
1 

Animal carcass- and wood-derived biochars improved nutrient 1 

bioavailability, enzyme activity, and plant growth in metal-phthalic acid 2 

ester co-contaminated soils: A trial for reclamation and improvement of 3 

degraded soils 4 

Hanbo Chen a, Xing Yang a,b, Hailong Wang a,c*, Binoy Sarkar d, Sabry M. Shaheen b,e,f, Gerty 5 

Gielen g, Nanthi Bolan h, Jia Guo i, Lei Che j, Huili Sun k, Jörg Rinklebe b,l 6 

a Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental 7 

and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China 8 

b University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation 9 

Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, 10 

Pauluskirchstraße 7, 42285 Wuppertal, Germany 11 

c Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F 12 

University, Hangzhou, Zhejiang 311300, China 13 

d Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK 14 

e King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 15 

Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia 16 

f University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 17 

Kafr El-Sheikh, Egypt 18 

g Scion, Private Bag 3020, Rotorua 3046, New Zealand 19 

h Global Centre for Environmental Remediation, University of Newcastle, Newcastle, NSW, 2308, 20 

Australia 21 

i Chengbang Eco-Environment Co. Ltd, Hangzhou, Zhejiang 310008, China 22 

j School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, China 23 

k Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of 24 

Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China 25 

l University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, 26 

Guangjin-Gu, Seoul, South Korea 27 

*Corresponding author. E-mail: hailong.wang@fosu.edu.cn  28 

mailto:hailong.wang@fosu.edu.cn


2 

Graphical abstract 29 

 30 

 31 

Highlights 32 

• Biochar’s effect on pak choi growth in Cd-DEHP co-contaminated soils was tested. 33 

• 2% pig biochar addition increased the yield of pak choi. 34 

• Pig biochar improved nutrient phytoavailabilities more than wood biochar.  35 

• Tested biochars enhanced soil urease, sucrase and catalase activities. 36 

• Biochars had prominent influence on pak choi growth in low organic carbon soil.  37 

 38 

Abstract 39 

Reclamation of degraded soils such as those with low organic carbon content and soils 40 

co-contaminated with toxic elements and phthalic acid esters (PAEs) is of great concern. Little is 41 

known about the efficiency of plant- and animal-derived biochars for improving plant growth and the 42 

soil physicochemical and biological properties in these co-contaminated soils, particularly under low 43 

content of organic matter. Hence, a pot trial was carried out by growing pak choi (Brassica chinensis 44 

L.) to assess the influence of different doses (0, 0.5, 1, 2, and 4%) of animal (pig carcass) and wood 45 
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(Platanus orientalis) derived biochars on soil properties, nutrient availabilities, plant growth, and soil 46 

enzyme activities in two soils containing low (LOC) and high (HOC) organic carbon contents and 47 

co-contaminated with di-(2-ethylhexyl) phthalic acid (DEHP) and cadmium (Cd). Biochar 48 

applications significantly (P<0.05) improved pH, salinity, carbon content and cation exchange 49 

capacity of both soils. Addition of biochars significantly (P<0.05) increased the bioavailability and 50 

uptake of phosphorus and potassium in the plants in both soils with greater effects from pig biochar 51 

than wood biochar. Biochar additions also significantly (P<0.05) enhanced urease, sucrase, and 52 

catalase activities, but suppressed acid phosphatase activity in both soils. The impact of pig biochar 53 

was stronger on urease and acid phosphatase, while the wood biochar was more effective with sucrase, 54 

and catalase activities. The biomass yield of pak choi was significantly (P<0.05) increased after 55 

biochar addition to both soils, especially in 2% pig biochar treatment in the LOC soil. The positive 56 

response of soil enzymatic activities and plant growth for biochar addition to the Cd and DEHP 57 

co-contaminated soils indicate that both biochars could mitigate the risk of these pollutants and prove 58 

to be eco-friendly and low-cost amendments for reclaiming these degraded soils. 59 

Keywords: Degraded land; nutrients availability; charcoal; soil biology; soil restoration. 60 

 61 

1. Introduction 62 

Industrialization, urbanization, effluent irrigation, uncontrolled disposal of wastes, agricultural 63 

plastic mulch abuse and other anthropogenic activities have resulted in unprecedented contamination 64 

of arable soils with heavy metal(loid)s (Qi et al., 2017; Bandara et al., 2019) and plasticizers, e.g., 65 

phthalic acid esters (PAEs) (Antoniadis et al., 2017; Zhao et al., 2019). Di-(2-ethylhexyl) phthalic acid 66 

(DEHP) as a typical PAE, and cadmium (Cd) as a typical heavy metal, have posed alarming 67 
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environmental and human health risks of these contaminants globally (Antoniadis et al., 2017; He et 68 

al., 2015; He et al., 2018; Bandara et al., 2019). They can be taken up by plants, decreasing the yield 69 

and quality of crops, and finally accumulated in human body through the food web, damaging the 70 

functions of human organs including endocrine and reproductive systems (Qin et al., 2018; Chen et al., 71 

