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Abstract

Match-fixing is a key problem facing many sports, undermining the integrity and

sporting spectacle of events, ruining players’ careers and enabling the criminals be-

hind the fixes to funnel funds into other illicit activities. Although for a long time

authorities were reticent to act, more and more sports bodies and betting companies

are now taking steps to tackle the issue, though much remains to be done. Tennis in

particular has faced past criticism for its approach to combatting match-fixing, cul-

minating in widespread media coverage of a leak of match-fixing related documents in

2016, although the Tennis Integrity Unit has since intensified its efforts to deal with

the problem.

In this thesis, we develop new statistical methods for identifying tennis matches

in which suspicious betting activity occurs. We also make some advancements on

existing sports models to enable us to better analyse tennis matches to detect this

corrupt activity. Our work is among the first to use both pre-match and in-play

odds data to investigate match-fixing, and to also integrate betting volumes. Our

pre-match odds are sampled at several intervals during the pre-match market, allow-

ing for more detailed analysis than other work. Our in-play odds data are recorded

during every game break along with live scores so that we can explore how the odds

vary as the score progresses. In particular, we look for divergences between market

odds and predictions coming both from sports models and from direct predictions of

odds based on in-play events. Our methods successfully identify past matches that

other external sources have found to contain suspicious betting activity, and are able
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to quantify how unusual this activity was in relation to typical betting behaviour.

This suggests that our methods, coupled with other sources of evidence, can provide

a valuable quantification of suspicious betting activity in future matches.
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Chapter 1

Introduction

Match-fixing was once described by the Council of Europe as “one of the most serious

threats to contemporary sport, undermining the fundamental values of integrity, fair

play and respect for others”, (Olfers et al., 2014). In addition, match-fixing poses

other societal problems due to its frequent perpetration by criminal gangs, who use it

as a “vehicle for... a number of other financial crimes, including money-laundering and

tax evasion.”, (United Nations Office on Drugs and Crime, 2016). A report by Olfers

et al. (2014) details the various efforts of EU bodies to develop a cohesive, co-operative

strategy to tackle match-fixing. Several leading bookmakers also united in 2005 to

create the European Sports Security Association (ESSA), a betting integrity unit that

aims to quickly assimilate information on suspicious betting patterns in an attempt

to identify match-fixing behaviour. Individual sports are also taking responsibility for

detecting match-fixing in their own domain, and in 2008 the Tennis Integrity Unit

was one of the first specialist anti-corruption taskforces for a major sport, according

to their website.

Forensic sports analytics is the science of detecting corruption in sport using sta-

tistical analysis. Taking its name and ideas from forensic economics, which performs a

similar role in financial and industrial settings, it attempts to find evidence of corrupt

activity in data. Sporting corruption takes many forms, but throughout this project

1
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we focus only on match-fixing. Some teams fix matches to win, bribing referees or

opponents to further their own sporting career. Other teams fix matches to lose,

usually to help a third party profit by gambling using this knowledge. This corrupt

betting activity can make the betting markets in such fixed matches stand out from

clean ones. However, most work in this area is done privately by betting companies

or sports corruption watchdogs.

Criticisms have been made of these organisations’ effectiveness, and the meth-

ods used remain largely secret. The aim of this project is therefore to develop new

methods of analysing of betting data in order to see whether suspicious activity that

possibly conforms to match-fixing can be identified.

1.1 Match-Fixing in Tennis

This project aims to target match-fixing in tennis particularly. The first reason is

because it is a major sport with an ostensibly large match-fixing problem. During a

period in 2015, 36 out of 47 alerts for suspicious betting activity by the ESSA came

on tennis matches, as reported in ESSA (2015a) and ESSA (2015b). This may or

may not be skewed by the precise nature of the ESSA’s investigations: nonetheless, it

indicates that a clear match-fixing problem has existed in tennis at the highest level.

Tennis is also an attractive sport to analyse from a statistical point of view. In team

sports, the strength of a team can be difficult to model precisely when one or more

key players are absent. By comparison, individual sports include just one player, and

hence it can be easier to model their strength.

Pace is gathering in the battle against match-fixing, both in the efforts by sporting

bodies and in academic literature. A joint investigation by the BBC and BuzzFeed

in January 2016, (Blake and Templon, 2016) was particularly enlightening, with a

multitude of documents relating to previous investigations into match-fixing released,

albeit heavily redacted. Since then, the Tennis Integrity Unit (TIU) has appeared



CHAPTER 1. INTRODUCTION 3

keener to publicise information about sanctioned players, with more media releases

and a “Currently Suspended” section on their website. However, the fight is not over,

and there remains much to be done.

Much of the investigations by bodies such as the TIU is conducted in secret. This

is for good reason, as it helps both avoiding making pre-emptive accusations against

players, and preventing match-fixers from using knowledge of the TIU’s methods to

avoid detection. Nonetheless, a reasonable amount of work in detecting match-fixing

exists in forensic sports analytics literature, which we can build on to help develop

new methods for highlighting suspicious matches.

Statistics alone cannot prove whether a match is fixed or not - more tangible evi-

dence is required, such as money transfers or covert messages. Indeed, Nigel Willerton,

head of the TIU, once said “Betting data alone is not sufficient to bring forward a

prosecution”. However, investigating matches takes time and money, so methods to

identify the most suspicious matches can be of great help to investigators deciding

how to allocate time and resources.

The aim of this project is therefore to develop new methods for identifying po-

tentially fixed matches for investigators to examine more thoroughly. We mainly do

this by following the lead of current academic literature and using sports models to

attempt to predict odds. Matches which do not conform to predictions are considered

suspicious, and worthy of further investigation. We will be using historical data to test

methods, and as such the matches we identify may already have been investigated,

and the players involved found guilty or innocent. This is but one reason we must

therefore be careful to not to imply guilt at any stage. Nothing can be proven from

statistical analysis, and the reputations of the players are at stake. For this reason,

all data used in this project has had the names of player removed.
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1.2 Chapter Summaries

In Chapter 2, we shall perform a review of current literature in the area. This falls

into two parts. Firstly, we shall review a wide range of literature on detecting match-

fixing in sport, and secondly we shall review relevant literature in predicting the

results of tennis matches. Chapter 3 is an extended proof of the fact that under

certain assumptions there is a one-to-one relationship between the probability of a

player winning a match and the difference in quality of the two players. Chapter 4

explains in greater detail the Glicko ratings, one of the tennis models discussed in the

literature review, relates it to state space models, extends the model to allow for 5-set

matches and applies it to tennis data. Chapter 5 is a brief interlude describing the

data used in this thesis. The two different sources of data are the exchange data from

pre-match and in-play markets provided by ATASS Sports, and the tennis results

data from github.com/JeffSackmann. Chapter 6 develops a model for pre-match

odds under normal betting behaviour and uses it to identify matches that do not

conform to this pattern. The model is more sophisticated than other models in the

literature in that it does not simply look at the difference in the opening and closing

odds of the pre-match market, but looks at various intervals in between and permits

greater flexibility when betting volumes are low and the market is not yet formed.

Chapter 7 describes a model for the in-play odds in which we estimate player strengths

throughout each match to estimate in-play odds and look for anomalies with respect to

this model. Chapter 8 builds on this model by instead describing a Gaussian process

for the in-play player strengths that is more flexible than Bayesian updating, allowing

for better modelling of in-play odds by extension. This thesis concludes with Chapter

9, which summarises the major contributions of the thesis and the main opportunities

for further research in the area.

github.com/JeffSackmann
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1.3 Main Contributions

The main goal of this thesis is to design methods for identifying suspicious odds

movements in matches, such that the matches can be flagged for further investigation

by appropriate authorities. There is very little discussion in academic literature of

in-play analysis of betting odds for suspicious activity, and so our two methods in

Chapters 7 and 8 represent a significant step in this fledgeling research area. The

Gaussian process method in Chapter 8 appears particularly promising.

We also look at swings in pre-match markets in Chapter 6, but attempt to advance

on current literature by incorporating volume data and looking at interemediate odds

data, rather than simply the opening and closing prices.

In order to perform these analyses, we also generated new advances in modelling

tennis matches. Chapter 4 describes a new way of accounting for 5-set matches

in Glicko ratings. Chapter 3, meanwhile, proves the invertibility of a function for

estimating match-win probabilities using the quality difference of two players. The

numerical inverse of this function is already used in the literature, but the proof

that this inverse exists reassures us of the safety of using the numerical inverse, and

presents some interesting mathematical ideas in its own right.



Chapter 2

Literature Review

This literature review is split into two main parts. First, we consider the literature

on the detection of match-fixing in different sports. During this literature review, it

will become apparent that the ability to forecast tennis matches may be very useful in

identifying match-fixing. The second part of the literature review therefore concerns

a review of methods for predicting tennis matches. This second part of the literature

review is itself further split into two main sections, the first concerning pre-match

predictions and the second concerning in-play predictions.

2.1 Match-fixing Literature

The literature on the detection of match-fixing can be divided into two main cate-

gories. Some papers examine individual matches to identify if they are fixed or not,

while others look at matches in aggregate to identify the prevalence of match-fixing,

or else find evidence that the prevalence is non-zero. We focus on the identification of

individual matches, but it is still worth considering methods that examine prevalence

to see what can be learned.

We begin by considering papers that analyse betting markets to detect unusual

activity that may be indicative of match-fixing. The fundamental idea behind the

6
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analysis of betting odds to detect match-fixing is that economic theory suggests that

betting odds can be viewed as probabilistic forecasts of an event, provided the betting

market is efficient. A betting market is efficient if it assimilates all available informa-

tion about an event, and hence it is impossible to “beat the odds” through superior

forecasting Wolfers and Zitzewitz (2004). To understand why, we consider how and

why the odds move over time.

In a traditional bookmaker’s, odds will be offered on each competitor. If enough

people’s perceived probability of a competitor winning suggests that the odds repre-

sent a good bet, a substantial imbalance in the amount bet on each competitor may

arise. The bookmaker now stands to make substantial losses should this competitor

win, and so will shift their odds to encourage betting on the opponent, mitigating the

impact of the first player winning and hedging their position. As a result, the odds

shift over time to reflect the public information available on the probability of each

player winning. The odds therefore represent probabilistic forecasts of the match in

themselves.

On betting exchanges the mechanism is different, but the outcome is much the

same. On betting exchanges, punters offer (or lay) odds to each other, rather than

relying on a bookmaker. As such, there may be a queue of different gamblers offering

successively better odds, waiting for another gambler to match their bet. The best

odds available are then the best market predictions available. Should new information

arise about the probability of the players winning the match such as in injury, these

best offers will be matched, removing offered odds from the front of the queue until a

new equilibrium is met at a set of odds reflecting the new information. Croxson and

Reade (2011) shows that this happens faster than at traditional bookmakers.

When a match is fixed, the fixer knows the outcome of the match with certainty

and can bet accordingly. If they only wager small amounts of money, the impact on

the market will be negligible. However, the costs of fixing matches through bribery

can be high, and large financial gains can be made through wagering large stakes.
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If the fixer places bets of sufficiently high value, the odds may shift for the reasons

described above.

The goal then is to detect such shifts by predicting what the odds should be in

a clean match. Since the odds also represent probabilistic forecasts, other strong

forecasts of the match-result should be similar to the odds. Research suggests that

betting markets in tennis are quite efficient, apart from some small biases concerning

favourites and longshots, discussed by Forrest and McHale (2007) and briefly later

in this literature review. Kovalchik (2016) show that bookmaker odds provide better

forecasts of tennis matches than any known method. This suggests that the strategy

of analysing betting odds may prove fruitful in investigating match-fixing. We shall

now discuss several papers that forecast match outcomes, compare these forecasts to

betting odds and closely examine matches in which any differences occur.

The works of Forrest and McHale (2015) and Forrest and McHale (2019) provide

an intriguing analysis of one of many systems already in use for detecting suspect bet-

ting activity in football and tennis. SportRadar is a corporation that provides many

services to combat match-fixing and preserve the integrity of sport. This independent

review of SportRadar’s Fraud Detection System provides a non-technical analysis of

the procedures used to automatically flag betting activity that does not conform to

expectations, and many of the core ideas are applicable to any sport.

The report of Forrest and McHale (2015) is clear throughout that the purpose

of betting analysis is to flag matches for further investigation - it is not an end in

itself. Depending on the scale of anomaly, a flag of appropriate severity (red, orange

or green, from most severe to least severe) is raised, and the match data are manu-

ally inspected to see if an innocent explanation can be found. This could be due to

injury, announcement of starting line-up, or another factor that cannot be picked up

automatically by a model, but provides a plausible explanation for the anomaly. This

increases the rate of false positives, but this is considered acceptable to ensure fewer

false negatives.
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Pre-match markets can be flagged for any of three reasons. Firstly, SportRadar

look for large movements in fractional odds, as these can indicate excessive, poten-

tially corrupt betting on one outcome, and secondly, they examine betting volumes

on Betfair to see if more is gambled than expected for a similar match. Finally, the

closing pre-match odds are compared to estimated match-win probabilities for the

match, derived from an Elo model (Elo (1978), Section 2.2.3). Large discrepancies

between the two are flagged as suspicious, as the market should be approximately

efficient. Similarly, matches are flagged in-play if odds at any time differ significantly

from their model’s predictions. This model uses past matches to estimate how factors

such as goals, red cards and time remaining shift the opening odds for the pre-match

market (which should be roughly the same as the closing odds for the pre-match mar-

ket.)

The models used by SportRadar to estimate odds and identify matches are pro-

prietory, and are not discussed in either Forrest and McHale (2015) or Forrest and

McHale (2019). Nonetheless, the articles provide useful information about the ways

in which one fraud detection system considers the most important anomalies to search

for in identifying suspicious matches, as well as reminding us that looking for anoma-

lies in betting data is but one early step in a multi-stage process for identifying fixed

matches.

Several other works take a similar approach to identifying fixed matches, but only

look at pre-match markets. As part of a major news report about match-fixing in

tennis Blake and Templon (2016), BuzzFeed also performed some statistical analysis

looking at changes in pre-match odds, identifying matches with odds swings with at

least one bookmaker of at least ten percentage points as potentially suspicious. This

occurred in about 11% of all matches they considered. Since this could happen for

innocent reasons, BuzzFeed focusses on players that have lost at least ten matches in

which this happens. This includes matches which the players lose despite the odds

swings suggesting the player will win - other sources, such as Rodenberg and Feustel
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(2014), and Blake and Templon (2016) suggest that moves toward the eventual winner

are far more suspicious.

Using the odds as estimated win probabilities, they simulate the outcomes of the

matches with large swings for each player and find the probability they lose at least as

many matches as they did. There are fifteen players for whom the probability is less

than 5%. However, testing 39 players means some false positives would be expected

as well, so a correction is applied to take this into account, after which four players

remain. Since it is unlikely for these players to have lost so many matches with sus-

picious odds swings, these players are labelled as suspicious, and worthy of further

scrutiny - though the authors still note that this is not enough to indicate guilt, and

further investigation is required.

DW on Sport (2016) follow up on Blake and Templon (2016)’s research by de-

anonymising BuzzFeed’s data and examining some results to see if innocent expla-

nations can be found for the suspicious matches. One of the players is highlighted

in particular - DW on Sport (2016) randomly select eight of his fifteen matches and

examine the odds and context in each case. In each case, another explanation is

plausible, for reasons such as the player returning from a long injury (making the

selection of opening odds very difficult), or one outlying bookmaker correcting their

odds to be more similar to their competitors. One match even saw the pre-match

market re-opened during an overnight rain delay, with the player’s opponent one set

ahead. This created the illusion of a large pre-match swing. This further emphasises

the need to examine each match on a case-by-case basis, lest innocent players find

themselves wrongly accused due to artefacts of the betting markets.

The work of Rodenberg and Feustel (2014) on identifying fixed matches focusses

on changes in pre-match odds in tennis matches. Similar to the football model

SportRadar use in their fraud detection system, as Forrest and McHale (2015) de-

scribes, Rodenberg and Feustel (2014) also use an Elo model to predict matches, and

defines prediction error of the odds as the difference between the pre-match odds and
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the Elo model prediction. Note that it is unusual to assume the predictive model

gives the correct probabilities and look at the error of the odds with respect to that

model, as many sources, such as Kovalchik (2016) and Feustel and Rodenberg (2015),

find the odds tend to be better predictors than predictive models.

Nonetheless, this approach is taken so that the prediction error of the odds (the

difference between the odds and model predictions) can be considered at the opening

and closing of the pre-match market. By looking at changes in the error, rather than

the odds themselves, the authors can differentiate between cases where odds move

towards and away from the predictive model, since a move towards the predictive

model is more likely to indicate mis-specified opening odds, whereas a move away is

more likely to indicate a fix or the dissemination of new information.

Rodenberg and Feustel (2014) argues that first-round matches are most likely to

be fixed, since a corrupt player knowing they will exit the tournament will conserve

energy by fixing as soon as possible. When considering first-round matches with large

increases in error, the odds were generally found to swing in favour of the eventual

winner more frequently than in matches in later rounds. Since first-round swings are

more informative of the eventual match-winner, this is presented as evidence that such

swings are more likely to indicate fixes than swings in later rounds. It is not clear,

however, the extent to which this behaviour might also relate to the phenomenon of

unfit players retiring during first-round matches rather than beforehand in order to

avoid forfeiting prize money, Agence France-Presse (2017). Should a player’s lack of

fitness become widespread knowledge before a match, such an odds swing might also

be expected.

Feustel and Rodenberg (2015) instead focusses on football, and analyses the dif-

ferences between closing pre-match odds and model predictions based on a bivariate

Poisson model for goals, as in Dixon and Coles (1997). The goal-scoring rates of both

teams were derived from offensive and defensive ratings assigned to each team by

some unspecified method, using data in the relevant season only. Matches with the
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biggest differences between odds and model probabilities were labelled as potentially

suspicious.

Four seasons of data were separately analysed for each of four professional football

leagues. France’s Ligue 2 and Italy’s Serie B were chosen due to known match-fixing

scandals, whereas the Premier League and Major League Soccer were expected to have

fewer fixed matches. The eight matches in each league with the biggest discrepancy

between model predictions and odds were analysed, and the results were roughly as a

match-fixing explanation might suggest: in Ligue 2 and Serie B, the winning team’s

odds were higher than expected rather than lower (suggesting gamblers potentially

had more information than the model), the absolute differences between odds and

predictions were bigger, and the matches occurred closer to the end of the season,

where impact on promotion or relegation could be bigger, giving more incentive to

fix.

Ötting et al. (2018) analyse both pre-match both odds and betting volumes in

betting markets for football matches. Matches are flagged as suspicious if either of

these observed quantities are significantly different to model predictions, based on

seven years of data on Serie B matches, a number of which were known to be fixed.

The model achieved a true positive rate of 79.2%, and a true negative rate of 64.5%

To model normal behaviour for both odds and volumes, generalised additive mod-

els for location, scale and shape, or GAMLSSs, are used. These extend generalized

linear models in two ways. Firstly, they permit the response variable to depend on

non-parametric and parametric functions of the predictor variables, and secondly,

more parameters of the error distribution can be fitted than simply the mean. For

example, if errors are normally distributed, the variance of the error terms could also

depend on non-parametric functions of the predictor variables.

Betting volumes are modelled using a log-normal distribution for responses, since

volumes are always positive. The mean and variance of volume distribution in each

match are then fit using estimates for the quality of the two teams, the day of the
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week and the stage of the season.

In order to model betting odds, it is assumed that these should be similar to mod-

elling the probabilities of each team winning, as with previously discussed methods.

These probabilities are modelled using the model of Karlis and Ntzoufras (2003), in

which goals scored by each team scores are correlated Poisson random variables, with

rates fitted using the GAMLSS method. The predictor variables chosen attempt to

capture home advantage, the overall strength of each team and recent form.

Given these two models, the authors then attempt to classify matches depending

on whether the difference (normalised by fitted conditional variance) between pre-

dicted values in each model and the observed values exceed some threshold. Thresh-

olds are optimised to maximise true positive rate and true negative rates - the labels

of the matches are known due to widely-publicised previous investigations into Italian

match-fixing. They achieve best results by combining information from the model for

volumes and odds, rather than considering each separately.

Two further papers that examine match-fixing in football Reade and Akie (2013)

and Reade (2014). Both compare model predictions for pre-match odds with observed

pre-match odds. The focus is on the probabilities of draws for a few reasons. Firstly,

the authors claim (without proof) that the probability of draws is not as heavily af-

fected as the probaility of a win for either team by information the model cannot

capture, such as team or injury news. Similarly, the probabilities of a draw from

bookmakers in both papers data sets appears less variable than the probabilities of

wins, rarely rising much above one third making outliers significantly above this easy

to identify. It is also claimed that since a draw is typically less interesting an event

than a victory, and so fixing to draw may also attract less attention than fixing to

win, making it easier for the fix to go unnoticed.

To model win and draw probabilities, an ordered probit regression model is used.

This is an extension of probit regression, Section 2.2.1, which permits more than two

ordered outcomes, which in this case allows for the inclusion of draws. The work dif-



CHAPTER 2. LITERATURE REVIEW 14

fers from others discussed so far in that it is acknowledged that modelling odds is not

necessarily the same as modelling match-win probabilities. Once model probabilities

have been established, linear regression is used to establish a relationship between

odds and model probabilities. This is to account for effects such as favourite-longshot

bias, an inefficiency in some betting markets whereby strong favourites win more often

than odds suggest, due to gamblers’ preference for gambling on underdogs.

Williams (1999) and Forrest and McHale (2007) summarise much of the current

understanding of favourite-longshot bias. It occurs markets where many gamblers

have a preference for high-skewness bets, i.e. long-odds bets with a high potential re-

turn for little outlay. Competing explanations exist for the precise reasons behind the

bets causing these biases, but most broadly centre around the fact that many people

gamble recreationally, rather than as a profit-making exercise. Because of this, there

may be greater value associated with the thrill of a long bet coming in rather than

gambling on short odds for small but positive rewards, or simple overconfidence in

the probability of unlikely events.

Because of these preferences for long-odds bets, the betting odds are then shifted

to encourage betting on short-odds bets, and taking such bets can lead to greater

long-term rewards than long-odds bets. The scale of the bias can depend heavily on

the prevalence of strong favourites and underdogs in the sport. Forrest and McHale

(2007) finds evidence of this bias in tennis, and also reviews research into the bias

in other sports, discussing the types of horse race it is present or absent in, notes its

absence in English Premier League football and a negative bias in some American

sports.

Reade and Akie (2013) and Reade (2014) use their method to examine inter-

national football (including youth and women’s competitions) and Serie B matches

respectively. They look for matches with large difference between observed and pre-

dicted odds, and investigate the characteristics of such matches, such as stage of the

season or whether the match is friendly or competitive.
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A number of other papers choose to focus not on identifying suspicious matches

through betting data, but on identifying other sources of potential evidence for match-

fixing. Examples of this include seeing if certain variables that might indicate match-

fixing help predict the outcome of sports matches, or seeing if matches hypothesised

to be more susceptible to fixing differ from those less at risk in ways that might be

consistent with fixing.

A key example in tennis is Rodenberg and Feustel (2014). As well as the aforemen-

tioned discussion of odds, they investigate match-fixing in two other ways. Crucial to

their investigations is their hypothesis that first-round matches are more likely to be

fixed than matches in later rounds. Their main argument is that prize money in tennis

is heavily weighted to the latter rounds of a tournaments. This means that a player

may have little financial incentive to progress through tournaments, given the risk

of injury, burnout and lost training time, if they believe themselves to be unlikely to

progress beyond the early rounds. The expected financial reward of attempting to win

the match is low, and so players will be more tempted to fix first round matches than

they would matches later in the tournament, when large financial awards await the

winner. The authors use this hypothesis to estimate the prevalence of fixed matches by

comparing certain features in first-round matches and later rounds. If these matches

should behave the same under the assumption that no matches are fixed, but in fact

behave differently, this may be evidence that some of the matches are fixed. The

hypothesis appears reasonable, but it would be helpful if it were backed by a study

of known fixed matches.

The first comparison rests on the claim that players fixing matches will exert less

effort in order to avoid the strain and risky of injury from competitive matches. This

theory is unverified. The authors state that if this claim is untrue then their meth-

ods underestimate the extent of match-fixing, but this is debatable. Were the claim

untrue, and there were another explanation for the differences, then their methods

would teach nothing about match-fixing. It could be hypothesised that the smaller
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proportion of three-set matches in these early rounds of tournaments is due to the

fact that the weakest players in the tournament are still present, meaning a greater

average skill difference than in later rounds. It is claimed that this effect is controlled

for by looking at “imputed win probabilities” without further explanation.

Based on this claim, the authors compare proxies for player effort in first-round

matches and later rounds. Results show that proportion of three-set matches, tie

breaks and breaks of serve by the loser is around around 1 percentage point lower in

first-round matches, suggesting that the losers exert less effort in these matches. They

conclude that around 1% of first-round matches involve “tanking”, or playing to lose.

This conclusion appears to be in error. Let p denote the proportion of fixed matches,

and let xf and xc and x1 probabilities of certain events (for example, the match going

to three sets) in fixed matches, clean matches and first-round matches respectively.

Then the equation (1 − p)xc + p(xf ) = x1 is obtained. It is assumed that xf = 0,

and so fixed matches never go to three sets, x1 is estimated from first-round data

and xc from matches after the first round, since all such matches are assumed clean.

Solving for p then yields p = (xc − x1)/xc. However, the authors simply estimate p

using p = xc − x1, underestimating the rate of match-fixing by a factor of 1/xc. The

authors’ later examination of betting odds correctly uses this equation, so the reasons

for its omission here are unclear.

The next set of tests attempts to use betting odds to similarly infer the degree of

match-fixing. Since betting markets are expected to be approximately efficient, bet-

ting returns using sports models should be approximately equal in first-round matches

and later matches. However, if first-round matches are being fixed then these matches

become harder to predict, and so the betting returns using the model should be lower

than in later rounds. The authors use two sports models and a simple betting strategy,

and find both perform worse in first-round matches than later matches. They claim

that their results suggest that between 1.58% and 2.71% of first-round matches are

fixed. It is unclear the extent to which this effect could also be explained by players
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carrying injuries into tournaments. If knowledge of such an injury was widespread,

the model predictions would have less information than gamblers. The gamblers’

knowledge would be reflected in the betting odds, resulting in lower betting returns

for the sports model.

The work of Duggan and Levitt (2000) examines the sport of sumo wrestling. In

a sumo wrestling tournament, wrestlers take part in fifteen matches. Winning more

than half of these bouts will increase a wrestler’s rank, while winning less than half

will cause a wrestler’s rank to fall. Hence, if a wrestler going into his final match

having won seven matches of fourteen, there is a big motivation, both financially and

in terms of ranking, to win the final match. (A wrestler going into his final match

having both won and lost seven is said to be “on the bubble”.) The authors show

that wrestlers are much more likely to win such a match than lose it. To explore this

effect Duggan and Levitt (2000) uses a linear regression of the form

Winijtd = β Bubbleijtd + γ (Ri −Rj) + λij + δit + εijtd, (2.1.1)

where Winijtd is the win probability of wrestler i against wrestler j in tournament t

on day d. The value of Bubbleijtd is 1 if wrestler i is on the bubble, -1 if wrestler j

is, or 0 if both or neither are, and parameters β and γ are to be fitted. The rank of

wrestler i is Ri, the residuals are εijtd, and λij and δit are optional wrestler-wrestler and

wrestler-tournament terms respectively. Note it is more usual in the sports modelling

literature to use a logistic regression than linear regression to model win probabilities

to ensure results remain in the interval [0,1] - see Section 2.2.1.

This effect could, of course, be simply attributed to wrestlers on the bubble try-

ing harder than their opponents with little to gain or lose. However, Duggan and

Levitt (2000) also investigates a number of other potential factors that might indicate

fixing being more likely than increased effort. These include a smaller bubble effect

during periods of high media interest in corruption, and some statistical evidence of

reciprocal arrangements between wrestlers in the same “heya”, or stable. (Similar

to horse-racing, wrestlers in the same stable are not considered team-mates, but the
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success of all wrestlers in the stable benefits the stable, leading to the possibility of

fixing being co-ordinated within a stable.) Additionally, whistle-blowers in the sport

identified a number of wrestlers as corrupt, as well as declaring others innocent. Dug-

gan and Levitt (2000) found the bubble effect to be especially prominent amongst

those identified as corrupt, and negligible between wrestlers identified as clean.

This thorough investigation points to a number of factors that might indicate

match-fixing - it is the agreement of multiple pieces of evidence that proves useful,

indicating a strong potential for match-fixing in the sport.

The work of Deutscher et al. (2017) instead focusses on refereeing in football.

Specifically, it aims to investigate whether betting markets might contain evidence

that certain Bundesliga referees may be influencing football matches for financial

benefit. They choose the “over/under 2.5 goals” market on the basis that it may be

easier to influence this than the match-win outcome undetected.

The authors employ linear regression to model betting volumes in each match

to see whether more than expected is being bet when certain referees are officiating

matches. In order to do this, a range of other factors must be included in the linear

regression, such as the identities of the teams, the year and week of the match and

other match-specific variables. The only match-specific variables described observed

referee performance, as measured by objective statistics, such as penalties and cards

awarded to each team, and subjective ratings given to the referee for their perfor-

mance by Kicker magazine. The idea is to identify referees on whose matches more

than expected is being bet for no observable reason other than the identity of the ref-

eree, as this is a possible sign that fixers are bribing these referees to subtly influence

whether or not at least 2.5 goals are scored in the match.

They find two or three referees, depending on combinations of variables used, on

whose matches more is bet than expected. The authors do however concede that other

explanations for this may be possible. One limitation they cite is that assignment of

referees to matches is not wholly random, as more experienced referees are assigned
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to more high-profile matches.

Other potential shortcomings include use of linear regression for positive, right-

skewed betting volume data - log regression may have been more appropriate. Variable

selection is also key to such analyses.

The scale of match-fixing in basketball is a much-debated topic in academic lit-

erature, and presents an interesting case study on the difficulties involved in using

indirect methods to analyse match-fixing. It can be easy to identify strange behaviour

which could be a result of match-fixing, but harder to rule out other explanations, as

the wealth of disagreements in the literature on basketball match-fixing, or “point-

shaving” shows.

The principal concern of the work of Wolfers (2006), Gibbs (2007), Bernhardt and

Heston (2010) and Diemer and Leeds (2013) is the popular “point-spread” market. In

basketball, it is common for matches to have heavy favourites, making betting on the

winner uninteresting. Instead, many bookmakers offer an approximately even bet on

whether or not a team will win by a certain number of points. This margin of victory

is called the points spread. In this way, matches between even teams will have a

spread of 0, matches with slight favourites may have a spread of around five or lower,

whereas matches with a heavy favourite may have a spread of twelve points or even

higher. In cases where bookmakers would normally change their odds to avoid losses,

they instead change the spread. The fact that it remains an approximately even bet

means it remains interesting, even in matches with big favourites.

However, players are still mainly concerned about the fact of winning rather than

the margin of victory. This presents an opportunity for corruption, since teams in the

lead can aim to win by less than the spread, achieving their sporting aims while still

earning money by fixing the point-spread market. This is known as point-shaving,

and Bernhardt and Heston (2010) highlight several high-profile examples of this hap-

pening.

In order to investigate whether this happens regularly, Wolfers (2006) choose to
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view the spread as a “prediction-market-generated median forecast”, Wolfers and

Zitzewitz (2004) - in other words, the spread is a forecast of the score, and errors

in this forecast (the difference between the spread and observed margin of victory)

should be normally distributed. However, analysis of college basketball data reveals

that while this held for matches without a strong favourite (where the spread, S, was

less than 12), the forecast error was in fact asymmetric for matches with matches

where the S was at least 12. In these cases, the favourites won by (strictly) between

0 and S points 46.2% of the time, but by between S and 2S only 40.7% of the time.

After some exploration and dismissal of alternative hypotheses, such as market ineffi-

ciency or strong teams exerting less effort after establishing a lead, it is concluded that

this is probably evidence of point-shaving. Gibbs (2007) conduct a similar analysis

on NBA (National Basketball Association) data with similar findings.

However, Bernhardt and Heston (2010) explores these alternative hypotheses dif-

ferently and finds a different conclusion. They build a model for spreads based on

the teams’ form in attempt to estimate spreads for matches without a betting mar-

ket. They find the same asymmetries in differences between estimated spread and

observed margin of victory in matches with strong favourites in matches both with

and without betting markets. This, they claim, suggests that point-shaving is not

the best example for this phenomenon, since there is no incentive to shave in matches

without betting markets, and suggest decreased effort for winning teams as an expla-

nation. On the other hand, Borghesi (2008) instead uncovers interviews suggesting

that bookmakers raise spreads in matches with strong favourites to take advantage

of basketball gamblers’ predilection for betting on favourites, so that the bookmakers

profit in the likely scenario that the favourites win but fail to cover the spread. This

bias among gamblers suggests that the point spread market is not totally efficient.

Diemer and Leeds (2013) disagrees with both, arguing that if there were an innocent

explanation for this phenomenon, the distribution of forecast errors would still be

symmetric, but not around 0 - this is not the case, however, with too many large wins
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being observed. It seems conceivable, however, that the inflated probability of large

wins could result from strong favourites sometimes conserving effort, but sometimes

playing at full capacity, creating a bimodal distribution that leaves open the possibil-

ity for big wins.

Whatever the truth, the array of competing hypotheses show the importance of

investigating alternative theories fully, but also the difficulty in explaining anomalies

that do not conform to one’s model of “usual behaviour”. This is a fact that we must

be acutely aware of throughout our analysis - caution must be applied to all conclu-

sions, as there may be an innocent explanation behind any anomaly. SportRadar’s

system of only using betting data to flag matches for further investigation therefore

seems very sensible, and is one we will aim to follow throughout.

2.2 Pre-Match Tennis Modelling

2.2.1 Regression and Machine Learning

One of the simplest approaches one can take to modelling the probability that player

i wins a match against player j is using regression-based methods. This involves

attempting to use information about the two players, as denoted by a covariate matrix

Xij, and a vector of fitted parameters β, to make inference about the probability that

player i wins the match, πij. This is modelled via a link function, typically either an

inverse logistic function, L−1(π) = log( π
1−π ), or a probit link function, Φ−1(π), where

Φ(z) = P (Z < z) for Z ∼ N(0, 1). Depending on which is chosen, this then involves

fitting the model

L−1(πij) = βXij, or

Φ−1(πij) = βXij.

In practice both functions are very similar, so the choice makes little difference.

Boulier and Stekler (1999) use the difference between tournament seedings, as the
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only covariate, while Clarke and Dyte (2000) use the difference between the logs of

the player’s ATP ranking, log(ri). Klaassen and Magnus (2003) use the difference

between transformed ranks, Ri = 8 − log2(ri), which should give equivalent predic-

tions. Irons et al. (2014) suggest adding another covariate ri− rj to Clarke and Dyte

(2000)’s model to give more freedom, so that the difference between the 5th and 10th

best players need not be the same as that between the 500th and 1000th. They

also allow covariates to vary depending on whether a three or five-set match is being

played. Meanwhile, McHale and Morton (2011) suggest using ranking points, instead

of raw rankings, as covariates in Clarke and Dyte (2000)’s model.

Many papers have performed logistic regression with far more covariates, such as

Gilsdorf and Sukhatme (2008), Del Corral and Prieto-Rodŕıguez (2010), Sipko and

Knottenbelt (2015) and Hostačnỳ (2018). Each takes its own approach to covari-

ate selection, often depending on the emphasis of the paper. Additionally, Hostačnỳ

(2018) examines 342 covariates taken from across a broad range of past work of this

type, and use penalised likelihood to select the most impactful.

The extra covariates generally fall into three broad categories, as defined by

Del Corral and Prieto-Rodŕıguez (2010): past performance, player characteristics and

match characteristics.

Past performance covariates give different information about players’ previous re-

sults to official rankings and ranking points. Gilsdorf and Sukhatme (2008) look at

head-to-head records and total career wins on the relevant surface, while Sipko and

Knottenbelt (2015) combine points won on serve, return and aces in various ways,

averaging with more weight on recent performance, as well as head-to-head records.

Del Corral and Prieto-Rodŕıguez (2010) introduce a dummy variable to represent

whether a player has previously been a top-10 ranked player, as this could be a sign

that the current rankings underrate a top player returning from injury, for example.

Lisi and Zanella (2017) uses ranking points, and also puts ranks into intervals instead

of looking at raw ranks, since these ranking intervals are less highly correlated with



CHAPTER 2. LITERATURE REVIEW 23

ranking points than the raw ranks. The problem of using highly correlated predictors

is known as collinearity. Using correlated predictors can make the regression coeffi-

cients for these predictors hard to estimate, which can in induce unnecessary variance

into out-of-sample predictions, though this is mostly an issue in cases where there

predictors are not correlated as highly in the new sample. This is unlikely to be the

case with rankings and ranking points, but this step to decorrelate the predictors

could still be a sensible precaution nonetheless.

Physical characteristics covariates describe other player attributes. Using a linear

and quadratic term for age is common to capture the rise and fall of a player over

their career, while Del Corral and Prieto-Rodŕıguez (2010) also consider height and

preferred hands of both players. Sipko and Knottenbelt (2015) also considers the

potential fatigue of players, as measured by the number of games played in the past

three days, as well as an indicator variable denoting whether the player’s last match

ended in a retirement.

Finally, match characteristics focus on information about the match that is not

specific to the players. Surface is a common choice, while Del Corral and Prieto-

Rodŕıguez (2010) also consider the tournament level and round. Gilsdorf and Sukhatme

(2008) consider all of these to help investigate whether the difference in potential prize

money for a player winning the tournament compared to losing in the current round

affects probabilities, and conclude that a larger difference favours the stronger player.

Most machine learning methods used in the literature to model tennis matches

work on a broadly similar basis, but using a much wider class of functions than the

linear predictor and the logit and probit link functions. Somboonphokkaphan et al.

(2009) and Sipko and Knottenbelt (2015) both use an artificial neural networks with

surface and historical proportions of points won or lost on serve, while Sipko and

Knottenbelt (2015) also extends to support vector machines. Hostačnỳ (2018) in-

cludes a much richer set of 342 covariates, and also considers Random Forests and

other tree-based methods. Cornman et al. (2017) test all three methods and logistic
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regression against each other and find limited differences in predictive performance

for their implementation. However, this could be significantly affected by features

selected and choice of hyperparameters.

2.2.2 Bradley-Terry Models

An alternative model for pairwise competitions is the Bradley-Terry model. Suggested

by Bradley and Terry (1952), but also studied by Zermelo (1929), this model is popular

for its simplicity and effectiveness.

Under the Bradley-Terry model, each competitor i is modelled as having a strength

parameter αi > 0. If competitors i and j are compared (which in a sporting contest

would be a match between the two), then the probability assigned to the event of i

being found superior to j is

P (i beats j) =
αi

αi + αj
.

Under the assumption that all matches are independent, the joint likelihood to be

maximised is then

L(α|w) =
∏

(i,j)∈Ω

nij∏
k=1

α
wijk
i α

1−wijk
j

αi + αj
, (2.2.1)

where Ω is the set of all pairs (i, j) such that i plays a match against j, nij is the

number of matches between i and j in Ω, and wijk = 1 if player i wins their k-th

match against player j, or else equals 0. The vector α denotes (α1, . . . , αn) if there

are n players, and w describes all wijk.

