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Abstract:  

With the rapid development of new engineering materials, multi-material structures are now widely 

used to achieve desired performances instead of conventional ones. The increased use of dissimilar 

adherends such as composites and metals for joining structural parts in aerospace, maritime and civil 

and transport structures in the past decades make it essential to find methods to improve the performance 

of this type of joints due to the potential for lightweight products. The first aim of this research is to 

minimise peak stress concentration by introducing notches in the bonding area to increase the 

performance of single-lap joints with epoxy adhesive. This is done by utilising the finite element method 

(FEA) in Abaqus® software to model a series of single lap joints (SLJ) with various notch designs to 

find the optimum. Experimental tests are carried out to verify the designs.  

The optimal design is used then to model various SLJs with mono-adhesive and mixed-adhesives to 

optimise single-lap joints with dissimilar adherends. The novel geometrical modification reduces peak 

stresses significantly in the joints with dissimilar adherends, which leads to smaller asymmetric stress 

distribution along bond-line. The experimental results show significant improvement in the dissimilar 

joint strength. Compared with using a single material as the adhesive, it is found that using both epoxy 

and polyurethane as adhesive offers a higher failure load. This can be explained as the polyurethane 

adhesive provides more uniform stress distribution by transferring stress concentration to the interior 

part of the overlap length.  
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1. Introduction 

Single-lap joints (SLJs) are amongst the most studied and commonly used designs in various 

engineering applications due to their lower cost and simplicity. Single-lap joints can tolerate significant 

bending due to the non-collinear load path, which, however, makes it complex to analyse. The eccentric 

loading condition and differential deformation effects are responsible for the higher peel and shear 

stresses at the overlap edges where cracks are more likely to be initiated due to the higher stress 

concentration [1]–[4]. Various joint configurations provide lower stress concentrations at the overlap 

edges such as a scarf, stepped, and double lap joints, but they are more complicated and expensive to 

manufacture. Therefore, Single-lap joints have received considerably more attention by researchers to 

develop novel approaches to reduce stresses at the ends of overlap. Several techniques have been 

suggested [5-19] to increase the overall strength of the SLJ that can be categorised into two major 

groups: geometrical and material modifications.  

Geometrical modification attempts to change the shape of adherends or adhesives such as adhesive fillet 

at the edges, tapering, and edge rounding of adherends and notching. Utilising adhesive fillet at the 

overlap edges create smoother load transmission along the bond-line, leading to lower stress 

concentration at the edges [5]. Adam et al. [6] studied the effect of fillets or chamfers in the inner and 

outer adherends, both analytically and experimentally. Numerical and experimental studies were also 

conducted by Sancaktar and Nirantar [7] to evaluate the influence of geometric changes on peak 

stresses. They concluded that adherends tapering reduces peel and shear stresses significantly at the 

overlap edges, resulting in a higher strength of a single-lap joint. McLaren and MacInnes [8] used a 

different method by bending adherends at the bonding edges to uniform the adhesive stresses along the 

overlap by eliminating joint eccentricity. Campilho et al. [9] have studied various degrees of eccentricity 

to optimise joint strength of single-lap joints bonded with brittle and ductile adhesives. Their 

experimental and numerical results showed that the joint with brittle adhesive experienced better 

improvement compared to the joints with ductile adhesive as ductile adhesives redistributed stresses in 

the bonding area, which made them less sensitive to the peak stresses at the overlap edges. Cognard et 

al. [10] investigated the effect of notches numerically on the peak stresses at the bond-line edges. Their 

results showed a considerable reduction in stress concentration at the free edges of the adhesive. 

Sancaktar and Simmons [11] used notches at the end of the bonding region of the top and bottom 

adherends made of aluminium. Their results presented a 66% and a 3% reduction in peak peel and shear 

stresses that result in an 8% increase in the experimental joint strength. The work of Yan et al. [12] 

addressed the effect of length and depth of the notches at the mid-section of the bond-line on both 

adherends. Their results suggested using large lengths and depths for notches to reduce peak stresses at 

the overlap edges. Pinto et al. [13] investigated the effect of adherends recessing in SLJ with a brittle 

adhesive under tensile loading. They used experimental and numerical approaches to optimise recess 

dimension for different values of overlap length to achieve maximum joint strength. 
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Material modification aims to optimise the stiffness of the adherend and adhesive to decrease stress 

concentration at the overlap edges. One of these approaches includes the utilisation of mixed-adhesives 

along the bonding area by using higher stiffness adhesive in the mid-section of the adhesive and low 

stiffness adhesives at the edges. In this technique, the flexible adhesives provide more uniform stress 

distribution in the single-lap joint by transmitting large amounts of the load into mid-section of the over-

lap, which leads to smaller stress concentration at the overlap edges and higher joints strength [3] [14]. 

