

Tansley insight

C₂ photosynthesis: a promising route towards crop improvement?

Marjorie R. Lundgren

Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK

Author for correspondence Marjorie R. Lundgren Tel: +44 (0) 1524 593078 Email: m.lundgren@lancaster.ac.uk

Received: 10 December 2019 Accepted: 8 February 2020

ORCID

Marjorie R. Lundgren https://orcid.org/0000-0002-2489-3646

Summary (120 max)	116
Main body (2000 max)	2492
Number of figures (colour)	2 (both colour)
Number of tables	2
Number of boxes	0
Supporting information files	1

Contents

Summary

- I. Introduction
- II. Diversity and distribution of C_2 photosynthesis
- III. C₂ photosynthesis is a stable evolutionary state
- IV. C₂ photosynthesis is a tractable route to improve food security
- V. Engineering C_2 photosynthesis should convey benefits to C_3 crops
- VI. Conclusions

Acknowledgements

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/NPH.16494</u>

References

Summary

 C_2 photosynthesis is a carbon concentrating mechanism that can increase net CO_2 assimilation by capturing, concentrating, and re-assimilating CO_2 released by photorespiration. Empirical and modelling studies indicate that C_2 plants assimilate more carbon than C_3 plants under high temperature, bright light, and low CO_2 conditions. I argue that engineering C_2 photosynthesis into C_3 crops is a promising approach to improve photosynthetic performance under these, and temporally heterogeneous, environments and review the modifications that may re-create a C_2 phenotype in C_3 plants. While a C_2 engineering program would encounter many of the same challenges faced by C_4 engineering programs, the simpler leaf anatomical requirements make C_2 engineering a feasible approach to improve crops in the medium term.

Key words: bundle sheath cells, C_2 photosynthesis, C_3 - C_4 intermediate, carbon concentrating mechanism, crop improvement, food security, glycine shuttle, photorespiratory CO_2 pump

Accepted

I. Introduction

Plants have evolved an extraordinary diversity of approaches to perform the carbon fixation pathways of photosynthesis that facilitate their expansion broadly across all of the Earth's biomes. Most plants use only C_3 photosynthesis, in which Rubisco binds CO_2 to initiate the Calvin-Benson cycle within the chloroplasts of mesophyll cells (Fig. S1). However, more than a quarter of this assimilated CO_2 can be later lost to photorespiration, the metabolic pathway initiated when Rubisco binds O_2 instead of CO_2 . While photorespiration has been co-opted for a variety of metabolic functions, it releases previously assimilated carbon and nitrogen and is energetically costly (Eisenhut *et al.*, 2019). Photorespiration is exacerbated in hot, arid, bright, and saline conditions, where the concentration of CO_2 compared to O_2 decreases around Rubisco and is further compounded by Rubisco kinetics favouring oxygenation at high temperatures. In response, some plant lineages have evolved carbon concentrating mechanisms (CCMs) to improve net carbon assimilation in these high photorespiration environments.

 C_2 photosynthesis, also called the glycine shuttle and photorespiratory CO₂ pump, is a simple CCM that captures, concentrates, and re-assimilates CO₂ released by photorespiration (Fig. S1). The peculiar phenotype of C₂ plants was first identified 45 years ago (Kennedy & Laetsch, 1974); however, the biochemistry behind these plants was not proposed (Monson *et al.* 1984) nor fully understood (Rawsthorne *et al.*, 1988) for a decade or more. It is now understood that glycine decarboxylase (GDC) is functional only in the bundle sheath cells of C₂ plants, such that this CCM works by shuttling photorespired glycine from the mesophyll peroxisomes into the bundle sheath mitochondria for decarboxylation (Fig. S1). This shuttle releases CO₂ in the bundle sheath compartment, approximately tripling the CO₂ concentration (Keerberg *et al.*, 2014) and facilitating its re-assimilation via the Calvin-Benson cycle within bundle sheath chloroplasts. Therefore, the C₂ CCM supplements C₃ photosynthesis to improve the re-assimilation rate of photorespired CO₂ and boost net CO₂ assimilation in warm, bright, and low CO₂ conditions (Bellasio & Farquhar 2019). Throughout the paper, the term 'C₂ photosynthesis' specifically refers to the use of this glycine shuttle, however, it should be noted that some C₂ species also engage a weak C₄ photosynthesis system (Sage *at al.*, 2014).

