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Abstract

Subgroup analyses are a routine part of clinical trials to investigate the effect of
treatments in subsets of the population under study. The purpose of this assessment
might be to ensure that there are no groups of patients for whom the treatment is
harmful despite being effective in the majority of patients or to identify groups of
patients that may benefit from a treatment when the overall effect is small or zero.

Graphical approaches play a key role in subgroup analyses to visualise effect
sizes of subgroups, to aid the identification of groups that respond differentially,
and to communicate the results to a wider audience. However, many existing
approaches do not capture the core information and/or are prone to lead to a
misinterpretation of the subgroup effects. In this work, we critically appraise exist-
ing visualisation techniques, propose useful extensions to increase their utility and
attempt to develop an effective visualisation approach. The considered graphical
techniques include level plots, contour plots, bar charts, Venn diagrams, tree plots,
forest plots, Galbraith plots, L’Abbé plots, STEPP, alluvial plots, UpSet plots and
chord diagrams. We illustrate the methods using a dataset of a treatment for
prostate cancer.

Keywords: Data visualisation, treatment effect heterogeneity, personalised medicine.

1 Introduction

Investigating target populations that potentially benefit from an innovative intervention
is essential in clinical trials. Even if efficacy is established in the overall population,
a complete benefit/risk assessments of subgroups should be undertaken before deciding
whether the treatment is administered to the whole population or certain subgroups need
to be excluded [1]. Such investigations pose a challenge because of the various issues that
are needed to address. For example, enrolling patients that have rather diverse baseline
characteristics for considerations, such as age, gender, race, disease severity or biomarker
profiles may create a large number of subgroups. The presence of promising results can be
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attributed to small sample size or to the fact that many potential subgroups are explored,
which affects the credibility level of the findings.

Subgroup analyses as investigative measures are prospective or post hoc in differ-
ent settings of clinical trials. Their primary purpose can be to establish efficacy claims,
subgroup discovery and/or consistency assessments across subgroups. Many researchers
have proposed novel analysis approaches and designs for different types of subgroup anal-
ysis [2–4]. It has further received extensive attention in recent clinical research for the
development of stratified medicine.

Visualisation techniques, when properly used, are powerful tools to reveal data. For
example, it is argued that graphics, in most cases, allow a more direct interpretation than
tables [5]. There is extensive literature in good statistical graphics principles in general
(e.g. [6–12]) and in the health-care sector particularly [13–15]. However, it is also true
that good graphics require careful crafting [16] and there is scope to improve when it
comes to figures in clinical trial reports [17, 18].

Graphical approaches are routinely employed in subgroup analysis, typically for de-
scribing treatment effect sizes of subgroups. Such visualisations encapsulate subgroup
information and boost the clinical decision-making process. However, not much atten-
tion has been paid to how to make effective graphics in the subgroup analysis setting.
Existing approaches still have inherent drawbacks and their use may lead to misinterpre-
tations on subgroup effect sizes [2]. For instance, forest plots, perhaps the most widely
used graphics in the subgroup analysis setting, provide no insight into the overlap be-
tween subgroups. Additionally, whether or not a subgroup confidence interval crosses
the no-effect point does not necessarily imply a differential effect in the subgroup. It is,
therefore, crucial to correctly depict effect sizes and essential subgroups information.

In this paper, we attempt to develop an effective visualisation approach for sub-
group analysis. Our considerations apply mainly to exploratory settings. The graphical
techniques considered include level plots, mosaic plots, contour plots, bar charts, Venn
diagrams, tree plots, forest plots, Galbraith plots, L’Abbé plots, STEPP, alluvial plots,
UpSet plots, and chord diagrams. Some of these visualisations have been already pro-
posed for subgroup analysis before (as the forest plots), some were improved in this work,
and some techniques were developed for other applications and we show how they can be
applied and/or extended for the visualisation of subgroups. To facilitate the discussion,
we focus on a clinical trial dataset of a treatment for prostate cancer. All graphics are
performed using the R statistical software [19] and the code is publicly available as an R
package for reproducibility [20]. In most of the cases, we draw the plots using functions
from the grid and graphics packages which are part of the base R language. However,
for some of the plots, we use additional packages that are cited in each section accordingly.

Although we acknowledge that the choice of colours is an important and challenging
task when producing graphics, we do not discuss this topic in our work, as there are other
literature that already do it (see e.g [21, 22]). Several of the considered plots make use
of colour coding to represent the magnitude of the treatment effect across subgroups, for
which we use a divergent colour palette generated by the colorspace R package [23].

Another important aspect of graphics is human perception. We follow the principles
by Tufte[24] to enhance graphical integrity. This is particularly relevant when we depict
sample sizes with 2-dimensional areas/shapes which are proportional to 1-dimensional
sample sizes. This is performed so that the representation of numbers are directly pro-
portional to the numerical quantities represented.

The remainder of the paper is structured as follows: in Section 2 we describe the
dataset we use for illustration and present the graphical approaches for displaying sub-
group information. We put more emphasis on graphics that allow a direct comparison of
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subgroup treatment effects (Section 2.1). We also present graphics that may complement
the analysis providing an indirect comparison by displaying responses in treatment and
control groups across subgroups (Section 2.2), and graphics that only allow visualising
subgroup composition or overlap between subgroups (Section 2.3). Each technique is
further assessed based on a set of criteria. We summarise the assessments and features of
all approaches in Section 3. We remark their practical utility and implications in clinical
trials and outline potential visualisation techniques in the end.

2 Graphical approaches to subgroup problems

It is fundamental that graphics in subgroup analysis display treatment effects for the
subgroups under considerations. Nevertheless, there are also several other desirable char-
acteristics for graphical approaches as initial subgroup analysis tools. Displaying sample
sizes underpins the credibility level of promising and adverse findings within subgroups.
It is also important to reveal overlap information, as this helps in clarifying that we look
at the same signal several times and enables to focus on the subgroups that have less over-
lap with each other. The ability to detect treatment effect heterogeneity for subgroups
and displaying the overall treatment effect should be considered as well. Moreover, it
is expected that the graphic is available for a large number of subgroups to serve as a
potential hypothesis generator. These characteristics can certainly constitute sensible
criteria for assessment.

Our framework to assess the properties of the graphical displays consist of the following
criteria:

C1 whether the plot displays effect sizes for subgroups;

C2 whether it exhibits subgroup sample sizes;

C3 whether it shows subgroups overlap information;

C4 whether it shows a measure of uncertainty of the treatment effect estimates in the
subgroups (i.e. confidence intervals or standard errors);

C5 whether it is applicable to a large number of subgroup-defining covariates.

Each graphical approach is judged according to whether it meets each of the items or
not. Even if a criterion is met, the information may be represented or encoded differently.
For example, some graphics show the treatment effects in the subgroups using a colour
scale while others represent them with the position along a common scale. Therefore, we
discuss different levels of information in each of the graphics. We also discuss additional
features, such as whether the graphics show the mean response in the treatment and
control arms, what type of overlap they show, and the total number of subgroup-defining
covariates that can be displayed.

We use a prostate carcinoma dataset from a clinical trial [25] which is available on the
web [26]. The data has been used before to illustrate subgroup selection methods [27].
The first publication in which this data was used dates back to 1980, where authors al-
ready discussed methodology “to determine whether comparisons of treatment in various
subsets of patients yield sufficiently different results to justify the idea that there may be
an optimal treatment for each patient based on his individual characteristics” [25].