Da Silva and Lopes [15] used the same method, by applying brittle adhesive (high stiffness) in the inner 

region of the overlap and using three different ductile adhesives at the end of the overlap. Their results 

showed that the SLJ with ductile adhesive has lower strength than the one with brittle adhesive and the 

mixed-adhesive joint has higher strength than the SLJs with mono adhesives. Öz and Özer [16] studied 

the effect of mixed-adhesives on the failure load of SLJ experimentally. They concluded that the SLJs 

with mixed-adhesive had higher failure load than the joints that used only one of the adhesives. The 

same authors [17] studied the stress distribution of a mixed-adhesive single-lap joint by comparing the 

analytical solution with a 3D finite element (FE) solution. The adhesive section modelled in three 

sections by using flexible adhesives at the outer region and high stiffness adhesive in the mid-section 

of adhesive. Bavi et al. [18] used Genetic Algorithms to optimise the geometry of the bond-line in 

mixed-adhesive single-lap and double-lap joints. Their results present excellent optimal cases when the 

best compromise exists between the weight and strength of the joint. The improper ratio of stiff and 

flexible adhesive in the mixed-adhesive bond-line alter peel stress from compressive to tensile, which 

leads to a secondary peak in the peel stress distribution [19].  

There are several studies on the improvement of strength and stress distribution of single-lap joints with 

similar adherends, while few works have been carried to improve the performance of the single-lap 

joints with dissimilar adherends (hybrid joint). The difference in the stiffness of the adherends leads to 

asymmetric stress distribution along the bond-line with the higher shear stress concentration on the low 

stiffness adherend side [20]. The increased use of hybrid joints such as bonding composites to metals 

in aerospace, maritime and civil and transport structures in the past decades makes it essential to find a 

method to improve the performance of this type of joints. 

The main objective of this work is to improve the performance of the joint with dissimilar adherends 

by using geometrical and material modifications. In order to do this, in the first section, novel designs 

introduced by using notches along the bond-line to reduce stress concentration at the edges for an epoxy 

adhesive with similar adherends. Then the optimum design from the first section is used for single-lap 

joints with dissimilar adherends by using mono and mixed-adhesives to optimise the hybrid joints. The 

FE method has been utilised to understand the effect of the geometrical and material changes in the 

peak stresses at the overlap edges. Moreover, experimental tests are conducted to verify the strength 

improvement of each modification. 
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2. Experiment 

2.1 Material Selection 

Two adherends and adhesives materials were used in this work with the material properties shown in 

Table 1. Terson MS 9399 and Loctite EA 9497 have been used as polyurethane and epoxy adhesives, 

respectively. Loctite EA 9497 is a two-component room temperature curing epoxy of medium viscosity, 

while Teroson MS 9399 is a highly viscous, sag-resistance two-component polyurethane adhesive based 

on silane-modified polymers. The adherends were cut from aluminium alloy 6082 T6 bar and 

Polyphthalamide (PPA) plates. PPA is commercially called Grivory HTV-5H1 black 9205, made of 

50% glass fibre reinforced engineering thermoplastic material based on a semi-crystalline, partially 

aromatic polyamide. The material properties were obtained from previous research through tensile tests 

based on ISO EN 485-2:2004 standard for adherends, and ISO 37 and ISO 527-2 for polyurethane and 

epoxy adhesives, respectively.  

Table 1: The bulk property of adherends and adhesives 

Property  Aluminium 6082 T6 Polyphthalamide Terson MS 9399 Loctite EA 9497 

Young Modulus (MPa) 70770 ± 380 17620 ± 600 3.06 ± 0.21𝑎 7705.35 ± 468.08 

Yield Stress (MPa) 254.59 ± 3.20 241.33 ± 10.4 2.56 ± 0.13 46.29 ± 3.13 

Elongation at fracture (%) 10.83 ± 0.95 1.71 ± 0.04 153.03 ± 14.38 0.71 ± 0.09 

Poisson Ratio 0.30 ± 0.01 0.32 ± 0.04 0.44 ± 0.01 0.29𝑏 

Density (tonne/m^3) 2.7𝑏 1.65𝑏 1.4𝑏 1.1𝑏 

a Estimated from Neo-Hooken method  b Manufacturer data 

2.2 Joint configuration and fabrication  

In this study, five different types of single-lap joints were manufactured, which are the unmodified 

configuration of SLJ (without notches); (Figure 1 a) and with the different number of notches in the 

adherend along the bonding area (Figure 1 b). In order to have a better discussion, all these joints are 

labelled as follows: Unmodified (Model-0), with two notches (Model-2), three notches (Model-3), four 

notches (Model-4) and five notches (Model-5).  

All five types of SLJs were manufactured with identical values of grip-grip separation points 

(Lt = 121 mm) , the thickness of adherends (ts = 3 mm) , the thickness of the adhesive (tA =

0.2 mm) and joint’s width (w = 25 mm) and the overlap length of (Ls = 29 mm). The tabs with a 

dimension of LTAB = 25 mm were bonded at the end of the joints to secure correct alignment in the 

testing machine. Classic single-lap joint (Model-0) without any modification was used as the reference 

model to compare stress distribution and strength with the modified SLJs to understand the advantage 

of the notching technique in the bonding area. The manufacturing of the specimens started by cutting 

aluminium plaques using the hydraulic guillotine to the desired dimensions. The CNC machine with a 

2 mm ball nose cutter was used to create notches with a depth of 0.5 mm along the bonding area.  
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Figure 1: Dimensions and geometry of SLJs (a) unmodified (without notches) (b) with notches  

Table 2 shows the number of notches and the total bonding length for each joint design. The first two 

notches are located outside the overlap area at both edges, and by adding more notches, the bonding 

length decreases as each notch removes 2 mm of the bonding surface.  