II. Diversity and distribution of C₂ photosynthesis

 C_2 photosynthesis has been identified in over 50 species from 4 monocot and 16 eudicot lineages representing 11 plant families, including the agriculturally important Poaceae, Brassicaceae,

Asteraceae, and Amaranthaceae (Table 1). However, only one crop species, the salad green arugula (*i.e.*, rocket; *Diplotaxis tenuifolia*, Brassicaceae) has been identified to use C_2 photosynthesis. However, C_2 photosynthesis is likely used by more species than current records indicate. This is partially because the phenotype is difficult to identify, as a clear confirmation of C_2 photosynthesis requires multiple lines of evidence, including assessments of immunohistochemistry, leaf ultrastructure, and CO₂ compensation point (*e.g.*, Khoshravesh *et al.* 2016). Moreover, high intraspecific and intraplant photosynthetic diversity and plasticity exists in C_2 lineages (*e.g.*, Sayre and Kennedy 1977; Lundgren *et al.*, 2016), likely hindering confirmation of C_2 species further.

As a group, C_2 species are broadly distributed in geographical and ecological space, having been recorded across all major plant biomes and in every continent except Antarctica (Lundgren & Christin, 2017). However, while some C_2 lineages are remarkably widespread (*e.g.*, Diplotaxis, Mollugo), others are confined to small geographical and ecological niches (*e.g.*, Alloteropsis, Euphorbia, Portulaca). C_2 species live broadly across precipitation, seasonality, and soil quality spectra (Christin *et al.*, 2011; Lundgren *et al.*, 2016; Sage *et al.*, 2018), although their most consistent ecological feature is a tendency to shift into warmer habitats than their close C_3 relatives (Lundgren & Christin, 2017).

III. C₂ photosynthesis is a stable evolutionary state

 C_2 photosynthesis is often associated with its role as an intermediate physiological state during the evolution of another, stronger CCM, C₄ photosynthesis, as C₂ physiology underlies most C₃-C₄ intermediate species (Schlüter & Weber, 2016; Sage *et al.*, 2018). Both the phenotype and ecology of C₂ plants may facilitate the evolution of C₄ photosynthesis. Firstly, the C₂ glycine shuttle also releases ammonium into bundle sheath cells (Fig. S1), which may create a nitrogen imbalance that could be efficiently remedied via the introduction of a C₄ cycle (Mallmann *et al.*, 2014), potentially causing some C₂ lineages to transition quickly to a C₄ state (Bräutigam & Gowik, 2016). Second, because C₂ photosynthesis increases net carbon assimilation under high temperatures (Monson 1989; Bellasio & Farquhar, 2019), evolution of C₂ physiology also shifts lineages into warmer environments than their C₃ relatives (Lundgren & Christin, 2017). Like the nitrogen imbalance hypothesis, warm environments, where photorespiration rates are high, create strong selection for C₂ lineages to rapidly transition to C₄ photosynthesis.

Despite biochemical and environmental selection pressures, many C_2 lineages entirely lack C_4 species (Table 1). This may indicate the existence of factors that limit or slow C_4 emergence in some plant lineages, such as anatomical limitations to efficient metabolite exchange or whether they inhabit cooler climates with low selection pressure for C_4 evolution (*e.g.*, Schlüter *et al.*, 2017). Alternatively, or additionally, C_2 physiology is likely sufficient in some circumstances, reducing selection pressure for further C_4 evolution. Indeed, C_2 lineages that lack close C_4 relatives occupy areas with higher precipitation and higher quality soils compared to their C_3 relatives (Lundgren & Christin, 2017), perhaps indicating weak selection for further C_4 evolution under these environmental conditions. Furthermore, lineages such as Mollugo have remained in a C_2 state for over 10 million years (Christin *et al.*, 2011), implying that C_2 photosynthesis is a stable evolutionary state and not inherently a step along an inevitable C_4 trajectory (Blätke & Bräutigam 2019; Edwards, 2019).

IV. C₂ photosynthesis is a tractable route to improve food security

Recent findings from both theoretical analyses and field experiments suggest that alternations to photosynthesis can deliver large increases in productivity (Kromdijk et al., 2016; South et al., 2019). The urgent need to achieve large improvements in crop photosynthetic efficiency has consequently catalyzed rapid recent progress in the use of synthetic biology as an approach to overcome the limitations of C₃ photosynthesis. The most important direct sources of global human calories (*i.e.*, rice and wheat) use C₃ photosynthesis, so any improvement to this system would have far reaching benefits in feeding a growing human population. Scientists therefore aim to engineer C₄ photosynthesis into C₃ crops, as C₄ plants requires less nitrogen and water and are consequently more efficient and ultimately faster growing and higher yielding than C₃ plants under certain environmental conditions (Christin & Osborne, 2014; Atkinson et al., 2016). This large improvement in efficiency, however, requires major reconfigurations of leaf anatomy, ultrastructure, and biochemistry, the genetics behind which are still not fully understood (Sedelnikova et al., 2018), making engineering C₄ photosynthesis into C₃ crops a long-term challenge. By contrast, C₂ photosynthesis offers some of the benefits of C₄ photosynthesis but with fewer required anatomical modifications (Fig. 1), suggesting that C₂ conversions may be more tractable than C₄ conversions (Leegood, 2002; Gowik & Westhoff, 2011). Moreover, for some lineages, such as the agriculturally and nutritionally important Brassicaceae, which

repeatedly evolved C_2 but never C_4 photosynthesis, C_3 species may be readily improved with C_2 but intractable to C_4 engineering efforts.

