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Who’s the Fairest of Them All? A Comparison of Methods for Classifying 

Tone and Attribution in Earnings-related Management Discourse 

Abstract 

We compare the relative and absolute performance of various machine learning algorithms and 

wordlists at replicating manual coding results for tone and attribution by domain experts in 

management performance commentary. Our suite of learning classifiers comprises Naïve Bayes, 

random forest, support vector machines, and an artificial neural network called multilayer 

perceptron. We use wordlists proposed by Henry (2006, 2008) and Loughran and McDonald 

(2010) to classify tone. Wordlists for attribution are based on the causal reasoning list from 

Language Inquirer and Word Count (LIWC), together with two self-constructed lists. We use a 

self-constructed wordlist to distinguish between internal and external attributions. We train 

learning classifiers using a large sample of manually annotated performance sentences. Results 

for all classifiers are assessed using a separate manually annotated holdout sample. Conclusions 

regarding the best classification method vary according to the classification task. None of the 

approaches are capable of identifying the presence of an attribution reliably. Even for more 

reliable classification tasks such as tone and attribution type, absolute measurement errors often 

exceed 20%. We conclude that while automated textual analysis methods offer important 

opportunities in certain settings, manual content analysis remains an essential tool for researchers 

interested in studying the properties and consequences of financial discourse. 
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Who’s the Fairest of Them All? A Comparison of Methods for Classifying 

Tone and Attribution in Earnings-related Management Discourse 

1. Introduction 

 Large-sample computerized analysis of text is now commonplace in mainstream capital 

markets research. Work in accounting is dominated by automated content analysis methods that 

count word frequencies using predetermined wordlists relating to particular linguistic constructs 

such as tone, uncertainty or future tense. Loughran and McDonald (2016) and Henry and Leone 

(2016) stress the transparency and parsimony advantages of simple word counts, and question 

the net benefits of applying more sophisticated learning algorithms in a financial context. This 

view contrasts with theory and evidence in computational linguistics, where machine learning 

methods are associated with substantially better results (Pang et al., 2002). We seek evidence on 

the relative and absolute performance of various procedures for scoring financial discourse. 

Specifically, we compare the ability of wordlists and learning algorithms to replicate manual 

classification by domain experts for tone and attribution in management commentary. 

 A large literature using manual scoring methods predicts and finds evidence of optimism 

and self-serving attribution bias in managerial narrative disclosures (Merkl-Davies and Brennan 

2007). Recent work using large-sample automated methods replicates and extends these findings. 

Indeed, El-Haj et al. (2019) conclude that tone and attribution remain among the most widely 

studied aspects of financial discourse in the new wave of automated textual analysis research. 

Despite their continuing popularity, however, accounting and finance researchers have applied 

little effort to evaluating the reliability of automated methods for measuring tone and attribution 

relative to manual scoring.   
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 A small group of studies evaluate methods for measuring the tone of management 

disclosures. Loughran and McDonald (2010) compare the performance of General Inquirer’s 

positive and negative wordlists derived from general English language with domain-specific lists 

constructed from firms’ 10-K fillings. Results highlight the benefits of using wordlists derived 

from the financial domain to score the tone of 10-K commentary. Li (2010a) trains a Naïve 

Bayes classifier for tone on over 30,000 manually-coded forward-looking sentences drawn from 

10-K filings. Validation tests reveal a classification accuracy rate in the range of 60-66%. Henry 

and Leone (2016) extend Loughran and McDonald (2010) and Li (2010a) in two ways. First, 

they compare the performance of Loughran and McDonald’s wordlists with more parsimonious 

wordlists constructed by Henry (2006, 2008). Results show the Henry (2006, 2008) lists proxy 

tone more reliably. Second, they compare the performance of wordlist-derived tone proxies with 

Li’s (2010a) Naïve Bayes classifier and conclude that wordlists perform well in relative terms. 

Both Loughran and McDonald (2010) and Henry and Leone (2016) evaluate classification 

performance indirectly using the strength of the correlation between fundamental economic 

performance signals and their tone proxies. Meanwhile, El-Haj et al. (2016) report in-sample 

evidence on the performance of various classifiers for tone and attribution in UK earnings press 

releases.. To date, however, no study of which we are aware evaluates the ability of automated 

classifiers to replicate manual coding outcomes by domain experts on unseen data. 

We assess the out-of-sample performance of automated scoring methods by directly 

comparing results for a broad range of classifiers against manual annotations. We use the dataset 

of performance-related sentences constructed by El-Haj et al. (2016) as the basis for training our 

learning classifiers and constricting feature wordlists. Briefly, our dataset comprises 8,805 three-

sentence blocks drawn from a sample of earnings announcement press releases issued by non-
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financial firms listed on the London Stock Exchange, where the middle sentence in each block 

contains a performance keyword. Each sentence block is then classified manually by two domain 

experts working independently. Invalid sentences are discarded and the remaining performance 

triads are annotated for tone and the presence of attributions. Where an attribution is identified, 

coders determine whether management refer to internal factors (e.g., strategy) versus external 

factors (e.g., macroeconomic conditions) (Arets 2005, Kimbrough and Wang 2014). 

Disagreements between coders are reviewed and resolved by an independent judge. 

We use the resulting dataset to train the following learning classifiers for tone, attribution 

and attribution type: Naïve Bayes, random forest, support vector machines (SVM), and an 

artificial neural network model known as multilayer perceptron. We evaluate performance across 

these algorithms and then compare the best performer against result using relevant wordlists. In 

the case of attribution and attribution type, we complement wordlists used on prior research with 

self-constructed lists derived from our training dataset. Following best practice in computational 

linguistics (Das 2014: 42), we then construct and annotate manually a second sample of 

performance sentences using an identical coding procedure. We use this second dataset to 

evaluate the out-of-sample performance of our alternative classifiers.                        

Our main findings are as follows. Maximum out-of-sample classification accuracy ranges 

from 84% for attribution type to 81% for tone, suggesting that automated methods are capable of 

replicating manual coding outcomes with a reasonable degree of accuracy for certain tasks. 

Relative comparisons reveal that the best learning classifier typically beats a simple word list 

approach. For tone and the presence of an attribution, the differential between the best learning 

classifier and the best performing wordlist is relatively small at 5-8%. For attribution type, the 

performance differential is much larger (25%). Among the suite of learning classifiers, Naïve 
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Bayes rarely performs best despite its prominence in accounting research. Henry (2008, 2006) 

wordlists for tone always outperform Loughran and McDonald (2010) by a substantial margin, 

while a self-constructed wordlist for attribution beats causal reasoning wordlists based on  LIWC 

and use in prior research (Zhang et al. 2019, Dikolli 2017). 

We make several contributions to the literature. We extend insights in Henry and Leone 

(2016) on the performance of computerized methods for scoring the tone of management 

commentary by providing the first evidence of which we are aware on the absolute out-of-sample 

ability of a suite of text classifiers to replicate manually coded outcomes by domain experts. Our 

best performing classifier for sentence-level tone (random forest) achieves accuracy rates of 81% 

in out-of-sample tests. While learning classifiers beat Henry’s (2006, 2008) wordlists, the 

difference is economically small (<5%). In contrast, classification accuracy using Loughran and 

McDonald’s (2010) wordlists does not exceed 60%.  

Our findings for tone classification highlight the conflicting bright and dark sides of 

automated textual analysis. On the one hand, evidence that (some) automated classification 

methods are able to replicate domain-expert manual classification with reasonable accuracy 

suggests that carefully designed and executed computerized analyses of management sentiment 

are capable of providing useful insights that complement small-sample manual scoring 

approaches. On the other hand, error rates in the region of 20-25% highlight the risks associated 

with poorly executed textual analysis studies. Empirical researchers would not tolerate a scenario 

where one-in-four data items from Compustat or CRSP were incorrect and so why should 

different standards apply to measures derived from text? 