2019). Simultaneously, poor organic matter content of soils has been identified as a major reason for 72 

loosing soil quality and crop yield worldwide (Pulido-Fernández et al., 2013). Therefore, reclamation 73 

of degraded soils such as those co-contaminated with DEHP and heavy metal(loid)s, and soils with 74 

low organic matter content is of great importance. Achieving such reclamation via suitable low-cost 75 

amendments is an attractive option for soil restoration from both environmental quality and economic 76 

points of view (Yang et al., 2016; Palansooriya et al., 2019, 2020).  77 

Numerous studies describing biochar as a suitable material for remediating organic pollutants 78 

(Zhang et al., 2013; Huang et al., 2018) and heavy metal(loid)s (Li et al., 2019a; Wu et al., 2017, 2019) 79 

in water (Li et al., 2019b; Mao et al., 2019) and soils (Shaheen et al., 2019; Yang et al., 2019) have 80 

been published. For instance, Abbas et al. (2017) found that the Cd concentration in wheat was 81 

decreased after rice straw biochar amendment. They claimed that the probable reason could be the 82 

reduction of Cd concentration in soil pore water for immediate crop uptake after biochar addition, 83 

and/or biochar facilitated the combined effects of Cd bioavailability reduction and soil organic matter 84 

improvement, as also suggested by Rizwan et al. (2016). In addition, biochar is of benefit to the 85 

improvement of soil structure (i.e., aggregate formation) (Quan et al., 2020) and fertility (Li et al., 86 

2019c; Wei et al., 2019), and thereby promoting crop growth (Dong et al., 2015; Li et al., 2018; 87 

Purakayastha et al., 2019). 88 

China generates around 20 million pig carcasses yearly, and this number continues to climb every 89 
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year (He et al., 2018). Additionally, urban green wastes such as tree branches have turned into a huge 90 

source of pollution and a hindrance to the benign development of ecological environment (Belyaeva 91 

and Haynes, 2010). Pyrolysis of pig carcasses and green wastes into biochar not only presents an 92 

efficient and environmentally friendly option for disposing these wastes (Yang et al., 2017) but also 93 

offers a tremendous scope for using the biochar for in situ remediation of soil contaminants while 94 

simultaneously improving soil productivity and crop yield. 95 

In China, the area of vegetable cropping is second to grain production. Vegetables account for 96 

approximately 28.5% of the total diet in China, and pak choi (Brassica chinensis L.) is a typical 97 

widely-consumed leafy vegetable in daily life of the population (Yan et al., 2009). Wei et al. (2017) 98 

noted that the consumption of pak choi as a staple vegetable made a significant contribution to the 99 

estimated dietary intake of toxic metals such as Cd in Chinese population. As a consequence, it is of 100 

importance to reduce contaminant accumulation in pak choi and improve the crop yield and quality. It 101 

is well-accepted that soil enzymatic activity is sensitive to soil contaminants, accordingly considered 102 

to be a crucial parameter of soil health (He et al., 2019). Soil enzymes also have a critical influence on 103 

nutrient (e.g., K, N and P) cycling and subsequent uptake by plants (Sarkar et al., 2016; Nie et al., 104 

2018). Nutrient phytoavailability affects plant growth directly while contamination stress can inhibit 105 

plant growth by posing toxic effects.  106 

Till date, little information is documented on the efficiency of plant- and animal-derived biochars 107 

for affecting nutrient bioavailabilities, enzyme activities, and plant growth in DEHP-metal 108 

co-contaminated soils. We hypothesize that co-contamination of soils with Cd and DEHP may affect 109 

the soil microbial activities, enzyme activities, nutrient bioavailability, and plant growth, and these 110 

effects may differ based on the soil organic carbon content. To verify this hypothesis, we conducted a 111 
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pot-culture experiment using pak choi and two different soils treated with wood- and animal-derived 112 

biochars, i.e., pig carcasses and branches of Platanus orientalis Linn., to investigate the influence of 113 

biochars on the bioavailability of soil nutrients, enzyme activity, and the pak choi growth under the 114 

combined pollution of Cd and DEHP in soils containing low and high organic carbon contents.  115 

 116 

2 Materials and methods 117 

2.1 Soil and biochar collection, preparation, and characterization 118 

The studied soils were sampled from two near-by fields (0-20 cm of topsoil) located in the 119 

southwest of Hangzhou City (30°24'N, 119°71'E), China. The first soil is rich in its total organic 120 

carbon content (HOC: 3.08%) and was used as farmland to cultivate vegetables nearly for twenty 121 

years. The second soil was left fallow for the same period, and thus was poor in its organic carbon 122 

content (LOC: 0.75%). Both soils were air-dried, crushed, and sieved (3-mm mesh). In order to obtain 123 

co-contaminated soils, the two soils were spiked with DEHP at 50 mg kg-1 soil and Cd at 1.0 mg kg-1. 124 

The concentration of Cd2+ was referred to the Level 3 of the Environmental Quality Standards for 125 

soils GB 15618-1995, and DEHP concentration was chosen according to a previous research (He et al., 126 

2016). The Cd/DEHP-spiked soils were mixed homogenously, air dried, and used for the pot 127 

experiment.  128 

Pig biochar (PB) was produced by the pyrolysis of whole pig carcasses, and wood biochar (WB) 129 

was prepared by pyrolysing shredded branches (3-mm mesh) of Platanus orientalis Linn., at 650oC 130 

for 2 h. Both biochars were crushed and sieved (2-mm mesh) before mixing with the soils. The 131 

physicochemical properties of the studied biochars were determined using the methods described by 132 

