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Abstract

An ion channel is a protein with a hole down its middle embedded into the

cytoplasmic membrane of a living biological cells. Ion channels facilitate ionic

transport across the membrane, thus bridging the intra- and extra-cellular com-

partments. Properly functioning channels contribute to the healthy state of an

organism, making them one of the main targets for pharmaceutical applications.

The description and prediction of a channel’s performance — conductivity, selec-

tivity, blocking etc., — under arbitrary experimental conditions starting from its

crystal structure thus appears as an important challenge in contemporary theoret-

ical research.

The main obstacle for such description arises from the presence of the mul-

tiple non-negligible interactions in the system. These include ion-ion, ion-water,

ion-ligands, ion-pore, and other interactions. Their self-consistent consideration is

essential in narrow ion channels, where due to inter-ion interactions and atomic

confinement, the ions move in a single-file highly-correlated manner. Molecular dy-

namics, the most detailed computational tool to date, does not allow one routinely

to evaluate the properties of such channels, while continuous methods overlook the

ion-ion interactions. Therefore, one needs a method that combines atomic details

with the ability to estimate ionic currents.

This thesis focuses on the classical treatment of ion channels. Namely, a Brow-

nian Dynamics simulation is described where the interactions of the ion with other

ions and the channel are incorporated via the multi-ion potential of the mean

force (PMF). This allows one to model the channel’s behaviour under various ex-

perimental conditions, while preserving the details of the structure and nanoscale

interactions with atomic precision. Secondly, we use the concept of a quasipar-

ticle to describe the highly-correlated ionic motion in the selectivity filter of the

KcsA channel. We derive the quasiparticle’s effective potential from the multi-ion



atomic PMF, thus connecting the quasiparticle’s properties with the nanoscale

features of the channel. We also evaluate the rates of transition between different

quasiparticles by virtue of the BD simulation. These ingredients comprehensively

describe the quasiparticle’s dynamics which hence serves as an intermediary be-

tween the crystal structure and the experimentally observed properties of a narrow

ion channel.

Lastly, an analytical method to describe the ion-solvent interaction is pro-

posed. It incorporates the ion-solvent and ion-lattice radial density functions, and

hence automatically accounts for the pore shape, the type of atoms comprising the

lattice, the type of solvent, and the ion’s location near the pore entrance. This

method paves the way to an analytical decomposition of single-ion PMFs, what

is of fundamental importance in predicting the conductive and selective proper-

ties of mutated biological ion channels. This method can also find application in

designing functionalized artificial nanopores with on-demand transport properties

for efficient water desalination.
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1. Introduction

There is nothing more practical

than a good theory.

A. Einstein

The human body consists of many organs, each of which consists of millions

of cells, which represent the smallest functional units. Their functionality is based

on the presence, amount, and exchange of physiologically important ions. These

include but are not limited to K+, Na+, Ca2+, Mg2+, Cl- and some other ions.

The transport of ions occurs via three types of transporters embedded into the

cellular membrane: (1) pumps, (2) cotransporters and (3) ion channels. While the

pumps require adenosine triphosphate (ATP) to move ions against their electro-

chemical gradients, co-transporters use the gain of moving one ionic species down

its electrochemical gradient to move another species up [2–4].

Ion channels are complex proteins providing fast and selective passive transport

of ions down their electrochemical gradient. The proper operation of ion channels

defines whether the organism stays in a healthy state or a disease evolves. Given

that the total number of all ion channels is very large [5], the list of these diseases

is quite extensive: channelopathies (malignant hyperthermia, influenza, diabetes,

central core disease, neurological disorders, autoimmune diseases), Liddle syn-

drome, epilepsy, cystic fibrosis, dominant hearing loss, arrythmias, chronic pain,

asthma etc. [6,7]. That is why 15% of all drugs in the world primarily target the

ion channel [8]. This apparent complexity of diseases results from channel’s inabil-
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ity to present its specific properties (functions), which are conductivity, selectivity,

rectification, as well as response to external stimuli (e.g. voltage changes, presence

of Ca or Mg, pH level). It is the structure of an ion channel that defines this

range of functions. Predicting and controlling these properties given the crystal

structure represents the ultimate challenge of the ongoing research [2].

Other than biology, a growing challenge is water quality. According to the

World Health Organization, “each and every day some 3,900 children die because

of dirty water or poor hygiene; diseases transmitted through water or human

excrement are the second-leading cause of death among children worldwide, after

respiratory diseases” [9]. Indeed, many researches indicate growing lack of pure

water and the consequences it imposes on human health [10]. One of the promising

solutions is the creation of highly efficient and cheap desalination structures based

on functionalised graphene layers [11]. An efficient technique to find the optimal

crystal structure appears on the front edge of the industrial requests.

The aforementioned biological and technological challenges share the same root.

Namely, they require a reliable description of ionic and water permeation at the

nanoscale. The difficulty arises from the fact that at the nanoscale many entities

interact with each other. These interactions include ion-ion, ion-water, ion-amino

acid (in ion channels) or ion-carbon (in artificial graphene nanopores), water-water

etc. All these contribute to the permeation in a complex way.

Molecular dynamics provides a very detailed tool to investigate nanopores of

all kinds. It incorporates all of the aforementioned interactions, in addition to the

applied electric field which is required to study ion transport. However, only simple

artificial and a small selection of biological structures have been described so far.

Moreover, due to the nature of the force fields (see more in Chapter 2) the compar-

ison with experimental data reveals an order-of-magnitude discrepancy [12]. These

simulations are also time and resource consuming, which makes the derivation of

multiple data points (e.g. to build I-V or I-C curves) almost impossible. Thus,

the application of theory to real experimental data is almost impossible due to the
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gap between the methods’ timescales, as shown in Fig. 1.1. This linking, however,

is the key to the biological and technological applications [13].

Figure 1.1: Computational and physiological timescales. Linking the gap between
the timescales of structure-based computations and electrophysiological measure-
ments is the ultimate goal of the ongoing research and the present thesis. Adapted
from Ref. [14].

1.1 Goals and structure of the thesis

The ultimate goal of the present work is to connect the crystal structure of an open

channel with the ionic current through it, while incorporating the essential physical

effects. Ultimately, such a theoretical model should encompass the scales of time,

space and electrolytes’ concentration [15], concisely summarize the data [16] and

be able to successfully predict ionic currents in new environments and mutated

channels [2]. In this task, the most promising method is molecular dynamics (MD).

It provides the most detailed classical description of the interactions between the

entities involved. However, even with the most powerful supercomputers, only a

few channels have been simulated to calculate ionic current. However, even these

calculations may reveal discrepancy with the experimental data [12].

Often one-dimensional MD-generated potentials of the mean force (PMFs),

which include the important interactions, are incorporated into the Nernst-Planck

equation to calculate the current through the channel. However, in doing so the,
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the ion-ion interactions are overlooked. This is crucial in narrow channels where

ions interact strongly, resulting in highly coordinated motion. Therefore, one needs

a method which can combine the level of detail provided by classical MD with the

fast and self-consistent calculation of ionic current.

In this thesis, we propose a method to connect the important information from

classical MD including the multi-ion energy landscape with the current through the

channel. Namely, we use the concept of quasiparticles to describe the correlated

ionic motion through a narrow channel. First, we embed the MD generated PMFs

into Brownian dynamics (BD) via a bespoke BD simulator. This is an important

step as it allows us to incorporate the atomic details of interactions within the

channel and previous solvers cannot do this. Ionic currents can be calculated from

the BD simulation which can be verified against experimental/MD data.

Secondly, we provide an analytical (probabilistic) description of the correlated

ionic motion in a narrow selectivity filter by means of the concept of a quasiparticle

(QP). We connect the effective potential, governing the motion of the QP, with

atomistic PMFs obtained in MD simulations. We also show that the motion of an

ion in the channel mouth is correlated with the motion of the QP. These steps are

essential to connect the detailed atomic structure to the transport properties of

the pore, and to further compare theoretical predictions with experimental ionic

currents.

Of particular importance is the ion-water (hydration) interaction of the ions

in both the bulk solution and the pore. To further understand this interaction we

provide a novel method to calculate the water structure surrounding an ion and

graphene nanopore using the ions radial distribution function (RDF). Thus one

get a fast estimation of the energy landscape which in turn can help to understand

conductive/selective properties of functionalized artificial nanopores and to design

new ones with pre-defined required properties.

In Chapter 1 we provide a general introduction and outline the problems that

are tackled in the thesis. In Chapter 2 we outline the arsenal of methods and
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discuss their strengths and weaknesses. This chapter also formulates the main

research lines of this dissertation. Chapter 3 describes a Brownian dynamics sim-

ulation system we have developed, including a justification of the choice of its

ingredients. In Chapter 4 the correlated motion of ions in narrow nanopores is

described through the concept of a quasiparticle. In chapter 5 we discuss a new

method to decompose a PMF in terms of radial distribution functions (RDFs).

Finally, chapter 6 summarises the contributions and suggests a number of topics

for future works.

1.2 Properties of channels

1.2.1 Conduction

The primary property of ion channels and artificial nanopores is their ability to

conduct ions. This process is controlled by the laws of electrodiffusion – the driving

force stems from the chemical and electric gradients. In bulks and wide channels,

as well as channel cavities, ions can overtake each other in physical space and

thus motion is not single-file [17, 18]. In contrast, the selectivity filters (SFs) of

very narrow channels such as KcsA [17, 19, 20] prohibit large spatial deviation

of ions from the channel’s axis and therefore the ionic motion is essentially one-

dimensional. While transiting from the channel’s cavity into the SF, individual

ions do not face a significant energy barrier [21].