The trial included 506 subjects that were randomised to either a placebo group or
one of three dose levels of diethylstilbestrol. For this study, we combine the placebo and

3



the lowest dose level of diethylstilbestrol to give the control arm, and the higher doses
to give the experimental arm (as it was done in the previous referenced analyses). Only
475 subjects with complete data are available on the dataset. We are interested in iden-
tifying subgroups of patients that may benefit from the treatment. We consider only 6
pre-treatment covariates for this analysis, four of which are binary and two continuous:
existence of bone metastasis (bm), disease stage (3 or 4), performance rating (pf: 0,
normal; 1, limitation of activity), history of cardiovascular events (hx), age, and weight
index (wt: weight in kg − height in cm + 200). In those plots that are more appropriate
for only two binary/categorical factors, we use age and weight categorised into 3 levels
for illustrative purposes (age: young=[48,65], middle-aged=(65,75], old=(75,89]; weight:
low=[69,90], mid=(90,110], high=(110,152]), but a proper analysis of continuous covari-
ates should treat them as continuous [28, 29]. When the plots are drawn using three
covariates, we use only binary ones: existence of bone metastasis, performance rating
and history of cardiovascular events. When the plots are drawn using four covariates, we
added also the disease stage.

The original dataset includes information on causes of death. However, the considered
endpoint in this analysis is death from all causes combined. Most of the graphical ap-
proaches we employ use the log-hazard ratio for treatment versus control as the treatment
effect measure. For bar charts and L’abbé plots, we consider the difference in restricted
mean survival time (RMST) as the treatment effect measure. In the case of bar charts,
this is mainly to improve the interpretability. In the case of L’abbé plots, this is because
the graphic requires not only a relative measure of the treatment effect but also an es-
timate for the response in control and treatment arms. In Section 2.2, we also use the
two-year survival rate to exemplify graphical approaches with an indirect comparison of
treatment effects that are better suited to binary outcome variables.

In most of the graphics, the treatment effect is estimated by simply partitioning the
dataset and using only subjects from the considered subgroups. We acknowledge that this
is perhaps not the best approach for obtaining treatment effect estimates and a proper
analysis should be based on treatment-by-covariate interactions [30]. However, we choose
to do this to focus on the graphical aspects rather than on the methodology to obtain
the treatment effect estimates. Readers interested in techniques for obtaining treatment
effect estimates in subgroups are referred to [4, 31, 32]. In any case, the graphics evaluated
in this manuscript can be used to display the treatment effect estimates resulting from
suitable models, which in turn may depend on a case by case basis.

2.1 Graphical approaches with a direct comparison of treat-
ment effects

In this section, we devise graphics that represent or provide a measure of the treatment
effect (e.g. hazard ratio) and therefore allow direct comparison across subgroups.

2.1.1 Level plot

Level plots are typically used to show geographic surfaces in a plane. In the subgroup
analysis setting, two categorical variables are arranged on the axes, and the main plot
area consists of cells that represent disjoint subgroups. Each subgroup is defined by
the corresponding combination of levels of both covariates and a colour scale is used to
display the treatment effect in that subgroup. In Figure 1a, we show the implementation
of a level plot for treatment effect in terms of log-hazard ratios in subgroups defined by
the categorised age and weight for the prostate cancer dataset. For each subgroup, a
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Cox proportional hazards model with treatment as the independent variable is fitted to
obtain the estimate for the hazard ratio. Alternatively, a single multivariate model with
treatment by subgroup interactions may be fitted to obtain the estimates. A divergent
colour scale with a range from −3 to 3 is used to represent the log-hazard ratio. We also
add the point estimate and confidence interval for the overall population in the legend
as a reference. We include the subgroups’ sample sizes inside the cells. The cells on the
bottom and the left margins represent the marginal subgroups corresponding to each of
the three levels of age and weight, respectively.

This graphical approach is attractive since it permits a direct and easy interpretation
of effect sizes, therefore satisfying criterion C1. A quick look at the colours allows drawing
conclusions such as for which subgroups the treatment is beneficial and for which ones
it is harmful. However, the variability of the subgroup estimates is not represented in
this plot (C4), therefore making in it impractical to detect treatment effect heterogeneity.
Although the addition of the sample sizes in the cells allows a comparison of the subgroup
sizes, the sample sizes are not represented by the figure, therefore this display meets
criterion C2 partially. Level plots may only display the pairwise overlay of marginal
subgroups rather than all overlap across subgroups. It is worth noting that only two
covariates can be considered in a level plot. The number of categories of each covariate
can be easily ten (therefore, the number of subgroups can reach to a hundred), but this
may lead to small subgroup sample sizes or even empty subgroups. Finally, we remind
that because the cut-off points for continuous covariates may be arbitrary, level plots are
better suited for categorical ones.

Examining Figure 1, we may conclude that the treatment is worse for older patients
and young patients with low weight, as the direction of the treatment effect is reversed.
Moreover, the treatment seems to be even more beneficial for heavier young patients.
However, these interpretations need to be taken with care, as the precision of the estimates
is not given and the small sample sizes in some subgroups may lead to highly variable
estimates.

As a possible improvement, the coloured squares inside each cell are drawn with
areas proportional to the subgroup sample sizes (Figure 1b). This design feature allows
comparing subgroup sample sizes easily. At the same time, it may be difficult to see the
colour in each square, particularly in the case of small sample sizes. Perhaps a better
way to present the information of the level plot is using a mosaic plot as described in the
following section.

[Figure 1 about here.]

2.1.2 Mosaic Plot

Mosaic plots are useful to represent contingency tables by arranging proportional-to-size
cells in a grid. There are a number of variations in which this type of plot may be used
in subgroup analysis. First, we devise an improvement of the level plot as in Figure 2a.
Although the sample size annotation in each mosaic could be easily added, we omit it
here as the sample sizes are depicted through the area of the mosaics. The interpretation
of this plot is similar to the level plot presented in Figure 1b.

Mosaic plots offer the advantage that a larger number of covariates can be arranged.
In Figure 2b, we use history of cardiovascular events, performance and bone metastasis to
illustrate a mosaic plot with three subgroup-defining covariates. When adding additional
covariates, however, it is not possible to show the information on marginal subgroups as
in Figure 2a.
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Figure 2b allows us to observe that there may be heterogeneity in the treatment effect
as some subgroups have estimates on the positive direction while others on the negative
one. However, the absence of uncertainty measures for the treatment effects estimates
does not allow one making a conclusive interpretation.

[Figure 2 about here.]

2.1.3 Contour plot

An alternative to a level plot that is more suitable for illustrating continuous changes in
relevant factors is a contour plot. We propose two different implementations of contour
plots for the treatment effects across age and weight.