We also contribute to extant research by extending evidence on classification 

performance beyond tone to consider the arguably more complex phenomenon of attribution. 
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Results reveal that neither our best performing learning classifier (multilayer perceptron) nor our 

various wordlist options are capably of identifying attributions reliably. Unlike tone, our findings 

suggest very limited scope for using automated textual analysis methods to detect the presence of 

attributions in performance commentary. Conditional on having identified the presence of an 

attribution manually, however, we find that learning classifiers (but not our self-constructed 

wordlist) are able to reliably distinguish between internal and external attributions.     

We also extend Henry and Leone (2016) with evidence on the relative performance of 

learning versus simple wordlist classifiers. While results for tone are consistent with Henry and 

Leone’s (2016) evidence of small relative gains to machine learning over a wordlist approach, 

our evidence for attribution type highlights the danger of generalizing this conclusion to other 

classification tasks. Specifically, we find that our best performing machine learning classifier 

(SVM) beats our self-constructed wordlist by 26% (58% accuracy for our wordlist versus 84% 

accuracy for SVM). The poor relative performance of our wordlist reflects the varied nature of 

the classified construct: attributions types take many forms, making identification of 

comprehensive wordlists for internal and external attributions very difficult. Learning classifiers 

offer significant performance improvements in such cases because they are better able to isolate 

latent features. Findings highlight how classifier choice is conditioned by the nature of the task. 

Finally, we contribute to the accounting literature by providing the most comprehensive 

treatment of the text classification task to date. We show how classification performance varies 

for learning algorithms across different classification tasks, with no single machine learning 

algorithm is consistently best across all classification tasks (Goel et al. 2010). We also 

demonstrate the dangers of relying on average accuracy metrics to assess classification 

performance, and we provide evidence on the benefits of sample balancing when training 
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learning classifiers on highly skewed datasets. Finally, we provide a range of including annotated 

datasets, python code, and step-by-step guidelines to help researchers replicate and extend our 

machine learning classifiers.         

 

2. Background and research question 

Research examining the properties, determinants and economic consequences of financial 

discourse has a long history in the accounting literature. Merkl-Davies and Brennan (2007) 

critique work in the area, which at the time of their review was dominated by manual content 

analysis methods applied to samples of hundreds (rather than thousands) of observations. Two of 

the most popular discourse features examined the literature are tone and causal reasoning. A 

significant body of research in accounting examines the tone of financial narratives. Results 

provide a mixed picture. While many studies conclude that tone is informative for future 

performance, a large body of work also provides evidence consistent with opportunistic tone 

management in various corporate communications including annual reports, earnings 

announcements and conference call presentations. 

Work on causal reasoning and in particular self-serving attribution bias also has a long 

history in accounting research. Attribution bias occurs when management take credit for positive 

outcomes while blaming negative results on factors beyond their control. Clatworthy and Jones 

(2003) report evidence consistent with attribution bias for a sample of U.K. firms’ Chairman’s 

Statements, while Kimborough and Wang (2014) analyse apparently self-serving attributions in 

U.S. firms’ quarterly earnings announcements and conclude that investors are not fooled by such 

behaviour. Consistent with the informativeness view, Baginski et al. (2004) find that the decision 

by management to issue attributions alongside their earnings forecasts does not reflect 

managerial self-serving opportunism. 
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The interval since Merkl-Davies and Brennan’s (2007) review has witnessed an 

explosion of papers in accounting and finance applying automated scoring techniques to measure 

the properties of financial discourse (Loughran and McDonald 2016). Li (2010b) proposes the 

following benefits of automated textual analysis over manual content analysis: lower data 

collection costs because algorithms are able to score text more quickly than human annotators; 

higher statistical power as a result of being able to work with larger sample sizes; greater 

objectivity and replicability because algorithms do not involve the same level of subjective 

judgement; and more generalizeable insights due to larger and more representative samples. El-

Haj et al. (2019) question the validity of these claims, arguing that in certain circumstances 

research designs applying a manual annotation strategy to a small sample can generate higher 

power tests that are no less objective or costly. Little direct evidence currently exists regarding 

the accuracy with which automated text processing methods applied in a large sample setting 

measure verifiable properties of financial discourse relating to content and linguistic style. While 

many studies apply automated text scoring methods to financial data, very few evaluate the 

precision of the resulting empirical proxies. 

Li (2010a) trains a Naïve Bayes classifier for tone on 30,000 of forward-looking 

sentences drawn from firms’ 10-K and 10-Q filings. Threefold cross-validation tests reveal that 

the learning algorithm classifies tone correctly for 60-66% of sentences depending on the 

number of classes predicted. While classification performance is substantially better than chance, 

absolute measurement error rates of 34-40% are nevertheless high. Li’s (2010a) analysis is 

nevertheless notable because he provides a direct comparison between outcomes derived from an 

automated classifier and a manually annotated “gold standard” comparator group.  
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Henry and Leone (2016) seek further evidence on the performance of computerized 

approaches to classifying tone in earnings announcement discourse. They compare a suite of 

wordlists for positive and negative language, including popular dictionaries developed by Henry 

(2006, 2008) and Loughran and McDonald (2010). Henry and Leone (2016) use an indirect 

method to evaluate classification performance based on the correlation between tone scored 

using a particular wordlist and economic fundamentals known to co-vary with the polarity of 

management commentary. Higher correlations are interpreted as evidence that tone is measured 

more accurately. Results show that the Henry (2006, 2008) dictionaries outperform the Loughran 

and McDonald (2010) wordlists. Supplementary tests using Li’s (2010a) Naïve Bayes classifier 

applied to 10-K discourse indicate that the learning algorithm does not provide a large 

performance gain over the Henry (2006, 2008) wordlists. While Henry and Leone’s (2016) 

findings provide important insights on relative classification performance, their method does not 

shed light on absolute classification accuracy due to the absence of a gold standard benchmark.  

The ability of human annotators to take account of context and meaning when 

interpreting the (often subtle) messages in corporate discourse is a potentially vital advantage 

associated with a manual content analysis strategy. Rapid growth in the application of automated 

text processing methods raises an inevitable and critical question: how well are automated 

classification methods able to replicate manual annotation by domain experts? The remainder of 

our paper seeks evidence on this question in relation to measuring tone and causal reasoning.  

 

3. Research design, data and descriptive statistics   

We seek evidence on the ability of automated text classification procedures to replicate 

manual coding for tone and attribution in management performance commentary. Our approach 
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involves training a suite of classifiers on a manually annotated dataset of performance sentences 

and then applying the classifiers to a second sample of manually annotated sentences to evaluate 

out-of-sample classification performance. Figure 1 summarizes the key elements of our research 

design. The remainder of this section explains our sampling strategy and manual coding 

procedure, and provides summary statistics for final datasets. Details of our text classifiers are 

described in section 4.  

 

3.1 Training and holdout samples 

 Our training sample is based on El-Haj et al.’s (2016) dataset of performance sentences 

sampled from annual earnings press releases for fiscal year 2011 issued by London Stock 

Exchange-listed non-financial firms with analyst coverage on IBES. El-Haj et al. (2016) use a 

stratified sampling approach to maximize variation in reported performance. Specifically, firms 

are ranked based on their change in earnings from continuing operations (scaled by lagged 

market capitalization). A sample of 150 firms is identified comprising the 50 highest ranked 

cases, the 50 lowest ranked cases, and 50 cases selected at random from firms in quartiles two 

and three. Earnings press releases are retrieved from Perfect Information. (Eight documents were 

unavailable on Perfect Information.) The narrative component of each press release (i.e., 

excluding financial statements, footnotes and residual regulatory content) is extracted from each 

file and the text is split into 32,449 sentences. Candidate earnings-related performance sentences 

are identified using a keyword list designed to minimize Type II errors.1 The resulting 8,805 

sentences containing at least one performance-related keyword are retained together with 

adjacent lead and lag sentences. The final sample for manual coding comprises 26,415 individual 

                                                            
1 The keyword list consists of the following elements: “sales”, “revenue”, “revenues”, “turnover”, “trading”, “cost”, 

“costs”, “expense”, “expenses”, “income”, “earnings”, “eps”, “e.p.s”, “profit”, “profits”, “profitability”, “loss”, 

“losses”, “margin”, “margins”, “result”, and “results”. 
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sentences for 8,805 tri-sentence blocks centred on a potential performance sentence. Two factors 

motivate the decision to code tri-sentence blocks. First, test coding reveals that performance-

related statements are often complex constructs involving multiple sentences. For example, 

management routinely provide a direct statement on performance in one sentence, with related 

explanations (i.e., attributions) presented in the preceding or subsequent sentence. Second, even 

in the absence of any complex multi-sentence attributions, adjacent sentences frequently provide 

important contextual information required to determine the polarity of a performance sentence. 

