which the RMSE of the Wadsworth and Tawn estimates

of χ(u;h) become lower is slightly different for these choices of u. When u = 0.99,

this distance appears to be slightly lower than 3, and this is approximately the same

in the case where u = 0.995.
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Figure 3.5.4: Plot of the bias of χ̂(u;h) for u = 0.95 with α = 1, λ = 1 set in the

simulation of the true inverted Brown-Resnick max-stable processes, from simulations

with n = 1000 replicates. The black dashed line indicates zero bias.
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Figure 3.5.5: Plot of the variance of χ̂(u;h) for u = 0.95 with α = 1, λ = 1 set in the

simulation of the true inverted Brown-Resnick max-stable processes, from simulations

with n = 1000 replicates.
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Figure 3.5.6: Plot of the RMSE of χ̂(u;h) for u = 0.95 with α = 1, λ = 1 set in the

simulation of the true inverted Brown-Resnick max-stable processes, from simulations

with n = 1000 replicates.
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Figure 3.5.7: Plot of the RMSE of χ̂(u;h) for u = 0.99 with α = 1, λ = 1 set in the

simulation of the true inverted Brown-Resnick max-stable processes, from simulations

with n = 1000 replicates.
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Figure 3.5.8: Plot of the RMSE of χ̂(u;h) for u = 0.995 with α = 1, λ = 1 set in the

simulation of the true inverted Brown-Resnick max-stable processes, from simulations

with n = 1000 replicates.

3.6 Summary of results

We now summarise the results presented in Sections 3.3 and 3.4, and provide details

of the computational time of each of the experiments for the two censored likelihoods

in finding the maximum likelihood estimates of all 100 simulated sets of data under

these likelihoods; these details may be found in Table 3.6.1.

We see in Table 3.6.1 that the Wadsworth and Tawn (2012b) censored likelihood

reduces the computational time, as would be expected, by approximately 60 seconds

for both the Gaussian process likelihood and Brown-Resnick IMSP likelihood; this

corresponds to an approximate average of 0.6 seconds of reduction in the compu-

tational time of likelihood maximisation for each data set. Since this difference is
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relatively small, we will not give significant weight to this argument here, but note

that this may become a more important factor if utilising more observations or more

sampling locations as the difference in computational time becomes more pronounced.

Censoring method Computational time (seconds)

GP likelihood IMSP likelihood

Ledford and Tawn (1996) 660.39 1135.37

Wadsworth and Tawn (2012b) 591.99 1078.98

Table 3.6.1: Table of total computational time (in seconds) to obtain estimates of

inverted Brown-Resnick max-stable process and Gaussian process (GP) parameters

(as specified in Sections 3.4 and 3.5) for all of the simulated data sets described in

Sections 3.4 and 3.5.

To compare results, we focus on the RMSEs obtained from carrying out the ex-

periments described in Sections 3.4 and 3.5, but note that there are some subtleties in

the behaviour over h of the bias and variance of the dependence measure estimates,

pointed out above. These results suggest that the principal differences in performance

of the censored likelihoods are in the estimation of short-range and long-range depen-

dence. At short range, i.e. for small h, it appears that in general, the Ledford and

Tawn (1996) approach provides estimates of the dependence measures which have

a lower RMSE than those for the Wadsworth and Tawn (2012b) method, with the

converse holding generally for large h. The value of h at which the preference changes

depends on the true process. For more strongly dependent simulated processes, i.e.
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larger values of φ when simulating the Gaussian processes in Section 3.4 or larger λ in

Section 3.5, the higher this value of h generally becomes. When considering χ̂(u;h),

the effect of the value of u on the value of h appears to be that larger values of u lead

to larger values of h at which the change in preference occurs; a particular reason for

this is unclear.

We further note that the differences between the two censoring schemes at each

distance h are also different depending on the strength of dependence of the simulated

processes. When these simulated processes are more strongly dependent, it appears

that the Wadsworth and Tawn censoring scheme performs worse in comparison to

the Ledford and Tawn approach when estimating the measures of dependence than

when the processes exhibit weaker dependence. This may be due to the fact that

the Wadsworth and Tawn (2012b) censored likelihood is motivated for asymptotically

independent variables, but so that this method may perform worse for variables which

exhibit higher levels of dependence.

Thus, overall, whilst we note that there are situations in which the Wadsworth

and Tawn censored likelihood approach performs better at determining measures of

dependence than the Ledford and Tawn approach, this in general occurring when

the distance between sites is large and the dependence measures are close to their

limiting values, and the improvement in performance is somewhat negligible when

this is the case. However, there is some evidence that upon using smaller sample sizes,

the Wadsworth and Tawn approach may provide better estimates of the dependence

measure χ(u;h). Since the Wadsworth and Tawn estimates of dependence measures

generally tend to perform significantly worse for small h, it would therefore be sensible
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to conclude for large sample sizes that the Ledford and Tawn censoring scheme would

be more suitable to use if there is no prior knowledge of the true underlying process, as

the computational advantage gained from the Wadsworth and Tawn (2012b) censored

likelihood is small but the dependence behaviour modelled may be somewhat worse.

On the other hand, it appears for small sample sizes that it is difficult to assess

which method provides preferred estimates of the dependence measures, since both

outperform the other in various scenarios. An area of further study would be to

investigate the impacts, on both computational time and the estimation of dependence

measures, of using more sampling locations and smaller sample sizes than n = 100,

simulating from a wider range of processes and using different censoring thresholds v.



Chapter 4

Modelling spatial extreme events

with environmental applications

4.1 Introduction

In many environmental applications data are collected from a number of spatial lo-

cations, for example numerous locations across an ocean basin or locations across a

river network. Historically interest has been in the extremal behaviour at individual

sites. However, our interest lies in developing a framework in which it is possible

to estimate probabilities of joint events over space. For example, for wave heights

we may want to know the probability of no offshore structure being damaged in a

storm, and for river levels the probability that the total damages from a flood exceed

£1 billion. Probabilities of the occurrence of extreme spatial events are of particular

interest to the reinsurance industry for deriving aggregate financial loss distributions,

and also to governments in terms of risk assessment and emergency planning.

99
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To answer such questions we take an asymptotically justified model for the joint

occurrence of extreme values of an event over space. Our reason for this is that we

aim to extrapolate to spatial events that are larger than any previously observed,

so we cannot rely on empirical evidence alone. Asymptotic theory therefore pro-

vides a principled approach to develop our models and understanding. Such a spatial

model requires both marginal distributions and the dependence structure of the spa-

tial process to be explicitly characterised. It is the challenge of modelling the extremal

dependence structure that will be the primary focus of this paper. As closed form

probabilities cannot be derived for the spatial events of interest to us, we aim to de-

velop methods that enable straightforward simulation of extreme spatial events from

which probabilities can be derived using Monte Carlo methods.

Let {Y (s) : s ∈ S ⊂ R2} denote a stationary spatial process indexed by s over a

set S with marginal distribution function F which has upper endpoint yF . In practice

we observe replicates of {Y (s) : s ∈ S} at a finite set of points {Y (sj) : j = 1, . . . , n},

and at times t = 1, . . . , n. Hence Yt(s) denotes the process observed at time t at

location s. We are interested in the extreme values of Y over the entire set of S. For

this paper, we assume that the entire spatial process is independent and identically

distributed in time, i.e., {Yi(s); s ∈ S} is independent of {Yj(s); s ∈ S} for all i, j =

1, . . . , n with i 6= j. Thus our focus is on the spatial dependence behaviour of the

process only. However, unlike in many applications of spatial statistics, we have

a large number of independent and identically distributed replicates of the spatial

process from which to make our inference.

In many spatial extreme value problems the aim is to characterise the extremal
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behaviour of the spatial process Y (s). A complication is that without a natural

ordering scheme in more than the one dimension the definition of an extreme event is

not well-defined. A range of approaches can be taken, as follows.

Max-Stable Processes Consider componentwise maxima over n independent and

identically distributed copies of {Y (s), s ∈ S}, i.e.,

{Mn(s); s ∈ S} = {max
1≤t≤n

Yt(s); s ∈ S}. (4.1.1)

Here, and throughout this paper, operations are carried out componentwise, i.e.,

site specifically.

Pareto Processes Consider the process obtained by characterising the limiting be-

haviour of

{Y (s); s ∈ S | max
s∈S

Y (s) > u} (4.1.2)

as u→ yF .

Conditional Extremes Processes We propose to characterise the behaviour of

{Y (s); s ∈ S | Y (s0) > u} (4.1.3)

for any s0 ∈ S as u→ yF .

When suitably linearly normalised, {Mn(s); s ∈ S} converges (as n → ∞) to a

max-stable process; see Smith (1990), Schlather (2002), Padoan et al. (2010), Davison

et al. (2012). This is the most widely used approach to spatial extremes due to its his-

torical link to the families of univariate and multivariate extreme value distributions

(all finite dimensional distributions of a max-stable process are multivariate extreme
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distributions) and also for its elegant mathematical properties. However, this ap-

proach cannot be used to answer questions about original events for Y (s) since Mn(s)

is a composition of a number of different events, and hence this formulation cannot

be used to answer our motivating questions. Furthermore, the spatial dependence

structure for Mn(s) is restrictive and so fails to accommodate a wide class of events

including Gaussian processes; see the discussion of χ(τ) below.

Using the underlying mathematical formulation of max-stable processes, Ferreira

and de Haan (2014) obtain a limiting form of the process (4.1.2), which we outline in

Section 4.2.3. Note that Dombry and Ribatet (2015) alternatively condition on other

functionals of the process being extreme, and obtain a class of limiting processes

known as `-Pareto processes.

Our proposal differs in two ways from that used for Pareto or `-Pareto processes.

We condition on the extreme event in conditional representation (4.1.3) being large at

a specific site. We also exploit the normalisation structure from Heffernan and Tawn

(2004) in the conditional approach (4.1.3) that uses a different normalisation of Y (s)

to achieve a more general (and more flexible) limiting representation. We will take

the conditional extremes process approach (4.1.3) which we outline in Section 4.3.2.

However, we also give further details of max-stable and Pareto processes to help

explain their weaknesses for our needs and to show how our approach differs from

them.

To help to first identify the differences between the approaches, let us introduce

two pairwise spatial extremal dependence measures, {χ(τ), χ̄(τ)}, which are natural

extensions of multivariate measures defined by Coles et al. (1999) to stationary spatial
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processes. Consider a pair of sites (s, s + τ), each in S. Then χ(τ) is defined by the

following limit probability

χ(τ) = lim
y→yF

P(Y (s+ τ) > y | Y (s) > y), (4.1.4)

if it exists. Additionally, χ̄(τ) is determined by the following asymptotic equivalence,

as y → yF

P(Y (s+ τ) > y | Y (s) > y) ∼ L
(
1/F̄ (y)

)
{F̄ (y)}[1−χ̄(τ)]/[1+χ̄(τ)],

where L is a slowly varying function at infinity and F̄ (y) = 1 − F (y). Here 0 ≤

χ(τ) ≤ 1 and −1 < χ̄(τ) ≤ 1. For each of χ(τ) and χ̄(τ), larger values correspond to

stronger levels of extremal dependence.

If χ(τ) > 0, then χ̄(τ) = 1 and the largest values of the process can occur simul-

taneously at two sites τ apart, a property known as asymptotic dependence at lag τ .

However, if χ(τ) = 0 then in the limit the largest values at sites τ distance apart must

occur in different spatial events, and the process is said to have asymptotic indepen-

dence at τ . For processes with χ(τ) = 0, the quantity χ̄(τ) is a helpful measure for

determining the level of asymptotic independence since it controls the rate at which

P(Y (s + τ) > y | Y (s) > y) converges to zero. In particular, 0 < χ̄(τ) ≤ 1 corre-

sponds to positive extremal dependence, χ̄(τ) = 0 to near extremal independence,

and −1 < χ̄(τ) < 0 to negative extremal dependence.

Determining the pair {χ(τ), χ̄(τ)}, for all τ , provides a good summary of the ex-

tremal properties of the process. Some spatial extreme value modelling approaches

preclude certain types of extremal dependence. For example, for all non-degenerate

max-stable processes or Pareto processes that are dependent at lag τ then {χ(τ), χ̄(τ)} =
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(cτ , 1), for some 0 < cτ < 1. However, for all non-degenerate Gaussian processes

{χ(τ), χ̄(τ)} = (0, ρ(τ)), where ρ(τ) is the correlation of the Gaussian process at

lag τ . Thus max-stable and Pareto processes are asymptotically dependent, whereas

Gaussian processes are asymptotically independent. These measures show that max-

stable and Pareto processes fail to capture the spatial extremal dependence features

of Gaussian processes. Consequently, if the data were from a Gaussian process but

a max-stable process model was fitted then there will be an over-estimation of the

risk of jointly large events. Therefore a broader class of spatial extreme value models

is required if we are to capture the dependence structures of both these important

classes of spatial process. The models we will introduce here have this capability, as

well as having sufficient structure in order to model our applications well.

The conditional multivariate extreme value model of Heffernan and Tawn (2004)

estimates the form of extremal dependence structure (asymptotic dependence or

asymptotic independence) as part of the fitting procedure. The model can handle high

dimensional problems (Winter et al., 2016), extremal temporal dependence (Winter

and Tawn, 2017), missing values (Keef et al., 2009) and negative dependence (Keef

et al., 2013a). Examples of the environmental applications include heatwaves, hydrol-

ogy and oceanography (Jonathan et al., 2013; Keef et al., 2009; Towe et al., 2017;

Winter and Tawn, 2016). Here we outline how these multivariate methods can be ex-

tended to a spatial framework and clarify what they offer over existing spatial extreme

value models.

Section 4.2 details existing statistical models for spatial extreme values. Section

4.3 presents the conditional multivariate extreme value model of Heffernan and Tawn
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(2004) and outlines how this model can be extended to handle spatial extreme prob-

lems. Finally, Section 4.4 details two applications of the methodology to oceanography

and hydrology; the first of these relates to understanding the extremal dependence

of significant wave heights over the North Sea and the second addresses questions

on widespread risk of flooding raised by the UK Government’s 2016 National Flood

Resilience Review.

4.2 Existing methods

4.2.1 Univariate modelling

Underpinning the two main distributions of univariate extreme value theory are repre-

sentational characterisations of max-stability and threshold-stability which uniquely

define these distributions. Here we recap these features in the univariate case, as they

provide the core structure for the existing spatial extremal theory.

Much classical extreme value theory is based on the property of max-stability that

leads to the extremal types theorem of Fisher and Tippett (1928). For independent

and identically distributed univariate random variables {Yi; i = 1, . . . , n}, with con-

tinuous but otherwise arbitrary distribution function F with upper endpoint yF , let

Mn = max{Y1, . . . , Yn}. If there are normalising sequences an > 0 and bn such that

P
(
Mn − bn
an

≤ x

)
→ G(x) (n→∞), (4.2.1)

where G is a non-degenerate distribution function, then G is of the form

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

}
,
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with parameters (µ, σ, ξ) ∈ R × R+ × R corresponding to location, scale and shape

parameters and {z}+ = max{0, z}. This is known as the generalised extreme value

(GEV) distribution, and is denoted GEV(µ, σ, ξ). This class of distributions uniquely

satisfies the max-stability property which says that for all m ∈ N and x ∈ R, there

are constants Am > 0, Bm such that

{G(Amx+Bm)}m = G(x).

Thus the GEV is the only non-degenerate distribution that is closed to the operation

of maximisation.

An alternative approach to modelling univariate extremes is to focus on the ex-

ceedances of a threshold u. Pickands (1975) showed that if there is a non-degenerate

limit (4.2.1), then there exists a normalising function c(u) > 0 such that as u→ yF ,

Y − u
c(u)

| Y > u
d→ V,

where convergence is in distribution and V is non-degenerate. Then V follows a gen-

eralised Pareto distribution, which we denote GPD(ψ, ξ), with distribution function

H(x) = 1−
(

1 +
ξx

ψ

)− 1
ξ

+

, (x > 0), (4.2.2)

with scale parameter ψ > 0 and shape parameter ξ ∈ R.

The characterising property of the GPD is that of threshold stability (Davison

and Smith, 1990), that is, for any v > 0, there exists a function c(v) > 0 such that

{
V − v
c(v)

}
| V > v

d
= V. (4.2.3)

Thus scaled excesses of a higher threshold v by V have the same distribution as
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V . This is illustrated in Figure 4.2.1. The GPD is the only distribution with this

threshold-stability property.
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Figure 4.2.1: Illustration of threshold stability property described by relation-

ship (4.2.3). The left panel shows a sample from V ∼ GPD(ψ, ξ) with the vertical line

representing the threshold v and the red points the exceedances of v; the right panel

shows these same exceedances (shown as excesses in red) after scaling (here the GPD

has parameters (ψ, ξ) = (1, 0), and so cv = 1). These scaled excesses are compared

against a new sample (in grey) from the original distribution of V , we note that these

two samples have the same distribution.

Based on this asymptotic justification, we make the modelling assumption that the

distribution of excesses of Y (s) over a high threshold u follows the limiting distribution

for excesses exactly, i.e.,

Y (s)− u | Y (s) > u
d
= V (s) | V (s) > 0 (s ∈ S).

Consequently, the margins of Y (s) are GPD(ψ, ξ) distributed above the threshold u,

where ψ and ξ do not depend on s ∈ S as the Y (s) process is stationary. Since

the above assumption provides no information on the marginal behaviour below u,

the empirical distribution is used below this threshold (Coles and Tawn, 1991). The
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resulting model for the marginal distribution function is

F (x) =


F̃ (x) if x ≤ u

1− [1− F̃ (u)]
[
1 + ξ(x−u)

ψ

]− 1
ξ

+
if x > u,

where F̃ (x) is the empirical distribution function of all of the data at all sites. Due

to stationarity of the process, data at all locations can be used to estimate F .

The study of dependence structure is typically undertaken via copulas (Nelsen,

2006), which requires the marginal distributions to be identical and uniformly dis-

tributed. Although we have identical margins, we prefer to transform them to non-

uniform margins, via the pointwise transformation

Xt(s) = K−1{F (Yt(s))} (s ∈ S, t = 1, . . . , n),

so that Xt(s) is a spatial process, independent over time, and with marginal dis-

tribution function K. We perform this transformation as the extremal dependence

properties of Xt(s) are more simply expressed for some non-uniform marginal choices.

The most convenient choice of K depends on the context: the Fréchet or Pareto

distributions are typically assumed for max-stable distributions (Resnick, 1987); for

conditional extremes, Heffernan and Tawn (2004) use Gumbel margins; for joint

tail modelling, Wadsworth and Tawn (2014) used exponential margins while Keef

et al. (2013a) showed that Laplace margins allow negative dependence to be incorpo-

rated the most parsimoniously. Critically, Gumbel, exponential and Laplace distri-

butions all have exponential upper tails, so if negative dependence is avoided (which

is reasonable in most spatial extremes applications) they are essentially identical ap-

proaches for our purposes. Here we take Xt(s) to have Gumbel marginals, so that
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K(x) = exp{− exp(−x)}, as this gives the clearest link to the max-stable results;

since exp{Xt(s)} has Fréchet margins. Thus, results in Fréchet margins translate to

results in Gumbel margins via a log transformation.

We now have that {Xt(s); s ∈ S} is a stationary spatial process with Gumbel

margins. Although the copula/dependence structure of this process is restricted by

the stationarity of the process, the range of choice of models is nonetheless vast. We

saw, in the univariate case, that looking at the extremes of the variable reduced the

class of possible continuous distributions to either the GEV or GPD depending on the

extremal feature that is studied. For the dependence structure similar simplifications

arise by imposing max-stability and threshold stability in spatial contexts. We explore

these two strategies in Sections 4.2.2 and 4.2.3 respectively.