From an engineering perspective, all of the genes required for C_2 biochemistry are present in C_3 species, such that only changes to regulation and expression would be needed to recreate the glycine shuttle. Figure 2 describes the modifications suggested to engineer C_2 photosynthesis into C_3 plants. Briefly, C_2 plants require abundant chloroplasts with active Rubisco in both mesophyll and bundle sheath cell types, and GDC activity must be exclusive to the bundle sheath. Anatomical modifications, other than those to functionalize the bundle sheath, may not be required. Lundgren *et al.* (2019) compared closely related C_3 , C_2 and C_4 phenotypes of the grass *Alloteropsis semialata* to find that recently diverged C_3 and C_2 populations only differed in the number of mesophyll cells separating veins, with C_2 plants having on average fewer mesophyll cells (3-6) than C_3 plants (5-11). Importantly, vein density did not differ between C_3 and $C_2 A$. *semialata* but did increase via the development of minor veins in *A. semialata* plants engaging predominately C_4 photosynthesis. Thus, the ongoing challenge faced by C_4 engineering programs to increase leaf vein density may be unnecessary in C_2 engineering programs, making it one substantial step easier to implement.

Additional modifications, such as increases to bundle sheath cell size, movement of chloroplast and mitochondria positioning within the bundle sheath, shifts in Rubisco proportioning between bundle sheath and mesophyll cells, or changes to minimize the ratio of CO_2 leakage out and metabolite fluxes into the bundle sheath, may help to optimize the C_2 CCM, however the degree to which these components are required are likely lineage specific. Further modifications to ameliorate the nitrogen imbalance between mesophyll and bundle sheath cells may be required, however, no obvious overarching requirements have been identified yet and, as such, may not be required for a successful C_2 engineering effort (Schlüter *et al.*, 2017).

Recent studies have already made important strides in understanding the genes that underlie the requirements to engineer C_2 photosynthesis, thanks in large part to the progress made via the C_4 Rice Project (reviewed in Sedelnikova *et al.*, 2018; Ermakova *et al.*, 2019). For example, Wang *et al.* (2017) showed that, compared to wild type, constitutive expression of the GLK transcription factor in rice conveyed (1) larger bundle sheath chloroplasts with two to three times more Rubisco and Rubisco activase enzymes; (2) larger bundle sheath mitochondria with GDC; and (3) more plasmodesmata junctions to functionally increase the connectivity between mesophyll and bundle sheath cells. However, constitutive GLK expression did not convey overall chloroplast and

mitochondria areas in bundle sheath tissue comparable to other C_2 species, suggesting that additional modifications may be required to achieve the large bundle sheath organelle areas potentially required for C_2 photosynthesis. Furthermore, Adwy *et al.* (2015) found that deleting the M-box, a 59 bp region in the promoter region upstream of the *AtGLDP1* and *AtGLDP2* genes in the C_3 model species *Arabidopsis thaliana*, established a bundle sheath specific expression pattern. More recently, Adwy *et al.* (2019) confirmed the presence of the M-box promoter region in a C_3 *Moricanida* species and lack of this region in three C_2 *Moricandia* species. These findings have promising applications for C_2 engineering, as deletion of the M-box region may also restrict GDC expression to the bundle sheath mitochondria in other C_3 species. In theory, the modifications described by Wang *et al.* (2017) and Adwy *et al.* (2015, 2019) could, in combination, functionalize the bundle sheath and consequently facilitate a glycine shuttle. While additional modifications will very likely be needed to optimize this engineered glycine shuttle, large anatomical changes such as increased vein density or bundle sheath cell sizes are unlikely to be required to successfully recreate C_2 photosynthesis. Thus, despite facing similar challenges as C_4 engineering efforts, successful C_2 engineering programs seem a tangible prospect.