Single-file conduction The situation changes drastically when the motion of

a charged particle is restricted – ions move in single file [2, 22]. This is evident in

narrow ion channels [23] and artificial nanopores [24]. One has to consider carefully

ion-ion, ion-water, ion-ligand and ion-electrostatic fields to correctly describe the

behaviour of the system. For instance, in the KcsA channel due to the strong

inter-ion interactions, ions are found to permeate in a highly-correlated manner

[19,23] called “knock-on”. This type of conduction resembles a Newton cradle: an
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incoming ion is required to “knock” the neighbouring ion (and it in turn knocks its

neighbouring ion) so that the outermost ion exits the channel [25,26]. This type of

conduction requires an extremely well-tuned energy balance, where the repulsion

between ions and the dehydration barrier is counterbalanced by the attraction to

ligands (carbonyl groups) forming the binding site [27].

Classical barrier-less permeation, implying that an ion does not face an en-

ergy barrier while traversing through the narrow channel, is reminiscent of the

inherently quantum phenomenon of superconductivity where current flows with-

out resistance. Both phenomena are of a collective nature and correlations play

an essential role [28].

Saturation of currents It was found experimentally that the current-concentration

curve at a fixed voltage reveals a sublinear, not linear, dependence on concentra-

tion: I/V = σ = σ0/(1 + Cs/C). Here σ0 is the conductance at large concen-

trations, Cs is the saturation concentration at half-maximum of current and C is

the concentration of the given solution. This phenomenon, known in relation to

enzymes as Michaelis-Menten saturation [29], occurs because the ion channel can

conduct only one ion at a time [30].

1.2.2 Selectivity

Being closely related to conduction, the selectivity of ion channels represents their

ability to distinguish between different permeating ionic species. It is characterized

as a ratio between current magnitudes of different ionic species [2,31]. The simplest

rejection of a solute molecule occurs when its smallest dimension is larger than the

diameter of the pore [24]. When the molecule or ion size is smaller than or equal

to the pore diameter, selectivity results from two opposite effects: ionic attraction

to the channel’s charged atoms (e.g. negative amino acids) and the energy to strip

off the water molecules [32, 33]. The interplay and quantitative differences in the

interaction energies [34] lead to different types of selectivity: by sign of charge,
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valence, and ionic size.

By sign (e.g. K+ vs. Cl-). In a solution, ions start interacting at the Debye

length. Beyond comparable distances, there is no selectivity by charge. If the

spatial separation is smaller than the Debye length, ionic repulsion or attraction

comes into play. Thus, ion channels and nanopores start distinguishing ions by

their charge e.g. between K+ and Cl- [35, 36].

By valence (e.g. Ca2+ vs. Na+). A second type of selectivity implies dis-

tinguishing ions by their valence. This kind of selectivity emerges in Ca2+ chan-

nels [37] between Ca2+ and Na+ ions, the ions that possess very close radii –

0.99Å and 0.95Å, respectively, although different charges. The domination of

Ca2+ translocations over Na+ in calcium channels can be explained in electrostatic

terms, as a Ca2+ ion residing at the binding site can be replaced only by another

Ca2+ ion and thus blocks the Na+ pathway; repulsion by a Na+ ion is insufficient

to overcome the attraction imposed by the charged residue of the site [37].

On the other hand, the domination of Na+ over Ca2+ in sodium channels sug-

gests that the Ca2+ ions experience a barrier due to incomplete dehydration in the

selectivity filter of these channels, in contrast to Na+ ions [38]. The dimensions of

the pore suggest that Na+ ions are able to bypass Ca2+ ions inside the pore, which

leads only to the attenuation, instead of complete blocking, of Na+ currents [38].

By size (e.g. K+ vs. Na+) Thermodynamic selectivity between alike-charged

ions originates from the difference between their radii. Smaller ions have stronger

electrostatic field which leads to tighter binding and orientation of water molecules.

The denser cloud of the water molecules suggests a higher dehydration barrier and

stronger ion-ligand interaction in the channel, thus contributing to the change of

the ion’s free-energy ∆G(X) = ∆Gpore(X) − ∆Gbulk(X) while moving from the

bulk to the channel [27,39–43]. It is the difference between the free-energy changes
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of two ions which defines selectivity. Numerically, this reads as

∆∆G(Na+ → K+) = [Gpore(Na
+)−Gbulk(Na

+)]− [Gpore(K
+)−Gbulk(K

+)]

The larger the difference ∆∆G, the more selective the channel.

The value ∆Gbulk is defined by the ion-water interactions (hydration) in free

bulk, while ∆Gpore defines that in the channel. The latter includes the interac-

tions with the remaining coordinating waters, the residue of the amino acids and

ligand–ligand interactions [44]. These microscopic interactions form the basis of

almost barrier-less permeation of K+ ions in the KcsA potassium channel [19, 27]

whereas it rejects e.g. Na+ ions [27].

The Na+/K+ selectivity is usually measured under asymmetrical biionic condi-

tions [45]. In this experiment one of the bulks is filled by, say, KCl while the other

one contains NaCl. By measuring the reversal potentials – the transmembrane

voltage at which the electric current vanishes, – one extracts information about

the K+/Na+ selectivity [45].

1.2.3 Anomalous mole-fraction effect

The anomalous mole-fraction effect (AMFE) suggests the non-monotonic depen-

dence of the current through, for instance, a Ca2+ channel on increasing the pro-

portion of Ca2+ in washing solutions, when both Na+ and Ca2+ ions are present in

both solutions. This non-monotonic dependence is revealed as a dip in current, see

Fig. 1.2. The explanation reads as follows [47]. At low concentration of Ca2+, Na+

ions permeate through the channel. Increasing the concentration of Ca2+ ions to

the µM range [48] increases the probability of blockage of the pore by Ca2+ ions,

as only another Ca2+ ion, not a Na+, can push through the resident one. With in-

creasing the Ca2+ concentration, the probability of pushing increases which results

eventually in a increase of current [17,37] which by now is a C2+ current.
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Figure 1.2: Anomalous mole-fraction effect implies non-monotonous change of
the current through the channel with increasing mole fraction of one of the ionic
species in solutions across the membrane. Reprinted from Ref. [46] with permission
from Elsevier.

1.2.4 Activation / inactivation and gating

In addition to their ability to selectively conduct ions, ion channels are capable

of sensing external stimuli affecting the closed/open state of the pore. This is

referred to as gating, although gating and activation / inactivation are often used

interchangeably. By inactivation we denote the ability of the channel to open, while

the gating can be represented by the stochastic telegraph noise [49] of openings

and closings occurring faster than 1 or 2 µs [50]. This random switching may occur

between non-conductive and multiple conductive states [51]. External stimuli can

include voltage [52], temperature, pressure, osmotic pressure [53], stretching of

the lipid bilayer [54], and the presence of other ions or molecules [2].

A voltage-gated channel possesses a voltage sensor domain, containing a so-

called S4 helix which consists of charged arginines [52]. When external voltage

is applied, this helix slides along the electric field, translocating the charge [6],

and pulls the S4-S5 linker. This in turn bends the S6 segment and opens the

pore [55, 56]. This sliding-helix mechanism is becoming the common view on
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voltage sensing [52].

1.3 Example: KcsA biological ion channel

KcsA (potassium crystallographically-sited activation) is arguably the most stud-

ied channel. Since the discovery of its crystal structure in 1998 [19], this channel

has become the target and reference specimen on which theoretical models are

calibrated. The reason for such a high interest stems from one of its structural

features — the presence of the TTVGYG amino acid sequence (Threonine, Valine,

Glycine, Tyrosine) in its selectivity filter. This sequence is said to be conserved be-

cause it is present in most potassium channels, including eurkaryotic channels [2].

Hence, one can extrapolate the mechanisms of permeation and selectivity in this

channel to other representatives of the Kv (potassium voltage-gated) superfamily.

The structure of the pore reminds one of an inverted teepee due to its intracel-

lular gate at the bottom [19] (Fig. 1.4). The narrowest part (SF) is highlighted by

point 2 and has an average diameter of ∼ 2.8Å [59]. It is here that selectivity be-

tween different species occurs because this pore can accommodate one dehydrated

K+ ion but not Na+. The narrowness of the SF prohibits the ions from passing

each other during permeation, which results in the highly-correlated single-file con-

duction through this channel [60–62]. Meanwhile the intracellular cavity (point 4)

has an average diameter of ∼ 10Å.

The SF is 12Å long and consists of 5 sites, formed by the amino acids carbonyl

C=O oxygen atoms, where essentially dehydrated ions can bind [63]. Each binding

site is formed by 8 carbonyl oxygen atoms [63]. The proximity of ions suggests

that their strong Coulomb repulsion leads to rapid conduction [19,59]. Classically,

it is assumed [19, 26] that K+ ions are separated by at least one water molecule.

This chain has been observed in MD simulations [31, 60], but also in streaming

potential experiments where approximately one water molecule accompanies each

permeation through the SF [26]. The ions undergo a soft knock-on mechanism sug-

gesting the pore occupancy changes as 2→ 3→ 2 [19,25,64,65]. However, recently
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Figure 1.3: Gating and activation of ion channels. At a negative voltage, ion
channel is shut and no current flows through it. Once the voltage step is applied,
the ion channel activates what is illustrated by step-like noisy traces. These traces,
taken from various channels, sum up to the whole-cell current, which is propor-
tional to the ensemble average shown in the bottom picture. The top depicts the
voltage pulse protocol stepping from the holding potential of -90 mV to the test
potential +10 mV. Bars indicate the time and current scales. Adapted from [57].
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(a) (b)

Figure 1.4: (a) Overall structure of the biological KcsA ion channel. The channel
consists of four identical subunits each of which includes alpha-helices (shown
as spirals) forming the pore region. The black ellipse encircles the pore domain
embedded intro the cytoplasmic membrane. The bushy structure on the top is
washed by the extracellular solution. (b) The pore domain and the selectivity
filter of the KcsA ion channel. The number indicate the elements of the KcsA
channel: 1 – aminoacid chain, 2 – selectivity filter, 3 – permeable ion, 4 – central
cavity, 5 – gate, 6 – alpha helices of the backbone structure (only two of four alpha
helices are shown). (Images generated in VMD [58].)

evidence of hard direct knock-on has been published, based on two-dimensional

infrared spectroscopy, indicating that KcsA may conduct ions without interleav-

ing waters [66, 67] as 3 → 4 → 3. Although this finding seemingly disagrees with

the streaming potential experiments [26], the 2D infrared spectra [68] have been

shown to be compatible with the direct knock-on mechanism [67]. Moreover, the

two permeation mechanisms possibly coexist [21].