4.2.2 Max-stable processes

Given that {Xt(s); s ∈ S} has Gumbel margins, it follows from (4.1.1) and (4.2.1)

that we can take an = 1 and bn = log n which gives Z(s), defined by

Z(s)
d
= lim

n→∞

{
max
t=1,...,n

Xt(s)− log n

}
(s ∈ S),

to be a max-stable process with Gumbel margins. As a consequence of the Z(s)

process being max-stable, for any d sites {s1, . . . , sd} in S then {Z(s1), . . . , Z(sd)}

with distribution function G is max-stable, i.e., for all m ∈ N and x ∈ Rd,

{G(x + logm)}m = G(x),

so the joint distribution is stable with respect to taking componentwise maxima. From

the characterisation of de Haan (1984) and Schlather (2002), the max-stable process
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Z(·) takes the form

Z(s) = max
i≥1
{Ri +Wi(s)} (s ∈ S), (4.2.4)

where {Ri, i ∈ N} are the points of a Poisson process on R with intensity exp(−x)dx

and the Wi(s) over i are independent and identically distributed stochastic processes

with continuous sample paths such that

E[exp{Wi(s)}] = 1 (i ∈ N, s ∈ S).

Note that the additive structure is identical to the usual product structure, with the

difference arising due the change in choice of marginal distributions. When W (·) is a

Gaussian process with a particular moment structure, this gives the Brown-Resnick

process for Z(·) (Brown and Resnick (1977); Davison et al. (2012)). A weakness

with this model is that G can only be specified via a series of evaluations of the

multivariate normal distribution function (Genton et al., 2011), though reductions

in the numerical difficulties can be achieved using methods of Wadsworth and Tawn

(2014) that require additional information about which segments of Z(s) arise from

the same Yt(s) process.

4.2.3 Pareto processes

An alternative asymptotic characterisation for spatial extremes is to use the threshold

exceedance analogue of max-stable processes, namely generalised Pareto processes

(Ferreira and de Haan, 2014). The strategy behind this development is a spatial

extension of the argument that led to the GPD in the univariate case, i.e., we condition
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on an extreme event occurring and then study the properties of this extreme event as

the threshold that determines the extreme event tends to a limiting value. Specifically,

define the process T (s) by

{T (s); s ∈ S} :
d
= lim

u→∞

[
{X(s)− u; s ∈ S} | sup

s∈S
X(s) > u

]
.

Then T (s) is a Pareto process, with the property that sups∈S T (s) is distributed as a

standard exponential random variable but that T (s) can be negative for some values

of s ∈ S. Critically, for all v > 0, T (s) then satisfies

{T (s)− v | sup
s∈S

T (s) > v} d
= T (s),

so that T (·) satisfies the threshold-stability property. Pareto processes are the only

such processes that possess this property. This property is illustrated in Figure 4.2.2,

which shows a set of realisations of the process X(s) in black with a subset (indicated

in red) corresponding to realisations with sups∈S X(s) > u. Thus each of the red

realisations is approximately a Pareto process, i.e., u+ T (s).
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Figure 4.2.2: Illustration of a Pareto process, showing realisations of a process X(s)

(grey lines), where for some chosen threshold u (blue line), with the realisations where

sups∈S X(s) > u (red lines) being approximately distributed as u+ T (s).

To help study Pareto processes it is helpful to draw on the max-stable characteri-

sation (4.2.4) of Ferreira and de Haan (2014). A Pareto process is simply one of the

latent processes that underpin the Z(s) process. It follows that we can represent the

Pareto process T (s) by

T (s) = R +W (s), (4.2.5)

where R is a standard exponential random variable which is independent of a stochas-

tic process W (·), satisfying sups∈SW (s) = 0. A common choice for this is to set W (·)

to be a Gaussian process, such as the Gaussian process family used for Brown-Resnick

processes (Brown and Resnick, 1977). In this case, W (·) is a conditional Gaussian

process, conditional on sups∈SW (s) = 0. A benefit of working with Pareto processes

over max-stable processes is that the process is derived from a single realisation of
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W (·) and R. Therefore, conditionally on R, the T (s) process is a conditional Gaussian

process which is a massive simplification of inference relative to max-stable processes.

However, the conditioning for W (·) is complex as it applies over all s ∈ S, which

makes computation non-trivial.

4.2.4 Weakness of Pareto processes

Assuming that the process X(s), when it exceeds a threshold u, is exactly a Pareto

process means that for large u, X(s) = u+ T (s). Hence, for some s0, s ∈ S, we have

X(s0) = u+R +W (s0) and X(s) = u+R +W (s),

where R a is standard exponential random variable and W (s) is independent of R, so

that when X(s0) is large,

X(s) = X(s0) + {W (s)−W (s0)}.

Then X(s0) is interpretable as the size of the event and {W (s) − W (s0)} as the

spatial profile of the event. Critically, the shape and size of these extreme events are

independent for Pareto processes. Thus events are equally likely to retain the same

type of spatial profile whatever their size at a point s0. An illustration of this is shown

in the top row of panels in Figure 4.2.3, with the profile of the events unchanged as

the size of events increases (left to right panels). As a consequence, Pareto processes

are asymptotically dependent at all lags, as

lim
x→∞

P(X(s) > x|X(s0) > x) > 0 (s0, s ∈ S).

However, in practice we almost never observe such processes. Instead, we often see

events becoming more localised, as seen in the bottom row of panels in Figure 4.2.3.
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Here we see events of the small initial magnitude and profile as in the top row become

more spatially localised around the maximum value as the maximum value of the field

increases. For this type of process, which include Gaussian processes,

lim
x→∞

P(X(s) > x|X(s0) > x) = 0 (s0, s ∈ S, s 6= s0),

so the process is asymptotically independent at all lags.

It may be that both of these formulations are too simplistic and the process is

asymptotically dependent up to a certain lag hAD, then asymptotically independent

when the lag exceeds hAD, such as in the models of Bacro et al. (2016). Conse-

quently, we want an inference method which does not pre-determine that the process

is asymptotically dependent at all lags, so that hAD =∞ (like max-stable and Pareto

processes), or asymptotically independent at all lags with hAD = 0 (like Gaussian

processes). In particular, we would like to have the flexibility to determine the lag

hAD at which this transition occurs. The models introduced in Section 4.3 do precisely

that.
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Figure 4.2.3: Illustration of types of extremal spatial behaviour. The top row shows

a process which retains the same spatial profile as the event becomes more extreme,

corresponding to asymptotic dependence. The bottom row depicts the extreme event

becoming more localised as its magnitude increases, commonly seen in practice and

corresponding to asymptotic independence.

4.3 Conditional extremes

4.3.1 Asymptotics for conditional multivariate extremes

Consider a vector random variable X = (X1, . . . , Xd) with Gumbel marginals; for

i < j, we shall use the notation Xi:j = (Xi, . . . , Xj). For simplicity, we will assume

that all the variables are non-negatively dependent and that X has a joint density.

Heffernan and Tawn (2004) propose an asymptotically justified conditional multi-

variate extremes approach for modelling the extremes of a vector X given X1 is large.
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To explore the conditional distribution P {X ≤ x | X1 > u} for large u, we use an

asymptotically justified form for this distribution as u→∞. If x is fixed, in general

the limit distribution will be a degenerate distribution. Hence X needs to be nor-

malised appropriately so that the limiting conditional distribution is non-degenerate

as u→∞. Heffernan and Resnick (2007) propose that X2:d is linearly normalised as

a function of either X1 or u. Normalising by X1 leads to simpler limit models, thus

we use the approach of Heffernan and Tawn (2004) and carry out this normalisation.

Heffernan and Tawn (2004) assume that there exist functions a: R→ Rd−1 and b:

R→ Rd−1
+ , such that for x > 0,

P
(

X2:d − a(X1)

b(X1)
≤ z2:d, X1 − u > x | X1 > u

)
→ G2:d(z2:d) exp(−x), (4.3.1)

as u → ∞ with z2:d ∈ Rd−1 and where G2:d is a joint distribution function that is

non-degenerate in each margin. A key property of the limit (4.3.1) is that the limiting

distribution factorises, corresponding to large values of X1 being independent of the

associated normalised X2:d.

Under weak assumptions on the joint distribution of X, Heffernan and Resnick

(2007) show that, componentwise, a and b must be regularly varying functions sat-

isfying certain constraints, which for Gumbel margins corresponds to each of the

components of a (respectively b) being regularly varying functions of index 1 (respec-

tively less than 1). Within this structure Heffernan and Tawn (2004) found that a

simple form for a and b holds for a very broad range of copulas. In particular, they

assume that

a(x) = α2:dx and b(x) = xβ2:d
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where α2:d = (α2, . . . , αd) ∈ [0, 1]d−1 and β2:d = (β2, . . . , βd) ∈ [0, 1)d−1. This canon-

ical parametric subfamily of a and b provides a parsimonious, yet flexible, family for

statistical modelling.

Different types of extremal dependence lead to different values of the extremal

dependence parameters α2:d and β2:d. For 2 ≤ j ≤ d, when αj = 1 and βj = 0

the variables (X1, Xj) are asymptotically dependent; when αj < 1, these variables

are asymptotically independent. Within the asymptotic independence case a further

resolution of the dependence structure is possible, with 0 < αj < 1 or αj = 0 and

βj > 0 corresponding to positive dependence, and near independence when αj = βj =

0. When there is a multivariate normal copula (with ρij > 0 corresponding to the

correlation parameter between variables i and j), then αj = (ρ1j)
2, βj = 1/2 and G2:d

is the joint distribution function of a multivariate normal distribution which has mean

vector 0, variance (for the jth variable) of 2ρ2
1j(1 − ρ2

1j) and a correlation between

variables i and j of (ρij−ρ1iρ1j)/[(1−ρ2
1i)(1−ρ2

1j)]
1/2; see Heffernan and Tawn (2004).

Unfortunately there is no finite parametric form for G2:d or its marginal distri-

butions, so a range of approaches have been taken. Heffernan and Tawn (2004) use

empirical estimates for G2:d; Lugrin et al. (2016a) utilise a mixture of Gaussian distri-

butions, while Towe et al. (2016) use a Gaussian copula with kernel smoothed marginal

distributions. Here, we make the assumption that G2:d is multivariate normal with

margins N(µj, σ
2
j ) for j = 2, . . . , d. Under this assumption,

Xj | {X1 = x} ∼ N
(
αjx+ µjx

βj , σ2
jx

2βj
)

(x > u, j = 2, . . . , d), (4.3.2)

with parameters α2:d,β2:d, µ2:d = (µ2, . . . , µd) and σ2:d = (σ2, . . . , σd).
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Inference

In order to estimate the dependence parameters α2:d and β2:d, a pseudo-likelihood is

constructed with X2:d | X1 = x (for x > u) treated as independent with marginals of

the joint conditional distribution stated in equation (4.3.2). The estimation of these

dependence parameters is performed through maximum pseudo-likelihood for the nu

pairs for which X1 > u. The likelihood is then

L (α2:d,β2:d,µ2:d,σ2:d) ∝
d∏
i=2

nu∏
j=1

1

xβiij σi
exp

−
(
xij −

[
αix1j + µix

βi
1j

])2

2x2βi
ij σ

2
i

 ,

for −∞ < µi <∞, σi > 0, −1 ≤ αi ≤ 1, and −∞ < βi < 1 for i = 2, . . . , d, and where

xij denotes component i for the jth exceedance of u by X1. The maximum pseudo-

likelihood estimates are denote by α̂, β̂, µ̂ and σ̂. Then realisations of Z2:d ∼ G2:d

are given by

z
(j)
2:d =

(
xij − α̂ix1j

(x1j)β̂i
, i = 2, . . . , d

)
for j = 1, . . . , nu (4.3.3)

where x1j > u for each j. This sample of Z2:d is used to obtain an empirical estimate

of the joint distribution function G2:d. Consequently, we have a model for the joint

tail behaviour of X, when X1 is large. This enables us to make inferences beyond

the range of the observed data with large X1; for more details of fitting these models

over different conditioning variables and methods for simulating jointly rare events

see Heffernan and Tawn (2004) and Keef et al. (2013a).
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A limitation of the inference for models in the conditional multivariate extremes

approach is that self-consistency of the different conditional distributions is not en-

sured. This may lead to inconsistencies when calculating joint exceedance probabilities

such as

P(X1 > u,X2 > u) = P(X1 > u|X2 > u) · P(X2 > u)

= P(X2 > u|X1 > u) · P(X1 > u),

since the models for X1|X2 > u and X2|X1 > u are not necessarily equal. Liu

and Tawn (2014) discussed this problem, making a range of proposals to reduce this

problem. One proposal which removes the issue is to assume that (X1, X2) are ex-

changeable, which implies for that the associated parameters and distributions are

equal for each conditional distribution. For non-exchangeable pairs though, whilst

removing the self-consistency problems, this induces biased inference.

4.3.2 Models for conditional spatial extremes

This section gives an indication only of how some aspects of the multivariate condi-

tional extremes methods could be extended to the spatial setting. For simplicity, it

is assumed that X(s) is isotropic as well as stationary and with Gumbel marginals,

and let h = |s − s0| be the distance between two sites s0, s ∈ S. A consequence

of these standard spatial statistics assumptions is that the joint distribution of pairs

{X(s1), X(s2)} are exchangeable variables, for all pairs s1, s2 ∈ S, and hence there

are none of the issues of self-consistency that are present in multivariate cases.

The natural spatial extension of the Heffernan and Tawn (2004) conditional multi-
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variate extremes representation to the spatial context assumes that there exist normal-

isation functions α(h) ∈ [0, 1] and β(h) ∈ [0, 1) for all h > 0, with α(0) = 1, β(0) = 0,

such that as u→∞,

{
X(s)− α(h)X(s0)

X(s0)β(h)
: s ∈ S, X(s0)− u > x

}
| X(s0) > u

d→ {µ(h) + σ(h)Z(s) : s ∈ S, E},

where, µ(·) and σ(·) are deterministic functions with σ(h) > 0 for h 6= 0 and µ(0) =

σ(0) = 0; Z(·) is a random process with E[Z(s)] = 0 and Var[Z(s)] = 1 for all s ∈ S

and E is a standard exponential random variable that is independent of the process

Z(·).

Assuming that this limit result holds exactly for a large choice of threshold u gives

a model structure

X(s)|{X(s0) > u} = α(h)X(s0) +X(s0)β(h)W (s− s0) (s ∈ S), (4.3.4)

where {X(s0) − u}|X(s0) > u follows a standard exponential distribution and is

independent ofW (·), whereW (s) := µ(h)+σ(h)Z(s) is a spatial isotropic process with

W (0) = 0, marginal mean µ(h), marginal variance σ2(h) and correlation function ρ(·).

As in the multivariate conditional extremes case, we will make a modelling assumption

that W (·) is a Gaussian process with a correlation structure to be estimated. This

Gaussian assumption may appear to be a very strong assumption but it is the assumed

process for all Brown-Resnick max-stable processes (Davison et al., 2012), for the

type of processes given in Engelke et al. (2015) and in a conditional form for Pareto

processes (Ferreira and de Haan, 2014).



CHAPTER 4. MODELLING SPATIAL EXTREME EVENTS 121

The key is then to make inference on α(h), β(h), µ(h), σ(h) and the correlation

structure of W (·) so that inference can be drawn on the process (4.1.3) (after back

transformation from X(s) to Y (s)). There are some interesting special cases of this

model:

Pareto type process If α(h) = 1 and β(h) = 0 for all h ≥ 0, then model (4.3.4) is

exactly that given by the process of Engelke et al. (2015) and is strongly related

to the Pareto process, given by expression (4.2.5), as it is essentially the same

process but subject to different conditioning constraints. It is asymptotically

dependent at all lags.

Gaussian process From results in Section 4.3.1 on multivariate normal copulas,

{α(h)}1/2 satisfies the properties of a valid spatial correlation function and

β(h) = 1/2 for h > 0, then model (4.3.4) is exactly the limiting conditional

extremal process of a Gaussian process; it is asymptotically independent for all

positive lags.

Mixture process If (α(h), β(h)) = (1, 0) for all h ≤ hAD but α(h) < 1 for h > hAD

then the process is asymptotically dependent up to lag hAD and asymptotically

independent otherwise.

The aim therefore is to identify if any of these structures is present in an applica-

tion. To help give insight into these three different sub-classes of model (4.3.4), in

Figure 4.3.1 we show repeated simulations of a 1-dimensional process with X(0) equal

to the marginal 99.995% quantile, thus all simulations are equal for s = 0. Firstly,

we can see that the three types of process behave differently from one another in the
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location of a large event, with all replications for a given process type having broadly

similar behaviour. Secondly, note that if X(0) was more or less extreme the only effect

would be a vertical shift of the process when the process is in on-extreme states.

Pareto type processes remain of the same order of magnitude over the space S.

Specifically, it has a mean negative drift away from an extreme level, with here,

due to the choice of correlation function and the Gaussian process for Z(s), in the

neighbourhood of s = 0 the extremal process is a Brownian motion with negative drift

in distance |s| from the extreme event. Consequently there is a positive probability of

X(τ) being large given X(0) is large for all s ∈ S, hence the process is asymptotically

dependent for all lags τ as defined by definition (4.1.4). In contrast, for the extremal

Gaussian process events decay much more rapidly, essentially geometrically, until the

process returns to a non-extremal state. Thus, it can be seen that the process is

asymptotically independent for all lags τ , but with the rate of convergence of the

non-limit probability in definition (4.1.4) to 0 is dependent on τ . The mixture type

processes behave like Pareto type processes up to lag hAD from the extreme event at

s = 0, but then decay more rapidly to until the process returns to a non-extremal

state. Hence the mixture process is seen to be asymptotically dependent up to lag

hAD and asymptotically independent for larger lags.
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(a)

(b)
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(c)

Figure 4.3.1: Illustrations of Pareto type, Gaussian and mixture extremal processes

on a space S = (−10, 10). In all cases X(0) is in an extreme state (equal to the

99.995% marginal quantile), and the latent Gaussian process Z(s) has mean and

standard deviation of µ(h) = µc and σ(h) = σc for h > 0 and correlation function

ρ(h) = exp(−h/3). Illustration as follows: (a) Pareto type process with µc = −0.4,

σ2
c = 1.3; (b) Gaussian process α(h) = exp(−h/3), µc = 0.06, σ2

c = 0.6; (c) mixture

process with hAD = 3; α(h) = exp(−|h − hAD|/3) for h > 3, β(h) = 0, µc = −0.05,

σ2
c = 1.3.
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4.4 Applications

4.4.1 Offshore risk from waves

Background

The accurate modelling of extreme wave heights is of key importance in the design

of offshore structures. Such structures must be constructed adhering to strict guide-

lines, which themselves rely on the assessment of how often extreme events occur.

Methods for spatial extremes are useful for enabling the likelihood over sites to be

constructed for improved marginal parameter inference and for spatial risk assessment

over a network of offshore structures. For the former, we need a reliable spatial depen-

dence model to ensure valid inferences are made for the smoothly varying marginal

parameter models (Randell et al., 2015). For the latter, companies with offshore in-

terests often have more than one asset to insure and so having a joint risk assessment

that gives the probability than none of the assets will be affected in their lifetime is

required.

The aim of our analysis is to test the viability of the conditional spatial extremes

methods set out in Section 4.3.2 for application to significant wave data (defined as

four times the standard deviation of the sea-surface) in the North Sea region shown

in Figure 4.4.1. The data come from a numerical model driven by observational wind

data but have been filtered and transformed to give one observation per storm event

and to have the marginal wave directional effects removed. This leaves 1680 storm

events where the event is extreme for at least one of the 150 locations on the grid. A
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description of the data and pre-processing is given in Randell et al. (2016) with these

data representing for Shell Research their test-bed for spatial analysis methods.

Figure 4.4.1: Map of sampling locations in the North Sea from which the data are

collected, with the particular transect used for model fitting highlighted in red.

Directionality of the waves is found to be present in the spatial dependence struc-

ture, so for simplicity we perform our spatial inference on a directional transect

through the grid, reducing the field to approximately 1 dimension. The transect

used is orientated east-west in the centre of the grid and consists of 7 sites; this is

highlighted in Figure 4.4.1. The use of transects for this ocean basin is similar to that

as used in Ross et al. (2017a), though max-stable processes are fitted in that case.
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Methods

We apply the multivariate conditional extremes model of Section 4.3.1 to identify the

potential structure for the spatial functions α(h), β(h), µ(h) and σ(h). For illustrative

purposes, we only condition on the west-most site in this transect and then fit the

model to the other locations in the transect. This is not necessary, however, and

more information can be extracted by suitably combining the different conditional

distributions. Similar studies using other transects are expected to give weaker levels

of extremal dependence as our selected transect direction aligns with most major

storm tracks.

