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Abstract. Let (−A,B,C) be a linear system in continuous time t >
0 with input and output space C and state space H. The function
φ(x)(t) = Ce−(t+2x)AB determines a Hankel integral operator Γφ(x)

on
L2((0,∞);C); if Γφ(x)

is trace class, then the Fredholm determinant
τ(x) = det(I + Γφ(x)

) defines the tau function of (−A,B,C). Such tau
functions arise in Tracy and Widom’s theory of matrix models, where
they describe the fundamental probability distributions of random ma-
trix theory. Dyson considered such tau functions in the inverse spec-
tral problem for Schrödinger’s equation −f ′′ + uf = λf , and derived
the formula for the potential u(x) = −2 d2

dx2 log τ(x) in the self-adjoint
scattering case Commun. Math. Phys. 47 (1976), 171–183. This paper
introduces a operator function Rx that satisfies Lyapunov’s equation
dRx
dx

= −ARx − RxA and τ(x) = det(I + Rx), without assumptions of
self-adjointness. When −A is sectorial, and B,C are Hilbert–Schmidt,
there exists a non-commutative differential ring A of operators in H
and a differential ring homomorphism b c : A → C[u, u′, . . . ] such that
u = −4bAc, which extends the multiplication rules for Hankel opera-
tors considered by Pöppe, and McKean Cent. Eur. J. Math. 9 (2011),
205–243.
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1. Introduction
This paper is concerned with Fredholm determinants which arise in the the-
ory of linear systems and their application to inverse spectral problem for
Schrödinger’s equation. For φ ∈ L2((0,∞);R), the Hankel integral operator
corresponding to φ is Γφ where

Γφf(x) =

∫ ∞

0

φ(x+ y)f(y) dy (f ∈ L2((0,∞);C). (1.1)
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Using the Laguerre system of orthogonal functions as in [31], one can ex-
press Γφ as a matrix [γj+k]

∞
j,k=1 on `2, which has the characteristic shape

of a Hankel matrix, and one can establish criteria for the operator to be
bounded on L2((0,∞);C). Megretskii, Peller and Treil [26] determined the
possible spectrum and spectral multiplicity function that can arise from a
bounded and self-adjoint Hankel operator. Thus they characterized the class
of bounded self-adjoint Hankel operators up to unitary equivalence. Their
method involved introducing suitable linear systems on a state space H, and
this motivated the approach of our paper.

Following earlier works by Faddeev and others in the Russian literature,
Dyson [8] considered the inverse spectral problem for Schrödinger’s equation
−f ′′ + uf = λf , for u ∈ C2(R;R) that decays rapidly as x→ ±∞. From the
asymptotic solutions, he introduced a scattering function φ, considered the
translations φ(x)(y) = φ(y+2x), and established connections with eigenvalue
distributions in random matrix theory which are described in [38]. He showed
that the potential can be recovered from the scattering data by means of the
formula

u(x) = −2
d2

dx2
log det(I + Γφ(x)

), (1.2)

These results were developed further by Ercolani, McKean [10] and oth-
ers [13], [39], [40] to describe the inverse spectral problem for self-adjoint
Schrödinger operators on R. Grudsky and Rybkin [17] describes the inverse
scattering theory of the KdV equation in terms of Hankel and Toeplitz op-
erators. The latter paper uses Sarason’s algebra H∞ + C on the unit disc
to describe compact Hankel operators. In the current paper, we use Hankel
operators within the setting of linear systems in continuous time.

Remarkably, some of the methods of inverse scattering theory do not
really need self-adjointness. However, a significant obstacle in this approach
is that Hankel operators do not have a natural product structure, so it is
unclear as to how one can fully exploit the multiplicative properties of deter-
minants. This paper seeks to address this issue, by realizing Hankel operators
from linear systems, and then introducing algebras of operators on state space
that reflect the properties of Hankel operators and their Fredholm determi-
nants. As in [26], the Lyapunov differential equation is fundamental to the
development of the theory.

Definition 1.1. (i) (Lyapunov equation). Let H be a complex Hilbert space,
known as the state space, and L(H) the algebra of bounded linear operators
on H with the usual operator norm. Let (e−tA)t≥0 be a strongly continuous
(C0) semigroup of bounded linear operators on H such that ‖e−tA‖L(H) ≤M
for all t ≥ 0 and some M < ∞. Let D(A) be the domain of the generator
−A so that D(A) is itself a Hilbert space for the graph norm ‖ξ‖2D(A) =

‖ξ‖2H + ‖Aξ‖2H , and let A† be the adjoint of A. Let R : (0,∞) → L(H) be a
differentiable function. The Lyapunov equation is

−dRz
dz

= ARz +RzA (z > 0), (1.3)
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where the right-hand side is to be interpreted as a bounded bilinear form on
D(A)×D(A†). (This is a modified form of the version in [31] p. 502.)

(ii) (Operator ideals). Let L2(H) be the space of Hilbert–Schmidt op-
erators on H, and L1(H) be the space of trace class operators on H, so
L1(H) = {T : T = VW ;V,W ∈ L2(H)} and let det be the Fredholm deter-
minant defined on {I + T : T ∈ L1(H)}; see [25].

Definition 1.2. (i) (Linear system). Let H0 be a complex separable Hilbert
space which serves as the input and output spaces; let B : H0 → H and
C : H → H0 be bounded linear operators. The continuous-time linear system
(−A,B,C) is

dX

dt
= −AX +BU

Y = CX. (1.4)

(ii) (Scattering function). The scattering function is φ(x) = Ce−xAB,
which is a bounded and weakly continuous function φ : (0,∞) → L(H0). The
terminology is justified by [10] p.493. In control theory, the transfer function
is the Laplace transform of φ; see [31] p. 467.

(iii) (Hankel operator). Suppose that φ ∈ L2((0,∞);L(H0)). Then the
corresponding Hankel operator is Γφ on L2((0,∞);H0), where Γφf(x) =∫∞
0
φ(x+ y)f(y) dy; see [31], [29] for boundedness criteria.

Definition 1.3. (Admissible linear system). Let (−A,B,C) be a linear sys-
tem as above; suppose furthermore that the observability operator Θ0 :
L2((0,∞);H0) → H is bounded, where

Θ0f =

∫ ∞

0

e−sA
†
C†f(s) ds; (1.5)

suppose that the controllability operator Ξ0 : L2((0,∞);H0) → H is also
bounded, where

Ξ0f =

∫ ∞

0

e−sABf(s) ds. (1.6)

(i) Then (−A,B,C) is an admissible linear system. See [31] [page 469].
(ii) Suppose furthermore that Θ0 and Ξ0 belong to the ideal L2 of

Hilbert–Schmidt operators. Then we say that (−A,B,C) is (2, 2)-admissible.

The scattering map associates to any (2, 2) admissible linear system
(−A,B,C) the corresponding scattering function φ(x) = Ce−xAB. The in-
verse scattering problem involves recovering data about u from φ, as in (1.2).
In section 2 of this paper, we analyze the existence and uniqueness problem
for the Lyapunov equation, and show that for any (2, 2) admissible linear
system, the operator, as in [5], [1],

Rx =

∫ ∞

x

e−tABCe−tA dt (1.7)
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is trace class and gives the unique solution to (1.3) with the initial condition(dRx
dx

)
x=0

= −AR0 −R0A = −BC. (1.8)

Also, Rx ∈ L1(H) and the Fredholm determinant satisfies
det(I + λRx) = det(I + λΓφ(x)

) (x > 0, λ ∈ C). (1.9)

Definition 1.4. (Tau function). Given an (2, 2) admissible linear system
(−A,B,C), we define

τ(x) = det(I +Rx). (1.10)
Using this general definition of τ , we can unify several results from

the scattering theory of ordinary differential equations. Under circumstances
discussed in [17] and [35], this becomes the well-known Hitota tau function
of soliton theory. Such tau functions are also strongly analogous to the tau
functions introduced by Jimbo, Miwa and Date [27] to describe the isomon-
odromy of rational differential equations and generalize classical results on
theta functions. The connection between Fredholm determinants and rational
differential equations is further described in [11] and [38]; see also [20].