Table 2: Joint configurations tested for optimisation purposes 
ID Total Bonding length 

(mm) 

Number of notches in the 

bonding area  

Model-0 29 0 

Model-2 29 2 

Model-3 27 3 

Model-4 25 4 

Model-5 23 5 

The same surface treatment was carried out for all types of SLJs to increase the bonding strength. The 

bonding surface was grit blasted and then cleaned first with compressed air to remove dust created 

during the blasting process, followed by Acetone and Loctite SF 706 to remove grease spots. The curing 

process of the adhesives was done at room temperature by applying pressure with spring clamps for 

seven days to reach the fully cured strength. Wire spacers, with a diameter of 0.2 mm, were used to 

control bond-line thickness. The excess adhesive at the holes of the modified SLJs and the overlap ends 

were removed to provide identical conditions for all tested specimens.  

The tensile tests were carried out with Instron 3380 series machine with 100 kN load cell at room 

temperature under displacement control of 0.5 mm/min. The non-contact optical method (Imetrum 

system) was used to measure displacement and observe the failure process in joints (Figure 2). All 

specimens were masked with white background and marked with black dots with a diameter of 0.3 mm 

in order to create speckle patterns on the specimens’ surface. The camera then tracked the dots and the 
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first pattern was used as the reference image, to which other images were compared. When calibrating 

the dimension for the camera, the paper rule was used.  

 

Figure 2: The geometry of single-lap joints with notches 

3. Finite element analysis  

The two dimensional (2D) nonlinear numerical models of modified and unmodified single-lap joints 

with different adherends and adhesives were built in Abaqus® to provide information regarding stress 

distribution, failure process, and joint strength. 2D (plane strain) model provides a reasonable 

simplification of the 3D model for the bonded joint [21]. In the first place, the aim of the finite element 

analysis (FEA) is to find the best pattern of notches along the bond-line for the SLJ and then optimise 

the SLJ with dissimilar adherends (Hybrid joint) by considering the selected notched design and using 

both mono-adhesive and mixed-adhesives.  

The explicit non-linear analyses were used to simulate the rapid crack growth along the bond-line of 

the epoxy adhesive and the large deformation and distortion, especially for the polyurethane adhesive. 

Two different cases were analysed. Case-1 used a cohesive zone model (CZM) to predict joints’ strength 

and Case-2 used only for stress analysis along the bond-line without including any damage parameters 

(CZM property) of adhesives. In the Case-1, the adherends were meshed by 4-noded plane-strain 

elements (CPE4R in ABAQUS) with four elements in the thickness direction. Mesh size of 0.2 mm 

along the length was finally chosen after a mesh convergence study.  

The adhesive section was divided into three layers; two layers of cohesive elements (COH2D4) of 0.05 

mm thick each located adjacent to the adherends and one layer of plan strain element (CPE4R) of 0.1 

mm thick in the middle of the bond-line (Figure 3). Here, paths 1 and 2, respectively simulated 

interactions between the adhesive and adherends 1 and 2 by using interface properties between the 

adherends and the adhesives. The interface properties include elasticity, plasticity and susceptibility to 

damage, which can all change based on the combination of adherends in the joints. Table 3 shows the 

CZM parameters obtained in the previous research from the AL-AL and the PPA-PPA single-mode 

coupon tests for both adhesives. The nominal traction stress consists of two components, namely: tn in 
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the normal direction and ts in the shear direction, and these allow the simulation of damage initiation 

along the bond-line. The GIC and GIIC  values represent the areas under the traction separation law 

graphs in the normal and shear directions, respectively [22].  

For identical adherends SLJ, similar CZM property is used for path-1 and path-2 as the top and bottom 

adherends were made of identical materials. However, in the dissimilar SLJ path-1 and path-2 properties 

changes based on the adherend type. In this work, dissimilar SLJ is made of the AL (adherend-1) and 

the PPA (adherend-2) for all different designs. Path-1 has the properties of the AL-adhesive interface, 

and Path-2 has the PPA-adhesive interface properties (Table 3). The adherends and middle part of the 

adhesive used the bulk material properties from Table 1.  

 

Figure 3: Mesh details for unmodified and modified SLJ with 𝐿𝑠 = 29 𝑚𝑚 for the case-1 

A refined mesh scheme was used for the case-2 models to obtain a more accurate stress gradient at the 

edges [23]. The bonding area in the adhesive and the adherends were meshed with 4-noded plane-strain 

elements of 0.05 𝑚𝑚 × 0.05 𝑚𝑚, and single bias effect were used in other part of adherend with 

minimum and maximum elements size of 0.05 and 0.2 mm, respectively. 