Experimental measurements of current are abundant [69–74]. Typically this

channel reveals ∼ 7pA current saturation at concentration of ∼ 100mM and volt-

age ∼ 100mV, further saturating with the increase of the concentrations and volt-

age [75]. It favours K over Na at ratios of 1000:1 [39]. The KcsA channel is

found to be blocked by intracellular Na+ [73], or by the presence of Ba2+ in either

bulk [76]. A number of MD simulations are able to shed light onto the permeation

mechanism [77–81]. But there is disagreement here, and even the best estimates

of experimental current are almost two orders of magnitude too small [12].
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Figure 1.5: Functionalised artificial graphene nanopore. Carbon atoms are shown
by black balls, ions are red and blue spheres, water molecules are represented by
red and white triangular lines. The golden spheres represent the embedded atoms
of another material to illustrate functionalization.

1.4 Applications of nanochannel models

Ion channels, drugs, DNA sequencing As mentioned above, a successful

quantitative theoretical method to describe the characteristics of ion channel func-

tion in response to experimental settings may lead to a number of goals. One of

the first applications lies in the field of medicine, where the design of new efficient

drugs is of primary importance [7]. This includes creation of anaesthetics, antibac-

terial poisons and antidotes to venoms, efficient inhibitors, antibiotics. Secondly,

the now growing field of DNA sequencing suggests a fast, ultimately real-time,

reading of the human genome in the near future [82]. The physical interactions of

the DNA and the sequencer are the same as these an ion faces in an ion channel,

so the machinery developed in the field of ion channels equally applies to genome

studies on the commercial basis [82].

Functionalised artificial nanopores and nanochannels In attempting to

replicate how Nature works, growing interest is now being paid to the develop-

ment of artificial nanopores mimicking the structure of biological ion channels [83].
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This idea implies the use of simple materials, e.g. graphene [84, 85] or MoS2 [86].

By adding functional groups on the pore rim (Fig. 1.5), selecting diameters, and

selecting the substrate material, the researchers have created simplified nanopores

able of conducting and selecting ions [11, 35, 36, 86, 87]. Membranes with embed-

ded selective nanochannels may find application to water desalination [11], fuel

cells [88], supercapacitors [89] and osmotic water harvesting [90].

1.5 Summary

The description, successful computation and eventually prediction of the transport

properties of ion channels is the ultimate goal of our research. In this Chapter,

we have discussed transport properties (conduction, selectivity, AMFE etc), and

described the structure of one of the most frequently-studied channels, KcsA.

We have also outlined some applications of the theory to medicine and technol-

ogy. In the next Chapter, we provide quantitative methods estimating the above-

mentioned properties, discuss their strengths and weaknesses and formulate the

aim of the work done in the following chapters.
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2. Research methods to study ion

channels

Theories of liquids do not have a

small parameter.

L. D. Landau

Recent research has provided a rich arsenal of methods to investigate the trans-

port properties of ion channels [17, 20, 91]. These methods can be divided into

experimental and theoretical approaches. It is the interplay between the two that

is believed to drive the discoveries in the field.

In this Chapter we discuss most the most influential experimental and theoret-

ical methods. In particular we shall analyse the strengths and weaknesses of each

theoretical method. This will serve as justification for the goals of the thesis.

2.1 Experimental techniques

There are two main experimental approaches to understanding ion channels. The

first is probing the structure through crystallography from which transport prop-

erties can be inferred or learned through simulation/theory. The second is direct

measurements of ionic current or water flow which are traditionally effected by the

patch clamp technique.
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2.1.1 Structure studies: X-ray crystallography and cryo-

EM

In order to gain information about the spatial and chemical composition of the

biological structure, X-ray crystallography was historically the first method [92].

It involves preparing a sample with the protein dissolved in a suitable solvent,

rapidly freezing it to 4–100◦K and thus getting a solid crystal structure. Next,

X-rays in the frequency band 1016− 1018Hz are scattered from the electron clouds

of the comprising molecules, giving rise to an exposure image. This procedure

is repeated multiple times to generate enough data. These images are further

analysed and the electron density maps of the compound are reconstructed. Using

sophisticated techniques [92], researchers are able to further identify and label the

chemical groups of the given structure. This scrupulous process results in a 3D

structure of the molecule where all constituents and distances are known and can

be measured up to some level of precision. Roderick MacKinnon and Peter Agre

were awarded the Nobel prize in 2003 for the development of this technique.

Recently another closely related technique has been developed. Cryo-electron

microscopy (cryo-EM) [93] suggests freezing the sample and exposing it to a beam

of electrons, resulting in scattering patterns. Analogously, the scattering patterns

are analysed, and from reverse engineering a 3D structure of the protein can be

produced. The reconstructed structures are routinely published at the website

RCSB Protein Data Bank [94].

One of the disadvantages of these techniques is that the structure is measured

at non-physiological low temperatures [95]. As a result the structure is of a rigid

pore that does not include the room temperature fluctuations [34]. Moreover,

ions transiting the pore can result in structural changes [34] making flexibility and

fluctuations essential for rapid conduction. Therefore, the structural information

should be treated with care [15].
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Figure 2.1: Stages of the patch clamp experimenting. From the cell-attached
configuration, one can switch either to the whole-cell configuration, or initiate the
single-channel recordings (inside-out or outside-out). Taken from [100,101].

2.1.2 Patch clamp

In the patch-clamp technique [96–98], the researcher establishes an electric contact

with the contents of a biological cell, which in turn allows measurement of the

current or voltage across the cellular membrane. Due to its ability to study the

involvement of ion channels in fundamental cellular processes, this method became

the gold standard in biophysics decades ago [2, 99].

The overall workflow is shown in Fig. 2.1. Typically, one first prepares the

bathing and intrapipette solutions checking the equality of their pH levels. Then

the pipette is placed in contact with the surface of the cell. By applying nega-

tive pressure one establishes the high-resistance (10–100 Giga-Ohm) contact with

the surface, which literally means no current flow through the gap between the

glass pipette and the membrane surface. At this stage, several configurations are

possible:

1. Cell-attached patch. In this configuration, one can measure the currents
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flowing through one or several channels. The advantage here, is that there is

minimal disturbance to the cell. The apparent disadvantage is the inability

to alter the contents of the cell during the experiment, which may be of

interest if one is investigating solely the membrane properties.

2. Whole-cell. With further short negative pressure pulse (suction) the mem-

brane is ruptured such that the pipette becomes attached to the cell. During

several minutes after that the cytosol is substituted by the intrapipette so-

lution [96,102]. The latter point thus allows to study the conductive proper-

ties of the cellular membrane as the chemical composition across it is known

explicitly and the transmembrane potential is set. However, in this configu-

ration cellular organelles may be washed out through the pipette tip [96,102]

what makes this configuration unsuitable for studies where the natural cel-

lular processes are of interest.

3. Perforated patch clamp. If the pipette contains the appropriate antibi-

otic, the latter will make small holes in the membrane (Perforated patch).

Thus, the penetration of the pipette solution into the cell is impeded. The

washout of intracellular organelles becomes prevented as well. Thus, one can

measure electric properties of a cell with little intervention in its function-

ing. However, there is little control over the chemical composition of the cell,

therefore this configuration is rarely used in ion channel experiments.

4. Inside-out and outside-out patch clamp. If one tears off a patch of the

membrane into the pipette, this will be an inside-out configuration (what

was inside is now outside). If, additionally, the ends of the patch anneal,

this is an outside-out configuration (what was outside stays outside). This

allows one to extract a wealth of information about a single ion channel.

Once a particular configuration is established, one begins experiments accord-

ing to a specified protocol. For instance, applying a voltage-stepping protocol

one measures a set of currents through the channel at different voltages. These

31



recordings provide information about the selective and conductive properties of

the membrane, consisting of the channels of interest.

2.2 Theoretical techniques to study nanochan-

nels

Theoretical studies of nanoscale systems focus on different spatial and temporal

scales (Fig. 2.2) of the processes of interest [103]. The main challenge, and yet

source of intrigue is the fact that everything interacts with everything [15]: ions

interact with other ions including ions of different species, ligands, protein and

water molecules, and an applied electric field. The complex nature of these inter-

actions ensures that understanding the consequences remains a challenge in the

studies of conduction, selectivity, blocking, channel mutations, and the effects of

pore fluctuations. Hence, specific methods have been developed to describe these

phenomena at each particular scale, but unfortunately, there exists no single de-

scriptive method capable of covering all the spatiotemporal scales and microscopic

nuances [104]. In this section we consider existing theoretical approaches in detail

paying particular attention to their strengths and weaknesses.

The overall battery of existing methods is depicted in Fig. 2.2, where the spatio-

temporal constraints of each particular method are shown. The overlapping areas

indicate the possibility to verify/calibrate one method on the prediction from an-

other, or to create a hybrid approach combining the level of details of one method

with the speed of another [13]. A number of reviews, discussing the strengths and

weaknesses of the existing methods and their biophysical applications, have been

published [17,20,105–107].