The Gelfand–Levitan–Marchenko equation [12] provides the linkage be-
tween φ and u via Rx. Consider

T (x, y) + Φ(x+ y) + µ

∫ ∞

x

T (x, z)Φ(z + y) dz = 0 (0 < x < y) (1.11)

where T (x, y) and Φ(x + y) are m ×m matrices with scalar entries. In the
context of (−A,B,C) we assume that Φ(x) = Ce−xAB is known and aim to
find T (x, y). In section two, we use Rx to construct solutions to the associated
Gelfand–Levitan equation (1.11), and introduce a potential

u(x) = −2
d2

dx2
log det(I +Rx). (1.12)

In section three, we obtain a differential equation linking Φ(x) to u(x). In
examples of interest in scattering theory, one can calculate det(I + λRx)
more easily than the Hankel determinant of ΓΦ(x)

directly [10], since Rx has
additional properties that originate from Lyapunov’s equation. In section
four, we introduce a differential algebra of operators on the state space, and
a homomorphism to the differential algebra C[u, u′, . . . ] that is generated
by the potential. In section five, we describe the connection between this
algebra and the stationary KdV hierarchy. There is a fundamental connection
between theta functions and equations of KdV and KP type; see [28].

2. τ functions in terms of Lyapunov’s equation and the
Gelfand–Levitan equation

The following section proves existence and uniqueness of solutions of the
Lyapunov equation (1.3), in a style suggested by [31] p 503]. Peller discusses
scattering functions that produce bounded self-adjoint Hankel operators Γφ,
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and their realization in terms of continuous time linear systems. He observes
that in some cases one needs a bounded semigroup with unbounded generator
(−A). We prove the uniqueness results for bounded and strongly continuous
semigroups, then specialize to holomorphic semigroups. The main application
is to the Gelfand–Levitan equation (1.11), and associated determinants.

Proposition 2.1. Let (e−tA)t≥0 be a strongly continuous and weakly asymp-
totically stable semigroup on a complex Hilbert space H, so e−tAf → 0 weakly
as t→ ∞ for all f ∈ H. Then

(i) St : R 7→ e−tARe−tA for t ≥ 0 defines a strongly continuous semi-
group on L1(H), which has generator (−L), with dense domain of definition
D(L) such that

L(R) = AR+RA (R ∈ D(L)). (2.1)
(ii) The linear operator L : D(L) → L1(H) is injective, and for each

R0 ∈ D(L) with L(R0) = X, there exists a weakly convergent integral

R0 =

∫ ∞

0

e−tAXe−tA dt. (2.2)

(iii) Suppose moreover that ‖e−t0A‖L(H) < 1 for some t0 > 0. Then
L : D(L) → L1(H) is surjective, the integral (2.2) converges absolutely in
L1(H) and R0 gives the unique solution to AR0 +R0A = X.

Proof. (i) First observe that by the uniform boundedness theorem, there
exists M such that ‖e−tA‖L(H) ≤ M for all t ≥ 0, so (e−tA)t≥0 is uniformly
bounded. Also, the adjoint semigroup (e−tA

†
)t≥0 is also strongly continuous

and uniformly bounded, so A and A† have dense domains D(A) and D(A†)
in H.

Now L1(H) = H⊗̂H, the projective tensor product, so for all X ∈
L1(H), there exists a nuclear decomposition X =

∑∞
j=1BjCj where Bj , Cj ∈

H satisfy ‖X‖L1(H) =
∑∞
j=1 ‖Bj‖H‖Cj‖H . Then

St(X)−X =

∞∑
j=1

(e−tABjCje
−tA −BjCje

−tA) +

∞∑
j=1

(BjCje
−tA −BjCj)

where (e−tA) is bounded, ‖e−tABj − Bj‖H → 0 and ‖e−tA†
Cj − Cj‖H → 0

as t → 0+; so ‖St(X) − X‖L1(H) → 0 as t → 0+; so (St)t≥0 is strongly
continuous on L1(H). By the Hille–Yoshida theorem [15] p. 16, there exists
a dense linear subspace D(L) of L1(H) such that St(R) is differentiable at
t = 0+ for all R ∈ D(L), and (d/dt)t=0+St(R) = −AR−RA, so the generator
is (−L), where L(R) = AR+RA.

(ii) Certainly D(L) contains D(A†)⊗̂D(A) in L1(H) = H⊗̂H. Choosing
f ∈ D(A) and g ∈ D(A†), we find that

d

dt

〈
e−tAR0e

−tAf, g
〉
= −

〈
e−tA(AR0 +R0A)e

−tAf, g
〉

= −
〈
e−tAXe−tAf, g

〉
(2.3)
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a continuous function of t > 0; so integrating we obtain〈
R0f, g

〉
−
〈
e−sAR0e

−sAf, g
〉
=

∫ s

0

〈
e−tAXe−tAf, g

〉
dt. (2.4)

We extend this identity to all f, g ∈ H by joint continuity; then we let
s → ∞ and observe that R0 : H → H is trace class and hence is completely
continuous, hence R0 maps the weakly null family (e−sAf)s→∞ to the norm
convergent family (R0e

−sAf)s→∞, so 〈e−sAR0e
−sAf, g〉 → 0 as s → ∞;

hence we have a weakly convergent improper integral〈
R0f, g

〉
= lim
s→∞

∫ s

0

〈
e−tAXe−tAf, g

〉
dt (f, g ∈ H).

(iii) The function t 7→ e−tAXe−tA takes values in the separable space
L1(H) and is weakly continuous, hence strongly measurable, by Pettis’s the-
orem. By considering the spectral radius, Engel and Nagel [9] show that there
exist δ > 0 and Mδ > 0 such that ‖e−tA‖L(H) ≤ Mδe

−δt for all t ≥ 0; hence
(2.2) converges as a Bochner–Lebesgue integral with

‖Rx‖L1(H) ≤
∫ ∞

x

M2
δ ‖X‖L1(H)e

−2δt dt

≤ M2
δ

2δ
‖X‖L1(H)e

−2δx. (2.5)

Furthermore, A is a closed linear operator and satisfies

A

∫ s

x

e−tAXe−tA dt+

∫ s

x

e−tAXe−tA dtA =

∫ s

x

− d

dt

(
e−tAXe−tA

)
dt

= e−xAXe−xA − e−sAXe−sA

→ e−xAXe−xA (2.6)

as s → ∞ where
∫ s
x
e−tAXe−tAdt → Rx; so ARx + RxA = e−xAXe−xA for

all x ≥ 0. We deduce that x 7→ Rx is a differentiable function from (0,∞) to
L1(H) and that the modified Lyapunov equation (1.3) holds.

�

The hypotheses (i) and (ii) are symmetrical under the adjoint (A,R0) 7→
(A†, R†

0); however, the hypothesis (iii) is rather stringent, and in many appli-
cations one only needs existence of the integral (2.2).

Definition 2.2. ((2, 2) admissible linear systems). (i) Let H be a complex
Hilbert space and let Σ = (−A,B,C) be a linear system with state space H.
Suppose that the integral

Wc =

∫ ∞

0

e−tABB†e−tA
†
dt (2.7)

converges weakly and defines a bounded linear operator on H; then Wc is
the controllability Gramian. Suppose further that the integral

Wo =

∫ ∞

0

e−tA
†
C†Ce−tA dt (2.8)
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converges weakly and defines a bounded linear operator on H; then Wo is
the observability Gramian.

(ii) Then as in [5] p. 318 we define Rx to be the bounded linear operator
on H determined by the weakly convergent integral

Rx =

∫ ∞

x

e−tABCe−tA dt. (2.9)

(iii) Then Σ satisfying (i) is said to be balanced if Wc = Wo and
ker(Wc) = 0; see [31] p. 499.

(iv) Also, Σ satisfying (i) is said to be (2, 2) admissible if Wc and Wo

are trace class, or equivalently Θ0 and Ξ0 are Hilbert-Schmidt; see [5].
(v) We introduce the scattering function φ(t) = Ce−tAB and the shifted

scattering function φ(x)(t) = φ(t+ 2x) for x, t > 0.
(vi) (Sectorial operator). For 0 < θ ≤ π, we introduce the sector Sθ =

{z ∈ C \ {0} : | arg z| < θ}. A closed and densely defined linear operator −A
is sectorial [9], [15] if there exists π/2 < θ < π such that Sθ is contained in
the resolvent set of −A and |λ|‖(λI + A)−1‖L(H) ≤ M for all λ ∈ Sθ. Let
D(A) be the domain of A and D(A∞) = ∩∞

n=0D(An). See [15] p.37.
(vii) For π/2 < δ < π, we introduce Xδ = {ζ ∈ Sδ : −ζ ∈ Sδ} which is

an open set, symmetrical about iR and bounded by lines passing through 0.