It can be easily seen that this likelihood does not have a unique maximum. For

any α that maximises the likelihood and any constant C, then, Cα is also a maximum

likelihood estimator. Hence a constraint must be placed on α. Bradley and Terry

(1952) choose to specify that
∑n

i=1 αi = 1, but McHale and Morton (2011) instead

specify α1 = 1. Bradley and Terry (1952) then go on to describe their algorithm for

maximising this likelihood.
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McHale and Morton (2011) extends the basic model provided in equation (2.2.1)

to a tennis context. Of course, not all matches are equally relevant to a player’s

current strength. Matches played a long time ago may have almost no relevance to

current beliefs about player strengths, so perhaps not as much importance should be

placed on these earlier matches. The likelihood of these past matches is therefore

downweighted by McHale and Morton (2011), following on from ideas suggested by

Dixon and Coles (1997). If the current time is t, let the likelihood of the k-th match

between players i and j, which occurs in the past at time tijk, be downweighted by

factor exp
(
ε(t− tijk)

)
for some parameter ε > 0.

Surface can also play a large part in modelling player strengths, and matches on

a different surface to the current match may also not be as relevant. Hence, if the

current match is taking place on surface S, McHale and Morton (2011) instead define

player i’s current strength on that surface as αitS. If the k-th match between i and

j takes place on surface Sijk, its likelihood is downweighted by a factor ΓS,Sijk which

takes value 1 if Sijk = S, or else some value between 0 and 1. Let Γ be a 3×3 matrix

containing all possible values of ΓS,Sijk , as there are three main surfaces: hard, grass

and clay).

McHale and Morton (2011) further improve the model by noting that simply

looking at whether player i wins or loses the match throws away readily available,

and potentially very useful, data about tennis matches. For example, a player that

has lost 6-0, 6-7, 6-7 has clearly played better than one that has lost 0-6, 0-6, and it is

possible to incorporate this into the updates of the players’ strengths. The approach

taken by McHale and Morton (2011) to account for this is to essentially view a tennis

match as a series of contests, where each contest is a game, instead of one match

contest. If gi and gj are the numbers of games won by each of players i and j, the

likelihood of observing a scoreline can then be calculated accordingly as

L(αitS, αjtS|gi, gj) ∝
αgiitS α

gj
jtS

(αitS + αjtS)gi+gj
.
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Although this does not account for which player is serving, since both players serve a

roughly equal number of games, it is hoped that this effect will not be substantial.

Let At denote the set of matches that happens before time t, and let nijt denote the

number of matches players i and j play before time t. For some ε and ΓS,Sijk , the

likelihood to be maximised over αtS := (α1tS, . . . , αntS) is then expressed as

L(αtS|At) =
∏

(i,j)∈At

nijt∏
k=1

( α
gijk
itS α

gjik
jtS

(αitS + αjtS)gijk+gjik
.
)eε(t−tijk)ΓS,Sijk

. (2.2.2)

Note that in this expression, the current strength of player i, αitS, is applied to all

matches played by that player - even those in the past on a different surface. However,

by downweighting these past matches where players have the “wrong” strength αitS,

these matches’ contribution to the likelihood of the current strength is minimised,

meaning the more recent matches on the correct surface bear the most relevance,

while older matches gradually become less and less important. If a new set of matches

is observed, the maximisation of this likelihood must be performed from scratch, as

the weights of all matches will change.

McHale and Morton (2011) briefly discuss an extension that incorporates actual

time dynamics in the same way as Dixon and Coles (1997) proceeds to use, but

believe that such an extension only brings minor benefits to modelling power for a

significantly higher computational cost. Selecting values for ε and ΓS,Sijk is not

as straightforward as simply allowing them to be selected by maximum likelihood

in equation 2.2.2. McHale and Morton (2011) note that simply taking ε = 0 and

ΓS,S′ = 1 for all surfaces S 6= S ′ would increase the likelihood, without necessarily

being more useful for predicting current tennis matches. This is further discussed by

Dixon and Coles (1997). Instead, the approach employed is to choose these values

maximise the predictive accuracy of the model.

Let α̂tS(ε,Γ) denote the vector αtS that maximises equation 2.2.2 given ε and

Γ, and let Wt+1,S be a random variable denoting the results of all matches at time

t + 1 and on surface S, with wt+1,S a realisation of that random variable. Then
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P
(
Wt+1,S = wt+1,S|ε,Γ, α̂t,S(ε,Γ)

)
is the predicted probability of observed results

wt+1,S occurring given ε, Γ and α̂tS(ε,Γ). The goal is to select ε and Γ that maximise

∏
S

tmax−1∏
t=t∗

P
(
Wt+1,S = wt+1,S|ε,Γ, α̂tS(ε,Γ)

)
,

which is the predictive probability assigned to all matches after some time t∗ using

all data up to one time step before each match. The value t∗ is selected to be high

enough that the model can assign good predictions to all matches considered (McHale

and Morton (2011) suggest one year into the data), and tmax is the last time point in

the data.

The higher this product of probabilities is, the better the model has forecast future

tennis matches, and hence it is better to try to maximise this than the likelihood. A

grid search over possible values of ε and Γ is employed to achieve this.

The work of McHale and Morton (2011) is a key starting point for the work of

Irons et al. (2014). The primary focus is not forecasting accuracy, but to develop

an alternative to the current ATP/WTA ranking system that better reflects players’

strength, but also has several features desirable of official rankings. One example is

that it must incentivise attendance at major tournaments (chiefly Grand Slams). Also,

a player whose strength remains constant over time but varies on different surfaces

should ideally keep a constant rank through the year, and should not be rewarded

simply for having recently played on the player’s favourite surface.

To investigate these affects, Irons et al. (2014) explore different downweighting

functions for time and surface, as well as different forms of likelihood, and compare

forecasting accuracy to McHale and Morton (2011)’s model and the official rankings,

as well as exploring seasonality, surface bias and other effects in all three. They

find a trade-off exists between forecasting accuracy and several desirable properties of

ranking systems, but using the framework of McHale and Morton (2011) still manage

to devise a ranking system that forecasts better than the official rankings while having

several key properties.
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2.2.3 Dynamic Pairwise Comparisons

An alternative set of models are dynamic pairwise comparison models. In these mod-

els, each player has an unknown strength, and inference about that strength is made

purely based on observed results from matches between two players, or pairwise com-

parisons.

One of the first and most famous of these models was the Elo model, Elo (1978),

developed to rank chess players. It was adopted by the USCF in 1960, and FIDE in

1970. The Elo model is often presented purely as an update algorithm for ratings, but

it is interesting to note its statistical origins, and important to do so to give context

to other methods that have come since. The version featuring only wins and losses is

discussed here, as it is most relevant for our tennis context, but some subtle additions

were made in the original to account for draws in chess.

Elo noted that chess players do not play at a constant level, but there is in fact

some variation in how well players play. Thus Elo decided to assume that chess player

i’s performance level in a given match was a Gaussian random variable θi, and that an

appropriate marker of their ability would be their “average” level of performance, ri.

Under the assumption that each player had the same variance in performance levels

σ2, the distribution of their performance in a given match is then

θi ∼ N(ri, σ
2).

The parameters are of course never observed, and hence inference about them can

only be made through the results of matches between players. If one player beats

another once, it suggests the winning player was the stronger of the two. Repeated

wins for one player strengthens this belief. In order to form a statistical basis to make

this inference, an assumption was required about the probability player i beat player

j. Let the random variable Sij take the value 1 if player i beats j, or 0 otherwise.

Given some arbitrary scaling constant q, this probability was then expressed as

Eij := P (Sij = 1) =
1

1 + e−q(θi−θj)
.
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Given this probability of observing results and observation of a match result, infer-

ence about the players can be made using Bayes Theorem. The posterior distribution

of θi and θj becomes

π(θi, θj|Sij = sij) ∝ π(θi)π(θj)P (Sij = sij|θi, θj)

Elo made a number of simplifying assumptions about this posterior in order to

approximate it by another Gaussian random variable. This allowed him to arrive at

a very simple and well-known update formula for the posterior mean, r′i, given by

r′i = ri +K(Sij − Eij), (2.2.3)

where the parameter K > 0 is chosen to alter the speed at which ratings update,

and should also depend on q and σ. A large value of K means a large adjustment is

made for the match that has just occurred, whereas a small K means smaller updates,

making older results more important.

Two other factors should be taken into account. Firstly, in this Bayesian parame-

ter update, the posterior variance should also be updated to some value σ′2. Secondly,

players do not have constant ability, but instead improve and get worse over time,

going through various peaks and troughs. Both of these should be taken into account,

but Elo decides to treat both of these together.

Let rit denote player i’s rating at time t. If it were assumed that ratings evolved

as a Gaussian random walk, so that ri,t+1 ∼ N(rit, γ
2), then it would follow that each

player’s variance after playing a match and evolving would be defined as σ∗2 := σ′2+γ2.

This would have to be updated after each match, it might be different for different

players, and it would also affect K.

Instead of following this approach, Elo decided a similar effect could be achieved

by choosing σ∗2 = σ2 instead, restoring the posterior variance to its previous value.

This meant that it was never necessary to store or update σ, making storage and

computation easier, as well as removing any potential dependence of K on specific σ

values. Instead, updating the mean, ri, is all that is required. This gave a powerful
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statistically based model for chess ratings that was very easy to update and under-

stand.

Although the ease of usage and understanding for chess players is as relevant to-

day as it was in 1960 when the Elo method was first developed, the advantage of

computational ease is not, with the more advanced computational power that now

exists. Hence, many have come up with more advanced adaptations of Elo’s work

that try to better model players’ abilities.

Several sources find Elo updates new players too slowly, and have made attempts

to rectify this by tweaking the K-factor. FIDE themselves implement a K-factor that

halves after a player’s first 30 games, with a few exceptions, FIDE (2017). Similarly,

Glickman and Doan (2017) describe how in most cases USCF update ratings after a

tournament using K = 800
N ′+m

, where m is the number of games played in the tour-

nament, and N ′ is a player’s “effective number of games played”. We do not discuss

the definition of N ′ here, but note that it is capped at 50. Meanwhile, the analysis

performed by Morris and Bialik (2015) for fivethirtyeight.com on tennis players uses

a system that gives each player i a different Ki value that depends on the player’s

number games played, Ni. For fitted parameters K0, ξ and η, this is equal to

Ki =
K0

(Ni + ξ)η
.

In all of these examples, this reduction in K over time is analagous to newer

players having a higher value of σ, representing the large uncertainty in their abil-

ity. Information from more recent matches for these newer players therefore carry

comparatively more weight, and the posterior distribution of players’ ratings is less

heavily weighted to the prior.

Gorgi et al. (2018) derive an alternative dynamic paired comparison model for

updating player strengths of tennis players using a generalised autoregressive score

(GAS) model, Creal et al. (2013). Under close inspection, it transpires that the GAS

model is also equivalent to the basic Elo model as given by equation 2.2.3. However, it

does provide an alternative framework for including extra information such as surface,
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number of sets and Grand Slam effects.

The work of Glickman (1999) aims to stick closer to the original idea of Bayesian

updating by removing some relevant assumptions. It is designed to be a general

method, but the original paper discusses examples with chess and tennis. The au-

thors no longer assumed that each player has constant variance σ2. Instead, each

player i has their own uncertainty parameter σi which is updated after each match

along with ri. This means that new players or those that have taken long breaks can

update their ratings at different speeds to those with more stable ratings. Addition-

ally, fewer assumptions and simplifications were made in approximating the posterior

distribution by a new Gaussian. However, no discussion is given as to whether this

provided an improvement in predictive performance over standard Elo ratings.

Subsequently, the work of Glickman (1999) has been further adapted by adding

extra parameters, such as in the Glicko-2 ratings, Glickman (2012), and Stephenson

ratings, Stephenson and Sonas. (2016), and alternative chess ratings system.

2.3 In-Play Tennis Modelling

Most of the methods previously described here work on the basis of directly modelling

the probability of each player winning. However, another approach is possible. Tennis

matches, like for most other racquet sports, have a hierarchical structure. Matches

are played as a series of points - a player must win a certain number of points to win a

game, a certain number of games to win a set, and a certain number of sets to take the

match. Because of this structure, one could instead choose to model the probabilities

of players winning points at different times of the match. The idea is to model this

micro-scale behaviour first, and see how this affects the “emergent behaviour”, the

probabilities of the players winning matches.

This gives the ability to estimate the probabilities of players winning from any

scoreline in the match, and allows for the analysis of in-play match-fixing. This is
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extremely useful in that it unlocks a huge additional market to scour for corrupt

activity, and distinguishes our work from most other efforts in the literature, which

focus on pre-match markets. Additionally, it is also possible to update the estimates

of the relative strengths of two players mid-way through a match based on how they

have performed, allowing for more accurate predictions. It even permits for easy

analysis of far more markets than simply which player wins or loses, such as how

many sets each player wins, or “spread betting” on the difference of the number of

games each player wins. However, this is not an area touched on further in this thesis.

2.3.1 Markov Chains for Tennis Matches

In order to model tennis matches in-play, two simplifying assumptions are generally

made. First of all, it is assumed that the outcomes of different service points in tennis

by the same player are independent, so that the outcome of one point does not influ-

ence the next. Secondly, points are identically distributed. In a match between player

i and player j, player i will win each service point with probability pij independent

of all other points. Similarly, player j wins points on serve with probability pji.

Making these assumptions allows a tennis match to be formulated as a Markov

chain, in which states are scores, and transition probabilities are governed by pij and

pji. In this setting, it is relatively straightforward to calculate the probabilities of

each player winning the match, given pij and pji. Formulae for this are derived by

O’Malley (2008) using combinatorial arguments, while Barnett et al. (2002) iteratively

calculates probabilities with recurrence relations. However, the basic properties of ab-

sorbing Markov chains, as described for example in Grinstead and Snell (2012), are

also sufficient to give probabilities of either player winning.

Recall that a state in a Markov chain is transient if there is a non-zero probability

that the Markov chain never returns to that state, or else it is recurrent. A state is

absorbing if the Markov chain can never leave that state. If every state can reach an

absorbing state, then the Markov chain is called an absorbing Markov chain. In the
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example of a game in tennis, as shown in Figure 2.3.1, the states in which each player

has won the game are absorbing, and all other states are transient.
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Figure 2.3.1: A Markov chain representing a game of tennis with player 1 serving. State Wi

represents player i having won the game, Adi denotes advantage to player i for i = 1, 2, and D

denotes deuce. The probability of player 1 winning a point on serve is p1.

Suppose the matrix has nt transient states and na absorbing states. Then the

transition matrix P takes the form

P =

 Q R

0 Ina

 .

In this transition matrix, Q is of size nt × nt and Ina is an identity matrix of size

na × na. The matrix R is non-zero, and 0 is a zero matrix of size na × nt.
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It can then be proven (for example by Grinstead and Snell (2012)) that to find

the matrix B of probabilities to absorption from each state to each absorbing state,

we take

B = (Int −Q)−1R.

This can easily be applied in the tennis example to provide probabilities of absorption,

or each player winning the game.

While calculating match-win probabilities in practice, one could create a huge

Markov chain featuring all possible scores in the match, though in general this proves

inconvenient as the resulting Markov chain is so large. It is instead generally con-

sidered more convenient to create smaller Markov chains relating to games, sets and

matches, and use conditional probability to combine them appropriately. In order

to win a match, players must win a certain amount of sets, and a state space model

featuring the number of sets won as states is also a Markov chain. Transition proba-

bilities can be found by making a Markov chain for a set, in which games won by each

player are states, and so on. Using this, the probability of a player winning a match

can be found by using conditional probabilities of winning games and sets from these

smaller Markov chains with the equations

P (i wins match) = (2.3.1)

P (i wins game)P (i wins set|i wins game)P (i wins match|i wins set)

+P (i wins game)P (i loses set|i wins game)P (i wins match|i loses set)

+P (i loses game)P (i wins set|i loses game)P (i wins match|i wins set)

+P (i loses game)P (i loses set|i loses game)P (i wins match|i loses set).

Exactly the same logic can be applied should the match be in a tie-break instead

of a game.

Plots of these smaller Markov chains are shown in Figures 2.3.2, 2.3.3, 2.3.4 and

2.3.5, including a different version of the Markov chain for a game to that shown in
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Figure 2.3.1. When observing the Markov chain for a game, it can be noticed that

the state “40-30” has exactly the same transition probabilities as state Adi, which

denotes advantage to player i. Should player i win the point, they also win the game,

or else the deuce state is reached. These states can therefore be merged to reduce

the size of the Markov chain without losing any information. Similarly, state “30-40”

can be merged with state Adj, which leaves state “30-30” with identical transition

probabilities to the deuce state, and thus these can be merged too. Similar arguments

can be made to reduce the size of the set Markov chain too.

s1

s1

s1

s1

1−s1

1−s1

1−s1

1−s1

0−0

1−0

0−1

1−1

W1

W2

s1

s1

s1

s1

s1

s1

s1

s1

s1

1−s1

1−s1

1−s1

1−s1

1−s1

1−s1

1−s1

1−s1

1−s1

0−0

0−1

0−2

1−0

1−1

1−2

2−0

2−1

2−2

W1

W2

Figure 2.3.2: Markov chains representing tennis matches of three sets (left) or five sets (right).

State Wi represents player i having won the match, and the probability of player i winning a set is

si for i = 1, 2.
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Figure 2.3.3: A Markov chain representing a normal set in a tennis match. State Wi represents

player i having won the set, and the probability of player i winning a game on serve is gi for i = 1, 2.
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Figure 2.3.4: An alternative but equivalent Markov chain to 2.3.1 representing a game of tennis

in which player 1 is serving. States Wi represents player i having won the game, Adi represents

advantage to player i and D represents deuce for i = 1, 2. The probability of player 1 winning a

point on serve is p1.
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Figure 2.3.5: A Markov chain representing a tie-break in a tennis match. State Wi represents

player i having won the tie-break, and the probability of player i winning a point on serve is pi for

i = 1, 2.

The assumptions of independence and identical distribution are important ones,

and greatly ease the calculation of in-play probabilities. However, there are legitimate

causes for questioning both. For example, independence may be violated if players

let losing a point negatively (or indeed, positively) impact the next point. Similarly,

it has been hypothesised that players react differently to the most important points

in the match - some may thrive, while others crumble under the pressure, leading to

different probabilities of winning depending on the current score. A study of these

assumptions was conducted by Klaassen and Magnus (2001) using a binary panel data
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method.

The study examined independence by considering whether the winner of one point

affected the probability that each player won the next point (after controlling for

player quality). Identical distribution was tested for by considering the importance

of the point, defined as how much a player’s probability of the match is affected by

the next point, assuming the iid model is correct. It has been suggested that players

may perform worse under at important points due to the pressure caused by the high

stakes involved. The importance of points will be discussed in greater detail in Section

2.3.3.

The study rejects both the hypotheses of independence and identical distribution,

suggesting dependence between successive points and a reduction in server quality at

important points. However, they also suggest that, based on other results in the paper,

that making these assumptions in forecasting tennis matches is “relatively harmless”,

even in-play, given that the divergence from the iid assumptions is only small. Given

that these assumptions allow us to build a Markov chain framework, rendering the

calculating of in-play probabilities much easier, the trade-off seems reasonable, as long

as it is acknowledged that this may lead to some minor discrepancies.

There are some ways in which the study could be updated and improved upon.

The study was conducted using four years’ of Wimbledon data from 1992-1995. The

authors admit that it is unclear whether the results are generalisable to other surfaces,

and the divergences from the iid assumption may also have changed in the 25 years

since. One difficulty the authors note is the availability of point-by-point data. In

the years that have passed since, this may have become less of an issue. For example,

the data available at github.com/JeffSackmann appears to be a promising source of

point-by-point data for Grand Slams from 2011-2018.

Additionally, there may be scope to measure player quality in other ways. The

definition used was Ri = 8 − log2(ri), as in Klaassen and Magnus (2003), where ri

denots a player’s world ranking. Our literature has discussed many different ways of

github.com/JeffSackmann
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measuring a player’s quality to ranking based methods, and an alternative measure

may lead to different results. Finally, the only form of independence considered is the

dependence of one point on the next. While this effect may be small, the effect of

longer term dependence is not studied, such as whether the winner of a point affects

the winner of the second or third next point to be played, or whether losing multiple

points can dent a player’s confidence further down the line. It is possible that while

the effect from one point to the next is small, dependence may build up over time in

a manner not captured by considering adjacent points.

The work of Klaassen and Magnus (2001) therefore represents an important study

of the assumptions that points are independent and identically distributed, and their

findings give us some confidence that these assumptions are reasonable in the context

of making in-play predictions for the results of tennis matches. However, with appro-

priate point-by-point data there is scope to further test some of the effects on more

modern data, which may shed additional light on the validity of the iid assumptions.

2.3.2 Estimating Point-Win Probabilities

This hierachical Markov chain model gives a framework for estimating probabilities

of players winning a match given the players’ probabilities of winning points. How-

ever, in order to apply this in practice, one obviously needs good estimates for these

probabilities of winning points.

One simplification that can be made is to assume a relationship between pij and pji.

It has been noticed by several authors, for example Klaassen and Magnus (2003), that

the average probability of the two players winning a point on serve, µij := 1
2
(pij +pji),

is not very informative about the pre-match probability of players winning points. In-

stead, it is mainly the difference between these probabilities, λij := 1
2

(
pij − pji

)
, that

is informative about match-win probabilities. This can be seen in Figure 2.3.6. Using

the same four years of Wimbledon data, Klaassen and Magnus (2003) and Magnus

and Klaassen (1999) both suggested the average point-win probability was around
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64.5% for men and around 56% for women. These therefore provide sensible values

to use for µij, particularly on grass courts, the surface used at Wimbledon.

In Chapter 3, we shall prove that for fixed µij, the pre-match win probability

Figure 2.3.6: The probability mij of player i winning a 3-set tennis match compared with the

parameters pi and pj (left) and µij and λij (right) at the start of a tennis match. (Each player has

0 sets, 0 games and 0 points).

function m(λij|µij, s, b) := P (i wins|µij, λij, s, b) is invertible, for all scores s in a

best-of-b-sets match. This means that if the pre-match probability of i winning the

match is known, this specifies unique λij that can be used to estimate the probability

i wins from all other scorelines.

We must be careful about using this method in-play though, when µij can affect

match-win probabilities, especially if one player is winning near the end of a match.

This effect can be seen in Figure 2.3.7. If µij is high, and hence pij and pji are also

high, then player who is losing is unlikely to obtain the break of serve required to

level the scores. On the other hand, if µij is low, there is a much greater chance of

serve being broken, giving the losing player a better chance of catching up.

Barnett and Clarke (2005) uses data from the ATP website to find a players’

career averages of points won and lost on serve. (At the time, return averages had to
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Figure 2.3.7: The probability mij of player i winning a 3-set tennis match compared with the

parameters pi and pj (left) and µij and λij (right) when each player has 1 set, player i is winning

the final set by 2 games to 0, and the points score is 0-0.

be estimated from a combination of relevant data and some minor assumptions , but

extra data now available on the website means players’ career average for points won

on return is now also readily available.)

Each player i has parameters p̄i and q̄i, which respectively denote proportion of

points won on serve and return across all matches against all opponents their whole

career. To instead estimate pij - the probability player i wins a point on serve against

player j - the quality of player i’s serve and player j’s return must be taken into

account. Even a weak server may win many points on serve against a player with an

even worse return. Surface may also play an important factor in the amount of points

players win on serve.

In order to account for the above when modelling a match between two players,

Barnett and Clarke (2005) begin by taking µij as the average points won on serve and

return for all players at the same tournament the previous year, p̄t and q̄t = 1 − p̄t.

This provides a baseline mode which should account for differences in surface, as

well as any differences that may caused by the level of the tournament (for example,
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whether it’s a Grand Slam or a lower level event). For each of player i and j, the

values p̄t and q̄t are modified by how much better players i and j are than the average

player, where average return and serve percentages for all players are denoted by pav

and qav. The formulae for this are

pij = p̄t + (p̄i − pav)− (q̄j − qav),

qij = q̄t + (q̄i − qav)− (p̄j − pav).

Note that since p̄t + q̄t = 1 by definition, the essential property that pij + qji = 1 (and

vice versa) is also achieved. On a technical level, it may be worth noting that there

is no mechanism to ensure that all of the estimated probabilities lie in [0,1], though

the statistics available for each player are typically similar enough to each other that

this is not an issue.

One drawback is in the implicit assumption that players’ average points won and

lost on serve are directly comparable with other players’. Weak players may win

many matches at low-level tournaments, but consistently get knocked out by the first

opponent they face in large tournaments. Stronger players, on the other hand, may

play in fewer small tournaments and advance further in larger tournaments, only to

lose to opposition of a far higher calibre than the weaker player ever encountered. The

fact that strong players play against stronger opponents than weaker players mean

comparing points won and lost on serve between the two may not always be valid. A

player’s career average of points won and lost on serve is also not ideal, as it gives

equal weight to older data and to newer, more relevant data.

A slightly different approach is taken by Knottenbelt et al. (2012). To counteract

the fact that the average opponent for a given pair of players may be quite different

(since stronger players will play more matches against strong players), Knottenbelt

et al. (2012) choose to compare pairs of players by only considering other players that

both have played recently. These are the players’ “common opponents”. To avoid the

problem of mixing older, irrelevant data with newer data, only the two players’ last

50 matches on the appropriate surface are used.
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For a common opponent k, the proportion of points each of player i and j won or

lost against k is found. Let p̂ik be the observed proportion of points won on serve by

player i against player k, and so on for other probabilities. Let ∆ij|k be the estimate

for the superiority of player i over player j given how well they both did against player

j. This is defined as

∆ij|k = (p̂ik − p̂jk)− (q̂jk − q̂ik).

Whereas Barnett and Clarke (2005) decided to use the previous year’s tournament’s

average, pt, as a baseline value, Knottenbelt et al. (2012) use 0.6, but apply it in a

different manner. To obtain point-win probabilities for player i, Knottenbelt et al.

(2012) considers that ∆ij|k could be added either to the baseline serve probability,

0.6, or the baseline return probability, 0.4. The approach taken is to average the

match-win probabilities obtained by doing both, so that

p
(1)
ij|k := 0.6 + ∆ij|k, q(1) := 0.4,

p
(2)
ij|k := 0.6, q(2) := 0.4 + ∆ij|k,

mij|k :=
1

2

(
m(p

(1)
ij|k, 1− q

(1), b) +m(p
(2)
ij|k, 1− q

(2), b)
)
.

To link this back to our earlier notation of µij and λij, we would let λ
(n)
ij|k = 1

2
(p

(n)
ij|k −

p
(n)
ji|k) and µ

(n)
ij|k = 1

2
(p

(n)
ij|k+p

(n)
ji|k) , for n = 1, 2. This would give λ

(n)
ij|k = 1

2
∆ij|k, for n = 1

and n = 2, while µ
(1)
ij|k = 0.6 + 1

2
∆ij|k and µ

(2)
ij|k = 0.6− 1

2
∆ij|k.

If players i and j have nij common opponents, this process is repeated for all

common opponents k to get nij predictions for the match. The model estimate for

the probability player i beats player j, which we call m̄ij, is the average of all of these

predictions, so that

m̄ij =

nij∑
k=1

mij|k.

The main example described by Knottenbelt et al. (2012) is a match between

Vania King and Greta Arn. Bookmakers gave King an implied probability of 48%



CHAPTER 2. LITERATURE REVIEW 45

of winning the match, suggesting the two players were well-matched. However, for

the players’ ten common opponents, the values of mij|k ranged between 0.62% and

99.99%. Of the predictions, only 6 were between 1% and 99%, with none between

30% and 70%. The average was 59%.

No comment is offered on why the probabilities are so extreme. However, in the

example provided of King and Arn’s common opponent, an examination of the serve

and return proportions against there common opponents provided suggests that ex-

treme probabilities can easily arise when one player performs well against a common

opponent and the other performs poorly.

With such a disparate range of probabilities provided by these mij|k, it is surprising

that they can be relied upon to consistently provide reasonable average predictions for

the matches. The authors note the extreme probabilities, and as a result suggest that

predictions made with a small number of common opponents should be treated with

caution, though they believe this is typically not an issue in matches between active

professional players. However, they were only able to predict 1228 of the matches

(56.5%) they considered if the common opponents needed the same surface, or 1873

(86.2%) if not, due to a lack of common opponents. This suggests a lack of common

opponents is frequently an issue. This may be acceptable if one wishes simply to make

a positive return on betting, but it presents a serious obstacle if one wishes to make

predictions for all matches, as we would need in attempting to detect match-fixing.

This model was tested with a simple betting strategy, and obtained returns of

3.8% over 2173 matches in one year if keeping the same surface, or 3.41% using

any surface. At different men’s and women’s Grand Slam tournaments in 2011, bet-

ting returns ranged from -23.94% to 32.50%, suggesting returns are very variable

over modest numbers of matches. Each Grand Slam tournament has 127 matches.

McHale and Morton (2011) sound a note of caution in using betting returns as a

measure of model performance, observing that betting strategy and shopping around

for favourable odds can be as important for obtaining positive returns as the qual-
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ity of model predictions. Nevertheless, the positive returns obtained suggests that

the model has promise, though its inability to consistently provide predictions on all

matches limits its usefulness in detecting match-fixing.

2.3.3 Variations to the IID Markov Chain Model

A few authors have suggested alterations to this basic Markov chain model. However,

none that we have found do it with the specific goal of improving in-play forecasting.

Some focus on pre-match forecasting, while others explore the assumptions of inde-

pendence and identical distribution in general rather than the specifics of applying it

to forecasting individual matches.

Some papers aim to approximate the idea of momentum in a match - the idea that

a player that performs better than expected earlier on will continue to do so later in

the match. Barnett et al. (2006) suggest that a player that has won more sets than

their opponent increases their chance of winning future sets by a small amount α >0

common to all matches. This does not affect pre-match probabilities, and appears

to improve the fit for the lengths of sets and matches, though the effect on in-play

probabilities is not examined.

Meanwhile, Madurska (2012) attempts to achieve a similar effect by looking at

how individual player’s scores in a first set affected their second-set scores, and so on.

For example, if a player wins their first set 7-6, do they tend to win the second set

more convincingly, or crumble under the pressure? What if they won 6-0 instead?

To fit this for a given player, Madurska (2012) looks at a player’s past matches to

find the average maximum likelihood estimator for λ in set n+ 1, conditional on each

possible scoreline in set n. In a match between two players, the authors then lay out

a procedure for how to combine the conditional maximum likelihood estimates for

these players in a way that takes into account both of their past behaviours, in the

hope that how the players reacted to winning or losing sets in past matches can be

used to make predictions about how those players might react in future matches.
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To ensure the matches considered are relevant to the current time, only a player’s

last 50 matches are used to fit the model. However, since there are 14 unique possible

scorelines in a set, each is observed infrequently in those 50 matches, making estima-

tion of the sizes of these effects difficult. In addition, when looking at past data, no

alteration is made based on the strength of the opponent. This means it is not clear

how much of the dependence between scores in successive sets is simply down to the

quality of the opponent, rather than a player-specific reaction to adversity or triumph.

The authors do, however, note some improvements in predictive performance when

using this model compared with using iid Markov chains and the common-opponent

model of Knottenbelt et al. (2012).

Other papers attempt to include the idea of the importance of certain points in

the match. This is the notion that at key points which can shift the balance of the

whole match, probabilities might be different to typical points. This is potentially due

to players trying harder on these points, as they realise the huge benefit that can be

gained at these key moments. It seems sensible that a player who is serving at 30-40

to prevent a break of service in a tight match will see more benefit in winning that

point than a player returning while losing 40-0 in a match they are already losing

heavily. However, while the importance of points has been studied, very little has

been done to fit a predictive model that incorporates this idea.

Morris (1977) was the first to introduce a mathematical definition of the impor-

tance of a point. Let Gi(ps, s|a, ai) denote the probability player i wins a game given

the server is player s ∈ {i, j}, and has point-win probability ps, (so that the returning

player has point-win probability 1−ps), and players i and j have won ai and aj points

in this game respectively. The importance of a given point to a typical game to player

i is then defined as

IPi (ai, aj|ps, s) = Gi(ps, s|ai + 1, aj)−Gi(ps, s|ai, aj + 1).

This is difference in the probability of winning the game depending on whether

player i wins or loses the current point. If the probability of winning the game



CHAPTER 2. LITERATURE REVIEW 48

after winning the point is much greater than if the point is lost, then the point is

important due to its huge value, whereas if the probability of winning the game is

largely unaffected by who wins the next point, then it is unimportant.

The importance of a game to a typical set and the importance of the set to a

match are defined similarly, given the current score of bi and bj games apiece in the

current set, and ci and cj sets each. To find the importance of a point to the match

as a whole, the relevant point, game and set probabilities are multiplied, yielding the

definition

Ii(ai, aj, bi, bj, ci, cj|pi, pj, s) = IPi (ai, aj|ps, s)IGi (bi, bj|pi, pj))ISi (ci, cj|pi, pj)

Morris (1977) explores a number of properties of this definition. Importance is

always positive, and each point is equally important to each player. Morris (1977)

also finds that the most and least important point in each game are 30-40 and 40-0

respectively, for typical point-win probability pi=0.64. This leads to the interesting

result that if a player manages to increase their probability of winning the most im-

portant point in each game by some small ε > 0, and decrease their probability of

winning the least important point by the same ε, then their probability of winning

the match increases. Of course if the most important point generally occurred more

frequently in the match than the least important, then it would be possible that this

result was simply due to the average probability of player i winning a point becoming

higher than pi (since the probability player i won a point was more likely to be pi + ε

than pi−ε). Morris (1977) account for this by multiplying the increases and decreases

in point-win probability by the expected frequency of the most and least important

points in a game respectively, so that the average point-win probability remains at pi,

and find that the results still hold.

Newton and Aslam (2006) and Viney (2015) both do more work on this idea, ex-

ploring how much the value of ε affects match-win probabilities though they do not

account for how often the most and least important points occur.

Though these results are interesting from a strategy perspective, they do not seem
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as applicable to fitting a model. Should both players attempt to raise their point-win

probability in this manner, what would happen? A model would be required to es-

tablish which players are better able to raise their probabilities of winning points.

Klaassen and Magnus (2001)’s findings suggest that at important points, it is gen-

erally the returning player that manages to increase their point-win probability, with

the server’s probability decreasing. More importantly, they also find that this effect is

weaker among stronger players: that the very best players can avoid ceding too much

advantage on the most important points. However, their focus is on investigating the

iid hypothesis rather than predictive modelling, and thus there is no further discussion

on how to fit such a predictive model. To do so, one would probably either require

player-specific parameters that describe reaction to important points, or at the very

least a model common to all players that describes the relationship between players’

strength and their reaction to important points.

One paper that attempts to provide a predictive model that touches on the idea

of important points is that of Carrari et al. (2017). They choose to relax the assump-

tion that each player i has point-winning probability pij while serving throughout

the match against player j. Instead, the player normally wins a point while serving

with probability pij, or with an adjusted probability p̃ij if the score has reached 30-30

or later. A Markov chain representing this system is shown in Figure 2.3.8. This

change represents how players might behave differently under pressure at the end of

a close game, and bears many similarities with the idea of importance as defined by

Morris (1977). Recall that 30-30 can be considered to be the same state as a deuce,

as explained in Section 2.3. This model shall henceforth be referred to as the “deuce

model”.
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Figure 2.3.8: A Markov chain representing a game of tennis. States Wi represents player i having

won the game, and Adi denotes advantage to player i. The probability of player 1 winning a point

on serve is p1 before both players have reached 30 points, and p̃1 after.

To fit this model for a match between a given pair of players, only matches between

those two players in the past are counted. The probabilities pij and p̃ij are estimated

using the historical proportion between the players with data available from ten-

nisearth.com, which provides point-by-point updates of ATP and WTA matches up

to 2014.

Carrari et al. (2017) fit and test this model using matches between just three ten-

nis players - Djokovoic, Federer and Nadal - as these three have played a large number

of matches between each other, and estimates using a small number of matches are

unreliable. These three have played a total of 57 matches in the dataset. It would
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also appear to be helpful that these three players have remained broadly consistent

in quality for around ten years. If one were to take a pair of players whose rankings

have fluctuated more wildly over the years, then averaging across their whole career

might not be as sensible.

On this small sample, the results section notes that the deuce model produces

game-win probabilities closer to the observed game-win proportions for 5 out of the 6

possible combinations of each of the three players serving to another other. They also

compare average game lengths with expected game lengths. Expected game length is

different depending on whether the server or returner wins the game. With 3 players,

there are therefore 12 possible combinations of server, returner and game winner, and

the deuce model is found to produce closer expected game lengths to the observed

average in 9 of these cases. These results are promising, but it seems as if a more

formal likelihood-based approach would provide significantly more evidence for these

claims.

The model has yet to be extended to predicting outcomes between all possible pairs

of players. One of the previously discussed strategies for estimating point-win proba-

bilities could probably be adapted to this setting using data from tennisearth.com,

splitting points into those before and after 30-30. However, many of the problems

discussed with previous methods (such as ensuring old data does not skew averages,

while gathering enough data to get meaningful results) would persist. Moreover, hav-

ing to estimate two probabilities per player, pij and p̃ij, would only leave around half

as much data to estimate each. It is therefore not yet known whether these results

hold over a wider range of players.

While the idea of the deuce model remains an intriguing and promising idea, the

current lack of a large-scale set of results and the challenges involved in fitting the

model mean it is not an idea explored further in this thesis. Our own results, in

general, are of sufficient quality that the need to investigate this idea further is not

pressing.

tennisearth.com
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2.4 A Comparative Study - Kovalchik (2016)

In order to compare some of the different predictive models available, Kovalchik (2016)

took several different models and applied them to ATP data from the 2014 season.

The author considered several of the regression-based models considered in Section

2.2.1, the paired comparison methods of McHale and Morton (2011) and Morris and

Bialik (2015) discussed in Sections 2.2.2 and 2.2.3, and a few different Markov chain

models described in Section 2.3. These models were also compared with a model

that took the average of several bookmaker’s odds in order to compare these model’s

performance to market predictions.

The models were all trained using data from the 2013 season with the aim of pro-

viding a fair comparison between models. For Markov chain based models, in which

player strengths are essentially estimated using an average of recent form, there is a

challenge involved in choosing enough data that a representative picture of a player’s

abilities can be created without including data from so long ago that it no longer re-

flects current form. For regression based methods that use player’s ranks and the like

as covariates, information is pooled from across all different matches in the training

data, irrespective of the identities of the individual players. As such, even though the

use of more data may be relevant and useful, it may also be true that one year’s data

is sufficient to reliably estimate patterns across all tennis players.

However, the paired comparison methods of McHale and Morton (2011) and Mor-

ris and Bialik (2015) are designed to include more data from player’s entire careers,

and so using a single year’s data does not represent best practice. They are designed

to focus on recent matches but also use information from older matches. Because of

this, the method of McHale and Morton (2011) was also tested using two years of

data, and the method of Morris and Bialik (2015) was tested using players’ entire

career histories. Both models were also tested using just a single year’s training data

to provide a fair comparison with the other methods that used one year’s data.