In Figure 3a, we first form subgroups with a specified sample size by neighbouring
subjects in terms of their values of age and weight. Subgroups of sample sizes N11 are
formed by using a sliding window across the values of age with an overlap of N12 subjects.
Subsequently, each subgroup is further divided into smaller subgroups of sample sizes
N21, using again sliding window with an overlap of N22. Sample sizes and overlap to form
subgroups are adopted by design based on sensible judgement. For example, subgroups
should have a considerable sample size to ensure that patients in both treatment and
control arms are represented. For each formed subgroup, we then calculate the log-
hazard ratio for treatment versus control. The contour areas are obtained through a
bivariate interpolation and smooth surface fitting (loess) for irregularly distributed data
points over the range of values from the subjects under study. We also use a divergent
colour scale for the effect sizes. A limitation of this approach is that there may be regions
of the covariate space in which the treatment effect estimates are not reliable due to small
sample sizes or no data points.

We also propose using local regression techniques to calculate the treatment effect
at each coordinate. In Figure 3b, a weighted Cox proportional-hazards model is fitted
at each combination of weight and age (using a step of 1 unit). A normal kernel with
the centre at the coordinate values under consideration is used to assign weights to each
subject. If there are less than 20 subjects within 2 standard deviations, the effect size is
not calculated and the area is left blank. This helps to avoid extrapolating the results to
areas in which we do not have enough information.

According to our assessment, contour plots match criteria C1 and C3 but not C2, C4
and C5. Contour plots use two covariates and the total number of subgroups can be more
than ten by controlling the overlap proportions with neighbouring subgroups. However,
there is no graphical representation about subgroup sample sizes and uncertainty on the
treatment effect estimates.

There are a few more noticeable characteristics for this graphical technique. Contour
plots are particularly useful when a dataset size is rather large and for variables well
distributed over the covariate range. Moreover, the interpolated effect sizes may be unre-
liable in the regions where there are no data points or only sparse points are irregularly
distributed. In situations where the values of two covariates are sparsely distributed over
the region, it may be unclear how smooth the interpolated surface should be. Note that
it may also be possible to use other local regression algorithms to calculate the treatment
effect at each coordinate or even other modelling strategies such as including a generalised
additive model with interactions (such as in [28]). Recent proposals that investigate the
predicted individual treatment effect can be applied to predict the effect of treatment
across the covariate space [33–35].
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We observe a similar pattern to the one found in Figure 1, in which the older patients
seem not to benefit from the new treatment. Again, this interpretation should be cautious
as the precision of the estimates is not displayed.

[Figure 3 about here.]

2.1.4 Venn diagram

Venn diagrams are undoubtedly the most widely used tool to visualise sets and their
relations. In the subgroup analysis setting, Venn diagrams may be used to display the
composition of a dataset. A Venn diagram for subgroups defined by bone metastasis,
history of cardiovascular events and performance is shown in Figure 4a. Each circle
defines the subgroup of patients for which the level of the corresponding variable is ”yes”
or 1. The diagram indicates the sample sizes for all the subsets that are formed by set
operations (intersection and complement) on the three subgroup-defining covariates. The
number outside of the three circles indicates the size of the complement of the union of
the three subgroups.

[Figure 4 about here.]

Figure 4b and 4c consider Venn diagrams with four and three subgroup-defining co-
variates, respectively. Both encode the treatment effect in terms of the log-hazard ratio
by colouring the corresponding regions. This feature thus enables the Venn diagram
to satisfy the criterion C1. However, the variability of the estimates is not given and,
therefore, C4 is not met.

As seen in Figure 4b, using four ellipses for representing all possible subgroups (formed
through intersection and complement) is visually appropriate. Other shapes (such as
polygons [36, 37]) can be also applied but the visualisations may not be easy to un-
derstand. In our example, however, we obtain subgroups with small sample sizes when
considering the intersections of the four covariates. The white regions indicate that it is
not possible to calculate the treatment effect in the corresponding subgroup. An addi-
tional rule may be added to this plot to colour only the areas that attain a pre-specified
sample size.

Figure 4c further considers proportional-area methods, where each covariate repre-
sentative region area is proportional to the respective sample size proportion. The region
areas only approximately correspond the sample size proportions because of the limited
degrees of freedom for circles. We employ the simple algorithm mentioned in [38]. In fact,
other algorithms to display each region area proportional the sample sizes are available.
Recently an algorithm that can produce accurate area-proportional Venn diagrams using
ellipses was developed [38]. However, the algorithm is somewhat sophisticated and can
only work on three sets.

Venn diagrams are implemented using the VennDiagram R package [39] together with
the polyclip package [40]. For propotional-area Venn diagrams, we further use the sp

package [41] and the rgeos package [42].
Venn diagrams satisfy C2, C3 in our assessment. Useful extensions to Venn diagrams,

such as the Edwards’ construction [43, 44], are available so that they can accommodate
a larger number of covariates. The total number of subgroups including mutual disjoint
ones can be 2p, where p is the number of sets considered. Despite this merit, there is a
limit on the number of the sets considered in practice. It may become complicated to
interpret a Venn diagram with more than five subgroup-defining covariates.
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Figure 4 shows that the treatment effect is reversed, with the control treatment being
better than the experimental one for those subjects without bone metastasis when they
have previous cardiovascular events or limitation of activity (performance rating is 1).

2.1.5 Bar chart

Another useful graphical technique to depict treatment effect sizes is bar charts. Bar
charts are easy to interpret and allow direct comparison among subgroups. For the
subgroup analysis problem, we use subgroups defined by the levels of categorised age and
weight variables as in previous examples. In Figure 5, each covariate is categorised into
three levels and the bars represent mutually disjoint subgroups. The levels of age and
weight are respectively listed at the top and the bottom part of the picture. The height
of the bars is proportional to the treatment effect differences between the experimental
and control arms, that is, the difference in RMST. The width of the bars is proportional
to the subgroup sample sizes. This arrangement has, therefore, another useful property:
the area of the bars is proportional to the restricted mean survival gain or loss in each
subgroup when using the experimental treatment in comparison to control. Different
variations of grey were used to show which subgroups have the same category level on
age.

Based on our assessment, this graphical representation approach holds C1 and C2,
partially C3 but not C4 and C5. Each bar is the pairwise overlap of two subgroups defined
by age and weight with their respective levels. Therefore, bar charts only provide partial
overlay information. Such a graphical approach does not allow to examine heterogeneity
in treatment effect differences across subgroups due to no display of the overall effect size.

Few noteworthy characteristics also need to be mentioned. First, it only considers two
subgroup-defining covariates. If considering few more covariates, one could label all the
level combinations of the covariates in the bottom part of the picture or simply to make
a legend elsewhere. However, a high number of covariates or levels may be problematic,
making it difficult to compare the widths of the bars. Second, as in level plots, the cut-off
points for categories in continuous variables may be arbitrary and categorical covariates
are therefore preferred for bar plots.

Although we use a different measure for the treatment effect, the direction of the
estimates is maintained compared to the level plot in Figure 1 and the interpretation
remains unchanged.

[Figure 5 about here.]