Theorem 2.3. Let (−A,B,C) be a linear system such that ‖e−t0A‖L(H) < 1
for some t0 > 0, and that B and C are Hilbert–Schmidt operators such that
‖B‖L2(H0;H)‖C‖L2(H;H0) ≤ 1. Suppose further that −A is sectorial on Sθ for
some π/2 < θ < π.

(i) Then (−A,B,C) is (2, 2)-admissible, so the trace class operators
(Rx)x>0 give the solution to Lyapunov’s equation (1.3) for x > 0 that satisfies
the initial condition (1.8), and the solution to (1.3) with (1.8) is unique.

(ii) The function τ(x) = det(I +Rx) is differentiable for x ∈ (0,∞).
(iii) Then Rz extends to a holomorphic function that satisfies (1.3) on

Sθ−π/2, and Rz → 0 as z → ∞ in Sθ−ε−π/2 for all 0 < ε < θ − π/2.

Proof. (i) Since BC ∈ L1(H), the integrand of (2.9) takes values in L1(H),
and we can apply Proposition 2.1(iii) to X = BC.

(ii) The Fredholm determinant R 7→ det(I+R) is a continuous function
on L1(H). Also the integral Rx =

∫∞
x
e−tABCe−tA dt belongs to D(L) and

gives a differentiable function of x > 0 with values in L1(H).
(iii) By classical results of Hille [15] p.34, (e−zA)z∈Sθ−π/2

defines an
analytic semigroup on Sθ−π/2, bounded on Sν for all 0 < ν < θ− π/2, so we
can define Rz = e−zAR0e

−zA and obtain an analytic solution to Lyapunov’s
equation. For all 0 < ε < θ − π/2, there exists M ′

ε such that ‖e−zA‖L(H) ≤
M ′
ε for all z ∈ Sδ where δ = θ − ε − π/2. Now for z ∈ Sδ/2, we write

z = x/2 + (x/2 + iy) with x/2 + iy ∈ Sδ and use the bound ‖e−zA‖L(H) ≤
‖e−xA/2‖L(H)‖e−(x/2+iy)A‖L(H) to obtain ‖e−zA‖L(H) ≤ M ′2

ε ‖e−t0A‖x/(4t0)L(H) ,
so ‖e−zA‖L(H) → 0 exponentially fast as z → ∞ in the sector Sδ/2. Hence Rz
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is holomorphic and bounded on S(θ−ε−π/2) and by (2.9), Rz → 0 as z → ∞
in S(θ−ε−π/2)/2.

�

Example. (i) Let ∆ = −d2/dx2 be the usual Laplace operator which is
essentially self-adjoint and non-negative on C∞

c (R;C) in L2(R;C). We in-
troduce A =

√
I +∆ which is given by the Fourier multiplier FAf(ξ) =√

1 + ξ2Ff(ξ). Then (e−zA) and (e−zA
2

) give bounded holomorphic semi-
groups on H, as in Theorem 2.3, on the right half-plane {z ∈ C : <z ≥ 0},
which is the closure of Sπ/2. On the imaginary axis, we have unitary groups
(eitA) and (e−itA

2

). By classical results from wave equations, we can write
eitA + e−itA = 2 cos(tA) where u(x, t) = cos(tA)f(x) for f ∈ C∞

c (R;C) is
given by

u(x, t) =
1

2

(
f(x+ t)+f(x− t)

)
+
t

2

∫ x+t

x−t
f(y)

J ′
0(
√
t2 − (x− s)2)√
t2 − (x− s)2

ds, (2.10)

where J0 is Bessel’s function of the first kind of order zero, and u satisfies
∂2u

∂x2
− ∂2u

∂t2
= u(x, t),

u(x, 0) = f(x);

∂u

∂t
(x, 0) = 0. (2.11)

See [15] p. 121. Note that (exp(t(iA)2j−1)) gives a unitary group on H for
j = 0, 1, 2, . . . . This can be used to deform the linear system in the sense of
Proposition 2.5(iii). Unitary deformation groups for tau functions are consid-
ered in [27]

(ii) In section 4 of [5], we introduced linear systems to describe
Schrödinger’s equation when the potential is smooth and localized. In

[17], the authors obtain detailed results about the corresponding Hankel op-
erator.

Definition 2.4. (i) (Block Hankel operators). Say that Γ ∈ L(H) is block
Hankel if there exists 1 ≤ m < ∞ such that Γ is unitarily equivalent to the
block matrix [Aj+k−2]

∞
j,k=1 on `2(Cm) where Aj ∈ Cm×m for j = 0, 1, . . . .

(ii) Let (−A,B,C) be a (2, 2) admissible linear system with input and
output space H0, where the dimension of H0 over C is m <∞. Then m is the
number of outputs of the system, and systems with finite m > 1 are known
as MIMO for multiple input, multiple output, and give rise to block Hankel
operators with Φ(x) = Ce−xAB; see [59].

(iii) The Gelfand–Levitan integral equation for (−A,B,C) as in (ii) is
(1.11), where T (x, y) and Φ(x + y) are m ×m matrices with scalar entries,
and µ ∈ C. We proceed to obtain a solution.

Proposition 2.5. (i) In the notation of Theorem 2.3, there exists x0 > 0 such
that

Tµ(x, y) = −Ce−xA(I + µRx)
−1e−yAB (2.12)
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satisfies the integral equation (1.11) for x0 < x < y and |µ| < 1.
(ii) The determinant satisfies det(I + µRx) = det(I + µΓΦ(x)

) and

µtraceTµ(x, x) =
d

dx
log det(I + µRx). (2.13)

(iii) Suppose that t 7→ U(t) is a continuous function [0, 1] → L(H) such
that U(t)A = AU(t) and ‖U(t)‖L(H) ≤ 1. Then there is a family of (2, 2)
admissible linear systems

Σ(t) = (−A,U(t)B,CU(t)) (t ∈ [0, 1]);

the corresponding tau function τ(x, t) is continuous for (x, t) ∈ (0,∞)× [0, 1].

Proof. (i) We choose x0 so large that eδx0 ≥ Mδ/2δ, then by (2.7), we have
|µ|‖Rx‖L(H) < 1 for x > x0, so I + µRx is invertible. Substituting Tµ(x, y)
into the integral equation (1.11), we obtain

Ce−(x+y)AB − Ce−xA(I + µRx)
−1e−yAB

− µCe−xA(I + µRx)
−1

∫ ∞

x

e−zABCe−zA dze−yAB

= Ce−(x+y)AB − Ce−xA(I + µRx)
−1e−yAB

− µCe−xA(I + µRx)
−1Rxe

−yAB

= 0. (2.14)

(ii) As in (1.5), the operator Θx : L2(0,∞) → H is Hilbert–Schmidt;
likewise Ξx : L2(0,∞) → H is Hilbert–Schmidt; so (−A,B,C) is (2, 2)-admissible.
Hence ΓΦ(x)

= Θ†
xΞx and Rx = ΞxΘ

†
x are trace class, (I + µRx) is a holo-

morphic function of x on some sector Sδ as in Theorem 2.3 and
det(I + µRx) = det(I + µΞxΘ

†
x) = det(I + µΘ†

xΞx) = det(I + µΓΦ(x)
).

By the Riesz functional calculus, (I + µRx)
−1 is meromorphic for x in some

Sδ. Correcting a typographic error in [5] p. 324, we rearrange terms and
calculate the derivative

µTµ(x, x) = −µtrace
(
Ce−xA(I + µRx)

−1e−xAB
)

= −µtrace
(
(I + µRx)

−1e−xABCe−xA
)

= µtrace
(
(I + µRx)

−1 dRx
dx

)
=

d

dx
trace log(I + µRx). (2.15)

This identity is proved for |µ| < 1 and extends by analytic continuation to
the maximal domain of Tµ(x, x).

(iii) Since A commutes with U(t), the domain D(A) is invariant un-
der U(t), and the multiplications B 7→ U(t)B and C 7→ CU(t) preserve
the hypotheses of Theorem 2.3, so (−A,U(t)B,CU(t)) is (2, 2) admissible.
By commutativity, we have τ(x, t) = det(I + U(t)RxU(t)), which depends
continuously on (x, t).
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�

3. The Baker–Akhiezer function of an admissible linear system
In this section, we consider the Darboux addition rule for potentials and
analyze the transformation (−A,B,C) 7→ (−A,B,−C) and the effect on the
ratios and derivatives of τ functions. This generalizes section 3.4 of [10], and
allows us to introduce a version of the Baker-Akhiezer function for a family
of linear systems with properties that are similar to the classical case, as
presented in [3] and [22].