To obtain estimates for the model, some assumptions are made for the form of

G2:7 in limit (4.3.1). Specifically, to correspond to the Gaussian process formulation

in Section 4.3.2, we take G2:7 to be the distribution function of a multivariate nor-

mal with mean and standard deviation vectors (µ2, . . . , µ7) and (σ2, . . . , σ7) and with

correlation function at lag h taken to be ρh. This model is fitted jointly over sites,

with a multivariate normal likelihood, unlike in all previous applications of Heffernan

and Tawn (2004) which use the pseudo-likelihood in Section 4.3.1. For each fitted

parameter θ, we set θ(i) = θi+1 for i = 1, . . . , 6 so that, for example, α(1) = α2.

In fitting the conditional extremes model, the 0.8 quantile ofX(s) has been selected

as the conditioning threshold u. This value was chosen for u as this seemed to satisfy

the required approximate independence property of limit (4.3.1) both for that level

and that it holds for all higher threshold choices. In practice, the threshold choice is a

compromise between being sufficiently low to utilise enough data whilst being suitably
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high so that the asymptotic argument in (4.3.1) provides a good approximation.

Results

Exploratory analysis using the model described in Section 4.4.1 showed that there was

no evidence for β(h) to vary with h > 0, and so we take β(h) = βc, where 0 ≤ βc < 1 is

some constant, for h > 0; our estimated model gives β̂c = 0.17. Also, we found ρ̂ = 0.9.

The corresponding α(i), i = 1, . . . , 6, estimates are shown in Figure 4.4.2, with the

values presented here as pointwise estimates of the function α(h). The estimates are

consistent with the physical characteristics that may be expected from extreme waves.

For 0 ≤ h < hAD such that α(h) = 1 the process is asymptotically dependent, then it

would be anticipated that a nearby location is likely to experience an extreme wave

of the same order of magnitude if the conditioning site has observed such an event.

We see that if this holds then 0 ≤ hAD < 1 based on the 95% confidence intervals

for the pointwise estimates. We also see that the degree of dependence is estimated

to decrease as the distance between sites increases, which is physically realistic. The

decay of the pointwise estimates for α(h), for h > hAD, seems smooth and the analysis

suggests a simple parametric form for α(h) of the form

α(h) =


1 if h < hAD

exp{−γ(h− hAD)} if h ≥ hAD.

Previous spatial modelling of significant wave heights has utilised models of max-

stable processes, see Section 4.2.2. However, these are asymptotically dependent, i.e.,

α(h) = 1 for all h. We can see from Figure 4.4.2 that this is not a good model for

h ≥ 1 for these wave data.
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Figure 4.4.2: Pointwise estimates of α(h) from the multivariate conditional extremes

fit, conditioned on the west-most location in the transect. Lag h = 0 corresponds to

the conditioning site, with h = 6 being the parameter estimate at the most easterly

site. Estimates are for integer values of h and these are shown to be linearly interpo-

lated to show we know that the function is continuous. The dotted lines show 95%

confidence intervals for the pointwise estimates.

Next, consider the estimated mean and standard deviation functions of the limit

process W (·). Pointwise estimates for µ(h) and σ(h) are given in Figure 4.4.3. Both

functions behave very similarly; as the distance between the two sites increases, the

limit process increases in mean and standard deviation but with decreasing rate for

larger distances. This form of σ(h) is as expected since the unpredicted variability is

likely to increase as the extremal dependence weakens, but the former is a feature that

justifies investigation in future research to understand why this property arises. On

this initial analysis, however, it appears that µ(h) ∝ σ(h) would form a good spatial
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model.
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Figure 4.4.3: Pointwise estimates of µ(h) and σ(h) with properties shown identical to

Figure 4.4.2.

To assess whether the estimates of α(h) and β(h) are reasonable, we simulate

using our fitted model realisation of {X(s), X(s + h)}, for h = 1, 3, 6, where X(s)

is the standardised (to Gumbel margins) wave height at the most westerly site of

the transect and is above the modelling threshold u. The observed data (black),

1680 points from these joint distributions with Gumbel margins, together with 336
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simulated points with X(s) > u (red) are shown in Figure 4.4.4. It appears from these

simulations that the fitted model provides a reasonable fit to the data; for each pair

of sites, the distribution of extreme wave data appears to have been captured well.

Hence, the model appears to be appropriate for modelling significant wave height in

the North Sea on this particular transect. More work will be undertaken to establish

if this is the case for further transects in this ocean basin and also to determine how

to pool information across transects to estimate the functions α(·), β(·), µ(·), σ(·) that

change smoothly over distance or separation depending on whether isotropy is found

to hold for extreme wave events.
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(a)

(b)
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(c)

Figure 4.4.4: Simulations from the fitted multivariate conditional extremes model;

black points are the data on Gumbel margins, whilst red points are simulated data

from the fitted model: (a), (b) and (c) show these data when h = 1, 3, 6 respectively.

In each case, the x-axis is the standardised wave height at the conditioning site (the

most westerly in the transect), with the y-axis being the standardised wave height at

the other site.
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4.4.2 Understanding widespread flood risk

Background

Understanding flood risk is an important issue for insurance companies, the govern-

ment, as well as local communities. Previous events have shown that flood events can

affect large spatial areas and have devastating impacts on transport and infrastructure

(Shaw et al., 2010). Therefore, it is of paramount interest to understand the features

of these events and plan future defences to be able to withstand physically plausible

events that we have not yet observed.

Flooding is a continuous spatial process but restricted to the river network; how-

ever as is common with environmental problems we only have access to observations at

a finite number of locations. Therefore, we want to be able to make predictions from

these pointwise locations that are consistent with the underlying spatial process (Davi-

son et al., 2012). Furthermore, the dependence structure of measurements of river

flow is highly complex; this is because river flow gauges considered spatially distant

through standard metrics such as Euclidean distance can in fact be similar because

they lie within the same catchment (Asadi et al., 2015; Shaw et al., 2010). Previous

studies such as Asadi et al. (2015) have used the max-stable processes (see Section

4.2.2), however this approach does not suit large scale studies. Other approaches such

as Keef et al. (2009); Lamb et al. (2010); Towe et al. (2016) have adopted the condi-

tional multivariate extremes model stated in Section 4.3.1 to understand widespread

flood risk.
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National Flood Resilience Review

During winter 2015, consecutive storms Desmond, Eva and Frank hit the UK causing

widespread flooding across large regions of northern England. These storms required

significant responses from the emergency services and in some cases the army to help

with the protection of property as well as infrastructure (Lamb et al., 2015). Due to

the unprecedented effect of these storms and often the rapid response required, the

UK government set up the National Flood Resilience Review (NFRR). The aim of

the NFRR was to gain a better understanding of the drivers of flooding in the UK as

well as the current methods to deal with the associated risks and damages caused by

flooding (Government, 08 September 2016).

In particular, the scientific advisory group of the NFRR wanted to understand

more about the likelihood of flooding in the UK and move towards thinking about

risks at a national scale rather than location by location. To better understand the risk

of widespread flooding, a comprehensive analysis of UK river flow gauges was required.

As we are interested in understanding the characteristics of widespread flooding in the

UK, a flexible spatial extreme value model that is able to accommodate the known

features within the data is required. For example, this needs to model that flood

events can be both localised as well as national and not all sites are likely to be extreme

concurrently. The Heffernan and Tawn (2004) conditional multivariate extreme value

model, stated in Section 3, satisfies both of these modelling requirements.



CHAPTER 4. MODELLING SPATIAL EXTREME EVENTS 136

Methods

Observations of river flow gauges were obtained from the National River Flow Archive

maintained by the Centre of Ecology and Hydrology, as well as from Environment

Agency records. Before any statistical modelling was undertaken, a quality assurance

of the data was performed. This quality assurance required the data to have at least

20 years of observations with a relatively small percentage of missing values, this

requirement enabled robust estimation of the parameters of the associated statistical

models (see Sections 2.1 and 3). Furthermore, gauges were removed from the analysis

if unnatural changes in the time series were observed, for example if a dam was

installed further upstream. This results in unnatural changes of the time series at

downstream gauge being present in the time series (Shaw et al., 2010). This quality

assurance process resulted in 916 suitable gauging records. To maintain consistency

with previous studies of UK flooding, an event was defined to last for a period of time

of up to 7 days (Keef et al., 2009). The statistical analysis includes extensions to the

Heffernan and Tawn methodology as stated in Section 4.3.1 such as the handling of

missing values as well as efficient simulation techniques for high dimensional data sets

and methods to model the rate of the number of extreme events per year (Keef et al.,

2013a). These aspects are key when modelling spatial river flow data sets with more

details of these methods found in Keef et al. (2013a). In order to assess the validity

of the statistical models, comparisons such as those shown in Figure 4.4.4 were made.

From the statistical analysis, 10000 years worth of events were simulated in Gumbel
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margins, we denote these by

{X̃t(si); i = 1, . . . 916, t = 1, . . . , 10000ny}, (4.4.1)

where ny is the average number of events in the region per year. This simulated event

set includes events that are larger than those observed in the data for at least one site

but with the dependence structure of these events being consistent with the features

from the observed extreme events (Keef et al., 2009). This simulated event set then

allows us to estimate a number of summary statistics for a range of severities of events

to help us characterise the behaviour of flooding across the UK.

Conditional probability calculation

In order to test the validity of simulations from the conditional extreme value model,

we compare the calculation of conditional probabilities from both the observed and

simulated data sets. For all return levels, the non-limit conditional probability in

equation (4.1.4) is calculated relative to a conditioning gauge, which in this case is

situated on the river Severn. For the empirical data, the conditional probability was

calculated relative to the 99th percentile (approximately a 5 month level) as well as

to a level equivalent to the one year return level, the estimates of this can be seen

in Figures 4.4.5 (a) and (b) respectively. For the Heffernan and Tawn (2004) model

estimates of the conditional probability the empirical conditional probability from

the simulated data set was evaluated for both a 10 and 100 year return level, see

Figures 4.4.5 (c) and (d) respectively.

In both cases, the strongest dependence is seen with nearby gauges as well as those
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that lie within the river Severn catchment. However, the spatial dependence is not

stationary, as distant gauges can still have strong extremal dependence, which is larger

than those gauges nearby. This feature is due to the similarity of their catchments with

the catchment of the conditioning gauge. Focusing on Figures 4.4.5 (a) and (b), when

we consider higher levels the conditional probability decreases, this suggests that as

events become more severe, they are also becoming more localised. Higher conditional

probabilities from the observed data sets cannot be considered as there is insufficient

data to produce stable estimates. This decaying conditional probability characteristic

though is also observed for the higher levels considered in Figures 4.4.5 (c) and (d),

which show our model-based estimates. There is also a smooth transition in Figure

4.4.5 between the estimates of the conditional probabilities from the observed and

simulated data sets.



CHAPTER 4. MODELLING SPATIAL EXTREME EVENTS 139

●

●

●●
●

●
●

●
●

●

●
●

●
●

●●
● ●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●
●●

●
●●●●

●
●

●●●
●●

●

●

●
●● ● ●

●
●●

●●

●●
●●● ●

●
●

●

●
●

●
●●

●●

●●●●●
●●

●

●

●
●

●

●
●

●
●●

●
●

●
●●

●
●

●
●

● ●
●●

●
●

● ●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

● ●
●

●

●

●●

●

●
●●
●

●

●

●●●
●

●●●

●
●●●

●

●

●

● ●

●
●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●
●●
●

●●
●●

●●●

●

●

●●

●●

●●

●●
●●●

●

●

●●

●

●

●

●

●●

●●●●●
●

●●
●

●
●
●●

●
●

●

●

●●●●

●

●

● ●

● ●

●

●

●
●

●

●

●
●●
●

●
●●●

●

●

●
●

●●●

●

●

●

●●

●●●●●

●

●●● ●●●

●
●
●

●

●

●

●
●

●

●●

● ●

●
●●

●
●●

●
●

●

●

●

●●●
●●

●
●

●●
●
●●

●●●●
●●

●
●●●

●
●

●

●●●

●

●
● ●
●●

●
●

●●●

●

●●●●●
●●●●

●●

●●●●
●
●

●

●

●
●●

●●●

●

●

●
●

●
●
●●●●

●●
●

●

●●
●

●
● ●●●●

●

●●
●
●
●●

●
●●

●● ●
●●●

●
● ●

●●
●

●

●

●

●●
●

●
●●
●

●
●●●

●

●
●●

●

●
●●●

●
● ●

●

●

●

●

●

●●
●●●

●

●

●
●●

●

●
●

●
● ●

●
●

● ●
●

●
●

●
●●●

●●
●
●●●●
●●

●

●

●
●

●

●

●

●

● ● ●●

●

●

●●
●

●●●

●
●

●●
● ●

● ●●

●
●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●●●

●

●
●●

●
●

●

●

●

●
●

● ●
●

●

●

●● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●●

●

●●
●●

●

●●

●
●
●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●● ●●
●

●
●
●

●

●

●
●●●

● ●●
●

●●
● ●●●

●●
●

●
●

●

●

●●

● ●
●

●●●
●

●

●

●●●
●
●

●

●●

●

●

● ●

●●

●

●●
●●

●
●●

●

●
●

●
●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●
●●

●
●

●

●●●
●●●

●
●

●

●

●
●

●
●

●
●●

●

●●

●

● ●

●●

●
●

●

●

●
●

●●●
●

● ●●
●

● ●
●

●
●
●
●
●

●

●●
●
●●●

●

● ●●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●●●

● ●●
●

●●

●●

●

●

●

50

52

54

−6 −4 −2 0 2

Longitude

La
tit

ud
e

0.00

0.25

0.50

0.75

1.00
Prob

(a) 99th percentile

●

●

●●
●

●
●

●
●

●

●
●

●
●

●●
● ●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●
●●

●
●●●●

●
●

●●●
●●

●

●

●
●● ● ●

●
●●

●●

●●
●●● ●

●
●

●

●
●

●
●●

●●

●●●●●
●●

●

●

●
●

●

●
●

●
●●

●
●

●
●●

●
●

●
●

● ●
●●

●
●

● ●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

● ●
●

●

●

●●

●

●
●●
●

●

●

●●●
●

●●●

●
●●●

●

●

●

● ●

●
●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●
●●
●

●●
●●

●●●

●

●

●●

●●

●●

●●
●●●

●

●

●●

●

●

●

●

●●

●●●●●
●

●●
●

●
●
●●

●
●

●

●

●●●●

●

●

● ●

● ●

●

●

●
●

●

●

●
●●
●

●
●●●

●

●

●
●

●●●

●

●

●

●●

●●●●●

●

●●● ●●●

●
●
●

●

●

●

●
●

●

●●

● ●

●
●●

●
●●

●
●

●

●

●

●●●
●●

●
●

●●
●
●●

●●●●
●●

●
●●●

●
●

●

●●●

●

●
● ●
●●

●
●

●●●

●

●●●●●
●●●●

●●

●●●●
●
●

●

●

●
●●

●●●

●

●

●
●

●
●
●●●●

●●
●

●

●●
●

●
● ●●●●

●

●●
●
●
●●

●
●●

●● ●
●●●

●
● ●

●●
●

●

●

●

●●
●

●
●●
●

●
●●●

●

●
●●

●

●
●●●

●
● ●

●

●

●

●

●

●●
●●●

●

●

●
●●

●

●
●

●
● ●

●
●

● ●
●

●
●

●
●●●

●●
●
●●●●
●●

●

●

●
●

●

●

●

●

● ● ●●

●

●

●●
●

●●●

●
●

●●
● ●

● ●●

●
●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●●●

●

●
●●

●
●

●

●

●

●
●

● ●
●

●

●

●● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●●

●

●●
●●

●

●●

●
●
●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●● ●●
●

●
●
●

●

●

●
●●●

● ●●
●

●●
● ●●●

●●
●

●
●

●

●

●●

● ●
●

●●●
●

●

●

●●●
●
●

●

●●

●

●

● ●

●●

●

●●
●●

●
●●

●

●
●

●
●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●
●●

●
●

●

●●●
●●●

●
●

●

●

●
●

●
●

●
●●

●

●●

●

● ●

●●

●
●

●

●

●
●

●●●
●

● ●●
●

● ●
●

●
●
●
●
●

●

●●
●
●●●

●

● ●●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●●●

● ●●
●

●●

●●

●

●

●

50

52

54

−6 −4 −2 0 2

Longitude

La
tit

ud
e

0.00

0.25

0.50

0.75

1.00
Prob

(b) 1 year level

●

●

●●
●

●
●

●
●

●

●
●

●
●

●●
● ●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●
●●

●
●●●●

●
●

●●●
●●

●

●

●
●● ● ●

●
●●

●●

●●
●●● ●

●
●

●

●
●

●
●●

●●

●●●●●
●●

●

●

●
●

●

●
●

●
●●

●
●

●
●●

●
●

●
●

● ●
●●

●
●

● ●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

● ●
●

●

●

●●

●

●
●●
●

●

●

●●●
●

●●●

●
●●●

●

●

●

● ●

●
●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●
●●
●

●●
●●

●●●

●

●

●●

●●

●●

●●
●●●

●

●

●●

●

●

●

●

●●

●●●●●
●

●●
●

●
●
●●

●
●

●

●

●●●●

●

●

● ●

● ●

●

●

●
●

●

●

●
●●
●

●
●●●

●

●

●
●

●●●

●

●

●

●●

●●●●●

●

●●● ●●●

●
●
●

●

●

●

●
●

●

●●

● ●

●
●●

●
●●

●
●

●

●

●

●●●
●●

●
●

●●
●
●●

●●●●
●●

●
●●●

●
●

●

●●●

●

●
● ●
●●

●
●

●●●

●

●●●●●
●●●●

●●

●●●●
●
●

●

●

●
●●

●●●

●

●

●
●

●
●
●●●●

●●
●

●

●●
●

●
● ●●●●

●

●●
●
●
●●

●
●●

●● ●
●●●

●
● ●

●●
●

●

●

●

●●
●

●
●●
●

●
●●●

●

●
●●

●

●
●●●

●
● ●

●

●

●

●

●

●●
●●●

●

●

●
●●

●

●
●

●
● ●

●
●

● ●
●

●
●

●
●●●

●●
●
●●●●
●●

●

●

●
●

●

●

●

●

● ● ●●

●

●

●●
●

●●●

●
●

●●
● ●

● ●●

●
●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●●●

●

●
●●

●
●

●

●

●

●
●

● ●
●

●

●

●● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●●

●

●●
●●

●

●●

●
●
●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●● ●●
●

●
●
●

●

●

●
●●●

● ●●
●

●●
● ●●●

●●
●

●
●

●

●

●●

● ●
●

●●●
●

●

●

●●●
●
●

●

●●

●

●

● ●

●●

●

●●
●●

●
●●

●

●
●

●
●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●
●●

●
●

●

●●●
●●●

●
●

●

●

●
●

●
●

●
●●

●

●●

●

● ●

●●

●
●

●

●

●
●

●●●
●

● ●●
●

● ●
●

●
●
●
●
●

●

●●
●
●●●

●

● ●●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●●●

● ●●
●

●●

●●

●

●

●

50

52

54

−6 −4 −2 0 2

Longitude

La
tit

ud
e

0.25

0.50

0.75

1.00
Prob

(c) 10 year level

●

●

●●
●

●
●

●
●

●

●
●

●
●

●●
● ●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●
●●

●
●●●●

●
●

●●●
●●

●

●

●
●● ● ●

●
●●

●●

●●
●●● ●

●
●

●

●
●

●
●●

●●

●●●●●
●●

●

●

●
●

●

●
●

●
●●

●
●

●
●●

●
●

●
●

● ●
●●

●
●

● ●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

● ●
●

●

●

●●

●

●
●●
●

●

●

●●●
●

●●●

●
●●●

●

●

●

● ●

●
●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●
●●
●

●●
●●

●●●

●

●

●●

●●

●●

●●
●●●

●

●

●●

●

●

●

●

●●

●●●●●
●

●●
●

●
●
●●

●
●

●

●

●●●●

●

●

● ●

● ●

●

●

●
●

●

●

●
●●
●

●
●●●

●

●

●
●

●●●

●

●

●

●●

●●●●●

●

●●● ●●●

●
●
●

●

●

●

●
●

●

●●

● ●

●
●●

●
●●

●
●

●

●

●

●●●
●●

●
●

●●
●
●●

●●●●
●●

●
●●●

●
●

●

●●●

●

●
● ●
●●

●
●

●●●

●

●●●●●
●●●●

●●

●●●●
●
●

●

●

●
●●

●●●

●

●

●
●

●
●
●●●●

●●
●

●

●●
●

●
● ●●●●

●

●●
●
●
●●

●
●●

●● ●
●●●

●
● ●

●●
●

●

●

●

●●
●

●
●●
●

●
●●●

●

●
●●

●

●
●●●

●
● ●

●

●

●

●

●

●●
●●●

●

●

●
●●

●

●
●

●
● ●

●
●

● ●
●

●
●

●
●●●

●●
●
●●●●
●●

●

●

●
●

●

●

●

●

● ● ●●

●

●

●●
●

●●●

●
●

●●
● ●

● ●●

●
●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●●●

●

●
●●

●
●

●

●

●

●
●

● ●
●

●

●

●● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●●

●

●●
●●

●

●●

●
●
●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●● ●●
●

●
●
●

●

●

●
●●●

● ●●
●

●●
● ●●●

●●
●

●
●

●

●

●●

● ●
●

●●●
●

●

●

●●●
●
●

●

●●

●

●

● ●

●●

●

●●
●●

●
●●

●

●
●

●
●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●
●●

●
●

●

●●●
●●●

●
●

●

●

●
●

●
●

●
●●

●

●●

●

● ●

●●

●
●

●

●

●
●

●●●
●

● ●●
●

● ●
●

●
●
●
●
●

●

●●
●
●●●

●

● ●●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●●●

● ●●
●

●●

●●

●

●

●

50

52

54

−6 −4 −2 0 2

Longitude

La
tit

ud
e

0.00

0.25

0.50

0.75

1.00
Prob

(d) 100 year level

Figure 4.4.5: Comparisons of the non-limit conditional probability (4.1.4) for (a) the

99th percentile and (b) the one year return period from the observed data set; (c)

and (d) show this conditional probability estimated using our model for the 10 and

100 year return periods respectively. The triangle symbol represents the conditioning

gauge for the estimate, this gauge is situated in the river Severn catchment.
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If the statistical model had assumed asymptotic dependence between river flow

gauges, the conditional probabilities shown in Figure 4.4.5 would be estimated as

invariant to conditioning return level. Therefore, if the 99% quantile was used to

fit the model, comparing Figures 4.4.5 (a) and (d) shows that this leads to an error

in spatial extremal dependence estimation. In this particular case, there would be

massive over-estimation of the spatial extremal dependence between river flow gauges.