Yang et al. (2016). The two biochars differed in many characteristics, such as ash content, cation 133 
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exchange capacity (CEC), available phosphorus, surface alkalinity and specific surface area. More 134 

details about the experimental soil and biochar properties, soil spiking procedure with DEHP and Cd, 135 

and soil preparation and characterization are included in Supporting Information (Appendix A) and 136 

published in Chen et al. (2019). 137 

 138 

2.2 Pot trial 139 

The pot trial was carried out in a greenhouse located in Zhejiang A&F University, Zhejiang 140 

Province, China, at temperature between 25 to 33oC. Each ceramic pot (20 cm diameter, 19 cm height) 141 

was filled with either 3 kg of the Cd-DEHP contaminated LOC or HOC soil. Then the pig biochar and 142 

wood biochar were applied to the Cd-DEHP contaminated soils in the ceramic pots at five doses (i.e., 143 

0, 0.5, 1, 2 and 4%, w/w) and mixed well. In total, eighteen treatments (including controls) were set in 144 

this trial and every treatment repeated in four replicates. The LOC and HOC control soils did not 145 

receive any dose of biochar. 146 

All pots were fertilized with KH2PO4 and urea according to a basal dose of K2O 0.2 g·kg-1, P2O5 147 

0.32 g·kg-1, N 0.25 g kg-1 recommended for pak choi (He et al., 2016). Treatments were arranged in a 148 

complete randomized block design. The soil was maintained at 70% of the field water holding 149 

capacity for an initial period of 30 days to equilibrate the spiked Cd and DEHP into the soil. After the 150 

equilibration, ten pak choi seeds were sown at equal spacing in each ceramic pot on 10 July 2017. 151 

After about fifteen days, five strongest seedlings were kept after thinning out the rest. Watering with 152 

deionized water (2-3 times per week) was performed during the growth period to maintain the soil 153 

moisture status at the field capacity. After maturity (50 days), the matured pak choi shoots were 154 

harvested from the pots. The plants were rinsed with deionized water to get rid of the soil particles. 155 
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The fresh plant shoots were oven-dried at 105oC for 0.5 h and subsequently oven-dried at 65oC until a 156 

constant weight was achieved. Dried plant shoots were crushed and sieved (0.25-mm mesh) before 157 

chemical analysis. After plant harvest, the soils in each pot were collected, homogenized and air-dried. 158 

Sampled soils were then ground to 2-mm and 0.25-mm fractions for further chemical analysis. 159 

 160 

2.3 Soil analysis  161 

The dry and ground soils were analyzed for pH, electrical conductivity (EC), organic carbon 162 

content (OC), cation exchange capacity (CEC) and particle size distribution according to the methods 163 

described by Lu (2000). Soil available potassium (K) was extracted using ammonium acetate, and 164 

analyzed by a flame photometer (FP640, Xinyi Instrument, China) (Lu, 2000). The concentration of 165 

available nitrogen (N) was extracted using a micro-diffusion technique after alkaline-hydrolysis 166 

method (Lu, 2000). The available phosphorus (P) was extracted using sodium bicarbonate (NaHCO3) 167 

and measured by spectrophotometric method (UVA 132122, Thermo Electron Corporation, England) 168 

at 700 nm wavelength (Lu, 2000). The total Cd content of the soils was determined by digesting the 169 

soils with HF-HClO4-HNO3 (Carignan and Tessier, 1988). Potentially available Cd was extracted by 170 

diethylenetriaminepentaacetate acid (DTPA) (Lu, 2000). Cadmium was analyzed using inductively 171 

coupled plasma optical emission spectroscopy (ICP-OES Optima 2000, PerkinElmer Co., USA). The 172 

DEHP was extracted and analyzed as per He et al. (2016). More details about the determination 173 

methods of Cd and DEHP concentrations in soil are provided in the Supporting Information 174 

(Appendix A). 175 

 176 
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2.4 Soil enzyme activities 177 

The activities of urease, acid phosphatase, sucrase, and catalase were determined according to 178 

Dick et al. (1996). The urease activity was expressed as the mass of NH3-N released per gram of dry 179 

soil after 24-hour incubation with urea solution at 37oC and determined by spectrophotometric method 180 

at 578 nm wavelength. The acid phosphatase activity was expressed as the mass of phenol released 181 

per gram of dry soil after 24-hour incubation with a p-nitrophenyl phosphate substrate at 37oC and 182 

determined by spectrophotometric method at 660 nm wavelength. The sucrase activity was expressed 183 

as mass of glucose released per gram of dry soil after 24-hour incubation with glucose solution at 184 

37oC and determined by spectrophotometric method at 508 nm wavelength. The catalase activity was 185 

measured by titrating the residual hydrogen peroxide (H2O2) added after 20 minutes of soil exposure 186 

with 0.1 M potassium permanganate (KMnO4). The catalase activity was expressed as the volume of 187 

0.1 M KMnO4 used per gram dry soil per minute (Dick et al., 1996). 188 

 189 

2.5 Plant biomass and analysis of nutrients in plants  190 

The dry weight of the plant shoots was recorded, and the samples were kept for further analysis. 191 