Definition 3.1. (Baker–Akhiezer function). (i) Let (−A,B,C) be as in The-
orem 2.3, and let

Σζ = (−A, (ζI +A)(ζI −A)−1B,C) (ζ ∈ C ∪ {∞} \ Spec(A)) (3.1)

so that Σζ defines a (2, 2) admissible linear systems for ζ in an open subset
of C ∪ {∞} which includes {ζ ∈ C : −ζ ∈ Sθ} for some π/2 < θ < π. We
identify Σ∞ with (−A,B,C), and Σ0 with (−A,B,−C).

(ii) Let τζ be the tau function of Σζ , and let the Baker–Akhiezer function
for the family of linear systems be

ψζ(x) =
τζ(x)

τ∞(x)
exp

(
ζx

)
. (3.2)

(iii) Let τ∗ζ (x) = τζ̄(x̄) as in Schwarz’s reflection principle, and let

Σ∗
ζ = (−A†, C†, B†(ζI+A†)(ζI−A†)−1) (ζ ∈ C∪{∞}\Spec(A†)) (3.3)

so Σζ 7→ Σ∗
ζ is an involution, and Σ∗

ζ has tau function τ∗.

The following result introduces a family of solutions of Schrödinger equa-
tion corresponding to the Σζ with an addition rule in the style of Darboux.

Proposition 3.2. Let (−A,B,C) be as in Theorem 2.3.
(i) Then for −ζ ∈ Sθ, the linear system Σζ is also (2, 2) admissible, and

the Baker–Akhiezer function satisfies

− d2

dx2
ψζ(x) + u∞(x)ψζ(x) = −ζ2ψζ(x). (3.4)

(ii) There exist hj ∈ C∞((0,∞);C) such that there is an asymptotic
expansion

ψζ(x) � eζx
(
1 +

h1(x)

ζ
+
h2(x)

ζ2
+ . . .

)
(3.5)

as ζ → ±i∞, and the expansion is uniform for x in compact subsets of (0,∞).

Proof. (i) For all ζ ∈ C\Spec(A), there exists x0(ζ) such that ‖(ζI+A)(ζI−
A)−1Rx‖L1(H) < 1 for all x > x0(ζ), so that τζ(x) is continuously differen-
tiable and non-zero as a function of x ∈ (x0(ζ),∞). In particular, suppose
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that <ζ < 0, then −ζ ∈ Sθ so ζI − A is invertible. Using the R function for
Σζ , we write

τζ(x)

τ∞(x)
=

det
(
I + (ζI +A)(ζI −A)−1Rx

)
det

(
I +Rx

)
=

det
(
I + (ζI −A)−1((ζI −A)Rx +ARx +RxA)

)
det

(
I +Rx

)
=

det
(
I +Rx + (ζI −A)−1(ARx +RxA)

)
det

(
I +Rx

) (3.6)

so that when ARx+RxA has rank one, the perturbing term (ζI−A)−1(ARx+
RxA) has rank one; continuing we find

τζ(x)

τ∞(x)
= det

(
I + (ζI −A)−1e−xABCe−xA(I +Rx)

−1
)

= det
(
I + Ce−xA(I +Rx)

−1(ζI −A)−1e−xAB
)

= 1 + Ce−xA(I +Rx)
−1(ζI −A)−1e−xAB, (3.7)

since B : C → H and C : H → C have rank one. Hence

ψζ(x) =
τζ(x)

τ∞(x)
exp

(
ζx

)
= exp

(
ζx

)
+ Ce−xA(I +Rx)

−1(ζI −A)−1e−xAB exp
(
ζ
)

= exp
(
ζx

)
−
∫ ∞

x

Ce−xA(I +Rx)
−1e−yAB exp

(
ζy

)
dy

= exp
(
ζx

)
+

∫ ∞

x

T (x, y) exp
(
ζy

)
dy. (3.8)

Here T satisfies the Gelfand–Levitan equation, and by integrating by parts,
we see that

∂2T

∂x2
− ∂2T

∂y2
= u(x)T (x, y) (3.9)

where u(x) = −2 d2

dx2 log τ(x). Then by integrating by parts, we see that ψζ
satisfies Schrödinger’s equation.

The solutions of the differential equation depend analytically on ζ at
those points where the potential depends analytically on ζ; note that ζ 7→
τζ(x) is holomorphic and non zero for ‖Rx‖ < 1 and −ζ ∈ Sθ. Then we
continue the solutions analytically to all −ζ in the sector Sθ, on which ψζ(x)
is holomorphic as a function of ζ for x > 0.

(ii) Observe that Xθ = Sθ∩(−Sθ) contains iR\{0}. For ζ ∈ Sθ∩(−Sθ),
by (i) there exist solutions ψζ(x) and ψ−ζ(x) to (3.4). In particular, ψik and
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ψ−ik(x) are solutions for k > 0. We integrate by parts repeatedly

e−xA(ζI −A)−1 = e−xA
∫ ∞

0

eζse−sA ds

=
e−xA

ζ
+
Ae−xA

ζ2
+ · · ·+ Ak−1e−xA

ζk

+

∫ ∞

0

Ake−xA

ζk
eζse−sA ds, (3.10)

where the integral converges by the hypothesis of Theorem 2.3. Also, (e−zA)
is an analytic semigroup in the sector Sθ−π/2, so D(Aj) is a dense linear
subspace of H for all j = 1, 2, . . . and Aje−xA ∈ L(H) and by Cauchy’s
estimates there exists C > 0 such that ‖Aje−xA‖L(H) ≤ Cj!/xj for all x > 0.
So we can generate an asymptotic expansion of (3.6) with terms

hj(x) = Ce−xA(I +Rx)
−1Aj−1e−xAB

which are bounded on compact subsets of (0,∞).
�

Definition 3.3. (Darboux transforms). Let (−A,B,C) be an (2, 2) admissible
linear system with tau function τ∞(x;µ) = det(I + µRx). Define the Dar-
boux transform of (−A,B,C) to be (−A,B,−C) with tau function transform
τ0(x;µ) = det(I − µRx). Let

v =
1

µ

d

dx
log

τ∞
τ0
, w =

1

µ

d

dx
log

(
τ0τ∞

)
,

u∞ = − 2

µ2

d2

dx2
log τ∞, u0 = − 2

µ2

d2

dx2
log τ0. (3.11)

In the following result, we show how products and quotients of τ func-
tions can be linked by the Gelfand–Levitan equation for 2× 2 matrices, and
satisfy the identities usually associated with Darboux transforms in the the-
ory of integrable systems. See [23]

Theorem 3.4. Let (−A,B,C) be a (2, 2)-admissible linear system with input
and output spaces C, and let φ(x) = Ce−xAB.

(i) Then there exists δ > 0 such that for all µ ∈ C such that |µ| < δ,
the Gelfand-Levitan equation (1.11) with

T (x, y) =

[
W (x, y) V (x, y)
V (x, y) W (x, y)

]
, (3.12)

Φ(x+ y) =

[
0 φ(x+ y)

φ(x+ y) 0

]
(3.13)

has a solution such that

W (x, x) =
1

2µ

d

dx
log

(
τ∞(x;µ)τ0(x;µ)

)
, (3.14)

V (x, x) =
1

2µ

d

dx
log

τ∞(x;µ)

τ0(x;µ)
(3.15)
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and
1

2µ

d

dx
W (x, x) = −V (x, x)2; (3.16)

(ii) also Toda’s equation holds in the form
τ ′′0 τ∞ − 2τ ′0τ

′
∞ + τ0τ

′′
∞ = 0. (3.17)

Proof. (i) Let
T∞(x, y) = −Ce−xA(I + µRx)

−1e−yAB,

T0(x, y) = Ce−xA(I − µRx)
−1e−yAB

and
Φ(x) =

[
0 φ(x)

φ(x) 0

]
.