Table 3:  CZM parameters for two adhesives bonded with two different types of adherends  

Interface  

Property  

Terson MS 9399 

(AL-Adhesive) 

Terson MS 9399 

(PPA-Adhesive) 

Loctite EA 9497 

(AL-Adhesive) 

Loctite EA 9497 

(PPA-Adhesive) 

 𝐺𝐼𝑐 (N/mm) 2.11 ± 0.27 0.95 ± 0.12 0.26 ± 0.06 0.22 ± 0.04 

𝐺𝐼𝐼𝑐  (N/mm) 6.50 ± 0.20 4.10 ± 0.50 0.90 ± 0.388 0.46 ± 0.090 

𝑡𝑛 (MPa) 2.52 ± 0.45 0.65 ± 0.24 25.35 ± 10.263 20.94 ± 7.27 

𝑡𝑠(MPa) 6.67 ± 0.25 3.50 ± 0.20 16 ± 5 10 ± 3.75 

Due to the high viscosity of polyurethane adhesive, the hyper-elastic property was used to reduce mesh 

distortion caused by large deformation (Table 4). 

Table 4: Arruda-Boyce parameters for polyurethane  
Mu (MPa) 

 

mu-0(MPa) 

 

LAMBDA 

 

D (𝑀𝑃𝑎−1) 

 

1.016 1.04 1867.76 0.152 
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4. Geometric modification results for SLJ with similar adherends 

4.1 Stress analysis of un-notched and notched joints 

The first aim of this research is to assess the effect of notches, located in the bonding area, on the 

behaviour of the single-lap joint. This was done by using the FE model in Abaqus® software to simulate 

a series of SLJ with various notch designs and to find the optimum one. The objective of the proposed 

designs is to reduce stress concentration at the edges, which can be more beneficial for epoxy adhesive 

as the bond-line edges play a significant role in carrying the external load [24] compared to flexible and 

ductile adhesives. Therefore, the epoxy adhesive was selected as the adhesive for the optimisation 

process. Moreover, aluminium was selected as the adherend in this section due to its higher stiffness 

compared to the PPA, which less likely experiences plastic deformation or failure under high tensile 

load. All the plots are the elastic stresses in the middle of the adhesive layer, which are normalised by 

the average shear stress in the adhesive bond-line of each design (Figure 4). The stress results obtained 

from an integration point of the element, which is the average value of the stress from four nodes in 

2D-hex elements. The varying points along the bond-line (𝑥) have also been normalised using the total 

overlap length (𝐿𝑠). 

 

Figure 4: The comparison of (a) the peel (𝜎𝑦 𝜏𝑎𝑣𝑔⁄ )and the shear (𝜏𝑥𝑦 𝜏𝑎𝑣𝑔)⁄  stresses at the adhesive mid-thickness for 

different modified SLJs 

As seen in Figure 4(a), the peel stress is more uniform in the mid-section of the overlap with higher 

stress concentration at the edges, which is caused by adherends rotation [25]. The shear stress follows 

an identical trend (Figure 4(b)), with lower stress at mid-section of the bond-line and the higher peak 

stresses at the edges due to the material discontinuity of the adherends at the free edges[26]. The 

magnitude of the peak 𝜎𝑦 𝜏𝑎𝑣𝑔⁄  and the peak 𝜏𝑥𝑦 𝜏𝑎𝑣𝑔⁄  for unmodified single-lap joint (Model-0) at 

Section-I are 9.94 and 6.8, respectively, highest among all the models. 

However, it is clear that the peak stresses at the edges of the overlaps of SLJs with notches (Model-2, 

Model-3, Model-4, and Model-5), are considerably lower than the unmodified SLJ (Model-0). The peak 

value of the 𝜎𝑦 𝜏𝑎𝑣𝑔⁄  decreases from 10.11 in Model-0 to 9.03 in Model-2, which corresponds to a 
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reduction of 10.6 %, and is due to the increase of the adherends’ flexibility [13]. By increasing the 

number of notches along the overlap, the 𝜎𝑦 𝜏𝑎𝑣𝑔⁄  value exhibits further reduction of 16.7%, 20.0% and 

26.4 %, respectively, for Model-3, Model-4 and Model-5 when compare to Model-0. The existence of 

notches along the overlap length divides the overlap area to smaller sections, which assists the modified 

SLJs to distribute the load more efficiently between each section. The peak value of the 

𝜏𝑥𝑦 𝜏𝑎𝑣𝑔 ⁄ follows the same tendency and decreases by 20.5% from 6.82 in Model-0 to 5.41 in Model-

2. The 𝜏𝑥𝑦 𝜏𝑎𝑣𝑔⁄  value at section-I experienced a further reduction of 23.9 % for Model-3, 28.9% for 

Model-4 and 34.5% for Model-5 when the number of notches increased in bond-line (Table 5).  