The nitrogen (N) concentration was measured using an elemental analyzer (Flash EA1112, Thermo 192 

Finnigan, Italy). 193 

Plant shoots were digested with nitric acid (HNO3), and the P, K, and Cd concentrations were 194 

determined. The P concentration was quantified by spectrophotometric method (UVA 132122, 195 

Thermo Electron Corporation, England) at 700 nm (Lu, 2000). The concentration of K was 196 

determined by a flame photometer (FP640, Xinyi Instrument, China), the concentration of Cd was 197 

determined with ICP-OES (Optima 2000, PerkinElmer Co., USA) (Lu, 2000). 198 



10 

 199 

2.6 Data analysis 200 

Data analysis was performed with the statistical package SPSS 17.0. Variability of data was 201 

expressed in terms of standard deviation of four replicates. Analysis of variance (ANOVA) was used 202 

to assess differences between treatments, and P<0.05 was supposed to be statistically significant. 203 

Pearson’s correlation analysis with a significance level of P<0.01 was performed to identify the 204 

correlation between variables. 205 

 206 

3 Results and discussion 207 

3.1 Biochar-induced changes in soil pH, salinity, CEC, and organic carbon 208 

Soil pH significantly (P<0.05) increased after application of the wood and pig biochars in both 209 

the LOC and HOC soils, and the impact of biochars was based on the applied dosage (Fig. 1A). The 210 

increase of soil pH might be due to the high pH of biochars (9.5 for wood biochar and 10.0 for pig 211 

biochar; Table S2). We assume that when these alkaline biochars were applied into the soil, the alkali 212 

salts might be released, and thus increase the soil pH (Martinsen et al., 2015). Application of pig 213 

biochar made a greater impact on soil pH than wood biochar, which might be due to the higher pH, 214 

ash content, and surface alkalinity of the pig biochar (Appendix A; Table S2). Biochar addition also 215 

improved the status of the water-soluble salts, and thus increased the soil salinity, particularly in the 216 

HOC soil (Fig. 1 B), which might be due to the high mineral contents of the biochars (Fig. S1). 217 

However, the values of EC were still less than 0.3 dS m-1, which means that the biochar treated soils 218 

would not suffer from high salinity.  219 

Applications of 4% pig and wood biochars were effective in increasing the CEC in both soils 220 
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(Fig. 1C). The increase of soil CEC after addition of biochars might be explained by the high surface 221 

alkalinity and ash content of the biochars as indicated in Table S2. Wood biochar addition was more 222 

efficient in increasing the organic carbon content of soil than pig biochar (Fig. 1D), which can be 223 

explained by its higher content of carbon than pig biochar (Table S2). For instance, the highest soil 224 

organic carbon contents were noticed at 4% wood biochar treatments, which increased by 5.4 folds in 225 

the LOC soil and 0.7 folds in the HOC soil, as compared to the control.  226 

 227 

 228 

Fig. 1. Effect of biochar treatments on the pH (A), electrical conductivity (EC) (B), cation exchange 229 

capacity (CEC) (C), and organic carbon (OC) (D) in low organic carbon (LOC) soil and high organic 230 

carbon (HOC) soil. Control: untreated soil contaminated by Cd-DEHP; PB: pig biochar; WB: wood 231 

biochar. Error bars are standard deviation of the means (n=4). Different lower-case letters above the 232 

columns indicate significant difference between treatments (P<0.05). 233 

 234 

3.2 Impact of biochars on the bioavailability and uptake of N, P, and K 235 

The pig biochar addition caused a more profound impact than wood biochar in increasing the 236 
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bioavailability and uptake of K and P in soils (Fig. 2A and 2B). The maximum values of available K 237 

corresponded to 4% pig biochar treatment, with up to 4.1-fold increase in the LOC soil and up to 238 

2.1-fold increase in the HOC soil. In addition, the concentrations of available P in pig 239 

biochar-amended LOC soil increased by 1.0-3.5 folds, and in HOC soil, it increased by 0.4-0.8 folds. 240 

Simultaneously, the concentrations of K and P in plants also significantly (P<0.05) increased as the 241 

pig biochar application dosage increased (Fig. 2D and 2E). Compared to the controls, significant 242 

increases of available K in soils were also noticed after wood biochar addition, which increased by 243 

0.7-1.8 and 0.3-0.5 folds in the LOC and HOC soils, respectively. However, wood biochar amendment 244 

showed a non-significant (P>0.05) effect on the bioavailability of P neither in LOC nor HOC soil.  245 

 246 
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 247 

Fig. 2. Effect of biochar treatments on the available K (A), P (B) and N (C) in the low organic carbon 248 

(LOC) soil and high organic carbon (HOC) soil, and the uptake of K (D), P (E) and N (F) in plant 249 

shoots. Control: untreated soil contaminated by Cd-DEHP; PB: pig biochar; WB: wood biochar. Error 250 

bars are standard deviation of the means (n=4). Different lower-case letters above the columns 251 

indicate significant difference between treatments (P<0.05). 252 

 253 

Increasing the bioavailability and uptake of K and P in the pig biochar-treated soils might be due 254 

to the higher contents of P and K in the pig biochar than wood biochar (Table S2). Improving the 255 

availability of P and K in biochar treated soils agrees with previous studies (e.g., Yang et al., 2016; 256 