7. Engineering C₂ photosynthesis should convey benefits to C₃ crops

Photorespiratory CO₂ loss is a major factor limiting productivity in C₃ plants, cutting crop yields by more than 20%, such that reducing photorespiratory losses by as little as 5% may translate to over \$500 million annually from the additional production in just soy and wheat alone (Walker *et al.*, 2016). Because C₂ plants suffer less net carbon loss from photorespiration, engineering C₂ photosynthesis into C₃ crops could therefore have a large impact on crop production. The physiological benefits that engineering C₂ photosynthesis could convey are not entirely clear though, and seemingly depend to some degree on temperature, light level, and ambient CO₂ concentration (Table 2; *e.g.*, see Schuster & Monson 1990). Some of the physiological diversity characterised across C₂ plants undoubtably arises from mixed photosynthetic systems, as some C₂ plants also engage a weak C₄ cycle, such that distinguishing the physiological benefits of engineering C₂ photosynthesis into C₃ crops, a comprehensive comparative survey of C₂ vs C₃ physiology across diverse plant lineages under consistent growth and measurement conditions is needed. A short review of the literature suggests that C₂ plants generally have higher rates of photosynthesis and water- and nitrogen-use efficiencies compared to C₃ plants (Table 2). Indeed, Bellasio & Farquhar (2019) used a modelling approach to quantify the effects on net carbon assimilation from engineering C₂ photosynthesis into the globally important C₃ crop rice. They found that, compared to traditional C₃ rice, C₂ rice assimilated more carbon under ambient CO₂ conditions, but also across a broad environmental space including warm temperatures (> ~35 °C), high light (> ~700 µmol m⁻² s⁻¹), and low CO₂ concentrations (< ~400 µmol mol⁻¹). Moreover, C₂ photosynthesis conveys such strong benefits under warm temperatures that even under the high CO₂ concentrations predicted under climate change scenarios, C₂ rice will outpace C₃ rice in terms of carbon assimilation above ~ 35 °C (Bellasio & Farquhar 2019).

Engineering C_2 photosynthesis into C_3 crops may also convey physiological flexibility to tolerate a broader range of environmental conditions. C_2 plants are inherently flexible, as the C_2 glycine shuttle initiates only under photorespiratory conditions, meaning that C_2 plants act like C_3 plants in the absence of photorespiration. Plants using C_2 photosynthesis should therefore perform well under environmental conditions that alternatively favour either typical C_3 or C_4 physiologies (*i.e.*, low or high photorespiration environments, respectively), and could be particularly successful in temporally heterogeneous environments. One disadvantage of this flexibility, however, may be sub-optimal partitioning of Rubisco and other photosynthetic enzymes to the bundle sheath when rates of photorespiration are not high. Despite this, the physiological flexibility of C_2 plants may be particularly beneficial for plants experiencing unpredictable weather events, such as those anticipated as a consequence of climate change.

VI. Conclusions

The prospect of engineering C_2 photosynthesis into C_3 crops to improve photosynthetic efficiency is receiving increasing attention (Leegood, 2002; Gowik & Westhoff, 2011; Bellasio & Farquar, 2019; Blätke & Bräutigam 2019). Engineering C_2 photosynthesis should convey improved net carbon assimilation to C_3 crops, especially in high temperature and light environments, and seems to avoid the high vein density requirements of C_4 photosynthesis, making it easier to implement than C_4 engineering programs. However, to accurately assess the potential for C_2 photosynthesis to improve C_3 crop performance, several important questions remain to be answered. (1) To what extent, and in which environments, does C_2 physiology translate into larger, faster growing, and higher yielding plants? (2) Does C_2 photosynthesis convey costs? If so, under which environments

are these costs most strongly realized? (3) How would engineering C_2 photosynthesis interact with other metabolic pathways (*e.g.*, nitrogen metabolism)? (4) Which crops would benefit most from a C_2 engineering effort? Answering these questions will not only clarify a potentially lucrative crop improvement strategy, but also reveal fascinating insights into the evolution of complex traits and diverse photosynthetic systems.

Acknowledgements

MRL is funded by a Leverhulme Early Career Fellowship (ECF–2018–302). MRL is grateful to Mike Page, Sam Taylor, Andrea Bräutigam, Katie Field, and Rowan Sage for helpful feedback on this review and to Andrew Fleming for discussions on the topic.

References

Adwy W, Laxa M, Peterhansel C. 2015. A simple mechanism for the establishment of C₂-specific gene expression in Brassicaceae. *Plant Journal* 84: 1231-1238.

Adwy W, Schlüter U, Papenbrock J, Peterhansel C, Offermann S. 2019. Loss of the M-box from the glycine decarboxylase P-subunit promoter in C₂ *Moricandia* species. *Plant Gene* 18: 100176.

Atkinson RR, Mockford EJ, Bennett C, Christin PA, Spriggs EL, Freckleton RP, Thompson K, Rees M, Osborne CP. 2016. C₄ photosynthesis boosts growth by altering physiology, allocation and size. *Nature Plants* **2**: 16038.

Bellasio C, Farquhar GD. 2019. A leaf-level biochemical model simulating the introduction of C_2 and C_4 photosynthesis in C_3 rice: gains, losses and metabolite fluxes. *New Phytologist* **223**: 150-166.