These comparisons confirm that the conditional extreme value model of Heffernan and

Tawn (2004) is accurately capturing the extremal dependence observed in spatially

extreme river flows.

Scenario evaluation for the National Flood Resilience Review

The analysis of the observed and simulated data sets in Section 4.4.2 confirmed that

the features of the observed data set are being captured in the models represented by

the simulated event set. As a result, we are able to use the simulated event set as a

proxy for a long observational record to answer fundamental questions for flood risk

management posed by the NFRR such as:

What is the chance of an extreme river flow occurring at one or more gauges across

England and Wales, somewhere within the national river gauge network in any one

year?

To frame this question in terms of our notation, we need, for an arbitrary year t, to

estimate 1−P
(
MY (si),t < ysi,T ; i = 1, . . . , 916

)
, where MY (s),t is the annual maximum

in year t for the river flow in site s and ys,T is the T year return level at site s. This
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probability is identical to 1−P
(
MX(si),t < xT ; i = 1, . . . , 916

)
, where xT is the T year

return level on Gumbel margins. We estimate the second term in this probability

using the simulated sample (4.4.1) as

P̂
(
MY (si),t < ysi,T ; i = 1, . . . , 916

)
=

1

k

k∑
j=1

1

(
max

i=1,...,916
MX̃(si),j

< xT

)
, (4.4.2)

where k = 10000ny and 1(A) is the indicator function of event A.

The estimates of 1 − P
(
MY (si),t < ysi,T ; i = 1, . . . , 916

)
are shown as T varies in

Figure 4.4.6 using the modelled dependence with estimator (4.4.2) and under the two

limiting cases that assume all of the 916 gauges are either completely independent

or completely dependent. Here the complete independence case assumes that there

is no association between when flooding occurs at each of the 916 gauges, whereas

the complete dependence assumes that each of the 916 gauges behave identically.

The benefit of the conditional extremes approach is that we are able to estimate the

probability whatever T , i.e., even for events with return periods that are greater than

the severity of the events captured in the observed data set. For the NFRR, the key

feature of this analysis was that the probability of observing a 1 in 100 year event at

any of the 916 gauging stations in any given year is 0.78, so its very likely a 100 year

event occurs somewhere in this region.
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Figure 4.4.6: Comparison of the three dependence models used to estimate probability

of observing at least one event above a T -year return period for a given year: our

model for the dependence (black), under a complete dependence model (blue) and

under complete dependence (red).

This analysis considered only those locations where there are gauges with river flow

measurements; current research is addressing how this question can be answered for

every place along the river network, i.e., to estimate 1−P
(
MY (s),t < ys,T ; for s ∈ S

)
.

It should be also noted that our study focusses on England and Wales, reflecting

the scope of the NFRR (flood risk management is a devolved matter in the United
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Kingdom, with separate arrangements in place in Scotland).

What is the chance of an extreme river flow occurring in one or more Local

Resilience Forums, somewhere within the national river gauge network in any one

year?

The analysis shown in Figure 4.4.6 considered the probability of observing a flood

event at any gauge across the river network. However, for emergency planning pur-

poses, interest lies in determining the spatial extent of potential events. Within the

England and Wales, responses to natural hazards are managed through 42 Local Re-

silience Forums (LRFs), which we denote by {Lp; p = 1, . . . , R = 42}. Therefore, it

seems natural to define events in accordance to the number of LRFs that receive a T

year event at some gauge. Let MX,t(Lp) = maxi∈LpMX(si),t, i.e., it is the maximum

level, on Gumbel scale, over the pth LRF and let MX,t(L(r)) be the r largest value of

MX,t(Lp), p = 1, . . . , R in year t, so MX,t(L(1)) > . . . > MX,t(L(R)). To understand

the regional extent of spatial flood events, we are interested in whether in an arbi-

trary year t, at least r LRFs have exceedances of the marginal T return level, i.e., the

{MX,t(L(r)) > xT}. We estimate this probability using the simulated sample (4.4.1)

by

P̂
(
MX,t(L(r)) > xT

)
=

1

k

k∑
j=1

1
{
MX̃,j(L(r)) > xT

}
,

where k = 10000ny.

Estimates of the probability for r = 1, . . . , 4 are shown in Figure 4.4.7. As expected

the estimates for at least r = 1 region being above a T -year return period in any given

year is consistent with the analysis shown in Figure 4.4.6. Most interesting is that in
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any given year there is 0.35 probability of at least a 1 in 100 year event occurring in

at least four LRFs.
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Figure 4.4.7: Estimated probability of observing at least r LRF regions above a T -

year return period in any given year. The black, red, green and blue curves show the

cases for when r = 1, 2, 3, 4 respectively.

Both of the questions proposed by the NFRR highlighted that flooding is more

common than one might expect. The typical communication of return period is a

single site measure. The conditional spatial extreme value model of Heffernan and

Tawn (2004) allows us to provide robust answers to these national scale questions
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through carefully capturing the complex dependence structure of a high dimensional

set of river flow gauges. The uncertainty around the estimates of the conditional

probability as well as the point estimates shown in Figures 4.4.6 and 4.4.7 from the

NFRR can easily be assessed by bootstrap methods.

The questions proposed by the NFRR were answered by modelling the spatial de-

pendence of gauges on the river network. However, ultimate interest lies in estimating

the chance of observing a flood in a given year at any location along the river network.

Answering this question is an ongoing research question, which involves exploiting in-

formation about the river network as well as modelling the joint dependence of river

flow with that of the process of rainfall.



Chapter 5

On spatial conditional extremes for

ocean storm severity

5.1 Introduction

Quantifying extreme ocean environments is important for safe and reliable construc-

tion and operation of offshore and coastal infrastructure. Extreme value analysis

provides a framework within which the marginal and dependence characteristics of

extreme ocean environments can be estimated, and joint inferences corresponding to

very long periods of observation made in the presence of non-stationarity with respect

to covariates.

The spatial structure of ocean surface roughness within a storm is of particular

concern when inferences are based on observations from multiple locations in a neigh-

bourhood. For a given ocean basin, when the distance between two locations is small

relative to the spatial extent of a storm low pressure field, it is reasonable to expect

146
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that large values of ocean surface roughness (for a period of time of the order of an

hour, quantified in terms of significant wave height HS) at the two locations will be

dependent. Moreover, the extent of this spatial dependence will potentially itself be

non-stationary with respect to covariates, such as storm direction and season. A rea-

sonable statistical description of HS on a neighbourhood of locations should therefore

admit appropriately flexible descriptions of extremal spatial dependence. Incorrect

specification or estimation of the dependence structure can lead to misleading joint

predictions of HS on the neighbourhood. We note a number recent articles on spatial

extremes with at least some synoptic content, including Davison et al. (2012), Re-

ich and Shaby (2012), Ribatet (2013), Huser and Wadsworth (2018) and Tawn et al.

(2018).

A number of recent studies explore the extremal spatial dependence of HS. For

example, Kereszturi et al. (2016) assesses the extremal dependence of North Sea storm

severity using the summary statistics χ and χ̄ (or equivalently η, Coles et al., 1999),

outlined in Section 5.3. Estimates for these summary statistics were used to categorise

observed extremal dependence as either asymptotic dependence (AD, suggesting that

extreme events tend to occur simultaneously) or asymptotic independence (AI, sug-

gesting that extreme events are unlikely to occur together); further discussion of these

concepts is given in Section 5.3.1. In Kereszturi et al. (2016), it was found that, in most

cases considered, asymptotic independence seemed to be the more appropriate as-

sumption, compared to the assumption of asymptotic dependence. Kereszturi (2016)

and Ross et al. (2017a) extend this assessment to include the estimation of a num-

ber of max-stable process (MSP) and inverted MSP models (Wadsworth and Tawn,
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2012b), including the so-called Smith (Smith, 1990), Schlather (Schlather, 2002) and

Brown-Resnick (Brown and Resnick, 1977) models, and corresponding models for the

inverted processes. For all models considered, there is evidence that the extremal

dependence of HS at two locations varies with the distance between the locations,

and their relative orientation.

By construction, MSP models considered in Kereszturi (2016) and Ross et al.

(2017a) exhibit AD exclusively, whereas inverted MSP models only exhibit AI. In

general, we do not know a priori which form of extremal dependence is more appro-

priate: a decision concerning the form of extremal dependence present in the sample

must therefore be made before parameter estimation; this is less than ideal, although

estimation of χ and χ̄ can aid this choice. We note alternative AD models includ-

ing those of Reich and Shaby (2012), Ferreira and de Haan (2014), Rootzen et al.

(2018b), Kiriliouk et al. (2019). A number of more sophisticated hybrid models have

been proposed (e.g. Wadsworth and Tawn 2012b, Wadsworth et al. 2017, Huser and

Wadsworth 2018) spanning dependence classes, but these tend to be rather compu-

tationally challenging to estimate in practice.

The conditional extremes model of Heffernan and Tawn (2004) provides an al-

ternative approach to characterising extremal spatial dependence admitting both AI

and AD. The conditional extremes model also allows the incorporation of covariate

effects (e.g. Jonathan et al., 2014). In the current work, we propose an extension

of the conditional extremes method to a spatial setting, known as the spatial con-

ditional extremes (SCE) model. SCE provides a framework to quantify the extreme

marginal and dependence structure of HS for locations in a neighbourhood, including
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the behaviour of extremal dependence of HS at different locations as a function of

the relative displacements of locations. Model estimation can be achieved using a

relatively straightforward Markov chain Monte Carlo (MCMC) scheme, and unlike

for MSP models, does not require composite likelihood techniques for parameter es-

timation and hence does not incur parameter bias, as detailed in Tawn et al. (2018)

and Wadsworth and Tawn (2019).

The layout of the article is as follows. In Section 5.2, we present motivating appli-

cations involving samples of HS on spatial neighbourhoods in the northern and central

North Sea. Section 5.3 outlines the spatial conditional extremes model. Parameter

estimation is performed using Bayesian inference as described in Section 5.4; details

of parameter constraints from Keef et al. (2013a), and the Metropolis-within-Gibbs

sampling scheme, are given in the Appendix. Results of the application of the SCE

model to the north-south transect of the northern North Sea sample are given in Sec-

tion 5.5, with corresponding results for the east-west transect (for the northern North

Sea), and north-south and east-west transects for the central North Sea reported in

Section 5.6. Section 5.7 provides discussion and conclusions.

5.2 Motivating application

We consider hindcast data for storm peak significant wave height (henceforth HS for

brevity) from two neighbourhoods, one in the northern North Sea (NNS) and one

in the central North Sea (CNS), as illustrated in Figure 5.2.1. In each neighbour-

hood, values for HS are available on north-south (N-S) and east-west (E-W) transects

intersecting at a central location.
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Figure 5.2.1: NNS and CNS locations considered.

The NNS sample corresponds to winter storms (occurring in winter months October-

March) from the NEXTRA hindcast (Oceanweather 2002) for 20 locations on the two

transects. Storm intervals for a total of 1680 storms during the period 1 Oct 1964

to 31 Mar 1995 were isolated from up- and down-crossings of a sea state significant

wave height threshold for the central location, using the procedure outlined in Ewans
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and Jonathan (2008). Storm peak significant wave height for each storm interval at

each location provided a sample of 1680 × 20 observations for further analysis. For

each storm-location combination, the direction (from which waves emanate, measured

clockwise from North) at the time of the storm peak, referred to as the storm direc-

tion, was also retained. The spatial extremal characteristics of this sample have been

examined previously in Ross et al. (2017a); further discussion and illustrations of the

data are available there.

The CNS sample corresponds to hindcast storm peak events (occurring at any

time of year) for a period of 37 years from 10 January 1979 to 30 December 2015

for 21 locations on the two transects. The hindcast uses CFSR wind fields (Saha

et al. 2014) and a MIKE21 spectral wave simulator model (Sorensen et al. 2005) to

generate storm time-series at each location. Storm periods were again identified as

exceedances of a threshold, non-stationary with respect to season and direction, using

the procedure of Ewans and Jonathan (2008) for the central location. In this way, a

total of 3104 storm events were isolated per location for further analysis.

As will be explained further in Section 5.3, the SCE model is most conveniently

considered for data with marginal standard Laplace distributions. For simplicity, we

therefore choose to transform the NNS and CNS samples to standard Laplace scale

prior to spatial conditional extremes analysis, as suggested by Keef et al. (2013b), for

example. This is achieved by estimating non-stationary marginal models (directional

for NNS and directional-seasonal for CNS), following the approach of Ross et al.

(2017a) and Ross et al. (2017b), independently per location. Transformed data then

follow a standard Laplace distribution for each location.
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Figure 5.2.1 illustrates that the inter-location spacing for the NNS hindcast is

considerably larger than for the CNS hindcast. For this reason, it is important we

compare the variation of extremal spatial dependence between locations explicitly as

a function of physical distance (here in kilometres, km). Scatter plots of Laplace-scale

storm peak HS for pairs of locations separated by distances of 43.0, 171.8 and 300.7

km along the NNS north-south (NNS:N-S) transect, coloured red in Figure 5.2.1, are

shown by the black points in Figure 5.5.2 (see Section 5.5.1).

5.3 Spatial conditional extremes

5.3.1 Characterising extremal dependence

Key concepts in assessing extremal dependence are the notions of asymptotic depen-

dence (AD) and asymptotic independence (AI). Typically, these are assessed through

calculating two quantities, χ and χ̄, introduced by Coles et al. (1999). For bivariate

data (X, Y ) with common margins, the quantity χ is calculated as

χ = lim
u→uF

P(Y > u|X > u),

where uF is the upper endpoint of the common marginal distribution F of the random

variables. Then χ̄ is defined by Coles et al. (1999) as χ̄ = 2η − 1. Here, η, known

as the coefficient of tail dependence, is defined by Ledford and Tawn (1996) from the

asymptotic approximation, as z → uF ,

P(X > z, Y > z) ∼ L
(

1

P(X > z)

)[
P(X > z)1/η

]
,
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where L(w) is a slowly varying function, so that L(tw)/L(w)→ 1 as w →∞ for t > 0.

Coles et al. (1999) provide details on how to calculate estimates for χ and χ̄. Then

χ > 0 defines the extent of AD present, whereas χ = 0 suggests the variables exhibit

AI. In the latter case, χ measures the extent of AI present. Tawn et al. (2018) present a

spatial equivalent for these measures. Crucially, the spatial characteristics under these

two limiting extremal behaviour types are very different; under AD, two (or more)

extreme events may occur at separate sites simultaneously, whilst under AI this is not

the case. Realistically, a spatial field is likely to exhibit a mixture of these behaviours:

at short inter-location distance, asymptotic dependence may prevail; for sites a large

distance apart, asymptotic independence is more likely, leading to independence at

very large distances. The SCE model accommodates both these possibilities.

5.3.2 The conditional extremes model of Heffernan and Tawn

(2004)

In its simplest form, for a sample from a pair (X, Y ) of random variables with Laplace

marginal distributions, for x larger than some suitable threshold u, the model proposed

by Heffernan and Tawn (2004) is

Y |{X = x} = a(x) + b(x)Z, (5.3.1)

where Z is a residual process with typically unknown distribution function G. A

particular form that may be utilised when working with Laplace margins is to set

a(x) = αx and β(x) = xβ, for −1 ≤ α ≤ 1 and 0 ≤ β ≤ 1. This form of the

conditional extremes model is used as the basis for the rest of this paper. We also

assume that the unknown residual distribution G is Gaussian.
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This model may be extended to a general multivariate case. Let Z be a multivariate

Gaussian distribution with marginal distributions N(µj, σ
2
j ) (j = 0, . . . , n) for a set of

spatial random variables (X0, . . . , Xn) with standard Laplace margins. Then we have

a multivariate model given by

(X1, . . . , Xn)|{X0 = x} ∼ MVN
(
αx+ µxβ,BΣBT

)
, (5.3.2)

where x > u, α = (α1, . . . , αn)T , β = (β1, . . . , βn)T , µ = (µ1, . . . , µn)T , and B =

diag(xβ1 , xβ2 , . . . , xβn), and Σ is the variance-covariance matrix of the residuals Z. In

expression (5.3.2), vector operations are carried out component-wise.

We then have marginal models for j = 1, . . . , n given by

Xj | {X0 = x} ∼ N
(
αjx+ µjx

βj , σ2
jx

2βj
)
.

Equation (5.3.2) corresponds to the multivariate extension of Equation (5.3.1), in

which information about parameters θ = {αi, βi, µi, σi}ni=1 can be shared between ran-

dom variables. The increased number of parameters, as compared to Equation (5.3.1),

means that this model is more computationally-challenging to estimate.

5.3.3 The spatial conditional extremes (SCE) model

The SCE model is a spatial extension of the conditional extremes model, following

the work of Tawn et al. (2018) and Wadsworth and Tawn (2019). First suppose that

X(·), the process of interest, is stationary and isotropic and has Laplace marginal

distributions. Also suppose that we have sampling locations s, s0 ∈ S, where S is

some spatial domain. Then for h = |s− s0|, the distance or lag between two sites, we
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have

X(s) | {X(s0) > u} = α(h)X(s0) +X(s0)β(h)Z(s− s0). (5.3.3)

For a set of fixed spatial locations, Equations (5.3.2) and (5.3.3) are equivalent if we

assume that Z is a residual Gaussian process with mean function µ(h) and covariance

incorporating σ(h), as described in Equations (5.4.1) and (5.4.3). Of key importance is

that different combinations of parameter values correspond to different types of spatial

dependence. We have AD at all distances h when α(h) = 1 and β(h) = 0 for all h ≥ 0,

while a mixture of limiting dependence classes is observed if (α(h), β(h)) = (1, 0) for

h ≤ hAD but also α(h) < 1 for h > hAD, for some distance hAD. The process exhibits

AD up to distance hAD and AI thereafter. Hence, the proposed framework is able to

estimate extremal dependence flexibly.