The most accurate of all models was the bookmaker consensus model, indicating
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that the odds remain one of the most reliable predictors of tennis matches. One

implication of this for our work is that if we wish to identify suspicious matches by

comparing odds to match-win probability estimates, there will be matches when dif-

ferences occur simply because the odds provide a better reflection of player strength

than our models. This is typically because they can utilise information that is difficult

to incorporate into models, such as injury news. As such, not all differences between

odds and predictions are suspicious.

Of the tennis models used, the paired comparison method of Morris and Bialik

(2015) with entire career histories was the best by every performance criteria where

objective ranking was possible. The precise ranking of the next few models depended

on the performance criteria used, but some of the stronger models that came the

closest were the Markov chain-based method of Barnett and Clarke (2005), several of

the regression-based methods, and Morris and Bialik (2015)’s model using just one

year of data.

Kovalchik (2016) draws several conclusions from their results. First and foremost,

they suggest that Elo-based can be very strong in modelling tennis matches. The abil-

ity to incorporate career histories can give them an edge over other models, but are not

necessary to provide comparable performance. The best Markov chain-based method,

used by Barnett and Clarke (2005), adjusted the point-win probability on serve based

on the quality of their opponent, which appeared to give a significant advantage, as

one might expect. Among regression-based methods, using player rankings as a pre-

dictor provided the best performance, but the use of further predictors provided no

tangible benefit. Interestingly, all of the methods provided better predictions for high-

ranked players than low-ranked players. The author does not hypothesise why, but

possible explanations may be a greater availability of data, and greater consistency

in performance, for high-ranked players.
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2.5 Summary

This literature review has focused on two main areas, match-fixing and tennis mod-

elling. Our match-fixing review began with a broad discussion of the tools available to

detect match-fixing. The main idea underpinning all statistical investigations was to

construct models for the usual behaviour of data in clean matches, analyse the data

to see if it conforms to expectations, before carefully examining the possible causes

of any differences.

Odds data are one promising source of information about potential match-fixing.

When matches are clean, the odds for a given player or team in a betting market

should reflect the perceived probability that that player wins. As such, the probabili-

ties inferred from the odds should be close to good predictions of the probability that

that player or team wins. In a fixed match, the money wagered by the fixed match

may swing the market, causing observable differences that we seek to identify.

Several papers analysed betting markets to find evidence of suspicious odds move-

ments, but almost all focussed on the pre-match markets. Some works focussed on

the differences between the closing pre-match odds and model predictions in their re-

spective sports, such as the work of Reade and Akie (2013) Reade (2014) and Ötting

et al. (2018) in football, as these should be similar in efficient markets. Ötting et al.

(2018) also analyses betting volumes in football, as fixed matches may see significantly

higher betting volumes. A similar approach could work in tennis, and could represent

an interesting alternative avenue of work to the research into odds we present, but it

we chose not to pursue it any further.

Other works focus instead on swings in pre-match markets, which suggest a sus-

tained pattern of gambling contrary to bookmakers’ original expectations - a possible

sign of match fixing. Rodenberg and Feustel (2014) and Blake and Templon (2016)

analyse swings in pre-match markets in tennis matches, while Feustel and Rodenberg

(2015) considered the same issue football matches.

Focussing only on the swing in pre-match markets neglects the fact that odds may
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naturally move very rapidly when betting volume is low on betting exchanges, as the

first tentative gambles are made before the market settles. As such, we hope to use

time-stamped pre-match market data with volume information to ignore these early

fluctuations, and instead analyse large swings once the market has settled.

Another form of pre-match market analysis is the study of point-spread markets

in basketball, with a comparative multitude of papers discussing this issue. In con-

trast to the other analysis of betting markets we have considered, these attempted

to estimate the rate of match-fixing by analysing the shape of the distribution of the

differences between observed margins of victories and points spreads. The challenge

lies in describing the behaviour of this distribution in both the presence and absence

of match-fixing, with different authors hotly disputing the evidence available.

However, apart from the work of Forrest and McHale (2019), there appears to be

no significant discussion of the detection of in-play match-fixing in any sport. This

appears to be a significant oversight, given how large the in-play markets in sport have

grown. Forrest and McHale (2019) focusses on a general discussion of the issue with

some examples, but is unable to disclose the proprietary algorithms used to analyse

market anomalies. The analysis of in-play markets in tennis therefore represents a

significant potential research area, as so little analysis in the area has been conducted,

and the potential for finding corrupt activity is strong.

We also considered a few works which analysed factors other than betting mar-

kets. Rodenberg and Feustel (2014) suggested low player effort in early rounds of

tennis tournaments could be a sign of match-fixing. However, the focus is on the rate

of match-fixing rather than identifying individual matches. We therefore chose not

to pursue this avenue further, as we felt that the analysis of betting markets could

more easily provide evidence of potential match-fixing by individuals, so as to give

the best chance of removing fixers from the sport. Deutscher et al. (2017) analysed

whether the choice of referee impacted the average number of goals in German foot-

ball matches, suggesting that the market for the number of goals may be fixed, while
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Duggan and Levitt (2000) examined whether sumo wrestlers may fix their final bouts

in tournaments when only one player had any meaningful incentive to win. These

last two papers do not easily translate to a tennis context, and so need no further

direct consideration in this thesis. However, all three of these works are illustrative

of the wider spectrum of methods available to match-fixing investigators, who need

not necessarily rely on betting markets alone to identify corruption.

The second literature review concerned tennis modelling. We considered a range

of models, with some focussing on pre-match predictions while others some focussed

on predictions in-play.

Kovalchik (2016) performed the most comprehensive study of tennis models to

data, considering a range of regression based models, Markov chain models and paired

comparison models. Morris and Bialik (2015)’s method provided the strongest predic-

tive accuracy, partly due to its ability to incorporate more data from players’ career

histories, though it still performed well using just a single year of data. This suggests

strong potential for other Elo-based methods that can also use players’ career histo-

ries. The authors note the existence of other Elo-based methods such as the Glicko

ratings, and suggested further work may include adapting such methods to a tennis

context.

In a match-fixing context, Glicko ratings have the intriguing property of being

able to assign different variances to the ratings of different players depending on the

availability recent information. This in turn can be used to assign uncertainty to the

estimated probability of each player winning. In a match-fixing context, this gives a

statistical basis for assessing how much variance in the win probabilities implied by

the odds is usual, based on the probabilistic distributions of win probability provided

by the Glicko ratings. Additionally, if a player has returned from a long injury, it

may be difficult to estimate their strength, and thus a correspondingly large amount

of uncertainty may be assigned to the estimate of their strength. DW on Sport (2016)

note that some large odds swings can be explained by players returning from a long
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injury. Glicko ratings therefore seem a strong candidate for use in our work, providing

they can be adapted appropriately to a tennis context.

In-play modelling in tennis is centred around the assumption that points are inde-

pendent and identically distributed. Under the assumption of independence, it is easy

to construct a Markov chain representing a tennis match, in which each state repre-

sents a score. Klaassen and Magnus (2001) performed a key study on the validity of

these assumptions and found evidence for dependence between successive points and

different behaviour at important points in the match. However, they note that the

impact of assuming that points are iid is small, and makes little practical difference

for in-play forecasts of tennis matches.

Other studies have considered whether predictive performance can be included

by relaxing these assumptions. Morris (1977), Newton and Aslam (2006) and Viney

(2015) studied the importance of points without attempting to use it in predictive

modelling. Madurska (2012) attempted to model the dependence of successive set

scores, and Carrari et al. (2017) considered modelling points after a deuce differently

to points before. While both present intriguing ideas, we felt that both of these meth-

ods required more robust testing before being put to use, and hence we felt it best to

use the assumptions of independence and identical distribution in all of our work to

follow. There is, however, substantial scope to further research the iid assumptions

and ways to improve in-play tennis modelling, especially given that point-by-point

data are more readily available than when Klaassen and Magnus (2001) performed

their original study.
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Proofs of Results About Tennis

Match Markov Chains

In Section 2.3 we discussed Markov chains representing tennis matches. By assuming

that the outcomes of all points in a match are independent and identically distributed,

and representing each possible score as a state in a Markov chain, it is possible to

estimate the probability of each player winning the match given the probabilities, p1

and p2, that each of the two players wins a point on serve. Section 2.3.2 discussed the

common simplification of reparameterising the model so that p1 = µ+λ and p2 = µ−λ,

since for fixed λ, the value µ has little impact on the pre-match probability of either

player’s victory.

Later work in this thesis requires that the function m(λ|µ, s, b) is invertible in

λ on the interval (0,1) for all µ, s and b, where m(λ|µ, s, b) is the probability that

player 1 wins a tennis match given µ, λ and the current score is s in a best of b-sets

match. A sufficient condition for a function to be invertible is that it is continuous

and increasing in λ. Some papers in the literature perform numerical inversion of

m(λ|µ, s, b) without proving the existence of an inverse - for example, see Klaassen

and Magnus (2003). A proof that this is possible does not appear to be available.

Numerical inversion of this function has led to no practical problems, mainly due to

58
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the fact that the function is indeed invertible. However, we prove this result and

present it here for a few reasons. Firstly, the existence of a proof is reassuring to

those uncomfortable inverting a function without proving the existence of an inverse.

Additionally, the proof is interesting in itself, and it adds to the current literature on

modelling matches in tennis and other sports.

This chapter therefore details a proof of this for a general class of Markov chains

using inductive arguments, and we then use these results to show that the proof also

holds for games, tie-breaks, sets and matches, thus enabling us to prove the general

result that m(λ|µ, s, b) is invertible for use elsewhere in this thesis.

Proving that m(λ|µ, s, b) is increasing in λ is essentially proving that the higher

a player’s probability of winning a point on serve is than their opponent’s, the more

likely they are to win the match. In order to prove this, we shall also prove that

under the Markov chain model, winning a point always improves a player’s chance

of winning the match. While both of these facts appear obvious in a tennis context,

proving their truth mathematically under the Markov chain model is not trivial, and

poses some interesting challenges.

3.1 Continuity of m(λ|µ, s, b)

To prove that m(λ|µ, s, b) is invertible, we must first prove that it is continuous. In

order to do this, we recall that

m(λ|µ, s, b) = m(p1, p2|s, b) := P (1 wins match |p1 = µ+ λ, p2 = µ− λ, s, b).

We must therefore prove that m(p1, p2|s, b) is continuous in µ and λ.

Recall from the earlier equation (2.3.1) that m(p1, p2|s, b) can be broken down if
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players 1 and 2 are currently playing a game during a match as

P (1 wins match|s, b) = (3.1.1)

P (1 wins game)P (1 wins set|1 wins game)P (1 wins match|1 wins set)

+P (1 wins game)P (1 loses set|1 wins game)P (1 wins match|1 loses set)

+P (1 loses game)P (1 wins set|1 loses game)P (1 wins match|1 wins set)

+P (1 loses game)P (1 loses set|1 loses game)P (1 wins match|1 loses set),

or similarly if the players are playing a tie-break. Each of these sub-probabilities can

be calculated by using the appropriate Markov chain from Section 2.3 for games, sets,

tie-breaks or matches. Section 2.3 described how if the appropriate Markov chain has

transition matrix

P =

 Q R

0 I

 ,

then a matrix B giving absorption probabilities from each state to the states in which

each player won the contest is given by

B = (I −Q)−1R. (3.1.2)

Since all probabilities in P are continuous functions of p1 and p2, the absorption

probabilities in B are also continuous functions of p1 and p2, due to being compositions

of continuous functions. Inputting these into equation (3.1.1), we can therefore see

that m(p1, p2|s, b) is continuous in both p1 and p2, and hence m(λ|µ, s, b) is continuous

in λ for all µ, s and b.
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3.2 Monotonicity of m(λ|µ, s, b)

In order to prove that m(λ|µ, s, b) is increasing in λ, we first note by the chain rule

that

dm(λ|µ, s, b)
dλ

=
dm(p1, p2|s, b)

dp1

dp1

dλ
+
dm(p1, p2|s, b)

dp2

dp2

dλ

=
dm(p1, p2|s, b)

dp1

− dm(p1, p2|s, b)
dp2

.

To prove that dm(λ|µ,s,b)
dλ

> 0, it is sufficient to prove that dm(p1,p2|s,b)
dp1

> 0 and

dm(p1,p2|s,b)
dp2

≤ 0. We shall only prove that dm(p1,p2|s,b)
dp1

> 0 - the proof that dm(p1,p2|s,b)
dp2

<

0 follows similarly.

In order to prove this, we first formalise the concepts in equation (3.1.1). Let

s = (x1,x2,x3), be the current score, where x1 is a vector of the number of sets

each player is on, x2 the number of games and x3 the number of points. We then let

m1(x1,x2,x3) be the probability player 1 wins the match from score s = (x1,x2,x3),

dropping the dependence on p1 and p2 for brevity. Then equation (3.1.1) becomes

m1(x1,x2,x3) = g1(x3) s1(x2 + (1, 0),0) m1(x1 + (1, 0),0,0)

+ g1(x3)
(
1− s1(x2 + (1, 0),0

)
m1(x1 + (0, 1),0,0)

+
(
1− g1(x3)

)
s1(x2 + (0, 1),0) m1(x1 + (1, 0),0,0)

+
(
1− g1(x3)

)(
1− s1(x2 + (0, 1),0

)
m1(x1 + (0, 1),0,0),

where 0 = (0, 0). Note also that each of these probabilities also depends on the player

that is currently serving, but without loss of generality we can assume that player 1

is serving, and so we also drop this notation for brevity.

We wish to prove that

dm1(x1,x2,x3)

dp1

> 0 for all s = (x1,x2,x3).
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Taking this derivative and grouping terms, we see that

dm1(x1,x2,x3)

dp1

=
dg1(x3)

dp1

(
s1(x2 + (1, 0),0)− s1(x2 + (0, 1),0)

)
×(

m1(x1 + (1, 0),0,0)−m1(x1 + (0, 1),0,0)
)

+
ds1(x2 + (1, 0),0)

dp1

g(x3)
(
m1(x1 + (1, 0),0,0)−m1(x1 + (0, 1),0,0)

)
+
ds1(x2 + (0, 1),0)

dp1

(1− g(x3))
(
m1(x1 + (1, 0),0,0)−m1(x1 + (0, 1),0,0)

)
+
dm1(x1 + (1, 0),0,0)

dp1

(
g1(x3) s1(x2 + (1, 0),0)+(

1− g1(x3)
)
s1(x2 + (0, 1),0)

)
+
dm1(x1 + (0, 1),0,0)

dp1

(
g1(x3)

(
1− s1(x2 + (1, 0),0)

)
+(

1− g1(x3)
)(

1− s1(x2 + (0, 1),0)
))
.

Many of these terms are probabilities, and so are positive. There are a few exceptions,

and so to prove that dm1(x1,x2,x3)
dp1

> 0, we also need to prove that the following are all

positive:

dg1(x3)

dp1

> 0 for all x3. (3.2.1)

ds1(x2,0)

dp1

> 0 for all x2. (3.2.2)

dm1(x1,0,0)

dp1

> 0 for all x1. (3.2.3)

s1(x2 + (1, 0),0)− s1(x2 + (0, 1),0) > 0 for all x2. (3.2.4)

m1(x1 + (1, 0),0,0)−m1(x1 + (0, 1),0,0) > 0 for all x1. (3.2.5)

If the match is in a tie-break instead of a game, it is easy to show that this simply

requires the extra property

dt1(x3)

dp1

> 0 for all x3. (3.2.6)

In order to prove these, we will show that the Markov chains for games, sets, matches

(and tie-breaks) fall into a general category of Markov chains and prove general results
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about all Markov chains in this class. This will help us obtain the desired results,

proving that dm1(x1,x2,x3)
dp1

> 0 for all x1, x2 and x3.

3.3 First to (M + 1, N + 1) Markov Chain

Suppose that there is a discrete-time Markov chain in which M ×N of the states are

co-ordinates on a two-dimensional finite discrete grid, (m,n). These co-ordinates can

be thought to represent the number of points that two players have scored respectively,

and M and N are the largest number of points each player can win without winning

the contest. If a player 1 reaches M + 1 points while player 2 has less than N points,

they win the contest, represented by state W1. Similarly, if player 2 reaches N + 1

points while player 2 has less than M points, they win the contest, represented by

state W2. Other states may exist, but they can only be reached from the state (M,N).

From state (M,N), we assume that another point is played, and so the Markov chain

reaches either state (M + 1, N) or state (M,N + 1). These states may simply be W1

and W2 respectively, as in the left-hand plot in Figure 3.3.1, or they may be distinct

states, from which yet other states may be reached, as in the right-hand plot. This

permits different behaviour in the Markov chain if after M +N points no player has

won.

At each time τ , the probability each player wins a point is a function of τ , as well

as two parameters representing the strength of each player, α1 and α2. If the contest

starts at time τ0, then time τ is always equal to τ0 +m+n. Without loss of generality,

we will use τ0 = 0. Importantly, the probabilities of winning points do not depend on

m or n. We define the transition probabilities more formally in Section 3.3.1, state

two theorems about the probability of player 1 winning the contest in Section 3.3.2

and use them to prove dm1(x1,x2,x3)
dp1

> 0 in Section 3.4 before proving the theorems in

Section 3.6.
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Figure 3.3.1: Two examples of “First to (M + 1, N + 1)” Markov chains.

3.3.1 Transition Probabilities

Let P (x, y) denote the transition probability of the Markov chain from state x to state

y. If m < M and n < N , the transition probabilities are given by

P
(

(m,n), (m+ 1, n)
)

= q(τ = m+ n, α1, α2),

P
(

(m,n), (m,n+ 1)
)

= 1− q(τ = m+ n, α1, α2),

P
(
(m,n), x

)
= 0 for all other states x.

If m = M and n < N , then

P
(

(M,n),W1

)
= q(τ = M + n, α1, α2)

P
(

(M,n), (M,n+ 1)
)

= 1− q(τ = M + n, α1, α2)

P
(
(M,n), x

)
= 0 for all other states x.

If m < M and n = N , then

P
(

(m,N), (m+ 1, N)
)

= q(τ = m+N,α1, α2),

P
(

(m,N),W2

)
= 1− q(τ = m+N,α1, α2),

P
(
(m,N), x

)
= 0 for all other states x.
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States W1 and W2 are absorbing states, that is

P (W1,W1) = 1,

P (W1, x) = 0 for all other states x

and P (W2,W2) = 1,

P (W2, x) = 0 for all other states x.

From state (M,N), we assumed that the Markov chain can only reach two states

(M + 1, N) and (M,N + 1). In some cases, these states may be simply be W1 and

W2 respectively, but in other cases they may be distinct new states. As with other

states of type (m,n), we assume that the transition probabilities from (M,N) are

P
(

(M,N), (M + 1, N)
)

= q(τ = M +N,α1, α2),

P
(

(M,N), (M,N + 1)
)

= 1− q(τ = M +N,α1, α2),

P
(
(M,N), x

)
= 0 for all other states x.

We also make the following assumptions about q(τ, α1, α2):

0 < q(τ, α1, α2) < 1,

dq(τ, α1, α2)

dα1

≥ 0, (3.3.1)

dq(τ, α1, α2)

dα2

≤ 0.

The first condition is partly in place to ensure that q(τ, α1, α2) is a probability, but

note the inclusion of strict inequalities rather than permitting equality. The proofs

that follow have not been completed in cases where q(τ, α1, α2) = 0 or 1 for some

values of τ . The second and third conditions ensure that player i’s probability of

winning a point is increasing in αi. For convenience, we tend to drop the dependence

on α1 and α2 and simply write q(τ, α1, α2) = qτ .

In order to prove the desired results, we will need to consider the absorption

probabilities of the Markov chain into state W1, that is the probability that player
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1 wins the contest. We let Q(m,n) denote the probability that player 1 wins the

contest from state (m,n), with the additional property that Q(M + 1, n) = 1 for

n < N and Q(m,N + 1) = 0 for m < M . These additional properties are required

since technically the state (M + 1, n) and (m,N + 1) do not exist. In this chapter we

will use the important property that this probability can be found by conditioning on

the winner of the next point, giving

Q(m,n) = qm+nQ(m+ 1, n) + (1− qm+n)Q(m,n+ 1).

3.3.2 Statement of Two Theorems on First to (M + 1, N + 1)

Markov chains

We define two assertions about the properties of Q(m,n), which we call A(m,n) and

B(m,n). These are defined as

A(m,n) : Q(m+ 1, n) > Q(m,n+ 1), (3.3.2)

B(m,n) :
dQ(m,n)

dα1

> 0. (3.3.3)

A(m,n) means that from score (m,n), a player 1’s chance of winning the contest

will be better if they win the next point than if they lose. B(m,n) means that at

score (m,n), a player 1’s chance of winning the contest gets higher as their chance of

winning the point increases (since qm+n is increasing in α1). These are very intuitive

ideas in a tennis context, but require some effort to prove in “First to (M +1, N +1)”

Markov chains.

We define two theorems and prove that they are true for all “First to (M+1, N+1)”

Markov chains. We will then discuss how this relates to tennis matches.

Theorem 3.3.1. If A(M,N) is true, then A(m,n) is true for all m ≤ M and all

n ≤ N .

Theorem 3.3.2. If B(M,N) is true, then B(m,n) is true for all m ≤ M and all

n ≤ N .
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These are proven at the end of this chapter in Section 3.6. In the meantime, we

use these theorems to prove equations (3.2.1) to (3.2.6) and hence that dm1(x1,x2,x3)
dp1

>

0.

3.4 Applying Theorems 3.3.1 and 3.3.2 to Tennis

Having proven these results, we wish to make use of them to prove that each of

equations (3.2.1) to (3.2.6) are true, hence proving the desired result, dm1(x1,x2,x3)
dp1

> 0

for all x1, x2 and x3.

3.4.1 Sets and Matches

A Markov chain for a match in which the states are the number of sets each player

has won is a very simple example of a “First to (M + 1, N + 1)” Markov chain. In

a best-of-b sets match that includes a final set tie-break, a player can win (b − 1)/2

sets without winning, and player 1 wins sets with probability s1, where s2 = 1 − s1.

Figure 3.4.1 shows plots of the relevant Markov chains. In summary,

• M = N = (b− 1)/2.

• α1 = p1, α2 = p2.

• q(τ, α1, α2) = s(p1, p2) for all τ .

This satisfies all of the conditions for the Markov chain, provided the conditions on

qτ in equations (3.3.1) are satisfied, namely 0 < s(p1, p2) < 1, (which simply requires

0 < p1 < 1 and 0 < p2 < 1) and ds(p1,p2)
dp1

> 0. This is equivalent to proving equation

(3.2.2).

Under the assumption that equation (3.2.2) holds, then in order to prove that

A(m,n) and B(m,n) are true everywhere in this Markov chain, we must simply prove

that they are true at (M,N). In any tennis match, the winner of the final set wins

the match. To prove A(M,N), we note that Q(M + 1, N) = 1 and Q(M,N + 1) = 0,
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Figure 3.4.1: Markov chains representing 3-set and 5-set tennis matches.

and since 1 > 0, A(M,N) is true. Hence A(m,n) would be true for all m and n,

proving equation (3.2.5). To prove B(M,N), we note that Q(M,N) = s(p1, p2), and

then so that ds(p1,p2)
dp1

> 0, which again requires equation (3.2.2) to be true, and which

shall be proven in Section 3.4.2. (Proving that this also holds in matches without a

final set tie-break is trivial.) This would prove that B(m,n) is true for all m and all

n, which is the property required in equation (3.2.3).

In summary, if equation (3.2.2) is true, then equations (3.2.3) and (3.2.5) are also

true.

3.4.2 Games and Sets

A set of tennis can be shown to fall into the class of “First to (M +1, N +1)” Markov

chains by observing Figure 3.4.2 and defining the parameters of the Markov chain as

follows:

• M = N = 5.

• α1 = p1, α2 = p2.
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Figure 3.4.2: A Markov chain representing a set of a tennis match.

• q(τ, α1, α2) = g(p1) := g1 if τ is even and less than 12.

• q(τ, α1, α2) = 1− g(p2) := 1− g2 if τ is odd and less than 12.

• q(τ, α1, α2) = t(p1, p2) if τ = 12.

From state (5,5), an additional two games are played to see if either player can win

by two clear games - if not, a tie-break is played.

Observe that q(τ, α1, α2) satisfies the conditions in equations (3.3.1) for all τ pro-

vided that dg(p1)
dp1

> 0 and dt(p1,p2)
dp1

> 0, which are equations (3.2.1) and (3.2.6) respec-

tively, and shall be proven in Sections 3.4.3 and 3.4.4 respectively.

To prove A(m,n) and B(m,n) are true for states before (5,5), we must only prove

that they are true at (5,5). However, the Markov chain from (5,5) is also a “First to

(M + 1, N + 1)” Markov chain. Hence proving that A(6, 6) and B(6, 6) are true is

sufficient to prove A(m,n) and B(m,n) are true for 5 ≤ m ≤ 6 and 5 ≤ n ≤ 6. Since

this would mean that A(5, 5) and B(5, 5) are true, this would mean that A(m,n) and



CHAPTER 3. PROOFS OF RESULTS ABOUT TENNIS MATCHMARKOVCHAINS 70

B(m,n) are also true for all other states in the Markov chain.

It is easy to prove A(6, 6) is true, since Q(7, 6) = 1 and Q(6, 7) = 0. Since

Q(6, 6) = t(p1, p2), then B(6, 6) is true if we can prove that dt(p1,p2)
dp1

> 0. This is

simply equation (3.2.6), and shall be proven in Section 3.4.3. Assuming this is true,

however, B(m,n) is true for all m and n in the Markov chain, which is equivalent to

proving equation (3.2.2).

Hence provided equations (3.2.1) and (3.2.6) are true, then equations (3.2.2) and

(3.2.4) are true, and hence so are equations (3.2.3) and (3.2.5).

3.4.3 Points and Tie-Breaks

Similarly, a tennis tie-break also falls into this class of “First to (M + 1, N + 1)”

Markov chains. We use the information from Figure 3.4.3 and say that
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Figure 3.4.3: A Markov chain representing a tie-break in a tennis match.

• M = N = 6.
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• α1 = p1, α2 = p2.

• q(τ, p1, p2) = p1 if τ mod 4 = 0 or 1.

• q(τ, p1, p2) = 1− p2 if τ mod 4 = 2 or 3.

The transition probabilities q(τ, p1, p2) follow this pattern because the order in which

players 1 and 2 serve in a tie-break is (1,2,2,1), which is repeated throughout the

tie-break. From (6,6) onwards, players must be two points ahead of their opponents

to win the tie-break. Therefore if at (8,7) player 1 loses the point, or if player 1 wins

the point at (7,8), the Markov chain returns to state (6,6) as the serving cycle starts

again. Note that state (7,7) is different to state (6,6) as player 2 serves at the former,

and player 1 serves at the latter.

To prove that A(m,n) and B(m,n) hold for every m and every n, we must first

prove it individually for every state with m ≥ 6 and n ≥ 6 - proving the statements

for m = n = 6 then implies that the statements are true for all m ≤ 6 and n ≤ 6.

To find Q(m,n) for each m ≥ 6 and n ≥ 6 we look at the Markov chain from

state (6,6) onwards. To find Q(m,n) for the states in this Markov chain, we solve the

recurrence relation

Q(6, 6) = p1Q(7, 6) + (1− p1)Q(6, 7)

Q(6, 7) = (1− p2)Q(7, 7)

Q(7, 6) = (1− p2) · 1 + p2Q(7, 7)

Q(7, 7) = (1− p2)Q(8, 7) + (p2)Q(7, 8)

Q(7, 8) = p1Q(7, 7)

Q(8, 7) = p1 · 1 + (1− p2)Q(6, 6)
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This is easy enough to do by hand, giving

Q(6, 6) = Q(7, 7) =
p1(1− p2)

p1(1− p2) + p2(1− p1)

Q(6, 7) = (1− p2)Q(6, 6)

Q(7, 6) = 1− p2 + p2Q(6, 6)

Q(7, 8) = p1Q(6, 6)

Q(8, 7) = p1 + (1− p1)Q(6, 6).

The properties A(m,n) and B(m,n) can then be proven easily for each individual

state with m ≥ 6 and n ≥ 6, thus proving that they hold everywhere in the Markov

chain so that t(p1, p2,x3) is increasing in p1 and decreasing in p2 for all scores x3.

This proves equation (3.2.6).

3.4.4 Points and Games

Under the assumption that player 1 is serving, a Markov chain representing a game

of tennis, as shown in Figure 3.4.4 is given by

• M = N = 3.

• α1 = p1, α2 = 1− p1.

• q(τ, p1, p2) = p1.

From state (3,3), (which is more properly called 40-40 or deuce in tennis), players

must win two consecutive points to win the game. The Markov chain therefore moves

to state (4,3) (or advantage for player 1) with probability p1, and thence on to W1

with probability p1 or back to deuce with probability 1− p1. Similarly, player 2 must

win a point with probability 1−p1 to reach (3,4) and then win again to win the game,

or else return to (3,3).

To prove A(m,n) and B(m,n) are true for m ≥ 3 and n ≥ 3), we find Q(m,n) for



CHAPTER 3. PROOFS OF RESULTS ABOUT TENNIS MATCHMARKOVCHAINS 73

0 1 2 3 4 5

0
1

2
3

4

m

n

W1

W2

Figure 3.4.4: A Markov chain representing a game of a tennis match.

each such state. Doing so proves that

Q(3, 3) =
p2

1

p2 + (1− p1)2

Q(4, 3) = p1 + (1− p1)Q(3, 3),

Q(3, 4) = p1Q(3, 3).

The properties A(m,n) and B(m,n) can then be proven for each of these states

individually, and thus since they hold at (M,N), they hold for all m ≤M and n ≤ N

too. Hence g(x3) is strictly increasing in p1 for all scores x3. This proves equation

(3.2.1).

3.4.5 Summarising Remarks

To prove that Since equations (3.2.1) and (3.2.6) are true, then all of equations

(3.2.2) to (3.2.5) must also be true. This is exactly what was required to prove

that dm1(x1,x2,x3)
dp1

> 0 for all x1, x2 and x3, which in turn was required to prove
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that m(λ|µ, s, b) is increasing in λ for all µ, s and b, thus proving that the function

m(λ|µ, s, b) is invertible. We can therefore reasonably use this inverse in the rest of

this thesis, having proven its existence. We shall invert this function numerically, due

to the complexity of this inverse function.

3.5 Further Work

While we have proven everything we wish to in Markov chains related to tennis, we

suspect that the results described also hold for more general topologies on a grid than

simple M×N rectangles, should one wish to explore other Markov chains. This could

help write a more general proof that our results hold for games, sets, matches and

tie-breaks without having to deal with the behaviour after state (M,N) individually

for each contest, but it could also be useful to extend the proofs Markov chains for

applications outside of tennis.

Suppose instead that for each n, the largest value that m can take without player

1 winning the match a function of n, which we call M(n). Similarly, the largest value

n can take without winning the match N(m), a function of m. This would mean that

the state (m,n) is only part of the Markov chain if m ≤ M(n) and n ≤ M(n). An

example of such a grid is shown in Figure 3.5.1. A set in a tennis match would be

another such example, with N(m) = 5 if n ≤ 4, or else N(m) = 6, and M(n) = 5 if

m ≤ 4, or else M(n) = 6 - see Figure 3.4.2. The conditions on q would be as before,

and the new transition probabilities would be

P
(

(m,n), (m+ 1, n)
)

= q(m+ n, p1, p2), for m < M(n),

P
(

(m,n), (m,n+ 1)
)

= 1− q(m+ n, p1, p2), for n < N(m),

P
(

(M(n), n),W1

)
= q(m+ n, p1, p2),

P
(

(m,N(m)),W2

)
= 1− q(m+ n, p1, p2),

P
(

(m,n), (x, y)
)

= 0.
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Figure 3.5.1: A Markov chain in which N(m) = m+ 1 for m ≤ 5 and M(n) = 0 if n = 0, or else

M(n) = 5 for 1 ≤ n ≤ 6.

For each location (m,n), proofs of the statements A(m,n) and B(m,n) relies only

on the proofs for the statements at (m,n + 1) and (m + 1, n), as well as the upper

and right-hand edges of the rectangle. It stands to reason that for Markov chains

on square grids of other shapes that, provided the statements hold everywhere on

the Pareto boundary of the grid - that is, for the locations (m,N(m)) for all m and

(M(n), n) for all n - that the double backwards induction would still be possible.

However, note that the proofs that A(m + 1, n) and A(m,n + 1) imply A(m,n)

rely on Q(m+ 1, n+ 1) being well defined. For this reason, we would require N(m) to

be non-decreasing in m, and M(n) to be non-decreasing in n. Consider for example

the state (2,1) in the Markov chain in Figure 3.5.2, in which qτ = p1 for all τ . Even

though A(3, 1) and A(2, 2) may be true, we see that Q(3, 1) = p4
1 and Q(2, 2) = p1,

which is higher, hence A(2, 1) is untrue. This is because Q(3, 2) not well defined,

due to state (3,2) not existing. It is assumed in the proof that the probability of
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winning the contest after winning one point and losing one point is the same, yet this

probability is 0 if one wins a point and then loses a point, or 1 if a point is lost and

then won. It would therefore be advantageous to lose the point at (2,1). It would be

interesting to explore further what shape Markov chains are permitted to ensure that

properties A(m,n) and B(m,n) hold everywhere in the Markov chain.

Another interesting point of exploration would be relaxing the fact that P ((m,n), (m+

m
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Figure 3.5.2: A Markov chain in which A(2, 1) would not hold.

1, n)) must only a function of time, τ = m + n. This was to ensure that if a player

starts winning points, their probabilities of winning points do not decrease. Were this

not true, it could be possible that losing a few points could be beneficial in order to

gain large increases in the probability of winning future points. However, we speculate

that as long P ((m,n), (m+ 1, n) is non-decreasing in m, the proofs should still hold.

This could be helpful if we wished to implement a model in which a tennis player

gained momentum in a game if they took an early lead and their chances of winning

points improved.
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3.6 Proof of Theorems 3.3.1 and 3.3.1

3.6.1 Proof of Theorem 3.3.1

We will prove that if A(M,N) is true then A(m,n) is true for all m ≤M and n ≤ N

by double backwards induction. In order to prove a statement by double induction,

we must prove each of the following:

A(M,n) is true for all n ≤ N. (3.6.1)

A(m,N) is true for all m ≤M. (3.6.2)

If A(m,n+ 1) and A(m+ 1, n) are true, then so is A(m,n). (3.6.3)

We will prove each of these in turn.

Proof that A(M,n) is true for all n < N

We have assumed as one of the conditions of Theorem 3.3.1 that A(M,N) is true.

Therefore, if A(M,n + 1) implies that A(M,n) is true for some general n, then by

induction A(M,n) is also true for all n ≤ N . From point (M,n), we see that

Q(M + 1, n) = 1.

We then examine Q(M,n + 1) by conditioning on the winner of the point at time

τ + 1 = M + n+ 1, obtaining

Q(M,n+ 1) = qτ+1Q(M + 1, n+ 1) + (1− qτ+1)Q(M,n+ 2)

= qτ+1 · 1 + (1− qτ+1)Q(M,n+ 2)

If Q(M,n + 2) < Q(M + 1, n + 1) = 1, which is simply the condition A(M,n + 1),

and 0 < qτ+1 < 1, which we have assumed in equation (3.3.1), then

Q(M,n+ 1) < qτ+1 + (1− qτ+1) = 1 = Q(M + 1, n),

and so A(M,n + 1) ⇒ A(M,n). Since A(M,N) is also true, this implies A(M,n) is

true for all n ≤ N .
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Proof that A(m,N) is true for all m < M

We know that A(M,N) is true. Therefore, if A(m + 1, N) ⇒ A(m,N) for some

general m, then A(m,N) is also true for all m < M . From point (m,N), we see that

Q(m,N + 1) = 0

Q(m+ 1, N) = qτ+1Q(m+ 2, N) + (1− qτ+1)Q(m+ 1, N + 1)

= qτ+1Q(m+ 2, N) + (1− qτ+1) · 0.

The statement A(m + 1, N) gives us that Q(m + 2, N) > Q(m + 1, N + 1) = 0, and

we have assumed that 0 < qτ+1 < 1, and so

Q(m+ 1, N) > 0 = Q(M + 1, n),

and so A(m + 1, N) ⇒ A(m,N). Since A(M,N) is true by the statement of the

theorem, this implies that A(m,N) is true for all m ≤M .

Proof that if A(m,n+ 1) and A(m+ 1, n) are true, then so is A(m,n)

We begin again by looking at the values of Q(m+ 1, n) and Q(m,n+ 1) conditioning

on the winner of the next point. Doing so gives

Q(m+ 1, n) = qτQ(m+ 2, n) + (1− qτ )Q(m+ 1, n+ 1),

Q(m,n+ 1) = qτQ(m+ 1, n+ 1) + (1− qτ )Q(m,n+ 2).

Taking the difference of these two probabilities, we see that

Q(m+ 1, n)−Q(m,n+ 1) = qτ

(
Q(m+ 2, n)−Q(m+ 1, n+ 1)

)
+ (1− qτ )

(
Q(m+ 1, n+ 1)−Q(m,n+ 2)

)
.

In assuming that A(m,n+ 1) and A(m+ 1, n) are true, we have assumed that Q(m+

2, n) > Q(m+ 1, n+ 1) and Q(m+ 1, n+ 1) > Q(m,n+ 2). Therefore, assuming that

0 < qτ < 1, then

Q(m+ 1, n)−Q(m,n+ 1) > 0.
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and hence Q(m+1, n) > Q(m,n+1). This proves that if A(m,n+1) and A(m+1, n)

are true, then so is A(m,n).

Having proven that each of equations (3.6.1), (3.6.2) and (3.6.3) are true, we have

thus proven that A(m,n) is true for all m and n, and that winning points always

increases one’s chances of winning the contest.

3.6.2 Proof of Theorem 3.3.2

We will again prove that B(m,n) is true for all m ≤ M and n ≤ N by double

backwards induction. As before, we must prove each of the following:

B(M,n) is true for all n ≤ N, (3.6.4)

B(m,N) is true for all m ≤M, (3.6.5)

If B(m,n+ 1) and B(m+ 1, n) are true, then so is B(m,n). (3.6.6)

We will prove each of these in turn.

Proof that B(M,n) is true for all n ≤ N

We have assumed as one of the conditions of Theorem 3.3.2 that B(M,N) is true.

Therefore, if B(M,n + 1) implies B(M,n) for some n, then by single backwards

induction, B(M,n) is also true for all n < N . From point (M,n), we condition on

the winner of the next point and see that

Q(M,n) = qτQ(M + 1, n) + (1− qτ )Q(M,n+ 1)

= qτ · 1 + (1− qτ )Q(M,n+ 1).

Differentiating with respect to α1, we obtain

dQ(M,n)

dα1

=
dqτ
dα1

− dqτ
dα1

Q(M,n+ 1) + (1− qτ )
dQ(M,n+ 1)

dα1

=
dqτ
dα1

(
1−Q(M,n+ 1)

)
+ (1− qτ )

dQ(M,n+ 1)

dα1

. (3.6.7)
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By assumption, we have that dqτ
dα1
≥ 0, and it is clearly also true that (1−Q(M,n +

1)) ≥ 0, and hence the first half of equation (3.6.7) is greater than or equal to 0.

We also assumed that 0 < qτ < 1. If the assumption B(M,n + 1) is true, then

dQ(M,n+1)
dα1

> 0, and the second half of equation (3.6.7) is strictly greater than 0, and

hence dQ(M,n)
dα1

> 0. Therefore, if B(M,n + 1) is true then B(M,n) is true. Since we

know B(M,N) to be true, then B(M,n) is true for all n ≤ N .