We follow a similar approach to construct our holdout sample using earnings press 

releases for fiscal year 2012. The primary difference is that we select 150 firms with non-zero 

analyst following at random (rather than stratifying by scaled earnings changes) to maximize 

representativeness. We follow the same procedure applied in the training sample to extract text, 

split sentences, and identify candidate performance sentences. As only a subset of candidate 

performance sentences are valid and only a fraction of those contain an attribution, attributions 

are the limiting discourse feature when constructing our holdout sample. We proceed by setting 

the target number of attributions to 1,000 to ensure tests of classification accuracy are reliable, 

and continue sampling tri-sentence blocks randomly until this threshold is reached. The strategy 

requires us to score 6,242 tri-sentence blocks or 18,726 individual sentences. 

 

3.2 Manual coding strategy 

 Figure 2 summarizes the manual coding strategy applied to the training and holdout 

samples. Tri-sentence blocks in both samples are coded manually for tone, the presence of an 

attribution, and attribution type. Tone measures the polarity of a valid performance sentence. We 

classify performance sentence tone as either positive, negative, neutral, or unclear (Li 2010a). 

Attribution occurs when management relate a performance outcome to at least one fundamental 
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determinant such as operating efficiency, product development, adverse trading conditions, etc.2 

The presence of an attribution is treated as a binary outcome equal to one if management 

explicitly link performance with one or more fundamental determinants and zero otherwise. 

Finally and consistent with prior research (Aerts 2005, Kimbrough and Wang 2014), we 

categorize valid attributions according to whether the fundamental determinant(s) cited by 

management relate to internal or external factors. We classify internal factors as those over 

which management exercise direct control. Examples of internal factors include strategic 

reorientation, cost control, product design, marketing initiatives, labor relations, etc. Conversely, 

we classify external factors as those over which management are not expected to exercise direct 

control such as market competition, input prices, exchange rates, weather, etc.3 We capture 

attribution type using separate indicator variables for internal factors and external factors because 

a sentence may contain both attribution types.  

We develop a draft coding scheme to guide the classification process and refine the 

guidelines through several iterations where multiple coders classify 100 sentences, compare 

results, and modify coding rules accordingly. Annotators first determine whether the target 

sentence in a tri-sentence block is valid earnings-focused performance sentence. Conditional on 

identifying a valid performance sentence, annotators then determine tone, the presence of 

                                                            
2 We distinguish between valid attributions and vague statements or tautologies. For example, a statement ascribing 

profit growth to lower costs is not treated as an attribution for the purposes of our study because the fundamental 

factor(s) causing costs to fall are not specified. In contrast, a statement linking profit growth to a specific cost 

reduction programme is classified as a valid attribution because the source of cost efficiencies is identified. 
3 Some factors such as supply chain are ambiguous and context-specific. For example, where management explicitly 

cite unforeseen problems in the supply chain resulting from extraordinary circumstances as the determinant we code 

the attribution as external on the basis that management is seeking to distance itself from the cause. On the other 

hand, where management highlight ongoing supply problems as the cause we treat the attribution as internal on the 

grounds that the firm has failed to resolve known problems.  
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attribution, and attribution type. Tone relates solely to the middle sentence in a block, whereas 

attribution and attribution type may involve any of the three sentences.4  

The finalized manual coding scheme is implemented using double-blind classification by 

four domain experts from the author team, working in pairs. Tri-sentence blocks are divided 

equally among coder-pairs in extraction order. Coders view all sentences in a block together and 

in the correct sequence using a Microsoft Access form. Classification results are recorded 

through the same interface, with coders selecting numeric indicators from dropdown menus to 

limit the risk of typographical errors. A free text field is also available for coders to record 

explanatory notes as part of an audit trail. On completion of the double-blind coding task, results 

for coder-pairs are compared. Inconsistencies are identified and resolved with the aid of 

independent judge. Observations are coded as unclear for the small number of cases where the 

independent judge is unable to resolve the disagreement. The final manually annotated training 

and holdout samples available at https://github.com/apmoore1/pea_classification to support 

replication and further research. 

 

3.3 Sample and descriptive statistics  

 Table 1 summarizes manual coding results for the training sample (first row) and holdout 

sample (second row). Of the initial 8,805 target sentences in the training sample, 1,604 target 

cases (18%) are invalid sentences (e.g., a list of performance metrics). The remaining 7,201 

target sentences comprise 3,396 performance sentences and 3,805 target sentences judged not to 

be valid performance sentences because they either discuss non-earnings features such as cash, 

debt, inventory, production, etc. or they refer to results for the current fiscal year. The high rate 

                                                            
4 We differentiate performance sentences including attributions and those where the attribution appears in an 

adjacent sentence when training our machine learnings classifiers for tone. It is an empirical issue whether 

classification accuracy varies as a function of sentence complexity. 

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fapmoore1%2Fpea_classification&data=02%7C01%7Cs.young%40lancaster.ac.uk%7Cfec8c135f45544600a8808d7637109ee%7C9c9bcd11977a4e9ca9a0bc734090164a%7C1%7C0%7C637087209451267272&sdata=dZn6iuTLFWH9rIVI7mv1uYmpZK0St2hvizjIhWnUV8Q%3D&reserved=0
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of non-performance sentences reflects our performance sentence selection strategy which is 

purposely designed to minimize the risk of excluding valid performance sentences at the expense 

of a high Type I error rate. We therefore code the remaining 3,396 tri-sentence blocks (10,188 

sentences) for tone, attribution and attribution type. Positive tone dominates as evidenced in prior 

research (Loughran and McDonald 2016): 2,393 target performance sentences (70%) are 

classified independently by two domain experts as positive, compared with 784 sentences (23%) 

that are classified as negative. The remaining 219 sentences are classified manually as either 

neutral (123) or mixed tone (96). Frequencies in these latter two categories are too sparse to 

classify reliably using learning algorithms and therefore we drop these cases from the analysis. 

Our final automated classification task therefore involves predicting a binary outcome (positive 

versus negative tone) using a sample of 3,177 sentences. 

 We code attributions associated with the 3,177 target performance sentences. Attributions 

may appear directly in the performance sentence or in one of two adjacent sentences in the tri-

sentence block. Two coders working independently identify 1,594 sentences that contain at least 

one attribution, of which 1,161 are target performance sentences and 433 are sentences adjacent 

to a performance sentence. We define the sample of non-attribution sentences equal to the 

remaining 2,235 target performance sentences that do not contain an attribution plus the 3,372 

target sentences that contain neither an attribution nor a valid performance sentence.  

 Finally, we code attribution type for the 1,594 sentences identified as containing at least 

one attribution. We identify 948 internal attributions and 800 external attributions. The aggregate 

number of attribution types 1,748 exceeds the number of attribution sentences because 180 

sentences make reference to both internal and external causal factors. We exclude these 180 

combined sentences from the training sample because they do not provide incremental 
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information for the binary classification task. We also identify and exclude 26 attribution 

sentences where two coders plus a judge are unable to agree on the nature of the attribution. Our 

attribution type final training sample therefore comprises 768 (948 – 180) clean internal 

attributions and 620 (800 – 180) clean external attributions. 

The second row in Table 1 provides comparable information for the holdout sample. The 

holdout sample consists of 1,774 valid target performance sentences, 1,200 (68%) of which are 

positive versus 574 (32%) that are classified as negatively toned. The total number of tri-

sentence blocks containing at least one attribution is 966, comprising 720 target performance 

sentences and 246 adjacent nonperformance sentences. We use this sample of attribution 

sentences to identify 338 sentences that contain a clean internal attribution and 491 sentences 

that contain a clean external attribution.  