The model set out in expression (5.3.3) gives the behaviour of the process con-

ditional on the process being extreme at s0. We need this model to hold for all

s0 ∈ S, and for all of these conditional distributions to be self-consistent with one

another. Although the original multivariate conditional extremes models of Heffernan

and Tawn (2004) do not impose additional assumptions about pairwise exchangeabil-

ity, our choice of a stationary isotropic model imposes the required structure on the

different conditional models to yield the required self-consistency.

Although not key to developments in this paper, a natural question is whether

the conditional models stem from a valid stochastic process. This is clarified by

Wadsworth and Tawn (2019). They show that extreme events arising from a valid

stochastic process can be generated over space, in such a way that events can be
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extreme at any spatial location. Therefore, although the SCE model is not explicitly

specified as a stochastic process over space, it is specified implicitly for a process

that has an extreme event somewhere in S. In this paper, we focus only on questions

relating to the behaviour of the process given that there is an extreme event somewhere

in S. Wadsworth and Tawn (2019) discuss an extension for which this condition is

removed.

5.3.4 Constraints

For a given h, we constrain the possible values of pairs of parameters (α(h), β(h)) as

suggested by Keef et al. (2013a), and outlined in the Appendix. The motivation for

this constraint is to impose an ordering of conditional distributions associated with

asymptotic independence (α(h) < 1) and asymptotic positive dependence (α(h) =

1, β(h) = 0). In practice, this means that certain combinations of (α(h), β(h)) are

inadmissible. We also impose gradient-based constraints on (α(h), β(h)) following

Lugrin (2018), in order to improve the identifiability of the parameter combinations.

The motivation for these constraints is ensuring that the derivative, with respect to x,

of E(X(h)|X(0) = x) = α(h)x+µ(h)xβ(h) is positive, for x ≥ u, with u some suitable

threshold; we then have the constraints α(h) + µ(h)β(h)xβ(h)−1 ≥ 0 and α(h) ≥ 0 for

all h.

5.4 Inference

We consider two variants of the SCE model, differing by the manner in which “linear

slope” parameters {αk} are estimated. In the more general form, outlined in Sec-
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tion 5.4.1, these parameters are estimated freely given the sample data, likelihood

function and constraints from Section 5.3.4. In the restricted parametric form, out-

lined in Section 5.4.2, the decay of α with distance h follows a prescribed physically-

plausible exponential form described by only two parameters. We first consider the

more general “free” model.

5.4.1 Likelihood for the “free” model

Consider p+1 equally-spaced points on a transect. Suppose we condition on the value

of HS at a point on the line, marked in black in the two examples of Figure 5.4.1.

Our goal is to fit a joint distribution for the values of HS at all remaining points,

conditioned on an extreme value observed at the conditioning point.

As the set of remaining random variables depends on the conditioning point chosen,

we require two indices to define locations: an index c ∈ {0, 1, 2, . . . , p} to indicate the

“conditioning” point, and an index j ∈ {1, 2, . . . , p} for the remaining points on the

line, which we henceforth call “remote” points. The conditioning point will therefore

always have an index of the form (c, 0), as illustrated in Figure 5.4.1, where c = 0 in

the upper image, and c = 2 in the lower.

We indicate the location of the conditioning point as sc0, and the location of re-

mote points using {scj}. The distances of remote points to the conditioning point are

then denoted by {hc0j}, with hc0j = |scj − sc0|. Similarly, distances between remote

points (c, j) and (c, j′) are denoted {hcjj′} with hcjj′ = |scj′ − scj|; example values of

(c, j) and hc0j are indicated in Figure 5.4.1. In the case of the lower image in Figure

5.4.1, note that there are locations that sit a common distance from the conditioning
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(c, j) = (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)

hc0j = 0 ∆ 2∆ 3∆ 4∆ 5∆

(c, j) = (2, 1) (2, 2) (2, 0) (2, 3) (2, 4) (2, 5)

hc0j = 2∆ ∆ 0 ∆ 2∆ 3∆

Figure 5.4.1: Illustration of notation used to describe the disposition of points on the

line, enabling pooling of data from pairs of locations by distance. The (c, j) notation

is shown below the line, and distance hc0j given above each point. Points with the

same value of hc0j are shown in the same colour; ∆ is the inter-location spacing.

point (with the same value of hc0j, shown as discs of the same colour). We assume

that conditional dependence is isotropic on a transect, so that the parameters of the

SCE model are at most a function of inter-location distances only. Specifically, the

parameters α, β, µ and σ are functions of distance from conditioning location, and the

residual dependence between remote locations will in addition be a function of dis-

tances between remote locations. We seek a model for the joint dependence structure

for any number of locations conditional on an extreme value at the conditioning loca-

tion. For definiteness, consider first the case of two remote locations (c, j) and (c, j′)

(with j′ 6= j) and conditioning location (c, 0), and corresponding random variables

(Xcj, Xcj′ , Xc0). We can then write the SCE model as

(Xcj, Xcj′)|{Xc0 = xc0} ∼ MVN2 (Mcjj′ , Ccjj′) , xc0 > qτ (5.4.1)

where qτ is the quantile of a standard Laplace distribution with non-exceedance prob-
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ability τ ,

Mcjj′ = [α(hc0j), α(hc0j′)]xc0 + [µ(hc0j), µ(hc0j′)]x
[β(hc0j),β(hc0j′ )]

c0

and

Ccjj′ =

 x
β(hc0j)
c0 0

0 x
β(hc0j′ )

c0


 σ(hc0j) 0

0 σ(hc0j′)


 1 ρhcjj′

ρhcjj′ 1

 (5.4.2)

×

 σ(hc0j) 0

0 σ(hc0j′)


T  x

β(hc0j)
c0 0

0 x
β(hc0j′ )

c0


T

and ρ is the between-neighbour residual correlation parameter. We can extend the

model to three or more remote locations, or reduce it for one remote location in

the obvious way. Hence we can construct a sample Gaussian likelihood L under

the model for all observations, with conditioning variate exceeding qτ , of all possible

combinations of two or more locations on the line. We note that in Equation (5.4.2),

any correlation function K(·) could be used in the third matrix; for this work, we

specifically use an exponential correlation function, so that K(hcjj′) = ρhcjj′ .

The likelihood L is a function of {α(hc0j), β(hc0j), µ(hc0j), σ(hc0j)}, and ρ (for

different distances {hcjj′} between remote locations). Since the locations are equally-

spaced, the values of α, β, µ and σ can only be estimated for given distances h = k∆,

for lag index k = 1, 2, . . . , p, where ∆ is the location spacing for the application

(expressed in kilometres). For ease of discussion below, we can therefore write L
M
=

L(θ) for the full parameter set as

θ = {{αk, βk, µk, σk}pk=1, ρ}, (5.4.3)

where parameters are indexed by lag k not distance h, so that αk = α(k∆), etc.
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In practice, we also pool all available observations corresponding to unique combi-

nations of distances (i.e., from different choices of conditioning location (c, 0)) in the

SCE likelihood; we thereby exploit the sample well, in a computationally-favourable

manner. Hence, we no longer have the true likelihood under our model but instead

a pseudo-likelihood, since the same observation (of each location on a transect) may

enter more than one conditioning likelihood contribution (corresponding to condition-

ing on extreme values at a particular location). Using a pseudo-likelihood as if it is a

likelihood is widely known to give point estimates that are asymptotically consistent,

but that measures of uncertainty are underestimated. In our Bayesian inference, we

expect to underestimate posterior credibility intervals using these pooled data.

Various approaches are available to adjust estimated uncertainty, either by inflat-

ing variances or modifying the pseudo-likelihood. In Bayesian inference, the methods

of Ribatet et al. (2012) provide an appropriate approach to valid inference for any

selected model. In this paper, however, we use the raw pseudo-likelihood for presen-

tation of results, which we justify as follows. The paper focuses on model selection

between the free model introduced in this section and a nested parametric model,

introduced in Section 5.4.3, with the actual uncertainties of the parameters being

of secondary importance relative to the selection of the better model. When using

the pseudo-likelihood in place of the full likelihood, inference for the free model will

give parameter estimates with credible intervals which are too narrow. Thus, if our

subsequent parametric model estimates fall inside these intervals, it suggests that

the parametric model provides a better fit than the free model. We emphasise that

credible intervals referred to in this work correspond to pseudo-likelihood credible
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intervals.

5.4.2 MCMC for the free model

We use Bayesian inference to estimate the joint posterior distribution of parameters

θ from Equation (5.4.3). In our experience, Bayesian inference with reasonable prior

specification and MCMC scheme, provides a more reliable approach to parameter esti-

mation, than maximum likelihood techniques. An outline of the procedure, discussion

of the priors used and an algorithm, are given in Section 5.8. In brief, we proceed as

follows.

First, we use random search to find a reasonable starting value for θ. Then, to im-

prove on the starting solution, we use a Metropolis-within-Gibbs algorithm iteratively

to sample each of the elements of θ in turn. Then we use a grouped adaptive random

walk Metropolis-within-Gibbs algorithm iteratively to convergence, judged to have

occurred when trace plots for parameters and their dependence stabilise. Within the

grouped adaptive algorithm, we jointly update the parameters (αk, βk, µk, σk) for each

k, following the adaptive approach of Roberts and Rosenthal (2009) to make corre-

lated proposals. We also adjust proposal standard deviation such that the acceptance

rate is optimised for all parameters.

5.4.3 Inference for the “parametric-α” model

Though the constraints of Section 5.3.4 go some way to improving identifiability of

suitable parameter combinations, it is still difficult to obtain plausible results in some

cases for the free SCE model. Therefore, we shall consider a parametric form for
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α based on physical considerations, whereby α(h) should in general decrease with

increasing h, but also to reduce the dimension of the parameter space, helping pa-

rameter identifiability. Specifically, we explore the performance of a SCE model where

α is parameterised as a function of distance, writing

αk = exp

{
−
(
k

κ1

)κ2}
, k = 1, 2, . . . , p (5.4.4)

with parameters κ1, κ2 > 0. The resulting likelihood is L
M
= L(θ∗) with adjusted

parameter set

θ∗ = {κ1, κ2, {βk, µk, σk}pk=1, ρ}. (5.4.5)

The MCMC procedure for the parametric-α model is similar to that for the free model,

except that κ1, κ2 are separated from the grouped parameters (βk, µk, σk) for each k.

5.4.4 Comparison of free and parametric-α models

To compare results from free and parametric-α models, we use the Deviance Informa-

tion Criterion (DIC), as proposed by Spiegelhalter et al. (2002), a Bayesian analogue

of the Akaike Information Criterion (Akaike 1974). Defining D(θ) = −2 logL(θ),

where L is our pseudo-likelihood, we measure model complexity using

pD = D(θ)−D(θ),

where D(θ) is the average of the deviances (calculated after burn-in) and quantifies

lack-of-fit. Further, θ is the average of posterior estimates of θ, and note that this

is an estimate for the posterior mean. Explicitly, from the final m iterations of the
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MCMC chain, we calculate

θ =
1

m

m∑
i=1

θ(i) and D(θ) =
1

m

m∑
i=1

D(θ(i)),

where component-wise averages are taken in the first equation. The DIC is then

calculated as

DIC = pD +D(θ) = 2D(θ)−D(θ),

with lower values preferred.

5.5 Application to northern North Sea North-South

transect (NNS:N-S)

We now apply the free model and parametric-α model to data for the NNS:N-S tran-

sect. We start by considering the free model in some detail (in Section 5.5.1), demon-

strating that the fitted model explains the data well. Next, in Section 5.5.2, we

consider the corresponding parametric-α model, and show that this also fits well, as

well as using the DIC, as defined in Section 5.4.4, to show that the fit of free and

parametric-α models is similar. The analysis is extended to other transects and loca-

tions in Section 5.6. Throughout this section, we adopt a conditioning threshold with

non-exceedance probability τ = 0.9 for the SCE model, after testing the stability of

inferences to other choices of threshold. Threshold choice of course involves a bias-

variance trade-off: increasing sample size for tail modelling versus inclusion of points

from outside the tail region. We note that parameter estimates were relatively stable

for choices of extreme value threshold above τ = 0.8 and below either τ = 0.9 (for
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NNS data) or τ = 0.95 (for CNS data).

5.5.1 Free model

The inference scheme introduced in Section 5.4 is used to estimate parameters θ (see

Equation (5.4.3)) for the NNS:N-S transect. Posterior mean and pseudo-likelihood

credible intervals for estimates of each of α(h), β(h), µ(h) and σ(h) from the final

1000 iterations (out of a total of 20000 iterations) of the MCMC algorithm described

in Section 5.4.2 are shown in Figure 5.5.1. Trace plots showing convergence of MCMC

chains are given in Section 5.8. We note that the parameter ρ has a posterior mode

of approximately 0.73 and a 95% pseudo-likelihood credible interval with width of

approximately 0.09. We see from Figure 5.5.1 that α decays exponentially with h;

this motivates the adoption of the parametric-α model in Section 5.5.2. In particular,

we see that α(h) 6= 1 for any h, so this suggests asymptotic independence is present

for all distances h. We see that µ(h) mirrors the behaviour of α(h) to some extent,

in that for h < 200 km, µ increases fairly quickly, before stabilising and possibly

decreasing again; this illustrates the anticipated dependence between estimates for

α and µ in the conditional extremes model. The parameter β is relatively constant

with h, taking values between 0.3 and 0.4, whereas σ increases in general with h. The

behaviour of α(h) and σ(h) appears reasonable given physical intuition and evidence

from the data (the black points) in Figure 5.5.2: extremal dependence reduces as

distance between conditioning and remote sites increases, yet the overall variability

at each location is constant given that HS at each location has been transformed to

standard Laplace scale.
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Figure 5.5.1: NNS:N-S transect, free model: parameter estimates for (a) α, (b) β,

(c) µ and (d) σ with distance h, summarised using posterior means (disk) and 95%

pseudo-likelihood credible intervals (with end-points shown as solid triangles).

Figures 5.5.2 and 5.5.3 display diagnostics for the fitted model. Figure 5.5.2 shows

the original data on Laplace scale (in black), at three different separations h of remote

and conditioning points. Data simulated under the fitted model are overlaid in red;

there is good general agreement. Figure 5.5.3 shows observed sequences of HS values

along transects with conditioning value (of HS at either end-point of the transect)

between 3.5 and 4.5 on Laplace scale in blue, as well as two simulated spatial pro-

cesses from the fitted model, shown in red. The figure also shows the corresponding

95% pseudo-likelihood credible interval under the fitted SCE model with conditioning

values between 3.5 and 4.5; again there is general agreement between observation and

simulation under fitted model; in particular the simulated processes appear to have



CHAPTER 5. CONDITIONAL EXTREMES FOR OCEAN STORMS 166

similar smoothness to the observed processes.

Figure 5.5.2: Scatter plots illustrating dependence between values of Laplace-scale

storm peak HS at different relative distances for NNS:N-S transects, from (a) original

sample and (b) simulation under the fitted free model. Black points are the original

data on Laplace scale; red points are data simulated under the fitted model.

5.5.2 “Parametric-α” fit

Figure 5.5.1 suggests an exponential decay of parameter α with distance h in the free

model. Here, we examine the performance of the SCE model with the functional form

for α(h) given in Equation (5.4.4) and with parameters θ∗ to estimate (as defined

in (5.4.5)). Comparing Figures 5.5.1 and 5.5.4 shows that pseudo-likelihood credible

intervals for α(h) are considerably narrower in the parametric-α model. This is not

surprising, since the parametric-α model has a smaller number of parameters. More-
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Figure 5.5.3: Observed spatial processes from the NNS:N-S transect with Laplace-

scale values at the left-hand location in the interval [3.5, 4.5], together with posterior

predictive estimates from simulation under the fitted free model, represented using

the median (black) and upper and lower limits of a 95% pseudo-likelihood credible

interval. Red lines are simulated spatial processes from the fitted model.

over, the parametric decay of α in the parametric-α model restricts its possible values

for any h. Further, they show that posterior mean estimates for α(h), β(h), µ(h) and

σ(h) are similar under the two models.

The informal discussion above suggests that the quality of fit of free and parametric-

α models is similar. To compare these models more formally, we use the DIC intro-

duced in Section 5.4.4. Values for parameter estimates and likelihood from the last

m=1000 MCMC iterations are used to estimate the DIC for the two models; the DIC

for the free model was calculated to be 27514.22, and for the parametric-α model
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Figure 5.5.4: NNS:N-S transect, parametric-α model: parameter estimates for (a) α,

(b) β, (c) µ and (d) σ with distance h, summarised using posterior means (disk) and

95% pseudo-likelihood credible intervals (with end-points shown as solid triangles).

27501.68. Since the DIC for the parametric-α model is smaller than for the free

model, we infer in this case that the parametric-α model is to be preferred, and that

the difference between free and parametric-α fits is small. However, the parametric-α

model has the additional advantage that the computational time is decreased due to

the smaller number of parameters to estimate in this version of the SCE model.

5.6 Application to other North Sea transects

The wave environment in the NNS and CNS is known not to be isotropic (e.g. Feld

et al. 2015); we might therefore suspect that the extremal spatial dependence in

these neighbourhoods might also be sensitive to transect orientation. Inspection of
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Figure 5.2.1 shows that fetches in the NNS are in general longer than in the CNS;

further, water depths in the NNS are greater than those in the CNS. It is not unrea-

sonable therefore to anticipate that extremal spatial dependence may be different in

different regions of the North Sea. Moreover, for the data considered here, the CNS

data are available on a finer grid than for the NNS data, so we may be able to pick

out finer-scale features of the dependence structure. Furthermore, the lengths of tran-

sects and their spatial resolutions vary, offering the possibility of detecting finer-scale

effects (in the CNS) and longer-range effects (for transects with largest distances h).

This motivates estimating SCE models for the NNS:E-W transect, and the CNS:N-S

and CNS:E-W transects.

Below, we start by comparing DIC values for free and parametric-α models. Since

it was found that the performance and characteristics of the models were similar for

all transects, subsequent discussion of parameter behaviour with h is restricted to the

parametric-α model. As in Section 5.5, all MCMC chains are of length 20000, and we

utilise the final 1000 iterations for inference.

5.6.1 Comparison of Model Fits for all Transects

We compare DIC values for free and parametric-α model parameterisations to assess

in particular whether the parametric-α model is a reasonable general representation

for all transects, relative to the free model. Table 5.6.1 gives values for the DIC for

each of the transects considered in this work.

From the table, we see that the DIC is lower for the parametric-α model for

NNS transects; for the CNS transects, the free model produces lower values for the
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Model DIC

Free Parametric-α

NNS:N-S 27514.22 27501.68

NNS:E-W 7360.93 7356.75

CNS:N-S 23471.67 23476.13

CNS:E-W 23809.94 23827.10

Table 5.6.1: Table of DIC values for the free fit model and parametric-α model for all

of the transect analyses.

DIC. However, comparing the differences between DIC values per transect with the

variability of the corresponding negative log-likelihoods from the MCMC, we see that

differences in the DIC are small in each case. We conclude that there is little material

difference between free and parametric-α fits for any of the transects.