Table 5: The maximum 𝜏𝑥𝑦 𝜏𝑎𝑣𝑔 ⁄  and 𝜎𝑦 𝜏𝑎𝑣𝑔⁄  at the overlap edges for various SLJs designs  

 Section-III 

ID 𝛕𝐱𝐲/𝛕𝐚𝐯𝐠
 

(Peak) 

Reduction 

(%) 

𝛔𝐲/𝛕𝐚𝐯𝐠
 

(Peak) 

Reduction 

(%) 

Model-0 6.82 - 10.11 - 

Model-2 5.41 20.5 9.03 10.6 

Model-3 5.17 23.9 8.42 16.7 

Model-4 4.83 28.9 8.08 20.0 

Model-5 4.45 34.5 7.44 26.4 

In the mid-section of the overlap, Model-0 and Model-2 have the smoothest peel and shear stress 

distribution with the minor peak of -0.44 𝜏𝑎𝑣𝑔 at the mid-section (0.2 < 𝑥 < 0.8) of the bond-line. On 

the other hand, the τxy and σy do not show a uniform stress distribution at the mid-section of the single-

lap joints with notches due to the existence of free edges. The comparison of Model-0 and Model-5 

shows that the peak value of stresses increased from -0.5 in Model-0 to -1.5 in Model-5 for the 

𝜎𝑦 𝜏𝑎𝑣𝑔⁄  and from 0.44 in Model-0 to 0.48 in Model-5 for the 𝜏𝑥𝑦 𝜏𝑎𝑣𝑔⁄ . This happens as modified 

single-lap joints can transfer load from overlap edges to the mid-section of the adhesive due to the 

existence of notches, which leads to smaller peak stress at the overlap edges. Therefore, from the stress 

analysis, it can be concluded that adding notches in the bonding area can improve the strength of single-

lap joints. 

4.2 Strength analysis of the un-notched and notched joints 

In this section, the influence of various notch designs on the strength of single-lap joints is studied 

experimentally. Four specimens of each design are tested under tensile loading. Figure 5 shows the 

average failure load and the joint strength with standard deviation. The results in the previous and the 

following sections are used to select the best candidature design for the optimisation of single-lap joints 

with dissimilar adherends. Figure 5(a) shows that the average maximum failure load of Model-2 is 

improved by 6% compared to Model-0 (reference Model). This can be justified by the stress 

concentration reduction (20% and 10% for the 𝜏𝑥𝑦 𝜏𝑎𝑣𝑔⁄  and the 𝜎𝑦 𝜏𝑎𝑣𝑔⁄ , respectively) at the edges 

due to the existence of the notches. Model-5 has experienced considerably smaller improvement of the 
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maximum failure load compared to Model-4 (around 2%) from 5026 N to 5082 N. This reflects the 

findings in Section 4.1 (Table 5), where the 𝜏𝑥𝑦 𝜏𝑎𝑣𝑔⁄  and the 𝜎𝑦 𝜏𝑎𝑣𝑔⁄  of Model-5 were reduced only 

by 4% and 6%, respectively, in comparison to Model-4. Therefore, Model-4 is selected as an initially 

optimised design for further optimisation in the next section for dissimilar single-lap joints. 

 
Figure 5: (a) average failure load and (b) average shear strength of various SLJs 

As seen in Figure 5(b), the joint strength of Model-4 and Model-5 are 8.03 MPa and 8.83 MPa, 

respectively, which corresponds to an improvement of 30 % and 39% compared to the strength of 

Model-0 (5.95 MPa). This suggests that the modified SLJ with smaller bonding length could achieve 

higher strength and failure load. The above results demonstrate that the proposed design could improve 

the strength of the joints significantly by reducing peak stresses at the bond-line edges.  

5. Optimisation of SLJ with dissimilar adherends 

In this section, two types of designs are used with mono-adhesives (epoxy or polyurethane) and mixed-

adhesive (Combination of epoxy and polyurethane) to optimise the performance of dissimilar single-

lap joints. The fabrication process is the same as joining similar adherends in section 2.2. The 

optimisation process starts with comparing the AL-AL joint (Model-0) with the AL-PPA joint (Model-

I) bonded with epoxy adhesive to understand the effect of individual adherend stiffness on the SLJ 

strength. Then the best design from section 4.2 (Model-4: SLJ with four notches) is used to increase the 

strength of the dissimilar single-lap joint by using mono-adhesives and mixed-adhesives.  



11 

 

 
Figure 6: The SLJs configurations used for the optimisation process ((a) Classic SLJ and (b) Novel SLJ designs) 

Table 6 shows adherends/adhesives and design type of single-lap joints to be used in the optimisation 

process. In total, six different types of SLJ are manufactured, which can be categorised into two groups 

un-modified (type-1) and modified (type-2) SLJs (Figure 6). Model-I and Model-II are using a classic 

single-lap joint design (type-1), which are used as the reference models for epoxy and polyurethane 

adhesives, respectively. Model-III, Model-IV, and Model-V are using the novel optimum design (type-

2) from the previous section.  