Proof that B(m,N) is true for all m ≤M

We have assumed that B(M,N) is true. Therefore, if B(m + 1, N) implies B(m,N)

for some general m, then by single backwards induction, B(m,N) is also true for all

m ≤M . From point (m,N), we see that

Q(m,N) = qτQ(m+ 1, N) + (1− qτ )Q(m,N + 1)

= qτQ(m+ 1, N) + (1− qτ )0.

= qτQ(m+ 1, N).

Differentiating with respect to α1, we obtain

dQ(m,N)

dα1

=
dqτ
dα1

Q(m+ 1, N) + qτ
dQ(m+ 1, N)

dα1

. (3.6.8)

By assumption, we have that dqτ
dα1
≥ 0., and it is clearly also true that Q(m+1, N) ≥ 0,

and hence the first half of equation (3.6.8) is greater than or equal to 0. We also

assumed that 0 < qτ < 1. If the assumption B(m+ 1, N) is true, then dQ(m+1,N)
dα1

> 0,

and the second half of equation (3.6.8) is strictly greater than 0, and hence dQ(m,N)
dα1

> 0.

Therefore, if B(m + 1, N) is true then B(m,N) is true. Since we know B(M,N) to

be true, then B(m,N) is also true for all m ≤M .
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Proof that if B(m,n+ 1) and B(m+ 1, n) are true, then so is B(m,n)

We begin by looking at the value of Q(m,n) conditioning on the winner of the next

point. Doing so gives

Q(m,n) = qτQ(m+ 1, n) + (1− qτ )Q(m,n+ 1).

We differentiate with respect to α1 and see that

dQ(m,n)

dα1

= qτ
dQ(m+ 1, n)

dα1

+
dqτ
dα1

Q(m+ 1, n) + (1− qτ )
dQ(m,n+ 1)

dα1

− dqτ
dα1

Q(m,n+ 1)

= qτ
dQ(m+ 1, n)

dα1

+ (1− qτ )
dQ(m,n+ 1)

dα1

+
dqτ
dα1

(
Q(m+ 1, n)−Q(m,n+ 1)

)
(3.6.9)

We have assumed that 0 < qτ < 1. The assumptions B(m+ 1, n) and B(m,n+ 1) tell

us that the two derivatives, dQ(m+1,n)
dα1

and dQ(m,n+1)
dα1

, are strictly positive. Hence the

sum of the first two terms in equation (3.6.9) is also strictly positive. We also assumed

that dqτ
dα1
≥ 0. In order to prove that

(
Q(m+1, n)−Q(m,n+1)

)
> 0, we use statement

A(m,n) from equation (3.3.2), which we have proven to be true. Hence dQ(m,n)
dα1

can

be written as a sum of a mixture of positive and strictly positive elements, and so

is also strictly positive, proving the statement B(m,n) is true, provided B(m+ 1, n)

and B(m,n+ 1) are also true.

Having now proven that each of equations (3.6.4), (3.6.5) and (3.6.6) is true, we

have thus proven that the statement B(m,n) is true for all m ≤ M and n ≤ N ,

and that improving one’s chances of winning points always increases one’s chances of

winning the contest.



Chapter 4

Glicko Ratings with an Application

to Tennis

Later in this thesis we shall be attempting to identify suspicious betting activity in

tennis by comparing the odds in tennis matches with predictions of the outcomes of

matches. Under normal circumstances, we would expect strong agreement between

the odds and model predictions. However, in matches with suspicious betting ac-

tivity, differences can arise between the odds and our predictions. To look for these

differences, we need to generate predictions of our own.

This chapter uses the Glicko ratings, Glickman (1999), as seen in Section 2.2.3,

to generate probabilistic predictions of the outcomes of tennis matches. Among the

advantages of Glicko ratings is that they are powerful, quick to implement due to the

approximations involved in updating rankings. Kovalchik (2016) found the Elo-based

model of Morris and Bialik (2015) to be the best among the predictive models of

tennis they considered. With Glicko ratings also being essentially Elo-based, there

is hope therefore that with some adaptations to suit a tennis context they may also

provide a strong predictive model.

However, crucially for our purposes, Glicko ratings also allow for different players

to have different uncertainties attached to their ratings. The work of DW on Sport

82
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(2016) discussed how some of the large odds swings observed by Blake and Templon

(2016) could be explained by a player returning after a long injury. We hope that us-

ing Glicko ratings would alleviate this problem, attaching less certainty to the ratings

of such players and making our algorithms less likely to flag the match as suspicious.

In this chapter, we discuss the Glicko ratings described in Glickman (1999) and

Section 2.2.3 of this thesis. Section 4.1 describes the basic set-up of the Glicko rat-

ings, giving an in-depth explanation of the update steps involved in calculating the

ratings. Section 4.2 then demonstrates the link between Glicko ratings and Gaussian

state space models, linking the Glicko ratings to a much wider body of literature.

In the second half of this chapter, we them look to apply the Glicko ratings to our

tennis data in order to be able to use them to estimate player strengths, which will

help us look for anomalies in betting odds in later chapters. In Section 4.3, we extend

Glicko ratings to be able to treat five-set matches differently to three-set matches,

since five-set matches tend to favour the stronger player, and hence the results of five-

set matches provides different information to the results of three-set matches about

the quality of the players involved. We are then ready to apply the Glicko ratings to

our tennis data. In Section 5.2.1, we discuss the tennis data we apply the ratings to

and decide whether or not it is best to use all of our available data, before in Section

4.4.2 we look at the results of using Glicko ratings to model the strengths of players

in this data and examine a few interesting features.

4.1 Glicko Model for Player Strengths

4.1.1 Glicko ratings system: basic setup

Suppose that there are N tennis players to model, and T time periods of matches are

observed. The length of these time periods should be chosen appropriately depending

on context - this could be in the order of days, weeks or even months. A simplifying

assumption of the model is to assume all matches in a time period are assumed to occur
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simultaneously. Choosing the length of the time period involves a trade-off between

conflicting factors. Choosing time periods that are too long means the short-term

change in players’ strength is lost. On the other hand, Glickman suggests that some

of the approximations in this model are more dependable for longer time periods,

since more data are collected in each time period. Additionally, choosing a short

time period requires more updates, and hence it can take slightly longer to optimise

parameters.

Given this setup, the core assumption of the Glicko model is that each player i has

strength θit during time period t. We then seek to model the probability that player

i beats player j during time period t using a logistic model based on the difference in

the two players’ strengths. Let Wijt be a random variable that takes value 1 if player i

beats player j at time t, and takes value 0 otherwise. Similarly, wijt is an observation

of that random variable. Under the Glicko model, the formula that describes the

probability distribution of Wijt is then

P (Wijt = wijt|θit, θjt) =

(
eq(θit−θjt)

)wijt
1 + eq(θit−θjt)

,

q =
log(10)

400
, (4.1.1)

wijt ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , N, i 6= j, t = 1, . . . , T.

Note that the overall analysis is unaffected by the choice of q - it merely scales the

ratings. The value of q in equation (4.1.1) was originally chosen so that the ratings

are roughly on the same scale as chess’ Elo ratings. Additionally, the log(10) term is

included by Glickman so that the analysis can easily be conducted using exponentials

of base 10 instead of base e, if one chooses. This may be to make it easier to interpret

for chess players who are not specialist mathematicians.

Note also that this model is also of the form of the widely-used Bradley-Terry

model, Bradley and Terry (1952), as seen in Section 2.2.2. These give players strength

αit and αjt, with P (Wijt = 1) = αit
αit+αjt

. The connection can be seen by simply using

the transformation αit = exp(qθit).
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An important factor to consider in modelling tennis matches is the fact that play-

ers’ strengths alter over time. One way this can be modelled is to assume each θit

moves according to a symmetric random walk each time period, independently of all

other θjt, with variance γ2 at all times and for all players. Given a rating at time

t− 1, each player’s rating at time t therefore has distribution

θit|θi,t−1, γ ∼ N(θi,t−1, γ
2), i = 1, . . . , N, t = 1, . . . , T. (4.1.2)

Reasonable questions can be asked about whether this model describes player

movements sufficiently comprehensively. While local movements may exhibit random

structure, we would also expect a player to improve during the early part of their

career before declining as they age. However, this model may in reality be sufficiently

flexible to naturally account for these career trajectories.

In order to make inference about θt, the vector of all θit for i = 1, . . . , n, the

Glicko ratings system uses a state-space model. The players’ ratings can never be

known precisely, we can only make inference about them with uncertainty. In each

time period t, our beliefs about θt are represented by a distribution, and Bayesian

updates of our beliefs about θt are performed after observing wt, the vector of all

match results during time period t.

Ideally in Bayesian analysis, a prior would be chosen that is conjugate to the

likelihood. However for the likelihood function in equation (4.1.1), there are no easy

examples. Other reasonable likelihood functions that could be chosen do not exhibit

nice conjugacy properties either. The options are therefore to model the distribution

of each θt using non-conjugate priors exactly, which is very difficult; use computa-

tional methods to get non-parametric approximations of the distribution of θt; or to

repeatedly perform approximations of the distribution of θt, so that updates can be

performed easily, albeit with a possible cost to the accuracy of the model. Glicko opts

for the latter option, devising a series of closed-form approximations for the posterior

distribution of θt given the results of the latest set of matches, wt, and a prior distri-

bution for θt. In particular, the Glicko model attempts to describe the beliefs about
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each player using independent Gaussian distributions in each time period. We use νt

and σt to denote the vectors of prior parameters for our beliefs about θt, but use ν∗t

and σ∗t for our posterior parameters after observing scores, wt. We use wit to denote

the vector of all of player i’s scores during time period t.

The above can be summarised as

θit|νit, σit ∼ N(νit, σ
2
it), i = 1, . . . , N, t = 0, . . . , T, (4.1.3)

θit|wit, νit, σit ∼ N(ν∗it, σ
∗2
it ), i = 1, . . . , N, t = 0, . . . , T. (4.1.4)

It is typical to pick common initial prior parameters ν0 and σ0 for all players, so

that νi0 = ν0 and σi0 = σ0 for all i. If more information is known about the players

at time 0, then the players could be given different prior parameters. For example,

players’ world rankings could be used to generate more informative priors.

Using common prior parameters generally means player strengths in early time

periods are poorly modelled. The ratings will be heavily influenced by the prior

parameters until enough matches have been played to make them irrelevant. Glickman

describes a method to make better inference about player strengths in these early time

periods by using information from future matches. However, this is unnecessary in

our case since the matches we want to investigate occur between 2013 and 2016, which

is significantly after the first match results we use in 1991. We therefore decided that

further investigation of this was not required, but it appears that it would be worth

considering in any application in which it is important to model early player strengths

well.

Glickman’s paper summarises a set of update steps they use to provide a closed

form approximation for the distributions of each θt. We will now describe them in

slightly more detail.

The distribution in equation (4.1.2) can be used to find the distribution of θt

given the posterior parameters of θt−1, those being ν∗t−1 and σ∗t−1. This is done by
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conditioning on the unknown θt−1, giving

π(θt|ν∗t−1,σ
∗
t−1) =

∫
Ω

π(θt|θt−1,ν
∗
t−1,σ

∗
t−1)π(θt−1|ν∗t−1,σ

∗
t−1)dθt−1

=

∫
Ω

π(θt|θt−1)π(θt−1|ν∗t−1,σ
∗
t−1)dθt−1 (4.1.5)

The support of θt−1 is (−∞,∞)N , which is denoted by Ω. If θt−1 is normally

distributed, then using properties of conditional normals also gives a normal prior

distribution for θt. Specifically,

θt|ν∗t−1,σ
∗
t−1, γ ∼MVN(ν∗t−1,σ

∗
t−1 + γ2). (4.1.6)

Combining this with equation (4.1.3) shows how the posterior parameters at time t−1

link to the prior parameters at time t, namely

θt|νt,σt ∼MVN(νt,σt),

νt = ν∗t−1,

σt = σ∗t−1 + γ2.

It is common to cap each σit at σmax, (generally taken to be σ0), so that we are

never less certain about a player’s rating than when they are new to the system.

In practice, however, this rarely proves an issue after a player has played their first

match.

4.1.2 Glicko ratings system: using match outcomes to make

inference

The next step to discuss how to make inference about θt given wt. If θt−1 were also

known, Bayes Theorem, along with the fact that the distribution of Wt depends only

on θt, can be used to find the posterior distribution for θt. The updating formula is

then

π(θt|wt,θt−1) ∝ P (Wt = wt|θt,θt−1)π(θt|θt−1),

∝ P (Wt = wt|θt)π(θt|θt−1).
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Note that if wt = ∅, no update is required.

In reality, of course, θt−1 is not known, but belief about it is expressed through

νt−1 and σt−1, as discussed. We therefore express belief about θt through νt and σt,

and get the posterior distribution of θt by simply applying Bayes theorem, saying

π(θt|wt,νt,σt) ∝ P (Wt = wt|θt,νt,σt)π(θt|νt,σt),

∝ P (Wt = wt|θt)π(θt|νt,σt),

which can be found easily using (4.1.1) and (4.1.6).

However, this posterior distribution is not very convenient to work with. To

demonstrate why, we shall begin by finding the marginal posterior distribution for

each player i. The marginal posterior distribution will also be needed if we are to

provide simple update rules for the parameters of each θit after observing wit.

In order to do this, we begin by defining some more notation. Let Et be the set

of pairs of players (j, k) who play against each other at time t. From a graph theory

perspective, this is the set of edges at time t in a graph featuring all players as nodes,

with an edge at time t if player j plays player k. Let oppt(j) be the set of opponents

of player j in time period t.

It can be noted that π(θit|νt,σt) = π(θit|νit, σit), due to conditional independence.

This helps factorise the likelihood, L(θt|wt) := P (Wt = wt|θt), which yields

L(θt|wt) = P (Wt = wt|θt) =
∏

(i,j)∈Et

P (Wijt = wijt|θt)

=
∏

(i,j)∈Et

P (Wijt = wijt|θit, θjt) :=
∏

(i,j)∈Et

L(θit, θjt|wijt).

This in turn helps rearrange the full posterior into factors that depend on θit and

factors that do not,

π(θt|wt,νt,σt) ∝ π(θit|νit, σit)
∏

j∈oppt(i)

π(θjt|νjt, σjt)
∏

k/∈{i,oppt(i)}

π(θkt|νkt, σkt)

×
∏

j∈oppt(i)

L(θit, θjt|wijt)
∏

(k,l)∈Et : k,l 6=i

L(θkl, θlt|wklt).
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To find the marginal distribution of θit, we note that the final term on each line

is not dependent on θit and can be treated as constant. Finally, we integrate over

uncertainty in all other θjt where j 6= i. This leaves us with

π(θit|wt,νt,σt) ∝ π(θit|νit, σit)
∏

j∈oppt(i)

∫ ∞
−∞

L(θit, θjt|wijt)π(θjt|νjt, σjt) dθjt.

We introduce the natural definitions∫ ∞
−∞

L(θit, θjt|wijt) π(θjt|νjt, σjt) dθjt := L(θit, νjt, σjt|wijt)

:= P (Wijt = wijt|θit, νjt, σjt). (4.1.7)

and

∏
j∈oppt(i)

L(θit, νjt, σjt|wijt) := L(θit,νt,σt|wit).

for reference later, so that

π(θit|wt,νt,σt) ∝ π(θit|νit, σit)
∏

j∈oppt(i)

L(θit, νjt, σjt|wijt)

∝ π(θit|νit, σit) L(θit,νt,σt|wit). (4.1.8)

The integral required to calculate L(θit, νit, σit|wijt) in (4.1.7) cannot be solved analyt-

ically, and hence the posterior distribution in (4.1.8) is difficult to work with. In the

short term, properties such as the means and variance of the posterior distribution

of θit can be calculated computationally. However, successive posterior distributions

become more and more difficult as time advances, as the Gaussian prior at time t = 0

becomes less and less informative and the amount of matches that players have played

increases. There are computational methods for working with these models - Glick-

man (1999) cite papers using empirical Bayes methods and Markov chain Monte Carlo

simulation as examples - but these can be very computationally expensive for large

amounts of players and time periods.

Glickman instead proposes a method for approximating the posterior distribution
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π(θit|wt,νt,σt) with a Gaussian distribution with parameters expressed in terms of

the prior parameters νt and σt. This means that θi,t+1 also has a Gaussian prior, and

exactly the same algorithm can be applied to approximate π(θi,t+1|wt+1,νt+1,σt+1)

with a Gaussian distribution, and so on through the whole of time. This approxima-

tion makes updating posterior distributions very quick and allows for effective analysis

of players strengths at each time period. Section 4.1.3 describes these approximation

steps in some detail and discusses their validity.

4.1.3 Glicko ratings system: approximating the posterior dis-

tribution of θit

The approximation Glickman uses for the posterior distribution in (4.1.8) involves

multiple steps, and we will describe each here. The key idea is to use the fact that the

conjugate prior for a Gaussian density is also a Gaussian density. Looking at (4.1.8),

we see that θit’s prior distribution, π(θit|νit, σit) is a Gaussian density. Hence if θit’s

likelihood, L(θit,νt,σt|wit), were also Gaussian, then θit would also have a Gaussian

posterior density. The goal of these approximation steps is therefore to approximate

the likelihood of θit by a Gaussian density, so that the posterior is also Gaussian. This

will mean the prior distribution of θit+1 is also Gaussian, and so on through all time

periods, making updating and using the successive distributions of θit much easier.

The first step is to approximate the logistic functions representing the likelihood of

each match result, L(θit, θjt|wijt) by Gaussian CDFs. This allows the joint likelihood

of all matches for each player, L(θit,νt,σt|wit), to be represented by a product of

single Gaussian CDFs. These Gaussian CDFs will then be approximated by logistic

functions again, so that a link can be drawn between these logistic functions and the

original ones in equation (4.1.1). The product of these logistic functions will then

be approximated by a single Gaussian density, so that the product of this Gaussian

likelihood with the Gaussian prior will yield a Gaussian posterior. This will provide a

simple rule for updating the parameters of the distribution of θit to reflect the match
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results wit, and provide a Gaussian prior for θi,t+1.

Step 1. Approximating L(θit, θjt|wijt), the likelihood for each match, by a

Gaussian CDF

Inputting the expressions for a match likelihood in equation (4.1.1) and the prior

density of θjt in equation (4.1.2), into the likelihood for player i alone in equation

(4.1.7) gives

L(θit, νjt, σjt|wijt) =

∫ ∞
−∞

L(θit, θjt|wijt)π(θjt|νjt, σjt) dθjt.

∝
∫ ∞
−∞

(
eq(θit−θjt)

)wijt
1 + eq(θit−θjt)

exp

(
− 1

2σ2
jt

(θjt − νjt)2

)
dθjt

∝
∫ ∞
−∞

(
eq(θjt−θit)

)1−wijt

1 + eq(θjt−θit)
exp

(
− 1

2σ2
jt

(θjt − νjt)2

)
dθjt. (4.1.9)

The last step is found by multiplying both the numerator and denominator by exp(q(θjt−

θit)) and rearranging.

In order to approximate the expression obtained for the integrand in equation

(4.1.9), we begin by noting the form for the CDF of a logistic distribution. Suppose

X has a logistic distribution with mean m and variance v. If we let δ2 = 3v/π2, then

P (X < x) =
e

(x−m)
δ

1 + e
x−m
δ

for −∞ < x <∞.

It can be noted that if wijt = 0, the first term in equation (4.1.9) takes this form,

where m = θit and δ = 1/q. Glicko approximates this logistic CDF by the CDF of

a normally distributed random variable, Y , with the same mean, θit, as suggested

by Cox (1987) and Aitchison and Begg (1976), for example. These references then

suggested either matching a quantile or matching the variance - Glickman favours

matching the variance. The variance of a logistic distributed random variable is

v = δ2/3π2. This means that if we are to consider the first term in equation (4.1.9) as

the CDF of a logistic random variable in θit, then δ = 1/q and the variance is equal

to (1/q)2π2/3 = π2/(3q2).



CHAPTER 4. GLICKO RATINGS WITH AN APPLICATION TO TENNIS 92

In summary, to approximate the CDF of a logistic random variable X with mean

m and scale parameter δ, we say

P (X < x) ≈ P (Y < x) = Φ

(
x−m

δπ√
3

)
.

A comparison between a logistic CDF and a Gaussian approximation is shown in Fig-

ure 4.1.1. It can be seen that the two are very similar. Using equal variances balances

the needs for the functions to be close near the centre of the distribution and in the

tails - a different variance can be used in the Gaussian random variable if a function

is desired that is more similar to the logistic CDF near the centre of the distribution

or at a particular quantile, as in Cox (1987) and Aitchison and Begg (1976).

Figure 4.1.1: The CDFs of a logistic random variable (solid black line) and a Gaussian variable

(dotted red line), both with mean 0 and variance 1.

If Φ(z) is used to denote the CDF of a standard normal random variable, the
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above information can be summarised by saying(
eq(θjt−θit)

)
1 + eq(θjt−θit)

= P (X < θjt)

≈ P (Y < θjt)

= Φ

(
(θjt − θit)√
(π2/(3q2)

)
= Φ

(
q
√

3

π
(θjt − θit)

)
,

using the properties of normal distributions.

Similarly, if wijt = 1, this term is instead the survival function of the logistic distri-

bution, since 1
1+ex

= 1− ex

1+ex
. Noting that 1−Φ(x) = Φ(−x), the same approximation

can be performed with the survival functions,

1

1 + eq(θjt−θit)
= 1− P (X < θjt)

≈ 1− P (Y < θjt)

= 1− Φ

(
q
√

3

π
(θjt − θit)

)
= Φ

(
− q
√

3

π
(θjt − θit)

)
.

Combining this information gives(
eq(θjt−θit)

)1−wijt

1 + eq(θjt−θit)
≈ Φ

(
(−1)wijt

q
√

3

π
(θjt − θit)

)
.

This completes the approximation of L(θit, νjt, σjt|wijt) with a Gaussian CDF. In-

putting this approximation into equation (4.1.9) yields

L(θit, νjt, σjt|wijt) ≈
∫ ∞
−∞

Φ

(
(−1)wijt

q
√

3

π
(θjt − θit)

)
exp

(
− 1

2σ2
jt

(θjt − νjt)2

)
dθjt.

(4.1.10)

Step 2: Proving that this approximation to L(θit, νjt, σjt|wijt), the likelihood

for each match, is equal a single Gaussian CDF

Attention now turns to the integral in equation (4.1.10) - the next section will prove

it is equal to a Gaussian CDF. To do this, the substitution z = (θjt − νjt)/σjt is
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required, as well as bijt =
θit−νjt
σjt

, and ajt = π
σjtq
√

3
and a dummy variable y, recalling

that Φ(x) =
∫ x
−∞ e

− y
2

2 dy. This leads to

L(θit, νjt, σjt|wijt) ≈
∫ ∞
−∞

Φ

(
(−1)wijt

q
√

3

π
(θjt − θit)

)
exp

(
− 1

2σ2
jt

(θjt − νjt)2

)
dθjt.

≈
∫ ∞
−∞

Φ

(
(−1)wijt

q
√

3

π
(σjtz + νjt − θit)

)
exp

(
− z2

2

)
dz

≈
∫ ∞
−∞

Φ

(
(−1)wijt

(z − θit−νjt
σjt

)
π

qσjt
√

3

)
exp

(
− z2

2

)
dz

≈
∫ ∞
−∞

∫ (−1)wijt
z−bijt
ajt

−∞
exp

(
− y2

2

)
exp

(
− z2

2

)
dydz. (4.1.11)

We then note that this expression takes the same form as P (Y < (−1)wijt(Z −

bijt)/ajt), where Y and Z are independent standard normal random variables. This

is because we integrate the products of their densities over the appropriate region.

If wijt = 0 then this probability is equal to P (Z − ajtY > bijt). Since Y and Z are

standard Gaussian random variables, we note that

Z − ajtY ∼ N(0, 1 + a2
jt)⇒ P (Z − ajtY > bijt) = Φ

(
− bijt√

1 + a2
jt

)
.

On the other hand, if wijt = 1, we instead get P (Z + ajtY < bijt). Similarly,

Z + ajtY ∼ N(0, 1 + a2
jt)⇒ P (Z + ajtY < bijt) = Φ

(
bijt√

1 + a2
jt

)
.

These two results can be summarised jointly as

P

(
Y < (−1)wijt

Z − bijt
ajt

)
= Φ

(
(−1)1−wijt bijt√

1 + a2
jt

)
.

This can then be substituted back into the approximation in equation (4.1.11), yield-

ing

L(θit, νjt, σjt|wijt) ≈
∫ ∞
−∞

∫ (−1)wijt
z−bijt
ajt

−∞
exp

(
− y2

2

)
exp

(
− z2

2

)
dydz

≈ Φ

(
(−1)1−wijt bijt√

1 + a2
jt

)
, for bijt =

θit − νjt
σjt

and ajt =
π

σjtq
√

3
.

(4.1.12)
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Step 3: Approximating the Gaussian approximation to L(θit, νjt, σjt|wijt)

with a logistic CDF

Having approximated the likelihood of each match for each player in equation (4.1.12),

Glickman then seeks to further approximate the likelihood for each match with a

logistic CDF. The reasoning behind this is not explained, but appears to stem from a

desire with logit link functions rather than Gaussian - see also the likelihood initially

chosen in equation (4.1.1), where use of a Gaussian function would have been equally

as valid. This may be simply be because the audience of chess players that the Glicko

ratings system is designed for would find the simple analytic formula of a logistic

function easier to understand than a Gaussian CDF, which is slightly more opaque in

meaning to a non-mathematical audience. Either way, there appears to be no strict

need for this step, as the steps that follow would work fine were this step omitted.

In order to approximate the likelihood in (4.1.12) with a logistic CDF, recall that

a logistic CDF is of the form P (X < x) = e(x−m)/δ

1+e(x−m)/δ , where Var(X) = δ2π2/3, and

E(X) = m. Since we are approximating the CDFs of standard Gaussian random

variables, with mean 0 and variance 1, we require m = 0 and δ2 = 3/π2. Performing

this approximation, cancelling terms and using the notation

g(σj) =
(

1 +
3q2σ2

j

π2

)−1/2

leads to a final approximation for the likelihood of a single match result

L(θit, νjt, σjt|wijt) ≈
(
e(θit−νjt)qg(σjt)

)wijt
1 + e(θit−νjt)qg(σjt)

. (4.1.13)

This approximation will be referred to with the notation

L̃(θit, νjt, σjt|wijt) :=

(
e(θit−νjt)qg(σjt)

)wijt
1 + e(θit−νjt)qg(σjt)

L̃(θit,νt,σt|wit) :=
∏

j∈oppt(i)

(
e(θit−νjt)qg(σjt)

)wijt
1 + e(θit−νjt)qg(σjt)

. (4.1.14)
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Step 4: Approximating L̃(θit,νt,σt|wit) with a Gaussian density

We begin by inputting the approximation for the likelihood of a single match in

equation (4.1.14) into the marginal posterior distribution for θit in equation (4.1.8) to

approximate the marginal posterior distribution of θit. Here ∝∼ is again used to denote

approximate proportionality, then

π(θit|wit,νt,σt) ∝ π(θit|νt,σt) L(θit,νt,σt|wit)

∝∼ π(θit|νt,σt)
∏

j∈oppt(i)

(
e(θit−νjt)qg(σjt)

)wijt
1 + e(θit−νjt)qg(σjt)

. (4.1.15)

Since the prior distribution is Gaussian, then were it possible to approximate the

joint likelihood by a Gaussian, this would also give an approximately Gaussian pos-

terior distribution. This would be very desirable, as then the posterior distribution

could be updated at each time step by simply using the parameters of other players

at that time, and the results of the matches between players.

Glickman does not justify this approximation, but a little experimentation shows

that as long as a player wins and loses a match in this time period, the product of

these CDFs is reasonably well approximated by a Gaussian density, as shown in Figure

4.1.2. The left of these two plots shows the likelihood of player i’s results against four

opponents of random strengths, with player i winning three and losing one. The right

hand graph demonstrates that the product of these likelihoods is well approximated

by a Gaussian distribution. However, if a player wins or loses all of their matches in

a time period, then clearly a Gaussian density is a poor approximation, as shown in

Figure 4.1.3. In the left of these plots, the likelihood of player i winning four matches

against the same opponents is plotted, and the right-hand graph demonstrates that

the products of these likelihoods would be very poorly approximated by a Gaussian

density.
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Figure 4.1.2: Likelihoods of player i’s results against four opponents of random strengths, with

three wins and one defeat. The normalised product of these likelihoods (solid black) can be closely

approximated by a Gaussian density (dotted red).

Figure 4.1.3: Likelihoods of player i’s results against the same four opponents as in Figure 4.1.2,

with four wins. The normalised product of these likelihoods (solid black) can no longer be well

approximated by a Gaussian density.

In cases where all wijt are equal for some i and t, there are therefore legitimate

concerns about approximating the likelihood by a Gaussian density. However, further

experimentation shows that the Glicko model’s updating steps can be derived in a

different way that avoids the problem of approximating a Gaussian CDF by a Gaus-
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sian density, should a player win (or lose) all of these matches in a time period. We

will discuss this in Section 4.2 after describing Glickman’s own steps.

In order to approximate the approximate joint likelihood of all of player i’s matches,

L̃(θit,νt,σt|wit), as seen in equation (4.1.14), with a Gaussian density, Glickman sug-

gests using a Gaussian distribution with mean θ̂it, the maximum likelihood estimator

of θit, and variance −1/I(θ̂it), where I(θit) is the Fisher information of θit using this

joint (approximate) likelihood. Note, however, that if wijt = 1 for all a player’s op-

ponents j, then θ̂it = ∞. Similarly, if wijt = 0 for all opponents j, then θ̂it = −∞.

When wijt are not all equal, however, the steps can reasonably be performed.

Step 4a: Finding θ̂it, which will be the mean of the Gaussian density

We will need to find θ̂it by taking the derivative of the approximate joint log likelihood

in equation (4.1.14). The approximate log-likelihood is denoted by

l̃(θit|wit) : = log
(
L̃(θit,νt,σt|wit)

)
.

=
∑

j∈oppt(i)

(
qg(σjt)(θit − νit)wijt − log

(
1 + eqg(σjt)(θit−νjt)

))
.

Note that for simplicity, the dependence on νt and σt is dropped from the notation

l̃(θit|wit), since context makes it obvious.

Upon differentiating l̃(θit|wit), it can then be seen that

l̃′(θit|wit) :=
∂l̃(θit|wit)

∂θit
= q

∑
j∈oppt(i)

g(σjt)
(
wijt −

e(θit−νjt)qg(σjt)

1 + e(θit−νjt)qg(σjt)

)
= q

∑
j∈oppt(i)

g(σjt)
(
wijt −

1

1 + e−(θit−νjt)qg(σjt)

)
. (4.1.16)

The maximum likelihood estimator, θ̂it, is the value of θit at which this derivative

equals 0. While this value could be found numerically, this would be time-consuming

and would not provide easily calculable update rules. Glickman therefore approxi-

mates θ̂it instead.
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In order to do this the definition

h(θit) =
∑

j∈oppt(i)

g(σjt)

1 + e−(θit−νjt)qg(σjt)
. (4.1.17)

is introduced. In order to approximate θ̂it, Glickman takes a Taylor expansion of

h(θit) around νit and evaluates it at θit = θ̂it. It should be expected that θ̂it will be

close to νit, unless there are huges amounts of information about θ̂it contained in wit.

By setting the derivative of the approximate log likelihood in equation (4.1.16) to

0, we obtain an equality involving h(θ̂it),

h(θ̂it) =
∑

j∈oppt(i)

g(σjt)wijt, (4.1.18)

so that

l̃′(θit|wit) = q
(
h(θ̂it)− h(θit)

)
. (4.1.19)

If a Taylor expansion is then taken around νit and rearranged, this yields

h(θ̂it) ≈ h(νit) + (θ̂it − νit)h′(νit)

⇒ θ̂it ≈ νit +
h(θ̂it)− h(νit)

h′(νit)
.

We already know from equation (4.1.19) that

l̃′(θit|wit)
∣∣∣
θit=νit

= q
(
h(θ̂it)− h(νit)

)
,

and this means

h′(νit) = 0− 1

q
l̃′′(θit|wit)

∣∣∣
θit=νit

,

where

l̃′′(θit|wit) = −q2
∑

j∈oppt(i)

(
g(σjt)

)2 eqg(σjt)(θit−νjt)

(1 + e(θit−νjt)qg(σjt))2

= −q2
∑

j∈oppt(i)

(
g(σjt)

2
)
L̃(θit, νjt, σjt|wijt = 1) L̃(θit, νjt, σjt|wijt = 0).
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This all combines together gives a new equation in θ̂it,

θ̂it ≈ νit −
l̃′(θit|wit)

l̃′′(θit|wit)

∣∣∣∣∣
θit=νit

.

This approximation of θ̂it will be labelled θ̃it, defined as

θ̃it := νit −
l̃′(θit|wit)

l̃′′(θit|wit)

∣∣∣∣∣
θit=νit

.

Note that this step can be stated more simply by instead taking a first order Taylor

expansion of l̃′(θit|wit) and rearranging for θ̂it. Doing this is equivalent to performing

one method of Newton-Raphson’s method for finding roots of functions.

To prove this, consider a function f(x) we wish to find the root of. Taking a

first-order Taylor expansion of this function around some x(0) yields

f(x) ≈ f(x(0)) + (x− x(0))f ′(x(0)).

If this is evaluated at some x̂ such that f(x̂) = 0, then this can be rearranged to solve

for x̂, which gives

f(x̂) ≈ f(x(0)) + (x̂− x(0))f ′(x0)

⇒ x̂ ≈ x(0) − f(x(0))

f ′(x(0))
.

This approximation can be labelled x(1) = x(0) − f(x(0))/f ′(x(0)), and is the general

iterative formula for Newton-Raphson’s method of finding roots of functions.

Rearranging the Taylor expansion of l̃′(θit|wit) in this way gives

l̃′(θit|wit) ≈ l̃′(θit|wit)
∣∣∣
θit=νit

+ (θit − νit)l̃′′(θit|wit)
∣∣∣
θit=νit

⇒ θit ≈ νit +
l̃′(θit|wit)− l̃′(θit|wit)

∣∣∣
θit=νit

l̃′′(θit|wit)
∣∣∣
θit=νit

.

If this is evaluated at θit = θ̂it, then since l̃′(θit|wit)
∣∣∣
θit=θ̂it

= 0, this implies

θ̂it ≈ νit −
l̃′(θit|wit)

∣∣∣
θit=νit

l̃′′(θit|wit)
∣∣∣
θit=νit

,
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as before.

When finding the roots of f(x) in general, after finding x(1) one can also Taylor

expand f(x) around x(1) to give an even closer approximation of x̂. Repeatedly doing

so with newer approximations x(2), x(3), . . . will give closer and closer approximations

to x̂ (under certain technical conditions).

It is therefore reasonable to ask whether taking only one iteration of Newton-

Raphson’s method gives a sufficiently useful approximation to θ̂it in the Glicko ratings

system. To answer this, note first that if f(x) = ax + b is linear, it is easy to prove

that one step is sufficient to find the only root, x = −2a/b, no matter what x(0) is

chosen. Note also that if one is maximising the likelihood of a density w(x), then is

equivalent to finding the roots of the derivative of the log likelihood, f(x) = d log(w(x))
dx

.

For a Gaussian density w(x), it can be seen that

w(x) =
1

σ
√
π
e−

1
2σ2

(x−µ2)

⇒ f(x) =
d log(w(x))

dx

= − 1

σ2
(x− µ).

Since f(x) is a linear function, this means that using Newton-Raphson’s method to

find the roots of f(x), and hence maximise the log-likelihood of the Gaussian density

w(x) will provide the correct maximum likelihood estimator after one iteration. Hence,

since the Glicko ratings system assumes that L̃(θit,νt,σt|wit) is approximately equal

to a Gaussian density, it is also reasonable to assume that one iteration of Newton-

Raphson’s method gives a good approximation of θ̂it. While this assumption does

not hold when all wijt are equal for some i and t, we shall see later why this may be

unimportant.

Step 4b: Finding 1/I(θ̂it), which will be the variance of the Gaussian density

The next step is to find the variance associated with this likelihood. This is ap-

proximated by 1/I(θ̂it) = −1/l̃′′(θit|wit)
∣∣
θit=θ̂it

. In this case, the maximum likelihood
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estimator, θ̂it, is approximated by νit, the prior mean of θit, instead of θ̃it. It should

not make much difference which is used, since Glickman’s approximations assumes

l̃(θit|wit) is well approximated by the log of a Gaussian likelihood. For of a Gaussian

likelihood 1
σ
√
π
e−

(x−µ)2

σ2 , the second derivative of the log-likelihood has constant second

derivative −1/σ2 for all x. Hence l̃′′(θit|wit) is also approximately constant, and so θ̂it

and νit should be close enough to θ̂it that it is fair to say 1/I(θ̂it) ≈ 1/I(θ̃it) ≈ 1/I(νit).

After steps 4a and 4b, we have approximated the joint likelihood of all of player

i’s matches by a Gaussian density. If the notation φ(x|m, v) is used to denote the

density of a Gaussian random variable X with mean m and variance v, this density

is then

L(θit,νt,σt|wit) ≈
∏

j∈oppt(i)

(
e(θit−νjt)qg(σjt)

)wijt
1 + e(θit−νjt)qg(σjt)

(4.1.20)

∝∼ φ
(
θit|θ̃it, 1/I(νit)

)
. (4.1.21)

Step 5: The prior and likelihood of θit are Gaussian, and hence so is the

posterior

Now that the joint likelihood of all of player i’s matches has been approximated by

a Gaussian density, the posterior distribution of θit can be seen to be the product

of two Gaussian densities. If ∝∼ is again used to denote approximate proportionality,

then by using equations (4.1.15), (4.1.3) and (4.1.21), it can be seen that

π(θit|wit,νt,σt) ∝ π(θit|νt,σt)L(θit,νt,σt|wit)

∝∼ φ
(
θit|νit, σ2

it

)
φ
(
θit|θ̃it, 1/I(νit)

)
,
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Step 6: Posterior parameters in terms of prior parameters: simple update

rules.

It is straightforward to use the properties of Gaussian variables to find the mean and

variance parameters in this Gaussian approximation of the posterior. Doing so yields

θit|wit,νt,σt ∼ N(ν∗it, σ
∗2
it )

σ∗2it =
(
σ−2
it + I(νit)

)−1
(4.1.22)

ν∗it = σ∗2it

(
νit
σ2
it

+
θ̃it

1/I(νit)

)
= νit + σ∗2it l̃

′(θit|wit)
∣∣∣
θit=νit

. (4.1.23)

This completes the steps for the Glicko model’s method of updating beliefs about θt

from prior parameters νt and σt to posterior parameters ν∗t and σ∗t given the scores of

all matches in a time period. This process can be repeated every time new data comes

in to reflect the new information. By applying these simple update steps, posterior

distributions can be approximated very quickly and easily.

4.2 Links between the Glicko ratings system and

Gaussian state space models

Performing the last few steps of the Glicko ratings slightly differently leads to two

main conclusions. Firstly, the concerns about approximating the likelihood with a

Gaussian PDF in cases where all wijt are equal for some i and t are not as serious as

they might first appear, and secondly that there are very strong similarities between

the Glicko ratings system and a Gaussian state space model.