 

4. Classifiers and classification performance  

 This section presents information on our sentence classification strategies and explains 

the metrics we use to evaluate classification performance for both the training and holdout 

samples. We use a suite of machine learning algorithms to classify tone, attribution and 

attribution type and then select the best performing model based on the training sample results to 

classify sentences in the holdout sample. We compare machine learning classification 

performance against classifications generated by applying separate wordlists for tone, attribution 

and attribution type. Table 2 summarizes our classification methods. 

 

4.1 Machine learning algorithms   

We train four popular machine learning algorithms on each of our three discourse 

features. Theory provides little guidance on which algorithm is likely to perform best and 
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therefore NLP researchers typically start with a suite of classifiers and then select the best 

empirical performer as their baseline model (Goel et al. 2010). The four machine learning 

algorithms used in our analysis are Naïve Bayes, random forests, support vector machines 

(SVM), and a form of artificial neural network known as multilayer perceptron.5 

Naïve Bayes is a probabilistic classifier that represents one of the simplest and most 

effective inductive machine learning algorithms. The Naïve Bayes approach uses the joint 

probabilities of words and categories to estimate the probabilities of categories when a document 

is given (McCallum and Nigam 1998). The NB classifier assigns the most likely class to a given 

example described by its feature vector. The underlying assumption of the Naïve Bayes approach 

is that the probability of each word occurring in a document is independent of the occurrence of 

other words in the document and the probability that a document is generated in some class 

depends only on the probabilities of the words given the context of the class. Even though it is a 

probabilistic classifier, its classification performance is competitive with the performance of 

other sophisticated learning methods (Mitchell 1997). Naïve Bayes is the method used by almost 

all studies in accounting and finance that use a machine learning classifier (Li 2010a, Huang et 

al. 2014, Buehimaier and Whited 2018). 

Random forest is a supervised ensemble machine method that that fits a number of 

decision tree classifiers on various sub-samples of the dataset. Each decision tree generates a 

                                                            
5 We also tested the Stanford SentimentAnnotator which implements Socher et al’s (2013) sentiment model based 

on a new type of Recursive Neural Network that builds on top of grammatical structures with a fine grained 

sentiment treebank (https://nlp.stanford.edu/sentiment/; https://www.quora.com/How-does-the-sentiment-analysis-

in-Stanford-NLP-work-Is-there-a-way-for-Stanford-NLP-to-take-the-overall-sentiment-of-multiple-sentences). The 

model is trained on movie reviews wherein a reviewer might discuss both positive and negative movie aspects in the 

same sentence (e.g. “the plot was slow but the acting was great”). The accuracy of predicting fine-grained sentiment 

labels for all phrases reaches 80.7%. The Stanford Sentiment tool is available in python. We classify performance 

sentence tone in our holdout sample using the Stanford tool. Accuracy rates never exceed 55% despite the 

sophisticated deep learning features of the model. Findings highlight the importance of training machine learnings 

models on relevant datasets annotated by domain experts (rather than applying complex models developed using 

language drawn from other, less relevant, domains). 

https://nlp.stanford.edu/sentiment/
https://www.quora.com/How-does-the-sentiment-analysis-in-Stanford-NLP-work-Is-there-a-way-for-Stanford-NLP-to-take-the-overall-sentiment-of-multiple-sentences
https://www.quora.com/How-does-the-sentiment-analysis-in-Stanford-NLP-work-Is-there-a-way-for-Stanford-NLP-to-take-the-overall-sentiment-of-multiple-sentences
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prediction. Votes associated with different decision trees are then combined to determine the 

final class. The process of averaging across decision trees improves predictive accuracy relative 

to using a single decision tree while also controlling over-fitting.  

SVM is a supervised machine learning technique that is based on statistical learning 

theory. The SVM algorithm learns by example to classify outcomes into predefined classes. 

SVMs are based on the Structured Risk Minimization (SRM) method for model selection that 

provides a trade-off between hypothesis space complexity and the quality of fitting the training 

data to guarantee the lowest true error on an unseen and randomly selected test example. SVMs 

determine a hyperplane in the feature space that best separates the data according to the 

predefined classes. 

Our fourth classifier is a multilayer perceptron (MLP), which is a class of feedforward 

artificial neural network. MLP consists of at least three layers: an input layer (data), a hidden 

layer, and an output layer (classification). MLP utilizes a supervised learning technique called 

backpropagation for training and is able to distinguish data that is not linearly separable. The 

technique can be viewed as a logistic regression classifier where the input is first transformed 

using a learnt non-linear transformation. This transformation projects the input data into a space 

where it becomes linearly separable. This intermediate layer represents the hidden layer. 

Implementing each machine learning algorithm involves selecting a large number of 

model parameters. To maximise performance and minimize the number of imposed arbitrary 

choices, we train 40 different versions of each classifier to incorporate parameter variation and 

then select the version that maximises average classification performance. 

 

4.2 Wordlists 
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We classify performance sentences for tone, attribution and attribution type using a suite 

of wordlists comprising dictionaries drawn in prior research plus several self-constructed lists 

designed to capture domain-specific characteristics. This section introduces the wordlists and 

explains how they are used to classify sentences. Appendix B provides further details of each 

wordlist used in our analysis, including the constituents of each list. Table 2 summarises the 

wordlists used to classify each feature.  

 

Tone wordlists 

We use positive and negative wordlists developed by Henry (2006), Henry (2008), and 

Loughran and McDonald (2011) to classify performance sentence tone. All lists are adjusted for 

British English spelling where appropriate. We do not use the positive and negative lists from 

General Inquirer because research demonstrates that the resulting tone measures perform poorly 

in a finance context (Loughran and McDonald 2011, Henry and Leone 2016). For each sentence 

i we count the number of positive and negative words associated with a tone measure and 

classify tone as positive (negative) where the positive word count exceeds the negative word 

count (negative word count exceeds the positive word count). Tone for sentence i is set to neutral 

where the difference between positive and negative word counts is equal to zero.        

 

Attribution wordlists 

 Two wordlists have been employed in prior accounting research to measure attributions 

and causal reasoning. Zhang et al. (2019) measure the incidence of causal reasoning in earnings-

related commentary from the MD&A section of firms’ 10-K filings using a subset of causation 

words from the LIWC causation dictionary word stems. Dikolli et al. (2017) measure the 

incidence of CEO causal reasoning in shareholder letters. Dikolli et al. (2017) use a modified 
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version of the LIWC causation wordlist. They construct their list by first identifying 505 

causation words from the LIWC causation dictionary word stems. Each element in this initial 

wordlist is then reviewed for appropriateness in their corpus of shareholder letters and remove 

words are not associated with causal reasoning in a financial context. Evaluation tests reported 

by Dikolli et al. (2017, appendix) their modified dictionary correctly classifies 68% causal 

reasoning sentences compared with 60% accuracy using the original LIWC wordlist. We use 

both the Zhang et al. (2019) and Dikolli et al. (2017) lists as alternative sentence-level classifiers 

for the presence of an attribution. Sentence i is classified as containing an attribution using a 

given wordlist when the sentence contains at least one word from the corresponding list. 

 Prior research highlights the importance of using domain-specific wordlists. To the best 

of our knowledge, no wordlist designed to measure attributions in UK earnings press releases 

currently exists. We therefore construct two new attributions wordlist based on our manually-

annotated training sample. The procedure for constructing our attribution wordlists is outlined in 

Appendix B. Sentence i is classified as containing an attribution using our self-constructed lists if 

it contains at least one word from the corresponding wordlist.   

 

Attribution type wordlist 

 We are not aware of any wordlist in the extant literature that is designed to capture the 

presence of internal or external management attributions. We therefore develop two new lists for 

internal and external attributions, respectively, based on our manually-annotated training sample. 

The procedure to construct each wordlist is described in Appendix B and follows the same 

approach as that used to construct our attribution list. Sentence i is classified as containing at 

least one internal (external) attribution when the frequency count for the internal (external) list is 

greater than zero. Note that the classification procedure for attribution type does not generate 
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mutually exclusive categories. A single sentence may contain multiple attributions and therefore 

may be classified as containing both an internal and an external attribution.    