The most fundamental description suggests using QM, where the wave func-

tion Ψ depends on the coordinates of all nuclei and electrons of all species present,

while the evolution of the system is governed by the time-dependent Schroedinger

equation [108, p.305]. However, this appears extremely computationally expen-
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Figure 2.2: Spatial and time scales of the existing theoretical methods, as well as
cross-overs between them. Depending on the description approach, the methods
are divided into quantum mechanical (QM), molecular mechanical (MM) and con-
tinuous mechanics (CM). Abbreviations: coupled cluster (CC), density functional
theory (DFT), quantum-mechanical molecular dynamics (QM MD, also known as
QM/MM), all-atom (AA), implicit-solvent (IS), coarse-grained (CG), Brownian
dynamics (BD). Taken with permission from [103].

sive. The need to include quantum effects in a simulation has led to a QM/MM

approach, in which ionic interactions are computed using QM methods while the

ionic motion is given by the Newton’s second law [108]. The complexity of the

QM-related methods makes them unusable for the ion channel studies particularly

due to the lack of comparison with experimentally measured ionic currents. How-

ever, ab initio or DFT methods provide quantitative estimations required in the

force fields in the coarser methods such as molecular dynamics [109].

2.2.1 Molecular dynamics

The elimination of the electronic degrees of freedom and consequent parameter-

ization of the atomic interactions leads to a fully mechanistic description of the

system by means of molecular dynamics (MD) [110, 111]. At this stage, typically

one distinguishes between ions and water molecules. The Hamiltonian of such a
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system is [111]
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∑
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(2.1)

where the kinetic energy is accounted for by the first term, and the remaining terms

represent the bonding (second term), rotational (third term), dihedral (fourth),

short-range soft Lennard-Jones (fifth) and electrostatic Coulomb (last term) inter-

actions. This Hamiltonian [110] yields the equations for the progressive motion of

each molecule:

rm =
∂H

∂pm

pm = − ∂H
∂rm

(2.2)

Typically simulations are set up as a rectangular box with periodic boundary

conditions. Thus, if a particle exits the domain through one of the edges, it

immediately re-enters from the opposite side. As a result periodic boundaries limit

the simulation to symmetrical solutions on both sides of the membrane [16, 95],

unless specific arrangements are made [112]. The minimal image convention in Z

dimension is used.

The transition from a purely quantum description to a molecular mechanics

suggests two principal reductions [111]. The first one – the Born–Oppenheimer

approximation – states the electrons move much faster than the nuclei, and thus

they react instantaneously to the motion of their nuclei. Thus, the electrons may

be considered independent. The second reduction treats the nuclei, whose mass

is three orders of magnitude larger than that of the electrons, as point particles

that obey the Newtonian dynamics. In classical molecular dynamics, the presence

of the electrons is approximated as single potential energy surface that typically

represents the ground state.

34



The conceptual simplicity and level of details make the MD a de facto standard

in the nanoscale research. This method does not require the knowledge of random

or frictional forces as in Brownian dynamics, and does not make any assumptions

about the properties of the solvent, dielectric permittivities or boundaries [106].

In principle, MD includes all interactions (water–ions, water–protein, water–lipid,

lipid–protein) and thus allows the researcher to trace the effect of the flexible pro-

tein inside the lipid bilayer on the dynamics of the ion channel [106]. Importantly,

one can quantify the spatial variation of important parameters such as diffusivity,

dielectric constant, potential of the mean force. These paramaters can then be em-

bedded into a coarse-grained or BD simulation to yield experimentally verifiable

selective and conductive properties.

Due to the presence of long-range pairwise interactions, the time-frame of an

MD simulation grows as N2 where N stand for the number of separate atoms in

the system [110]. It relies heavily on parallel processing, super-computational re-

sources, as well as other acceleration methods. However, the explicit description of

hydrogen motion restricts the largest time step to 2.5fs [113], imposing limitations

on the simulated time, space, and amount and type of ions present. These limi-

tations cause several difficulties. First, with a few recent exceptions [12, 67], the

simulations do not run for a sufficiently long time to produce statistically meaning-

ful currents through the channel which can further be compared with experimental

data [78]. For instance, in the KcsA channel under 100mV voltage and 100mM

symmetrical concentrations one would expect a 7pA current that implies on av-

erage 1 permeation per 23 ns [75]. The latter requires high-end computational

resources to gain enough statistics.

As computational power rapidly improves annually, there is no doubt that these

issues will eventually be overcome [114]. A more profound issue is determining

the force fields describing the interactions in the system. On the fundamental

level these interactions are given by the laws of quantum mechanics (see previous

section). However, in MD the interactions are usually assumed to be pairwise.
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Furthermore, these interactions are quantified by an analytical function with a

relatively small set of atom-specific parameters that are calibrated using empirical

data under very specific conditions: temperature, pressure, specific molecules (e.g.

proteins or lipids) [115], particular composition of solutions, etc. [110]. Thus, the

application of these parameters in drastically different environments or conditions

may lead to inaccurate results [54, 116]. For instance, this results in different

solvation energies which will greatly affect the selectivity of the pore [16].

The force fields often lack polarization effects, thus affecting the energetics of

ion-water and ion-protein interactions [117]. The polarization of the first hydra-

tion shell occurs due to the high charge density of multivalent cations (e.g. Mg2+

and Mg2+) [54]. Non-polarizable models appear unsuitable for the treatment of

covalent bonds [115], proton transport and the protonation of ionizable amino

acids [16] where the dynamical redistribution of electronic charge play the key

role. Polarizable models – AMBER, AMOEBA, Drude, CHARMM, CHEQ – are

being developed to cover various types of biomolecule [118].

While searching for current-voltage curves, long-range electrostatics has to be

considered carefully. Typically one has to introduce some sort of approximation

to deal with the 1/r dependence of the interactions [16]. The most common choice

is the Particle Mesh Ewald algorithm [119] in which point charges are substituted

by Gaussian distributions with std σ = 0.25Å
−1

.

Thus, the MD is the most detailed method, but relatively inefficient as of

now. Often, non-physiologically high temperatures, pressures, concentrations and

voltages are applied to get sufficient statistics of currents. This abandons the pa-

rameter ranges within which living cells function. Therefore, one would hugely

benefit from a method combining the MD level of details with sufficient computa-

tional speed to estimate currents in realistic conditions. In Chapter 3 we develop

such a hybrid method by plugging the MD data into a BD simulation.
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Potential of the mean force (PMF)

One of the central quantities in computational studies of nanoscale systems is the

potential of the mean force (PMF) [120–122]. It reflects all of the ion’s interactions

with its environment, involving other ions, protein, and solvent. The PMF is

equivalent to the Helmholtz free energy in the NVT ensemble, i.e. the reversible

thermodynamic work [91], of bringing the considered set of molecules from infinity

into the required configuration [123, p.75]. An N -particle PMF WN(rα1 , r
α
2 , . . . )

is [31, 91,122,124]

e−WN (rα1 ,...,r
α
N )/kBT = C

∫
dX e−Uall(r

α
1 ,...,r

α
N ,X)/kBT . (2.3)

Here C is a constant, and Uall(r
α
1 , . . . , r

α
N ,X) represents the potential energy due

to interactions between all atoms, i.e. permeable ions located at {rα1 , . . . , rαN} and

other atoms at X = {rβ1 , r
β
2 , . . . }. In light of Chapter 5, it is worth noting that

the two-point PMF is connected to the radial density function (RDF) [123, p.75].

The PMF in the selectivity filter of the biological KcsA channel is illustrated in

the right panel of Fig. 3.6.

Due to its detailed nature, the PMF includes rigorously the effects of dehydra-

tion at the entrance and inside the channel, the induced charges on the pore walls,

the ion’s interactions with other ions in the pore, and the influence of the flexible

pore structure. However, a PMF is not an average of the microscopic potential

and is non-additive [91, 122, 123]. Strictly speaking, usage of a PMF is restricted

to the specific ionic concentrations and type of species in bulks input in its calcu-

lation [25]. However, the PMF reveals weak sensitivity to these parameters until

concentrations become too high [122]. One can also rigorously decompose the local

effects of the protein and the external electrostatic field [122]. These points allow

one to use the same PMF under a wider range of parameters, see Chapter.3.
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In equilibrium, the PMF can be directly obtained by means of [122]

W −Woffset = −kBT lnP,

where the probability density P is measured by sampling the system. In practice,

the existence of energy barriers greater than 1kBT will result in some areas being

insufficiently sampled, which raises questions about the PMF convergence [125].

To avoid this problem, enhanced methods to compute a PMF exist. These in-

clude free energy perturbation [126], umbrella sampling with weighted histogram

analysis [127], steered molecular dynamics simulations [128].

2.2.2 Brownian dynamics (BD)

The elimination of the water as molecules leads to Brownian dynamics (BD) [129–

133] which can formally be obtained from Eq. (2.1). This simplifies the description

further as all water degrees of freedom are integrated out from Eq. (2.2). How-

ever, one then has to include an explicit noise term to represent the ion-water

collisions [134]

mαdvαk
dt

= −γαmαvαk + FN(rαk) +
√

2mαγαkBTξ(t). (2.4)

Here mα is the ion’s mass, γα is its friction coefficient which is coupled to its

diffusivity Dα via the Einstein relation Dα = kBT/m
αγα, vαk is the ion’s velocity,

FN(rαk) represents the force acting on an ion located at rαk when N ions are present

in the channel, kB is Boltzmann’s constant, T represents the absolute temperature,

and ξ is three-dimensional white noise of unit intensity (〈ξ〉 = 0, 〈ξ(t + τ)ξ(t)〉 =

δ(τ)). This is known as the Langevin equation and it can be solved with an

appropriate numerical method [110, 111, 134]. The elimination of the solvent’s

degrees of freedom allows the use of much larger time steps, for instance as large

as 2ps in contrast to 2fs (three orders of magnitude) in MD. This makes BD a

computationally fast method to predict and analyse ionic currents under the effect
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of voltage, or concentration gradients in wild or mutated channels [125].