Table 6: Material and design types of single-lap joints 

ID Design 

type 

Adherend-1 Adherend-2 Adhesive 

(A-B) 

Adhesive 

(C-D) 

Adhesive 

(E-F) 

Model-0 1 AL AL Epoxy - - 

Model-I 1 AL PPA Epoxy - - 

Model-II 1 AL PPA Polyurethane - - 

Model-III 2 AL PPA Epoxy Epoxy Epoxy 

Model-IV 2 AL PPA Polyurethane Polyurethane Polyurethane 

Model-V 2 AL PPA Polyurethane Epoxy Polyurethane 

The bonding area in the type-2 design has three separate sections, which are named as A-B, C-D, and 

E-F. Mono-adhesives are used for Model-III (Epoxy adhesive) and Model-IV (Polyurethane adhesive) 

along bond-line while the combination of epoxy in the middle part (C-D) and polyurethane at the edges 

(A-B and E-F) are utilized for Model-V. In previous work by researchers [15] [16], silicon spacer used 

to separate adhesives from each other while the proposed design provides free space along the length 

of the overlap due to the existence of notches, which avoid mixing adhesives in the bonding area.  

5.1 Stress analysis of dissimilar joints 

This section presents the interfacial peel stress (𝜎𝑦) and shear stress (𝜏𝑥𝑦) of the proposed design to find 

the influence of using notches and mix-adhesive in the bonding area on the stress distribution of the 

dissimilar single-lap joint. Numerical models were built in Abaqus® software for the joints shown in 

Table 6. All the FE parameters are kept the same as used for section 4.1 for all the models. Comparing 

the stress distribution of Model-0 (shown in Figure 4) and Model-I (shown in Figure 7) shows that 

Model-0 provides flatter peel stress at the inner overlap section. This can be explained by the less 
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flexibility of the AL-AL adherends compared to the AL-PPA, which leads to more uniform stress 

distribution and lower peak stresses at the overlap edges.  

The asymmetric stress distribution is noticed in the SLJs with dissimilar adherends due to the 

mismatching stiffness of the adherends and boundary conditions in the two grip ends of two adherends, 

which results in different longitudinal deformations at the overlap edges. In Model-I, the maximum 

peak value of the τxy/𝜏𝑎𝑣𝑔 in section-III (PPA side) is higher by 130 % compared to section-I (AL 

side). This suggests that in a joint with dissimilar adherends, the adherend with lower stiffness controls 

the strength of the whole joint [20]. On the other hand, the σy/𝜏𝑎𝑣𝑔 shows smaller peak values in 

section-III due to the increase of the longitudinal deformation of the PPA adherend. Since the 

aluminium adherend experiences smaller longitudinal deformation, the higher peak value of the 

σy/𝜏𝑎𝑣𝑔 is developed toward section-I.  

 
Figure 7: The comparison of (a) the peel (𝜎𝑦/𝜏𝑎𝑣𝑔) and (b) the shear (𝜏𝑥𝑦/𝜏𝑎𝑣𝑔) stresses at the adhesive mid-thickness for 

different modified dissimilar SLJs 

As seen in Figure 7, Model-III experiences a significant improvement in peak stresses at the overlap 

edges when compared with Model-I. The maximum peak value of the τxy/𝜏𝑎𝑣𝑔 decreases from 5.14 in 

Model-I to 3.05 in Model-III at section-I (AL side) and 11.85 in Model-I to 5.05 in Model-III at section-

III (PPA side), which corresponds to a reduction of 40 % and 57%, respectively. The same tendency 

was observed for the σy/𝜏𝑎𝑣𝑔, with a 50% and 53 % reduction of the peak stresses at section-I and 

section-III respectively, when compared with Model-I. In addition, the differences between the peak 

stresses at both overlap edges decrease from 30% in Model-I to 26% in Model-III for the σy/𝜏𝑎𝑣𝑔 and 

from 130% in Model-I to 65% in Model-III for the τxy/𝜏𝑎𝑣𝑔. This suggests a smaller asymmetric stress 

distribution along the bond-line, which may lead to an improvement of the joint strength.  

The polyurethane adhesive provides more uniform stress distribution along the bond-line compared to 

the epoxy adhesive due to its more significant deformation and load-transferring capacity. The 

comparisons of Mode-II and Model-IV show minimal improvement (5% reduction) of the peak stress 
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values at the bond-line edges. This can be justified by higher plasticisation of the polyurethane adhesive, 

which makes them less sensitive to the peak load at the overlap edges.  

In the joint with mixed-adhesive (Model-V), the peak stresses at the overlap edges are slightly lower in 

comparison to the joints with mono-adhesive (Model-III). Moreover, the stress concentration is 

transferred into the interior part (C-D) of the overlap length. This suggests that the mixed-adhesive SLJ 

may have slightly higher strength when compared to the joints with mono adhesive. Consequently, 

crack initiation may occur in the mid-section of the overlap (C-D section) due to the higher stress 

concentration in the areas.  