Blätke MA, Bräutigam A. 2019. Evolution of C_4 photosynthesis predicted by constraint-based modelling. *eLife* 8: e49305.

Bräutigam A, Gowik U. 2016. Photorespiration connects C₃ and C₄ photosynthesis. *Journal of Experimental Botany* **67**: 2953-2962.

Christin PA, Osborne CP. 2014. The evolutionary ecology of C₄ plants. *New Phytologist* **204***:* 765-781.

Christin PA, Sage TL, Edwards EJ, Ogburn RM, Khoshravesh R, Sage RF. 2011. Complex evolutionary transitions and the significance of C_3 – C_4 intermediate forms of photosynthesis in Molluginaceae. *Evolution* **65**: 643-660.

Edwards EJ. 2019. Evolutionary trajectories, accessibility and other metaphors: the case of C₄ and CAM photosynthesis. *New Phytologist* **223**: 1742-1755.

Eisenhut M, Roell MS, Weber AP. 2019. Mechanistic understanding of photorespiration paves the way to a new green revolution. *New Phytologist* **223**: 1762-1769.

Ermakova M, Danila FR, Furbank RT, Von Caemmerer S. 2019. On the road to C₄ rice: advances and perspectives. *The Plant Journal*. https://doi.org/10.1111/tpj.14562

Gowik U, Westhoff P. 2011. The path from C₃ to C₄ photosynthesis. *Plant Physiology* **155**: 56-63.

Keerberg O, Pärnik T, Ivanova H, Bassüner B, Bauwe H. 2014. C_2 photosynthesis generates about 3-fold elevated leaf CO_2 levels in the C_3 – C_4 intermediate species *Flaveria pubescens. Journal of Experimental Botany* **65**: 3649-3656.

Kennedy RA, Laetsch WM. 1974. Plant species intermediate for C₃, C₄ photosynthesis. *Science* **184**: 1087-1089.

Kennedy RA, Eastburn JL, Jensen KG. 1980. C₃-C₄ photosynthesis in the genus *Mollugo*: structure, physiology and evolution of intermediate characteristics. *American Journal of Botany* **67**:1207-1217.

Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF, Ludwig M, Sage TL. 2016. C_3-C_4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C_2 photosynthesis. *Journal of Experimental Botany* **12**: 3065-78.

Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. *Science* **354**: 857-861.

Leegood RC. 2002. C₄ photosynthesis: principles of CO₂ concentration and prospects for its introduction into C₃ plants. *Journal of Experimental Botany* **53**: 581-590.

Lundgren MR, Christin PA. 2017. Despite phylogenetic effects, C₃–C₄ lineages bridge the ecological gap to C₄ photosynthesis. *Journal of Experimental Botany* **68**: 241-254.

Lundgren MR, Christin PA, Escobar EG, Ripley BS, Besnard G, Long CM, Hattersley PW, Ellis RP, Leegood RC, Osborne CP. 2016. Evolutionary implications of C_3-C_4 intermediates in the grass *Alloteropsis semialata*. *Plant, Cell & Environment* **39**: 1874-1885.

Lundgren MR, Dunning LT, Olofsson JK, Moreno-Villena JJ, Bouvier JW, Sage TL, Khoshravesh R, Sultmanis S, Stata M, Ripley BS, Vorontsova MS. 2019. C₄ anatomy can evolve via a single developmental change. *Ecology Letters* 22: 302-312.

Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber AP, Westhoff P, Gowik U, Weigel D. 2014. The role of photorespiration during the evolution of C₄ photosynthesis in the genus *Flaveria*. *eLife* **3**: e02478.

Monson RK, Edwards GE, Ku MS. 1984. C₃-C₄ intermediate photosynthesis in plants. *Bioscience* **34**: 563-574.

Monson RK. 1989. The relative contributions of reduced photorespiration, and improved waterand nitrogen-use efficiencies, to the advantages of C_3 - C_4 intermediate photosynthesis in *Flaveria*. *Oecologia* **80**: 215-221. **Rajendrudu G, Prasad JS, Das VR. 1986.** C_3 - C_4 intermediate species in *Alternanthera* (Amaranthaceae): leaf anatomy, CO_2 compensation point, net CO_2 exchange and activities of photosynthetic enzymes. *Plant Physiology* **80**: 409-414.

Rawsthorne S, Hylton CM, Smith AM, Woolhouse HW. 1988. Photorespiratory metabolism and immunogold localization of photorespiratory enzymes in leaves of C₃ and C₃-C₄ intermediate species of *Moricandia. Planta* **173**: 298-308.

Sage RF, Monson RK, Ehleringer JR, Adachi S, Pearcy RW. 2018. Some like it hot: the physiological ecology of C₄ plant evolution. *Oecologia* **187**: 941-966.