The Langevin equation assumes times larger than the relaxation time τ = 1/γ

of the medium [135] at which velocity correlations vanish. Strictly speaking, the

Markovian assumption – requiring the Brownian particles (ions in our case) to

be much heavier than the solvent molecules – may not be applicable to ions in

water [136,137] and instead suggests invoking the concept of the memory function

in a generalized Langevin equation [16]. In the derivation of Eq. (2.4) one assumes

constant electric field [138]. The meaning of diffusion should also be clarified when

fluctuations of the channel elements are allowed in the BD simulations [117] and

permeation over a fluctuating barrier is possible [139].

The 3D simulation domain typically comprises of the channel itself and, at-

tached on either side, two reservoirs containing ions. The channel is typically

considered rigid although in reality the atoms forming the channel (e.g. the car-

bonyl groups) demonstrate femtosecond fluctuations and thus may influence the

ionic motion [16, 34, 81]. Geometric boundaries of the simulation domain can be

impermeable (reflective with a reflective potential [78]), periodic (analogous to

that in MD) or stochastic [140]. From the physics perspective, one can use the

Grand canonical Monte-Carlo (GCMC) boundary [141] allowing the consideration

of arbitrary concentrations at a relatively low computational cost. We discuss

the GCMC algorithm in more detail in Chapter 3. Finally, the boundary proper-

ties can be combined to have for example impermeable walls in XY-direction and

periodic in Z direction.

An individual ion is subject to three forces resulting in the total force F [16].

These arise due to the other ions, charges on the protein walls and the presence of

the transmembrane potential. The ion-ion interactions are usually approximated

via the Coulomb or screened Coulomb law [91,130]. To prevent the overlapping of

oppositely-charged ions, e.g. K+ and Cl-, one introduces a short-range soft repulsive

potential [110,129,142,143]. The ion-channel contribution implies interaction with

the charges fixed on the pore’s surface, and the induced surface charges arising
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at the interface separating the pore from the protein. It can either be taken

under some sort of an analytical approximation e.g. [144], or taken from MD [113,

145]. Finally, one has to include the electric potential profile due to the external

electrostatic field. That is done by solving the Poisson equation in the reservoir

and channel domains [17]. This equation assumes a constant electrostatic field

without accounting for the charge density fluctuations [146, 147], inherent to the

mean-field methods (see next section), and requires knowledge of the dielectric

permittivity [125].

The presence of solvent molecules mediates the hydrodynamic interactions be-

tween ions [148]. Therefore, the structure-less solvent in BD simulations lacks

that property [149]. Appropriate parametrization of the ion-ion interactions is

possible, but it requires careful consideration when both ions are confined in the

pore interleaved by aligned water molecules [150]. The latter is of primary impor-

tance in the kinetic and dynamic properties [151]. Moreover, the hydration shells

surrounding an ion in the narrow pore during permeation undergo structural rear-

rangements, loosing water molecules and substituting them by the channel’s polar

groups [77,86]. This immediately affects the profiles of the diffusivity in the pore,

thus making them spatially varying [91].

As stated above, BD simulations allow for the fast calculation of currents but

are based on a number of assumptions regarding the interactions in the channel:

diffusivity profile, and the interactions between and with other ions and with the

channel when inside it. These can be avoided by incorporating MD-generated

PMFs where the aforementioned interactions are consistently included. Although

a number of BD-simulators exist [113, 132, 133, 152], they do not allow to embed

the PMF from MD. Therefore, we develop our system in Chapter 3.

2.2.3 Poisson-Nernst-Planck (PNP) theory

The next level of approximation is to describe the probability to find an ion at

a particular point in space. Multiplying this probability by the ion’s charge, one
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starts dealing with the dynamics of continuous charge density. This description

comprises two ingredients: the Nernst-Planck transport equation describing the

spatio-temporal evolution of the density ρ,

Jm = −Dm(r)
[
∇cm +

zmecm(r)

kBT
∇φ
]

(2.5)

∇Jm = 0 (2.6)

Thus, the Nernst-Planck (NP) equation represents a combination of the Fick’s and

Ohm’s laws. and the Poisson equation connecting the potential φ of the electric

field E = −∇φ created by the total local charge density:

∇
[
ε(r)∇φ(r)

]
= −e

[
ρfixed +

N∑
m

zmcm(r)

]
(2.7)

In the above equations, Jm is the ionic current, Dm is diffusivity, cm is concen-

tration, zm is ion’s valence, T is temperature, φ is the electrostatic potential, and

ρfixed is the density of fixed charges. The NP and Poisson equations are supposed

to be solved simultaneously.

In the PNP theory ions are treated not as discrete entities but as continuous

charge densities that represent the space-time average of the microscopic motion

of the ions. It is perhaps the simplest nonequilibrium theory accounting for the

channel’s form, the spatial distribution of charged residues inside the channel pro-

tein, the external electrostatic field and the asymmetrical concentrations of ions

on both sides of the membrane [16]. An extensive list of the literature on this

model of charge transport theory is provided in Ref. [107].

The rigorous derivation of the PNP theory starts from the Langevin equa-

tion(2.4) [153]. One then arrives at the hierarchy of PNP-like equations with condi-

tional and unconditional number densities [154] closely related to the Bogolyubov-

Born-Green-Kirkwood-Yvon (BBGKY) chain [155]. This hierarchy remains infi-

nite until a closing relation is applied to decouple it [153]. Replacing a two-particle

correlation function by a product of two single-particle functions, one arrives at

41



the mean-field approximation [156]. The consequences of this step require deeper

discussion.

First, the mean-field nature of the PNP method suggests an absence of ion-

ion correlations. This can only be valid beyond the correlation length of the

medium [157, 158]. By omitting these correlations one finds that the concerted

ionic motion that is present [16, 17, 54, 159, 160] in multi-ion ion channels is out

of scope. In addition, saturation of the current [161, 162] and Ionic Coulomb

Blockade [163], are not describable. The lack of structure of the solvent (water) also

imposes restrictions on the description of single-file permeation where ions with

water molecules permeate collectively in highly-correlated manner [26,117,150].

Secondly, PNP lacks the effect on the ion from the dielectric boundary on

the pore, and thus the dielectric self-energy (also known as the reaction field) is

largely underestimated [164]. For instance, saturation of conductance cannot be

described if the self-energy is not involved [16]. The concept of a local dielectric

constant describing the electric response of a fluctuating macromolecule faces prin-

cipal difficulties which limits the theory [91]. Also, PNP is weakly sensitive to the

dielectric constants [159] which enter as quantities to experiment or MD simula-

tions [59, 159]. They reveal larger variations from their bulk values in some cases

ranging within an order of magnitude [159] for instance between K+ and Cl- to

suppress the anion current [59]. This suppression is also possible by unrealistically

reducing the diffusivity [162] to fit the data. It has been shown that the PNP

theory agrees well with BD simulation results only when the pore radius exceeds

two Debye lengths [106,159,162,165]

It is also worth mentioning that linear continuum electrostatics in the weak-

field limit i.e. when the polarization and electric fields are parallel, does not hold in

hydration layers [158]. The averaged nature of the theory also does not allow the

fluctuations of the electric field [146, 147] and current [161] that are observed ex-

perimentally. The presence of atomic fluctuations also poses the question of where

the boundary between the charge and the protein/fluid water is located [158].
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Recently, the basic PNP model has been generalised to incorporate a number of

crucial interactions under the name EnVarA – Energy Variational Analysis [166],

while a number of other papers have emerged to fix particular issues in PNP the-

ory. These include steric effects [167], Fermi PNP [168,169], conditional PNP [153],

PNP-DFT [170], PMF-PNP [131], Soft-wall PNP (SIP-PNP) [171], or a combina-

tion of the NP equation with Local equilibrium Monte Carlo simulations [132].

Poisson-Boltzmann theory

In equilibrium when the local fluxes (2.5) vanish everywhere [172], one expects

that the densities of charged ionic species satisfy

Cm = C∞m e
−βφ(r) (2.8)

Plugging it into the Poisson equation (2.7), one obtains the Poisson-Boltzmann

equation

∇2φ =
N∑
j=1

NACje
2
0z

2
j

εε0kBT
e−βzmqmφ (2.9)

This is a nonlinear equation and it coincides with the PNP under stationary condi-

tions [164]. Its solution yields the spatial distribution of the electric potential and

consequently, the distribution of each ionic species. Attempts to solve equation

utilize Delphi [173] or APBS [174] solvers.

Stemming from the mean-field PNP theory, the basic PB approach inherits its

strengths and weaknesses. These include the lack of the dielectric self-energy [16]

especially in a many-body system where one has to compute the effect of the reac-

tion field, caused by one ion, on other ions [16]. Correlations and non-electrostatic

interactions (e.g. ionic size) are also missed [175]. Despite these limitations, the PB

equation is invoked in the calculations of transmembrane potential [141], protona-

tion states pKa protein residues, and in the estimations of protein-ligand binding

energies [17].
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2.2.4 Statistical theory

Another level of description implies operating with the states in which channel

can exist. For instance, there may be two ions interleaved by water molecules.

Describing the interactions in that system, and deriving the probabilities of each

states one gains a powerful tool to quantify the behaviour of the nanoscale systems.

One first has to introduce the state space of the channel. The channel is

considered to possess an integer number of states j, each of them having nj ions.