Now let
T (x, y) =

1

2

[
T∞ + T0 T∞ − T0
T∞ − T0 T∞ + T0

]
so that

T (x, y) = −
[
C 0
0 C

] [
e−xA 0
0 e−xA

] [
I µRx

µRx I

]−1 [
e−yA 0
0 e−yA

] [
0 B
B 0

]
hence T satisfies the Gelfand–Levitan equation (1.11).

ii) As in Proposition 2.5,

T∞(x, x) =
1

µ

d

dx
log τ∞(x),

T0(x, x) =
1

µ

d

dx
log τ0(x);

hence (3.17) is equivalent to the condition
d

dx
T0(x, x) + µ

(
T0(x, x)− T∞(x, x)

)2
+

d

dx
T∞(x, x) = 0, (3.18)

which we now verify. The left-hand side of (3.18) equals
Ce−xA

(
−A(I − µRx)

−1 − (I − µRx)
−1µ(ARx +RxA)(I − µRx)

−1

− (I − µRx)
−1A

)
e−xAB + Ce−xA

(
(I − µRx)

−1 + (I + µRx)
−1

)
e−xAµBCe−xA(

(I − µRx)
−1 + (I + µRx)

−1
)
e−xA + Ce−xA

(
A(I + µRx)

−1

− (I + µRx)
−1µ(ARx +RxA)(I + µRx)

−1 + (I + µRx)
−1A

)
e−xAB (3.19)

All of the terms begin with Ce−xA and end with e−xAB, and we can replace
e−xAµBCe−xA by µ(ARx +RxA) to obtain

(3.19) = Ce−xA
(
−2(I − µRx)

−1A(I − µRx)
−1

+ 4(I − µ2R2
x)

−1µ(ARx +RxA)(I − µ2R2
x)

−1

+ 2(I + µRx)
−1A(I + µRx)

−1
)
e−xAB

= 0. (3.20)
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This proves (3.18), and one can easily check that (3.17) is equivalent to

u0(x) =
1

µ

dv

dx
+ v(x)2, v(x)2 = − 1

µ

dw

dx
.

The entries of T satisfy the pair of coupled integral equations

0 =W (x, y) + µ

∫ ∞

x

V (x, s)φ(s+ y) ds

0 = V (x, y) + φ(x+ y) + µ

∫ ∞

x

W (x, s)φ(s+ y) ds; (3.21)

so W satisfies

0 = −W (x, z) + µ

∫ ∞

x

φ(x+ y)φ(y + z) dy

+ µ2

∫ ∞

x

W (x, s)

∫ ∞

x

φ(s+ y)φ(y + z) dyds, (3.22)

which explains how µ2Γ2
φ enters into several determinant formulas [38].

�

Definition 3.5. (i) (Darboux Addition). For −ζ ∈ Sθ ∪ {0} we define the
Darboux addition rule on (2, 2) admissible linear systems by

Mζ : (−A,B,C) 7→ (−A, (ζI +A)(ζI −A)−1B,C)

and correspondingly on potentials by

u∞ 7→ uζ = u∞ − 2(logψζ)
′′. (3.23)

(ii) Let Wr(ϕ,ψ) be the Wronskian of ψ,ϕ ∈ C1((0,∞);C).

Corollary 3.6. The set {Mζ , (ζ ∈ Xθ),M0,M∞ = I} generates a group such
that M2

0 = I, MζM−ζ = I and MζMη corresponds to adding

−2
d2

dx2
logWr(ψζ , ψη) (3.24)

to the potential.

Proof. The definition is consistent with [10] p. 484]. In particular, ψ0(x) =

τ0(x)/τ∞(x), and u0(x) = u∞(x) − 2 d2

dx2 logψ0(x), which is consistent with
(3.18).

For ζ1 6= ζ2, let Ψ(x) = Wr(ψζ1 , ψζ2)/ψζ2 , and observe that

Ψ′′ =
(
ζ22 + u∞ − 2(logψζ1)

′′)Ψ.
This gives the basic composition rule forMζ2Mζ1 . The other statements follow
from Proposition 3.2 and Theorem 3.4. See [25]

�
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4. The state ring associated with an admissible linear system
Gelfand and Dikii [11] considered the algebra Au = C[u, u′, u′′, . . . ] of com-
plex polynomials in a smooth potential u and its derivatives. They showed
that if u satisfies the stationary higher order KdV equations (5.1), then Au

is a Noetherian ring [2] and the associated Schrödinger equation is integrable
by quadratures; see [7]. In this section, we introduce an analogue AΣ for an
admissible linear system.

We develop a calculus for Rx which is the counterpart of Pöppe’s func-
tional calculus for Hankel operators from [32], [25], [33]. As we see in other
papers , our theory of state rings has wider scope for generalization.

Definition 4.1. (1) (Differential rings). Let R be a ring with ideal J , and let
∂ : R → R be a derivation. Then RJ = {r ∈ R : ∂(r) ∈ J } gives a subring
of R, the ring of constants relative to J . When R is an algebra over C and
J = (0), we call R0 the constants; see [34].

(2) (State ring of a linear system). Let (−A,B,C) be a linear system
such that A ∈ L(H). Suppose that:

(i) S is a differential subring of C∞((0,∞);L(H));
(ii) I, A and BC are constant elements of S;
(iii) e−xA, Rx and Fx = (I +Rx)

−1 belong to S.
Then S is a state ring for (−A,B,C).

Lemma 4.2. Suppose that (−A,B,C) is a linear system with A ∈ L(H) and
that Rx gives a solution of Lyapunov’s equation (1.3) such that I + Rx is
invertible for x > 0 with inverse Fx. Then the free associative algebra S
generated by I,R0, A, F0, e

−xA, Rx and Fx is a state ring for (−A,B,C) on
(0,∞). For all t > 0, there exists a ring homomorphism St : S → S given by
St : G(x) 7→ G(x+ t) such that St commutes with d/dx

Proof. We can regard S as a subring of Cb((0,∞),L(H))), so the multipli-
cation is well defined. Then we note that BC = AR0 + R0A belongs to S,
as required. We also note that (d/dx)e−xA = −Ae−xA and that Lyapunov’s
equation (1.3) gives

d

dx
(I +Rx)

−1 = (I +Rx)
−1(ARx +RxA)(I +Rx)

−1, (4.1)

which implies
dFx
dx

= AFx + FxA− 2FxAFx, (4.2)
with the initial condition

AF0 + F0A− 2F0AF0 = F0BCF0.

Hence S is a differential ring.
We can map I 7→ I, e−xA 7→ e−(x+t)A, R0 7→ e−tAR0e

−tA, Rx 7→
e−tARxe

−tA and Fx 7→ (I + e−tARxe
−tA)−1, and thus produce a ring ho-

momorphism G(x) 7→ G(x + t) which satisfies (d/dx)StG(x) = G′(x + t) =
St(d/dx)G(x).

�
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Definition 4.3. (Products and brackets). (i) Given a state ring S for (−A,B,C),
let B be any differential ring of functions from (0,∞) → L(H0). Let

AΣ = spanC{An1 , An1FxA
n2 . . . FxA

nr : nj ∈ N}. (4.3)

(ii) On S we introduce the associative product ∗ by

P ∗Q = P (AF + FA− 2FAF )Q (P,Q ∈ S), (4.4)

which is distributive over the standard addition, and the derivation ∂ : S → S
by

∂P = A(I − 2F )P +
dP

dx
+ P (I − 2F )A (P ∈ S). (4.5)

(iii) Let b · c : S → B be the linear map

bY c = Ce−xAFxY Fxe
−xAB (Y ∈ S), (4.6)

so that x 7→ bY c is a differentiable function (x0,∞) → L(H0).

For x0 ≥ 0 and 0 < φ < π, let Sx0

δ be the translated sector Sx0

δ =
{z = x0 + w : w ∈ C \ {0}; | argw| < δ} and let H∞(Sx0

δ ) the the bounded
holomorphic complex functions on Sx0

δ . Then let H∞
∞ = ∪x0>0H

∞(Sx0

δ ) be
the algebra of complex functions which are bounded on some translated sector
Sx0

δ , with the usual pointwise multiplication.

Theorem 4.4. Let (−A,B,C) be a (2, 2)-admissible linear system with H0 = C
as in Theorem 2.3, so (e−zA) for z ∈ S0

φ is a bounded holomorphic semigroup
on H. Let Θ0 = {P ∈ AΣ : bP c = 0}.

(i) Then (AΣ, ∗, ∂) is a differential ring with bracket b·c;
(ii) there is a homomorphism of differential rings b · c : (AΣ, ∗, ∂) →

(H∞
∞ , ·, d/dz);

(iii) Θ0 is a differential ideal in (AΣ, ∗, ∂) such that AΣ/Θ0 is a com-
mutative differential ring, and an integral domain.