 

4.3 Classification performance  

We evaluate classification performance using several metrics. Accuracy is defined as the 

ratio of correctly predicted outcomes (true positives plus true negatives) to total outcomes 

predicted, and arguable represents the most intuitive measure of performance: 

Accuracy
𝑝
k
=

𝑁(𝑡𝑝) + 𝑁(𝑡𝑛)

𝑁(𝑡𝑝) + 𝑁(𝑓𝑝) + 𝑁(𝑡𝑛) + 𝑁(𝑓𝑛)
 , (1) 

where Correctly classified is equal to one where classifier k replicates the human coding 

outcome for binary feature p (p equals tone, attribution or attribution type) in sentence i (i = 1 to 

N), N(tp) is the number of true positives, N(tn) is the number of true negatives, N(fp) is the 

number of false positives, and N(fn) is the number of false negatives.6 Accuracy values for 

wordlist classifiers applied to the training sample and all k classifiers applied to the holdout 

sample are computed directly from equation (1). Accuracy for machine learning classifiers 

applied to the training sample is equal to mean accuracy computed using the 10-fold cross-

validation method. The procedure involves selecting 90% of sentences at random for training and 

using the remaining 10% for validation. The process is repeated 10 times (folds), with accuracy 

equal to the mean of the equation (1) values from each of the 10 iterations. 

 Using accuracy to evaluate classification performance in highly unbalanced samples is 

problematic because a model that predicts the high frequency category well (i.e., low false 

positive rate) will generate a high accuracy score even if it has little ability to predict the low 

                                                            
6 Equation (1) is equivalent to the sum of true positives plus true negatives divided by the sum of true positives plus 

true negatives plus false positives plus false negatives.     
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frequency category (i.e., high false negative rate). The F1 Score metric addresses this weakness 

by accounting for false positives and false negatives:  

 F1  Score𝑝
k
=

 2 (Recallp
k
  Precisionp

k)

(Recallp
k
 + Precisionp

k)
 , (2) 

where Recall is the ratio of correctly predicted positive outcomes to all cases in a class and 

Precision is the ratio of correctly predicted positive outcomes to total predicted positive cases: 

Recall = 
N(tp)

N(tp) + N(fn)
 , 

 

Precision = 
N(tp)

N(tp) + N(fp)
 , 

 

Finally, we use Macro F1 to evaluate overall performance for classifier k for binary feature p, 

where Macro F1 is the arithmetic mean of the F1 score from equation (2) computed for both 

classes associated with binary feature p. Macro F1 for wordlist classifiers applied to the training 

sample and all k classifiers applied to the holdout sample are computed directly from equation 

(2), whereas Macro F1 for machine learning classifiers applied to the training sample is equal to 

mean of the Macro F1 values from each of the 10 cross-validation folds. 

 

5. Main results  

5.1 Tone 

 Classification performance for the training sample is summarized in Table 3. Results for 

the four machine learning algorithms are presented along with those for our three wordlist 

approaches. Macro F1 and accuracy metrics for machine learning classifiers represent average 

values based on the 10 cross-validation folds, whereas comparable statistics for the three 

wordlists reflect a single classification pass. Applying wordlist classifiers to the training sample 
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yields out-of-sample tests because all tone wordlists are derived from exogenous sources. 

Concern about upward bias in performance statistics due to overfitting is therefore not a 

consideration for wordlist results. We also report the F1-score for each class (i.e., positive tone 

and negative tone) to shed light further light on the source of classification performance. 

 Several notable findings are evident in Table 3. First, with Macro F1 (accuracy) values 

typically around 75% (80%), results suggest it is possible to score sentence-level tone with a 

reasonable level of reliability using automated methods. Second, the F1-score for positive tone is 

higher than the comparable metric for negative tone across all classifiers. Most classifiers with 

the exception of the L&M wordlist classify over 80% of positive sentences correctly, compared 

with less than 66% of negative sentences. The median difference in F1-scores across all seven 

classifiers is 26% and ranges from a high of 36% for Naïve Bayes to a low of 8% for the L&M 

wordlist. These results provide consistent evidence that negative toned sentences are more 

difficult to classify automatically. This may be the result of inherently greater complexity 

associated with negative outcomes and descriptions thereof, or it may reflect a greater tendency 

for management to obfuscate bad news (Bloomfield 2008).  

 A further notable result in Table 3 is that the Henry (2006, 2008) classifiers perform well 

relative more sophisticated machine learning classifiers. Macro F1 values for both wordlist 

methods are only 2% lower than the best performing machine learning classifier. The evidence 

supports results and conclusions reported by Henry and Leone (2016). Also consistent with 

Henry and Leone (2016) is the poor relative performance of the L&M classifier, which 

underperforms both Henry classifiers and worst performing machine learning classifier by more 

than 20% (25%) based on Macro F1 (accuracy). Indeed, with only 53% of sentences correctly 

classified, the L&M classifier performs little better than chance.  
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 Differences in classification performance across the four machine learning algorithms are 

small in absolute terms (approximately 2%), suggesting the choice of specific algorithm is of 

second order importance when scoring sentence-level tone in earnings announcements. Random 

forest displays the highest Macro F1 and accuracy performance among the four machine learning 

algorithms. Accordingly, we select this algorithm as our best performing machine learning 

classifier for subsequent out-of-sample tests. 

 Table 4 reports classification performance for the holdout sample. This analysis provides 

a more reliable test of classification performance for the learning approach. Results for the 

random forest classifier are qualitatively identical to those documented in Table 3 for the training 

sample. The classifier has a Macro F1 (accuracy) value of 76.4% (81.2%). Performance is only 

marginally better than the Henry (2006, 2008) classifiers. These findings support Henry and 

Leone’s (2016) conclusion that simple wordlists perform almost as well as more sophisticated 

classifiers despite being more straightforward to implement. In contrast and similar to results 

documented in Table 3, the L&M classifier is associated with accuracy levels below 60%. These 

findings have important implications for current research given widespread reliance on the L&M 

approach to measuring tone. Further, with error rates between 20-25%, even the best performing 

automated approaches generate material measurement error relative to manual coding. 

 Consistent with evidence reported for the training sample, all classifiers yield 

significantly less reliable results for negative sentences compared with positive sentences. All 

classifiers with the exception of L&M display F1-scores above 80% for positive sentences; and 

the incremental performance of the machine learning approach over the wordlist approach 

exceeds 5% for positive sentences. In contrast, F1-scores for negative sentences are below 70%, 

with the Henry classifiers outperforming the machine learning approach by approximately 3%. 
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Collectively, our evidence suggests that the reliability of automated methods for scoring sentence 

tone depends critically on the particular research question at hand. If the primary focus is on 

measuring positive statements by management then results for automated methods are likely to 

approximate those from manual coding reasonably well. In contrast, reliance on automated 

methods may prove problematic when the main focus is on negative language.  

 

5.2 Attribution 

 Table 5 summarizes classification performance for management attributions using the 

training sample. Columns 2 and 3 report separate F1-scores for the attribution and no attribution 

classes, respectively, while Macro F1 and accuracy values for overall classification performance 

are presented in the final two columns. Results for the LIWC and DIK wordlist classifiers reflect 

out-of-sample tests because both wordlists are derived exogenously, whereas findings for the 

machine learning classifiers and our two self-constructed wordlist classifiers represent in-sample 

tests and may therefore be prone to upward bias due to overfitting.   

 The most striking feature of Table 5 is the very low F1-scores for the attribution class. 