2.1.6 Forest plot

Although forest plots are a common graphical display approach for meta-analysis [45],
they are also extensively used for subgroup analysis [46, 47]. In a forest plot, the treat-
ment effect estimates along with their confidence intervals for the subgroups defined by
a number of covariates are displayed vertically. The overall treatment effect is also plot-
ted on top allowing a direct comparison. It is also suggested that a vertical line at the
overall treatment effect level is added to facilitate seeing if a subgroup confidence interval
differs significantly from the overall effect [46]. Figure 6 shows its application for the
prostate cancer dataset considering four binary covariates. The main panel in the middle
displays the subgroup treatment effects with their confidence intervals. The squares in
the centre of each error bar are proportional to the subgroup sample sizes. Additional
information in a table format is usually included to provide the exact magnitude of the
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estimates. The text on the left panel shows the mean estimate of treatment effect dif-
ference, lower/upper bounds of the 95% confidence intervals and subgroup sample sizes
(further divided into treatment and control arms). When using a continuous or binary
endpoint, it is also recommended to include the estimates for treatment and control to
observe whether both interventions have harmful effects despite the promising effect size.
In our implementation for survival endpoint, we include the Kaplan-Meier curves for each
subgroup. The summary statistics on the panel on the left and the survival curves on
the right may, however, be dropped if needed. The Kaplan-Meier curves are drawn with
the ggplot2 package [48].

From the above description, forest plots in the subgroup analysis setting meet all the
criteria but C3 because of the inability to show subgroup overlaps.

We observe in Figure 6 that the subgroup with bone metastasis is the subgroup with
the largest benefit from the treatment, while for the rest of the subgroups their treatment
effect is closer to that on the overall population. The Kaplan-Meier curves allow to rapidly
recognise the differential survival pattern for the subgroup with bone metastasis.

[Figure 6 about here.]

2.1.7 Tree plot

The tree plot for subgroup analysis starts with the full population that branches into two
or more items, corresponding to the levels of the first subgroup-defining covariate. Each
of the items in the new level branch again into two or more levels for the second covari-
ates, then for the third and so on. If more variables were included, this division procedure
is consecutively conducted to form subgroups until all the category combinations of the
covariates are considered. Figure 7 shows a tree plot of treatment effect differences for
subgroups defined by bone metastasis, performance rating and history of cardiovascular
events. In each level or layer, treatment effect differences and their 95% confidence inter-
vals for the associated subgroups are also displayed. The purple horizontal lines placed in
the middle of the confidence intervals have a length proportional to the subgroup sample
sizes. An additional horizontal dotted line is added at each level for the overall treatment
effect size. In Figure 7a, the y-axis for each level of the plot is drawn independently from
the others levels. In the Figure 7b, the y-axes are consistent across levels, which helps to
visualise the difference in variability of the estimates.

Tree plots match all the criteria. It obviously fit meets C1 and C2 by design. In
addition, the subgroups at each layer are formed by the intersection of the levels of the
covariate in that layer with the covariates that are placed above them, thus holds C3 for
displaying the information of all subgroup overlaps. Moreover, the confidence intervals
for treatment effect estimates in subgroups are displayed, fulfilling C4. Similar to forest
plots, the assessment of treatment effect heterogeneity demands drawing an auxiliary
horizontal line with the y-coordinate at the overall effect size for each layer and then
seeing whether there is any confidence interval not crossing the line. As to C5, it may
be difficult to arrange a large number of covariates in tree plots. However, note that the
total number of subgroups depends on the number of covariates that are involved and
how many categories each covariate has.

It is worth pointing out a few features of tree plots. First, it provides information
on the interval estimation for subgroup effect sizes. Second, it is possible to consider
more than two categories for each covariate if needed. Ideally, however, the number of
covariates and categories should be moderate or we may end up with subgroups small
sample sizes. Finally, when considering continuous covariates tree plots have the same
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issue about arbitrary cut-off points as level plots and bar charts. In this implementation,
the ordering of the covariates needs to be pre-specified. Recent proposals that allow the
data to define the ordering and/or cutoff values for continuous variables [49, 50] can also
be used to draw tree plots.

Figure 7 allows us to draw additional conclusions regarding the treatment effect sizes.
We observe that the treatment effect is more pronounced for subjects with bone metas-
tasis. Additionally, we notice that the subgroup of subjects without bone metastasis
but with a history of cardiovascular event and performance rating 1 has a positive log-
hazard ratio, implying that the control is better than the experimental treatment for this
subgroup.

[Figure 7 about here.]

2.1.8 Galbraith plot

A Galbraith plot [51, 52] is an alternative or supplementary to a forest plot for examining
heterogeneity of studies or subgroups in a meta-analysis. The variant that is shown in
Figure 8 exhibits the estimation of treatment effect sizes for K = 8 subgroups defined by
the four binary covariates. The xy-coordinates correspond to the points:

xi = 1/

√
V̂ar(δ̂i), yi = (δ̂i − δ̂F )/

√
V̂ar(δ̂i) (1)

where δ̂F is the treatment effect estimate in the full population and δ̂i is the treatment
effect estimate in subgroup i, i = 1, ..., K. The grey band serves to detect treatment
effect heterogeneity if one point is located outside the band. The slope of the line from
the origin through each subgroup point corresponds to the effect size estimate δ̂i of the
corresponding subgroup. An additional radial axis is drawn to depict the subgroup effect
sizes, which are represented with the red tick marks. The central line at y = 0 points to
the average treatment effect for the full population.

We note here that, as δ̂F is itself a random variable, it may better to consider also its
variance. An additional modification may then consider the xy-coordinates:

xi = 1/

√
Var(δ̂i − δ̂F ), yi = (δ̂i − δ̂F )/

√
Var(δ̂i − δ̂F )

The resulting plot using such these values is given in the Supplementary Material. The
drawback of this modification is that the x-axis does no longer represent the standard
error of the treatment effect estimates.

The result of the graphical assessment of Galbraith plots is satisfactory. It obviously
holds C1, C4 and C5 because of its design features. Galbraith plots can certainly handle
a large number of subgroup covariates, perhaps better than any of the other considered
graphics. The Galbraith plot does not show the sample sizes of the subgroups. Moreover,
it does not hold C3 as it does not display subgroup overlap information.

In terms of our example, we conclude that treatment effect heterogeneity may be
present in the subgroup of patients with bone metastasis.

[Figure 8 about here.]
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2.1.9 L’Abbé plot

L’Abbé plots [53] are a variant of scatter plots which are useful for examining hetero-
geneity in a meta-analysis. The graphical design is originally for binary outcome data to
represent risk ratios, risk differences or odds ratios between treatment and control arms.
For our implementation, we extend this graphical technique to the case of continuous and
survival outcomes and also modify points to rectangles (Figure 9). The xy−coordinates
for each subgroup correspond to the estimates of the RMST in control and treatment
arms. The width and the height of a rectangle (corresponding to a subgroup) respec-
tively indicate the sample sizes of the control and experimental treatment arms in the
subgroup. We draw a diagonal dashed line at y = x which represents no treatment effect
(equal RMST in both arms) and a solid diagonal line with y-intercept at the overall treat-
ment effect size. Each rectangle has a vertical segment from its centre to the diagonal
dash line representing the magnitude of the effect size, that is the gain (if blue) or loss
(if red) in terms of RMST when comparing treatment vs. control.

L’Abbé plots satisfy C1, C2, and C5; but they do not show the uncertainty of the
treatment effect estimates nor show subgroup overlap information. While they may
handle many subgroups, it may be difficult to recognise the corresponding rectangles
if subgroups have a similar effect estimate for treatment and control groups.

This graphical tool allows us to draw an additional conclusion in our example. The
subjects with bone metastasis in the control group have a lower RMST compared to other
subgroups. When receiving the experimental treatment, however, the RMST is closer to
that on the other subgroups.