Proof. (i) We can multiply elements in S by concatenating words and taking
linear combinations. Since all words in AΣ begin and end with A, we obtain
words of the required form, hence AΣ is a subring of S. To differentiate
a word in AΣ we add words in which we successively replace each Fx by
AFx + FxA− 2FxAFx, giving a linear combination of words of the required
form. The basic observation is that dF/dx = AF + FA− 2FAF , so one can
check that

∂(P ∗Q) = (∂P ) ∗Q+ P ∗ (∂Q); (4.7)

hence (S, ∗, ∂) is a differential ring with differential subring (AΣ, ∗, ∂).
(ii) Now we verify that there is a homomorphism of differential rings

(AΣ, ∗, ∂) → (B, ·, d/dx) given by P 7→ bP c. From the definition of Rx, we
have ARx +RxA = e−xABCe−xA, and hence

Fxe
−xABCe−xAFx = AFx + FxA− 2FxAFx,
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which implies⌊
P
⌋⌊
Q
⌋
= Ce−xAFxPFxe

−xABCe−xAFxQFxe
−xAB

= Ce−xAFxP (AFx + FxA− 2FxAFx)QFxe
−xAB

=
⌊
P (AFx + FxA− 2FxAFx)Q

⌋
= bP ∗Qc. (4.8)

Moreover, the first and last terms in bP c have derivatives
d

dx
Ce−xAFx = Ce−xAFxA(I−2Fx),

d

dx
Fxe

−xAB = (I−2Fx)AFxe
−xAB,

so the bracket operation satisfies
d

dx

⌊
P
⌋
=

⌊
A(I − 2Fx)P +

dP

dx
+ P (I − 2Fx)A

⌋
= b∂P c. (4.9)

In this case A is possibly unbounded as an operator, so we use the holo-
morphic semigroup to ensure that products (4.5) and brackets (4.7) are well
defined. We observe that AΣ has a grading AΣ = ⊕∞

n=1An, where An is the
span of the elements that have total degree n when viewed as products of A
and F . For Xn ∈ An and Ym ∈ Am, we have Xn ∗ Ym ∈ An+m+2 ⊕ An+m+3

and ∂Xn ∈ An+1 ⊕An+2.
Also we have Ake−zA ∈ L(H) for all z ∈ S0

φ and ‖Ake−zA‖L(H) → 0

as z → ∞ in S0
φ; hence RzA

k → 0 and AkRz → 0 in L(H) as z → ∞
in S0

φ. Hence there exists an increasing positive sequence (xk)
∞
k=0 such that

AkFz − Ak ∈ L(H) for all z ∈ Sxk

φ and AkFz − Ak → 0 in L(H) as z → ∞
in Sxk

φ . Let Xn ∈ An and consider a typical summand AFzAkFz . . . A in Xn;
we replace each factor like AkFz by the sum of Ak(Fz − I) and Ak where
k ≤ n; then we observe that there in an initial factor Ce−zA and a final factor
e−zAB in bXnc; hence bXnc determines an element of H∞(Sxn

φ ).
We can identify H∞

∞ with the algebraic direct limit
H∞

∞ = limn→∞H∞(Sx0+n
φ ). By the principle of isolated zeros, the multipli-

cation on H∞
∞ is consistently defined, and H∞

∞ is an integral domain. Now
each f ∈ H∞

∞ gives f ∈ H∞(Sx0

φ ) so f ′ ∈ H∞(Sx0+1
φ ) by Cauchy’s estimates,

so f ′ ∈ H∞
∞ . From (i) we deduce that b · c : ⊕∞

n=1An → ∪∞
n=1H

∞(Sxn

φ ) is
well-defined and the bracket is multiplicative with respect to ∗, and behaves
naturally with respect to differentiation.

(iii) We check that b · c is commutative on (AΣ, ∗, ∂), by computing

bP ∗Qc = trace
(
Ce−xAFPFe−xABCe−xAFQFe−xAB

)
= trace

(
Ce−xAFQFe−xABCe−xAFPFe−xAB

)
= bQ ∗ P c. (4.10)

Hence Θ0 contains all the commutators P ∗Q−Q ∗ P , and Θ0 is the kernel
of the homomorphism b · c, hence is an ideal for ∗. Also, we observe that for
all Q ∈ Θ0, we have ∂Q ∈ Θ0 since b∂Qc = (d/dx)bQc = 0. Hence Θ0 is
a differential ideal which contains the commutator subspace of (AΣ, ∗), so
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AΣ/Θ0 is a commutative algebra. Also, ∂ determines a unique derivation ∂̄
on AΣ/Θ0 by ∂̄Q = ∂Q + Θ0 for all Q ∈ AΣ; hence AΣ/Θ0 is a differential
algebra. We can identify AΣ/Θ0 with a subalgebra ofH∞

∞ , which is an integral
domain. �

Remark 4.5. Pöppe [32] introduced a linear functional d . e on Fredholm ker-
nels K(x, y) on L2(0,∞) by dKe = K(0, 0). In particular, let K,G,H,L be
integral operators on L2(0,∞) that have smooth kernels of compact support,
let Γ = Γφ(x)

have kernel φ(s+t+2x), let Γ′ = d
dxΓ and G = Γψ(x)

be another
Hankel operator; then the trace satisfies

dΓe = − d

dx
traceΓ, (4.11)

dΓKGe = −1

2

d

dx
traceΓKG, (4.12)

d(I + Γ)−1Γe = −trace
(
(I + Γ)−1Γ′), (4.13)

dKΓedGLe = −1

2
dK(Γ′G+ ΓG′)Le, (4.14)

where (4.14) is known as the product formula. The easiest way to prove
(4.11)-(4.14) is to observe that Γ′G+ΓG′ is the integral operator with kernel
−2φ(x)(s)ψ(x)(t), which has rank one. These ideas were subsequently revived
by McKean [25], and are implicit in some results of [38]. Our formulas (4.7)
and (4.9) incorporate a similar idea, and are the basis of the proof of Theorem
4.4. The results we obtain appear to be more general than those of Pöppe,
and extend to periodic linear systems [6].

For the remainder of this section, we let A be a n × n complex matrix
with eigenvalues λj (j = 1, . . . ,m) with geometric multiplicity nj such that
λj + λk 6= 0 for all j, k ∈ {1, . . . ,m}; let K = C(e−λ1t, . . . , e−λmt, t). Also,
let B ∈ Cn×1 and C ∈ C1×n. The formula (4.18) resembles the expressions
used to obtain soliton solutions of KdV, as in [19] (14.12.11) and [16]. In [17,
(6.25)], there is a discussion of how the scattering data evolve under the time
evolution associated with the KdV flow.

Proposition 4.6. (i) There exists a solution Rt to Lyapunov’s equation (1.3)
with R0 = BC, such that the entries of Rt belong to K, and τ(t) ∈ K;

(ii) φ ∈ K satisfies a linear differential equation with constant coeffi-
cients.

(iii) Suppose further that all the eigenvalues of A are simple. Then
there exists an invertible matrix S such that S−1B = (bj)

n
j=1 ∈ Cn×1 and
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CS = (cj)
n
j=1 ∈ C1×n and the tau function is given by

τ(t) =1 +

n∑
j=1

bjcje
−2λjt

2λj

+
∑

(j,k),(m,p):j 6=m;k 6=p

(−1)j+k+m+p bjbmckcpe
−(λj+λk+λm+λp)t

(λj + λm)(λk + λp)
+ . . .

+

n∏
j=1

bjcj
2λj

∏
1≤j<k≤n

(λj − λk)
2

(λj + λk)2
e−2

∑n
j=1 λjt. (4.15)

Proof. (i) By the hypothesis, we can introduce a chain of circles C that go
once round each λj in the positive sense and have all the points −λk in their
exterior. Then by [4], the matrix

R0 =
−1

2πi

∫
C
(A+ λI)−1BC(A− λI)−1dλ

gives a solution to Sylvester’s equation in the form −AR0−R0A = −BC. To
see this, one considers (A+ λI)R0 + R0(A− λI) and then uses the calculus
of residues. By the Riesz functional calculus, we also have

e−tA =
1

2πi

∫
C

(
λI −A

)−1
e−tλdλ;

hence by Cauchy’s residue theorem, there exist complex polynomials pj and
qj , and integers mj ≥ 0 such that

e−tA =

m∑
j=1

qj(t)e
−tλjpj(A), (4.16)

where qj(t) is constant if the corresponding eigenvalue is simple. We let
Rt = e−tAR0e

−tA, which gives a solution to Lyapunov’s equation with ini-
tial condition −BC. From (4.16), we see that all the entries of Rt belong to
K. By the Laplace expansion of the determinant, we see that all entries of
τ(t) = det(I +Rt) also belong to K.