Sayre RT, Kennedy RA. 1977. Ecotypic differences in the C₃ and C₄ photosynthetic activity in *Mollugo verticillata*, a C₃–C₄ intermediate. *Planta* **134**: 257-262.

Schlüter U, Weber AP. 2016. The road to C₄ photosynthesis: evolution of a complex trait via intermediary states. *Plant and Cell Physiology* 57: 881-889.

Schlüter U, Bräutigam A, Gowik U, Melzer M, Christin PA, Kurz S, Mettler-Altmann T, Weber AP. 2017. Photosynthesis in C₃–C₄ intermediate *Moricandia* species. *Journal of Experimental Botany* 68: 191-206.

Sedelnikova OV, Hughes TE, Langdale JA. 2018. Understanding the genetic basis of C_4 Kranz anatomy with a view to engineering C_3 crops. *Annual Review of Genetics* 52: 249-270.

Schuster WS, Monson RK. 1990. An examination of the advantages of C₃-C₄ intermediate photosynthesis in warm environments. *Plant, Cell & Environment* **13**: 903-912.

South PF, Cavanagh AP, Liu HW, Ort DR. 2019. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. *Science* **363**: eaat9077.

Ueno O, Wada Y, Wakai M, Bang SW. 2006. Evidence from photosynthetic characteristics for the hybrid origin of *Diplotaxis muralis* from a C₃-C₄ intermediate and a C₃ species. *Plant Biology* **8**: 253-259.

Vogan PJ, Frohlich MW, Sage RF. 2007. The functional significance of C_3 - C_4 intermediate traits in *Heliotropium* L. (Boraginaceae): gas exchange perspectives. *Plant, Cell & Environment* **30**: 1337-1345.

Voznesenskaya EV, Koteyeva NK, Chuong SD, Ivanova AN, Barroca J, Craven LA, Edwards GE. 2007. Physiological, anatomical and biochemical characterisation of photosynthetic types in genus *Cleome* (Cleomaceae). *Functional Plant Biology* **34**: 247-267.

Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G. 2017. Unique photosynthetic phenotypes in *Portulaca* (Portulacaceae): C₃-C₄ intermediates and NAD-ME C₄ species with Pilosoid-type Kranz anatomy. *Journal of Experimental Botany* **68**: 225-239.

Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR. 2016. The costs of photorespiration to food production now and in the future. *Annual Review of Plant Biology* 67: 107-129.

Wang P, Khoshravesh R, Karki S, Tapia R, Balahadia CP, Bandyopadhyay A, Quick WP, Furbank R, Sage TL, Langdale JA. 2017. Re-creation of a key step in the evolutionary switch from C₃ to C₄ leaf anatomy. *Current Biology* 27: 3278-3287.

Way DA, Katul GG, Manzoni S, Vico G. 2014. Increasing water use efficiency along the C₃ to C₄ evolutionary pathway: a stomatal optimization perspective. *Journal of Experimental Botany* 65: 3683-3693.

Figure legends

Fig. 1. Biochemical (left) and anatomical (right) modifications that occur in the transitions between C_3 , C_2 , and C_4 photosynthetic types. Major steps along this transition are noted as enabling phenotypes within C_3 individuals (blue), establishment of a C_2 cycle (green), establishment of a C_4 cycle (light pink), and optimization of a C_4 cycle (dark pink). Each minor modification that facilitates these major steps is listed along the side of the transition landscape in the respective color. A dotted line distinguishes anticipated modifications to recreate C_2 or C_4 photosynthesis from a typical C_3 phenotype. Note that more steps are needed to establish a C_4 phenotype than a C_2 one. M, mesophyll; BS, bundle sheath; GDC, glycine decarboxylase; PEPC, phosphoenolpyruvate carboxylase. Asterisks denote modifications that are likely to be lineage specific.

Fig. 2. Proposed modifications required to engineer C_2 photosynthesis into C_3 plants. (a) Basic C_3 phenotype, highlighting the abundance of chloroplasts (green) with active Rubisco (R), mitochondria (red) with active glycine decarboxylase (GDC), and peroxisomes (blue) in mesophyll cells, while the bundle sheath cells have fewer organelles. (b) Step 1: prepare the bundle sheath by enhancing chloroplasts, mitochondria, and photosynthetic enzymes in bundle sheath cells and improving connectivity between mesophyll and bundle sheath cells via more plasmodesmata or pit fields (*e.g.*, via constitutive GLK expression). Organelle repositioning along the inner centripetal wall may be required in some lineages. (c) Step 2: functionalize the bundle sheath via restricting GDC activity to bundle sheath cells (*e.g.*, via M-box deletion). (d) Step 3: additional modifications to optimize the C_2 shuttle, for example, by enlarging bundle sheath cells may be required in some lineages.