Instead of approximating the likelihood with a Gaussian PDF, we will instead

approximate the posterior distribution. This will lead to exactly the same update

steps, but is more justifiable than approximating the likelihood in cases where all wijt

are equal for some i and t. This is because a Gaussian PDF multiplied by a Gaussian
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CDF still appears approximately Gaussian provided the variance of the CDF is not

too small by comparison, and so the approximation by a Gaussian PDF in this case

is justifiable, as shown in Figure 4.2.1.

Figure 4.2.1: A standard normal density multiplied by a normal CDF with mean µ and standard

deviation s. Approximating these by a normal density would provide the poorest approximation

when s is small, but still not wholly unreasonable.

Consider first the mean of the Laplace approximation to the posterior distribution.

Recall first that the Laplace approximation of a function w(x) is a normal density

with mean x̂ that maximises w(x), and variance −1/d
2 log(w(x))

dx2
. If w(x) is a likelihood
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function, then this mean is equivalent to the maximum likelihood estimator and the

variance is equal to the Fisher information.

Recall that to find the root of a function f(x) given some initial estimate x(0), we

can use one step of Newton-Raphson’s method to find a better estimate x(1) given by

x(1) = x(0) − f(x(0))

f ′(x(0))
.

In our case, we wish to find the maximum of the log density, so let

f(θit) : =
∂

∂θit
log
(
π(θit|wit,νt,σt)

)
=

∂

∂θit

(
log
(
π(θit|νt,σt)

)
+ log

(
L̃(θit,νt,σt|wit)

))

= −(θit − νit)
σ2
it

+ l̃′(θit|wit)

f ′(θit) = − 1

σ2
it

+ l̃′′(θit|wit).

Hence using one step of Newton-Raphson’s method to approximate the root of f(θit)

(which is equivalent to approximating the maximum of the posterior density) gives

θ
(1)
it = θ

(0)
it −

f(θ
(0)
it )

f ′(θ
(0)
it )

= νit −
l̃′(θit|wit)

−1/σ2
it + l̃′′(θit|wit)

∣∣∣
θit=νit

= νit +
l̃′(θit|wit)

1/σ2
it − l̃′′(θit|wit)

∣∣∣
θit=νit

.

This gives exactly the same mean as the update step in the original Glicko formulation

in equation (4.1.23), noting the form of σ∗it given in equation (4.1.22).

Similarly, the variance of the Gaussian density found by using Laplace’s approxi-

mation is −1/d
2 log(w(θit))

dθ2it
evaluated at θ̂it, where w(θit) = π(θit|wit,νt,σt). Compari-

son with equation (4.1.22) shows that this is also equivalent to Glickman’s updating

step if θit = θ
(0)
it = νit, since

d2 log(w(θit))

dθ2
it

= −1/σ2
it + l̃′′(θit|wit)

−
(
d2 log(w(θit))

dθ2
it

)−1∣∣∣∣
θit=θ

(0)
it

=

(
1/σ2

it − l̃′′(θit|wit)
∣∣∣
θit=νit

)−1

.
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This demonstrates how the final step in the approximations for the Glicko ratings

system is equivalent to using Laplace’s approximation, while using one iteration of

Newton’s method to approximate the posterior mean. Using Laplace’s method in this

way alleviates concerns about the approximations Glickman uses when all wijt are

equal for some i and t.

In summary, the Glicko ratings system is, at its heart, a Gaussian state space model

for player ratings in which the posterior density is approximated using a Laplace

approximation. The posterior mean of each player’s marginal posterior density is

found using one step of Newton-Raphson’s method. The choice of a logit link function

for the likelihoods of players beating each other, L(θit, θjt|wijt) means Glicko must

approximate this likelihood by a Gaussian to obtain easy update steps. Were the

probability of players beating each other modelled with a Gaussian CDF instead, this

would be unnecessary, and there would essentially be no difference between the Glicko

ratings system and a Gaussian state space model.

This links the Glicko ratings system into the existing literature on Gaussian state

space models with Laplace approximations, and is useful to know for any who wish

to further study the properties of the Glicko ratings system.

One issue that this link does raise is common one in state space modelling, and that

is identifiability of parameters. In observing the results of matches, we only observe

information about the difference between two player’s ratings θit−θjt, but never make

direct observations about the ratings θit themselves. As such, there is potential for

ratings inflation or deflation to occur, in which all players’ ratings slowly rise or fall

over time, and so the relationship between new and current players changes over time.

We hope that there are sufficient new players entering our data to “anchor” player

ratings near new players’ prior distributions, but nonetheless we must be careful to

observe whether any inflation or deflation occurs when we apply Glicko ratings to our

tennis data in order to see whether identifiability poses an issue for our modelling

accuracy.
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4.3 Extension to Five Sets

In a tennis context, we must consider how match-win probabilities are different in 5-

set matches and 3-set matches. Anecdotally, longer matches favour the better player,

as isolated incidents of bad luck will have a smaller effect. Similarly, in the standard

iid points model, as discussed in Section 2.3, if a player’s probability of winning a set

is greater than 0.5, then his probability of winning a match is greater in a 5-set match

than a 3-set match, as shown in Figure 4.3.1.

This section will describe our new method for accounting for this difference be-

tween 3 and 5 set matches in the Glicko ratings system by giving greater weight to

5-set matches. We will first explore this issue under the assumption that each set is

independent, but will then observe that the transformation this gives can be changed

by altering a parameter in the model. This parameter can be chosen to maximise

predictive accuracy, essentially meaning we can tweak the model based on the data.

This is useful if the data in fact suggest that the assumption that sets are independent

gives too much or too little weight to 5-set matches.

An alternative option to tackle account for 5-set matches would be to consider

the number of sets won by each player, instead of simply noting the match winner.

This would give greater weight to 5-set matches, as more the fact that more sets are

played means that more is learned about the players. It would also allow ratings to

shift more when the margin of victory is large, but shift less in close matches when

both players have won a different number of sets, which could help better reflect the

larger skill differences implied by heavy wins than narrow. This was not something

we considered in this thesis, and would represent a valid avenue for further work.

Let m(b)(sij) be a function denoting the probability player i beats player j in a

best-of-b-sets match given that player i wins a set against player j with probability

sij. Additionally, let m(b)←(·) be the inverse function of m(b)(·). We use this notation

rather than the more conventional m(b)−1(·) to avoid creating the impression that

(b) − 1 is a numerical equation to be evaluated and to make it clear that m(b)←(·)
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Figure 4.3.1: A comparison of match-win probabilities given dominance parameter λ = 1
2 (pij−pji)

for 3 and 5 set matches.

refers to an inverse function, not a reciprocal.

Given these, recall from Section 2.3 that the formulae describing how the proba-

bility of one player winning a set against another player relates to the probability of

the player winning the match, assuming sets are independent, are

m(3)(sij) = 3s2
ij − 2s3

ij

m(5)(sij) = 10s3
ij − 15s4

ij + 6s5
ij.

In order to relate the probability of winning a 5-set match to the probability of

winning a 3-set match, we will invert the formula for three set matches to obtain

m
(5)
ij = m(5)

(
m(3)←(m(3)

ij

))
(4.3.1)

Although m(3)←(sij), the inverse of m(3)(sij), is not easily derived analytically, it is

easily implemented in many software programmes. This is because m(3)(sij) is in

fact the cumulative distribution function of a Beta(2,2) distribution. This can be

found by differentiating it with respect to sij, and comparing it to the probability
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density function of a Beta random variable. This means that m(3)←(sij) is just the

quantile function of a Beta (2,2) random variable, which is easily implemented in

many software packages. Similarly, m(5)(sij) is the CDF of a Beta(3,3) distribution.

In order to incorporate the number of sets, b, into our previous notation, we

naturally write

L(θit, θjt, b|wijt) := P (Wijt = wijt|θit, θjt, b), (4.3.2)

L(θit, νjt, σjt, b|wijt) := P (Wijt = wijt|θit, νjt, σjt, b),

and so on.

This means that simply modelling the probabilities of players beating each other in

five sets is straightforward. However, we also want to be able to use the results of five-

set matches to update Glicko ratings. Looking at the form of the update equations in

equations (4.1.22) and (4.1.22) shows that to do this, derivatives of the log likelihood

are required. This becomes complicated if this transformation to five sets is applied.

Incorporating equations (4.3.2) into (4.3.1) naturally yields

L(θit, νjt, σjt, b = 5|wijt) := m(5)
(
m(3)←(L(θit, νjt, σjt, b = 3|wijt)

))
. (4.3.3)

The Glicko update step for the mean requires the first derivative of the log of this,

which gives

l′(θit, b = 5|wijt) =
∂

∂θit
l(θit, b = 5|wijt)

:=
∂

∂θit
log(L(θit, νjt, σjt, b = 5|wijt)) (4.3.4)

:=
∂

∂θit
log
(
m(5)

(
m(3)←(L(θit, νjt, σjt, b = 3|wijt)

)))
. (4.3.5)

While this can be calculated with repeated application of the chain rule, doing so

adds a complexity to the update steps that detracts from one of the main attractions

of the Glicko ratings: the simplicity of the updates. We therefore propose a very close

approximation that preserves the simplicity of the equations.

Recallling that m(3)(·) and m(5)(·) are CDFs, we can attempt to approximate both



CHAPTER 4. GLICKO RATINGS WITH AN APPLICATION TO TENNIS 110

of these functions with a different CDF, such as the logistic CDF, for which we write

F (b)(·) if approximating m(b)(·). Doing so will allow m(5)
(
m(3)←(·)

)
to be represented

approximately a simple form that will be easy to implement into the Glicko parameter

update formulae.

One potential problem with choosing a logistic CDF is that its input range is un-

bounded, whereas a Beta CDF is only non-trivial on [0,1]. However, recall that we

are in fact attempting approximate m(5)
(
m(3)←(·)

)
, which accepts inputs on [0,1] and

outputs on [0,1] - just as F (5)(F (3)←(x)) would. It is the quality of this overall approx-

imation that matters more than whether the individual CDFs are well approximated.

For both cases, b = 3 or 5, we want to match the means and variances of the

random variables that have F (b)(x) and m(b)(x) as their CDFs. The Beta(2,2) and

Beta(3,3) distributions both have mean 0.5, with variances 1/20 and 1/28 respec-

tively. The variance of a logistic random variable X is δ2π2/3 for scale parameter

δ. Therefore, we let X(b) be a logistically distributed random variable with CDF

F (b)(x), and with scale parameter δ2
n = 3Var(X(b))/π2. As such, δ3 =

√
3/20π2 and

δ5 =
√

3/28π2. To find F (5)(F (3)←(x)), we then note

F (b)(x) =
1

1 + exp
(
− x− 1

2

δn

)
,

F (b)←(x) =
1

2
+ δn log

(
x

1− x

)
,

and therefore F (5)(F (3)←(x)) ≈ 1

1 + exp

(
− F (3)←(x)− 1

2

δ5

)
≈ 1

1 + exp
(
− δ3

δ5
log
(

x
1−x

))
=

1

1 +
(

x
1−x

)− δ3
δ5

. (4.3.6)

If we compare this function with the truth, m(5)
(
m(3)←(x)

)
, as in Figure 4.3.2, we

observe that F (5)(F (3)←(x)) appears to approximate m(5)
(
m(3)←(x))

)
well.

Equation (4.3.6) provides a simple approximate formula relating the probability

of winning three and five-set matches. Of course, however, given that it is indeed
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only an approximation based on the assumption that each set is independent, it is

possible that better approximations exist. However, equation (4.3.6) gives an easy

framework from which to experiment with other approximations by using a different

power instead of δ3/δ5 =
√

1.4 - any constant K could be input in its place, and this

parameter could be optimised to maximise predictive performance in a given set of

matches in order to better model the probability of winning five-set matches.

We can apply the equation (4.3.6) to our likelihood to find the probability of

Figure 4.3.2: The exact expression m(5)
(
m(3)←(x))

)
(black line) compared with the approximation

F (5)(F (3)←(x)) (red dashed line) using K = δ3/δ5.
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winning a five-set match. Doing so gives

L(θit, θjt, b = 5|rijt) = m
(5)
ij

(
m

(3)←
ij (L(θit, θjt, b = 3|rijt))

)
≈ 1

1 +

(
L(θit,θjt,3|rijt)

1−L(θit,θjt,3|rijt)

)−K
≈ 1

1 +

(
L(θit,θjt,3|rijt)
L(θit,θjt,3|1−rijt)

)−K
≈ 1

1 +
(
eq(θit−θjt)wijt

1+eq(θit−θjt)
1+eq(θit−θjt)

eq(θit−θjt)(1−wijt)

)−K
≈ 1

1 + e−Kq(θit−θjt)wijt

e−Kq(θit−θjt)(1−wijt)

(4.3.7)

≈ eKq(θit−θjt)wijt

1 + eKq(θit−θjt)
, when wijt = 0 or 1, (4.3.8)

≈ L(Kθit, Kθjt, b = 3 |wijt) when wijt = 0 or 1.

We therefore see that this approximation of the likelihood takes exactly the same form

as the original likelihood in equation (4.1.1), but with the distance between θit and

θjt multiplied by a constant K, so that the difference between players becomes more

significant and the stronger player is favoured, if K > 1.

Note that equations (4.3.7) and (4.3.8) are only equal when wijt = 0 or 1. For

other values, such as wijt = 1
2
, equality does not hold - however, such values of wijt

are impossible in this tennis setting.

Careful application of the approximation steps in Section 4.1.3 reveals that

L̃(θit, νjt, σjt, b = 5 |wijt) =
eKqg(Kσjt)(θit−νjt)wijt

1 + eKqg(Kσjt)(θit−νjt)
(4.3.9)

= L̃(Kθit, Kνjt, Kσjt, b = 3 |wijt),

which in some ways is intuitive due to the fact that Kθjt ∼ N(Kνjt, K
2σ2

jt).

The new approximate likelihood for five-set matches in equation (4.3.9) can then

be applied easily in the Glicko parameters update equations (4.1.22) and (4.1.23),

allowing for five-set matches to be easily incorporated into the existing Glicko frame-

work.
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4.4 Application of Glicko Ratings to Tennis Data

In this section, we discuss the implementation of Glicko ratings to tennis data for

matches from 1991 to 2016. The data are described in more detail in Chapter 5. In

order to implement Glicko ratings, we must pick appropriate parameters. The main

parameters to set are the lengths of each time period and the increase in ratings

variance per time period, γ2, as well as the parameter K that governs the relationship

between three and five-set matches. We have decided to select these parameters

to optimise predictive performance, as given by the log-likelihood. This gave γ2 =

115.394 and K=1.186. It is interesting that K is almost exactly equal to
√

1.4 = δ3/δ5,

as used in equation (4.3.6). The implication is that the amount of extra information

learned from 5-set matches compared with 3-set matches is similar to that implied by

an independent sets assumption. (This is not evidence in itself that sets are indeed

independent).

To select the period length l, we performed a grid search over the values l=1,2,4

and 8 weeks. We chose not to consider time lengths less than a week as the tennis

data only records the first date of the tournament. We felt if we used a period length

of one day, it might give a false impression that results were updated at the end of

each day, whereas tournaments typically last around a week or two weeks, and so each

“day” typically contains at least a week’s worth of information. In any case, using a

period length of one day gives very similar predictive performance to using one week.

The decision to only consider whole numbers of weeks was made due to the weekly

cycle of tournaments, as it seemed sensible to ensure the periods always began on the

same day of the week. Of the options l=1,2,4 or 8 weeks, a period length of one week

gave the best predictive performance.

In setting the period length to one week, it was important to consider what day

of the week to begin a week on. Jeff Sackman’s data does not give the date on

which matches occur, only the date on which the tournament starts. Figure 4.4.1

shows how many tournaments start on each day of the week. Monday is by far the
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most popular choice, with Friday and Saturday as the next two most popular. Most

tournaments last around one week. Therefore, there would be significant overlap

between a tournament starting on a Saturday and one on a Monday, and as such

it would be sensible for such tournaments to be included in the same week for the

purpose of Glicko ratings. As such, our implementation of Glicko ratings considers

Friday to be the first day of the week, such that tournaments starting on Friday

and the following Monday are considered simultaneous. Selecting Sunday or Monday

as the first day of the week, as would be more traditional, would not achieve this

desirable property.

Figure 4.4.1: The number of tournaments in Jeff Sackman’s data starting on each day of the week

since 1991.

4.4.1 Model Calibration

With any predictive model, it is important to assess whether or not the predictions

are well-calibrated, as discussed for example by Hosmer et al. (2013). This means

that whenever, for example, our model predicts a player to win with probability
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60%, then we would expect the favoured player to win in 60% of such matches. It

is entirely possible for a model to have high predictive accuracy, in that it assigned

high probability to the events that occurred, while still being badly calibrated. It is

important for the model to be well calibrated in order for it to be useful in predicting

the odds for individual matches.

Since the predicted probabilities of each player winning can fall anywhere in [0,1],

we grouped the predicted win probabilities into bins of length 0.1 and compared the

average predicted win probability in each bin with the observed proportion of players

who won their match. The results are shown separately for three and five-set matches

in Figure 4.4.2. This shows the results fall almost exactly on a straight line, and so

we believe that calibration poses no problems for our modelling.

Figure 4.4.2: Average predicted win probabilities in bins of length 0.1 compared with observed

proportion of wins for players with predicted win probabilities in those bins.

4.4.2 Examples of Player Ratings

Let’s look now at some individual players and how their ratings evolve over time.

Figure 4.4.3 shows Andy Murray’s Glicko ratings over time. Before he makes his
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debut, there is obviously substantial uncertainty about his strength. As he plays, this

uncertainty quickly shrinks, and Murray’s rise can be steadily tracked over his career,

with his highest rating coming at the end of 2016, coinciding with him becoming world

number 1 for the first time in November 2016.

Djokovic, Federer and Nadal’s ratings are shown in Figure 4.4.4. The mean of the

Figure 4.4.3: Andy Murray’s Glicko ratings mean over time (black), with a 95% confidence interval

(light blue) based on his ratings standard deviation.

estimate of Djokovic’s ratings mean at the end of January 2016 is the highest of any

player at any time, coinciding with Djokovic setting the all-time record ATP ranking

points total at the same time. His rating decreases in the second half of 2016 due

to a dip in performance after winning the French Open to hold all four Grand Slams

simultaneously. Federer, meanwhile, hits his ranking peak in 2007 before taking a dip

in 2008 after suffering from illness. Federer missed the second half of 2016 through

injury, and this can be seen on the plot - his ratings mean estimate remains flat, but

his ratings variance can be seen to grow. This reflects the uncertainty about the level
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Roger would return at - perhaps he would return as strong as ever, but perhaps his

performance would dip after his return from injury, or even improve after an opportu-

nity for rest. His increased ratings variance will allow the ratings to quickly capture

any changes after his return.

Figure 4.4.5 shows the ratings of two players who did not scale the heights of

Figure 4.4.4: Novak Djokovic, Roger Federer and Rafael Nadal’s Glicko ratings means over time

(black), with 95% confidence intervals (light blue) based on their ratings standard deviations.

the world number 1 ranking. Greg Rusedski’s highest ever world ranking was number

4, and his highest ratings mean is 2139. For comparison, Murray peaks at 2455 and

Federer at 2499. Scott Willinsky reached his highest world ranking of 980 in 2002,

and played the majority of his matches in Futures tournaments. His relatively low



CHAPTER 4. GLICKO RATINGS WITH AN APPLICATION TO TENNIS 118

win-rate means his ratings mean remains low throughout, but it is also worth noting

that by qualifying for fewer tournaments, and progressing less far in them, he has a

higher ratings variance from playing fewer matches.

It is also worth briefly looking at the ratings of Thomas Muster in Figure 4.4.6,

Figure 4.4.5: Greg Rusedski and Scott Willinsky’s Glicko ratings means over time (black), with

95% confidence intervals (light blue) based on their ratings standard deviations.

as there are a couple of interesting features in his Glicko ratings to discuss. The

first key feature is his long career break from 1999 to 2010. Most players only take

relatively short breaks from tennis, and so the increase in their ratings variation are

relatively subtle. Even Roger Federer’s aforementioned absence in the second half

of 2016 only sees his ratings standard deviation increase by about 24. Muster took

a career break of 11 years before returning to professional tennis at the age of 42,

and it is worth looking at how the Glicko ratings deal with this to highlight how the

ratings cope with breaks in general. Figure 4.4.6 shows that while Muster’s ratings

mean remains constant throughout his career break, in the absence of any matches,

his ratings variance grows significantly. This reflects the large amount of uncertainty

about how strong he would be on his return. This large variance allowed the Glicko

ratings to quickly capture that he was not the same level as he was after his first

retirement, and his ratings mean quickly decays before his second retirement in 2011.



CHAPTER 4. GLICKO RATINGS WITH AN APPLICATION TO TENNIS 119

Figure 4.4.6: Thomas Muster’s Glicko ratings mean over time (black), with a 95% confidence

interval (light blue) based on his ratings standard deviation.

The second key feature of Muster’s ratings is the appearance of some minor sea-

sonality in his ratings, however this is probably due to his preferred choice of surface.

Muster was a clay court specialist, who first became world number one in February

1996 before losing it for the final time in April of the same year. His ranking was not

without controversy, as Andre Agassi and Pete Sampras, among others, criticised his

over-reliance on winning ranking points from clay tournaments without distinguishing

himself on other surfaces. In Muster’s defence, it should be noticed all of Agassi’s

tournament wins in 1995 also came on only one surface - the hard court - and Muster

beat Sampras on carpet at the 1995 German Masters’ tournament.

However, our model appears to agree with criticism of Muster’s ranking in part,

with Muster ranked 5th at the time. A major factor in this is the fact that Glicko

ratings naturally weigh recent matches more heavily, whereas ATP ratings weight

the last 12 months’ tournaments equally. As a result, while Muster’s 1995 French
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open win contributed heavily to his official ATP number 1 ranking, the Glicko ratings

“punish” him for his more recent modest success in the hard court and carpet sea-

son, and Muster reaches his 1996 Glicko ratings peak in 1996 in July, further into his

favoured clay court season. As such, the Glicko ratings effectively underrate Muster

on clay courts at the start of the clay season, when his recent mixed record on other

surfaces pull his ratings down despite previous years’ form on clay indicating a strong

season to come. Similarly, it overrates him on other surfaces at the end of the clay

court season, when he will struggle to sustain the level of his success on clay on other

surfaces.

4.4.3 Further Work: Glicko Ratings and Surface Information

The issue of incorporating surfaces into Glicko ratings is currently an open research

topic. It is widely known that different players prefer different surfaces, and the issue

is considered in the models of McHale and Morton (2011) and Irons et al. (2014), for

example. Ideally a ratings method should be able to give different ratings to players

on different surfaces to account for this issue, thus correctly placing Muster as the

strongest clay player at the time of his rankings peak while acknowledging his lesser

ability on other surfaces. The difficulty lies in learning players’ surface preferences

whilst also figuring out how much inference about a player’s strength on one surface

can be made from matches on another. Should Muster have had a bad season on hard

court, how might this affect next season’s clay court performance on average?

A simplistic approach to incorporate surface information into Glicko ratings could

be to give each player a different rating for each surface, with the ratings being com-

pletely independent of each other. For example, we would only update a player’s clay

rating when they played on clay. If a player played on grass instead, nothing would be

learned of the player’s ability on clay, and no update of the player’s clay rating would

be performed. In some ways, it would be as if each player were replaced by three new

players, one for each surface, each of which were entirely separate and independent
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of each other. All of the theory from standard Glicko ratings would therefore still be

applicable, making this model very simple to implement.

However, clearly this approach is slightly unrealistic, in that if a player shows an

upturn in form during the clay court season, it might be expected that this form could

also continue into the grass court season to follow. A player might make improve-

ments in their game that would be applicable to all surfaces, and we would wish to

account for this.

A possible improvement could be to model each player’s three ratings as correlated.

This would mean that a player winning a clay court match would see an increase in

their clay court rating as before, but would also see a smaller increase in their grass

and hard court ratings. This would mean that if players performed differently on

different surfaces over a long period of time, the ratings on different surfaces would

diverge, but it would allow us to use improved performance on one surface to predict

potential improvement on other surfaces too. It should be possible to accomplish eas-

ily enough within the existing Glicko ratings framework, but we have yet to explore

this fully to see whether this is true.

Issues with this approach could include identifying the correlation structure of

players’ ratings on different surfaces, and the fact that this approach may lead to

there being too many parameters to effectively estimate. Maximum likelihood esti-

mation could be used to estimate the correlation matrix, but a good starting point for

estimating correlation structure would be based on Irons et al. (2014), which suggest

the correlation matrix

M =


1 0.25 0.5

0.25 1 0.01

0.5 0.01 1


for their model, with surface ∈ {hard, clay, grass}. Their model is closer to the

Bradley-Terry type model of McHale and Morton (2011) than a Glicko model, and so

the different models might need slightly different correlation matrices, but nevertheless
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it would provide a good basis for further investigation.

4.4.4 Ratings Inflation

In order to determine whether the ratings this implementation of the Glicko ratings

system are useful, it is important to consider with Glicko ratings is whether ratings

have inflated or deflated over time. The ratings of players can of course never be

observed directly, but only information about the difference between two players’ rat-

ings through the outcome of a tennis match. As such, if each players’ rating were

increased by 100, the model would function exactly as before, as the parameters are

non-identifiable. As such, it is possible for the ratings of some or all players to steadily

climb or fall over time, when no real change in the actual strength of the players has

occurred, while still modelling the outcomes of these players’ matches well. However,

it is usual to give all new players the same rating whenever they play their first match.

If the ratings of one group of players has become inflated, then their matches against

new players will therefore not be modelled well. We investigate briefly whether ratings

inflation of deflation is likely to be causing any problems in our implementation of

Glicko ratings on tennis data.

One way of assessing whether ratings deflation or inflation has occurred is to look

at the average ratings of players. However, while a player has played only very few

matches, their rating is not particularly informative of their quality (as is represented

by the high ratings standard deviation). We therefore only consider the average rat-

ings of players who have played at least a certain number of matches - 50 seems a

reasonable amount for a young player to establish themselves. The results of this are

shown in Figure 4.4.7, and we can see an overall downward trend over time. Note

that the average rating is initially much higher than 1700, the rating of new players,

since the first players to play 50 matches are those who win tournaments, and hence

gain many ranking points from doing so. This effect soon disappears, as more players

play their 50th match.



CHAPTER 4. GLICKO RATINGS WITH AN APPLICATION TO TENNIS 123

However, while the average rating for such players is decreasing, the composition

Figure 4.4.7: The number of matches of each type in each year in our data. (Data on Davis cup

and ATP tour finals omitted from this plot, since the number of matches is small and varies very

little.)

of the data is also changing. Figure 5.2.1 showed how the types of matches occurring

change from year to year in our data.1 While the number of ATP tour-level matches

is roughly constant throughout, the number of Challenger matches climbs through-

out, while the number of Futures matches increases hugely between the start and the

end of the data. Additionally, ATP qualifying data are only available after 2007, and

almost all of our Challenger qualifying data comes from 2016. Additionally, omitted

from Figure 5.2.1 are the number of ATP tour finals matches and Davis Cup matches,

since these numbers are relatively small (about 15 and 300 respectively) and are al-

most constant throughout the data, and would thus clutter the plot without adding

useful information.

Players who participate in Futures are typically young and inexperienced, and

similarly top players tend not to plays as many Challenger or qualifying matches.

1Some matches in the 1991 season actually occurred in late 1990, hence their inclusion.
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This means that there are far more matches between low - rated players as time goes

on, while the number of matches between highly rated players remains steady. Having

data on a much greater range of low-level matches means we see far more low-level

players, and as such it is unsurprising that the average rating decreases over time

when the notion of the “average player” in our data is not constant.

This means that looking merely at the average rating of players over time cannot

indicate whether players’ ratings have inflated or deflated over time. One way to get

around this is to instead look at stronger players. We decided to focus on a core

of professional players. Various studies from different sources across the years have

suggested different minimum ranking to make as much prize money as is spent in ex-

penses while competing. For example, Bialik (2014) suggests that in 2014 a ranking

of 336 was required for men, while Russell and USTA (2010) suggests that in 2010

the ranking was 164. Figure 4.4.8 shows how the average ratings mean of the top 100,

200 and 300 has changed over time. For each of these rankings, the average ratings

mean appears to have remained relatively steady compared with how much the av-

erage ratings mean of all players that have played 50 matches has changed. Indeed,

the average rating has risen by only about 25 rating points between the start and end

of the data. This small change could even be explained by slight improvements in

professional standard in the last 25 years, particularly during the era of dominance by

Djokovic, Federer and Nadal, widely considered to be three of the strongest players

ever.

The purpose of looking for ratings inflation or deflation is to consider whether

new players are incorrectly rated compared to older ones. If all players (even new

ones) received a boost of 100 points to their ratings mean, it would not affect our

ratings. However, we give all new players a ratings mean of 1700. If all players except

new ones received a boost to their points, then the new players would be underrated

compare to older ones.

We look at how the probability of a new player beating an average top 200 player
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Figure 4.4.8: The average ratings mean of players up to a certain rank over time.

over time. Examination of the data suggests 615 to be a reasonable ratings standard

deviation to take for a typical top 200 player. According to our Glicko model, in-

creasing the rating of the top 200 player from 1900 to 1925 reduces the chance of the

new players winning a three-set from 0.318 to 0.298 - a reduction of 0.02. This is not

a large enough difference to cause concern, especially given the fact that a plausible

explanation is the improvements of high-ranked players. We therefore conclude that

no further action is required to combat drift in player ratings over time.



Chapter 5

Data: Odds and Results

This chapter contains a brief discussion of the two main sources of data used in

the chapters that follow. The odds data provided by ATASS Sports describes the

odds on a single betting exchange for 274 matches. We only used 274 for matches

for this initial investigation, as the data required a significant amount of processing.

We will analyse this odds data to see whether it behaves in a manner consistent

with match-fixing or not. In order to help assess this, we use the results of past

tennis matches to estimate the strengths of the players involved in the matches in

the odds data. These results data came from a public GitHub repository, https:

//github.com/JeffSackmann/tennis_atp, which records a wide variety of data from

tennis matches on the ATP tour, as well as Challenger and Futures series. These data

will help model the strengths of players, which in turn help model the expected odds.

When the odds differ from our expectations, it may be a sign that match-fixing is

afoot.

5.1 Odds Data

The main method by which this project aims to highlight suspicious matches is by

investigating whether betting odds behave as expected. It is widely known that
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anomalies in odds data can occur in fixed matches due to fixers betting large amounts

of money to profit on their additional information. Odds data are therefore required

to investigate this. The odds data for this project are collected from a single betting

exchange by ATASS Sports, who then also pre-processed the data.

In practice, one would not just monitor a single exchange for anomalous activity,

but a wide range of bookmakers and exchanges to ensure that the suspicious betting

activity is not missed. In mitigation, Reade and Akie (2013) note that traditional

bookmakers adjust their odds based in part on the prices on betting exchanges, while

Croxson and Reade (2011) consider one major betting exchange and two major book-

makers and claim that information, in the form of odds movements, appears on the

exchange first. This suggests that odds in different bookmakers and exchanges may

be highly correlated.

Nonetheless, it would be prudent to monitor as many sources as possible to avoid

missing evidence. However, the focus in this thesis is on developing algorithms and

tools for analysing odds in general. As such, we thought it sufficient to use odds from

a single exchange to demonstrate the capabilities of our methods. In order to be of

use in detecting suspicious betting activity, we would use our tools to monitor many

betting markets and report suspicious behaviour on any, taking particular note when

multiple markets are flagged as unusual.

ATASS Sports’ odds data include both pre-match and in-play data for 274 matches

from 2013 to 2016. They include matches from a range of different rounds and tourna-

ments, from Challenger matches to Grand Slam level, with a mixture of hard and clay

court matches. However, all player names and match details are omitted from this

final thesis to avoid any accusations of besmirching individual players’ reputations.

Table 5.1.1 shows how many matches of each surface and level were included in the

data. We chose to focus only on two surfaces, clay and hard, in case we wished to do a

comparative study of the differences between these surfaces. For such a study, we felt

it would be better to have more matches on two surfaces than fewer matches across



CHAPTER 5. DATA: ODDS AND RESULTS 128

Hard Clay Total

Grand Slam 23 13 36

Masters 1000 38 26 64

Other ATP Tour 96 41 137

Challenger 15 22 37

Total 172 102 274

Table 5.1.1: A breakdown of the 274 matches for which we have odds data by surface

and tournament level.

three surfaces by also including grass court matches. On the other hand, we decided

to take a spread of matches from Grand Slam level all the way down to Challenger

level, in case we wanted to investigate any features that gradually changed as the

importance of the tournament increased or decreased. In this case, we felt it would be

important to cover every different level in order to best highlight any gradual changes,

even if that reduced the number of matches in each category. However, we eventually

decided not to prioritise the analysis of surface or tournament level in order to focus

instead more on odds data due to time constraints.

The in-play data are processed to provide a summary of the betting odds and

volumes in each match during the breaks between games on a single betting exchange.

This will allow us to explore how the odds vary throughout the match as the score

changes from break to break.

To obtain the summary of the odds in each game break, the data used for this

project underwent some pre-processing before use. In ATASS’ original raw dataset,

the best available price for each player is recorded at regular intervals on a single

betting exchange. These prices will change gradually as the match develops, but also

fluctuate randomly, even when the score is not changing. Because of this variation,

it is necessary to summarise the odds recorded at different times in a game break to
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get a sense of the state of the market during that break in play. Using a summary

statistic for this helps cut out extraneous information.

Crucially, while the starts and end times of games are time-stamped to the nearest

second in the data, the reaction of the exchange to the results of new points is swift,

but not immediate. This can be due to the different times at which people observe

the outcome of a point because of delays in internet or television signal. We do not

have access to the original data to demonstrate the extent of this effect, but Croxson

and Reade (2011) study the speed at which information is reflected in one exchange

compared with bookmakers and show that while the exchange reacts much quicker,

even there the change is not instantaneous.

As such, it is common for the odds data at the starts of the intervals between

games, and to a lesser extent the ends, to fail to accurately reflect the current score.

At the ends of important games in the match, such as breaks of serve and then ends

of sets points, the differences in predicted win-probability after the game can be very

large, and as such we want to omit all odds that reflect incorrect score information.

We therefore chose to calculate the median of the odds recorded in each game

interval, as this would remove any drift at the starts and ends of the intervals, and

outliers have less influence over the median than the mean. However, not all of the

odds recorded during a game break will be equally informative, and so we wish to

perform a further processing step. In order to explain why, it is necessary to introduce

the concept of overround.

5.1.1 Overrounds in Betting Exchanges

The overround of the odds for all mutually exclusive outcomes at a given time is

defined as the difference between 1 and sum of the reciprocals of the decimal odds.

In a fair market, the overround would be 0, as the reciprocals of the odds would be

probabilities. However, it is almost always greater than 0 in practice to provide a

profit-making opportunity for bookmakers or odds layers on betting exchanges.



CHAPTER 5. DATA: ODDS AND RESULTS 130

The over-round is a concept very closely linked to the bid-ask spread. The term

“bid-ask spread” arises from financial markets, in which it is the difference between

the lowest price currently available any seller is offering to sell the asset at (the ask

price) and the highest price any buyer is offering for the asset (the bid price). While a

spread exists, a stand-off of sorts ensues, as no transaction occurs until a buyer raises

their bid to meet the ask price or a seller stoops to the bid price.

In betting exchanges with two participants, backing one player to win is the equiv-

alent of laying the other, and the prices should reflect this. As such, it can be shown

that the overround is a form of bid-ask spread, as discussed by Brown (2012) and

Marginson (2013). The assets are bets on each player, and the odds form ask and bid

prices.

There are many factors that can affect a bid-ask spread, as per Marginson (2013).

One issue is the transaction cost, which in betting exchanges often takes the form of

commission on profits. Buyers and sellers will choose prices to offset any such costs.

A second issue is differences in opinion on the value of an asset. If those with an

asset believe it to be more valuable than those wanting to buy, a bid-ask spread will

emerge. Crucially, however, a bid-ask spread can also be closely linked to the liquidity

in the market.

Liquidity is the ease with which transactions can be made in a market. If there is a

large bid-ask spread, it is difficult for buyers and sellers to agree on prices, whereas it

is much easier for to agreements on price to be made when the bid-ask spread is small.

The markets for currencies are typically very liquid, as they have very low spreads,

whereas the markets for rare paintings are much less liquid, as the value assigned to

them varies much more among individuals, Kirkpatrick and Dahlquist (2010).

These examples also illustrate the interplay of liquidity and bid-ask spreads with

supply and demand. Bid prices are linked to demand, in that if demand is high,

bidders will have to raise their prices to beat their competition. If demand is low,

they can afford to bid low prices and wait patiently for a seller to meet their demands.
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Similarly, if supply is high a seller may need to lower the ask price, whereas low supply

means prices can remain high.

As such, in betting exchanges the bid-ask spread can reflect the amount of com-

petition in the market. If betting activity is generally low, prices (odds) may remain

far apart, whereas if more gamblers are interested in an event, gamblers will compete

to offer the best prices, driving the bid-ask spread (and the overround) down.

One consequence of low liquidity can be volatility, in that prices can move much

more rapidly. Mike and Farmer (2008) cite low liquidity as one of the main causes of

short-term market volatility in financial markets. This can be seen easily in betting

exchanges. If the bid-ask spread is high, and there is a large difference between 1

and the sum of the odds, it is easy to undercut the best odds on offer. Once this

bet has been matched it will no longer be available, and the odds may swing back to

the previous best odds, or to a second new offer between the two. By contrast, if the

bid-ask spread is low, much more sustained betting activity is required to shift the

odds, and as such the odds remain more stable. Sarkissian (2016) and Roll (1984)

discuss the links between bid-ask spread and market volatility.

When volatility is high and the odds are prone to sudden movements, it can be

very hard to identify any signal (the implied probability of the event) from amongst

the noise. Our goal is to establish what values of odds best represent the state of the

market in each game break. How are we to do this when the odds are so variable?

When the odds are more stable, it is much easier to identify clear signals. Kirkpatrick

and Dahlquist (2010) discuss the difficulty in performing technical analysis of financial

markets when liquidity is low.

As an example, suppose the best prices available for two players, A and B, are

1.25 and 2 respectively. The fair probabilities for these odds are hence 1/1.25 = 0.8

and 1/2 = 0.5, giving an overround of 0.3. Suppose a gambler believed player B had

a 0.4 probability of winning. Offering any odds up to 1/0.4=2.5 for player B to win

would give positive expected profit. As such, they can comfortably offer odds of 2.3,
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for example, while expecting to profit, causing a large shift in the odds available. An-

other gambler with similar beliefs could then better this by offering odds of 2.4. Some

new gamblers may then favour player A, snapping up these prices as quickly as they

appeared. What then should we infer to be representative odds for this match? It is

difficult to infer an “average” market opinion. For these reasons, when the overround

is high the odds may provide unreliable information, and we seek to filter out these

reported odds.

To summarise, high overrounds can be a sign of low competition in the betting

market, which can in turn result in high volatility in the odds. When the odds are

volatile, they provide less information about the state of the market due to the fact

that they move so quickly from one moment to the next. As such, it can be very dif-

ficult to infer representative odds for the event. When the odds have low overround,

they are typically therefore more informative.