(ii) We have φ(t) = Ce−tAB ∈ K by (4.16). Also, we introduce the
characteristic polynomial of (−A) by det(λI +A) =

∑n
j=0 ajλ

j . Then by the
Cayley–Hamilton theorem,

∑n
j=0 ajφ

(j)(t) = 0.

(iii) There exists an invertible matrix S such that SAS−1 is the n × n
diagonal matrix D = diag(λ1, . . . , λn), and we observe that

Rt =
[bjcke−(λj+λk)t

λj + λk

]n
j,k=1

(4.17)

satisfies d
dtRt = −[bjcke

−(λj+λk)t]nj,k=1 and −DRt−RtD = −[bjcke
−(λj+λk)t]nj,k=1;

so Rt gives a solution of the Lyapunov equation with generator −D and ini-
tial condition given by the rank-one matrix −S−1BCS = −[bjck]

n
j,k=1. Hence
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the tau function is given by τ(t) = det(I + Rt) for this matrix, and there is
an expansion

det
[
δjk+

bjcke
−(λj+λk)x

λj + λk

]n
j,k=1

=
∑

σ⊆{1,...,n}

det
[bjcke−λjx−λkx

λj + λk

]
j,k∈σ

(4.18)

in which each subset σ of {1, . . . , n} of order ]σ, contributes a minor indexed
by j, k ∈ σ. From the Cauchy determinant formula, we obtain the identity

det
[bjcke−λjx−λkx

λj + λk

]
j,k∈σ

=
∏
j∈σ

bjcje
−2λjx

2λj

∏
j,k∈σ:j 6=k

λj − λk
λj + λk

. (4.19)

�

5. Diagonal Green’s function and stationary KdV hierarchy
In this section, we obtain properties of AΣ in terms of the brackets of odd
powers of A. Thus we obtain some sufficient conditions for some differential
equations to be integrable. Throughout this section, we suppose that the
hypotheses of Theorem 4.4 are in force, so that any finite set of elements
of AΣ are holomorphic functions on a some sector Ω containing (x0,∞) for
some x0 ≥ 0. We do not generally require u to be real valued, although in
Theorem 5.4(iv) we impose this further condition so that we can compare
our results with the classical spectral theory for the Schrödinger equation on
the real line.

Definition 5.1. (Stationary KdV hierarchy). (i) Let f0 = 1 and f1 = (1/2)u.
Then the KdV recursion formula is

4
d

dx
fm+1(x) = 4f1(x)

d

dx
fm(x) + 4

d

dx

(
f1(x)fm(x)

)
− d3

dx3
fm(x). (5.1)

(ii) If u satisfies fm = 0 for all m greater than or equal to some m0,
then u satisfies the stationary KdV hierarchy and is said to be an algebro-
geometric (finite gap) potential; see [10], [11], [13], [36], [30].

(iii) Suppose that u(x) → 0 as x → ∞, and likewise for all the partial
derivatives ∂`u/∂x`; suppose further that fj(x) → 0 as x → 0 as x → ∞
for all j = 1, 2, . . . . Then we say that the fj are homogeneous solutions of
the KdV hierarchy, and we consider cases where the system of differential
equations (5.1) has no arbitrary constants of integration.

Proposition 5.2. Let AΣ be as in Theorem 4.4. Then fm = (−1)m2bA2m−1c
for m = 1, 2, . . . satisfies the stationary KdV hierarchy (Novikov’s equations),
since

4
d

dx
bA2m+3c = d3

dx3
bA2m+1c+ 8

( d

dx
bAc

)
bA2m+1c+ 16bAc

( d

dx
bA2m+1c

)
.

(5.2)
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Proof. (i) We have the basic identities

bA(I − 2F )A(I − 2F )Xc = bA2Xc − 2bAcbXc; (5.3)
−2A(AF + FA− 2FAF ) = A(I − 2F )A(I − 2F )−A2 (5.4)

and their mirror images. Hence

d

dx
bA2m+1c = bA(I − 2F )A2m+1 +A2m+1(I − 2F )Ac, (5.5)

so

d2

dx2
bA2m+1c = bA(I − 2F )A(I − 2F )A2m+1 + 2A(I − 2F )A2m+1(I − 2F )A

+A2m+1(I − 2F )A(I − 2F )A

− 2A(AF +AF − 2FAF )A2m+1

− 2A2m+1(AF + FA− 2FAF )Ac
= bA(I − 2F )A(I − 2F )A2m+1 + 2A(I − 2F )A2m+1(I − 2F )A

+A2m+1(I − 2F )A(I − 2F )A

+A(I − 2F )A(I − 2F )A2m+1 −A2m+3

+A2m+1(I − 2F )A(I − 2F )A−A2m+3c
(5.6)

and by the basic identities (5.3) and (5.4)

d2

dx2
bA2m+1c = 2bA(I − 2F )A2m+1(I − 2F )Ac − 2bA2m+3c

+ 2bA(I − 2F )A(I − 2F )A2m+1c
+ 2bA2m+1(I − 2F )A(I − 2F )Ac

= 2bA(I − 2F )A2m+1(I − 2F )Ac+ 2bA2m+3c
− 4bA2m+1cbAc − 4bAcbA2m+1c. (5.7)

Now we differentiate the first summand of the final term

d

dx
2bA(I − 2F )A2m+1(I − 2F )Ac

= 2bA(I − 2F )A(I − 2F )A2m+1(I − 2F )Ac
+ 2bA(I − 2F )A2m+1(I − 2F )A(I − 2F )Ac
− 4bA(AF + FA− 2FAF )A2m+1(I − 2F )Ac
− 4bA(I − 2F )A2m+1(AF + FA− 2FAF )Ac (5.8)



22 Gordon Blower and Samantha L. Newsham

= 2bA(I − 2F )A(I − 2F )A2m+1(I − 2F )Ac
+ 2bA(I − 2F )A2m+1(I − 2F )A(I − 2F )Ac
+ 2bA(I − 2F )A(I − 2F )A2m+1(I − 2F )Ac
− 2bA2m+3(I − 2F )Ac
+ 2bA(I − 2F )A2m+1(I − 2F )A(I − 2F )Ac
− 2bA(I − 2F )A2m+3c (5.9)

thus we obtain
d2

dx2
bA2m+1c = 4bA(I − 2F )A(I − 2F )A2m+1(I − 2F )Ac

+ 4bA(I − 2F )A2m+1(I − 2F )A(I − 2F )Ac
− 2bA(I − 2F )A2m+3 +A2m+3(I − 2F )Ac

= −8bAcbA2m+1(I − 2F )Ac+ 4bA2m+3(I − 2F )Ac
− 8bAcbA(I − 2F )A2m+1c

+ 4bA(I − 2F )A2m+3c − 2
d

dx
bA2m+3c

= −8bAcbA(I − 2F )A2m+1 +A2m+1(I − 2F )Ac

+ 4bA(I − 2F )A2m+3 +A2m+3(I − 2F )Ac − 2
d

dx
bA2m+3c

= −8bAc d
dx

bA2m+1c+ 2
d

dx
bA2m+3c; (5.10)

hence
d3

dx3
bA2m+1c = −8bAc d

dx
bA2m+1c+ 4

d

dx
bA2m+3c − 8

d

dx

(
bAcbA2m+1c

)
;

(5.11)
which gives the stated result (5.2).

�

Definition 5.3. (Diagonal Green’s function). Let (−A,B,C) be as in Theorem
2.3. Then the diagonal Green’s function is g0(x; ζ)/

√
ζ where

g0(x; ζ) = (1/2) + bA(ζI −A2)−1c. (5.12)

The notation g0(x; ζ) is chosen to indicate a generating function and
also the diagonal of a Green’s function; now in Theorem 5.4(iv) we explain
the latter connection. Let C+ = {λ ∈ C : =λ > 0}.