5.2 Load-displacement of dissimilar SLJs 

In this section, the effect of adherends/adhesive stiffness, mixed-adhesives, and notches in the bonding 

area are studied both numerically and experimentally. The proposed modified single-lap joints (Model-

III, Model-IV, and Model-V) were tested in identical conditions to optimise the configuration of the 

SLJ with dissimilar adherends.  

As it is clear from Figure 8 (a), the failure load of SLJ with epoxy adhesive decreases by 13.1 % from 

4115 N to 3574 N after changing the adherends combination from the AL-AL (Model-0) to the AL-

PPA (Model-I). This happens due to the reduction of overall stiffness of the joint, which is caused by 

the lower stiffness of the PPA, resulting in larger bending, longitudinal deformation, and asymmetric 

stress distribution along the bond-line as it was discussed in section 5.1. The higher peak stresses at the 

lower stiffness adherend are important as it is likely that crack initiates at this location, especially if the 

adhesives are brittle, which are more sensitive to the stiffness of the adherends due to the higher peak 

stresses and instability in damage propagation [27].  

 

Figure 8: a) load-displacement of modified and unmodified SLJs b) failure process of SLJs 

As can be seen from Figure 8 (b), in Model-I, the initial crack starts at the PPA-adhesive’s interface 

(from B to X), followed very quickly by the total failure of the joint. This is due to the nature of the 
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brittle adhesives that do not tolerate plasticisation or stress redistribution after reaching failure strength 

at the overlap edges [24]. 

On the other hand, Model-III with epoxy adhesive experiences the first crack at 4048 N, which is 

13.26% higher than Model-I, and only 1.62% lower than Model-0. This is due to the existence of the 

notches at the overlap edges, which reduces peak stresses at these locations (as shown in Figure 7). 

Moreover, the modified design with notches arrests cracks in section E-F without propagating the crack 

further into other parts of the bond-line (D-E and B-A). Therefore, this model can redistribute the 

stresses in sections D-E and B-A and tolerates a maximum load of 5194.7 N, which is 26% and 45% 

higher than model-0 and Model-I, respectively.  

Model-IV with polyurethane adhesive experiences smaller improvement compared to the unmodified 

SLJ with polyurethane adhesive (Model-II). The maximum failure load increases from 578 N in Model-

II to 715 N in Model-IV, which corresponds to a 23 % increase.  

It can be noticed that the combination of the epoxy and polyurethane adhesives gives a higher failure 

load than when they are used as adhesives individually. The maximum failure load for Model-V is 5292 

N, which is higher than that of Model-I and Model-II by 48% and 782 %, respectively. This can be 

explained by the smaller rotation of the polyurethane adhesive in the section (A-B and E-F), which 

leads to lower stress concentration at the edges (shown in Figure 7). Model-V fails in the mid-section 

(D-C) of the overlap as polyurethane adhesive transfers stresses to the mid-section that carries most of 

the load, though a slight drop before failure is observed, indicating plastic deformation in polyurethane 

adhesive.   

The displacement at failure is increased by 30 % after changing the adherends combination from the 

AL-AL (Model-0) to the AL-PPA (Model-I). This can be justified by the lower stiffness of the PPA, 

which increases the overall longitudinal strain of the SLJ. In addition, adding notches to adherends 

decrease the total stiffness of the SLJ, resulting in higher flexibility of the joint. Model-V and Model-

IV have the greatest displacement at the failure due to the existence of the polyurethane adhesive, which 

allows more extensive deformation in the bonding area before failure.  

 
Figure 9: The comparison of (a) experimental and numerical failure load and (b) shear strength of various SLJs 
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Figure 9 (a) shows a good agreement regarding the maximum failure load between the numerical and 

the experimental results. The average experimental failure loads are obtained from four specimens, and 

the numerically predicted failure loads are obtained using the CZM method. It is clear from Figure 9 

(b) that the unmodified joint with dissimilar adherends (Model-I) has a 22% smaller strength in 

comparison with the unmodified joint with similar adherends (Model-0), which is due to the decrease 

in total stiffness of the joint.  

On the other hand, the proposed novel design increases the strength of the joints considerably. The 

strength of model-III is 8.3 MPa, which is 36 % and 76% higher when compared to Model-0 and Model-

I, respectively. In addition, by utilising the mixed-adhesive in the bonding area, the strength of the joint 

increases slightly to 8.36 MPa. This design also has a positive effect on the joint with only polyurethane 

adhesive as the strength is increased by 41 % from 0.728 MPa in model-II to 1.028 MPa in Model-IV. 

In conclusion, the proposed novel design shows significant improvement in the performance of the SLJ 

with dissimilar adherends, which makes them significantly stronger than the SLJ joint with similar 

adherends. 

5.3 Damage variable analysis  

This section analyses the overall scalar stiffness degradation of the CZM elements along the bond-line 

to understand the failure process of various dissimilar single-lap joints under tensile loading. The 

damage variable (SDEG) value varies between 0 (undamaged) and 1 (fully damaged).  