The energy of each individual state of the channel is given by [41]

E({nj}, nf ) =E0 + (nLw − n′w)µLw + (nRw − n′′w)

+
m∑
i=1

(nLi − n′i)µLi +
m∑
i=1

(nRi − n′′i )µRi

+ nwµ
C
w

+
m∑
i=1

ni(µ̄
C
i + qφC) + kT lnnw!

m∏
i=1

ni! + ε({nj}, nf ).

(2.10)

Here E0 is the ground state energy, nLw and nRw are the numbers of molecules in the

left and right bulks, respectively, n′w and n′′w are the numbers of water molecules

that entered from the left and right bulk, µLw and µRw are the chemical potentials of

water in the bulks, µCw is the chemical potential of water molecules in the channel,

and nw is the total number of water molecules in the system. Similarly, ni is

the total number of ions in the system, nLi and nRi represent the number of ions

in the right bulk, n′i and n′′i are the numbers of ions that entered from the left

and right bulks, µLi and µRi are the ionic chemical potentials in both bulks, µ̄C

is the ionic excess chemical potential in the channel, q is the ionic charge, φC

is the electrostatic field in the channel, and the term ε({nj}, nf ) represents the

electrostatic interaction between the ion and the channel’s fixed charge.

From here, one defines the probability in the Grand canonical ensemble of the
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selectivity filter [41]

P ({nj}, nf ) =
1

Z

m∏
i=1

(xsi )
ni

ni!
eβ(

∑
i ni∆µ̄

S
i −ε({nj},nf )) (2.11)

where ∆µ̄S = µSi − µbulki represents the difference between the excess chemical

potential in the s-th site and in the bulk for ionic species i, xsi is the mole fraction,

and K is the maximal occupancy of the channel. The partition function Z is given

by

Z =
∑

{nj},
∑
nj≤K

m∏
i=1

(xsi )
ni

ni!
eβ(

∑
i ni∆µ̄

S
i −ε({nj},nF )) (2.12)

The current can be obtained by means of linear response theory [41,176]

σm = q2Dm
∂cm
∂ηm

(2.13)

as a variance of the channel’s occupancy. In the above formula Dm stands for the

diffusivity. The theory outlined allows one to account for the distinguishable and

indistinguishable binding sites [176], explain the ionic Coulomb blockade (ICB)

phenomenon [163,177], cover the presence of multiple species in solutions [42], and

explains the Eisenmann selectivity sequence [32,176].

The statistical theory is conceptually elegant and analytically tractable. One

should, however, bear in mind the simplifications it contains, as consistent descrip-

tion of all the interactions present is the principal requirement for success of the

theory. First of all, the introduction of the integer state space requires one to re-

place the long-range ion-ion interactions by site-site interactions in the mean-field

regime [117]. As Coulomb’s law is no longer applicable, this requires a mean-field

approximation.

Secondly, the interaction between an ion and the channel has to be described.

This includes the effect of the pore dielectric charge and the fixed charge, repre-

senting the charge of amino acid residues. One often borrows these ion-channel

interactions from the PNP model suggesting continuum homogeneous electrostat-
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ics (see section 2.2.3). Thus, the issues of the continuum description become

inherited.

Thirdly, the electrostatic field due to the externally applied voltage is described

under the cylindrical geometry approximation where the field is approximated as

one-dimensional [178, 179], instead of being computed [180]. The attenuation of

the transmembrane voltage due to the entrance effects, e.g. an electric double layer,

is often modelled by means of the Debye-Hückel approximation [176].

2.2.5 Kinetic (rate) theory

Similar to the statistical theory, in the rate model one studies the dynamics of

each system’s state. In the linear approximation, this dynamics is given by the

kinetic equations

Ṗm =
∑
n

ΓnmPn. (2.14)

For a 2 state system, this reads as

Ṗ1

Ṗ2

 =

Γ11 Γ12

Γ21 Γ22


P1

P2

 (2.15)

The ionic current is thus given by

I = q(ΓmnPm − ΓnmPn) (2.16)

where q stands for the ionic charge.

The rates are obviously the main ingredient of this method. One can use the

mean first passage time (MFPT) [181] or the Kramer’s limits [182] to estimate the

rates numerically. A more rigorous approach is to compute the rates by means

of the statistical theory [41, 176]. Often these are fitted data without a direct

coupling to the structural properties of the pore. In this type of modelling, the

introduction of the consistent transition rates Γnm, directly related to the channel

structure and experimental conditions, is the main challenge [16,176].
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The rates are often related to the binding affinities according to the energy

landscape but not to the structure of the pore [183]. Multi-ion effects are hard to

handle [183]. This hinders the connection to the channel’s structure [147].

Importantly, the rates have to reflect the experimental conditions: concentra-

tions, chemical composition (e.g. having K+, Na+ and Cl- ions), externally applied

voltage, and Debye-Hukkel shielding [146] although these quantities are known to

affect the energy landscape [46]. The kinetic theory has also been argued as being

unable to satisfy the conservation of electric current [147,184,185].

2.3 Summary

Studies of biological ion channels require a thorough investigation of atomic de-

tails resulting in the channel’s conduction, selectivity, blocking, channel mutations,

and the effects of pore fluctuations. In this chapter, we have reviewed the com-

monest methods used to study the ionic transport through biological and artifi-

cial nanochannels. These include molecular dynamics (MD), Brownian dynamics

(BD), Poisson-Nernst-Planck (PNP), statistical and kinetic theories. All of these

methods have their corresponding strengths and weaknesses. MD allows consid-

eration of the atomistic details of the system, but the force fields and the heavy

consumption of computational power prevent them from being the basic method

currently. Through classical BD simulations one gets the opportunity to estimate

ionic currents, but the atomistic details and the lack of wetting in narrow pores

have to be sacrificed. The continuum description provided by PNP yields the

currents but lack the ion-ion correlations. Using the machinery of the statistical

and linear response theories, one can estimate the currents but the price to pay

is further simplification of interactions. Finally, the kinetic theory suffers from

the lack of self-consistent transition rates. Overall, all physical interactions can-

not be described simultaneously and, depending on the requirements of the given

problem, one has to compromise between accuracy of description and the desired

experimentally verifiable results.
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Our main aim is to describe the permeation of ions in narrow ion channels.

This motion is known to be strongly correlated due to the ion-ion interactions.

The latter fact does not allow us to use the PNP theory as the interion interaction

has to be carefully accounted for.

In order to overcome these issues we shall introduce the concept of a quasipar-

ticle (QP) (see Chapter 4). The QP allows us to describe this correlated motion

efficiently. However, one needs to reformulate the ionic motion in terms of the mo-

tion of the quasiparticle. This is done in Chapter 4. The concept of a quasiparticle

is expected to become an important ingredient in providing consistent parameters

for the statistical and rate theories. This unique connection between methods im-

plies establishing consistent relationships between theoretical approaches, as well

as begin expected to be helpful in analysing and predicting experimental data. The

QP is also believed to improve the statistical and kinetic theories by reflecting the

MD structure and generating transition rates consistently.

In order to test our predictions regarding the quasiparticles, we need a sim-

ulation system on which to verify our results. Ultimately, one should be able to

estimate ionic currents, which still preserving the atomistic accuracy. In that di-

rection, the hybrid between MD and BD has proven useful. Namely, this approach

allows one to avoid multiple physical assumptions to describe the in-channel in-

teractions. The tandem between MD and BD has been successfully applied to

KcsA [60, 78, 79, 124, 186, 187] and DNA sequencing [113]. With the purpose of

gaining atomistic accuracy, we describe a BD system allowing for the incorpora-

tion of MD-generated PMFs in the next chapter.

Finally, one more problem residing in the description of the quasiparticles is

the PMF. Although it can be estimated in the MD simulations, it would be hugely

beneficial to estimate it analytically to get quick estimates of the ionic currents.

This requires decomposing the PMF into a number of terms, specifically charac-

terising the ion-water interaction. We have identified a novel simple way to do

so by making use of the RDF. For qualitative validation of our estimations, we
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consider a nano-sized orifice in a graphene monolayer which turns out to be the

simplest analogue of an ion channel pore. The results of this work are presented

in Chapter 5.
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3. Brownian dynamics

simulations

“...if we were to name the most

powerful assumption of all, which

leads one on and on in an attempt

to understand life, it is that all

things are made of atoms, and that

everything that living things do

can be understood in terms of the

jigglings and wigglings of atoms.”

R. P. Feynman, “The Feynman

Lectures on Physics”, 1963 [188]

The main target of theoretical investigations into ion channels is the calculation

of the ionic current through an open channel. It is a straightforward observable

that can be compared directly with available experimental data, and can be fur-

ther interpreted in terms of the channel’s selective properties [21]. As long as

molecular dynamics (MD) does not currently provide this, one needs a combi-

nation of Brownian dynamics (BD) with MD-generated potentials of the mean

force (PMFs). This hybrid allows to account for ion-ion, ion-water, ion-ligands,

and ion-pore interactions, and therefore has proven useful in a number of compu-

tational studies [60, 78, 79, 113, 145, 186, 187]. However, the common BD solvers

(BROWNIES [132], BROMOCEA [133], BRODEA [152], BD in GROMACS [189],
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ARBD [190] do not currently allow the user to embed the MD-generated PMFs

into a BD simulation. Thus, a separate program had to be created, and is the

focus of this chapter.