5.6.2 NNS east-west transect

We first apply the parametric-α model to NNS:E-W, coloured magenta in Figure 5.2.1,

using a non-exceedance probability of τ = 0.9 when applying the SCE model, as in

Section 5.5. Posterior estimates for model parameters are shown in Figure 5.6.1. This

transect has fewer sites available for analysis than NNS:N-S in Section 5.5, and hence

fewer data may be pooled together for estimation. Therefore, we would naturally

expect model parameter uncertainties to be larger. From the figure it is clear that the

pseudo-likelihood credible intervals are wider than for NNS:N-S, at similar h. The
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Figure 5.6.1: NNS:E-W transect, parametric α(h) model: estimates for (a) α(h),

(b) β(h), (c) µ(h) and (d) σ(h) with distance h, summarised using posterior means

(disk) and 95% pseudo-likelihood credible intervals (with end-points shown as solid

triangles).

behaviour of parameter estimates for µ and σ with h are similar to those observed for

NNS:N-S. However, in NNS:E-W, β increases with distance. The figure also illustrates

that estimates for α(h) on NNS:E-W are larger; in particular, α(h ≈ 50 km) ≈ 0.9,

suggesting that dependence is much higher at short range for NNS:E-W than for

NNS:N-S, for which α(h ≈ 50 km) ≈ 0.6. Further, the rate of decay of α with h is

smaller for NNS:E-W than for NNS:N-S. These findings are plausible given physical

intuition: the largest events in the NNS are Atlantic storms travelling approximately

E-W. It is reasonable then to expect that spatial dependence along E-W transects

may be higher than for transects with other orientations.
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5.6.3 CNS transects

For the central North Sea north-south transects (CNS:N-S, coloured dark blue in

Figure 5.2.1; and CNS:E-W coloured cyan), the separation ∆ of locations is smaller

than for NNS transects. Furthermore, as more data are available at each site for

this ocean basin, we set τ = 0.95 for the SCE model. Parameter estimates from

the parametric-α model are shown in Figure 5.6.2 for CNS:N-S. Compared to NNS

Figure 5.6.2: CNS:N-S transect, parametric-α model: parameter estimates for (a) α,

(b) β, (c) µ and (d) σ with distance h, summarised using posterior means (disk) and

95% pseudo-likelihood credible intervals (with end-points shown as solid triangles).

transects, α decreases quickly with h. At h ≈ 100 km the value of α is approximately

0.5, close to that estimated for the NNS:N-S transect at h ≈ 150 km, but at h ≈

250 km for NNS:E-W. The behaviour of µ and σ with h is similar to earlier cases, and

β is approximately constant at approximately 0.3, and σ at 0.52. Pseudo-likelihood
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credible intervals for estimates increase with h.

For the CNS:E-W transect, posterior estimates for the SCE parameters are shown

in Figure 5.6.3; this transect is slightly longer than the CNS:N-S transect. The pa-

Figure 5.6.3: CNS:E-W transect, parametric-α model: parameter estimates for (a) α,

(b) β, (c) µ and (d) σ with distance h, summarised using posterior means (disk) and

95% pseudo-likelihood credible intervals (with end-points shown as solid triangles).

rameter µ increases with h, and β is approximately constant at approximately 0.33.

There is some evidence that σ(h) decreases for h > 50 km. The general behaviour of

α with h is similar to that for the CNS:N-S transect, with a somewhat slower decay.

We note that the behaviour of µ(h) in these analyses, and in the results of Chapter

6, is fairly hard to determine. In general, however, it appears that µ increases for a

small range of h, before displaying evidence that the function either reaches a plateau

or begins to decreases. The initial rate of increase of µ(h) and the distance h for which
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this happens appears to change for each transect; since this behaviour is difficult to

determine, this motivates the use of unconstrained linear piecewise forms for this

parameter in Chapter 6, from which similar effects are seen.

5.7 Discussion and conclusions

In this work, we use a spatial conditional extremes model to investigate the extremal

dependence of significant wave height HS along straight line transects of different

lengths with different spatial orientations and resolutions in the northern and central

North Sea. The analyses described in Sections 5.5 and 5.6 suggest that the general

nature of extremal dependence is similar for all transects. It appears that the linear

dependence parameter α in the SCE model decays with separation h of locations,

and that this decay is approximately exponential (recalling that HS is expressed on

standard Laplace scale). The parameter µ increases with h, potentially to a finite

asymptote, while the parameter β appears to remain approximately constant as a

function of h. There is some evidence that σ increases initially with h, but no consis-

tent subsequent behaviour is observed.

Features of the extremal dependence vary by region and transect orientation. For

instance, we note that the estimate of ρ, the residual dependence parameter, for the

NNS:N-S transect (with a posterior mode of approximately 0.73 and a 95% pseudo-

likelihood credible interval width of approximately 0.06) is different from its value

for the other three transects (for which ρ is estimated to have a mode of approxi-

mately 0.5 in each case, and 95% pseudo-likelihood credible intervals of width of ap-
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proximately 0.06). Figure 5.7.1(a) illustrates the behaviour of the conditional mean

α(h)x+µ(h)xβ(h) from the SCE model for a (Laplace-scale) conditioning value x = 5,

approximately corresponding to the 0.997 quantile. Figure 5.7.1(b) shows the corre-

sponding evolution of the conditional standard deviation σ(h)xβ(h). From Figure 5.7.1

Figure 5.7.1: Pseudo-likelihood credible intervals for (a) the conditional mean and (b)

the conditional standard deviation of the fitted dependence model as a function of dis-

tance in kilometres, for conditioning Laplace-scale value of 5, and different transects:

NNS:N-W (red), NNS:E-W (magenta), CNS:N-S (blue), CNS:E-W (cyan).

it is clear that extremal dependence of HS in the NNS is more persistent than in the

CNS, and that extremal dependence on the NNS:E-W transect is more persistent

than on the NNS:N-S transect (see also Section 5.6.2). That is, longer-range extremal

dependence is observed for the E-W transect in the NNS; the same conclusion was

drawn by Ross et al. (2017a) in their analysis of related data for the same region, using
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one- and two-dimensional max-stable process models. It will be interesting to extend

the current SCE model to two-dimensional neighbourhoods of locations, particularly

to investigate whether directional differences, related to differences due to transect

orientation reported here, are observed.

From an intuitive perspective, we expect the value of SCE parameter α to decay

to zero for large h, since for large h the value at the conditioning location should not

affect the value at the remote location. For the same reason, we expect β(h) and µ(h)

to decay to zero, and σ(h) to asymptote to a finite value; see Wadsworth and Tawn

(2019) for discussion of the modelling of spatial independence at long range. We plan

to examine this by exploring the characteristics of storm peak HS on long transects

extending over at least 1000 km.

Inspection of Equations (5.3.2) or (5.4.2) readily shows that identification of SCE

model parameters is problematic in general, although considerations such as those of

Keef et al. (2013a) help restrict the admissible set of parameter values. Imposing an

exponential form on the decay of α(h) with h was found at least not to be detrimental

in the current work. Inspection of the resulting behaviour of parameter estimates in

the figures above suggests that further parameterisation of µ(h) in particular may be

useful.

Understanding the extremal spatial dependence of ocean storms is important for

the reliable characterisation of extreme storms and their impact on marine and coastal

facilities and habitats. From a statistical perspective, the ocean environment provides

a useful test bed for models for spatial extremal dependence over a range of distances.

From an offshore engineering perspective, the findings of studies such as the present
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work can lead to more informed procedures to accommodate the effects of spatial

dependence in engineering design guidelines, since these often require the estimation

of events occurring with a given annual probability. The spatial conditional extremes

model would seem to offer a relatively straightforward method to help achieve this.

5.8 Supplementary Material

This section summarises the constraints of Keef et al. (2013a) used in the condi-

tional extremes model described in this chapter and the MCMC procedure used for

parameter estimation.

The constraints of Keef et al. (2013a)

We also constrain the possible parameter values of α(h) and β(h), for h > 0, as

suggested by Keef et al. (2013a). The constraint of interest, for α(h), β(h) and some

given h, in this work is Case 1 of Theorem 1 as given by Keef et al. (2013a); namely

that we require either

α(h) ≤ min{1, 1− β(h)zh(q)v
β(h)−1, 1− vβ(h)−1zh(q) + v−1z+

h (q)}

or

1− β(h)zh(q)v
β(h)−1 < α(h) ≤ 1, and

(1− β(h)−1){β(h)zh(q)}1/(1−β(h))(1− α(h))−β(h)/(1−β(h)) + z+
h (q) > 0.

Here, zh(q) is the qth quantile of the distribution of standardised residuals from

the conditional extremes model at distance h with non-exceedance probability q. Sim-
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ilarly, z+
h (q) is the qth quantile of the distribution of standardised residuals from the

conditional extremes model assuming asymptotic positive dependence (i.e., forcing

α(h) = 1, β(h) = 0) at distance h with non-exceedance probability q. In practice, as

suggested by Keef et al. (2013a), it is sufficient to satisfy the constraints above for

q = 1 and ν equal to the maximum observed value of the conditioning variate.

MCMC procedure

The MCMC method implemented in Section 5.4.2 is adapted from the method of

Roberts and Rosenthal (2009). Suppose the parameters of interest are θ =

{αk, βk, µk, σk}pk=1 ∪ {ρ}, where p is the number of sampling locations. The total

number of parameters is therefore nP = 4p + 1. We impose uniform prior distribu-

tions for each of these parameters; explicitly, π(αk) ∼ Unif(0, 1), π(βk) ∼ Unif(0, 1),

π(µk) ∼ Unif(−2, 2) and π(σk) ∼ Unif(0, 3) for all k = 1, . . . , p, and π(ρ) ∼ Unif(0, 1).

A total of n updates of θ will be performed.

First we obtain a random starting solution θ(0) by sampling the elements of θ from

their prior distributions, verifying that the starting solution has a valid likelihood

(defined in Section 5.4.1).

Writing θ
(i)
k as the value of the kth parameter of θ at the ith iteration, we then use

an adaptive random walk Metropolis-within-Gibbs scheme for nS iterations. That is,

for i = 2, . . . , nS, where nS < n, we update each θ
(i)
k in turn. If i ≤ 2nP , we propose

a candidate value θ
(i)c
k from distribution

Q1 = N(θ
(i−1)
k , 0.12).
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For i > 2nP (and i ≤ nS) we propose θ
(i)c
k from distribution Q2 defined by

Q2 = (1− β)N(θ
(i−1)
k , 2.382Σi) + βN(θ

(i−1)
k , 0.12),

where β = 0.05, as proposed by Roberts and Rosenthal (2009), and Σi is the empirical

covariance of the parameter θk from the previous i iterations.

For i > nS, we use a grouped adaptive random walk Metropolis-within-Gibbs

scheme, updating quartets θ
(i)
Gk

= (α
(i)
k , β

(i)
k , µ

(i)
k , σ

(i)
k ) jointly, before updating ρ in-

dependently as before. If i ≤ nS + 2nP , and the quartet state is θ
(i)
Gk

, we propose

candidates θ
(i)c
Gk

from distribution

Q3 = MVN(θ
(i−1)
Gk

, (0.12)/4).

If i > nS + 2nP , we propose θ
(i)c
Gk

from distribution

Q4 = (1− β)MVN(θ
(i−1)
Gk

, 2.382Σi) + βMV N(θ
(i−1)
Gk

, 0.12/4),

where again β = 0.05 and Σi is the empirical variance-covariance matrix of the pa-

rameters θ
(i)
Gk

from the previous i iterations. Finally we update ρ.

Throughout, a candidate state is accepted using the standard Metropolis-Hastings

acceptance criterion. Since prior distributions for parameters are uniform, and pro-

posals symmetric, this is effectively just a likelihood ratio. That is, we accept the

candidate state with probability min (1, Lc/L), where L and Lc are the likelihoods

evaluated at the current and candidate states respectively, with candidates lying out-

side their prior domains rejected.



Chapter 6

Basin-wide spatial conditional

extremes for severe ocean storms

6.1 Introduction

Many models for spatial extremes require that the type of extremal dependence exhib-

ited (e.g., asymptotic dependence or asymptotic independence, described for example

in Coles et al., 1999) must be decided beforehand. Here, we describe a conditional

spatial extremes model able to capture both types of asymptotic behaviour with no

prior information required. The conditional spatial extremes framework is a useful

tool in assessing the risk involved in the construction of coastal and offshore structures,

enabling correct assessment of extremal dependence and providing better estimation

of the joint risk of potentially damaging extreme events occurring from ocean storms

than currently-used methods.

The current study involves the characterisation of extremal spatial dependence of

180



CHAPTER 6. BASIN-WIDE SPATIAL CONDITIONAL EXTREMES 181

extreme ocean storm severity, quantified for a storm event using storm peak significant

wave height (HS). For two sampling locations a short distance apart (relative to the

size of a storm), we may expect that an extreme value of HS may arise at each location

from the same storm event, characteristic of asymptotic dependence (AD). If two

sites are far apart, it is unlikely that extremes occurring at the two locations would

be simultaneously large; corresponding to asymptotic independence (AI). Previous

studies (Kereszturi et al., 2016 and Ross et al., 2017a) have shown that the nature

and extent of extremal dependence in an ocean basin changes with distance between

locations.

The traditional approach to spatial extremes has been to consider max-stable

processes (MSPs); see Brown and Resnick (1977), Smith (1990) and Schlather (2002)

for details on how to apply these models. Crucially, MSP models typically make

the assumption that the spatial process is asymptotically dependent, and hence such

models may be inappropriate for modelling HS over an ocean basin. We note that

other AD spatial extremes models have been proposed, such as Reich and Shaby

(2012) and Ferreira and de Haan (2014); the processes described in the latter of

these are termed Pareto processes. There have been multiple models proposed in the

recent spatial extremes literature which are able to model either class of extremal

dependence, e.g. Wadsworth and Tawn (2012b), Wadsworth et al. (2017) and Huser

and Wadsworth (2018). However, these models suffer from drawbacks; either the

fitted model must assume a certain type of extremal dependence across the entire

spatial domain in which it is fitted, as is the case for the Huser and Wadsworth

(2018) model for example, or the model is rather computationally challenging to
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fit, such as the Wadsworth and Tawn (2012b) approach. The conditional spatial

extremes model we present here overcomes these issues. Careful parameterisations of

distance effects enables the spatial extremes problem to be well-described in terms

of a relatively small number of parameters, even when the number of measurement

locations is high. This greatly reduces the computational burden when fitting across

hundreds of sampling locations compared to broadly equivalent MSPs. Moreover,

we incorporate both types of extremal dependence into our model parsimoniously

without prior specification, with the dependence class changing with distance in the

spatial domain. More detailed overviews of spatial extremes modelling may be found

in Davison et al. (2012), Ribatet (2013) and Tawn et al. (2018), for example.

Our model builds upon the work of Wadsworth and Tawn (2019) and Shooter

et al. (2019), adopting the concept of having known functional forms for some of the

spatial conditional extremes parameters. It was found in Shooter et al. (2019) that

assuming a parametric form, requiring only two parameters, for the slope parameter,

α in the spatial conditional extremes model was adequate to capture the behaviour

of the parameter as a function of distance between sites, whilst having the significant

benefit of reducing computational time, since the α parameter otherwise needs to be

fitted separately at each modelling location. We build upon this idea by imposing

either parametric or piecewise-linear forms for more model parameters, motivated

by theoretical considerations and evidence from preliminary analysis. The resulting

reduction in model complexity for given sample size allows us to consider analyses

incorporating many sampling locations. Such analysis would have been computation-

ally demanding in the MSP framework, as well as biased due to the assumption of
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asymptotic dependence. The current work includes other novel features, including

the adoption of a generalised Gaussian, or delta-Laplace distribution, to describe the

marginal distribution of model residuals coupled with a spatial Gaussian copula. In

our application to a two-dimensional grid of locations in the northern North Sea, we

also account for possible anisotropy in the spatial domain given previous evidence of

this from other studies (Kereszturi et al., 2016; Ross et al., 2017a; Shooter et al.,

2019).

The article is presented as follows. In Section 6.2, we discuss the conditional

extremes model of Heffernan and Tawn (2004) and its spatial extension as proposed

by Wadsworth and Tawn (2019). Section 6.3 then summarises the inferential scheme

used for parameter estimation. Section 6.4 outlines the performance of our model

in application to a long-distance west-east zonal transect in the north Atlantic, and

to a two-dimensional spatial neighbourhood of locations in the northern North Sea.

Discussion and conclusions are given in Section 6.5.

6.2 Conditional extremes

6.2.1 Extremal dependence

A key issue in modelling spatial extremes is assessing the nature of dependence be-

tween extreme events; that is, if we observe an extreme event, we are interested in the

information provided by this event about the probability of observing further simulta-

neous extreme events. We naturally expect that over short distances, it is quite likely

that an extreme event being observed at one location may be related to an extreme
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observation at another. On the other hand, extremes observed at distant locations

are likely to be independent of one another. To quantify these effects, measures of

extremal dependence are utilised.

To describe extremal dependence, Coles et al. (1999) introduce the measures χ and

χ, most easily calculated through their sub-asymptotic forms χ(u) and χ(u), where

u ∈ [0, 1]. For bivariate Uniform random variables (U, V ), which may be obtained by

applying the probability integral transform, these are defined as

χ(u) = 2− logP(U < u, V < v)

logP(U < u)
and χ(u) =

2 logP(U > u)

logP(U > u, V > v)
− 1.

Then χ and χ may be obtained by taking the respective limits of these functions, as

u→ 1. The nature of extremal dependence between U and V may then be described

by considering χ and χ together. If χ = 0, then if −1 ≤ χ < 1, the random variables

are asymptotically independent, and the value of χ signifies the level of dependence.

On the other hand, if χ = 1 and 0 < χ ≤ 1, then the pair (U, V ) exhibit asymptotic

dependence, with χ providing a measure of this. For a full description of extremal

dependence types, we refer the reader to Ledford and Tawn (1996) and Coles et al.

(1999). Spatial extensions of these measures are discussed in Tawn et al. (2018).

6.2.2 Multivariate conditional extremes models

Suppose that we have a vector of random variables (X0,X), where X0 and X =

(X1, . . . , Xp) have Gumbel marginal distributions, again obtainable through the prob-

ability integral transform. Then Heffernan and Tawn (2004) assume that there exist
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functions a : R→ Rp, b : R→ Rp such that, defining

Z =
X− a(X0)

b(X0)
,

where all operations are taken to be componentwise, then we have that, for x > 0,

lim
u→∞

P(Z ≤ z, X0 − u > x|X0 > u) = G(z) exp(−x), (6.2.1)

where G is a joint distribution which has non-degenerate margins. This form for

the conditional extremes model is asymptotically justified; see Heffernan and Tawn

(2004); Heffernan and Resnick (2007) for details.

Keef et al. (2013a) show that if the margins of X are instead assumed to be

Laplace-distributed (obtainable through using the probability integral transform),

then canonical functional forms for a(·) and b(·) are a(x) = αx and b(x) = xβ (for

x > 0), where α = (α1, . . . , αp) and β = (β1, . . . , βp). In this representation, each

αi ∈ [−1, 1] and βi ∈ (−∞, 1]. Different values for these parameters correspond to

different classes of extremal dependence; this is discussed in the spatial case below,

but we note that we shall assume positive dependence in this work, and thus restrict

αi ∈ [0, 1], βi ∈ [0, 1] for all i ∈ {1, . . . , p}. Then, choosing some suitably high

threshold u, we have that for all x0 > u, the conditional extremes model may be

represented as

X|{X0 = x0} = αx0 + xβ0 Z, (6.2.2)

where Z is independent of X0, following from (6.2.1).
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6.2.3 Spatial conditional extremes

We may extend the model described in (6.2.2) to a spatial context, as described

by Tawn et al. (2018) and Wadsworth and Tawn (2019). Suppose that we have a

stationary and isotropic spatial process X(·) over some spatial domain S, which has

Laplace marginal distributions, and that we have sampling locations s, s0 ∈ S. Then

letting d = ‖s− s0‖ and assuming positive dependence between variables, we have in

general that, for all x0 > u,

X(s) | {X(s0) = x0} = α(d)x0 + x
β(d)
0 Z(s− s0), (6.2.3)

where α : R+ → [0, 1], β : R+ → [0, 1] and Z(·) is a residual process indepen-

dent of X(·). For inference purposes, if we have spatial data (X0,X) with X =

(X1, X2, . . . , Xp), observed at sampling locations s0, s1, . . . , sp, we let dj = ‖sj − s0‖

for j = 1, 2, . . . , p and then set αj = α(dj) and βj = β(dj).

We note that, in particular, we require particular conditions on the residual process

Z(·). To this end, we follow Wadsworth and Tawn (2019) and suppose that the process

Z(·) has delta-Laplace margins with parameters δ, σ, µ also dependent on d. That is,

adopting similar notation as for αj = α(dj), we have

fZj(zj) =
δ

2κjσjΓ
(

1
δj

) exp

{
−
∣∣∣∣z − µjκjσj

∣∣∣∣δj
}
,

for j = 1, 2, . . . , p, δj, σj, κj ∈ R+, µj ∈ R, zj ∈ R and where κ2
j =

Γ

(
1
δj

)
Γ

(
3
δj

) . Here, Γ(·)

represents the gamma function. The purpose of the parameter κj is to assist with

parameter identifiability, and note that the mean and variance of this distribution are

respectively µj and σ2
j , regardless of the choice of δj. We denote this distribution as
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DL(µj, σ
2
j , δj). With this notation, upon setting δj = 2, we have a Gaussian density

function, whereas setting δj = 1 leads to the density of a Laplace distribution. The

standard Laplace distribution, with variance 2, corresponds to the case σ2
j = 2 in our

notation.