Tables

Table 1. List of C₂ species by family and lineage ¹.

Family	Lineage ²	C ₂ Species		
Eudicots				
Acanthaceae	Blepharis	Blepharis acuminate, B. diversispina, B. espinosa, B. gigantea,		
		B. natalensis, B. nolimetangere, B. pruinose, B. sinuate, B.		
		subvolubilis		
Amaranthaceae	Alternanthera	Alternanthera crucis, A. ficoidea, A. tenella		
	Salsola	Salsola arbusculiformis, S. divaricate, S. laricifolia		
	Sedobassia	Sedobassia sedoides		
Asteraceae	Flaveria	Flaveria angustifolia, F. anomala, F. chloraefolia, F.		
		floridana, F. linearis, F. oppositifolia, F. pubescens, F.		
		ramosissima, F. sonorensis		
	Parthenium	Parthenium hysterophorus		
Boraginaceae	Heliotropium	Heliotropium convolvulaceum, H. greggii, H. racemosum		
Brassicaceae	Brassica	Brassica gravinae		
	Diplotaxis	Diplotaxis erucoides, D. muralis ³ , D. tenuifolia		
	Moricandia	Moricandia arvensis, M. nitens, M. sinaica, M. spinosa, M.		
		suffruticosa		
Cleomaceae	Cleome	Cleome paradoxa		
Euphorbiaceae	Euphorbia	Euphorbia acuta, E. johnstonii, E. lata		
Molluginaceae	Hypertelis	Hypertelis spergulacea, Paramollugo nudicaulis		
	Mollugo	Mollugo verticillata		
Portulaceae	Portulaca	Portulaca cryptopetala ⁴ , P. hirsutissima, P. mucronata		
Scrophulariaceae	Anticharis	Anticharis ebracteate, A. juncea		
Monocots	<u> </u>			
Poaceae	Alloteropsis	Alloteropsis semialata zambezian		
	Homolepis	Homolepis aturensis		
	Neurachne	Neurachne minor		
	Steinchisma	Steinchisma cuprea, S. decipiens, S. hians, S. spathellosum, S.		
		stenophyllum		

¹ Table modified from Lundgren & Christin, 2017; Voznesenskaya *et al.*, 2017. ² Lineages in bold lack close C₄ relatives. ³ *Diplotaxis muralis* is hybrid between *D. tenuifolia* (C₂) and *D. viminea* (C₃) (Ueno *et al.*, 2006). ⁴*Portulaca cryptopetala* contains facultative CAM, and this lineage lacks close C₃ relatives.

Species ²	Key Findings		
Empirical Studies (eudicot)			
Alternanthera (Rajendrudu et al., 1986)			
Tridax procumbens (C ₃),	Compared to the C ₃ species, both C ₂ species had		
Achyranthes aspera (C ₃),	higher A _{net} . Measurements collected at 29°C and 340		
Alternanthera ficoides (C ₂), A.	μl/L [CO ₂].		
tenella (C ₂)			
Diplotaxis (Ueno et al., 2006)			
Diplotaxis viminea (C ₃), D. muralis	Both <i>D. muralis</i> and <i>D. tenuifolia</i> had higher A _{net}		
(C ₃ x C ₂ hybrid), <i>D. tenuifolia</i> (C ₂)	(on per area and per chlorophyll basis) than D.		
	viminea. Measurements collected at 25°C and 350		
	μl/L [CO ₂].		
Heliotropium (Vogan <i>et al.</i> , 2007)			
Heliotropium europaeum (C ₃), H.	Compared to the C ₃ species, the C ₂ species had		
karwinskyi (C3), H. tenellum (C3),	- higher WUE at 370 [CO ₂] μmol mol ⁻¹		
H. convolvulaceum (C ₂), H. greggii	- similar carboxylation efficiency		
(C ₂), <i>H. racemosum</i> (C ₂)	- higher A_{net} at 200, 300, and 370 $[CO_2]\;\mu mol\;mol^{-1}$		
	- similar stomatal conductance		
	- higher C_i/C_a at 370 [CO ₂] µmol mol ⁻¹		
	Measurements were collected at 30°C.		
Cleome (Voznesenskaya et al., 2007)			
Cleome monophylla (C ₃), C.	The C ₂ species had higher WUE than the C ₃ species		
paradoxa (C ₂)	at 27°C and 370 [CO ₂] μ mol mol ⁻¹ .		
Moricandia (Schlüter et al., 2017)			
Moricandia moricandioides (C ₃),	Compared to the C ₃ species, both C ₂ species had		
M. suffruticosa (C ₂), M. arvensis	- lower carboxylation efficiency		
(C ₂)	- lower A _{net} at 400 ppm [CO ₂]		
	- lower WUE at 400 ppm [CO ₂]		
	Measurements were collected at 25°C.		
Flaveria (Monson, 1989)			