Only the ATT_ALL and ATT_50 classifiers generate F1-scores above 50% for the presence of 

an attribution. None of the four machine learning classifiers yield an F1-score above 50%: the 

best performing algorithm is the neural network at just 49.4%. Note also the large variation in 

performance across machine learning algorithms, with Naïve Bayes displaying the worst 

performance at 23%. The DIK classifier performs close to the best machine learning model while 

the LIWC classifier displays particularly poor ability to identify the presence of an attribution 

(15%). In contrast, F1-scores for the no attribution class exceed 80% for all classifiers with the 

exception of ATT_ALL (78.2%) and DIK (67.6%). The asymmetry in classification performance 

highlights the danger of using a simple accuracy metric to evaluate reliability. Overall accuracy 
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values reported in the final column suggest most classifiers are able to capture the presence of an 

attribution with a reasonable degree of accuracy (> 70%). Macro-F1 values present a less 

optimistic picture but even here overall performance often exceeds 65%. Only through the 

analysis of individual class F1-scores does the true picture emerge. All classifiers do a poor job 

of identifying attributions, with apparently high classification performance a consequence of the 

models correctly classifying the subset of no attribution cases that account for 78% of sentences 

in the training sample. In such a scenario, a naïve model that classifies all sentences as 

containing no attribution will display an overall accuracy rate of 78% despite having no genuine 

ability to detect the presence of an attribution. Results reported in Table 5 suggest that all 

classifiers struggle to outperform such a naïve model. 

 Table 6 presents results for out-of-sample classification performance. The story is 

consistent with findings document in Table 5 for the training sample. F1-scores reflecting 

classifiers’ ability to detect the presence of a valid attribution range from a high of 52.8% for 

ATT_ALL to a low of 19.6% for LIWC. Conversely, F1-scores reflecting classifiers’ ability to 

correctly detect sentences that do not contain an attribution range from a low of 70% for DIK to 

a high of 88.8% for the best-performing machine learning algorithm. Both Macro-F1 and 

accuracy values significantly overstate the reliability with which our classifiers are able to 

replicate manual coding. Indeed, evidence indicates that reliance on any of our automated 

classifiers is likely to yield unreliable large sample evidence on managers’ attribution behaviour. 

  

5.3 Attribution type 

Tables 7 and 8 provide evidence on classification performance for attribution type based 

on the training and holdout samples, respectively. We develop classifiers to distinguish between 

attributions relating to internal and external factors conditional on a sentence being manually 
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classified as containing at least one attribution. Table 7 reports overall classification performance 

in the training sample, along with separate F1-scores for internal and external classes.  

Macro F1 and simple accuracy metrics reported in the final two columns of Table 7 

provide a consistent picture. All four machine learning models are associated with accuracy 

levels around 84%. Results provide prima facie evidence that reliable classification of attribution 

type is possible using automated methods. Performance is broadly similar across the four 

models, with SVM yielding the highest Macro F1 value (84.8%) and our neural network 

algorithm producing the highest accuracy value (84.9%). Analysis of individual F1-scores 

associated with the internal and external classes provide weak evidence that models are better 

able to classify internal attributions, although the performance gap is typically less than 5%. All 

machine learning algorithms outperform our self-constructed wordlist classifier by a substantial 

amount. Absolute performance for our classifier based on internal and external wordlists is 

nevertheless respectable at 70%. 

Comparable results using the holdout sample are presented in Table 8. Overall 

performance of the best machine learning classifier (multilayer perceptron) remains impressive 

at over 82%. Similar to the evidence presented in Table 7, the algorithm displays slightly 

superior performance when classifying internal attributions (86%) versus external attributions 

(78%). The performance of our self-constructed wordlist classifiers is significantly worse in the 

holdout sample compared with results reported in Table 7 for the training sample, suggesting that 

findings for the latter may reflect overfitting. With Macro F1 and accuracy values of 56.4% and 

57.8%, respectively, results casts doubt on the ability of our wordlists to replicate manual coding 

outcomes for attribution type, with any value being limited to external attributions. Collectively, 
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findings reported in Table 8 suggest that reliable identification of attribution type is possible 

using a machine learning approach but not a wordlist approach.      

 

6. Supplementary analysis 

6.1 Sentence complexity  

Results for tone and attribution reported in section 5 are based on samples that include a 

subset of target performance sentences where at least one attribution is also present. Performance 

sentences that also include an attribution are arguably more linguistically complex than sentences 

that contain a single discourse feature. On the one hand, complexity may reduce classification 

performance if the presence of multiple discourse features reduces the signal-to-noise ratio for 

each distinct feature. If this is the case then classification performance may be superior when 

classifiers are trained on “clean” sentences containing a single feature. On the other hand, co-

occurring features may aid the classification task for an individual feature. For example, the 

presence of an attribution in a performance sentence may provide additional information on 

polarity if attributions are associated with specific tonal features. Whether and how sentence 

complexity affects classification performance is an empirical issue on which we seek evidence. 

Figure 3 presents findings from tests examining the impact of sentence complexity on 

classification performance for tone and the presence of an attribution. Panel A compares tone 

classification results (Macro F1) in the holdout sample for machine learning classifiers trained on 

all performance sentences versus classifiers trained on the subset of clean performance sentences 

where no attribution is present. A consistent pattern of results is evident across all four machine 

learning algorithms: Macro F1 values are materially higher for models trained on the aggregate 

performance sentence sample. For completeness Panel A also includes line plots of Macro F1 

values for the training sample, where a similar a pattern is again evident. Specifically, in-sample 
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classification performance for all four algorithms is superior when the training sample includes 

all performance sentences regardless of whether or not they also contain an attribution. The 

evidence is consistent with the view that co-occurring attributions may contain additional 

information that aids the task of classifying sentence polarity. The pattern is also consistent with 

a positive association between classification performance the size of the training sample.  

Panel B of Figure 3 compares attribution classification performance (Macro F1) in the 

holdout sample for classifiers trained on all attribution sentences versus those trained on the 

subset of clean attribution performance sentences that do not contain a performance statement. 

Findings and conclusions contrast with those presented in Panel A insofar as out-of-sample 

classification performance for all four machine learning classifiers is materially higher for the 

subsample of attribution-only sentences. Results suggest that in the case of attribution, the 

benefits of lower sentence complexity outweigh any costs associated with a reduction in the size 

of the training sample. Macro F1 values for the training sample also demonstrate superior 

classification performance using the subset of attribution-only sentences.  

Next we assess whether attribution type affects the probability of identifying the presence 

of an attribution. Specifically, we test whether the likelihood of detecting causal reasoning varies 

conditional on whether the attribution refers to internal versus external factors. We train machine 

learning algorithms for the presence of an attribution separately on subsamples of internal- and 

external-only attribution cases and then test whether the ability to detect attributions in the 

holdout sample varies with the training sample. Results are summarized in Figure 4. Panel A 

reports Macro F1 values for models trained on internal and external attributions. Classifiers 

trained with the subsample of external attributions are associated with higher out-of-sample 

classification accuracy for all four machine learning algorithms, with the effect being especially 
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pronounced for SVM. The same pattern is also evident in the training samples, although to a 

lesser degree. Panel B of Figure 4 provides further insight on the source of the performance 

improvement. Individual F1 scores for the attribution and no attribution classes suggest that 

superior performance is the result of improvements in the ability to detect attributions and not the 

accuracy with which non-attribution cases are identified. 

Results reported in Figures 3 and 4 collectively indicate how the impact of sentence 

complexity on classification performance varies with the nature of the classification problem. In 

the case of classifying sentence tone, the presence of a concurrent discourse feature such as 

causal reasoning serves to improve classification performance. In contrast, lower sentence 

complexity is associated with superior classification performance in the case of causal reasoning. 

Our findings highlight the conditional nature of classification strategies and the corresponding 

difficulty of developing universal guidelines for multiple discourse features.  