One more cause of high bid-ask spreads to be aware of is the presence of informed

traders in the market, Brown (2012), Marginson (2013). Should a traditional book-

maker believe a substantial number of informed traders to be operating in a market,

they will tend to use higher overround to protect themselves against potential losses.

This effect increases in markets with more uncertain outcomes, and the fear of missing

information that informed traders have increases. This is one reason why horse races

with more runners tend to have higher overrounds. Marginson (2013) also argue that

this effect may also take place on betting exchanges, to the effect that odds layers may

protect themselves against informed traders by offering odds more cautiously when

the potential for information asymmetry is high. A corollary of this is that overrounds

could be higher in fixed matches, when substantial information asymmetry exists, but

we did not examine this further. Brown (2012) investigates overrounds at Wimbledon

and concludes that high overrounds may be caused by traders with inside information

in the form of some viewers’ ability to observe the results of points before others,

possibly due to a delay in television signal.
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5.1.2 Pre-processing Odds Data

In order to summarise the state of the betting market in each game break, we therefore

want to filter out sets of odds with a high overround before taking the median of odds

recorded in each game break. However, there is a balance to be struck in deciding

how to filter out sets of odds with high overround. If too many sets of odds with high

overround are used, they may pollute the information provided by sets of odds with

low overround. However, removing too many sets of odds with high overround will

leave too few data points to give a representative summary of the market.

In order to strike this balance, we first split the sets of odds into bins according to

their overround. The bins were [0, 0.02), [0.02, 0.05), [0.05, 0.1), [0.1, 0.2) and [0.2,

∞). We found that the best compromise between including unhelpful data and using

too little data was found by using the ten sets of odds with the lowest overround, but

only if they are in the lowest two bins. If there are less than ten odds in these bins,

but more than zero, then all of the odds in those bins will be used, but no others. If

there are no odds with overrounds in those bins, the next bin will be used in the same

way, and so on.

The bottom two bins are therefore effectively one large bin for the purposes of

this filtering. The processing step looks for the lowest bin (or merged bin) with any

overrounds in, and uses all odds in that bin, up to a maximum of ten. No further bins

are used. For example, if there were seven overrounds in the first bin and three in the

fourth bin, only the first bin would be used. The unhelpful points in the fourth bin

would be ignored. However, if there were only points in the fourth bin, these would

be used. This means that sets of odds with low overround were targeted, and those

with high overround were only used where necessary.

To give an idea of the reliability of the odds in each game break, the number of

overrounds in each bin was recorded in the data. The sets of odds selected in each

game break were then summarised by using the median of the selected odds for each

player.
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An alternative strategy to filtering for obtaining information from sets of odds with

high and low overrounds would be to take a weighted average of the different odds

recorded, weighting the different odds for each player according to the overround. We

did not consider this for this thesis, however.

The pre-match data are collected and processed in exactly the same way, except

the odds are organised according to different time windows before the start of the

match, as obviously there are no game breaks pre-match. These windows are selected

so that they are short just before the start of the match, but get longer the further

away the match is. This is because odds move very little when the match is far away,

but can move more as the match approaches and more and more gamblers become

interested and start betting. Adding extra time windows far in advance of the match

would hence add little value, but require extra storage space and processing time.

The thresholds of the windows were (in minutes before match start) 0, 5, 20, 60, 120,

240, 480, 720 and 10,000.

5.2 Tennis Results Data

The second set of data used is a set of results of tennis matches. In order to assess

whether betting odds are suspicious, it is common in the match-fixing literature to

attempt to predict the odds by estimating the strength of both players (or teams in

other sports). Betting odds and sports models can both predict sports matches well, so

it should also be possible to make predictions about betting odds using sports models.

Matches where odds do not conform to predictions can then be regarded as suspicious.

In order to estimate the quality of tennis players the results of their past matches are

required, as these are the only (publicly available) demonstrations of the players’

quality. Our match data comes from https://github.com/JeffSackmann/tennis_

atp, a repository which regularly updates with all of the latest tennis results. It is

licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike

https://github.com/JeffSackmann/tennis_atp
https://github.com/JeffSackmann/tennis_atp
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4.0 International License.

The data contain all results of ATP tour-level matches since 1968 (the start of

the Open Era) as well as qualifying, challenger and futures matches since 1991. For

each match, data include the identities of the players, the venue, the tournament, the

round, and the final score in each set. In matches where they are available, there

are also match statistics such as the number of points won and lost on serve by each

player. This information is available for matches after 1991 for tour-level matches,

but only more recently for the other matches. Some data are not recorded as the

matches do not pass some sanity checks. The two examples cited are when the loser

wins 60% of points or when the match time is under 20 minutes.

We also made some minor edits to the original data. We corrected the identities of

players in four matches using data from tennislive.net when the original data recorded

the same name as the winner and loser, and we also deleted one match in which the

name of one player was not recorded.

The repository also contains results from WTA matches, but these are not used in

this thesis. It is most convenient to focus on approximately homogeneous data, but

men on average win more points on serve than women, as observed for example by

Klaassen and Magnus (2001). It is therefore best to focus only on one gender. Since

more data are available for men’s tennis, this is what was used.

5.2.1 Data Selection

An important question to address is how much of the data to include. While it is

tempting to use all available data, there are a few conflicting factors that must be bal-

anced. First and foremost, it is important to include sufficient data such that players

are ranked as accurately as possible at the times of the matches whose odds we wish

to investigate for suspect activity. These all occur in from 2013 to 2016. We must

therefore include enough historical matches to ensure players’ ratings are modelled as

well as possible by this time.
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On the other hand, using additional matches introduces a computational cost for

calculating Glicko ratings and optimising parameters to maximise predictive perfor-

mance. In the most extreme case, were data available from 100 years ago or more it

is highly doubtful it would improve our ability to model modern players. The earliest

data available from Jeff Sackman’s data are from 1968, so we must balance the data’s

ability to improve the quality of predictions against the computational burden of us-

ing them.

The other main factor to consider is that the composition of the data we have

available changes over time. Figure 5.2.1 shows how the types of matches varies by

number over time. Critically, the year 1991 sees the introduction of a large amount

of Futures matches for the first time. The inclusion of these matches is important

to be able to model the ratings of low-ranked players, but must be considered with

caution. The addition of these matches may suddenly introduce a flood of players of

lower quality than those playing in ATP matches before 1991, and the quality of the

“average” player will take a sharp decrease. As such, players who play many matches

before 1991 will be initially underrated compared to those that join after 1991, and

it may be some time before this issue is resolved

While the composition of the data continues to alter over time, with more and

more Futures, Challenger and qualifying matches over time, the biggest step chance

is in 1991, and so we decided to use all data from 1991 onwards. We could possibly

have used less data and still obtained very similar ratings for players in the matches

from 2013-2016 for which we have odds data. Indeed, of all the players who played at

least 10 matches in 2016, only 19.5% of players made their debuts before 2007, and

Radek Stepanek was the first to make his debut, which happened in 1995. However,

since the computational speed of our methods were not slowed significantly by using

all data from 1991, we saw no reason to remove the early data.
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Figure 5.2.1: The number of matches of each type in each year in Jeff Sackman’s data. (Data on

Davis Cup and ATP tour finals are omitted from this plot, since the number of matches is small and

varies very little by year.)



Chapter 6

Pre-Match Odds Modelling

In this chapter our objective is to build a model that describes the odds in the pre-

match market of a tennis match as the start of the match approaches. Previous work

in the literature focusses on the difference between closing and opening odds, but

we aim to build a more sophisticated model that avoids some of the biases this can

cause. It is possible for the opening odds to be poorly set, and the market quickly

converges to a new position that gamblers believe is more representative of the two

players. This is not suspicious behaviour, and is not particularly important to flag,

as the odds can generally be quite variable at low volumes. However, further into the

pre-match market once the odds are better established, it is more interesting when

swings occur. This may be due to innocent reasons, such as injury news, or it may be

evidence of a fix. We want to develop a model that flags such matches as anomalous

so that they could potentially be investigated further for suspicious activity.

Our method will advance on current literature by investigating the use of betting

volumes to identify low-volume swings that are of less interest, as well as looking at

swings at various intervals throughout the pre-match market to help identify later,

potentially more informative swings.

In our model, for each match separately the pre-match odds are randomly dis-

tributed around some constant mean, designed to represent “fair odds”. However,

138
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as the market becomes more liquid as the match approaches as more people gamble,

we expect the odds to become more informative, and hence the variance of the odds

will decrease as the match approaches. We shall investigate the use of both time

and betting volumes to model this decreasing variance, and pool information across

matches to estimate the correlation structure and usual amounts of variability in the

odds.

We begin with a brief description of our odds data before defining Gaussian pro-

cesses, which will be key to our model, and outlining a specific Gaussian process to

represent the pre-match betting market, with the goal of flagging matches that do

not fit this model well as being potentially worthy of further investigation.

6.1 Comparing Odds Data with Probabilities

In order to model pre-match odds data, we use odds data for 274 matches from ATASS

Sports, described in Section 5.1. In this chapter and throughout this thesis we wish to

use decimal odds to estimate probabilities of events occurring, or to compare odds to

probabilistic predictions from those events. In a fair bet the probability corresponding

to the odds would be the reciprocal of the decimal odds, but the bookmakers quote

odds in their favour to make profit, and so the sum of these reciprocals is generally

greater than 1. The difference between 1 and this sum is the overround, discussed

in more detail in Section 5.1.1. Since these reciprocals sum to greater than 1, they

will be consistenly higher than corresponding probability estimates. Attempting to

estimate these odds by first estimating match-win probabilities will therefore lead to

estimates that are typically too low. We therefore wish to account for this overround

by transforming these reciprocals into probabilities that best represent the odds. For

our tennis matches where the only events possible are either of the two players winning,

we call these probabilities the implied win probabilities. There is no single way of

obtaining these implied win probabilities, but two common methods exist to estimate
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them.

Suppose there are n mutually exclusive outcomes where event i has decimal odds

oi, and we wish to find a probability pi to represent the odds oi for each i. The

simplest method to turn odds into probabilities would be to find some constant k

such that
∑n

i=1 pi = 1, where

pi = ko−1
i , i = 1, . . . , n.

This would yield k =
∑n

i=1 o
−1
i .

We instead use Khutsishvili’s formula, Vovk and Zhdanov (2009), which dictates

that

pi = o−ζi , i = 1, . . . , n

for some ζ such that
∑n

i=1 pi = 1. Vovk and Zhdanov (2009) find that using Khut-

sishvili’s formula provides better predictive accuracy than multiplicative normalisa-

tion. The other advantage of using Khutsishvili’s formula concerns bets on multiple

independent events, though this is not of particular use in this thesis. When book-

makers offer odds on two independent events, i = 1 and i = 2, with odds o1 and o2,

both occurring, the odds quoted will typically be o1o2, and the probability of both

events occurring is p1p2. Under the slightly simplified assumption that a bookmaker

generates odds using some function oi = f(pi) for all events i, then this function

should therefore have the property that f(p1p2) = f(p1)f(p2). Such a function can

always be found by taking f(pi) = pζi for some ζ. To instead convert from odds to

implied win probabilities, this function is inverted, giving Khutsishvili’s formula.

Recall that the overround is the difference between 1 and
∑n

i=1 o
−1
i , the unnor-

malised reciprocals of the odds. If the overround is very small, and the reciprocals

already sum to a value close to 1, the method use to obtain probabilities makes little

difference. However, if the overround is higher, the different methods may yield very

different results. The probabilities obtained when the overround is high may there-

fore be less informative than when the overround is low, in addition to the reasons
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described in 5.1.1

6.2 Gaussian Processes

In order to model pre-match odds, we shall use Gaussian processes, Diggle and Ribeiro

(2007). A Gaussian process in one dimension is a stochastic process {Y (x);x ∈ R}

such that at every finite set of points (x1, . . . , xn) with xi ∈ R for i = 1, . . . , n, the

vector
(
Y (x1), . . . , Y (xn)

)
has a multivariate normal distribution for all n. For some

mean vector µ and variance matrix Σ, this means

(
Y (x1), . . . , Y (xn)

)
∼MVN(µ,Σ).

A higher-dimensional spatial Gaussian process is one in which on any finite set of loca-

tions x1, . . . ,xn, with each xi ∈ Rm for some m ∈ Z+, the joint distribution of the ran-

dom variables Y (x1), . . . , Y (xn) is multivariate normal. Any such process is defined

by its mean function, µ(x), and covariance function ζ(xi,xj) = Cov(Y (xi), Y (xj))

for all i and j.

A Gaussian process is stationary if µ(x) = µ for all x, and ζ(xi,xj) = ζ(dij),

where dij = xi − xj, and so the covariance only depends on the difference between

xi and xj. The Gaussian process is isotropic if ζ(dij) = ζ(||dij||), where || · || denotes

Euclidean distance.

There are many different possible options for functions ζ. In this project, we have

chosen to focus on the exponential correlation function,

ζ(xi,xj) = ρ||xi−xj ||,

since we believed this would be simple enough, and sufficient to model our data,

given that we do not sample Y often at locations that are sufficiently close to reliably

identify a more complex structure. However, investigating the use of other correlation

functions could be a sensible extension to our work.
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6.3 A Gaussian Process for Pre-Match Odds

We wish to model the pre-match odds with a constant mean and decreasing variance,

and so fit a Gaussian process in each match k. We record odds at different times τ ,

with the rate of sampling getting higher as the match approaches, and also record

betting volumes at each such time. (A fuller description of the data is provided in

Section 5.1). These betting volumes increase with time, as they correspond to the

total gambled up until that time. We expect odds recorded at times that are close

together to be similar, but also expect that if the betting volumes have not changed

much, the odds will not have changed much either. Hence, either time or volume

could be useful to model the correlation of odds recorded at different times. As such,

we will investigate using either of these or both as a “space” on which the odds are

recorded. We also believe the overround might affect variances, but not correlation,

because of our discussion in 6.1 about how high overrounds can lead to less reliable

implied win-probabilities, which might result in a higher variance in our model

We therefore let xk,i be a vector including the time, volume and overround of the

i-th recorded data point in match k, (even though the overround does not have a

spatial interpretation) and let xk be a matrix containing all vectors xk,i for match k.

We let Yk(xk,i) be a random variable for the logit of the implied-win probabilities

at location xk,i, and let yk(xk,i) be an observation of this random variable. We take

the logit of the implied win-probabilities to ensure that Yk(xk,i) is unbounded, as

the implied win probabilities are in [0,1], and having unbounded variables enables

Gaussian process models to give a better approximation to the data.

We hence model the logit implied win probabilities such that at each xk,i, the logit

implied win-probability has constant mean ωk and marginal variance δ2 exp(xk,iβ),

so that

Yk(xk,i) ∼ N
(
ωk, δ

2 exp(xk,iβ)) for all k and i. (6.3.1)
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The parameter δ2 is a multiplier to the variance common to all matches, and the vec-

tor of parameters β controls how xk,i affects the variability of the odds. Having these

parameters common to all matches allows us to pool information across the different

matches about how much variation in the pre-match odds is common, and at what

level it becomes worthy of further investigation.

As an alternative parameterisation, we could let x+
k,i = (1,xk,i) and β+ = (log(δ2),β).

This parameterisation leads to

Yk(xk,i) ∼ N
(
ωk, exp(x+

k,iβ
+)) for all k and i.

This looks more like a traditional model using linear regression to fit the variance.

However, we prefer the format in equation (6.3.1) due to the fact that later we can

find the maximum likelihood estimator for δ2 conditional on other parameters.

In order to model correlation between implied win-probabilities at successive times,

we chose to use an exponential correlation function, since we believed this would be

simple and powerful enough for our relatively simple Gaussian process. We wanted to

explore whether modelling correlation over time or betting volumes provided better

results, so considered both separately. Therefore to measure correlation in the logit

of the implied win-probabilities using the data from xk, we let

Cor
(
Yk(xk,i), Yk(xk,j)

)
= ζ(xk,i,xk,j) = ρ||xk,i−xk,j ||, i, j = 1, . . . , nk.

As well as only considering correlation over time and volume separately, we could

also have considered modelling correlation jointly over the two-dimensional space of

time and volume. However, since time and volume are on very different scales, the

correlation function would need adjusting to account for this. Doing so would be

interesting to investigate further, but we decided not to do so for this project.

Combining this correlation function with the marginal distributions of each Yk(xk,i),

we let Yk(xk) be a vector of all Yk(xk,i) for i = 1, . . . , nk. Since Y (xk,i) has mean ωk,

note that Yk(xk) has mean ωk1nk , where 1n is a vector of length n in which every

element has value 1, and nk is the number of data points in match k. In our data, nk
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generally equals 8, but is sometimes smaller.

This leads to the model

Yk(xk) ∼MVN
(
ωk1nk , δ2Rk

)
, (6.3.2)

Rk = DkCkDk,

where

Dk = diag

(
exp

(xkβ
2

))
=



exp
(
xk,1β

2

)
0 . . . 0

0 exp
(
xk,2β

2

)
. . . 0

...
...

. . .
...

0 0 . . . exp
(
xk,nkβ

2

)


,

(6.3.3)

and Ck has (i, j)-th element

Ck,ij = ζ(xk,i,xk,j) = Cor
(
Yk(xk,i), Yk(xk,j)

)
for all k, i and j. (6.3.4)

Using Rk = DkCkDk in this way means that

Cov(Yk(xk,i), Yk(xk,j)) = Cor
(
Yk(xk,i), Yk(xk,j)

)√
Var(Yk(xk,i))Var(Yk(xk,j))

= δ2 exp
(1

2
(xk,i + xk,j)β

)
ρ||xk,i−xk,j || for all k, i and j.

For match k this Gaussian process has constant mean, but not constant variance

due to the matrix Dk. Note, however, that the Gaussian process

D
− 1

2
k (Yk(xk)− ωk1nk)D

− 1
2

k

is stationary, isotropic and identically distributed for all k.

Additionally, we can add a so-called “nugget effect”. This term permits some un-

correlated error between nearby points in the Gaussian process. This is often used to

represent measurement error, and permits nearby points, or even points occurring at

the same time, to exhibit differences, even though nearby points are also correlated.

This was necessary when using volume to measure correlation, as some matches had
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measurements at different times with the same volume but slightly different odds.

Such realisations would be impossible for a Gaussian process without a nugget effect,

as then two sites with distance 0 between them would have perfectly correlated odds.

Although the odds mostly move when bets are matched and so the volume increases,

it appears that the odds can also move when gamblers offer better odds than before

without matching previous bets. We therefore require a nugget effect to allow for

occasions when we have slightly different odds at sites at different times but with the

same volume.

For an ordinary Gaussian process with constant marginal variance σ2 and cor-

relation matrix C, adding a nugget effect s2 corresponds to replacing the variance

matrix Σ = σ2C with Σ̃ = σ2C + s2In. This means that Var(Y (xi)) = σ2 + s2, and

Cor(Y (xi), Y (xj)) = σ2Cij/(σ
2 + s2) for all i and j, where Cij is the (i, j)-th element

of C. It can be useful to also consider the relative nugget, namely η2 = s2/σ2, so

that Σ̃ = σ2(C + η2In), and Cor(Y (xi), Y (xj)) = Cij/(1 + η2), as this helps us fit the

nugget effect later.

For our model in equation (6.3.2), with Σk = δ2DkCkDk, there are two options for

how to apply the nugget. These are

Σ̃k = δ2Dk(Ck + η2Ink)Dk, (6.3.5)

or Σ̃k = δ2(DkCkDk + η2Ink). (6.3.6)

The former option means that the effect of the nugget will be proportional to the

marginal variance as specified by Dk, while the latter means the nugget will have

constant effect everywhere in match k. We shall explore which fits best. Note that

we use a common relative nugget parameter η across all matches, so that information

about this parameter can be pooled from across different matches to help us identify

which matches behave unusually. We shall let

R̃k = δ−2Σ̃k
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denote either of the two covariance matrices in equations (6.3.5) and (6.3.6) divided

by the common variance term δ2, so that

R̃k = Dk(Ck + η2Ink)Dk,

or R̃k = (DkCkDk + η2Ink).
(6.3.7)

6.4 Fitting the Gaussian Process - Maximum Like-

lihood

We wish to optimise over the parameters β, ρ, η, δ2 and ωk for k = 1 . . . 274 in order

to maximise the likelihood

L(ω, δ2,β, ρ, η|y,x) =
274∏
k=1

L(ωk, δ
2,β, ρ, η|yk,xk)

∝
274∏
k=1

det
(
δ2R̃k

)− 1
2

exp
(
− 1

2δ2
(yk − ωk1nk)>R̃−1

k (yk − ωk1nk)
)
, (6.4.1)

where ω = (ω1, . . . , ω274), y contains all yk, x contains all xk, and R̃k is defined by

equations (6.3.3), (6.3.4) and (6.3.7).

It is not possible to use analytic methods to obtain maximum likelihood estimates

for β, ρ and η. However, given these parameters we can obtain profile maximum

likelihood estimators for the parameters ωk and δ, which shall be called ω̂k(β, ρ, η)

and δ̂(β, ρ, η), by maximising the log likelihood with respect to each ωk and δ, while

fixing β, ρ and η, yielding

ω̂k(β, ρ, η) =
1>nkR̃

−1
k yk

1>nkR̃
−1
k 1nk

,

δ̂2(β, ρ, η) =

∑274
k=1(yk − ω̂k(β, ρ, η)1nk)

>R̃−1
k (yk − ω̂k(β, ρ, η)1nk)∑274

k=1 nk
.

In order to obtain maximum likelihood estimators for β, ρ and η, we therefore

use numerical methods to find values β̂, ρ̂ and η̂ that maximise the log likelihood
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in equation (6.4.1) where ωk is replaced by ω̂k(β, ρ, η) for each k = 1 . . . 274, and

δ2 by δ̂2(β, ρ, η). It is here that using constant η across all matches proves help-

ful - maximising this likelihood over this smaller number of parameters is relatively

straightforward, but would be much more challenging were separate parameters re-

quired for each of our 274 different matches. Extending this to other matches would

be even more troublesome, given the thousands of matches that occur each year.

6.4.1 Results

Earlier we discussed some of the different features thought to affect the accuracy of

the odds in the pre-match markets: the overround, betting volume, and time until

match start. We shall explore how these three factors affect the model fit and choose

a model that appropriately balances predictive performance with model complexity.

We shall also investigate whether transforming the overrounds and volumes by

taking logarithms would provide better fit. However, there are some observations of 0

in both volume and overround, which makes taking logs problematic. Instead of taking

overrounds, we shall therefore consider the sum of both player’s unnormalised implied

win probabilities, given by the overround + 1. We will also look at log(£1 + volume)

instead of volume. The volume is generally much bigger than £1 when it is non-zero,

so the arbitrary shift of £1 should not differ much from a log transform for most

volumes.

In order to select the most appropriate model, we evaluated AIC and BIC for each

possible model. The options to consider were as follows:

• Which variables to include to model correlation.

• Which variables to include to model the changing variance of implied win-

probabilities in the pre-match market for a match.

• How to include a nugget effect, or whether or not to include one.
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Across our 274 matches, there were four occasions when odds data were available but

volume data were not. So that models were evaluated over the same data we ensured

that these were excluded from all our analyses, even in models where volume was not

used.

After investigating all of the options, we obtained a few key findings. Firstly,

overround had no real impact in our model, and so is henceforth excluded. Secondly,

while including a mixture of time and volume (or a log(1+volume)) to model chang-

ing variance appeared to give high log likelihoods, this came at the expense of the

model’s conformation to expected behaviour. Instead of seeing variance decrease as

the match approached, we instead saw an increase. The reasons for this are unclear.

We believe one key factor in this was the potential collinearity of the two vari-

ables. Time and volume both increased together, so including both made fitting the

model difficult. The maximum volume varied greatly by match, but if volumes were

standardised by dividing the volumes in each match by the final volume to look at

how similarly time and volume increased across all matches, we found that time and

standardised volumes had a correlation of 0.74, which may high enough to cause po-

tential issues. However, the issues may also be due to confusing the two different sorts

of correlation occurring.

We expect the odds to be similar at similar times, but also expect that the odds

can only move significantly if gambling occurs, and will remain steady when little

gambling activity occurs. In matches where the odds initially remain stable with lit-

tle gambling activity, the model appears to consider these early odds to provide more

of a pattern than the later, rapidly-shifting odds, and therefore weights the early odds

more strongly, putting ωk near these early odds. To compensate, the variance then

increases as the match approaches, as shown in Figure 6.4.1. This plot is a post-hoc

display of how the pre-match odds compare to the maximum likelihood parameters

obtained after observing the entire pre-match market. It is striking how much weight

is placed on the early odds observations, and how little weight is placed on the odds
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near the end.

Unfortunately, we failed to conclusively determine the causes of these issues. It

was unclear what inference to draw from the model in this scenario, and whether the

problems were caused by mixing time and volume as covariates. As such, we found

it more productive to avoid mixing time and volumes, instead pressing on with re-

search that used one covariate or the other. It would be prudent, however, for future

researchers to identify the cause of this strange behaviour and identify solutions.

The models that worked best were therefore those that used a single variable

Figure 6.4.1: Maximum likelihood fits for two example matches using time to model correlation

and both time and log(1+volume) to model changing variance. The solid line represents ω̂k, the

dashed lines represent 95% prediction intervals, and the dots represent yk(τ).

to model changing variance and correlation. Time, volume and log(1+volume) all

provided reasonable fits. However, log(1+volume) gave the best fit. We also found it

best to include the nugget effect as in equation (6.3.5) rather than as in (6.3.6). A

few examples of model fit are shown in Figure 6.4.2.

A word of warning must be applied, however. The parameter ωk in each match

is estimated using only at most eight data points. This provides substantial room for

uncertainty in these estimated values. We therefore propose using Bayesian statistics

to instead provide posterior distributions for the parameters in each match. This is
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Figure 6.4.2: Maximum likelihood fits for four example matches using log(1+volume) to model

correlation and changing variance. The solid line represents ω̂k, the dashed lines represent 95%

prediction intervals, and the dots represent yk(τ).

helped by the fact that we have another source of information that should help us de-

velop informative prior distributions for these parameters, namely the Glicko ratings.

We shall use our implementation of Glicko ratings described in Chapter 4 to generate

prior distributions for each ωk, before updating these using the pre-match data, yk

to obtain posterior distributions over the parameters to account for the uncertainty

involved.
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6.5 Fitting the Gaussian Process - Bayesian Method

Using the likelihood for each match as in equation (6.3.2), we can see that a conjugate

prior distribution for each parameter ωk is

ωk ∼ N(uk, γ
2
k),

given hyperparameters uk and γ2
k.

Given these prior distributions, careful calculation reveals that the posterior dis-

tributions take the form

ωk|yk ∼ N(u∗k, γ
∗2
k ),

where u∗k = γ∗2k

(1>nkR̃
−1
k yk

δ2
+
uk
γ2
k

)
,

and γ∗2k =
(1>nkR̃

−1
k 1nk
δ2

+ γ−2
k

)−1

.

In order to set up a prior distribution for each ωk, we can use the output of our Glicko

ratings to provide information. We will do this by looking at the distributions of the

fitted values ω̂k.

Recalling notation from Section 4.1.1, the Glicko ratings θi for player i are dis-

tributed according to

θi ∼ N(νi, σ
2
i ).

(Note that we drop the dependence of these parameters on the time t that the match

occurs (measured in weeks) for notational simplicity, to ensure it is not confused with

time τ , measured in minutes to the start of the match).

Suppose match k is played between players i and j. In Figure 6.5.1 we plot

ωk against νi − νj and find a strong relationship between the two. We hence let

uk = νi − νj, so that the prior for ωk is

ωk ∼ N(νi − νj, γ2
k).
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Figure 6.5.1: For each of our 274 matches with pre-match odds, we plot νi − νj against ω̂k.

We also want to see whether (σ2
i + σ2

j ) helps us predict γk. We find that a slightly

better log-likelihood is obtained by setting γ2
k = γ2(σ2

i +σ2
j ) for some estimated global

constant γ2. This means that in matches where the Glicko ratings are particularly

uncertain, the variance in the pre-match prior mean parameter ωk is also higher.

Quantile-quantile plots for ωk are shown in Figure 6.5.2, but the differences between

the two are relatively minor.

Our prior distribution for ωk is therefore

ωk ∼ N(νi − νj, γ2(σ2
i + σ2

j )).

It is possible that if our Glicko ratings incorporated surface information, as in Section

4.4.3, and hence were able to better predict match outcomes, that the relationship

between νi − νj and ωk would be even stronger, leading to a smaller estimate of γ2,

leading to more informative prior distributions.

6.6 Bayesian Model - Example Fits

We look at the fit of the implied win-probabilities for a few matches in Figure 6.6.1.

These plots show 95% posterior confidence intervals for ωk in each match k, as well
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Figure 6.5.2: Quantile-quantile plots for (ωk− (νi− νj))/γk, where the variance γ2k is proportional

to different variables.

as 95% posterior predictive confidence intervals for yk(xk). These posterior predictive

confidence intervals are obtained by considering∫ ∞
−∞

fY (yk(xk,i+1)|ωk
)
f
(
ωk|yk(xk,1), . . . , yk(xk,i)

)
dωk, i = 0, . . . , nk − 1. (6.6.1)

Note the important distinction between these and the more usual posterior predictive

distributions for yk(xk). These would formally be given by looking at the distribution

of yk(xk,i+1) given {yk(xk,1), . . . , yk(xk,i)}, given by

fY
(
yk(xk,i+1)|yk(xk,1), . . . , yk(xk,i)

)
=∫ ∞

−∞
fY (yk

(
xk,i+1)|yk(xk,1), . . . ,yk(xk,i), ωk

)
f
(
ωk, |yk(xk,1), . . . , yk(xk,i)

)
dωk.

and crucially takes into account the correlation between yk(xk,i+1) and the previous

observations. By contrast, the distribution in equation (6.6.1) ignores this correlation

and looks only at the marginal distribution of yk(xk,i+1) given the posterior parame-

ters.

In each of these matches, the uncertainty in the win-probabilities and ωk is large

to begin with before decreasing as the pre-match market continues. In matches 1 and

2, the model is able to track the slow changes in pre-match odds, while in matches 3
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Figure 6.6.1: Successive 95% posterior confidence intervals for ωk (in pink, surrounded by dots and

dashes) and 95% unconditional posterior predictive confidence intervals after observing yk(xk) (in

blue, surrounded by dashes). The solid red line is the posterior mean of ωk, and black dots represent

the values of yk(xk). The distribution at -1000 minutes represent prior distributions.

and 4 the odds move much less, and the uncertainty slowly decreases towards these

values. In match 4, the uncertainty is very low due to the large amount gambled on

that match.

It is interesting how much of the uncertainty in yk(xk,i) is seemingly caused by the

uncertainty in ωk, given the relative proportions of their variances. From Figure 6.4.2,

we see that if ωk is well known then the fitted variance is quite small, particularly

in matches with high betting volumes such as match 4. By comparison, the prior

uncertainty in ωk is quite large, but this can decrease quickly during the pre-match

market.
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In order to obtain an idea of how well the data in each match fit our model, we can

look at posterior predictive p-values, that is, the p-values of the data yk(xk,i+1) with

respect to the unconditional posterior predictive confidence interval after the previous

observation yk(xk,i). These give an indication of how surprising each observation is

with respect to the previously observed data, and hence mainly detects large shifts

away from the mean at that single time instance. Looking at conditional predictive

p-values would instead put the focus on large changes between successive values, fo-

cussing even more on short-term changes than the unconditional predictive p-values.

For each match, we look at the largest unconditional posterior predictive p-value

to find the stage of the pre-match market that differs most from the mean, and we

also look at the average p-value to get a broader picture of how the pre-match market

differs from expected. We must be aware that the unconditional p-values may be

highly correlated if there is sufficient swing away from the mean.

Ordinarily when assessing the fit of a Gaussian process we might expect to com-

pare the log-likelihoods for different matches to properly account for the correlation

structure of successive observations. However, this is complicated by the fact that we

have used Bayesian statistics to put prior distributions on the parameters, and hence

we only consider the p-values of individual points. It would be helpful if we could

investigate more holistic summaries of how far the observed pre-match odds deviated

from expected behaviour.

We plot the average and lowest p-values for each match in Figure 6.6.2. Figure

6.6.3 highlights the four matches with the lowest minimum p-value. Matches 209 and

73 are also the two matches with the lowest average p-values, so Figure 6.6.4 shows

the two matches with the third and fourth lowest average p-values.

In match 73, we see a very large swing in the pre-match market that our model is

unable to keep up with. This is precisely the sort of behaviour we wanted to highlight,

and suggest that match 73 is worthy of further investigation. Of course, the swing

could simply be due to injury news or other innocent factors, but the size of this swing
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Figure 6.6.2: The lowest and average unconditional posterior predictive p-values for each of our

274 matches.

is sufficiently large and fast compared to the other matches in our data set to mark

it out as anomalous.

On the other hand, matches 200 and 199 both have their lowest p-value on the very

first observation. In these cases, the prior distributions given by the Glicko ratings

disagree with the initial bookmaker assessments of the matches, but the pre-match

markets otherwise behave very normally. If we have complete confidence in the Glicko

rating’s ability to predict pre-match odds in normal matches, we would be very sus-

picious of these differences and would wish to investigate further. However, with a

sample size of 274 matches, we expect a couple of low p-values to occur randomly -

there is some room for error in our Glicko ratings, so while it is still worth flagging

these matches, the fact that the only issue is disagreement with the Glicko ratings

means these matches are less of a cause for concern.

Match 209 presents a very interesting case. The opening pre-match odds disagree

greatly with the pre-match priors, but the pre-match odds then move back almost

exactly to what the Glicko priors suggested. The first p-value is therefore very small,

but the speed of the market’s return to the level expected is also much faster than

expected. It is possible that the opening odds were very different to public opinion
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about the match, so gamblers who agreed more with our model seized upon this po-

tentially profitable opportunity and bet on the match much quicker than expected.

On the other hand, the initial p-value could be due to poor modelling by Glicko, as

we suggested as an explanation for matches 200 and 199, and the large swing after

would then be much more worthy of investigation - though injury news could again

supply an innocent explanation.

We next come to the matches with low average p-values in Figure 6.6.4. These

Figure 6.6.3: Four matches with the lowest unconditional posterior predictive p-values at any

time. Successive 95% posterior confidence intervals for ωk (in pink, surrounded by dashes) and 95%

unconditional posterior predictive confidence intervals after observing yk(xk) (in blue, surrounded

by dots and dashes). The solid red line is the posterior mean of ωk, and black dots represent the

values of yk(xk). The distribution at -1000 minutes represent prior distributions.

are the matches with the third and fourth-lowest average p-values, beaten by matches
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73 and 209 (Figure 6.6.4), both of which had huge pre-match swings. The swing in

match 259 is more modest. In 259, there’s a swing of at least 15 percentage points,

and while the model just about tracks this shift, the fact that every p-value is so low

is enough to give this match the third-lowest average p-value.

The swings in these matches, while subtle, may be worthy of further investigation,

but also serve to highlight another important issue to consider, which is the direction

of the swing. If we believe a swing in pre-match odds is caused by corrupt betting

activity, then we would expect far more than normal to gambled on the eventual win-

ner, seeing an odds swing in their direction. Although it has not been important so

far, our data are set up so that the probabilities reported are always for the eventual

winner. Hence, if we are performing post-match analysis of the market, it may be

that we are only interested in large pre-match increases in probability for the eventual

winner, but not large decreases. A large pre-match decrease in implied win probabil-

ity would suggest a surge of gambling on the eventual loser to win, suggesting that

many people would lose their money. The reasons for such a swing may therefore be

more complex. This could simply be due to inaccurate opening odds, or perhaps news

of an injury caused a pre-match swing, but the injury was not as problematic as had

been feared. On the other hand, it could also be caused by a failed attempt to fix a

match, or false rumours of a fix. We have considered two-sided p-values so far. While

it may be that considering only one-sided p-values in the direction of the eventual

winner may be a stronger indication that suspicious betting activity has occurred, it

is also not clear that one can completely disregard swings in the opposite direction,

depending on their scale.

All of this only applies, of course, if the eventual winner is known. Sometimes

it might be desirable to know pre-match or in-play whether a large shift in odds is

occurring. Betting could then be suspended to prevent further opportunities for fix-

ers to profit from the match. In this case, the direction of the swing is much less

important. The eventual winner is not known, and so the direction of the swing is
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meaningless.

Figure 6.6.4: Two matches with among the lowest average unconditional posterior predictive p-

values. Successive 95% posterior confidence intervals for ωk (in pink, surrounded by dashes) and 95%

unconditional posterior predictive confidence intervals after observing yk(xk) (in blue, surrounded

by dots and dashes). The solid red line is the posterior mean of ωk, and black dots represent the

values of yk(xk). The distribution at -1000 minutes represent prior distributions.

6.7 Conclusion

In this chapter, we developed a Gaussian process model for pre-match implied win

probabilities which fitted a constant mean to each match and a variance that de-

creased as the match start approached according to the increase in betting volumes.

Matches with little pre-match odds movement fitted this model well, while matches

with large pre-match swings fitted the model poorly. The goal was to identify these

matches with the large pre-match swings. We pooled information from across all of

the different matches in the data to establish how much variability could be expected

in normal circumstances, and identified matches that were anomalous.

By using betting volumes to measure the decrease in variance, we were more sym-

pathetic to odds movements in matches with little betting activity, provided they

occurred over a long enough stretch of time. On the other hand, using volumes to
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measure correlation of odds meant that huge swings in odds with very little money

gambled were also identified as strange. Using volumes in this way represents an

advancement on existing literature.

The rest of the literature also focusses only on the difference between the opening

and closing odds. We were able to obtain extra information by looking at p-values at

various intervals during the pre-match market. Focussing only on the difference be-

tween opening and closing odds also risks the opening odds being very poorly formed,

leading to an unrealistic picture of the size of swing. Our use of volumes helped to

mitigate this effect.

However, the behaviour of the model when combining time and volume as covari-

ates remains perplexing. Further research should investigate the causes of this issue,

and how it may affect the rest of our analyses.

We looked at the lowest p-values in each match to look for large short-term swings,

and average p-values to look for matches which saw small but consistent swings in

each time interval. There may, however, be better summaries of our p-values that

highlight different behaviour that could also identify anomalous matches.



Chapter 7

A Bayesian Model for In-Play

Odds

In this chapter we will describe a new Bayesian model for in-play implied win-

probabilities with the goal of identifying matches which contain suspicious betting

activity. Almost all current literature focusses on the pre-match market, and so de-

veloping models for in-play odds is a significant extension of the existing literature.

Having proven in Chapter 3 that the function m(λ|µ, s, b) is invertible on λ, we

will show how this allows us to model in-play odds by instead modelling λ, which is

significantly easier to model. We will generate Bayesian prior distributions for λ using

the Glicko ratings from 4, and update the posterior distributions of λ during matches

based on the games won or lost in-play, so that our beliefs about the strengths of

players are updated throughout matches, which allows for better fit than relying on

our pre-match estimates. We shall show that the matches for which this model pro-

vides the worst fit are matches with large in-play swings, which could potentially be

a sign of corrupt betting activity.