[Figure 9 about here.]

2.1.10 STEPP

The subpopulation treatment effect pattern plot (STEPP) [54, 55] gained popularity in
breast cancer recently. It is a non-parametric method mainly for examining whether
treatment-covariate interactions exist. In Figure 10, we adopted the slide-window fash-
ion of STEPP to represent the estimation of treatment effect size (log-hazard ratio) in
overlapping subgroups defined by age. Each subgroup has a sample size of around 40 with
about 80% overlap with neighbouring subgroups. The band bounded by the blue dashed
lines is constructed for 95% simultaneous confidence interval. The other band bounded
by the orange dashed lines is built based on individual 95% C.I. (without multiplicity
adjustment). The red line is formed by connecting the point estimates of treatment ef-
fect (log-hazard ratio) for all formed subgroups. The green line represents the log-hazard
ratio estimate for the full patient population. It is worth noting that the point estimates
are positioned at the mean value of age for each subgroup with respect to the x−axis. If
the green line does not lie in the region formed by simultaneous confidence intervals, it
reveals that interaction may exist.

The STEPP approach matches C1, C3 and C4. Here, the information about subgroup
overlap and sample sizes is only annotated in the figure and the caption. It is noted that,
although only one subgroup-defining covariate is used, the total number of subgroups
depends on the sample size of subgroups and the overlap proportions.

This plot only considers one continuous covariate. It is difficult to extend the ap-
plication for more continuous covariates. The subgroup sample sizes should be specified
by design, and in some situations, a researcher may have no clear idea about how large
a subgroup should be and how much it should overlap with the immediate subgroups.
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Perhaps, practitioners need to conduct sensitivity analyses for different subgroup sam-
ple sizes and overlaps. The analysis results may further be compared with the results
when using fractional polynomials [28, 56] or non-parametric methods (such as Gaussian
processes [57]).

For our example, we observe that the treatment effect for subgroups defined by age
fluctuates around the overall treatment effect. When approaching the ends of the range
of the covariate the estimate of the log-hazard ratio departs from the estimate for the full
population, although the confidence intervals still cover it.

[Figure 10 about here.]

2.1.11 UpSet Plot

UpSet plots are a novel visualisation technique for the quantitative analysis of sets and
their intersections [58]. It was proposed to overcome the limitation of Venn diagrams of
showing up to a small number of sets or subgroup-defining covariates. In Figure 11, we
use the UpSetR R package [59] to create the plot with the six subgroup-defining covariates.
The variable age is dichotomized (1: >75 years), as is weight (1: >100) to have binary
covariates. The sizes of the univariate subgroups for these covariates are shown in the
horizontal bar plot at the bottom-left corner of the figure. The “matrix” layout on the
bottom allows visualising the composition of the subgroup by showing which sets are
intersected. The main bar plot displays the sizes of the subgroups that are defined by
the respective intersections. For example. the first and tallest bar indicates there are 52
subjects with performance rating 0 (normal), no existence of bone metastases, age ≤ 75,
weight > 100, disease stage 3, and no history of cardiovascular events. Moreover, we add
a ’query’ to display the frequency of treatment and control of each subset.

[Figure 11 about here.]

We extend the UpSetR R package to display effect sizes in an extra panel (Figure 12).
In this case, the log-hazard ratio and its confidence interval for each subgroup are shown.
This information is similar to that in the forest plots. However, the UpSet plot provides
the advantage to observe intersection of sets and arrange them in terms of their sizes. If
one were to use a statistical model with treatment-by-covariate interactions to derive the
treatment effect estimates, then each row would correspond to a linear combination of
the coefficients in the model.

Our extension of the UpSet plot also allows displaying lower level intersections. We
implement a new icon for the matrix panel: a ’+’ symbol if a variable is equal to 1 or
’yes’, a ’-’ if a variable is equal to 0 or ’no’, and empty if this variable is not considered for
the subgroup definition. For example, the first bar of the plot corresponds to the overall
population (no subgroup division), which has a size of 475. The second bar with a size of
428 corresponds to the subgroup of normal performance rating (pf=0), irrespective of the
values of the other two variables. Since the number of subgroups to consider increases
dramatically in this modification (3p subgroups when considering p binary covariates),
only three covariates are considered. One can include, however, more covariates and filter
the number of subgroups according to different criteria, such as total subgroup sample
size, sample size per treatment, etc. Finally, the bar plot on top of the matrix panel
indicates the marginal set sizes in relation to the total sample size, with the black region
corresponding to the 1 or ’yes’ category and the white region corresponding to the 0 or
’no’ category.
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The modified UpSet plot meets all criteria. Its advantage is that it is scalable, and thus
allowing a large number of subgroup-defining covariates. As the overall treatment effect
and its confidence interval are also included in this modification, it allows to compare
treatment effects and check for treatment effect heterogeneity.

[Figure 12 about here.]

2.1.12 Chord Diagram

Chord diagrams are widely used to visualise genomic data [60]. There are several ap-
proaches to these diagrams, although the main aspect is that it allows representing the
relationships between pairs of sets. For our example, we use the categorised variables age
and weight (Figure 13). The categories of each variable are arranged along the circle,
where each of their corresponding cells has a size proportional to the corresponding sub-
group sample size and a colour representing the treatment effect estimate, in terms of the
log-hazard ratio. The ribbons on the centre of the diagram represent the relative overlap
between the categories of the variables. Their width is calculated in correspondence to
the proportion of subjects from a subgroup that is also in the subgroup to which the
bands connect. We implement this graphic using the circlize R Package [61].

Chord diagrams meet all the criteria but C4 since they do not display any uncertainty
measures of the treatment effect estimates. The flexibility of this plot is also an advan-
tage since many other implementations may be devised, especially when the number of
covariates is extremely large as when dealing with genomic data.

Figure 13 allows us to observe the treatment effects across the subgroups defined by
age and weight marginally. Since the direction of the treatment effect changes across the
levels of the age covariate, treatment effect heterogeneity may be present. Again, using
a colour scale and not displaying variability estimates hinders a definite conclusion.

[Figure 13 about here.]

2.2 Graphical approaches with an indirect comparison of treat-
ment effects

In some cases, it may be also of interest to visualise responses by treatment arm across
subgroups. For example, we may want to display the survival or mortality rate, or simply
the mean response if a continuous endpoint is considered. The following plots that we
consider are examples of graphics that allow an indirect comparison of treatment effects.

2.2.1 Mosaic Plot

We could use mosaic plots to illustrate event rates per treatment group across the levels
of one subgroup-defining covariate, as it is used in [11]. This plot is only appropriate
when the endpoint is binary, therefore we use 2-year survival (blue corresponds to ’yes’)
by treatment and age category (Figure 14). In this case, it is possible to observe that
the survival rate is larger for treatment in the younger patients while the survival rate is
larger for control in the older patients, indicating that the treatment effect may not be
homogeneous across the levels of age.

[Figure 14 about here.]
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2.2.2 Coxcomb plot (Nightingale rose)

A Nightingale coxcomb plot [62] is a type of radial plot that was introduced in 1858 and
is usually recommended as an alternative to pie charts [9]. In Figure 15, we arrange the
subgroups defined by the categorised age and weight variables along the circle using a
combination of bar plot and polar coordinates with the ggplot2 R package. In this plot,
the angles that define each sector are kept fixed, but the radii vary proportionally to the
square root of the sample size in each subgroup to perceive areas adequately. We colour
the areas according to the 2-year survival rate of each subgroup.