Of particular importance is the requirement that as d → ∞, we approach per-

fect independence between X(s) and X(s0). Inspection of (6.2.3) suggests that we

should simply be left with random Laplace random variables; i.e., limd→∞ δ(d) = 1,

limd→∞ α(d) = limd→∞ β(d) = limd→∞ µ(d) = 0, limd→∞ σ(d)→
√

2.

Consider a vector of random variables X = (X0, . . . , Xp), corresponding to p + 1

spatial locations, with standard Laplace marginal distributions, i.e., Xj ∼ DL(0, 2, 1)

for j = 0, . . . , p. We then assume, conditional on X0 = x0, for x0 > u, that X follows

a multivariate extension of the delta-Laplace distribution,

(X1, . . . , Xp)|{X0 = x0} = αx0 + xβ0 Z,

where Z ∼ DLp(µ,σ
2, δ; Σ), with Σ representing a Gaussian copula dependence

structure via a correlation matrix between residual components, such that

FZ(z) = Φp

(
Φ−1(FZ1(z1)),Φ−1(FZ2(z2)), . . . ,Φ−1(FZp(zp)); 0,Σ

)
, (6.2.4)

where FY represents the cumulative distribution function of Y , and Φ is the cumulative

distribution function of a standard Gaussian distribution. Note that the (j, k)th

element of Σ is denoted by [Σ]j,k. Hence, marginally, Zj ∼ DL(µj, σ
2
j , δj), so that

Zj = Z
(DL)
j σj+µj, where Z

(DL)
j ∼ DL(0, 1, δj). WritingXc

j to representXj|{X0 = x0},

we have Xc
j = αjx0 + x

βj
0 Zj ∼ DL(mj, s

2
j , δj), where mj = αjx0 + x

βj
0 µj and
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sj = x
βj
0 σj. Hence,

Xc = (X|{X0 = x0}) ∼ DLp(m, s2, δ; Σ), (6.2.5)

where m = (m1,m2, . . . ,mp), s = (s1, s2, . . . , sp) and δ = (δ1, δ2, . . . , δp).

Model (6.2.5) is able to describe different types of extremal dependence, inferred

from the values of parameters (αj, βj) for j ∈ {1, . . . , p}. If (αj, βj) = (1, 0), then the

random variables X0 and Xj are asymptotically dependent, whereas if αj < 1, the

random variables exhibit asymptotic independence. Further discussion can be found

in Tawn et al. (2018).

6.2.4 Model parameter variation with distance

The p+1 measurement locations are assumed to have coordinates rj for j = 0, 1, . . . , p.

Parameters α, β, µ, σ, δ are assumed to be continuous functions of the distance between

a remote location (j = 1, 2, . . . , p) and the conditioning location (j = 0). Thus,

for example, αj = α(d(rj, r0)), where d(r, r′) is a measure of the distance between

locations r and r′. In addition, we assume that [Σ]jk = ρd(rj ,rk), for some ρ ∈ [0, 1].

Inspection of Equation (6.2.5) shows that, at zero distance, we must have α(0) = 1,

β(0) = 0, µ(0) = 0, and σ(0) = 0; since the distribution at zero distance will be a

point mass, we cannot quantify δ(0). Furthermore, the discussion in Section 6.2.3

suggests that we require specific behaviour for large distances. We therefore adopt

parametric forms for the variation of α, β and σ with distance, and piecewise linear

forms for the variation of µ and δ. Details are provided in Section 6.3.2.

We also anticipate a degree of anisotropy in the variation of model parameters
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between locations. For this reason, we also parameterise the distance function d such

that d(r, r′) ≡ d(r, r′;θ), for parameters θ to be estimated; details are provided in

Section 6.3.2.

6.3 Inference

6.3.1 Likelihood and MCMC

By (6.2.4) and accounting for the Jacobian, the joint density fXc(x) = P(X = x|X0 =

x0), with marginal distributions fXc
j

can be written

fXc(x) = φp (w1, w2, . . . , wp; 0,Σ)

p∏
j=1

fXc
j
(xj)

φ(wj)
, (6.3.1)

where φ denotes the standard Gaussian density, φp represents the p-dimensional Gaus-

sian density with given mean vector and correlation matrix, and wj = Φ−1{FXc
j
(xj)}

with xj ∈ R for j = 1, 2, . . . , p. From (6.3.1) above, the negative log-density is given

by

`(x;θ) = − log{fXc(x)}

= − log φp(w; 0,Σ)−
p∑
j=1

log fXc
j
(xj) +

p∑
j=1

log φ(wj),

where w′ = (w1, w2, . . . , wp).

Hence, the sample negative log-likelihood given a sample {xij}n,pi=1,j=0 is

` =
np

2
log(2π) +

n

2
log |Σ|+

p∑
j=1

log

(
2sjκΓ

[
1

δj

])
− n

p∑
j=1

log δj

+
n∑
i=1

{
w′iΣ

−1wi +

p∑
j=1

∣∣∣∣xij −mj

κjsj

∣∣∣∣δj +

p∑
j=1

log φ(wij)

}
, (6.3.2)
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where κ2
j = Γ(1/δj)/Γ(3/δj) for each j and w′i = (wi1, wi2, . . . , wip).

For parameter estimation, we use the negative log-likelihood (6.3.2) in an adap-

tive MCMC algorithm similar to that proposed by Roberts and Rosenthal (2009),

a variant of which was used in Shooter et al. (2019). Furthermore, as we assume

positive dependence, to ensure we obtain consistent parameter estimates, we use the

conditional extremes model constraints as detailed by Keef et al. (2013a); details of

how the constraints are applied in a spatial setting are provided in Section 5.8. Uni-

form prior distributions shall be adopted for model parameters; these are chosen so as

to permit only sensible ranges for the parameters, whilst being uninformative within

these ranges.

6.3.2 Parametric forms for α, β and σ

Previous studies (see Shooter et al., 2019) and further investigatory work have shown

that it appears reasonable to assume certain parametric forms for some of the pa-

rameters in model (6.2.5), namely α, β and σ. Furthermore, as detailed in Section

6.2.4, we expect certain behaviours of these parameters which assists in our choice of

parametric forms. Letting d be an arbitrary distance calculated using the anisotropic

distance measure d(·, ·) from Section 6.2.4, whilst noting an isotropic distance measure

could also be used, we thus propose the following parametric forms for α(d), β(d) and
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σ(d) for d > 0:

α(d) = exp

{
−
(

d

KA1

)KA2

}
(KA1, KA2 > 0);

β(d) =
KB1d

KB2 exp
(
− d
KB3

)
maxd>0

{
dKB2 exp

(
− d
KB3

)} (0 < KB1 < 1;KB2, KB3 > 0);

σ(d) =
√

2

{
1− exp

[
−
(

d

KS1

)KS2]}
(KS1, KS2 > 0).

Using these parametric forms, the full behaviour of α, β and σ with distance can

be inferred by estimating a small number of K parameters, even when the number

of locations, p, involved is large. This improves the computational tractability of

the inference considerably. Taking α(d) as an example, rather than estimating αj

separately for each remote location (i.e., p times), we simply need to estimate KA1

and KA2 using data across all locations. Hence, we reduce the number of parameters

to estimate for α,β and σ over all locations from 3p to just 7, whilst trying to ensure

that inference in both cases is similar. We evaluate these functions at each location

s1, s2, . . . , sp, as outlined in Sections 6.2.3 and 6.2.4.

Our parameterisation of α(d) does not admit asymptotic dependence, since α(d) 6=

1 for d > 0. A possible parametric form for α(d) able to capture such dependence

is described by Wadsworth and Tawn (2019), although for suitable large KA1 and

KA2 ≥ 2, then α(d) ≈ 1 for d ≈ 0. However, values of α near unity for non-zero

values of d were never observed during our analysis; the smallest distance we shall

consider is d ≈ 40km. Finer-scale grids of locations were not used in these analyses

but could be used in further studies. We also note that our form for σ(d) does not

permit observation of a nugget effect, but we do not see any evidence that this impacts
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the accuracy of our inference.

6.3.3 Parameterising µ and δ with distance

The constraints discussed in Section 6.2.4 and previous studies (see Shooter et al.

(2019)) suggest that the parametric forms in outlined in Section 6.3.2 are appropriate

to describe parameter behaviour with distance d for α, β and σ. We are less sure

about the behaviour of µ and δ with d. For this reason, we choose to specify this

behaviour non-parametrically, in terms of piecewise linear representations µ(d) and

δ(d). The specification of δ(d) is analogous to that of µ(d), described next. We specify

a set of nd equally-spaced distances dk, k = 1, 2, . . . , nd, covering the domain, with

corresponding values µk for µ, such that µk = µ(dk). Then, for an arbitrary distance

d ∈ (d1, dnd ], we define

µ(d) =
(d− dk∗)µk∗ + (dk∗+1 − d)µk∗+1

(dk∗+1 − dk∗)
, (6.3.3)

where k∗ = argmax
k
{dk < d}. Parameter estimates for µk, δk, k = 1, 2, . . . , nd, are

sought during inference. For d > dnd , we note that we are unable to model the

function using these piecewise forms, and analysis may not show the functions µ(d)

and δ(d) attaining their expected limits. We note that this form is similar in structure

to a linear spline (see de Boor, 1978 for details of this).

6.3.4 Incorporating anisotropy

Previous work (for example, Shooter et al., 2019) has shown that the spatial extremal

dependence of storm severity exhibits some anisotropy. To investigate this further
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in the current work, we choose to represent the distance between two locations with

coordinates r and r′ as

d(r, r′; ν1, ν2) =
(
(r′ − r) S−1 (r′ − r)

′)1/2
(6.3.4)

where S =

 1 ν2

ν2 ν1

 with ν1 > 0 and ν1− ν2
2 > 0; the parameters ν1 and ν2 are to be

estimated. Isotropy corresponds to the case ν1 = 1, ν2 = 0.

Locations of points on the surface of the Earth are typically specified in terms

of longitude-latitude coordinates. Temporarily adopting oceanographic notation, the

shortest distance (e.g. in metres) on the surface of a spherical Earth between locations

with longitude-latitude coordinates (λ, ϕ) and (λ′, ϕ′) can be calculated using the

spherical law of cosines. In the current work (see Equation (6.3.4)) we characterise

spatial anisotropy in terms of a quadratic form in the Cartesian x and y components of

displacement between locations. It is therefore convenient to adopt a local Cartesian

description of displacement on the surface of a sphere, following e.g. Vallis (2017).

For locations with longitude-latitude coordinates (λ, ϕ) and (λ′, ϕ′), we locate the

local origin of coordinates at
(
λ̄, ϕ̄

)
= ((λ+ λ′)/2, (ϕ+ ϕ′)/2), with x axis running

West-East (in the Northern Hemisphere) and y axis poleward. Then, to a good

approximation when |λ′ − λ| and |ϕ′ − ϕ| are small, the local Cartesian displacement

between the points can be written

r′ − r = (a cos(ϕ̄)(λ′ − λ), a(ϕ′ − ϕ)) , (6.3.5)

where a is the radius of the spherical Earth. We adopt this model to estimate the

distance between all pairs of locations in this work.
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6.4 Applications

6.4.1 Significant wave height data

We apply our spatial conditional extremes model to two data sets: one corresponding

to a long west-east zonal transect, and the other from a spatial grid in the northern

North Sea. The first sample is comprised of hindcast values of storm peak significant

wave height at a total of 274 locations on a west-east transect of near-constant lati-

tude of approximately 63◦N passing to the south of Iceland and the north of the Faroe

Islands, for longitudes from approximately −25◦ to +5◦, extending from west of Ice-

land to the Norwegian coast, a map of this is depicted in Figure 6.4.1. The data were

taken from the NORA10 hindcast (Breivik et al., 2013). At each location, marginal

directional-seasonal extreme value analysis of storm peak values was performed as

described in Shooter et al. (2019), and the storm peak data subsequently transformed

to standard Laplace marginal scale. A subset of 40 approximately equally-spaced lo-

cations was selected for the spatial conditional extremes analysis reported here. Since

the locations lie on a line of constant latitude, complications of spherical trigonometry

do not arise, and we are free to use differences between longitudes of locations as a

measure of distance. We choose the conditioning point to be the most westerly point

on the transect, marked red in Figure 6.4.1.
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Figure 6.4.1: Map of the conditioning site (coloured red) and remote sites (black) for

the North Atlantic long transect analysis.

The second sample corresponds to hindcast values of storm peak significant wave

height at a total of 150 locations in a spatial neighbourhood of the northern North Sea,

between the UK and Norway, previously reported by Ross et al. (2017a) and Shooter

et al. (2019). The data were taken from the NEXTRA hindcast (Oceanweather,

2002). At each location, marginal directional-seasonal extreme value analysis of storm

peak values was performed as described in Shooter et al. (2019), and the storm peak

data transformed to standard Laplace marginal scale. A subset of 40 approximately

equally-spaced locations was selected for the spatial conditional extremes analysis

reported here, as illustrated in Figure 6.4.2.
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Figure 6.4.2: Map of the conditioning site (coloured green) and remote sites (red) for

the North Sea ocean basin. Sites not used in this analysis are coloured black.

6.4.2 Results

North Atlantic zonal transect

The MCMC algorithm, using the anisotropic version of our model, outlined in Section

6.3.1 was executed for 50000 iterations, with convergence occurring at approximately

30000 iterations. Results displayed here correspond to the final 1000 iterations, al-

though we note that the MCMC chain was judged to have converged before this point.
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Marginal summaries of posterior distributions of parameters with distance are shown

in Figure 6.4.3. The solid black line indicates the posterior median, with the 95%

credible interval shown by dashed lines, corresponding to an analysis using a thresh-

old with non-exceedance probability 0.9 at the conditioning location. Figure 6.4.4

shows an expanded view of Figure 6.4.3 for distances d < 180km; α(d) > 0.4 for this

interval of d, suggesting that extremal dependence is fairly strong for distances of this

order. Referring to Figure 6.4.3, by the end of the transect, for d > 1100km, we ob-

serve values of (α(d), β(d)) near zero, which suggests almost complete independence

at these distances. For d > 200km, the piecewise linear form for µ(d) is decreasing

with d, and at a distance of d = 1200km, appears to be near zero. Our functional

form for σ(d) increases to its limiting value of
√

2 quickly, suggesting independent

Laplace residuals for d > 70km, as seen in Figure 6.4.4. This characteristic coincides

with relatively low values of δ(d), particularly for d > 300km. For some d, δ(d) has

credible intervals with lower bounds truncated at δ(d) = 1, stemming from our choice

of prior distribution. Hence, it is possible that allowing more flexibility in the domain

of δ(d) could be considered. In this analysis, the posterior value of ρ was found to be

approximately 0.98; this corresponds to a linear correlation value of 0.44 at a distance

of 1200km.
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Figure 6.4.3: Parameter estimates, with distance d for the North Atlantic long transect

analysis. The solid black line represents the posterior median, with dashed lines

representing the upper and lower limits of the 95% posterior credible interval, for (a)

α(d), (b) β(d), (c) µ(d), (d) σ(d) and (e) δ(d).
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Figure 6.4.4: Parameter estimates, with distance d (for d < 180km) for the North

Atlantic long transect analysis. The solid black line represents the posterior median,

with dashed lines representing the upper and lower limits of the 95% posterior credible

interval, for (a) α(d), (b) β(d), (c) µ(d), (d) σ(d) and (e) δ(d).

North Sea ocean basin

The MCMC scheme was executed for 50000 iterations, with convergence occurring at

approximately 25000 iterations. Posterior distributions of parameters are estimated

here based on the final 1000 iterations. A threshold value at the conditioning site

corresponding to the 0.85 Laplace quantile was used. Marginal summaries of the pos-

terior dsitributions of parameters with distance are shown in Figure 6.4.5; solid lines

show the posterior median and dashed lines indicate the upper and lower limits of the

95% posterior credible interval. In this figure, we display distance d using the local

Cartesian coordinate frame using (6.3.5), assuming isotropy. In Figure 6.4.5, we see
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fairly rapid decay of α(d), with α(50km) ≈ 0.6 and α(d = 300km) ≈ 0.1. The param-

eter β(d) increases with distance initially, reaching a maximum of approximately 0.36

at d ≈ 130km, and then decays. The value of µ(d) increases with d, whereas the value

of δ decreases towards unity (the lower limit for its Uniform prior distribution). The

parameter σ(d) follows the specified functional form, but does not reach its limit value

of
√

2 within the spatial range of this analysis. The posterior medians of anisotropy

parameters ν1 and ν2 are approximately 1.04 and 0.0 respectively, indicating a small

degree of anisotropy, consistent with the behaviour seen in Shooter et al. (2019). The

95% credible intervals for the parameters ν1 and ν2 were approximately (1.01, 1.10)

and (−0.04, 0.04) respectively. Indeed, the behaviour of α(d) and β(d) is similar to

that seen for north-south transect analysis of this ocean basin in Shooter et al. (2019),

but rather different to the east-west transect results from that paper.
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Figure 6.4.5: Parameter estimates, with distance d for the North Sea ocean basin

analysis. The solid black line represents the posterior median, with dashed lines rep-

resenting the upper and lower limits of the empirical 95% posterior credible interval,

for (a) α(d), (b) β(d), (c) µ(d), (d) σ(d) and (e) δ(d).

6.5 Conclusions

In this work, we use a spatial conditional extremes model to study ocean storm

severity in the North Sea and the North Atlantic. The model describes marginal

non-stationarity with respect to storm direction and season, and captures spatial

anisotropy of the extremal dependence structure. The spatial conditional extremes

model incorporates inter-location distance-dependent parameters, some represented

as linear piecewise functions, others with pre-specified parametric forms. These al-

low asymptotic dependence at short inter-location distances, leading to asymptotic
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independence, and eventually perfect independence, as distance increases. We allow

flexible modelling of the residual distribution via a generalised Gaussian distribution,

in preference to the Gaussian assumption used in previous work.

The importance of allowing for different forms of extremal dependence with dis-

tance is illustrated in Figure 6.5.1, which shows observations (in black) from the long

zonal transect in the North Atlantic, with values of≈ 4 at the conditioning, on Laplace

scale. The mean value of the response at remote locations decreases with increasing

distance, indicative of asymptotic independence. Under the assumption of asymp-

totic dependence, often made in spatial extremes modelling (e.g. using max-stable

processes), the mean would be expected to return to the value of ≈ 4 (the grey line),

at some finite distance. Realisations drawn under the estimated spatial conditional

extremes model, admitting asymptotic independence are given in red; these appear

to be consistent with the observations. We note that the greater smoothness of the

red simulated processes compared to the observed processes is due to including all

sampling locations across the transect for the observations, whilst only simulating

data at the subset of sites which have been chosen for fitting the spatial conditional

extremes model.

The current work suggests a number of potential avenues for further method devel-

opment and application. From a methodological perspective, we are keen to make the

spatial conditional extremes formulation consistent with our expectations regarding

the spatial variation of extreme ocean storms. This probably requires more sophis-

ticated representations of covariate effects within the spatial conditional extremes

model, consistent with the quality of observational and calibrated simulator data
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available. From an applications perspective, the approach would appear to be ideally

suited for characterisation of spatial ocean surface roughness, as measured by satellite

altimetry (Young and Ribal, 2019).

Figure 6.5.1: Simulated processes (red) from our fitted spatial conditional extremes

model, using median values of the model parameters from the last 1000 iterations of

the MCMC chain, and observed processes (black), conditioned on value of X0 ≈ 4

for simulated data, and between 0.985 and 0.995 Laplace quantiles for observed data.

The grey line shows the mean of the values of X0 conditioned upon.