161
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7.1 Introduction

Section 2.1 discussed the existing methods for detecting match-fixing in pre-match

markets. We wish to extend this by considering match-fixing in-play, where it is be-

lieved a significant amount of match-fixing also occurs, as discussed for example by

Blake and Templon (2016). This has yet to be considered in great detail in existing

literature for any sport, except in general terms by Forrest and McHale (2015) and

Forrest and McHale (2019), who discuss SportRadar’s proprietary algorithms for de-

tecting match-fixing in sport for both football and tennis.

This chapter will discuss a method to detect unusual odds behaviour by attempt-

ing to model the match-win probability throughout the match and comparing it with

the odds. Other works such as Reade and Akie (2013) and Rodenberg and Feustel

(2014) look for discrepancies between pre-match odds and match-win predictions to

identify fixed matches, but we will extend this to an in-play setting.

In order to do this, we will need to extend the existing literature on in-play tennis

modelling to suit our purposes. Current literature on in-play tennis modelling uses

the Markov chain model of Section 2.3. This involves generating pre-match point es-

timates of p1 and p2, the probability that each of player 1 and player 2 win a point on

serve, and using them in the Markov chain framework to generate point estimates of

the match-win probability at various stages in the match. We find this unsatisfactory

for investigating match-fixing for two reasons.

Firstly, using pre-match estimates throughout the match neglects the information

available during the match. Despite our best pre-match estimates, it may become

apparent during the match that one player is performing much better or worse than

anticipated. This could be due to injury for example, or the fact that one player

has nullified the tactics of the other player in a way that our pre-match models did

not predict. Bettors will adapt their predictions in-play according to the flow of the

match - it is important that our in-play predictions can do so too.

Note, however, that our ultimate goal is not to accurately predict odds, but to
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flag matches with suspicious betting activity. As such, we must consider whether

updating our estimates of player strengths in-play helps accomplish this.

If our predictions were updated to reflect the fact that a player is performing

poorly, and yet the odds swing in their favour, this would magnify the difference be-

tween the odds and our predictions. This would make our model more sensitive to

swings in the odds that disagree with player performance, helping to identify suspi-

cious betting activity that follows this pattern.

On the other hand, if there is a swing in the odds in the same direction as is

implied by the players’ performance, the difference between the odds and predictions

is less than if we did not update our predictions, making the method less likely to

flag the match as anomalous. This will help avoid false alerts in some cases where

some minor swing is to be expected based on player performance, but could arguably

dampen evidence of a genuine fix in other cases. If the match is fixed, however, we

would expect the swing caused by the fix to be in addition to any swing caused by an

improvement in player performance. The extra odds movement should therefore still

appear anomalous, and it should still be possible to detect it, even after accounting

for player performance.

Balancing the two different cases, we believe updating our estimate of player

strengths in play to be sensible, as it should help us identify minor swings in the

direction contrary to expectations based on player performance, while we believe we

should still be able to detect whether the odds are swinging more than expected in the

same direction as player performance would suggest. With enough data we would be

able to perform a study to examine whether this was true, but it may be challenging

if the amount of suspicious matches in our data is low.

The second issue with generating point-estimates of the match-win probability is

that it makes it difficult to objectively compare predictions with observed odds. How

much discrepancy is acceptable? Does the level of acceptable discrepancy change from

match to match? Some sources, such as DW on Sport (2016), discuss how large pre-
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match swings may be more acceptable in cases where substantial uncertainty exists

about the strength of particular players. The example DW on Sport (2016) provides

is of a certain player whose matches featured large pre-match market swings more

frequently than most, but has had many long injury breaks. DW on Sport (2016)

claims that large swings after such injury breaks may be acceptable due to the dif-

ficulty involved for bookmakers, gamblers and statistical models alike in predicting

how likely he was to win matches on his return, and so some extra leeway should be

granted in the size of acceptable swings. We would like to formalise this idea using

statistical uncertainty.

This chapter therefore develops a statistical model for predicting match-win prob-

abilities in play that updates predictions based on how well the players are playing,

and also includes statistical uncertainty around its predictions. Though we intend

to use it do detect match-fixing, it should be equally capable of being used for other

purposes, such as prediction or gambling.

7.2 A Bayesian Model for In-Play Odds

Modelling the temporal dynamics of match-win probabilities directly is hard. In a

match between player 1 and player 2, let m1(τ) denote a model prediction of the

match-win probability for player 1 at time τ , and let y(τ) be the match-win probabil-

ities implied by the observed odds at time τ . Some plots of y(τ) for different matches

are shown in Figure 7.2.1. Clearly the length of a match is unknown beforehand, in

terms of both time and the number of games, and although y(τ) must approach 1

as the match ends (or 0 if player 1 loses), it is hard to predict how quickly. Some

matches are very close near the end, such as Match 6 in Figure 7.2.1, which ended in

a tie-break, and so the probability just before the end is close to 1/2. Other matches

are less close, and y(τ) quickly approaches 1. In Match 5 in Figure 7.2.1, the favourite

established an early lead and held it, and so y(τ) quickly rose to near 1. The quality
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of the players is also important - y(τ) will be much closer to 1 if one player dominates

the other than if the match is close, even before any games have been played.

Instead of modelling y(τ) directly, we aim to model the quality of the two play-

Figure 7.2.1: Plots of match-win probabilities implied by odds in four sample matches from our

data.

ers and look at how this affects the match-win probability given the different scores

throughout the match. According to the Markov chain model described in Section

2.3, the probability of a player winning a match at any given time in-play is controlled

by just two factors - the probabilities of both players winning points while serving,

and the current score. Section 2.3 also discussed and showed in Figures 2.3.6 and

2.3.7 how a further simplification can be made by reparameterising so that p1 = µ+λ

and p2 = µ − λ, and assuming that the average of the two players’ point-win proba-

bilities, µ, is some fixed value, meaning we only have to estimate λ. This means that,
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given this Markov chain model, the problem of estimating the match-win probability

is equivalent to modelling λ. This should be much easier to model since we will not

also need to model the score or the length of the match.

As discussed and proven in Chapter 3, for fixed µ and current score s in a match

played to the best of b sets, the function m1 = m(λ|µ, s, b) is invertible since it is

continuous and increasing. We shall call the inverse λ = m←(m1|µ, s, b), which we

have proven the existence of in Chapter 3. As such, if we have fλ(λ|µ), a distribution

over λ, then the distribution of M1, a random variable for the predicted match-win

probability, at score s, is given by a simple change of variables, yielding

fM1(m1|µ, s, b) = fλ
(
m←(m1|µ, s, b)

)dm←(m1|µ, s, b)
dm1

. (7.2.1)

Our goal therefore is to estimate the match-win probability at each stage in the

match by estimating λ, which will give a probability distribution for m1 according to

expression (7.2.1).

7.2.1 Modelling in-play odds using a Bayesian model for λ

We will now introduce a new method for estimating in-play match-win probabilities

by estimating λ. We do this by assuming that λ is constant throughout the match,

but that λ can be learned about as the match progresses by observing the number of

service games and tiebreaks won or lost by each player by using Bayesian modelling.

This works in exactly the same way as we would make inference about the mean

parameter of a normal distribution, for example. Suppose we record successive obser-

vations from a normal distribution with unknown mean. With each new observation,

we update our posterior beliefs about the mean, reflecting the new information, even

though we do not believe that the underlying parameter is changing. In the same we,

we describe our pre-match beliefs about λ, the strength difference of the two players,

and update our beliefs as new information appears in-play, even though we do not

believe that the underlying strength difference is changing - merely that we are learn-
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ing more about it.

In order to perform Bayesian inference in this context, we require a few key fea-

tures, each of which will be considered in more detail in the sections to follow.

• A prior distribution on λ.

• The likelihood of λ given games and tiebreaks won and lost during the match.

(Recall that we do not have in-play data for points won and lost on serve, only

games and tie-breaks).

• The resulting posterior distribution of λ.

• The posterior cumulative distribution function of λ given games won during the

match. In particular, how this relates to quantiles and p-values.

7.2.2 Prior on λ

First of all, we shall describe different ways to specify a prior distribution on λ, which

shall be denoted by fλ(λ|µ). Due to the fact that p1 = µ + λ and p2 = µ − λ,

the domain of λ is [−min(µ, 1 − µ),min(µ, 1 − µ)] to ensure that p1 and p2 lie in

the interval [0,1]. Popular distributions with finite domains are the logistic normal

and Beta distributions. Given µ, either of these could be transformed to have an

appropriate domain instead of their usual domains of [0,1].

However, in general we may not have much information to make a pre-match model

for λ directly, but will instead try to model the pre-match match-win probability m1.

If µ is fixed, then m1, the pre-match win-probability for player 1, is an increasing

function in λ, given by m1 = m(λ|µ,0, b). Hence m(·|µ,0, b) is invertible and a prior

fM1(m1|b) on M1 provides a prior on λ,

fλ(λ|µ) = fM1

(
m(λ|µ,0, b)|b

)dm(λ|µ,0, b)
dλ

. (7.2.2)
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7.2.3 Likelihood

The next task is to find the likelihood at time τ of λ, the dominance parameter, given

µ, the average of the two-player’s point-win probability, and the results of all games

and tiebreaks up until time τ . To calculate the likelihood of λ in this setting, recall

from Section 2.3 that under the standard assumption that points are independent and

that a player always wins points with probability p, then the probability that player

wins a game is

g(p) = p4
(

15− 4p− 10p2

p2 + (1− p)2

)
.

At time τ , the number of games player i wins on serve is then a binomially dis-

tributed random variable K
(g)
i (τ), player i has played ni(τ) service games, and has

won k
(g)
i (τ) of them with probability gi = g(pi) for each game. Then K

(g)
i (τ) has

probability mass function f
K

(g)
i (τ)

(k). In summary,

K
(g)
i (τ) ∼ Bin

(
ni(τ), gi

)
,

f
K

(g)
i (τ)

(k) =

(
ni(τ)

k

)
gki (1− gi)ni(τ)−k, k = 0, . . . , ni(τ). (7.2.3)

Similarly for tie-breaks, let t1 = t(p1, p2) be the probability player 1 wins a tiebreak

given serve parameters p1, p2. Let K
(t)
1 (τ) denote the number of tie-breaks won by

player 1 by time τ and let nt(τ) be the number of tie-breaks that have been played.

Note that no subscript denoting player is required for nt(τ), since both players play

an equal number of tiebreaks. Similarly, K
(t)
2 (τ) = nt(τ) −K(t)

1 (τ), so we need only

consider K
(t)
1 (τ), which has probability mass function f

K
(t)
1 (τ)

(k). This leads to

K
(t)
1 (τ) ∼ Bin

(
nt(τ), t1

)
,

f
K

(t)
1 (τ)

(k) =

(
nt(τ)

k

)
tk1(1− t1)nt(τ)−k, k = 0, . . . , ni(τ). (7.2.4)

The likelihoods (7.2.3) and (7.2.4) can then be combined to give one unified likeli-

hood for p1 and p2. In order to condense notation, we let n(τ) =
(
n1(τ), n2(τ), nt(τ)

)
,
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let K(τ) =
(
K

(g)
1 (τ), K

(g)
2 (τ), K

(t)
1 (τ)

)
and let k(τ) =

(
k

(g)
1 (τ), k

(g)
2 (τ), k

(t)
1 (τ)

)
. We

can then define

fK(τ)

(
(k1, k2, kt) | n(τ), p1, p2

)
=f

K
(g)
1 (τ)

(
k1|p1, n1(τ)

)
f
K

(g)
2 (τ)

(
k2|p2, n2(τ)

)
× f

K
(t)
1 (τ)

(
kt|p1, p2, nt(τ)

)
∝
(
g(p1)

)k1(
1− g(p1)

)n1(τ)−k1(
g(p2)

)k2(
1− g(p2)

)n2(τ)−k2

×
(
t(p1, p2)

)kt(
1− t(p1, p2)

)nt(τ)−kt
.

By substituting in p1 = µ+ λ and p2 = µ− λ, we get the likelihood of µ and λ,

fK(τ)((k1, k2, kt) | µ, λ,n(τ)) ∝
(
g(µ+ λ)

)k1(
1− g(µ+ λ)

)n1(τ)−k1(
g(µ− λ)

)k2
×
(

1− g(µ− λ)
)n2(τ)−k2(

t(µ+ λ, µ− λ)
)kt

×
(

1− t(µ+ λ, µ− λ)
)nt(τ)−kt

. (7.2.5)

This gives the required likelihood to update beliefs about λ given the games and tie-

breaks won and lost during a match.

From this, is easy to find the posterior distribution of λ in a given match at time τ

by simply multiplying the prior and the likelihood, yielding

fλ(λ|µ,n(τ),k(τ)) ∝ fλ(λ|µ)fK(τ)

(
k(τ)|µ, λ,n(τ)

)
. (7.2.6)

7.2.4 The Posterior Density of M1

The final step for analysing in-play match-win probabilities is converting the posterior

distribution for λ into a posterior distribution for M1. This involves a change of

variables using the function m1 = m(λ|µ, s(τ), b). In order to condense notation, let

Ω(τ) = (n(τ),k(τ), s(τ)). Applying the change of variables from λ to m1 then yields

fM1(m1|µ, b,Ω(τ)) = fλ
(
m←(m1|µ, s(τ), b)|µ,n(τ),k(τ)

) d

dm1

(
m←(m1|µ, s(τ), b)

)
.
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Rather than differentiating m←(m1|µ, s(τ), b) with respect to m1 directly, we use the

property of the derivatives of inverses of functions,

df−1(y)

dy
=

1
df(x)
dx

∣∣∣∣∣
x=f−1(y)

.

to obtain

d

dm1

(
m←(m1|µ, s(τ), b)

)
=

1

d
dλ

(
m(λ|µ, s(τ), b)

)∣∣∣∣∣
λ=m←(m1|µ,s(τ),b)

.

This can be put into the posterior distribution, with λ = m←(m1|µ, s(τ), b) every-

where possible to make the notation clearer. Doing so gives

fM1(m1|µ, b,Ω(τ)) =

(
fλ
(
λ|µ,n(τ),k(τ)

) 1

d
dλ

(
m(λ|µ, s(τ), b)

))∣∣∣∣∣
λ=m←(m1|µ,s(τ),b)

.

If we want to compare the posterior distribution of M1 with its prior distribution, we

can use equations (7.2.2) and (7.2.6) to re-express fλ
(
λ|µ,n(τ),k(τ)

)
, the posterior

distribution for λ, and obtain

fM1(m1|µ, b,Ω(τ)) ∝(
fM1

(
m(λ|µ,0, b)|b

)
fK(τ)

(
k(τ)|µ, λ,n(τ)

) d
dλ

(
m(λ|µ,0, b)

)
d
dλ

(
m(λ|µ, s(τ), b)

))∣∣∣∣∣
λ=m←(m1|µ,s(τ),b)

.

This is the product of the prior distribution of m1, the likelihood of λ, and the quotient

of the derivatives of the two equations to change variable from m1 to λ at scores 0

and s(τ).

7.2.5 The Distribution Functions of λ and m1.

In order to consider whether the odds are behaving anomalously, we will also need to

look at how extreme given odds and probabilities are with respect to fM1(m1|µ, s, b)

at different scores s that occurs in the match. If the score at time τ is s(τ), then we

begin by considering the CDF of λ is given by

Fλ(a|µ,n(τ),k(τ)) =

∫ a

λmin

fλ(λ|µ)fK(τ)

(
k(τ)|µ, λ,n(τ)

)
dλ,



CHAPTER 7. A BAYESIAN MODEL FOR IN-PLAY ODDS 171

where λmin = −min(µ, 1−µ). Given the form of the likelihood of λ in equation (7.2.5),

this integration cannot be performed analytically, therefore numerical methods must

instead be used.

We then look at the CDF of M1, given by

P (M1 < z|µ, b,Ω(τ)) = FM1(z|µ, b,Ω(τ))

=

∫ z

0

fM1(m1|µ, b,Ω(τ))dm1

=

∫ z

0

fλ
(
m←(m1|µ, s(τ), b)|µ,n(τ),k(τ)

) d

dm1

(
m←(m1|µ, s(τ), b)

)
dm1.

The last step involves a change the variable of integration from m1 to λ to help

calculate this integral. Note that m←(0|µ, s(τ), b) = λmin. This is because λmin =

−min(µ, 1−µ), and so, either p1 = µ+λ = 0, or p2 = µ−λ = 1. Either option leaves

player 1 unable to win the match, so m1 = 0 too. Many terms cancel when using this

change of variables, leaving

P (M1 < z) =

∫ m←(z|µ,s(τ),b)

λmin

fλ(λ|µ,n(τ),k(τ))dλ

= Fλ(m
←(z|µ, s(τ), b) | µ,n(τ),k(τ)),

and so, if Λ is a random variable of which λ is an observation, we obtain the result

P (M1 < z) = P (Λ < m←(z|µ, s(τ), b)).

In some ways, of course, this result is trivial given that m(λ|µ, s(τ), b) is invertible.

However, it is helpful to note that this means that if we wish to get p-values for

some observed values of m1 with respect to predicted match-win probabilities, we can

instead look at p-values for the posterior distribution of λ = m←(m1|µ, s(τ), b). This

will be useful when we come to analysing whether the odds of matches conform to

these distributions. Looking at m1 provides information about both the strength of

the two players and the current score. Looking at λ strips back information about

the current score, allowing us to focus solely on the strength of the two players.
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7.2.6 Priors on µ

So far, we have only dealt with the use of a fixed µ to model M1 in-play. Now we

will instead examine what would happen were we to have a prior distribution on

µ instead. This would more realistically represent the fact that the average point-

win probabilities of different players may be quite different, potentially giving more

accurate predictions.

Suppose that there is a prior distribution over µ and m1, given by fµM1(µ,m1|b).

We would instead like to transform this into a prior over λ and µ, fµλ(µ, λ), in order

to get posterior distributions for M1 and λ at each time τ . In the same way as before,

this will involve simple changes of variables, but over two variables instead of one.

Using this, we will prove that

fµλ

(
µ, λ|n(τ),k(τ)

)
∝ fµM1

(
µ,m(λ|µ,0, b)

∣∣∣b)fK(τ)

(
k(τ)|µ, λ,n(τ)

)dm(λ|µ,0, b)
dλ

(7.2.7)

and that

fM1(m1|b,Ω(τ)) ∝
∫ 1

0

fµλ

(
µ, λ|n(τ),k(τ)

) d

dm1

(
m←(m1|µ, s(τ), b)

)
dµ. (7.2.8)

In order to prove this, let the functions to transform from (µ, m1) to (µ, λ) at score

s and back be

Hs(µ,m1) =
(
µ, m←(m1|µ, s, b)

)
H−1
s (µ, λ) =

(
µ, m(λ|µ, s, b)

)
.

Let Hs(·, ·) =
(
Hs,1(·), Hs,2(·)

)
, and similarly let H−1

s (·, ·) =
(
H−1
s,1(·), H−1

s,2(·)
)
. Stan-

dard probability theory then gives a pre-match prior (i.e., when s = 0) for µ and



CHAPTER 7. A BAYESIAN MODEL FOR IN-PLAY ODDS 173

λ,

fµλ(µ, λ) = fµM1(µ,m1|b) det

 dH−1
0,1

dµ

dH−1
0,1

dλ

dH−1
0,2

dµ

dH−1
0,2

dλ


= fµM1(µ,m1|b) det

 1 0

dm(λ|µ,0,b)
dµ

dm(λ|µ,0,b)
dλ


= fµM1(µ,m1|b)

dm(λ|µ,0, b)
dλ

.

A posterior distribution for µ and λ given data can then be obtained using this prior

in the usual way,

fµλ(µ, λ|n(τ),k(τ)) ∝ fµλ(µ, λ)fK(τ)

(
k(τ)|µ, λ,n(τ)

)
∝ fµM1(µ,m1|b)fK(τ)

(
k(τ)|µ, λ,n(τ)

)dm(λ|µ,0, b)
dλ

,

as claimed in equation (7.2.7).

In order to obtain a probability distribution over M1, we first need to change variables

back to µ and M1, which is given by

fµM1(µ,m1|b,Ω(τ)) = fµλ(µ, λ|n(τ),k(τ)) det

 dHs(τ),1

dµ

dHs(τ),1

dm1

dHs(τ),2

dµ

dHs(τ),2

dm1


= fµλ(µ, λ|n(τ),k(τ))

d

dm1

(
m←(m1|µ, s(τ), b)

)
.

We then need the marginal distribution of M1 with respect to this distribution, given

by

fM1(m1|b,Ω(τ)) =

∫ 1

0

fµM1(µ,m1|b,Ω(τ))dµ

=

∫ 1

0

fµλ(µ, λ|n(τ),k(τ))
d

dm1

(
m←(m1|µ, s(τ), b)

)
dµ.

This corresponds with equation (7.2.8). The integration must be solved using numer-

ical methods.
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7.3 Results

7.3.1 Some plots of in-play predictions of m1 and λ using

Glicko priors

In order to illustrate the methods in Section 7.2, we shall now demonstrate its use on

a couple of example matches and look at how it identifies suspicious-looking matches.

As well as looking at estimates of match-win probabilities compared to odds, we

will also look at how estimated λ compares with m←(yτ |µ, s(τ), b). Looking at the

odds on this alternative scale helps focus only on how the strength of the two players

is modelled, while stripping out information about the current score that is included

in the odds yτ . Looking at both is key to examining our analyses and how they may

be improved upon.

Figure 7.3.1 shows the values of λ implied by the odds for the matches in Figure

7.2.1. These vary much less than the odds, and looking at these plots will show how

the behaviour of this implied λ is captured by our models for λ.

7.3.2 Example Match Fits

To begin with we will look at some results of using this Bayesian method with prior

distributions generated from the Glicko ratings implementation as described in Chap-

ter 4.

The easiest prior distributions to obtain for M1 are obtained by simply using the

formulae for match-win probability based on Glicko ratings as described in equation

(4.1.1), along with parameters νi and σi obtained for each player i from implementing
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Figure 7.3.1: Plots of values of λ implied by odds in four sample matches from our data. Black

dots represent our transformed odds data, while blue dots are the posterior median and successive

95% predictive intervals for λ. Time is measured in minutes from the start of the match.

Glicko ratings. The relevant formulae are

θi ∼ N(νi, σ
2
i )

M1 =
eq(θi−θj)

1 + eq(θi−θj)

M1 ∼ LN
(
q(νi − νj), q2(σ2

i + σ2
j )
)
,

where M1 ∼ LN(µ, σ2) denotes that M1 has logistic normal distribution with param-

eters µ and σ2. This prior distribution for M1 can then be used to provide a prior

distribution for λ in the manner described in equation (7.2.2).

However, it is important to bear in mind that our real goal is to estimate the

implied win probabilities, which we call y(τ), rather than simply the actual win prob-
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abilities, m1(τ). Although we expect m1(τ) ≈ y(τ), the aim is to estimate y(τ) so

that we can identify matches where the implied win probabilities do not behave as ex-

pected. In their work on pre-match odds, and for model prediction m̂1, Reade (2014)

fit a linear regression model for the expected in-play opening odds, E(Y (0)) = α+βm̂1

to account for any systematic biases in the odds compared with their predictive model.

We took a similar approach, but want to ensure that E(Y (0)) ∈ [0, 1]. We therefore

decided to examine whether α+ (β + 1)q(νi − νj) is a better predictor for Y (0) than

q(νi − νj). We also want to know if multiplying the variance, q2(σ2
i + σ2

j ), by a con-

stant, c2, better described the variability in Y (0). We therefore wish to compare the

two models,

Y (0) ∼ LN(α + (β + 1)q(νi − νj), c2q2(σ2
i + σ2

j )
)
,

Y (0) ∼ LN(q(νi − νj), q2(σ2
i + σ2

j )
)
,

looking at the significance of each of the parameters α, β and c.

A plot of q(νi − νj) against Y (0) is shown in Figure 7.3.2. We fitted the model

without two matches known to exhibit peculiar odds behaviour and found no evidence

to suggest that α or β made significant contributions to the model fit, but found that

c was significantly different to 1 at the 5% level, with c being an estimated 0.914. We

therefore included c in our model for Y (0) to provide a better fit, meaning the model

for Y (0) used was

Y (0) ∼ LN
(
q(νi − νj), c2q2(σ2

i + σ2
j )
)
. (7.3.1)

This model was used to generate prior distributions for λ in each of the 274

matches for which we have in-play odds data, before we found posterior distributions

in each game break using the methods described in Section 7.2.4. The next section

will look in a little detail at some example matches, before overall behaviour from all

of the matches is summarised.
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Figure 7.3.2: A plot showing the difference in means of Glicko ratings against logit opening in-play

odds for each match. The fitted regression line (dashed red) is very similar to the line y=x (black).

7.4 Example Results

First, we consider a few matches where the odds have been very well predicted. Figure

7.4.1 shows two matches for which the odds have been very well estimated. The initial

estimate for λ is strong, and the posterior estimate of λ changes little throughout the

match. However, the implied λ also varies little, and so both λ and the match-win

probabilities are well estimated throughout the match. However, it is interesting how

wide the confidence intervals are, despite the fact that c < 1.

Figure 7.4.2 shows a few matches which have not been predicted as well. In both

cases, the initial estimate of λ is not particularly accurate. In match 2, the implied

λ drifts closer to the median estimate of λ, whereas in match 15 the implied λ drifts

further away. It’s unfortunate that the initial poor estimates of λ affect the estimates

for the rest of the match.

There are several reasons why the initial estimates of λ may be poor. The first

reason is the simple fact that our prediction methods are imperfect. The odds are

known to be excellent predictors of In specific matches, one reason why the odds may
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Figure 7.4.1: Plots of values of implied win probabilities and λ (black) vs the median of model

predictions and a 95% predictive interval (blue) in matches 7 and 18. Time is measured from the

start of the match.

differ so much from our predictions is news of an injury to a player. This will shift

market perceptions of the players’ win probabilities, whereas our model’s predictions

will remain the same. Another issue may be the surfaces the matches are played

on. It is well known that different players have different preferred surfaces, and if

the markets account for this but our predictions do not, this will induce differences

between the market and our predictions. Section 4.4.3 discussed possible remedies

for this by incorporating surface information into Glicko ratings, but this remains an

open area of research.

In examining why the posterior distributions of λ update so slowly, we look at the

data for these two matches. In match 2, the final score is 6-4, 6-7, 7-6, with the winner
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broke the loser’s serve four times and was broken once in return. The evidence from

the scores therefore suggest that this was a close game, with little information to be

gained about the relative quality of the two players simply by looking at the num-

ber of games won or lost on serve. As such, the likelihood does not contain enough

information to make the posterior distributions significantly different from the prior

distributions. In match 15, the final score is 2-6, 7-5, 7-6. The winner therefore won

fewer games than their opponent, breaking their opponent’s serve 4 times and being

broken 5 times in return. This suggests another close match, in which the loser has

arguably played better than their opponent over the whole match. However, the rules

of tennis are such that the loser’s failure to win the last two close sets has cost them

victory. The likelihood function again contains insufficient information to shift the

posterior distributions. It is possible that the use of point-by-point data would help

λ update faster, but equally even this data may not be enough to move estimates of

λ closer to the odds.

One interesting example of a match that the model predicts poorly is shown in

Figure 7.4.3. World rankings and betting odds both suggested that one player was

a clear favourite. While the implied win probabilities appear to have been predicted

fairly well staying near 1 throughout the match, it appears at first that our model

has failed to capture a large decrease in implied λ. This decrease is surprising, given

that by the end of the match the underdog had won just 3 out of his 8 service games,

whereas the favourite won 7 out of 9.

Closer examination of the match data paints an interesting story. The favourite

quickly established a commanding lead that he never relinquished. Looking at the

odds themselves, rather than implied win probabilities, as shown in Figure 7.4.4 shows

that the favourite’s odds are so low that they change very little, even as his lead

becomes more and more commanding. Meanwhile, although the underdog’s odds

lengthen, they do not change the implied win probability significantly either. This is

what causes the apparent decrease in implied λ - if the win probability remains the
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Figure 7.4.2: Plots of values of implied win probabilities and λ (black) vs the median of model

predictions and a 95% predictive interval (blue) in matches 2 and 15. Time is measured from the

start of the match.

same while the score becomes more favourable, then λ must decrease. However, this

is likely due to an issue with the liquidity of the market - once the result of the match

essentially becomes a foregone conclusion, gamblers will risk very little further money

on the outcome, and the odds will therefore not move. This is backed up by data

about the volumes of money gambled on the match. By the end of the 12th game

interval 50 minutes into the match, £1,803,807 had been gambled on the match. By

the end of the match 20 minutes later, this had increased by just £3,362. The odds

are essentially censored such that if the market probability of an event dips below a

certain value, the odds may not change as gamblers are unlikely to place a stake on

such an unlikely event.
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Figure 7.4.3: Plots of values of implied win probabilities and λ (black) vs the median of model

predictions and a 95% predictive interval (blue) in match 22. Time is measured from the start of

the match.

This highlights the need to carefully examine matches which have been flagged

Figure 7.4.4: Plots of values of decimal odds for both players in match 22. (Note the difference in

scales on the y-axes.) Time is measured from the start of the match.

up by our model to look for alternative explanations of the data. It is possible that

better modelling would prevent matches such as this being flagged - however, it is

sufficient for now to examine the match data in greater detail and see that an alterna-

tive explanation to match-fixing is more plausible, and thus disregard it from further

investigation.

Next we come to two matches that have been cited in other sources due to the odds
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being highly unusual. The plots for these matches are displayed in Figure 7.4.5. In

match 136, the initial estimate for λ is good, whereas the initial estimate in match 73

is poor. However, in both cases the implied λ increases greatly throughout the match

at a rate that is not justifiable by what is occurring in-play. Indeed, in match 136,

the implied win-probability is increasing throughout the match, even though player

1 loses the first set. This win-probability behaviour is completely at odds with what

the score would imply. It is precisely these sorts of matches that we wish to flag up

as anomalous, and our method has successfully identified both matches.

Looking generally at our model estimates, two main features stand out. Firstly,

Figure 7.4.5: Plots of values of implied win probabilities and λ (black) vs the median of model

predictions and a 95% predictive interval (blue) in matches 73 and 136.

the predictive intervals are very wide, and secondly, the posterior distributions for

λ change very little throughout the match. The first feature is due to in part due
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to the large parameter uncertainty in the Glicko ratings, but also due to the quality

of the predictions provided by the Glicko ratings. Figure 7.3.2 shows that although

the Glicko ratings predict the opening implied win probabilities quite well, there is

still a substantial amount of variation in the opening implied win probabilities that

is unexplained. More accurate predictions would the term make c2 in the model in

equation 7.3.1 much smaller and provide much tighter predictive intervals.

The lack of movement in the posterior distributions of λ is due to the significant

Figure 7.4.6: Prior distributions and end-of-match posterior distributions of λ for three matches,

and a curve proportional to the likelihood. (Proportionality is used as the true likelihood is several

orders of magnitude smaller than the prior and posterior densities of λ.)

uncertainty in the likelihood. Figure 7.4.6 shows the prior and end-of-match posterior

distributions and the likelihood of λ for the three matches with the biggest change in
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median prediction of λ between the first and last games. In these matches, it can be

seen that although the maximum likelihood estimator of λ is very high, the fact that

the uncertainty in the maximum likelihood estimator is so large limits how much the

posterior distribution shifts, and hence how much can be learned about λ throughout

the match. In these cases where one player dominates so heavily, subtle alterations

are made to the posterior distributions, but in other matches very little can be learned

about λ.

It would be interesting to explore whether the use of point-by-point data would

help provide more useful likelihood information than the game-by-game data we cur-

rently use. Breaks of serve are rare in tennis, even when one player is playing much

better than the other. Point-by-point data might help highlight other patterns, such

as when one player is holding serve easily while the other is struggling to hold serve

but still succeeding. The use of game-by-game data would mark both players as equal

in this case. However, point-by-point data would highlight one player’s superiority

over the other, even if this superiority has yet to be converted into breaks of service.

In the absence of point-by-point data, it may be possible to use the time durations

of the games as a proxy for the number of points each player wins. Holds of serve to

love will be played over just four points, whereas a game with a deuce must feature at

least eight points. It would be natural to expect that the games with deuces should

take noticably more time than easy holds of serve. Naturally other factors will effect

the time lengths of games, such as injuries and fatigue, so the relationship between

the game duration and the score will be imperfect, but there may be a sufficiently

strong relationship to get an idea of whether the closeness of games provides useful

information.

It is of course possible that even point-by-point data would be insufficient to

markedly alter the posterior distributions of λ. In many ways, it would be sensible if

a player’s career history proved much more informative about their strength than their

performance at the start of the match - one set match should perhaps not greatly shift
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our expectations of an excellent player. However, recall once more that our true goal

is to predict the implied win-probabilities, rather than make predictions about the

match results. Our previous plots show that implied λ can vary significantly through

the match far more than our model currently allows. Our work in Chapter 8 will

examine whether this variation in implied λ can be predicted from events occurring

in-play, or whether it is simply due to randomness.

7.5 Analysis of in-play p values

Having considered a few matches individually, we must now consider how to identify

the most suspicious matches automatically. Thousands of matches happen every year,

and so it is not practical for each match to be examined individually. Instead, we

seek criteria with which to flag matches as suspicious, so that they can be subjected

to further investigation.

For each match, our model gives a p-value that explains how unusual the implied

win probabilities, or equivalently, implied λ, are with respect to their respective pos-

terior probability distributions. These must be summarised for each match in a way

that flags the most suspicious matches while ignoring matches that behave as ex-

pected. We begin with two very simple summaries of all of the p-values in each match

- the smallest p-value, and the average. The first will tell us the biggest discrepancy

between our model and the implied win-probabilities, while the second will indicate

a more consistent pattern of error.

Figure 7.5.1 shows the smallest p-value for implied λ in each match, as a mea-

sure of the biggest discrepancies between the odds and our model. The p-values were

obtained using R’s built-in numerical integration. The numerical accuracy of this in-

tegration is a specifiable parameter, and was chosen so that the error in each p-value

was at most 0.01 or the size of the p-value, whichever is smaller. This ensures that the

very smallest p-values are certainly not less than 0, and at most double their reported
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Figure 7.5.1: For each match, we take log10 of the lowest p-value of implied λ with respect to the

posterior distribution of λ. Errors bars on the p-values for the accuracy of numerical integration are

shown where appropriate. Red horizontal dashed lines represent log10(0.05) and log10(0.01).

value, although in most cases the error is much smaller.

The two matches with the most extreme p-values are matches 73 and 136, which

have already been examined in Figure 7.4.5. The next three are matches 197, 237

and 243, which are shown in Figure 7.5.2. Matches 197 and 237 both follow a similar

pattern, in that the opening estimate of λ is poor, and slowly worsens as the match

progresses. The behaviour in Match 243 is rather more peculiar however, in that a

huge swing in implied λ occurs in the first half of the match before staying relatively

stable until some volatility creeps in in the last few games of the match.
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Figure 7.5.2: Plots of values of implied win probabilities and λ (black) vs the median of model

predictions and a 95% predictive interval (blue) in matches 197, 237 and 243.
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Figure 7.5.3: Plots of values of implied win probabilities and λ (black) vs the median of model

predictions and a 95% predictive interval (blue) in matches 36, 64 and 188.

Next, we consider the average of all p-values in each match, the results of which

are shown in Figure 7.5.4. Match 73 is still the most extreme, but interestingly, Match

136 has only the 30th lowest average p-value. The next four lowest averages are from

Matches 36, 197, 64 and 188. Match 197 has already been considered in Figure 7.5.2,
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so we examine the other three in Figure 7.5.3.

In each of these matches, there is a consistent pattern that the initial estimate

for λ is poor and remains poor throughout the match, as neither the model estimate

of λ, nor implied λ itself, vary much during the match. Were the initial estimate of

λ closer to that implied by the odds, these matches would probably not have been

flagged. This could be a sign that suspicious activity has occurred in the pre-match

market. However, if it is simply due to our model not being as accurate as hoped, it

is more of a concern.

We now examine the extent to which the initial estimate of λ affects the average of

Figure 7.5.4: For each match, this plot displays log10 of the average of all p-values in each match.

Red dashed lines represent log10(0.05) and log10(0.01).

the other p-values, shown in Figure 7.5.5. The two are highly correlated, particularly

when both are near 0. Indeed, in the 13 matches with an average p-value below

0.05, all had an opening p-value below 0.09. These matches are flagged because the

opening estimate is poor, but precious little can be said about the behaviour about

the in-play odds, which is not entirely ideal. Looking for errors in the initial estimate

is important, but errors may occur due to factors beyond our control - there could be
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a minor injury in the lead-up to the game our model is unaware of, the surface may

favour one player, or it may simply be a consequence of the fact that our prediction

methods are imperfect. Therefore, while knowing about the error in the opening

estimate is important, it would be helpful if we could also examine the in-play market

in matches where there is an error in the opening estimate - something our model

appears to be currently unable to do.

In other words, comparing the implied win-probabilities with model predictions

Figure 7.5.5: The first available p-value for implied λ with respect to model predictions compared

with the average of all p-values in the match.

based on the Glicko ratings tells us whether or not the odds are as expected at each

time in the match, conditioning only on the results of the players’ previous matches

and games won or lost in-play. This seems sensible, but it is important to note that

this combines two distinct pieces of information - whether or not the pre-match market

closes at a price we’d expect, and whether or not the odds develop as expected once

the match starts. While there is no explicit problem with combining the two pieces of

information in this way, it may be more helpful to separate the pieces of information

in order to get a clearer picture of what is actually happening in the match. This is
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Figure 7.5.6: The first available p-value for implied λ with respect to model predictions compared

with the lowest of all p-values in the match.

particularly true if the pre-match odds are not as expected. There may be a valid

reason why there may be a discrepancy between the odds and our model, such as

a recent injury or a public belief that one player’s style will dominate the other in

a way not capture by our model. If our pre-match model fails to capture this, the

match will be flagged up, but we will be essentially unable to assess whether anything

suspicious has also occurred in the in-play market. The match may then be dismissed

due to injury being the probable explanation, and any genuine corrupt activity in-play

may be missed. We therefore wish to separate the pre-match and in-play markets,

assessing each separately for corrupt activity.

7.5.1 Using Pre-Match Odds to Generate Prior Distributions

Given that problems estimating the first λ may be hampering our analyses, some

individuals have suggested to us that this problem may be resolved by simply shifting

the mean of our prior distribution on the odds closer to the opening odds. This would
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mean replacing the prior distribution in 7.3.1 with a prior distribution for M1(0), the

probability player 1 wins at time 0, given by

M1 ∼ N(y(0), γ2
k). (7.5.1)

Some thought would have to given on how to estimate γ2
k. We could then instead

use this prior distribution to create a prior distribution for λ, update posterior dis-

tributions for λ(τ) at later times τ to reflect the incoming data, Ω(τ), and compare

observed implied λ with these posterior distributions.

The previous work explored posterior distributions of λ conditonal on the players’

career histories and the in-play data on player performance, Ω(τ). Using the prior

distribution in equation 7.5.1 would instead be exploring the posterior distributions

of λ conditonal on the pre-match market and the in-play data on player performance,

ignoring career histories, and Ω(τ), which may also prove sensible.