The numerical and experimental results show that the crack is initiated and propagated at the interface 

of the PPA for all types of single-lap joints with dissimilar adherends, which is in agreement with the 

previous study. Therefore, the SDEG is plotted for path-2 (PPA side) as a function of (𝑥 𝐿𝑠)⁄  as the 

representative joint configurations. Figure 10 (a) shows the SDEG plots at the instant when the first 

CZM element fails and Figure 10 (b) is the SDEG plot under maximum load before failure.  

As seen in Figure 10 (a), the crack is initiated for all models except Model-V at 𝑥 𝐿𝑠 = 1⁄  (PPA side). 

This can be explained by the sensitivity of the epoxy adhesive to the high peak stresses at the edges 

caused by asymmetric stress distribution of the dissimilar joint (shown in Figure 7), leading to higher 

peak stresses at the overlap edges of the lower stiffness adherend [20]. The crack is initiated in the mid-

section of Model-V due to the existence of the polyurethane adhesive at the edges (A-B and E-F), which 

provides more uniform stress distributions at the edges and transfers the load to the mid-section of the 

adhesive layer. Moreover, the analysis shows smaller SDEG values for polyurethane adhesive 

compared to the epoxy adhesive. This is due to the lower strength of the polyurethane adhesive, leading 

to smaller tractions (𝑡𝑛,𝑡𝑠) and higher fracture energies (𝐺𝐼𝑐,𝐺𝐼𝐼𝑐) in both directions (Table 3). 

It is clear from Figure 10 (b) that Model-III has more widespread damage in comparison to Model-I. 

The percentage of the overlap under the damage of Model-III and Model-I are 80% and 64%, 

respectively. In Model-I, crack is initiated at the PPA side and fails shortly after reaching the maximum 
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failure load. This can be justified by the limited damage tolerance of the epoxy adhesive immediately 

after reaching stress softening in the damage law [27]. On the other hand, the novel design of Model-

III stops the crack propagation into section D-A due to the existence of the notches (D-E section), which 

allows the joint to redistribute the load into the mid-section of the adhesive layer, leading to a higher 

failure load.  

The comparison of Model-II and Model-IV shows the same trend for the joints with only polyurethane 

adhesive. The novel single-lap joint design (Model-IV) with notches improves the SDEG value before 

failure, mostly in the mid-section of the adhesive from 0.15 to 0.31 when compared to Model-II. In 

addition, The SDEG plot of Model-II is unsymmetrical, while significant improvement is observed from 

Model-IV, where more uniform damage area is found along the overlap. 

The total length of damage in the overlap length for Model-V is 91%, highest among all the models. 

This is due to the higher longitudinal strain of the polyurethane adhesive, resulting in more uniform 

stress distribution in the bond-line [28]. Moreover, the asymmetric behaviour of SDEG caused by the 

difference in the stiffness of the adherends was improved slightly for Model-V. 

 

Figure 10: SDEG plot of unmodified and modified dissimilar single-lap joint (a) when the first CZM element damaged (b) 

under the maximum load point before joint failure 

6. Conclusion 

In this work, the effect of geometrical and material modifications on the strength and maximum failure 

load was studied. Geometrical modifications by adding notches along the overlap length were used first 

for joints with similar adherends and epoxy adhesive to find the optimum design. The chosen design 

was used next for single-lap joints with dissimilar adherends with mono and mixed-adhesives to 

optimise hybrid joints. The following observations have been found from experimental and numerical 

results:  

 The stress-distribution of the SLJs with similar adherends and epoxy adhesive demonstrates 

that the peak stresses at the overlap edges of an SLJ with notches (Model-2, Model-3, Model-
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4 and Model-5), are considerably lower than the unmodified SLJ (Model-0). The existence of 

notches along the overlap length divides the overlap area to smaller sections, which assists the 

modified SLJs to spread the load more efficiently between each section, leading to smaller peak 

stresses at the edges. 

 In comparison with the un-modified SLJs, the strength and maximum failure load of the 

modified SLJs with similar adherends and epoxy adhesive shows significant improvement. 

 Modified SLJs with smaller bonding length can achieve higher strength and failure load than 

unmodified SLJs with longer bonding length. This suggests that joints with epoxy adhesives 

experience smaller improvement by increasing the overlap length due to their vulnerability to 

high peak stresses.  

 The load-displacement result of the unmodified dissimilar SLJ shows that the joint is failed 

very quickly after the crack initiation. The reason is the high peak stresses at the edges due to 

the difference in the stiffness of adherends, leading to asymmetric stress distribution. On the 

other hand, the novel design of dissimilar joints can carry a higher maximum failure load as the 

notches arrest crack and allow stress distribution in other sections of the adhesive layers, 

resulting in a higher strength of the joint.  

 The SDEG plots show that the geometrical modification cannot reduce or eliminate asymmetric 

stress distribution in the dissimilar SLJs caused by the difference in the stiffness of adherends. 

However, the asymmetry of the stresses becomes less obvious as the number of notches 

increases, e.g., in Model-V, which leads to improvement in joint strength. 
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