Chapter 7

A Bayesian spatio-temporal model

for precipitation extremes STOR

team contribution to the EVA2017

challenge

7.1 Introduction

Recently, there have been numerous examples of devastating rainfall events - these

include Storm Desmond, which hit northern England and Scotland, and Hurricane

Harvey which affected the southern United States. In both cases, a large amount

of damage and disruption was caused by severe flooding. By better understanding

the probability of extreme rainfall events occurring, we can prepare more suitably for

these potential flood events by adapting infrastructure appropriately.

204



CHAPTER 7. EVA2017 CHALLENGE 205

The challenge data is comprised of precipitation readings for multiple weather

stations in the Netherlands; the training set consists of data collected between 1972

and 1995 whilst the validation set was collected from 1996 to 2016, with different

numbers of observations for each site. A detailed description of the data is provided

in Wintenberger (2018). The aim of the competition is to predict extreme quantiles

for the years 1996 to 2016 and predictions are assessed via a predefined error metric;

see Wintenberger (2018).

There exists a rich literature within the extreme value theory framework for mod-

elling precipitation extremes. A classical approach is to utilise block maxima. Sup-

pose that we have independent and identically distributed (i.i.d.) random variables

X1, . . . , Xn, with Mn = max{X1, . . . , Xn}. When normalised appropriately, and as

n → ∞, Mn follows a generalised extreme value (GEV) distribution (Fisher and

Tippett, 1928), which has distribution function

F (x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

}
,

where {z}+ = max{0, z}, and has parameters (µ, σ, ξ) ∈ R× R+ × R, corresponding

to location, scale and shape parameters respectively.

An alternative technique is to follow Pickands (1975) and use exceedances of a

threshold u. For some suitably large u, the conditional distribution function of (Xi−

u) | (Xi > u) is approximately given by the generalised Pareto distribution (GPD),

which has the form

H(x) = 1−
(

1 +
ξx

ψ

)− 1
ξ

+

, x > 0, (7.1.1)

where (ψ, ξ) ∈ R+×R are the scale and shape parameters respectively. In the context
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of the challenge at hand, both the GEV and GPD may be fitted separately at each

site to give a model fit whereby any dependence is ignored.

By considering the physical process of rainfall, one can expect that nearby locations

will exhibit similar behaviour, which invites improved inference by sharing information

across sites. One popular method for the modelling of spatial extremes is to use max-

stable processes (Brown and Resnick, 1977; Smith, 1990; Schlather, 2002). These arise

as the limiting process from replications of spatial processes which have been suitably

normalised (de Haan, 1984) and have been used to analyse rainfall data previously;

see, for example, Davison et al. (2012) and Reich and Shaby (2012). However, such

processes assume dependence of the extremes across sites; an investigation of pairwise

dependence using scatter plots showed no clear evidence for this behaviour across the

spatial grid. Moreover, max-stable models are difficult to fit and this would have been

further impeded by the lack of data available at some sites.

Another approach is to impose spatial structure on the model parameters via

a Bayesian hierarchical model; this is closer in nature to the method we propose.

Spatial hierarchical models have been used previously to model spatial count data

(Diggle et al., 1998) and, more recently, have been utilised in extreme value analysis.

Cooley et al. (2007) describe a model, applied to rainfall data, whereby a GPD is

fitted at the sampling locations, and allow the model parameters to vary according

to a spatial process structure - in particular the authors use a Gaussian process for

this. A spatio-temporal hierarchical modelling method for extreme events is given by

Sang and Gelfand (2009), who apply their methods to precipitation data.

In this paper, we define a Bayesian hierarchical model which accounts for the
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spatial and seasonal variation in the data. Our approach captures the frequency of

non-zero events of precipitation and introduces an extremal mixture model, combining

gamma and generalised Pareto distributions, for positive amounts of rainfall. Spatio-

temporal structure in the parameters for the extremal mixture model is imposed via

a separate autoregressive prior for each of them, which takes the form of a Gaussian

Markov random field. Model estimates are then obtained using spatial interpolation

and Markov chain Monte Carlo (MCMC) techniques. Cooley et al. (2007) defines a

similar approach for continuous space, whereas we consider a finite number of sites

and additionally incorporate seasonality.

The remainder of this article is structured as follows. Section 7.2 details our

Bayesian framework and its estimation: in Sections 7.2.1 and 7.2.2 respectively, we

specify our likelihood and prior models; in Section 7.2.3, we discuss parameter estima-

tion. In Section 7.3, we discuss the results obtained using our method for modelling

rainfall extremes, and highlight areas for potential improvements.

7.2 Methodology

7.2.1 Likelihood

Interest lies in modelling the daily rainfall amounts for each site and month. Due to

seasonality in the rainfall data, the weak extremal dependence of the daily amount

of rainfall across sites and the nature of the challenge, we model each month and site

individually. Specifically, daily rainfall events within a month at a site are assumed

to be i.i.d. Our model is motivated by an analysis of the sites for which data have
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been recorded for at least five years.

Let Rj,m denote the random variable corresponding to the daily rainfall amount

at site j for a day in month m = 1, . . . , 12. We consider the transformed random

variable

R̃j,m = log (1 +Rj,m) . (7.2.1)

Wadsworth et al. (2010) show that such a transformation may increase the rate of

convergence of the distribution tails to an extreme value form, in particular for distri-

butions which appear as heavy-tailed as our rainfall data. Predictions on the extreme

quantiles of Rj,m are later obtained in Section 7.3 by reversing this transformation.

We note that the transformed observations are non-negative and an observation of

Rj,m = 0 remains unchanged.

We infer on the distribution of R̃j,m by defining a hierarchical model. The first

model component considers occurrences of non-zero amounts of rainfall on a day,

R̃j,m > 0, and we denote their probability by pj,m. A temporal trend in pj,m was

investigated, but we did not find evidence of this for any site. Next, we consider the

distribution R̃j,m | (R̃j,m > 0). There exists a rich literature on modelling positive

rainfall amounts, such as Wilks (2006), So et al. (2015) and Yunus et al. (2017). By

investigating QQ plots, we find that an estimated gamma distribution works quite well

for non-extreme amounts of precipitation. However, most of the observed monthly

extremes are not captured well.

To improve the model fit, we define an extremal mixture model (Frigessi et al.,

2002; Behrens et al., 2004; MacDonald et al., 2011) which combines the gamma distri-
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bution with a GPD as defined in (7.1.1). Given a threshold uj,m, R̃j,m | (R̃j,m ≤ uj,m)

follows a truncated gamma distribution, while R̃j,m | (R̃j,m > uj,m) is generalised

Pareto distributed. Formally, let Gj,m ∼ Gamma (αj,m, βj,m) with shape αj,m and

rate βj,m, and Hj,m ∼ GPD (ψj,m, ξj,m) with scale ψj,m = ψ̃j,m − ξuj,m and shape

ξj,m. The reparametrisation of the scale parameter in Hj,m removes the effect of the

threshold on inference and has been used in previous studies (Fawcett and Walshaw,

2006). Then, the cumulative distribution function of R̃j,m | (R̃j,m > 0) is given by

P
(
R̃j,m > r | R̃j,m > 0

)
=


P (Gj,m > r) r ≤ uj,m,

P (Gj,m > uj,m)P (Hj,m > r − uj,m) r > uj,m.

(7.2.2)

Combining the model components defined above, the event R̃j,m > r, for r > uj,m,

occurs with probability

P
(
R̃j,m > r

)
= pj,mP (Gj,m > uj,m)P (Hj,m > r − uj,m) .

Due to the empirical mean of Rj,m | (Rj,m > 0) being similar for all j, we fix αj,m, m =

1, . . . , 12 in the gamma distribution to be constant across sites and, thus, refer to this

parameter as αm in the rest of this paper.

7.2.2 Prior model

Prior selection is critical in this analysis due to the varying degrees of data availability

at each site; inference at sites where data are lacking or unavailable will be dominated

by the prior distribution. We considered uninformative, improper uniform priors on

logαm, log βj,m, log ψ̃j,m and ξj,m. However, these produced unrealistic estimates of
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ξj,m, mostly due to the difficulty in estimating ξj,m given short data records. Studies

on extreme rainfall often feature the prior used in Martins and Stedinger (2000) which

constrains the shape parameter to be in a sensible interval.

We instead introduce a prior aimed at exploiting the spatial and seasonal structure

of the model parameters. We assume that parameters for neighbouring sites and

adjacent months are likely to be similar. Explicitly, we propose for φj,m, an arbitrary

parameter at site j and month m, that

φj,m ∼ N

(
φj,m−1 + φj,m+1 +

∑
j′ 6=j φj′,mdj,j′

2 +
∑

j′ 6=j dj,j′
,

1

(2 +
∑

j′ 6=j dj,j′)τφ

)
, (7.2.3)

where τφ > 0 denotes the precision for parameter φ, common to all sites and months,

where φ is one of our model parameters. The constant dj,j′ ≥ 0 describes our prior

belief concerning the degree of similarity of φj,m and φj′,m. This prior is a variant of the

Intrinsic Autoregressive (IAR) prior as described in Banerjee et al. (2004) and allows

us to pool information across neighbouring sites and months, which helps to produce

more stable parameter estimates and to reduce uncertainty in these estimates. The

cyclical nature of the sequence of months means that values 0 and 13 for m− 1 and

m+ 1 should be replaced by the values 12 and 1 respectively in order to ensure that

December and January are correctly identified as being adjacent months. We define

a flat, conjugate Gamma(1, 0.001) prior for τφ.

7.2.3 Threshold selection and estimation

We detail our approach to estimate the model defined in Sections 7.2.1 and 7.2.2 in

the following. First, we consider pj,m, which can be estimated independently from the
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remaining parameters due to the hierarchical model structure. Next, the selection of

the thresholds uj,m is described. Finally, we infer on the remaining model parameters

via an MCMC algorithm which is outlined at the end of this subsection.

For sites with more than five years of data, we estimate pj,m empirically due to

the high number of observations available. We infer on the remaining sites via spatial

interpolation. Let J denote the indices of the sites with at least five years of data.

We further define a pairwise weighting between arbitrary sites j and j′ by introducing

the weight

dj,j′ = exp (−‖xj − xj′‖) , (7.2.4)

where xj denotes the longitude and latitude coordinates of site j and ‖·‖ corresponds

to the Euclidean distance. As the study region is small, the curvature of the earth

is negligible and the Euclidean distance in the two-dimensional space is close to the

true distance between the sites. Then for a site j /∈ J , the estimate p̂j,m for pj,m is

derived as

p̂j,m =
∑
j′∈J

dj,j′ p̂j′,m. (7.2.5)

The weights dj,j′ defined in (7.2.4) are identical to the ones which we set in the prior

density (7.2.3). As the weighting function (7.2.4) produces larger values for locations

close together, a higher weight is given to neighbouring sites.

We now consider how to select the thresholds, uj,m, of our model (7.2.2). These

thresholds must be large enough for the asymptotic argument of Pickands (1975) to

approximately hold whilst also low enough so that we have a sufficient number of

observations for reliable model fitting. We use the classical fixed threshold approach
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as described in Coles (2001) for the sites in J . Specifically, by inspection of threshold

stability plots, we find the smallest threshold above which the GPD is an appropriate

model for the exceedances. For the other sites, we estimate these thresholds in an

equivalent manner to (7.2.5). Other threshold selection methods are outlined by

Scarrott and MacDonald (2012).

The parameters of our gamma-GPD mixture model are estimated using MCMC

methods. We sample from the posterior distribution using a Metropolis-within-Gibbs

scheme. In particular, proposal values of each parameter are generated sequentially

from a Gaussian distribution and accepted with a probability defined as the posterior

ratio of the proposed state relative to the current state of the Markov chain. The

hyperparameter τφ in (7.2.3) is updated by sampling from the full conditional Gamma

posterior as described by Knorr-Held (2003). We tune the parameters of the MCMC

algorithm to ensure an acceptance rate of 20-25% in accordance with the optimality

criterion of Roberts et al. (1997).

7.3 Results and discussion

We begin this section by considering the results of the MCMC implementation. We

run our MCMC chains for 20000 iterations, and discard the first 5000 iterations as

burn-in to aid convergence. Examples of the chains produced are provided in Fig-

ure 7.3.1 for scale and shape parameters ψ10,6 and ξ10,6. Estimates of these parameters

were obtained using the posterior means of their respective MCMC chains. These plots

demonstrate that good mixing has been achieved for this case; similar results were
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obtained across other stations and months.
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Figure 7.3.1: MCMC chains for the scale and shape parameters for station 10 in June.

We now explore the monthly variation in the estimated model parameters by fo-

cussing on results at four nearby stations. The locations of these stations are shown

in the top left panel of Figure 7.3.2. The data set contains over 8000 observations

for stations 2 and 5, and no observations for stations 7 and 10. The top right and

bottom left panels of Figure 7.3.2 show our estimates of the scale and shape param-

eters, respectively, at these four locations. These plots demonstrate the seasonality

in the parameter estimates, with higher values of both the scale and shape generally

corresponding to summer and autumn months. This effect is maintained in the pre-

dicted 0.998 quantiles, shown in the bottom right panel of Figure 7.3.2, which are

typically highest between June and October. A similar trend was observed at other

sites, particularly those with limited data where estimates are more heavily influ-
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enced by information from other locations, due to the spatial smoothing imposed by

the model.
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Figure 7.3.2: Location of stations 2, 5, 7 and 10, as well as estimates of the corre-

sponding scale and shape parameters and predicted 0.998 quantiles.

We now consider our estimates in the context of the competition, which used

the quantile loss function by Koenker (2005). In particular, as in the challenge,

we consider the percentage improvement provided by our method over benchmark

predictions. The competition was split into two challenges: Challenge 1 involved

only sites where observations were available, with the benchmark quantile estimates

being given by the monthly maxima at each station; Challenge 2 included predictions
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for all sites, with the benchmark for those sites with no data being taken as the

average of the quantiles predicted in Challenge 1 for each month. Our method gave a

59.9% improvement over the benchmark for Challenge 1, and a 57.7% improvement

for Challenge 2. Table 7.3.1 shows the performance of our approach using this same

metric, but with the results separated by month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Challenge 1 57.7 71.1 60.0 65.0 43.7 62.8 65.9 77.0 38.7 38.4 52.2 33.4

Challenge 2 54.4 69.3 57.4 61.9 43.1 60.7 64.2 75.4 37.9 36.4 49.3 31.3

Table 7.3.1: Percentage improvement over the benchmark for Challenges 1 and 2

across each month.

As is to be expected, our method performed better in Challenge 1, where only

predictions for sites with observations were considered, across all months. Looking

at these results separately for each month allows us to identify possible areas for im-

provement. In particular, the scores for September, October and December are lower

than for other months, suggesting that the method could be improved by focussing

on the modelling of autumn and winter months.



Chapter 8

Conclusions and further work

The results presented in this thesis show that the accurate modelling of the dependence

structure and behaviour of environmental extremes is quite complex in nature. In

applications, this behaviour can have a large impact on assessing the probability of

extreme events of a specific magnitude occurring; this could, for example, provide

information for the design criteria for offshore structures.

In Chapters 4, 5 and 6, we provided details of a conditional spatial extreme value

model which is able to capture the two limiting extremal dependence types as the

distance between points change. Previous spatial models have not had this capabil-

ity. Inference from the model is relatively straightforward, based around a non-linear

regression framework. This has been incorporated into a Bayesian methodology, pro-

viding more computational flexibility than maximum likelihood techniques, the latter

of which proved to be difficult to fit due to the large number of parameters contained

in this spatial model.

The models we have described also have a theoretical underpinning with as few

216
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strong modelling assumptions used as possible, particularly in Chapter 7, where a

simple model for prediction of extreme quantiles of rainfall was constructed in a rela-

tively straightforward manner. It is encouraging that the results of Chapter 6 for the

long transect in the north Atlantic appear to largely exhibit the expected theoretical

results, such as standard Laplace random variables, asymptotically independent of

extreme events at the conditioning location, being obtained at large distances, and

suggests that the spatial conditional extremes models are suitable from this perspec-

tive.

One major issue highlighted here is that the typical assumption of asymptotic

dependence across all sites in a spatial field appears to be inappropriate for the data

we have considered here. In particular, it appears that even at short distances between

sites we do not observe asymptotic dependence for significant wave height data in the

North Sea and north Atlantic Ocean. It may be anticipated that other environmental

data sets, such as extremes of temperature may indeed see such behaviour; if this were

the case then the lag-asymptotically dependent modelling proposals of Wadsworth and

Tawn (2019) may prove useful in modelling such data.

We have also shown that when dealing with spatial data, the assumptions made

when modelling have a significant impact on inference. For instance, our model in

Chapter 5 suggests that there is indeed a significant difference in dependence struc-

ture when comparing east-west transects in the North Sea with north-south transects.

However, in Chapter 6, we find that after transformation of the coordinates using a

local Cartesian framework, the difference in dependence is possibly lower with di-

rection, perhaps due to the difficulty of capturing anisotropic behaviour in this way;
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investigation of this apparent effect would be scope for further work in utilising this

distance metric.

In various chapters, we have also focussed on the computational aspects of the

modelling procedure. In Chapter 3, we showed that the use of a censoring scheme

motivated by the assumption of asymptotic independence did indeed mean that the

computational time was significantly reduced, but at the cost of a relatively large

increase in the bias of the estimated parameters; suggesting that care is necessary

when implementing censored likelihoods for extremes. Furthermore, in Chapter 6, we

suggest the use of linear piecewise functions within the conditional spatial extreme

value model presented in Chapter 4 in order to reduce the number of parameters to

estimate; if the model described in Chapter 5 were used on the full two-dimensional

grid of locations in the North Sea used in these chapters, the computational expense

would be huge. Computational efficiency is important in the applications that have

been considered, since decisions on infrastructure may need to be made across a large

number of locations.

Other future development work on the spatial conditional extremes models which

we present here may include the incorporation of spatial pooling, such as that high-

lighted in Chapter 5, into the model presented in Chapter 6. However, the obvious

practical implication of this would be that the computational time required to fit the

spatial conditional extremes model would be multiplied by the number of sites to

be pooled over; indeed, this has been found to the case when initially attempting to

implement this on the model. As such, an efficient method of pooling, or one where

enough information can be gained to make the additional computing time worthwhile,
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would be highly desirable should spatial pooling methods be implemented.

Another avenue of research could be the use of splines to model the spatial con-

ditional extremes model parameters, similar to methods used by Jones et al. (2016)

and Randell et al. (2016) for example, which can be viewed as an extension of the

use of linear piecewise functions in Chapter 6. A benefit of using splines is that such

methods may allow a more flexible structure in the spatial conditional extreme value

model parameters as they change with distance. Moreover, the concept of using linear

piecewise functions in Chapter 6 could be expanded by modelling all of the spatial

conditional extremes model parameters using either splines or linear piecewise func-

tions. By doing this, we would relax our assumptions that the parameters should

take particular forms and allow a more flexible model. However, it is possible that in

allowing more flexibility parameter identifiability may suffer; in the work for Chapter

5, it was seen that it was difficult to obtain similar values for some of the model

parameters from different model fits without parametric forms being imposed. Thus,

extra constraints on the parameters may be required if using such models does not

permit physically sensible solutions.

The incorporation of covariates into the two-dimensional conditional spatial ex-

tremes model presented in Chapter 6 could also be investigated. An obvious starting

point for this would be to allow the spatial dependence structure to change with di-

rection. For instance, Chapter 5 suggests that there may a difference of extremal

dependence behaviour of significant wave height in the northern North Sea in a west-

east direction compared to a north-south direction; this behaviour is also suggested

by Kereszturi et al. (2016) and Ross et al. (2017a), for example. Whilst the model
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presented in Chapter 6 attempts to describe such effects by utilising a matrix to in-

corporate anisotropy, the model fitted to the northern North Sea data appears to

suggest only a small difference in the dependence structure with direction. Since the

parameters of this matrix may be difficult to estimate accurately, the use of covariate

effects in the spatial conditional extremes model may provide a better assessment

of the dependence structure in such applications; Jonathan et al. (2013) and Win-

ter et al. (2017) propose methods of incorporating covariates into the Heffernan and

Tawn (2004) conditional extremes model for instance. Moreover, by utilising covari-

ates, the change of extremal behaviour with direction may be more explicitly defined

with simpler interpretation of results from the model.
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