 

6.2 Sample balancing  

 It is well established in the machine learning literature that large differences in class size 

can affect classification performance. All else equal, highly unbalanced samples can result in a 

classifier anchoring on the high frequency class at the expense of reliable feature detection in the 

low frequency class. Table 1 reveals substantial sample imbalance for two of our discourse 

features. Tone is heavily skewed towards positive sentences, with only 25% of the training 

sample classified as negative. Similarly, only 22% of the 7,201 sentences in the attribution 

training sample contain an attribution compared. Imbalance in our training samples for tone and 

attribution may generate classification outcomes that are biased towards the majority classes of 

positive tone and no attribution, respectively. 
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 Figure 5 documents the impact of sample imbalance on the classification performance of 

our machine learning algorithms. Panel A reports results for tone while Panel B reports evidence 

for attribution. In each case we compare out-of-sample classification performance for algorithms 

trained on the corresponding full (i.e., unbalanced) sample with results using two alternative 

balancing methods. Undersampling sets the size of the high frequency class equal to the 

maximum number of cases in the low frequency class by randomly sampling from the high 

frequency class. Oversampling generates a larger number of observations for the minority class 

using the Synthetic Minority Oversampling Technique (SMOTE) algorithm. Both Panels report 

separate F1 scores majority and minority classes, together with Macro F1 values measuring 

overall classification performance.  

 Results highlight the potential importance of sample balancing. As expected, 

classification performance for the majority class in each Panel is invariant to sampling method: 

results for the positive tone (no attribution) class in Panel A (B) are qualitatively identical 

regardless of whether classifiers are trained on balanced or unbalanced samples. In contrast, 

classification accuracy for the minority class improves substantially in both Panels when 

algorithms are training on balanced samples. In both cases, undersampling tends to generate 

better results than oversampling, although effects vary with discourse feature and algorithm. For 

negative tone in Panel A, the benefits of balancing are most pronounced for SVM, while the 

particular balancing strategy appears largely irrelevant. Undersampling is associated with more 

pronounced effects for the remaining three algorithms, and in particular Naïve Bayes. For 

attribution in Panel B, undersampling yields superior results for all four classifiers, and in 

particular for Naïve Bayes and random forest. 
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 The graph on the far right in each Panel captures the impact of sample balancing on 

overall classification performance. Balancing is associated with superior overall classification 

performance (driven by the minority class) for all four machine learning algorithms in both 

Panels. Undersampling yields the largest performance gain and the impact appears particularly 

important for Naïve Bayes. Collectively, evidence presented in Figure 5 highlights the potential 

importance of balancing when training classifiers on highly imbalanced samples.     

 

7. Summary and conclusions 

Our analysis extends prior work in several important ways. To the best of our knowledge, 

ours is the first study to provide direct evidence on the accuracy of alternative sentence-level 

approaches for measuring tone and attribution. Extant research, in contrast, relies on correlations 

with predicted determinants to evaluate measures of tone (Loughran and McDonald 2011, Henry 

and Leone 2016). We show that classification accuracy rarely exceeds 80% for tone, suggesting 

that even the best performing classifiers are associated with substantial measurement error 

relative to manual coding.  Collectively, our findings highlight opportunities and limitations 

associated with automated textual analysis methods. Critically, we conclude that manual content 

analysis remains an essential tool for researchers interested in studying the properties and 

consequences of financial discourse.    

   We also extend Henry and Leone (2016) by demonstrating that machine learning 

classifiers for tone can outperform word-frequency measures in some settings. Our evidence is 

consistent with established results in the NLP literature documenting the accuracy gains over 

simple word counts of more sophisticated discourse methods that account for word meaning and 

context. As such, our findings speak directly to the question pose by Loughran and McDonald 
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(2016: 1199) about the incremental value of applying deeper semantic parsing tools in 

accounting and finance research. 

Finally, we also show how fundamental implementation choices can affect the 

performance of machine learning classifiers. First, we find that alternative classifiers often 

outperform Naïve Bayes despite the latter’s dominant position in extant accounting and finance 

research. Second, we demonstrate the importance of imposing sample balance when training 

classifiers to measure features such as tone where real-world norms are biased heavily in favour 

of a particular outcome category (e.g., positive tone). In such cases, failure to use a balanced 

sample leads to serious overfitting and poor out-of-sample classification performance.  
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Appendix: Wordlist construction 

Feature: Tone 

1. L&M: Loughran & McDonald positive (POS) and negative (NEG) wordlists. Classification 

rule: Sentence polarity determined by relative frequency counts of POS vs NEG.  

2. HEN08: Henry (2008) positive (POS) and negative (NEG) wordlists. Classification rule: 

Sentence polarity determined by relative frequency counts of POS vs NEG. 

3. HEN06: Henry (2006) positive (POS) and negative (NEG) wordlists. Classification rule: 

Sentence polarity determined by relative frequency counts of POS vs NEG. 

 

Feature: Attribution  

4. LIWC (as implemented by Zhang et al. 2019): This is a subset of the complete LIWC causal 

list but no details are provided by Zhang et al. (2019) how the subset is generated. 

Classification rule: Sentence classified as causal if keyword count > 0. 

5. DIK (as implemented by Dikolli et al. 2017): start by identifying 505 unique causation words 

from the LIWC causation dictionary word stems, from which elements are removed where 

they appear to represent missclassifaction in a business setting. This subset is then augmented 

with words that LIWC omits but which likely denote causation in a business setting. 

Classification rule: Sentence classified as causal if keyword count > 0.   

6. ATT_ALL: List created by authors based on manual analysis of classified sentences in the 

training sample. Classification rule: Sentence classified as causal if keyword count > 0. 

7. ATT_50: 50 most frequently occurring words from MW_ALL Classification rule: Sentence 

classified as causal if keyword count > 0. 

 

Feature: Attribution type  

8. ATT_TYPE (Internal): Used to classify internal attributions. List created by authors based on 

analysis of classified sentences in the training sample. Classification rule: Sentence classified 

as internal (external) attribution if keyword count > 0 (highest relative frequency count where 

counts for internal and external are both > 0). 

9. ATT_TYPE (External): Used to classify external attributions. List created by authors based on 

analysis of classified sentences in the training sample. Classification rule: Sentence classified 

as internal (external) attribution if keyword count > 0 (highest relative frequency count where 

counts for internal and external are both > 0). 
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Table 1: Training and holdout samples by language feature. 

 Tone  Attribution  Attribution type 

  Class   Class   Class 

Sample N Positive Negative  N Yes No  N Internal External 

Training sample 3,177 2,393 784  7,201 1,594 5,607  2,217 768 620 

Holdout sample 1,774 1,200 574  4,382 966 3,416  829 338 491 

Performance sentences in the training sample are drawn from annual earnings announcements made by 150 firms in 2011 ranked 

by their change in earnings from continuing operations (scaled by lagged market capitalization). The sample comprises the 50 

highest ranked firms, the 50 lowest ranked firms, and 50 cases selected at random from firms in quartiles two and three. 

Candidate earnings-related performance sentences are identified using a keyword list resulting in 8,805 target performance 

sentences together with adjacent lead and lag sentences for manual coding (26,415 individual sentences). We eliminate 1,604 

invalid target sentences. The remaining 7,201 target sentences comprise 3,396 performance sentences and 3,805 target sentences 

judged not to be valid performance sentences because they either discuss non-earnings features such as cash, debt, inventory, 

production, etc. or they refer to results for the current fiscal year, Sentences coded as neutral or mixed tone (N = 219) are 

removed from the final training sample for Tone. The presence of an attribution is treated as a binary outcome equal to one if 

management explicitly link performance with one or more fundamental determinants and zero otherwise. Attribution type 

distinguishes between internal and externals factors. Internal factors as those over which management exercise direct control. 

External factors as those over which management are not expected to exercise direct control. Both attribution types may be 

present in a single sentence. Such cases (N = 180) are excluded from the Attribution type training sample because they do not 

provide incremental information for the binary classification task. Twenty-six cases where two coders plus a judge are unable to 

agree on the nature of the attribution are also removed. The holdout sample is constructed using earnings announcements released 

in 2012, following the same coding strategy. 
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Table 2. Classification methods of discourse features. 