Purakayastha et al., 2019). The biochar-induced improvement of soil pH and CEC could also be 257 
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another reason for improving the status and availability of P and K in the pig biochar-treated soil 258 

(DeLuca et al., 2009; Haefele et al., 2011). We also assume that the biochar-induced enhancement of 259 

soil microbial activities could be a reason for increasing the bioavailability of P and K in the wood 260 

biochar-treated soils. Our hypothesis was supported by the improvement of soil enzyme activities in 261 

the biochar treated soils, as shown in Fig. 3, and will be discussed in section 3.3. In this respect, 262 

Wardle et al., (2008) and Gul et al. (2015) indicated that biochar application might promote the 263 

growth and activity of soil microorganisms via improving the soil structure (e.g., facilitating soil 264 

temperature, moisture and aeration), and functioning as a carbon source, and therefore enhance P and 265 

K mineralization. In addition, we also assume that the mitigated biotoxicity of Cd and DEHP could 266 

enhance P and K uptake. Previous studies (Sun et al., 2018; Chen et al., 2019) found that the existence 267 

of Cd and DEHP would damage the cell membranes in major plants, and the destruction of cell 268 

membranes seriously affected the absorption of nutrient elements by blocking the transmembrane 269 

transport. Therefore, application of biochars might indirectly promote the absorption of P and K by 270 

plants via alleviating the stress of contaminants in soils. 271 

The biochar impact on soil available N content was stronger in the LOC soil than the HOC soil 272 

(Fig. 2C). The available N concentration in the LOC soil significantly (P<0.05) decreased with the 273 

addition of both biochars. However, the shoot N concentration increased after both biochars’ addition 274 

(Fig. 2F). We hypothesize that the decrease of N availability in the LOC soil after the addition of both 275 

biochars could be ascribed to their specific properties (i.e., high porosity, specific surface area and 276 

CEC), which might increase the sorption of NO3
- (pore filling) and NH4

+ (cation exchange), as also 277 

reported by other studies (e.g., Olmo et al., 2016; Purakayastha et al., 2019). In addition, the C-rich 278 

biochars used in the current study would increase the C/N ratio of biochar-amended soil, which might 279 
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inhibit the mineralization rate of soil organic N by reducing the activities of microorganisms, and 280 

thereby decrease the N availability, as the similar interpretations were previously reported by Haefele 281 

et al. (2011). The increase of N concentration in plants might not be due to the extra N provided by 282 

biochar, because most of N would be non-bioavailable in biochar pyrolyzed at a temperature higher 283 

than 500oC (650oC in this study) (Zheng et al., 2013; Lu et al., 2014). In regards to the increase of 284 

shoot N concentration after biochar application increased, we assume that it could be attributed to the 285 

improvement of N utilization efficiency after biochar application into the soil, according to the results 286 

reported by Zheng et al., (2013) and Purakayastha et al. (2019).  287 

Additionally, the influence of biochar application on the availability of K, P and N of LOC soils 288 

was more noticeable than that of HOC soils, which suggested that the soil organic carbon content had 289 

a strong association with the effectiveness of biochar application on impacting the soil fertility. Yang 290 

et al. (2016) demonstrated that the higher organic carbon content increased the soil buffering capacity. 291 

Thus, in our present study, it is interpretable that biochar application had more advantages in 292 

improving the physicochemical properties and nutrient availabilities of the LOC soil than that of HOC 293 

soil.  294 

 295 

3.3 Impact of biochars on enzyme activities 296 

Soil enzyme activities, as biological/biochemical indicators of soil quality, are closely related to 297 

the behavior of soil microorganisms, and could be affected by soil contamination (Bandara et al., 2019; 298 

He et al., 2019). As shown in Fig. 3, application of biochars had positive effect on the activities of 299 

urease, sucrase, and catalase, and the effectiveness differed based on biochar type and dose, and soil 300 

types. Compared to the untreated soils, the urease activity of the LOC and HOC soils treated with all 301 

doses of pig biochar increased by 19.0-133.6% and 58.3-213.0%, respectively (Fig. 3A). In the case 302 
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of wood biochar treatments, only the 4% dose led to a significant (P<0.05) increase in urease activity 303 

in LOC soil; however, in the HOC soil, the urease activity was significantly increased for all biochar 304 

treatments as compared to the control (Fig. 3A). However, application of 4% wood biochar had a 305 

greater impact on enhancing the activities of sucrase and catalase than urease. The maximum values 306 

of sucrase activity were noticed at 4% wood biochar treatment, with up to 12.5-fold increase in the 307 