Theorem 5.4. Let (−A,B,C) be as in Theorem 2.3.
(i) Then g0(x; ζ) is bounded and continuously differentiable in x and has

a unique asymptotic expansion depending on the bracketed odd powers of A,

g0(x; ζ) �
1

2
+

bAc
ζ

+
bA3c
ζ2

+
bA5c
ζ3

+ . . . (ζ → −∞); (5.13)
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(ii) g0(x; ζ) satisfies Drach’s equation

d3g0
dx3

= 4(u+ ζ)
dg0
dx

+ 2
du

dx
g0 (x > x0;−ζ > ω); (5.14)

(iii) there exists x1 > 0 such that

ψ±(x, ζ) =
√
g0(x,−ζ) exp

(
∓
√
−ζ

∫ x

x1

dy

2g0(y;−ζ)

)
(5.15)

satisfies Schrödinger’s equation

−ψ′′
±(x; ζ) + u(x)ψ±(x, ζ) = ζψ±(x; ζ) (x > x1, ζ > ω). (5.16)

(iv) Suppose that u is a continuous real function that is bounded be-
low, and that ψ± from (iii) satisfy ψ+(x; ζ) ∈ L2((0,∞);C) and ψ−(x; ζ) ∈
L2((−∞, 0);C) for all ζ ∈ C+. Then L = − d2

dx2 + u(x) defines an essentially
self-adjoint operator in L2(R;C), and the Green’s function G(x, y; ζ) which
represents (ζI − L)−1 has a diagonal that satisfies

G(x, x; ζ) =
g0(x;−ζ)√

−ζ
. (5.17)

Proof. (i) Let π − θ < arg λ < θ, so λ and −λ both lie in Sθ, hence ζ = λ2

satisfies 2π − 2θ < arg ζ < 2θ, so ζ lies close to (−∞, 0). Then ζI − A2 is
invertible and |ζ|‖(ζI −A2)−1‖L(H) ≤M . The function

g0(x; ζ) =
1

2
+Ce−xA(I +Rx)

−1A(ζI −A2)−1(I +Rx)
−1e−xAB (x > 0)

is well defined by Theorem 2.3(iii).
To obtain the asymptotic expansion, we note that e−xA(I + Rx)

−1

and (I + Rx)e
−xA involve the factor e−xA, where (e−zA) is a holomorphic

semigroup on Sθ−π/2. Hence A2j+1e−xA ∈ L(H) and by Cauchy’s estimates
there exist δ, x0,M0 > 0 such that ‖A2j+1e−xA‖L(H) ≤ M0(2j + 1)! for all
x ≥ x0 > 0, and ‖e−sA‖L(H) ≤ M0e

−sδ. As in Proposition 3.2, we have an
asymptotic expansion of

e−zA
(
(λI −A)−1 − (λI +A)−1

)
= −e−zA

∫ ∞

0

eλse−sA ds− e−zA
∫ ∞

0

e−λse−sA ds

= e−zA
( A
λ2

+
A3

λ4
+ · · ·+ A2j−1

λ2j

)
+
e−zA

λ2j+1

∫ ∞

0

A2j+1e−sA(esλ − e−λs) ds, (5.18)

in which all the summands are in L(H) due to the factor e−zA for z ∈ Sθ−π/2.
Hence

Ce−xA(I+Rx)
−1

∫ ∞

0

A2j+1e−sA(esλ−e−sλ) ds(I+Rx)−1e−xAB → 0 (x > 0)
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as λ→ i∞, or equivalently ζ → −∞, so

g0(x, ζ) =
1

2
+ Ce−xA(I +Rx)

−1
(A
ζ
+
A3

ζ2
+ · · ·+ A2j−1

ζj

)
(I +Rx)

−1e−xAB

+O
( 1

ζj+1

)
.

(5.19)
This gives the asymptotic series; generally, the series is not convergent since
the implied constants in the term O(ζ−(j+1)) involve (2j + 1)!.

(ii) From Proposition 5.2 we have

4
d

dx

∞∑
m=0

bA2m+3c
ζm+1

=
d3

dx3

∞∑
m=0

bA2m+1c
ζm+1

+ 8
( d

dx
bAc

) ∞∑
m=0

bA2m+1c
ζm+1

+ 16bAc d
dx

∞∑
m=0

bA2m+1c
ζm+1

; (5.20)

the required result follows on rearranging.
Conversely, suppose that g0 as defined in (5.12) has an asymptotic ex-

pansion with coefficients in C∞((0,∞);C) as ζ → −∞ and that g0(x; ζ) sat-
isfies (5.14). Then the coefficients of ζ−j satisfy a recurrence relation which
is equivalent to the systems of differential equations (5.1).

The asymptotic expansion is unique in the following sense. Suppose
momentarily that t 7→ bAe−tA2c is bounded and repeatedly differentiable on
(0,∞), with M,ω > 0 such that |bAe−tA2c| ≤Meωt for t > 0, and that there
is a Maclaurin expansion

bAe−tA
2

c = bAc − bA3ct+ bA5ct2

2!
− · · ·+O(tk)

on some neighbourhood of 0+. Then by Watson’s Lemma [37] p. 188, the
integral

∫∞
0

bAe−tA2cetζ dt has an asymptotic expansion as ζ → −∞, where
the coefficients give the formula (5.13).

(iii) Since (e−tA)t>0 is a contraction semigroup on H, we have D(A2) ⊆
D(A) and ‖Af‖2H ≤ 2‖A2f‖H‖f‖H for all f ∈ D(A2) by the Hardy-Littlewood-
Landau inequality [15] p.65, so ‖ζf + A2f‖H ≥

√
ζ‖Af‖H for ζ > 0. We

deduce that A2 − 2A+ ζI is invertible for ζ > 9 and generally for all ζ ∈ C
such that <ζ is sufficiently large. By Proposition 5.2 and the multiplicative
property of the bracket, we have

1

2g0(x;−ζ)
= 1 +

⌊
2A(ζI +A2 − 2A)−1

⌋
,

and we observe that g0(x;−ζ) → 1/2 as x → ∞, so there exists x1 > 0 such
that g0(x,−ζ) > 0 for all x > x1 and the differential equation integrates to

g0
d2g0
dx2

− 1

2

(dg0
dx

)2

= 2(u− ζ)g20 +
ζ

2
. (5.21)

So one can define ψ(x; ζ) as in (5.15), and then one verifies the differential
equation for ψ(x; ζ) by using (5.21).
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(iv) By a theorem of Weyl [18] 10.1.4, L is of limit point type at ±∞,
and there exist nontrivial solutions ψ±(x; ζ) to −ψ′′

±(x; ζ) + u(x)ψ±(x; ζ) =
ζψ±(x; ζ) such that ψ+(x; ζ) ∈ L2(0,∞) and ψ−(x; ζ) ∈ L2(−∞, 0), and
these are unique up to constant multiples. Also the inverse operator (−ζI +
L)−1 may be represented as an integral operator in L2(R;C) with kernel
G(x, y; ζ), which has diagonal

G(x, x; ζ) =
ψ+(x; ζ)ψ−(x; ζ)

Wr(ψ+( ; ζ), ψ−( ; ζ))
(=ζ > 0).

Given ψ∓ as in (iii), we can compute ψ+(x; ζ)ψ−(x; ζ) = g0(x;−ζ) and their
Wronskian is Wr(ψ+, ψ−) =

√
−ζ, hence the result.

�

Remark 5.5. (i) The importance of the diagonal Green’s function is empha-
sized in [14]. Gesztesy and Holden [13] obtain an asymptotic expansion of the
diagonal G(x, x; ζ) which is consistent with Theorem 5.4(i). Under conditions
discussed in (5.46), we have similar asymptotics as −ζ → ∞.

(ii) Drach observed that one can start with the differential equation
(5.14), and produce the solutions (5.24); see [7]. He showed that Schrödinger’s
equation is integrable by quadratures, if and only if (5.14) can be integrated
by quadratures for typical values of ζ, and Brezhnev translated his results
into the modern theory of finite gap integration [7]. Having established in-
tegrability of Schrödinger’s equation by quadratures, one can introduce the
hyperelliptic spectral curve E with g < ∞ and proceed to express the solu-
tion in terms of the Baker–Akhiezer function. Hence one can integrate the
equation and express the solution in terms of the Riemann’s theta function
on the Jacobian of E , as in [10], [3], [13].

(iii) Kotani [21] has introduced the Baker-Akhiezer function and the
τ function via the Weyl m-function for a suitable class of potentials that
included multi-solitons and algebro-geometric potentials. There is a determi-
nant formula for τ correspnding to (1.9) and (3.2), and the theory develops
themes from [36].

(iv) The deformation theory for rational differential equations is dis-
cussed in [20].
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