In Figure 16, we further divide the plot into treatment and controls arms. This feature
allows us to check the sample sizes per subgroup in each treatment arm and may help
visualise differences in the survival rates.

[Figure 15 about here.]

[Figure 16 about here.]

2.2.3 Alluvial diagram

Alluvial diagrams are flow diagrams that can be used to display the distribution of the
subjects across the subgroup-defining covariates. As the mosaic plots, alluvial diagrams
may also be used to illustrate event rates per treatment group across the levels of the
subgroup-defining covariate.

Figure 17 shows one possible implementation of the alluvial plot for the 2-year survival
per treatment arm across levels of performance, history of cardiovascular events and bone
metastasis. The plot is generated using the alluvial R package [63].

Alluvial diagrams do not provide any information regarding treatment effect sizes, but
only on the composition of the subgroups, meeting criteria C2 and C3 as Venn diagrams.
Alluvial diagrams can also display a large number of subgroups and can be used not only
with binary covariates but also categorical ones. When the covariates are continuous,
however, parallel coordinates plots can be used in a similar way.

[Figure 17 about here.]

2.3 Graphical approaches for subgroup composition

Figure 18 shows another implementation of alluvial plots for subgroup composition. The
blue coloured bands correspond to patients that were randomised to treatment while light-
blue bands to patients in control. The height of the bars for each category in the subgroup-
defining covariates is proportional to the numbers of subjects in this category, therefore
giving a notion of the size of the subgroup. Each alluvium (or band) represents the
combination of values for the covariates. Therefore this diagram has also the advantage
of giving an idea of the overlap of the subgroups, via the width of the bands.

[Figure 18 about here.]

Forest plots, Galbraith plots and L’Abbé plots share the inability of showing subgroup
overlaps. One potential improvement is to consider combining relevant figures about
overlap information.
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The plots that are shown in Figure 19 exhibit subgroup information about pairwise
overlap proportions or similarity measures. Figures 19a- 19d show pairwise relative over-
lap proportions, where colours encode the overlap magnitudes. All plots are generated
using the graphics R package, while we also make use of the diagram package [64] for
some of them.

More specifically, Figure 19a is a plot with bidirectional arrowed curves. The sub-
group positioned at the starting point of each arrow is used as a baseline for calculating
the relative proportion of the overlapping subgroup. Figure 19b is a variant of Figure 19a.
Two identical sets of subgroup labels around two circles and each shows relative overlap-
ping proportions with unidirectional arrowed coloured lines. The subgroup labelled at
the starting point of the arrowed line is a baseline subgroup for the relative overlapping
proportion. Figure 19c is a plot merely using coloured lines connecting subgroup labels
on different levels. This plot should be read from top to bottom. A subgroup label on
the higher level is the baseline subgroup for the relative overlapping proportions with its
counterpart on the lower level. Figure 19d is a matrix plot for relative overlapping pro-
portions of pairwise subgroups. The row subgroup label indexes what subgroup should
be considered as a baseline and the sizes of the circles signal the overlap magnitude.

Both Figures 19e-19f show dissimilarity distance, which is defined by one minus a
relative overlap proportion. Each line of Figure 19e shows the dissimilarity distance of a
subgroup with the others. The red crosses along each line are located according to actual
dissimilarity distances; the red subgroup labels correspond to the red crosses, where the
labels are placed by order based on their actual dissimilarity distances. Figure 19f shows
the same information as Figure 19e. Note that for each subgroup we do not show its
dissimilarity distance to itself and its complement.

Incidentally, the Jaccard index, namely |A∩B|/|A∪B| for any sets A, B, can replace
the pairwise overlap proportions for subgroup overlap information. The graphical display
is thus simplified due to not showing repetitive Jaccard indexes. However, this measure
may lead to missing some information about whether a subgroup contains the others or
not.

In the Supplementary Material, we present additional alternatives for the line and
chord diagrams that display the overlap between the subgroups using a matrix layout.
These plots may be easier to interpret as they are not overloaded with information and
one can focus on one subgroup at the time. However, these plots may be impractical
when having a large number of subgroups.

[Figure 19 about here.]

2.4 Subgroup analysis conclusion

The true test of a graphic is what information you can gain from it. Throughout the
manuscript, we explored the prostate cancer dataset to find promising subgroups. Here
we present an overall summary of the main findings related to subgroups.

In the Forest plot (Figure 7), we explored the treatment effects for subgroups defined
by binary covariates marginally. The treatment effect was similar across all subgroups
but in one of the patients with bone metastasis. We can detect that patients with
bone metastasis seem to have an extra benefit from the experimental treatment because
the confidence interval for this subgroup does not cover the line that represents the
treatment effect in the overall population. The same trend is observed when using a
Galbraith plot (Figure 9), as we see that the only point lying outside the (-2, 2) band is
the one corresponding to the subgroup of patients with bone metastasis. When using the
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difference in RSMT in the L’abbé plot (Figure 10), we also observe that the line from the
centre of the polygon corresponding to the subgroup of patients with bone metastasis to
the y=x line is much larger than the one for the full population.

The Figures 5, 8 and 12 also explored the binary covariates, allowing one to draw
additional conclusions as the subgroups formed by the set intersections are also displayed.
For example, the tree plot also shows the differential effect of the subgroup with bone
metastasis, but also shows that this trend is only observed in patients who additionally
do not have a history of cardiovascular events. Moreover, it may also be observed that
patients without bone metastasis and with a history of cardiovascular events may have
been harmed by the experimental treatment.

The variables age and weight were explored in Figures 1, 3, 10, 19. In all these figures
we observed that the treatment seems more beneficial for younger patients with weight
index above 90, while for older patients the treatment may have led higher hazard. This
same trend can also be seen in the mosaic plot for the 2-year survival time by age group
and treatment (Figure 14), where we observe a higher survival rate in the experimental
group compared to the control one in the younger patients, but a higher survival rate for
the patients in the control group in among the old patients.

We remind here, however, that these analyses are exploratory and should be taken
with care. They may, however, bring useful insights to plan additional studies and collect
more information from subgroups of interest.

3 Discussions and conclusion

We made use of several graphical approaches and assessed their characteristics for sub-
group problems. We also attempted to improve some methods by mitigating their de-
merits. The assessment and characteristics of the improved approaches are summarised
in Table 1.

The general summary is as follows:
C1, Effect sizes for subgroups: This information is encoded in different ways across the

studied graphics. Research on graphical perception suggests that quantitative reasoning
is trivial when encoding the information with the position on a common scale (such as in
forest plots, UpSet plots, Galbraith plots and L’abbé plots); but requires more effort when
it is encoded on colour hue or saturation (such as in level plots, mosaic plots, contour
plots and Venn diagrams) [65]. Therefore, even if most of the graphical techniques satisfy
the primary criterion of displaying subgroup effect sizes, some may be more effective at
communicating the results from the analysis than others. Additionally, forest plot and
L’Abbé plot also provide subgroup responses for the treatment and control arms.