 Sentence-level discourse feature: 

Classifier Tone Attribution Attribution type 

Machine learning algorithm:    

Naïve Bayes    

Random forests    

Support vector machines    

Recursive neural network    

Wordlist:    

HEN06    

HEN08    

L&M    

LIWC    

DIK    

ATT_ALL    

ATT_50    

ATT_TYPE    

Tone measures the polarity of target performance sentences. Tone as either positive, negative, neutral, or unclear. Attribution 

occurs when management relate a performance outcome to at least one fundamental determinant such as operating efficiency, 

product development, adverse trading conditions. Attribution is a binary outcome equal to one if management explicitly link the 

performance outcome with one or more fundamental determinants and zero otherwise. Attribution type categories attributions 

according to whether the fundamental determinant(s) cited by management relate to internal or external factors. Internal factors 

are those over which management has direct control, such as strategic reorientation, cost control, product design, marketing 

initiatives, labor relations, etc. External factors are those over which management are not expected to exercise direct control such 

as market competition, input prices, exchange rates, weather, etc. Attribution type comprises separate binary outcomes equal to 

one for the presence of at least on internal (external) attribution and zero otherwise. Four machine learning algorithms are used to 

classify Tone, Attribution and Attribution type. Details of each algorithm are provided in an appendix. Three wordlists are used to 

classify Tone. HEN06 and HEN08 are the wordlists from Henry (2007) and Henry (2008), and L&M comprises the positive and 

negative wordlists developed by Loughran and McDonald (2011). Four wordlists are used to classify Attribution. LIWC is a 

version of the causal wordlist from Linguistic Inquirer and Word Count and applied by Zhang et al. (2019). DIK is causation 

wordlist developed by Dikolli et al. (2017). ATT_ALL is a self-constructed domain-specific attribution wordlist, further details 

of which are provided in the Appendix. ATT_50 comprises the 50 most frequently occurring words from ATT_ALL in the 

training sample. A single wordlist is used to classify Attribution type. ATT_TYPE is a self-constructed domain-specific wordlist, 

further details of which are described in the Appendix. 
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Table 3: Classification results for performance sentence tone using training sample 

 F1-Scores by tone class:  Classification averages (%): 

Classifiers Positive  Negative  Macro-F1 Accuracy 

Machine learning:      

Naïve Bayes 89.09 53.56  74.06 82.47 

Random forest 90.41 63.97  76.97 84.23 

Support vector machines 89.40 57.01  76.40 81.87 

MLP 88.86 60.29  74.58 81.84 

Wordlists:      

HEN06 84.40 65.16  74.78 78.47 

HEN08 84.06 64.72  74.39 78.06 

L&M 56.73 49.08  52.90 53.26 

Values for machine learnings models reflect average values computed using results from each fold in the 10-fold cross-

validation. Macro-F1 scores are not the average of Positive and Negative class F1-Scores due to averaging across the 10 folds. 

Accuracy and Macro F1 values for wordlists are the actual fraction of sentences where the wordlist prediction equals the manual 

annotation in a single classification pass. HEN06 and HEN08 refer to the dictionaries proposed by Henry (2006) and Henry 

(2008), respectively. L&M refers to the dictionaries of positive and negative words proposed by Loughran and McDonald (2010). 
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Table 4. Classification results for performance sentence tone for the holdout sample. 

 Classification performance metrics by tone class:   

 Positive  Negative  Classification averages: 

Classification method Recall Precision F1-Score  Recall Precision F1-Score  Macro-F1 Accuracy  

Random forest 94.92 80.72 87.25  52.61 83.20 64.46  76.36 81.23 

HEN06 77.00 87.09 81.73  76.13 61.29 67.91  74.82 76.72 

HEN08 76.83 86.74 81.48  75.44 60.90 67.39  74.44 76.38 

L&M 43.83 90.85 59.13  90.77 43.60 58.90  59.02 59.02 

Random forest is selected for comparison purposes as the best performing learning algorithm for the training sample based on highest average Accuracy score. 
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Table 5. Classification results for the presence of attribution using training sample. 

 F1-Scores by attribution class:  Classification averages (%): 

Classifiers Yes No  Macro-F1 Accuracy 

Machine learning:      

Naïve Bayes 23.00 86.97  62.14 77.12 

Random forest 35.39 88.44  71.85 81.95 

Support vector machines 44.36 88.13  71.52 78.77 

MLP 49.43 87.87  70.61 80.83 

Wordlists:      

LIWC 15.76 83.44  49.60 72.32 

DIK 44.99 67.64  56.32 59.28 

ATT_ALL 55.10 78.20  66.65 70.67 

ATT_50 51.90 80.80  66.35 72.57 

Values for machine learnings models reflect average values computed using results from each fold in the 10-fold cross-

validation. Macro-F1 scores are not the average of Positive and Negative class F1-Scores due to averaging across the 10 folds. 

Accuracy and Macro F1 values for wordlists are the actual fraction of sentences where the wordlist prediction equals the manual 

annotation in a single classification pass. LIWC and DIK are the causal reasoning wordlists derived using Language Inquirer and 

Word Count by Zhang et al. (2019) and Dikolli et al. (2017), respectively. ATT_ALL is a self-constructed domain-specific 

attribution wordlist, further details of which are provided in the Appendix. ATT_50 comprises the 50 most frequently occurring 

words from ATT_ALL in the training sample. . 
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Table 6. Classification results for the presence of attribution for the holdout sample. 

 Classification performance metrics by attribution class:   

 Attribution present  Attribution not present  Classification averages: 

Classification method Recall Precision F1-Score  Recall Precision F1-Score  Macro-F1 Accuracy  

Random forest 26.50 67.72 38.10  96.43 82.27 88.79  63.44 81.01 

LIWC 14.60 29.81 19.60  90.28 78.89 84.20  51.90 73.60 

DIK 78.16 33.72 47.11  56.56 90.15 69.51  58.31 61.32 

ATT_ALL 77.12 40.14 52.80  67.48 91.25 77.58  65.19 69.60 

ATT_50 69.05 42.14 52.33  73.18 89.32 80.45  66.39 72.27 

Random forest is selected for comparison purposes as the best performing learning algorithm for the training sample based on highest average Accuracy score. 
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Table 7. Classification results for attribution type (conditional on the presence of an attribution) using 

training sample.  

 F1-Scores by attribution class:  Classification averages (%): 

Classifiers Internal External  Macro-F1 Accuracy 

Machine learning:      

Naïve Bayes 86.01 82.56  84.45 84.29 

Random forest 84.89 79.71  82.95 82.85 

Support vector machines 86.75 81.93  84.78 84.73 

MLP 85.96 81.91  84.29 84.94 

Wordlists:      

ATT_TYPE 66.05 74.38  70.21 70.82 

Values for machine learnings models reflect average values computed using results from each fold in the 10-fold cross-

validation. Macro-F1 scores are not the average of Positive and Negative class F1-Scores due to averaging across the 10 folds. 

Accuracy and Macro F1 values for wordlists are the actual fraction of sentences where the wordlist prediction equals the manual 

annotation in a single classification pass. ATT_TYPE is a self-constructed domain-specific wordlist, further details of which are 

described in the Appendix. 
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Table 8. Classification results for attribution type (conditional on the presence of an attribution) for the holdout sample. 

 Classification performance metrics by attribution type class:   

 Internal  External  Classification averages: 

Classification method Recall Precision F1-Score  Recall Precision F1-Score  Macro-F1 Accuracy  

Multilayer perceptron 87.58 84.15 85.83  76.04 80.82 78.35  82.09 82.87 

ATT_TYPE 33.60 87.30 48.53  92.90 49.06 64.21  56.37 57.78 

P-values for pairwise difference   0.01    0.01  0.01 0.01 

Multilayer perceptron is selected for comparison purposes as the best performing learning algorithm for the training sample based on highest average Accuracy score. 

 

 



43 

 

Figure 1: Summary of research design 
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Figure 2. Details of manual coding procedure 
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Figure 3: Impact of sentence complexity on classification performance using the holdout sample 

Panel A: Tone conditional on the presence of attribution 

 
 

 

 

 

Panel B: Attribution conditional on the presence of a performance statement 
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Figure 4. Impact of attribution type on classification performance for attribution detection using holdout 

sample. 

Panel A: Macro F1 scores 

 

 

 

 

Panel B: Class F1 scores 
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Figure 5: Impact of sample balancing on classification performance of machine learning algorithms using the holdout sample. 

Panel A: Sentence tone 

 
 

 

 
Panel B: Presence of an attribution  
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