Table 2. Published comparisons of C_2 and $C_3 \ physiology.^1$

<i>Flaveria cronquistii</i> (C ₃), <i>F</i> .	Compared to the C ₃ species, the three C ₂ species		
pubescens (C_2 + weak C_4), F.	had:		
<i>floridana</i> (C_2 + weak C_4), <i>F</i> .	- higher A _{net} at all [CO ₂] at 35°C		
<i>ramosissima</i> (C_2 + weak C_4)	- higher A _{net} at sub-ambient [CO ₂] at 30°C		
	- lower A _{net} over 200 μbar [CO ₂] at 30°C		
	- similar WUE under well-watered or water-stressed		
	conditions		
	- higher pi/pa when well-watered, well fertilized,		
	ambient [CO ₂]		
	- lower stomatal limitation to photosynthetic rate		
	Compared to the C_3 species, <i>F. ramosissima</i> had		
	higher NUE while the other two C ₂ species had		
	similar NUE (defined as initial slope of A_{net} vs leaf		
	N curve).		
Mollugo (Kennedy et al., 1980)	Mollugo (Kennedy et al., 1980)		
Mollugo pentaphylla (C ₃), M.	Compared to the C ₃ species, <i>M. nudicaulis</i> had		
nudicaulis (C_2), M . verticillata (C_2	similar A_{net} (at 300 ppm CO ₂) and carboxylation		
+ weak C ₄)	efficiency, but higher transpiration. Compared to the		
	C_3 species, <i>M. verticillata</i> had higher A_{net} and		
	transpiration. Measurements were collected at 30°C.		
Empirical Studies (monocot)	Empirical Studies (monocot)		
Steinchisma / Homolepis / Neurachn	Steinchisma / Homolepis / Neurachne (Khoshravesh et al., 2016)		
Dicanthelium oligosanthes (C_3) ,	Compared to the C_3 species, the C_2 species had		
Panicum bisulacatum (C ₃),	- similar A_{net} and WUE at 400 µmol mol ⁻¹ [CO ₂]		
Steinchisma hians (C_2) , Homolepis	- similar carboxylation efficiency		
aturensis (C ₂), Neurachne minor	Measurements were collected at 31°C.		
$(C_2 + \text{weak } C_4)$			
Alloteropsis (Lundgren et al., 2016)			

Alloteropsis semialata (C ₃ , C ₂ +	C_2 +weak C_4 <i>A. semialata</i> populations had similar		
weak C ₄ , C ₄ populations)	A_{net} , g_s , WUE, C_i/C_a , and carboxylation efficiency t		
	C ₃ populations.		
Modelling study (Bellasio & Farquhar, 2019)			
rice (C_3), hypothetical C_2 rice	Under best case scenarios, the hypothetical C ₂ rice		
	had higher A_{net} compared to C_3 rice broadly across		
2	temperatures (15° C - 45° C) when light levels were		
	above $\sim 700 \ \mu mol \ m^{-2} \ s^{-1}$. When light levels were		
	below ~700 μ mol m ⁻² s ⁻¹ , the hypothetical C ₂ rice		
	had higher Anet compared to C ₃ rice only at higher		
	temperatures (~>35°C).		
	The hypothetical C ₂ rice maintained a CO ₂		
	assimilation advantage over C ₃ rice when [CO ₂] <		
	400 μmol mol ⁻¹ along a broad range of temperature		
5	$(15^{\circ}\text{C} - 45^{\circ}\text{C})$. When $[\text{CO}_2]$ was greater than 400		
	μ mol mol ⁻¹ , the C ₂ assimilation advantage over C ₃		
	rice only occurred at high temperatures (~>35°C).		
Modelling study (Way <i>et al.</i> , 2014)			
Modelled C ₃ and C ₂ photosynthesis	Using a stomatal optimisation approach with		
using published <i>Flaveria</i> data	measured biochemical parameters corrected to 30°		
2	C_2 plants have higher A_{net} than C_3 plants at 280, bu		
	not 400 μmol mol ⁻¹ [CO ₂]. At 280 μmol mol ⁻¹ [CO		

nitrogen use efficiency; C_i/C_a , ratio of intercellular to ambient [CO₂].

² Species reported to use a weak C_4 cycles are labelled as C_2 + weak C_4 .

Supporting Information

Fig. S1. Simplified diagram of photosynthesis and photorespiration in C_3 and C_2 plants.

Anticipated changes

Biochemical modifications

Figure 1.

nph_16494_f1.tiff

Anticipated changes

Biochemical modifications

Figure 1.

nph_16494_f1.tiff

nph_16494_f2.tiff

nph_16494_f2.tiff