3.1 Workflow outline

A BD simulation involves the solution of the Langevin equation

mαdvαn
dt

= −γαmαvαn + FN(rαn) +
√

2mαγαkBTξ(t) (3.1)

in the domain shown in Fig. 3.1 for each individual particle (ion) in the system at

(a) (b)

Figure 3.1: BD domain. Channel structure is shown in the licorice representation,
long narrow cylinder is the pore, and the large black cylinders are reservoirs with
attached GCMC buffers (red cylinders). Cyan and golden spheres illustrate the
Cl- and K+ ions, respectively. (a) Side view. (b) Axial view. Coordinate X-, Y-,
and Z-axes are represented by the red, green and blue arrows, respectively. Images
were rendered in VMD [58].

any point in time. Here α is an ionic species (α =K+, Na+, Cl- etc.), rαn is the 3D

radius-vector of the mth ion of species α, mα stands for the ionic mass (provided

in Table 3.1), vαn is its velocity, the force F(rαn) = −∂W
∂rαn

is obtained from the

multi-ion potential WN , γα represents the friction coefficient of the species α, T is

temperature, and ξ represents uncorrelated white noise (〈ξ〉 = 0, 〈ξ(t− τ)ξ(t)〉 =
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Figure 3.2: Overall workflow of a BD simulation. After setting the required model
parameters and allocating variables, one proceeds with the main cycle. The later
comprises the calculation of forces, updating coordinates of ions, implementing
the effect of particular boundary conditions, and computing observables. When
the simulation reaches the prescribed simulation time, the cycle is quit, and the
collected observables are transformed into a set of output figures showing the
results.

δ(τ)). The noises acting on different ions are usually assumed to be uncorrelated.

Overall, the workflow of a BD simulation is given in Fig. 3.2. One starts

from initialization, where the physical constants, system parameters (domain size,

temperature, number and type of chemical species...), interactions, and initial co-

ordinates of the ions are introduced. Next, one calculates the forces acting on each

ion, computes the position of each ion at the following time instant, and updates

the coordinates. The latter cycle is repeated until the predefined simulation dura-

tion is reached. The main output of the BD simulation is the evolution of the ions’

coordinates in time which are further used to extract the observable of interest, or
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the statistics of a variable.

Ion type Na+ K+ Ca2+ Cl−

Mass [ ×10−26 kg] 3.8 6.5 6.6 5.9
Diffusivity [×10−9 m2/s] 1.33 1.96 0.79 2.03

Radius [Å] 0.95 1.33 0.99 1.81

Table 3.1: Characteristics of ions: masses, diffusivities, radii [159,191,192].

All coordinates are stored in a N×3 preallocated double precision array where

N is twice the total number of particles in the system. This technique avoids the

need to change dynamically the size of coordinate array and thus speeds up the

execution of the code. Our code was written in MATLAB and utilises vectorised

operations.

BD domain. The BD domain comprises the channel region, represented by a

narrow cylinder of radius Rc = 3Å in Fig. 3.1. The channel connects two reservoirs

(large cylinders of radius Rs = 20Å) of ions. Each reservoir is appended with a

narrower 4Å buffer, if the GCMC routine is used.

At the start of a simulation, both bulks are filled with ions and the channel is

empty. Their numbers in each bulk satisfy the condition of electroneutrality, i.e.

if the KCl salt is selected, the amounts of K+ and Cl- ions are the same. Initial

location of ions suggests a homogeneous spatial distribution of ions.

3.2 Numerical integration scheme

The first step in successfully implementing BD is the discretization of the Langevin

equation (3.1), which is continuous in time. Generally, the discretization schemes

differ by the way they estimate noise and the forces acting on ions. The simplest

update rule would be to use the forward Euler algorithm [193]

xαn(t+ ∆t) = xαn(t) + vαn(t)∆t (3.2)

vαn(t+ ∆t) = vαn(t)− γαvαn∆t+
FN(t)

mα
∆t+

√
2kBTγα∆t

mα
ζ1 (3.3)
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where ∆t is the time step, and ζ1 is a vector of random Gaussian number of unit

variance. In the overdamped limit, when the inertial term is neglected and there

is no average acceleration, the above algorithm simplifies to

xαn(t+ ∆t) = xαn(t) +
Dα

kBT
FN(t)∆t+

√
2Dα∆t ζ2 (3.4)

where the Einstein relation Dα = kBT/(m
αγα) has been used, and ζ2 is another

random Gaussian number of unit variance.

The forward Euler method, although being the simplest, leads to divergences in

finite time [194]. This usually happens when evaluating forces. One would choose

an implicit scheme but these turn out not to be effective due to the damping

effects, stochastic nature of the processes, and costly nonlinear minimization at

each time step [20]. Therefore, multiple evaluation of the ion-ion forces using a

predictor-corrector approach must be used. It should also be noted that the full

Langevin equation with inertial terms must be used when the free-energy landscape

is expected to rapidly change on the scale of the ion’s mean-free path [117].

In this work, we use the implementation of van Gunsteren and Berendsen [134]

(see Appendix C for full description). This algorithm suggests accuracy ∆t2 in the

deterministic part and ∆t1/2 in the stochastic part, so the algorithm is not fully

second-order [195]. We have also checked that this algorithm does not reveal drift

of the system’s energy in time (Fig. 3.3).

This algorithm also allows the random force to vary during a time step [136]. It

supposes third-order local (second-order global) accuracy and is weakly sensitive

to the time step [132] as there is no restriction ∆t� 1/γ [134,196]. These features

allow us to consider the ionic motion in the bulk solution where the stochastic forces

prevail, and inside the channel’s mouth and pore itself where strong electrostatic

and short-range forces dominate [132]. The method requires one estimation of force

per time step and simplifies to a simple formula in the large friction limit [134,195].

This algorithm is unable to represent correctly the mean-square displacements at

small times but provides a good estimation of static properties [195].
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Figure 3.3: Potential energy (3.5) of the BD system in a simulation with a constant
number of ions (NVT) demonstrates lack of drift in time. Large deviations occur
when ions approach each other too closely.

Random number generator seed Both the Langevin (3.1) and Grand canon-

ical Monte-Carlo (GCMC) boundary conditions described below rely on the gen-

eration of random numbers. One should ensure that the sequences of random

numbers are generated For instance, one should use rng(’shuffle’) in MAT-

LAB to have independent random sequences in simulations. Otherwise the results

in two sessions with identical settings will be identical.

3.3 Calculation of forces

The calculation of all physical forces acting on individual ions is the main ingre-

dient of the Brownian simulation [20]. The force governs the ions’ motion and

dynamics, which in turn define the observables. Historically, separate ion-ion and

ion-channel interactions were combined to yield a compound potential landscape.

However, in recent decades the vast improvements in computational resources have

enabled static and even time varying multi-ion potential landscapes (PMFs) to be
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computed. Below we consider both approaches.

3.3.1 Using a compound potential

In BD simulations the potential landscapes in channels are not known and need

to be approximated [106]. Even now they are subjects of multi-voiced debates as

to their accuracy and reliability, see Chapter 2 for more detail. The compound

potential [78,106,197]

Wcompound =
∑
k

U i−c(rn) +
∑
n

qnφ(rn) +
∑
n

∑
m>n

ui−i(|rn − rm|) +
∑
n

Uwall(rn)

(3.5)

approximates the potential energyW by encompassing the ion-ion ui−i, ion-channel

U i−c and ion-wall Uwall interactions, the electrostatic field φ(r) due to the exter-

nally applied voltage, and the charges qn of the ions of all ionic species present.

Specifying analytical expressions for the ion-ion and ion-channel interactions,

one can hugely simplify the description of the model and therefore gain a more

intuitive understanding of transport within the channel. In this subsection, we

describe this approach and assume that the ionic potential can be partitioned into

ion-ion and ion channel interactions.

Ion-ion interaction

The simplest choice of ion-ion interaction is a screened 3D Coulomb law

ui−i(r) =
1

4πεε0

cicje
−r/λD

r
, (3.6)

i.e. a strictly pairwise potential (cf. [136]). Here the ionic charges ci and cj are

separated by distance r, while the medium is characterised by the dielectric permit-

tivity ε. Screening constant λD here emerges due to the Debye-Huckel shielding

of electric charge by the cloud of counterions. Molecular dynamics simulations

demonstrate that the above potential reveals more a complex form [110, 158].

Namely, due to the presence of an integer number of water molecules between
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ions, the repulsive potential gains damped oscillations [20, 81, 133, 198]. In this

work, we did not include this effect as the ion-ion interactions in the bulk are not

expected to affect the ionic dynamics inside the channel [17].

However, this potential on its own encounters a problem when oppositely

charged ions attract each other to such an extent that they eventually overlap.

This does not happen between real ions due to the overlap of the electronic clouds.

To reflect this in a BD simulation, a short-range repulsive soft potential should be

added [78,165,199] to Eq. (3.6), the simplest choice being [78,191,200,201]

ui−irep =
F0

9

r10
0

r9
. (3.7)

The presence of co- and counter-ions in electrolytes lead to an important phe-

nomenon – electrostatic screening. In a bulk solution, the ions are expected to

be surrounded by a sphere of counterions (Debye sphere) effectively screening the

charge, such that the resulting potential is given by the Debye-Hückel theory.In

a 100mM biionic solution a charge is almost completely screened at the length

λD ≈ 30Å [16]. When restricted inside a pore, ions do not have enough counte-

rions surrounding them [159] and the form of the interaction changes given the

ionic size and the presence of individual waters in the pore [202]. It is the confined

environment that gives rise to the correlated ionic motion and provides the rich

complexity of phenomena in transport through nanopores [146].

The presence of pairwise interactions leads to the quadratically growing com-

plexity of the simulation with the number of entities. Our MATLAB code is

vectorised and it utilizes 3D matrices to calculate the pairwise differences between

ionic 3D coordinates. It allows one to use only one CPU core, or to use several

parallel sessions on a multi-core CPU.

Ion-channel interaction

The ion-channel interaction arises from two sources: the electrostatic interaction

with charged residues and dipoles in the protein wall, and a repulsion from the
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induced polarization charges on the pore-protein boundary [16, 54, 203]. The first

is responsible for the formation of the binding sites suggesting that, for instance,

Ca2+ ions bind to the high-field oxygen ligands [87,204]. Confined freedom of water

molecules also strongly affects the interaction between ion and narrow pore [202].