LOC soil, and 4.6-fold increase in the HOC soil, as compared to the control soil (Fig. 3C). The wood 308 

biochar was more effective (increased by 85.8-150.8% in LOC soils, and 27.2-65.2% in HOC soils) 309 

than pig biochar application (increased by 35.0-140.5% in LOC soils, and 19.0-60.5% in HOC soils) 310 

in increasing the catalase activity in soils (Fig. 3D).  311 

We hypothesize that the enhancement of urease, sucrase, and catalase activities of soil with 312 

biochar application might be due to the high mineral and nutrient contents, porosity and surface area 313 

of the added biochars (Table S2; Fig. S1), which provided a habitat for microorganisms with ample 314 

aeration, water, and nutrients, which might be a reason for improving the growth and reproduction of 315 

soil microorganisms, as reported by Gul et al. (2015) and Bandara et al. (2019), and thereby 316 

promoting soil enzymatic activities.  317 

 318 
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 319 

Fig. 3. Effect of biochar treatments on the activities of urease (A), acid phosphatase (B), sucrase (C) 320 

and catalase (D) in low organic carbon (LOC) soil and high organic carbon (HOC) soil. Control: 321 

untreated soil contaminated by Cd-DEHP; PB: pig biochar; WB: wood biochar. Error bars are 322 

standard deviation of the means (n=4). Different lower-case letters above the columns indicate 323 

significant difference between treatments (P<0.05). 324 

 325 

Toxic metals, such as Cd ions, might deactivate the enzyme proteins, and thus inhibit soil 326 

enzymatic activities (Tan et al., 2018). Also, DEHP might affect the production of enzymes by causing 327 

dysfunction in the structure of cell membrane (Chen et al., 2019). Improving the activities of urease, 328 

sucrase, and catalase in the biochar treated soils as compared to the untreated soils indicated that both 329 

biochars mitigated the negative impact of Cd and DEHP on these enzyme activities in the 330 

contaminated soils. In our previous study (Chen et al., 2019), both the wood and pig biochars, 331 

particularly pig biochar, were able to reduce the bioavailability of Cd and DEHP in both soils. 332 

Therefore, we assume that the biochar-induced reduction of Cd and DEHP toxicity in 333 

biochar-amended soils might promote the soil enzyme activities in these soils as compared to the 334 
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untreated ones. Pearson’s correlation analysis in the present study provided a proof that the urease 335 

activity negatively correlated to the concentration of extractable Cd (r = -0.489, P<0.01, n = 72), and 336 

the catalase activity negatively correlated to the DEHP concentration in soil (r = -0.527, P<0.01, n = 337 

72). These results indicated that biochar application was able to reduce the Cd and DEHP bio-toxicity 338 

through adsorption/immobilization of those contaminants onto biochar (Qin et al., 2018), as suggested 339 

by the improvement of most of the enzymatic activities examined in this study. 340 

On other hand, the acid phosphatase activity decreased significantly (P<0.05) in the biochar 341 

treated soil as compared to the control (Fig. 3 B). Pig biochar addition decreased (14.1-39.8% in LOC 342 

soil and 18.2-44.7% in HOC soil) the acid phosphatase activity more than wood biochar application 343 

(15.7-31.3% in LOC soil and 13.5-32.1% in HOC soil), in comparison to untreated soils (Fig. 3B). We 344 

hypothesize that the reduction of acid phosphatase activity in the biochar treated soils could be 345 

interpreted by the associated increase of soil pH, as also indicated by Chen et al. (2013) and Yang et al. 346 

(2016). Wang et al. (2018) reported that the acid phosphatase activity depended on soil microbial 347 

activities and soil pH. The optimum pH of acid phosphate activity is pH=4.0-5.0 (Wang et al., 2018); 348 

however, our soil pH increased to 6.5 after biochar addition, which might cause an inhibitory effect on 349 

the acid phosphatase activity. A significant negative correlation between acid phosphatase activity and 350 

soil pH was observed in this study (r = -0.434, P<0.01, n = 72), which also presented an evidence for 351 

our hypothesis. 352 

The acid phosphatase activity relates to P transformation and cycling in the soil, and the urease is 353 

a crucial factor in soil N mineralization (Yang et al., 2016; Wang et al., 2018). Pig biochar had a more 354 

profound influence on soil N and P availability than wood biochar. Therefore, pig biochar amendment 355 

had greater effect on the urease and acid phosphatase activities in soil, and the reason might be the 356 
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higher N and P contents, CEC, surface alkalinity of pig biochar than wood biochar. Sucrase and 357 

catalase activities depended on soil organic carbon content, and therefore, the higher C content in 358 

wood biochar than pig biochar might enhance sucrase and catalase activities in the biochar-amended 359 

soils. Further research should be performed to determine the reasons for different response of 360 

biochar-amended soil enzyme activities to the LOC and HOC soils. 361 

 362 

3.4 Impact of biochars on plant growth 363 

Given that the seeds of pak choi in 4% pig biochar treatments did not germinate normally, we 364 

eliminated the plant data from that treatment in the statistical analysis. The fact that pak choi did not 365 

germinate well in the 4% pig biochar treatments in the pot trial suggested that high pig biochar dosage 366 

(4%) inhibited plant growth, as observed also by Schmidt et al. (2014) and Khan et al. (2015). 367 

Schmidt et al. (2014) reported that high biochar dosage might cause nutrient immobilization in soils, 368 

particularly the dissolved organic carbon and mineral N, which consequently would restrict plant 369 

growth. Another possible reason was that biochar application increased the available NH4+-N 370 

concentration in the soil to a level which led to a stress condition for the plant (Khan et al., 2015).  371 

Fig. 4 showed that all treatments (except in the 0.5% wood biochar treatment) significantly 372 