We attempted this using γ2
k = c2(σ2

i + σj)
2 to explore the outcomes. In doing so,

we found that the resulting model was very poorly calibrated indeed, as highlighted

in Figure 7.5.7. This figure shows boxplots of the CDFs, P (M1 < y(τ)|µ, b,Ω(τ)), for

the observed data y(τ) from all of our matches with respect to our Bayesian posterior

distributions, with the boxplots organised by the game index τ . (The first boxplot

therefore corresponds to a boxplot of the values of P (M1 < y(1)|µ, b,Ω(1)) from all

of our matches, and so on).

From Figure 7.5.7, we see that odds moved much less than expected in early

matches than the odds-based prior predicted, resulting in a very narrow distribution

of CDFs in early games, while the CDFs were over-dispersed in later games. The

CDFs should be uniformly distributed. By contrast, the corresponding boxplots for

the history-based priors in Figure 7.5.7 are distributed much more uniformly, although

some problems persist in very late games, though the fact that not many matches have

30 games, resulting in small sample sizes in these cases, is a mitigating factor.

The implication of this is that the odds do not behave as predicted using the

odds-based priors. The results are more consistent with a random walk effect of sorts,
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in which small movements in the implied λ build up over time, yielding successively

wider distributions. This means that from a fraud detection perspective, we would

struggle to find large CDFs early in the match using odds-based priors, and hence

may miss suspicious betting activity. Although a similar pattern is slightly visible

in the lower plot of Figure 7.5.7 which uses career-based histories, the extent of the

effect is much lesser, suggesting that in some way the data fits the model better in

this case due to the more uniform distribution of CDFs (even though we expect that

using odds-based priors would lead to more accurate point-estimate predictions, as

odds are more informative than the Glicko ratings). This meaning that when using

history-based priors, we are also able to observe large p-values early in the matches

and thus are much more able to detect suspicious gambling.

It could be worth exploring further whether the issues in using odds-based priors

could be circumvented. However, a wider view suggests that even though this Bayesian

model saw some success in identifying matches with large in-play odds swings, a new

model that more realistically captures the dynamics of the in-play odds may see even

better success. Chapter 8 will introduce precisely such a model.

7.6 Conclusion

In this chapter, we described one of the first models to attempt to model in-play odds.

We showed that we could model λ instead of modelling the implied win-probabilities

directly. We then developed a prior distribution for λ based on Glicko ratings and

demonstrated how to update the posterior distribution of λ during the match as games

were won or lost, and used these posterior distributions to find posterior distributions

for match-win probability. We compared implied match-win probabilities for observed

odds data to these posterior distributions and analysed the p−values. We successfully

identified two matches that other sources have also suggested have very suspicious

betting activity. This model therefore represents an advancement on the methods in



CHAPTER 7. A BAYESIAN MODEL FOR IN-PLAY ODDS 194

Figure 7.5.7: Boxplots of the CDFs of the odds with respect to our Bayesian posterior distributions

according to each game. In the left plot the prior mean is shifted to match the data, while the right

plot uses prior means based on Glicko ratings. Red dashed lines are at 0.25, 0.5 and 0.75

current literature.

However, some questions remain over the how well the model predicts λ in some

matches. The Glicko ratings do not always predict the opening odds well, and we

struggle to make inference about the suspiciousness of the betting activity when this

occurs. We also found that our Bayesian updating did not track the movements in the

observed implied λ process very closely, which seemed to be affected by games won and

lost much more than our posterior distributions suggested. It is possible that point-

by-point data would help provide better in-play updates, but by no means certain.

For this Bayesian model to be successful, we would need to ensure our Glicko ratings

provided much better predictions for the odds. Incorporating surface information

would be a good start to this end.
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It may be, however, that a better approach would be to try an alternative model.

In the next chapter, we will attempt to model the observed implied λ process directly,

so that we can base our predictions of how much the implied λ is affected by games

won or lost based on the data, and so that we can circumvent the problems that arise

from our implementation of Glicko ratings.



Chapter 8

A Gaussian Processes Model for

In-Play Odds

In this chapter we develop a Gaussian process model for in-play odds based on mod-

elling the values of implied λ. In Chapter 7 we built a Bayesian model for implied

λ that built a prior distribution based on Glicko ratings and updated the posterior

distribution based on the results of games won and lost. We found that the observed

implied λ varied much more with games won and lost than this Bayesian model sug-

gested, and also found that poor estimates of the opening implied λ hampered our

analyses. In this chapter, we therefore develop a model in which the increase in im-

plied λ based on observed games won and lost is estimated directly from the data. We

estimate the size of this effect by pooling data from across our different matches, and

we also pool information from across the different matches to estimate the variability

and correlation structure of this process.

Note that modelling the in-play implied λ, and by extension the odds, in this way

differs from how we have modelled the odds so far, and indeed all sports models, in

an important way. Most sports models attempt to model match-win probabilities,

and we have been using these to compare to the odds to look for anomalies. Now,

however, we are constructing a model explicitly based on the odds data. We trans-

196
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form the odds to implied win probabilities which in turn are transformed to implied

λ, which we model directly. In doing so, it is possible that our model may provide

less accurate predictions of the match-result, but this is a trade-off we are prepared

to make. We do not necessarily believe that altering λk (the implied λ for match

k) provides better predictions for the match-win probabilities in match k, but if it

describes the market better then it is important to follow the market. Of course, if

the market is perfectly efficient, then there is no philosophical difference between the

two approaches. However, if the market is inefficient, (in ways that do not relate to

match-fixing), we wish to follow the market.

Consider for example the so-called “favourite-longshot bias” observed in some

sports, discussed in a football context in Reade (2014), in which gamblers prefer to

bet on underdogs to favourites, causing some predictable inefficiencies. In this case,

we would ideally wish to model this market ineffiecency rather than correcting for

this bias to make better predictions. Forrest and McHale (2007) note the existence

of a favourite-longshot bias in tennis in general, but we did not attempt to use their

findings to predict the scale of the bias in individual matches in this thesis. This

presents a potential area for further work.

8.1 The Gaussian Process In-Play Model

The model that we will propose has a major advancement on those previously dis-

cussed. We want to be able to track the odds and implied λ more closely in matches

where no match-fixing occurs. We found that the Bayesian method reacted very little

to players winning or losing games compared when compared to how the implied win

probabilities reacted, so would like to rectify this. Our model will do this by exploit-

ing knowledge over many different matches to look for anomalies, rather than simply

looking at data from a single match.

To define this model, we first recall the definition of Gaussian processes from Sec-



CHAPTER 8. A GAUSSIAN PROCESSES MODEL FOR IN-PLAY ODDS 198

tion 6.3. We want to build a Gaussian process for the implied λk in match k for all

k, in which the mean of the implied λk during the match is some parameter αk which

is independent of the current match score, and the mean of implied λk then also rises

and falls as games and tie-breaks are won or lost, with the sizes of these rises and falls

consistent across all matches. We also believe that values of implied λ are correlated

in some space. We chose not to consider correlation linked to the associated betting

volumes, as we did in Section 6.3, since the principal reason for considering betting

volumes in that section was to allow very variable odds at low volumes while the

market was poorly formed, which we believed to be less of an issue in the in-play

market.

Our data include the time between each game break, which would have been a

sensible space to use to measure the correlation between implied λ in successive game

breaks. However, for simplicity’s sake we chose in the first instance not to use these

and instead consider all game breaks to be an equal time apart from each other. In-

corporating the actual times between games into this model would be a priority for

further work in this area.

In order to model the movements of implied λ, let Λk(τ) be a random variable

denoting the value of the implied λ at time τ in match k, and let Λk be a vector

containing all Λk(τ) for match k. Let λk(τ) and λk be observations of the random

variables Λk(τ) and Λk respectively. In match k there are nk observations, and we let

1n be a vector with a 1 in each of its n entries.

The first model we considered for Λk was

Λk ∼MVN(αk1nk + xkβ, δ
2(Ck + η2Ink)), (8.1.1)

given parameters αk for k = 1, . . . , 274, β, δ2, and a scaled nugget parameter η2.

The correlation matrix for each match k is Ck, and In is an identity matrix of size

n×n. We chose to use an exponential correlation function, where if Ck,ij is the (i, j)th
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element of Ck, then

Ck,ij = ρ||τi−τj || i, j = 1, . . . , nk (8.1.2)

for some correlation parameter ρ.

The design matrix xk includes three columns of data related to the differences in

the number games and tie-breaks that each player has won or lost on serve. We use

game data principally because we do not have points data, but it is also debatable

whether points information would add accuracy were it available. It could be that the

various tactical decisions tennis players make in deciding which points to strive for

make the total number of points each player has won a potentially unreliable marker

of the difference in quality of the players.

Recalling notation from Section 7.2.3 and supposing match k is played between

players i and j, the three columns in xk are

xk1(τ) = k
(g)
i (τ)− k(g)

j (τ),

xk2(τ) =
(
n

(g)
i (τ)− k(g)

i (τ)
)
−
(
n

(g)
j (τ)− k(g)

j (τ)
)
, (8.1.3)

xk3(τ) = k
(t)
i (τ)− k(t)

j (τ).

The covariate xk1 is the difference in the number of games each player has won while

serving, while xk2 is the difference in the number of games each player has lost while

serving. Observe therefore that xk1 + xk2 = n
(g)
i (τ) − n(g)

j (τ), which should be -1, 0

or 1 at all times due to the fact that players alternate serve. The covariate xk3 is the

difference in the number of tie-breaks each player has won. We expect these three

variables representing the differences in the games and tie-breaks that the players

have won to be the primary predictors of λk = (pi − pj)/2.

In the design matrix xk, we use differences in games won or lost to ensure that

no unwanted effects are included in the model due to the ordering of the two players.

For example, our model uses the eventual winner as the first player in all cases, but

we do not necessarily want to boost implied λ for the eventual winner during play
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before the winner is decided - the market does not know the eventual winner during

play, and so the λ implied by the market should not use this information.

One consequence of this symmetry is that if both players have won and lost

the same number of service games and tie-breaks after time τ , we see E(Λk(τ)) =

E(Λk(0)) = αk, and so we expect no movement in implied λ. However, if one player

is believed to be much stronger than the other, perhaps this is undesirable. If we

expect one player to dominate but is instead being matched by the underdog, it is

possible that we expect E(Λk(τ)) to drift toward 0 - though careful thought needs

to be applied to what we mean by when one player is “expected” to dominate. To

formalise this notion, we also try another model in which the shift in E(Λk(τ)) is

based on how the player performs compared to expectations, which is

Λk ∼MVN(αk1nk + (xk − E(Xk))β, δ
2(Ck + η2Ink)). (8.1.4)

where Xk is a matrix of random variables Xk(τ) of which xk(τ) are observations.

We must decide what the expected value E(Xk(τ)) is conditional on. For example,

consider the equation for xk1(τ) in equation (8.1.3) and consider the corresponding

random variable

Xk1(τ) = K
(g)
i (τ)−K(g)

j (τ),

where we recall from the earlier equation (7.2.3) that

K
(g)
i (τ) ∼ Bin(n

(g)
i (τ), g(µk + λk)),

K
(g)
j (τ) ∼ Bin(n

(g)
j (τ), g(µk − λk)),

for some values µk and λk in match k, so that

E(Xk1(τ)) = n
(g)
i (τ) g(µk + λk)− n(g)

j (τ) g(µk − λk).

The expectation therefore depends on the information used to calculate µk and λk

for match k. For µ, we take the global average suggested by Klaassen and Magnus

(2003) of 0.645. For λk, we chose to condition on the last available information from
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pre-match odds and take λ = m←(yk(0)|µk,0, b) for pre match implied win probability

yk(0).

Whichever µk and λk are used, a quick examination of our variables reveals that

xk1(τ)− E(xk1(τ)) =
(
k

(g)
i (τ)− k(g)

j (τ)
)
−
(
n

(g)
i (τ)g(µk + λk)− n(g)

j (τ)g(µk − λk)
)
,

and

xk2(τ)− E(Xk2(τ)) =
((
n

(g)
i − k

(g)
i (τ)

)
−
(
n

(g)
i − k

(g)
j (τ)

))
−((

n
(g)
i (τ)− n(g)

i (τ)g(µk + λk)
)
−
(
n

(g)
j (τ)− n(g)

j (τ)g(µk − λk)
))

= −
(
k

(g)
i (τ)− k(g)

j (τ)
)
−
(
− n(g)

i (τ)g(µk + λk) + n
(g)
j (τ)g(µk − λk)

)
= −

(
xk1(τ)− E(Xk1(τ))

)
Hence we no longer need to consider xk1(τ) and xk2(τ) separately, and we must

instead remove one of the variables from the model. The variable xk3(τ) remains in

the model as before.

If this model in equation (8.1.4) is used, should both players win the same number

of games at time τ out of n(τ) service games each, then

E(Λk(τ)) = αk − n(τ)
(
g(µk + λk)− g(µk − λk)

)
.

If λk is greater than 0, then this expected value will be less than αk, and so E(Λk(τ)) <

E(Λk(0)) = αk.

We shall explore how the models in both equation (8.1.1) and equation (8.1.4)

behave, but will first discuss fitting the parameters. This process will be described in

terms of the model in equation (8.1.1), but the process is the same for the model in

equation (8.1.4).

8.2 Parameter Estimation

In order to fit the model in (8.1.1), we want to find maximum likelihood estimators

of the each of the parameters. The parameter αk depends only on each match k,
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but we want the parameters β, δ2, ρ and η2 to be common to all matches. In order

to estimate these parameters, we therefore need these parameters to maximise the

product of the likelihood of all matches. In order to do this, we found it easiest to set

up a new Gaussian process containing the data from each of our K matches, given by

Λ ∼MVN
(

(Z,x) ( αβ ) , δ2C̃
)
, (8.2.1)

where

Λ =


Λ1

...

ΛK

 , x =


x1

...

xK

 , α =


α1

...

αK

 ,

Z =



1 0 . . . 0

...
...

...

1 0 . . . 0

0 1 . . . 0

...
...

...

0 1 . . . 0

...
...

...

0 0 . . . 1

...
...

...

0 0 . . . 1



, C̃ =


C̃1 0 . . . 0

0 C̃2 . . . 0

...
...

. . .
...

0 0 . . . C̃K


, and C̃k = Ck + η2Ink

The idea behind this Gaussian process is to simultaneously model all Λk in one vector,

Λ> = (Λ>1 , . . . ,Λ
>
K). This vector is of length N =

∑K
k=1 nk, since each vector Λk is

of length nk. We also put each parameter αk into a vector α = (α1, . . . , αK)>, and

stack the design matrices xk, each of which is of size nk × 3, to get an N × 3 matrix

which we call x.

The matrix Z is an N ×K matrix with values indicating which match each data

point belongs to. In the k-th column of Z there are nk values equal to 1 in the same

locations as the locations of the values of Λk in Λ. All other entries in column k are
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equal to 0. Hence, each row i has exactly one entry equal to 1, indicating whether

the i-th element of Λ corresponds to match k, and all other entries are 0.

The matrix product Zα is then a vector of length N . For each k, there are nk

elements equal to αk in the same locations as the entries corresponding to Λk in Λ,

and all other entries are 0. If the ith entry of Λ corresponds to time τj in match k,

and (Z,x)i is the i-th row of (Z,x), then the mean of Λk(τj) is therefore

E(Λk(τj)) = (Z,x)i (
α
β ) = αk + xk,jβ,

as required.

To model the correlation between different data points, we want the correlation

between data points in different matches to be unchanged from in, but the correlation

between data points in different matches to be 0. To do this, the variance matrix needs

to be a block-diagonal matrix with the matrices Ck on the diagonal for k = 1, . . . , K.

When the model is formulated as in (8.2.1), it is then easy to find maximum

likelihood estimators for α, β and δ2 conditional on C̃, which in turn relies on the

parameters ρ and η2, recalling that ρ is the correlation parameter use to generate

each matrix Ck in equation (8.1.2). Given the parameters ρ and η2 we can find

profile maximum likelihood estimators α̂(ρ, η2), β̂(ρ, η2) and δ̂2(ρ, η2) using standard

regression formulae for normal distributions, namely α̂(ρ, η2)

β̂(ρ, η2)

 =

(
(Z,x)>C̃−1(Z,x)

)−1

(Z,x)>C̃−1Λ,

δ̂2(ρ, η2) =
1

N

(
Λ− (Z,x)

(
α̂(ρ,η2)

β̂(ρ,η2)

))>
C̃−1

(
Λ− (Z,x)

(
α̂(ρ,η2)

β̂(ρ,η2)

))

where of course the easiest way to compute the large matrix inverse C̃−1 is

C̃−1 =


C̃−1

1 0 . . . 0

0 C̃−1
2 . . . 0

...
...

. . .
...

0 0 . . . C̃−1
K


.
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To find the maximum likelihood estimators for ρ and η, the parameters used to cal-

culate C̃, we do a numerical search over these parameters, calculating the likelihood

based on the profile maximum likelihood estimators α̂(ρ, η2), β̂(ρ, η2) and δ̂2(ρ, η2)

and select the values that maximises this likelihood.

8.3 Results

We fit both the models in equations (8.1.1) and (8.1.4), and found that the model in

equation (8.1.1) was better in terms of both AIC and BIC, and so we focus on this

model from hereon in. (Excluding the nugget effect was also found to be inferior). It

seems that while it may have been helpful to allow for the pre-match differences in

perceptions of the player strengths to affect model fit in the model that incorporated

E(Xk), the flexibility lost by considering holds of serves and breaks separately in

(8.1.1) outweighed this gain. It is possible that updating the λ used to calculate

E(Xk) may yield sufficiently improved model fit for the model to be worth using, but

we have yet to explore this possibility further.

Our analyses therefore all focus on the model in equation (8.1.1). We begin by

looking at a few example fits in Figure 8.3.1. These have been transformed onto the

match-win probability space in Figure 8.3.2 using the method discussed in Section

6.1.

In matches 1 and 2 in particular it is notable how well the model tracks the data

for the majority of the match. Matches 5 and 6 also start well before differences

begin in the second half. Contrast these plots with those in Figure 7.3.1, in which the

posterior distributions for λ barely move by comparison. In matches such as match

5 in which there is an in-play swing in λk, the Gaussian process attempts to straddle

the middle of the data to find the best possible fit.

There may be several reasons why λk appears to be more variable towards the

ends of matches. One reason may be due to our choice of µ in each match. For this
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Figure 8.3.1: Gaussian process fits for four matches, based on the model in equation (8.1.1). Black

dots represent λk, and red dots represent the mean and a 95% predictive interval for λk.

model we used the global average, µ = 0.645. In Section 2.3, we discussed and saw in

Figures 2.3.6 and 2.3.7 how the choice of µ made little difference early in matches, but

could have a much more significant impact toward the end of matches. It is therefore

possible that poor choice of µ has meant that the process of obtaining implied λ by

taking λk(τ) = m←(yk(τ)|µ, s(τ), b) has introduced irregularities.

However, there may also be other factors at play. When odds are very short, and

the probability of a win is very close to 1, some artefacts may also creep into the data

of the process of obtaining implied win-probabilities, similarly to what was discussed

about match 22 and shown in Figure 7.4.3. Finally, the market may genuinely be

overreacting to each individual game result if the final set is very close.
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Figure 8.3.2: Gaussian process fits for four matches, based on the model in equation (8.1.1),

transformed onto the match-win probability space. Black dots represent yk, and red dots represent

the mean and a 95% predictive interval for match-win probability.

8.3.1 Mahalanobis Distance

In order to assess model fit we shall use Mahalanobis distance, Mardia et al. (1979).

If an observation of a random variable v of length n is drawn from any distribution

with mean u and variance Σ, then the Mahalanobis distance between v and µ is

D2(v) = (v − u)>Σ−1(v − u). (8.3.1)
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Note therefore that if v is normally distributed, the likelihood L(u,Σ|v) is linked to

the Mahalanobis distance by the equation

L(u,Σ|v) = 2π−
n
2 det(Σ)−

1
2 e−

1
2
D2(v).

The reason we use Mahalanobis distances is to help us to compare matches of different

lengths. The log likelihoods and Mahalanobis distances are both affected by the length

of the random vector, making comparison across different matches potentially difficult.

By contrast, if the random vector v is normally distributed and of length n, then the

Mahalanobis distance has the property that

D2(v) ∼ χ2
n. (8.3.2)

Under the assumption that our Gaussian process fit the data well, if we look at the

p-values of the observed Mahalanobis distance for each match compared to the appro-

priate χ2 distribution then we should be able to compare the fit in different matches

without being concerned about the lengths of matches. Looking at the distribution of

these p-values should also help us to assess model fit, since these p-values should be

uniformly distributed across all matches. We begin by looking at the matches with

the greatest Mahalanobis distances and then compare the results with the matches

whose Mahalanobis distances have the smallest p-values with respect to their appro-

priate Mahalanobis distances.

Figure 8.3.3 shows the Mahalanobis distances for each match in our set of 274.

We see that these values are generally fairly consistent, with a few significant outliers.

We consider plot the data for these outliers in Figure 8.3.4. Each of these matches

features a large swing in in-play implied λ. The Gaussian process fails to capture this

swing, and the mean function sits in the centre of the data. It is also notable that all

four swings are in the direction of the eventual winner, which as we have previously

discussed can be an additional indicator that the swing could have come about due

to gamblers having knowledge of the final result. In match 211, the implied λ swings

back toward the mean at the end of the match, but when we look at the match-win
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probabilities in Figure 8.3.5, we see this only happens once the win probabilities are

very close to 1, and hence the fit may not be quite as reliable.

Matches 73 and 136 are two matches have been cited in other sources as containing

very suspicious betting activity. The fact that our model can identify these matches

and quantify how unusual the odds are relation to typical betting behaviour shows

that our model has the potential to be an important tool in identifying and flagging

matches with suspicious betting activity for further investigation.

The right-hand plot in Figure 8.3.3 shows log10 of the p values, P (D(Λk) >

Figure 8.3.3: The left-hand plot shows Mahalanobis distances for each match based on the model

in equation (8.1.1). The right-hand plot shows log10 of the p-values for the Mahalanobis distances in

each match k with respect to a χ2
nk

distribution. The matches in red have p-values computationally

indistinguishable from 0, but are plotted on this figure to show their match index.

D(λk)) with respect to a χ2
nk

distribution given that each match is of length nk games.

In the four matches discussed in Figures 8.3.4 and 8.3.5 have got Mahalanobis dis-

tance p-values far smaller than the p-values in any other matches. (In fact, there

p-values are so small that they are computationally indistinguishable from 0, though

they cannot actually be 0 since the χ2 distribution has no upper endpoint. Since

log10(0) = −∞, which we cannot plot, these matches are instead plotted at -20 in

Figure 8.3.3 and marked in red.) These results based on p-values therefore agree with
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Figure 8.3.4: Gaussian process fits for the four matches with the largest Mahalanobis distances,

based on the model in equation (8.1.1). Black dots represent λk, and red dots represent the mean

and a 95% predictive interval for match-win probability.

our results purely based on Mahalanobis distances.

A word of caution must be applied, however. In Figure 8.3.6 we show a histogram

of the p-values of all of the Mahalanobis distances. We see that these p-values are

certainly not uniformly distributed (i.e. as we would expect if our model were cor-

rect), with large peaks in frequency around 1 and 0. Were the implied λ perfectly

normally distributed in each match, we would expect these p-values to be uniformly

distributed, suggesting that there may be some further work to improve model fit,

even though we have already successfully identified the worst offenders. This would

help more accurately flag matches that are not as obviously suspect as our four worst
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Figure 8.3.5: Gaussian process fits for the four matches with the largest Mahalanobis distances,

based on the model in equation (8.1.1), transformed onto the match-win probability space. Black

dots represent yk, and red dots represent the mean and a 95% predictive interval for match-win

probability.

offenders so far.

If the values of implied λ were perfectly normally distributed, we would expect

around 10% of our p-values to sit in each bin, which would correspond to about 27

matches. However, we see that around 150 matches for which the Mahalanobis dis-

tance is very small, and so the data are very close to the mean function, and around

50 matches in which the Mahalanobis distance is large and the data are far from the

mean function.

Ensuring a common variance parameter δ2 across all matches will undoubtedly
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have had an impact on this. In some matches, such as match 2 in Figure 8.3.1, the

data vary very little around the mean, and a variance parameter δ2
k fitted solely to

that match would clearly be much smaller than the global δ2, whereas a variance

parameter δ2
k fitted to match 136 would clearly need to be much larger to account for

this swing. Using a global variance parameter δ2 is one of the features that allows us

to identify matches with large swings, and so is a necessary sacrifice to accomplish

our goals at the expense of modelling our data as accurately as possible.

The variability in λk toward the ends of matches is probably a larger concern. The

global variance parameter δ2 will undoubtedly be inflated by the frequent outliers in

λk that occur toward the ends of otherwise well-behaved matches, such as matches

1 and 6 in Figure 8.3.1. We have performed some preliminary research into using a

different parameter µk to represent the average of both players’ serving ability that

looked to make a promising start on reducing some of this variability, but this work

requires further refinement. We also briefly explored using a student-t process rather

than a Gaussian process to allow for longer tails in the distributions, as well as using

some covariates to attempt to directly model this extra variability, but none of these

appeared to resolve the issue entirely.

Figure 8.3.6: A histogram of the p-values for the Mahalanobis distances in each match with respect

to a χ2
nk

distribution.
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8.4 Conclusion and Further Work

In this chapter, we have described a Gaussian process model for in-play implied λ in

our matches in order to look for swings in in-play odds. Rather than simply using

in-play data on games won and lost to update our estimates of λ, we modelled the

values of λ implied by the data directly, using data from across our 274 matches to

model how this implied λ process rises and falls as games are won and lost during

play. This allowed us to model these movements more closely, making a more accurate

model as a result. This differs significantly from other models in that it attempts to

model odds directly rather than simply comparing odds with match predictions.

We compared a few different variations of our model, and found the one with the

best balance between simplicity and modelling accuracy was the more complicated of

our models. We looked at fit for a few different matches, and found that we success-

fully identified poor fit in the matches that have been cited elsewhere as suspicious.

This suggest that our model could prove a helpful tool in flagging matches to help

investigate match-fixing. Apart from the proprietary models described in Forrest and

McHale (2019), we know of no other models that attempt to detect in-play match-

fixing.

Some issues do remain with our model. Looking at the p-values of Mahalanobis

distances suggests that our Gaussian model fit is not quite ideal. Some of this lack of

fit is caused by the deliberate choice of using a common variance parameter δ2 in all

matches. Another issue is the extra variability that we see in implied λ toward the

end of matches. Though we have begun to investigate possible ways to model this

extra variability, we have yet to satisfactorily resolve this issue. Further work in this

area should focus heavily on this issue.



Chapter 9

Conclusions

In this thesis, we gave ourselves the task of developing new methods for identifying

potentially fixed matches in tennis. In doing this, we have extended the literature

on predicting the outcomes of tennis matches to suit our needs before proceeding

to research how best to separate the clean matches from the fixed. In this chap-

ter we summarise the main contributions of our work and the key areas for further

research.

9.1 Tennis Modelling

Chapters 3 and 4 were principally concerned with tennis modelling. The work in

Chapter 3 proved that the probability of a player winning a match from any scoreline,

given by the function m(λ|µ, s, b) is invertible in the dominance parameter λ, for all

scores s in a best-of-b sets match given that the players’ average point-win probability

is µ. Hence, the inverse of this function can be used in other sections of this thesis.

This function is numerically inverted elsewhere in the literature without proof, and

so it is reassuring for it to be definitively proven that this is possible. The proofs

also helped formulate and prove intuitive ideas about Markov chains representing

contests between two players in the class of Markov chains we defined as “first to

213
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(M + 1, N + 1)” Markov chains. In order to prove these results, we proved that the

absorption probability in this class of Markov chains was continuous and increasing

in some parameter α. This proof could then be used to prove the same results for

the Markov chains relating to games, sets, tie-breaks and matches, although these

Markov chains did not fall directly into the relevant class. Further work in the area

could involve extending the proofs to Markov chains of different shapes and with

different transition probabilities, but this is not necessary for further analysis into

match-fixing in tennis.

Chapter 4 expanded on the explanations of Glicko ratings in the literature and

described our implementation of Glicko ratings, as well as a new way of incorporating

5-set matches into the Glicko ratings framework. There are a few main avenues for

further work into Glicko ratings. Some concern the use of Glicko ratings in rating

tennis players specifically, while there is also potential for a wider investigation into

its effectiveness as a ratings system compared to other player rating systems.

We decided it was important to develop a method to lend extra weight to the

outcomes of 5-set matches to reflect that fact that the increased length of such matches

mean that luck plays less of a part, and that stronger players are more likely to

triumph. Our method of weighting 5-set matches differently to 3-set matches gave

an analytically-driven method to impart extra weight to matches played over 5 sets.

This method includes a parameter that could be altered depending on the data, but

our implementation suggested that the value given by the assumption of independent

sets fits well.

An alternative model to this would be to model the number of sets, games or

points won by each player instead of the match winner. This would naturally lend

more weight to 5-set matches, as they feature more sets than 3-set matches, and would

also allow the margin of victory to affect the shift in player ratings. Researching this

further could potentially help the Glicko ratings give better predictive accuracy using

data from fewer matches.
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Another important area for further study would be accounting for the fact that

players perform differently on different surfaces. One idea that may solve this issue

would be to use correlated rankings for different surfaces, but significant further work

is required to see whether this would prove successful.

There is also a wider issue that Glicko ratings appear not to have been widely

compared to other ratings systems to see how well it performs. Glickman (1999) does

not compare Glicko ratings to the Elo ratings that Glicko ratings are ostensibly built

on, and it is not considered in the comparative study of Kovalchik (2016). It would

be interesting to build on the work of Kovalchik (2016) to consider Glicko ratings and

other methods to build a fuller picture of which ratings systems are best for modelling

tennis players.

9.2 Match-Fixing

The remainder of the thesis concerns ways of attempting to identify potentially fixed

matches. These expand on the existing literature in several ways. Our pre-match

analysis uses betting volumes and odds recorded at more time periods than other

works, whereas our in-play analyses features the first algorithms to be presented in

academic literature to look for in-play match-fixing in tennis.

The work in Chapter 6 concerned our method for investigating the abnormality

of pre-match odds in tennis matches. Most work in the literature looks simply at

the difference between the opening and closing pre-match odds. We consider this

unsatisfactory, as odds can be very volatile near the opening of the market, and it

ignores the development of the pre-match odds between their opening and closing.

We therefore grouped pre-match odds into several intervals to build a picture of the

movement of odds as the market progressed. We also wanted to investigate whether

betting volumes could be incorporated to provide additional information.

We built a model under the assumption that there was some “fair” value of odds,
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which the actual odds converged to as the match approached. We did this by using

a Gaussian process with constant mean and decreasing variance. On investigating

whether to model this decrease using time or betting volumes, we found that betting

volumes provided better fit. Mixing time and betting volumes provided some surpris-

ing results, the causes of which we failed to identify. Further research may shed light

on this.

Fitting the model using maximum likelihood seemed unwise, as we had at most 8

data points per match. We therefore used a Bayesian approach, with the Glicko ratings

used to generate a prior for the pre-match implied win-probability mean parameter.

This allowed us to assess whether the opening pre-match odds were surprising with

respect to the Glicko ratings, and use successive posterior ratings for the mean to

examine the development of the pre-match odds.

We found that the method successfully flagged matches with large pre-match

swings, achieving the desired result. It is hard to assess the improvement on ex-

isting literature as there is so little, and we cannot use common data. However, we

believe that our results show strong potential that they may be useful for highlighting

matches with suspicious odds patterns, taking a more nuanced approach than the

existing comparisons of opening and closing odds.

The method also flagged several matches where the first recorded odds disagreed

with our Glicko predictions. This was also interesting, but is much less likely to

be caused by match-fixing, since very little gambling has happened by this stage.

Stronger tennis modelling, especially incorporating surfaces, may account for some of

these flagged matches. In one match in particular, the opening odds were far out from

our Glicko predictions, but swung back towards our prediction, possibly indicating

that the opening odds were merely mis-specified. Careful further thought must be

provided to what sorts of matches we wish to flag or not, and how to alter the models

to achieve this result.

In Chapter 7, we developed an in-play model for odds using Bayesian statistics. We
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used Glicko ratings to generate prior distributions for player strengths, and updated

these strengths throughout the match to provide posterior estimates for the match-

win probabilities with predictive intervals in each interval between games. This was a

new method of modelling in-play match-win probabilities. Using this model, we were

able to find p-values for the implied win probabilities with respect to the posterior

distributions of match-win probability in each game break. We used these p-values to

identify the most suspicious matches, and found that while some matches that looked

very peculiar were flagged, there were more other matches that were also flagged than

hoped.

In Chapter 7, as with Chapter 6, we attempted to summarise the different p-values

at each time-point into a unified statistic by looking at both the average of the p-values

at each time point and the minimum. (The method in Chapter 8 lent itself naturally

to the use of Mahalanobis distances to summarise the difference between the observed

and expected implied win probabilities.) While these methods helped paint a picture

of whether the betting activity was suspicious or not, further investigation is required

to determine how best to summarise the information each method presents.

One issue was that the match-win probability estimates provided by our imple-

mentation of Glicko ratings sometimes disagreed strongly with the opening in-play

odds. While this potentially provides useful information that there may be an issue

with the pre-match market, we found it difficult to make inference about the in-play

market in this scenario. One possible cause of the odds differing from the Glicko

estimate could be the effect of this surface. Without having investigated this phe-

nomenon further, it is not clear how much this could potentially affect our ratings. It

is also possible that other models may provide stronger predictive performance than

Glicko ratings, and alleviate this problem. The reason we chose Glicko ratings was so

that we could have larger prior variance if a player was returning from a long absence.

There may be another way of accomplishing this with a different model, though we

have found no others that directly consider this issue.
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Another issue with this model was that in-play posterior estimates of the players’

relative strengths did not update as much as hoped in line with the movements in

implied win probability. This was likely due to the fact that there is only so much

information that can be learned from the number of games won or lost. It is possible

that ratings would update quicker with point-by-point data.

These issues led us to develop the model in Chapter 8. The work in Chapter 3

allowed us to take implied win-probabilities and invert the function for turning the

dominance parameter λ into win probabilities, m(λ|µ, s, b), to directly model implied

λ. Our Gaussian process-based model pooled data from across the different matches in

our odds data to estimate how much the implied λ typically rises and falls with games

won and lost. This model tracked the odds much more closely, providing better in-

play estimates for reasonable in-play win probabilities. In doing so, we circumvented

the issue of estimating player strengths (and by extension surface effects) by instead

seeking to answer the question of whether the development of the odds was consistent

with other matches. This meant we would only flag up matches where the odds swung

in a manner not implied by the pattern of games won and lost, leaving the question

of whether the pre-match odds were consistent with player strengths as a question

purely for the pre-match methods.

While this model appeared to have had some success in modelling in-play odds,

there are further improvements to be made. The distribution of the distance of the

observed implied λ from our model fit, defined by Mahalanobis distances, was heavier

in both tails than expected, suggesting that the marginal distribution of odds at some

times was far more variable than our model implied at some times, and far less at

other times. The causes of this are currently unclear. We briefly investigated using

different average point-win probabilities µ in each match, but this needs significant

further research. Other possible solutions could involve using a more heavy-tailed dis-

tribution than Gaussian for marginal distributions, such as a student-t distribution,

or finding extra parameters to explain odds movement, particularly in the final sets
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of matches.

Nonetheless, this model seemed to have greater success in filtering out matches

that did and did not have large in-play swings than our Bayesian method, suggesting

it has potential to form the basis of a valuable tool for flagging matches with suspi-

cious in-play betting activity.

As well as these improvements to the match-fixing methods themselves, there re-

mains a larger question of how to tie them together to give a unified strategy for

flagging matches as potentially suspicious. The pre-match methods provide one indi-

cator of suspicious activity, while we currently favour the Gaussian process method

for identifying suspicious in-play betting patterns, as it broadly appears to be better

at identifying matches with suspicious odds movements. However, in order to confirm

whether this is true, and to provide more rigorous tests of the methods generally, it

could be helpful to use data on more matches, and to find a way to more formally

assess how well the methods identify fixed matches.

We should also consider how, and indeed whether, to combine the different in-

formation provided by the pre-match and in-play markets. One option would be to

flag a match if its “suspiciousness” (however that is measured) rises above a certain

threshold in the pre-match market, and raise a separate flag if the “suspiciousness” is

sufficiently high in the in-play market. A decision would have to be made on how to

select appropriate thresholds - there would be a trade-off here between filtering out

clean matches and failing to identify fixed matches. It is possible, however, that the

information from the pre-match and in-play could be combined in a cleverer way. If

the pre-match and in-play markets are both almost suspicious enough raise an alert

but not quite, would it be correct to discount the match? SportRadar’s Fraud Detec-

tion System (FDS), as described by Forrest and McHale (2015), uses green, yellow and

red alerts to label increasingly severe cases of abnormal betting activity. This seems

like a sensible way of dealing with different levels of suspicious betting behaviour,

and we could utilise something similar with our methods, with different thresholds
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for different levels. If the abnormality of one market’s activity reaches a certain high

threshold, the match could automatically be flagged, but both the in-play and pre-

match reach a lower threshold, this could also trigger an alert.

In order to more rigorously assess how well our models identify fixed matches, ide-

ally it would be possible to set this up as a straightforward classification problem, in

which we want to correctly identify as many known fixed matches as possible. There

would be a trade-off between missing fixed matches and incorrectly flagging up clean

matches. Failing to identify fixed matches would probably be more problematic than

falsely flagging a few extra matches for investigation, but we would have to investigate

this trade-off further.

One of the challenges we face in doing this is the fact that it is extremely difficult

to find reliable records of which matches are fixed and which are not. Tennis authori-

ties are less reticent to name players banned for fixing matches as they used to be, but

they still do not specify which matches have been fixed when issuing punishments. If

we regularly monitored odds, when a player is banned it might be possible to look

through a player’s match history and identify the matches with the most suspicious

activity. This would be challenging, as we would not know whether the player had

fixed one match or many, or even if the fixers had gambled enough to alter the betting

market. Conversely, there is a danger of assuming matches to be clean when they are

not. The tennis authorities may miss some matches, or fail to gather enough evidence

for a prosecution.

Without a way of clearly identifying matches that are fixed, we rely on rumours

of matches with suspicious betting activity, without confirmation that those matches

are fixed. If the players involved are never banned, is that because they are innocent,

or is it due to a lack of more concrete evidence? As such, it is difficult to formulate

this problem as a simple classification task. Nonetheless, it would be worth investi-

gating how best to use the information that we do have available in order best identify

matches that appear suspicious.
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9.3 Concluding Remarks

The goal of this thesis has been to investigate new ways of identifying tennis matches

with suspicious betting activity. To accomplish this, we have had to develop new

tools for modelling the strengths of players. Principally, however, we have described

a method of detecting suspicious pre-match betting activity more sophisticated than

any other in the literature, incorporating betting volumes and data at various time

points right up until the match start, and have developed the first two methods in

academic literature for detecting suspicious in-play betting activity in tennis. While

there is further work to be done to refine these methods, and challenges to overcome

in determining which matches are best to flag, we strongly believe that these methods

could be extremely useful in flagging matches that could potentially be fixed. With

extra development, these could provide another tool in the arsenal of investigators

seeking to eradicate these crimes from the sport. We sincerely hope that with further

research, the relevant authorities can stamp out this affliction, so that professional

tennis matches can be played and watched free of the influences of match-fixers, so

that the sport can be abused no more by those who would seek to corrupt players and

the game for profit.
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