C2, Subgroup sample sizes: The majority of the approaches provide a visual display
on subgroup sample sizes. Some of the graphics achieve this criterion by encoding the
subgroup sample size information in areas (level plots, mosaic plots, Venn diagrams),
while others display the actual sample size number on the graphic. A notable approach
here is the UpSet plot, which displays the subgroup sample sizes in an additional panel
using a barplot. While one can add an additional barplot showing sample sizes to any of
the other graphics, the particular assembly of the UpSet plot is optimised to decode the
information quickly and efficiently.

C3, Subgroup overlap information: The third criterion is fully or partially met for all
apart from Forest plots, Galbraith plots and L’abbé plots. Venn diagrams, tree plots,
and UpSet are able to show the overlay of all subgroups. The remaining approaches only
display the pairwise overlap of subgroups. It is noted that when the number of subgroups

16



Table 1: The assessment summary of graphical techniques for subgroup problems. The as-
sessment criteria are: C1: whether the plot displays effect sizes for subgroups; C2: whether
it exhibits subgroup sample sizes; C3: whether it shows subgroups overlap information; C4:
whether it shows a measure of uncertainty of the treatment effect estimates in the subgroups
(i.e. confidence intervals or standard errors); C5: whether it is applicable to a large number of
subgroup defining covariates. The overlap column corresponds to P: pairwise overlap or A: all
overlap. Nc represents the number of covariates for considerations

Criterion Additional features
C1 C2 C3 C4 C5 T/C Effect Overlap Nc

Level plot X X X P 2
Mosaic plot X X X P 2-10
Contour plot X X P 2
Venn diagram* X X X A 2-6
Bar chart X X X P 1-5
Tree plot X X X X A 1-5
Forest plot* X X X X X 1-40
Galbraith plot* X X X 1-100
L’Abbé plot* X X X X 1-40
STEPP X X X P 1
UpSet plot* X X X X X A 1-40
Chord diagram X X X X A 2-100
Coxcomb plot X X X A 1-5
Alluvial diagram X X X A 1-10

*The plot has been improved or modified to make it available for the subgroup analysis framework

is small (say, up to five), the forest plot, Galbraith plot and L’Abbé plot can combine a
Venn diagram or other plots for displaying overlap of subgroups.

C4, Measures of uncertainty of the treatment effect estimates: This characteristic is
not present in all approaches. We issue a warning here since visualisations that do not
adequately demonstrate the uncertainty of the estimates may be misleading and can lead
to an over-interpretation of the heterogeneity of the treatment effect across subgroups.
Some of the plots include a reference line corresponding to the overall effect size. The
judgement of heterogeneity generally depends on the distances between the treatment
effect estimate in the full population, the estimates in subgroups and their variability.

C5, Whether a large number of subgroup-defining covariates is possible: As for the
last criterion, only five techniques (forest plots, Galbraith plots, L’Abbé plots, UpSet, and
chord diagrams) may be available to handle more than ten subgroups-defining covariates.
Venn diagrams and tree plots can practically deal with only up to five sets for effective
visualisation.

In practice, the decision to use one technique or another demands the consideration of
different characteristics and circumstances. For example, we have seen that contour plots
and STEPP are only suitable for continuous covariates, while the rest allows the use of
binary or categorical covariates. Level plots and bar charts may be easier to understand
due to their simple design. Forest plots and L’Abbé plots can be used especially to
identify subgroups with adverse effects in both interventions despite the positive effect
size. As some graphics do not display key information, combining several ones may also
be advantageous.

The approaches are worthy of further discussions in design and use issues. One thing
to note is that the results of statistical inference based on hypothesis testing are not
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informed. Our primary goal was to visualise essential subgroup information including
effect sizes and sample sizes. We consider that all the approaches mainly serve as graphical
descriptive tools, and therefore there is no need for adding the testing results for initial
subgroup analyses. As a result, the presence of positive or adverse findings in subgroups
with small sample sizes only brings concerns to practitioners for further investigations.

Related to this point, it is important to note that the considered graphical approaches
are descriptive only and do not adjust for potential selection bias of point estimates, in-
flated type 1 errors due to multiple testing, or reduced simultaneous coverage probabilities
of confidence intervals. These consequences of multiple testing and selective estimation
may become, however, substantial as the number of considered subgroups increase. In
exploratory settings though, where the definition and selection of subgroups are post
hoc and may be data-driven, frequentist error rates or coverage probabilities cannot be
controlled on principle. In contrast, if the subgroups to be considered are pre-defined (or
selected independently of outcome data), there is a broad range of statistical approaches
available to account for multiplicity [3, 66]. Many of the considered graphical approaches
can be used to show multiplicity adjusted treatment effects and uncertainty measures.
One can, for example, use simultaneous confidence intervals based on the Bonferroni
correction, post-selection confidence intervals as in [35], treatment effects estimates after
model averaging [67], bias-adjusted estimates [27], etc. Comparative plots showing both
the adjusted and unadjusted estimates may also provide valuable insight.

Another issue is the correlation between categorical variables considered. The graphi-
cal approaches are not designed to address the problem that the correlation causes, where
estimates from mutually disjoint subgroups can be correlated and thereby this may lead
to confounding interpretations of subgroup effect sizes. This can be solved by using, for
example, a standardisation technique before utilising the graphical approaches [68].

In this work, we focused on developing non-interactive graphical displays. We recog-
nise the usefulness of adding interactivity, which can improve the flexibility of the studied
graphics. For example, there exist work on interactive mosaic plots [69] which allows one
to easily include more subgroup-defining covariates to avoid the problem of overlapping
labelling. Interactive UpSet plots allow one including/excluding covariates, ordering them
according to different characteristics, displaying additional variables, etc; which makes
this graphic a powerful analysis tool (https://caleydo.org/tools/upset/). The recently
published subscreen package [70] enables the analysis of thousands of subgroups by
using a scatter plot and allowing the user to display additional information thanks to
interactive tools like R Shiny [71]. Certainly, all graphics may benefit from interactivity.
It appears to be feasible to adapt existing interactive approaches to the subgroup analysis
problem or to add interactivity to the graphics that we introduced in this manuscript.

The dataset we analysed contained information on causes of death. However, the
considered endpoint in the analysis in this manuscript was death from all causes com-
bined. Additionally, while four treatment options were used to treat the patients, we
combined them into two categories. These adaptations allowed us to frame the analysis
in the typical situation where an experimental treatment is compared against a control.
Modifications to the considered graphics could be explored to enable the comparison of
multiple treatments or multiple endpoints. Again, interactivity may also help in these
situations to explore and understand the data.