(P<0.05) increased the dry weight of plant shoots, as compared to the control. The highest dry weight 373 

of plant shoot was observed in 2% pig biochar treatment, which was 10.1 and 0.5 folds higher than the 374 

control in the LOC and HOC soil, respectively. In both soils, pig biochar amendment was more 375 

effective in enhancing the shoot dry weight than wood biochar amendment. In addition, the impact of 376 

biochar on plant dry weight in the LOC soil was stronger than that in the HOC soil. The increase of 377 

dry weight biomass of plants in the biochar treated soils can be explained by the associated increase of 378 

soil nutrient availabilities and improved soil physical and chemical properties, as discussed in the 379 
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previous sections and reported by other studies (e.g., Haefele et al., 2011; El-Naggar et al., 2018; 380 

Purakayastha et al., 2019). The pig biochar had higher nutrient contents than wood biochar, and thus 381 

pig biochar showed a greater effect on plant growth than wood biochar.  382 

 383 

  384 

Fig. 4. Effect of biochar treatments on plant shoots dry weight. LOC: low organic carbon content; 385 

HOC: high organic carbon content; Control: untreated soil contaminated by Cd-DEHP; PB: pig 386 

biochar; WB: wood biochar. Error bars are standard deviation of the means (n=4). Different 387 

lower-case letters above the columns indicate significant difference between treatments (P<0.05). 388 

 389 

Cadmium and DEHP can negatively affect the plant growth in contaminated soils. In our studied 390 

soils, the relationships between plant growth and Cd and DEHP concentrations in the plant were 391 

negative (Fig. S2). Improvement of plant biomass in the biochar treated soils as compared to the 392 

untreated soils indicated that both biochars, particularly 2% of pig biochar, mitigated the negative 393 

impact of Cd and DEHP on the plant growth in these co-contaminated soils. This positive impact 394 

agrees with Lu et al. (2014) who demonstrated that the addition of bamboo and rice straw biochar 395 
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increased the shoot biomass of S. plumbizincicola in metal contaminated soil through improving the 396 

soil pH. In our experimental soils, the increased soil alkalinity (Fig. 1A) could be a reasonable factor 397 

for immobilizing Cd and DEHP in the soil and reducing their uptake by the plants (Chen et al., 2019), 398 

and thus promoting the crop productivity after biochar application to the acidic soil. 399 

In our previous study (Chen et al., 2019), we found that biochar application decreased Cd and 400 

DEHP bioaccumulation in pak choi shoot, and the pig biochar application was more efficient in 401 

comparison with wood biochar. The effect of biochars on the shoot dry weight was more prominent in 402 

the LOC soil than in the HOC soil, which agrees with reports by Haefele et al. (2011) and Zhang et al. 403 

(2012) who concluded that biochar produced from crop straw increased rice yield more significantly 404 

in barren soils than fertile soils. 405 

 406 

4. Conclusions 407 

Our study provided promising information of using animal carcass- and wood-derived biochars 408 

for reclamation of degraded soils, such as Cd-DEHP co-contaminated soils and soils with low organic 409 

matter content. Both biochars improved the soil properties (e.g., pH, carbon content, and CEC), 410 

increased the bioavailability of P and K in soils and the uptake of P, K, and N by pak choi, and 411 

improved the activities of urease, sucrase, and catalase activities. Both biochars, particularly 2% pig 412 

biochar, increased the plant biomass, especially in the LOC soil. The positive response of soil enzyme 413 

activities and plant growth due to biochar addition in the Cd-DEHP co-contaminated soils indicated 414 

that these two biochars could mitigate the risk of Cd and DEHP in soils and improve the soil quality. 415 

Pig biochar had higher pH, ash content, surface alkalinity, CEC, and nutrient contents than wood 416 

biochar; therefore, the former showed more potential to improve soil properties, nutrient availability, 417 

and urease activities, and thereby enhanced the crop yield more than wood biochar. This study thus 418 
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offers a preliminary understanding of employing pig biochar as an emerging eco-friendly biosorbent 419 

for improving soil fertility and crop quality in heavy metal-PAE co-contaminated soils, as well as a 420 

cost-effective and applicable fertilizer in degraded soils. 421 
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1. Soil characterization and preparation 632 

The soils (LOC and HOC) were characterized for their basic properties. The grain size distributions of the LOC 633 

and HOC soils were sand (55.0%, 46.5%), silts (26.1%, 34.9%) and clay (18.9%, 19.7%), respectively. Both 634 

soils were classified as clay loam ferrosols (Chen et al., 2019). Owing to the long-term intensive fertilization 635 

management, the HOC soil had a higher concentration of available K (150.37 mg kg-1), N (174.86 mg kg-1) and 636 

P (73.89 mg kg-1), while the available K, N, P concentrations in LOC soil were 76.06 mg kg-1, 23.34 mg kg-1 and 637 

4.55 mg kg-1, respectively. 638 

 639 

Soil spiking with Cd and DEHP 640 

A 100-mL methanol solution containing 5,400 mg of DEHP and a 100-mL deionized water containing 219.4 mg 641 

of CdCl2·2.5H2O were sprayed onto 3 kg of soil successively. The Cd/DEHP-spiked soils were mixed 642 

homogenously, air dried, and then gradually diluted with clean soil until the concentration of DEHP and Cd2+ 643 

was 50 mg·kg-1 and 1 mg·kg-1 in both soils, respectively. The concentration of Cd2+ was referred to the Level 3 644 

standard of Environmental quality standard for soils GB 15618-1995, and concentration of DEHP was according 645 

to previous research (He et al., 2016). These concentration levels would markedly influence the normal plant 646 

growth but the plant could still develop normally.  647 

 648 

2. Additional materials and methods 649 

Soil properties determination 650 

The soil pH value was measured by a 1/2.5 (w/v) soil suspension in deionized water with a pH electrode. The 651 

electrical conductivity (EC) value of soil was determined in a soil/water slurry at 1:5 (w/v) ratio using an EC 652 

meter. Soil particle composition was determined by hydrometer method. The soil organic carbon was 653 

determined by the potassium dichromate (K2Cr2O7) and concentrated sulfuric acid (H2SO4) oxidation method 654 

(Lu, 1999). The cation exchange capacity (CEC) of soil was measured using 1 M ammonium acetate (pH 7) 655 

method (Lu, 1999).  656 

 657 

Available and total Cd concentrations in soil 658 

Potentially available Cd was extracted from 5 g air-dried soil with 25 mL diethylenetriaminepentaacetate acid 659 

(DTPA) solution and quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES 660 

Optima 2000, PerkinElmer Co., USA) (Lu, 1999). The total Cd content of the soils was determined by digesting 661 
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the soils with HF-HClO4-HNO3 and analysing the digest by ICP-OES (Carignan and Tessier, 1988). 662 

 663 

DEHP extraction in soil 664 

Briefly, 2 g air-dried soil sample was extracted in the presence of 2 g anhydrous sodium sulfate (Na2SO4) with 2 665 

times 20 mL acetone: petroleum ether 1:1 (v/v). The extraction method consisted of vortex oscillating for 1min, 666 

ultrasound extraction for 10min at 25 °C, and centrifugation at 4000 rpm for 7 min. The two aliquots of 667 

supernatants were vigorously shaken with 100 mL of 6% Na2SO4 solution and the organic layer separated. This 668 

organic fraction was evaporated to dryness using N2, dissolved in 1 mL n-hexane, filtered (MICRO PES 0.45 669 

μm) and transferred into a GC vial. The GC vials were kept at -20 °C before GC analysis (Chen et al., 2019). 670 

These samples were then analyzed using a Gas Chromatography (SHIMADZU, GC2010, Japan) equipped with 671 

a Flame Ionization Detector (FID), HP-5 capillary column (30 m × 0.25 mm × 0.25 μm) and auto sampler under 672 

the following operating conditions: inlet temperature 280oC, FID temperature 300oC, initial oven temperature 673 

80oC; and final oven temperature 290oC. The injection volume was 1.0 μL and the typical retention time of 674 

DEHP was 15.4 minutes. This DEHP detection method was able to detect concentrations ranging from 1.0 to 675 

50.0 mg·L-1. 676 

 677 

3. Supporting results 678 

 679 

Table S1 Selected properties of the high organic matter content (HOC) and low organic matter content (LOC) 680 

soils  681 

Soil HOC LOC 

Sand (%) 46.5 55.0 

Silt (%) 34.9 26.1 

Clay (%) 19.7 18.9 

pH 5.14 4.89 

CECa (cmol kg-1) 12.86 7.54 

Electrical conductivity (dS m-1) 0.10 0.02 

OCb (%) 3.08 0.75 

Available-K (mg kg-1) 150.37 76.06 

Available-N (mg kg-1) 174.86 23.34 

Available-P (mg kg-1) 73.89 4.55 

Total Cd (mg kg-1) B.D.L. c B.D.L. c 

DEHP (mg kg-1) Not detected Not detected 

a CEC: cation exchange capacity. 682 
b OC: organic matter content. 683 
c B.D.L.: Below detection limit (<0.01 mg L-1) 684 

685 
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 686 

Table S2 Selected properties of the pig biochar (PB) and wood biochar (WB) 687 

Biochar C 

(%) 

H 

(%) 

O 

(%) 

N 

(%) 

pH Ash 

(%) 

ECa 

(dS m-1) 

CEC 

(cmol kg-1) 

Available K (g 

kg-1) 

Olsen P 

(g kg-1) 

SAb 

(cmol kg-1) 

SSAc 

(m2 g-1) 

PB 37.5 1.7 55.8 4.7 10.04 60.0 2.17 7.13 0.72 1.87 551 23.1 

WB 81.3 2.2 15.7 0.5 9.47 6.6 0.22 1.11 0.23 0.12 144 124.8 

a EC: electrical conductivity. 688 
b SA: surface alkalinity. 689 
c SSA: specific surface area. 690 

 691 

 692 

 693 

 694 

Fig. S1. X-ray diffraction (XRD) (A), energy dispersive X-ray spectrometry (EDS) (B), Fourier transform 695 

infrared (FTIR) spectrometry (C), and scanning electron microscope (SEM) images (D) of pig and wood 696 

biochars. 697 

 698 
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 699 

Fig. S2. Correlation between plant shoot dry weight and Cd and DEHP uptake by plants (n = 64). 700 

 701 
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