The code used to generate the figures in this manuscript is provided as an R package
in the online supplementary material and is also available in CRAN (https://cran.r-
project.org/package=SubgrPlots).
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Figure 1: Level plots of treatment effect in terms of the log-hazard ratio across mutually
disjoint subgroups defined by age and weight categorised in three levels. The cells on the
bottom and the left margins correspond to the marginal subgroups defined by the levels
of age and weight. In (b), the area of each square inside the cells is proportional to the
sample sizes, which are also displayed in the middle of the cells.
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Figure 2: (a) Mosaic plot of treatment effect in terms of the log-hazard ratio across
mutually disjoint subgroups defined by age and weight categorised in three levels. The
cells on the bottom and the left margins correspond to the marginal subgroups defined
by the levels of age and weight. The area of each mosaic is proportional to the sample
sizes. (b) Mosaic plot of treatment effect in terms of the log-hazard ratio across mutually
disjoint subgroups defined by history of cardiovascular events, performance rating and
bone metastasis.
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Figure 3: Contour plot of treatment effect in terms of the log-hazard ratio over the plane
of age and weight. (a) Contour lines are drawn by forming subgroups with neighbouring
subjects, calculating the treatment effect for subgroups and interpolating the results using
loess. N11 stands for the sample size of a marginal subgroup defined by a range of age,
N12 is the overlap size of the immediate marginal subgroups on age, N21 is the sample size
of the subset of a marginal subgroup on age but further defined by a range of weight, and
N22 is the overlap size of the immediate subgroups (which are the subset of a marginal
subgroup on age) on weight. (b) Contour lines are drawn by fitting a local regression at
each point of the grid, using subjects weights according to their distance to the point of
the grid. Points with few subjects in the vicinity of the grid point were left blank
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Figure 4: (a) Venn diagram of 3 subgroups defined by presence of bone metastasis, history
of cardiovascular events, and performance rating = 1. (b) Venn diagram of 4 sets defined
by presence of bone metastasis, disease stage, performance rating = 1 and history of
cardiovascular events with treatment effect sizes in terms of the log-hazard ratios. (c)
Approximate area-proportional Venn diagram of 3 subgroups defined by presence bone
metastasis, history of cardiovascular events and performance rating = 1 with treatment
effect sizes in terms of the log-hazard ratios.
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Figure 5: Bar plot of treatment effect in terms of the difference in restricted mean survival
time across mutually disjoint subgroups defined by age and weight categorised in three
levels. The width of each bar is proportional to the sample size for subgroups. The
area can be interpreted as the gain/loss in restricted mean survival when using treatment
in comparison to control. Black, grey and light grey indicate the age categories young,
middle-aged and old, respectively.
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bm = No   −0.14 (−0.38; 0.10)   398 (192;206)

bm = Yes  −0.87 (−1.38;−0.36)    77 ( 46; 31)

hx = No   −0.32 (−0.63;−0.02)   269 (142;127)

hx = Yes   0.10 (−0.20; 0.41)   206 ( 96;110)

stage = 3 −0.09 (−0.39; 0.20)   272 (135;137)

stage = 4 −0.32 (−0.63;−0.00)   203 (103;100)

pf = 0    −0.22 (−0.45; 0.01)   428 (216;212)

pf = 1     0.28 (−0.33; 0.88)    47 ( 22; 25)

Full      −0.18 (−0.39; 0.04)   475 (238;237)

            Eff.size (95% CI)     S.Size(T|C)

Forest plot of subgroups
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Figure 6: Forest plot for subgroups defined by performance (pf), stage, history of car-
diovascular events (hx) and existence of bone metastasis (bm). Effect sizes in terms of
the log-hazard ratio and associated treatment and control group Kaplan-Meier curves are
displayed.
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Figure 7: Tree plot for the treatment effect in terms of the log-hazard ratio for subgroups
defined by category combinations of existence of bone metastasis (bm), history of car-
diovascular events (hx), and performance rating (pf). Each layer shows the 95% C.I.
of treatment effect differences for the associated subgroups. The purple horizontal lines
placed in the middle of C.I. have a length proportional to the weight of subgroup sample
size over the full population. In (a) the y-axes are independent in each layer of the plot,
while in (b) y-axes are kept fixed across levels, which allows comparing variability in the
estimates
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history of cardiovascular events (hx), stage, and performance rating (pf).
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Figure 9: L’Abbé plot for subgroups defined by performance (pf), stage, history of car-
diovascular events (hx) and existence of bone metastasis (bm). Effect sizes are given in
terms of the difference in restricted mean survival time (RMST).
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Figure 10: STEPP plot of overlapping subgroups defined by age. Each subgroup has a
sample size of around 40 (N11 = 40) and is controlled to have about 87% (N12/N11)
being overlapped with the neighbouring subgroups.

29



52

42

29 29

25 24

20
18 17

15
13 13

11 10

0

20

40

60

In
te

rs
ec

tio
n 

S
iz

e

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

     hx
  stage
     wt
    age
     bm
     pf

   

050100150200
Set Size

Control Experimental

Figure 11: Upset plot displaying the subgroups conformed by the intersection of all
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Figure 12: Improved UpSet plot for subgroups defined by performance (pf), bone metas-
tasis (bm) and history of cardiovascular events (hx). The panel on the left (matrix)
displays how the subgroups are formed by assigning a ’+’ if the variable is equal to 1 and
a ’−’ if the variable is equal to 0. The bar plot on top of the matrix panel indicates the
marginal set sizes in relation to the total sample size, with the black region corresponding
to the 1 or ’yes’ category and the white region corresponding to the 0 or ’no’ category.
Treatment effect sizes and their confidence intervals are displayed in the panel on the
middle and the subgroup sizes in the horizontal bar plot on the right.
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Figure 13: Chord diagram for the subgroups formed by age and weight. The colours along
the circle represent the treatment effect in terms of the log-hazard ratio. The ribbons
that link the subgroups represent their overlap.
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Figure 14: Mosaic plot displaying 2-year survival by treatment arm for the subgroups
formed by age categories.
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Figure 15: Nightingale coxcombs plot for subgroups defined by age and weight with 2-
year survival rate. The radius of the sectors are proportional to the square root of the
sample sizes in the subgroups
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Figure 16: Nightingale coxcombs plot for subgroups defined by age and weight with 2-year
survival rate and separated by treatment arm. The radius of the sectors are proportional
to the square root of the sample sizes in the subgroups
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Figure 17: Alluvial diagram displaying the distribution of patients across the subgroups
defined by history of cardiovascular events (hx), existence of bone metastasis (bm) and
performance rating (pf). The dark bands correspond to patients that were randomised
to treatment while lighter ones to patients in control. Blue coloured bands represent
patients that had survived for at least 2 years, while pink ones represent those who did
not. The width of the bands is proportional to the sizes of the subgroups.
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Figure 18: Alluvial diagram displaying the distribution of patients across the subgroups
defined by history of cardiovascular events (hx), existence of bone metastasis (bm) and
performance rating (pf). The dark blue bands correspond to patients that were ran-
domised to treatment while light blue ones to patients in control. The width of the bands
is proportional to the sizes of the subgroups.
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(a) Line plot with bidirectional arrowed curves
for relative overlap proportions for pairwise
subgroups.

●
stage=3

●
stage=3

●hx=0

●hx=0

●bm=0

●bm=0

●pf=0

●pf=0

●

stage=4

●

stage=4

●hx=1

●hx=1

●bm=1

●bm=1

●
pf=1

●
pf=1

0.0 0.2 0.4 0.6 0.8 1.0
Overlap proportion

(b) Line plots with unidirectional arrowed lines
for relative overlap proportions for pairwise
subgroups.
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(c) Line plot for relative overlap proportions
for pairwise subgroups.
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(d) Matrix plot for relative overlap proportions
for pairwise subgroups.
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(e) Dissimilarity measures for marginal sub-
groups.
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marginal subgroups.

Figure 19: Plots for subgroup information about pairwise overlap proportions or dissim-
ilarity measure.
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