Moreover, the back action of ions on the structure of some K+ channels, e.g. KcsA,

is essential to maintain their conductive conformation [23]. The second interaction

leads to one-dimensional ionic motion [20]. It imposes energetic restrictions on

ionic motion and is therefore noticeably reflected in the ionic permeation in narrow

pores [131,159,164].

Here, we used the cation-channel potential from Ref. [144] applied along the

pore’s Z-axis

U i−c(z) = −U0e
−
(z
s

)2

, U0 = 10.5kBT, s = 9Å. (3.8)

This potential, shown in Fig. 3.8, was obtained by fitting to the overall energy

landscape in the KcsA channel. To prevent anions entering the channel, one should

sum the repulsive Coulomb term with screening and the dehydration barrier

U i−c
Cl (r) =− 1

4πεε0

e0Qfe
−r/λD

r

− aU
2

(
tanh

(z −R
bCl

)
+ tanh

(−z + L

bCl

))
.

(3.9)

Here e0 is a positive unit electric charge, Qf represents the negative fixed charge

(e.g. Qf = −1e0) embedded into the protein, aU = 25kBT is the dielectric barrier,

z is the axial coordinate, R and L are respectively the locations of the right and

left edges of the channel, and bCl = 0.5Å is the parameter controlling the steepness

of the potential barrier. Also, to induce the one-dimensional motion of ions in the

pore, a harmonic restraining potential

Uwall(r) = kharmr
2, kharm = 10kBT/(1Å)2 (3.10)
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(a)

(b)

Figure 3.4: (a) Single-ion ion-channel potential [144] mimicking the single-ion
PMF in the biological ion channel. Inset: single-ion PMF in KcsA (data adapted
from Ref. [205] by permission from Springer Nature Customer Service Centre
GmbH). (b) Compound single-ion potential barrier (blue) for Cl- ions, consisting
of the dielectric barrier (black) and electrostatic repulsion from the fixed charge
(red).

was applied in the radial direction. This potential also mimics the effect of protein-

pore wall. The same potential was used to mimic soft reflecting domain boundaries.

Its effect was restricted to 5Å towards the inner volume of the simulation domain.

Stitching channel to reservoirs A typical case implies that the pairwise in-

teraction between ions is characterised by a common parameter (for instance,

dielectric permittivity) X1 in the bulk and X2 the channel. In this case one needs

to specify how two ions – one in the bulk and one in the channel – interact. To

do that, we first introduce a switching function that equals 0 in the bulk and 1 in
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the channel. We choose a piecewise implementation

f(z) =


0, z < −Ltr,

z, z ∈ [−Ltr, Ltr].

1, z > Ltr,

(3.11)

with Ltr = 1Å standing for the length of the transition zone within which the

switch of the parameter occurs. Ltr should not exceed few angström so that

stitching occurs at the range of one atom size and thus large spatial artefacts cannot

develop. Other choices of the transition function f(z) are also possible, e.g. using

the tanh function. Thus, each ion is labelled according to its Z coordinate. The

common parameter for the pair of ions then can be given by a convex combination

X∗ =
1

2

[(
X1(1− f(z1)) +X2f(z1)

)
+
(
X1(1− f(z2)) +X2f(z2)

)]
= X1 +

(
X2 −X1

)f(z1) + f(z2)

2

(3.12)

For instance, the ions in the same domain, e.g. in the same bulk, share the same

parameters everywhere in the bulk. The same applies when both ions are in

the channel. If the ions reside in different domains, the average value (X1 +

X2)/2 is common. This interpolating approach satisfies the 3rd Newton’s law.

Fig. 3.5 demonstrates how the screening constant λ is chosen between λDebye =

0.425nm and λin channel = 0.28nm, depending on the location of the two ions. The

particular values of these parameters a chosen to describe the Debye screening in

the bulk and to lead to the barrier-less conduction in the toy model of the KcsA

ion channel [144].

3.3.2 Incorporating a multi-ion PMF

The use of the multi-ion PMF WN is the best estimation of the system’s energy W ,

as it already encompasses the ion-ion, ion-channel and ion-water interactions in

the channel. Thus there is no need to speculate on how to approximate these. In
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Figure 3.5: The top scheme demonstrates how the parameters of interaction of
two ions are calculated depending on their positions. Bottom plots demonstrate
the values of the parameter (in this particular example, the screening constant)
along each the dashed cross-section of the colored picture (colors match on both
images). This diagram is primarily required to describe a situation when one of
the ions is located in the pore and another is in the reservoir.

addition one does not have to assume the dielectric constants of the proteins and

dielectric self-energies on the protein-pore walls. Therefore, the implementation of

PMFs into BD represents a hybrid model that benefits from both atomistic details

– e.g. hydration effects – and BD’s long-time trajectories [60, 113, 206]. Such a

hybrid represents a sequential fixed-resolution multi-scale approach [13].

If one was interested in an artificial nanopore such as a hole in a graphene

sheet (see Fig. 1.5) then the 1D single-ion PMF giving rise to the force in the

Z-dimension can be deduced. However in more complex pores such as the KcsA

biological channel, several ions may inhabit the channel and therefore a multi-
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ion PMF should be considered. In this work we use the MD-generated single-ion

PMFs for a graphene nanopore and the multi ion PMFs for the biological KcsA

ion channel. These PMFs are shown in panels (a) and (b) of Fig. 3.6, respectively.

Importantly, the PMF WN depends on the number of ions N inside the channel.

Thus, entering and leaving of ions from the pore result in switching between PMFs,

what in turn provides essential information for the statistical and kinetic theories.

(a)

(b)

Figure 3.6: Examples of PMFs. (a) Single-ion PMF for K+ (red) and Na+ (blue)
ions traversing a graphene pore. Adapted with permission from Ref. [87]. Copy-
right (2013) American Chemical Society. (b) Multi-ion K+ PMF in the biological
KcsA channel. Coordinates z1 – z3 are the ionic Z coordinates when counting from
the channel’s outer mouth. Numbers 1–5 represent the permeation milestones as
described in Ref. [31]. Image taken from [207]. Courtesy to Dr. D. Medovoy and
Prof. B. Roux for providing the original data.

Strictly speaking, one has to provide PMFs for all ions in the system to fully
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describe the ion-channel interactions for each species. For instance, if KCl is used

to study the KcsA channel, both the K+ and Cl- PMFs should be incorporated into

the simulation. However, Cl- never enters or travels through this channel due to

repulsive and dehydration barriers. A more reasonable step in this circumstances

is not to derive a computationally costly Cl- PMF, but instead to use an analytical

expression. Eq. (3.9), approximating the Cl--channel interaction, can serve such

an expression.

Stitching PMF to the domain When using a PMF in the channel and still

having explicit ion-ion interaction in the bulk, one has to ensure that the ions in

the channel are not subject to the explicit ion-ion interaction. So these explicit

ion-ion interactions have to be “switched off” in the pore.

Finally, usually the multi-ion PMF is computed as a function of the ionic coor-

dinate along the channel. This is done to save the memory allocated to save this

data. In doing so, the transverse motions of ions are averaged over and not present

explicitly. Although this omission is not expected to affect the physical results,

one still needs to mimic this effect in a 3D BD simulation. A possible solution is

to use a harmonic restraining potential (3.10) in the transverse directions. Thus

the ions will be always kept on the channel’s axis while their longitudinal motion

is governed by the MD PMF.

3.4 Transmembrane potential

In the patch-clamp experiments, a typical setup involves applying voltage across

the channel or the whole membrane. In a theoretical treatment, this is reflected

by a potential difference via Dirichlet conditions at the opposite Z-edges of the

domain [208].

Electrostatics can be treated in a number of ways [140]. First, the application

of the constant electric field across the simulation domain (von Neumann condi-

tions) [78] causes polarisation of the membrane protein developing its counter field.
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The resulting potential profile drops/increases fastest in the pore while weakly de-

creasing from constant in the bulks [140, 209]. The second method is to set the

potentials on either edge of the membrane (Dirichlet conditions) and to solve the

Poisson equation (2.7). This can be done by means of finite volume solvers [177].

Lastly, one can consider dual-bilayer [112, 210] or air slab methods to mimic the

creation of the potential difference from the charge imbalance [211].

In this work, we add the external electrostatic profile to the PMF. This can be

done when the channel’s structure does not vary to a large extent in the external

field [17,122]. Two options to include the external voltage in a BD simulation have

been tried: (a) by means of a linear voltage drop, and (b) by means of the tanh(z)

function in the z-direction. The first option implies switching the electric field only

when an ion enters the channel. This method provides a technically quick inclusion

of the voltage drop, but does not account properly for the dielectric properties of

the pore and the bulk. The second analytical approximation has been made to

resemble the axial potential profile obtained in a finite-element solver. Fig. 3.7

demonstrates the two approaches and their comparison with the 3D solution.

Dielectric permittivity The description of the ion-ion interactions and ap-

plied external potential in the pore requires the specification of the profile of the

dielectric constant. From the physical point of view, dielectric permittivity stems

from the ability of water dipoles to reorient in response to an electric field. In

bulk, where thousands of water molecules surround an ion, this process is allowed

in all 3 dimensions. Thus, one can talk about the dielectric permittivity of the

medium [212], being ε = 80 for pure water. In contrast, in the confined envi-

ronment such as a nanopore, the water molecules possess less rotational freedom

and thus the dielectric permittivity is significantly smaller [213,214]. In turn, this

changes the dielectric response of an aqueous pore to an external electric field as

well as the ionic interactions with neighbouring ions and the channel [202].

Here we use a constant dielectric permittivity of pure bulk water εw = 80 in

the pore and εp = 2 for the channel protein. Although this common choice [16]
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(a)

(b)

Figure 3.7: Electrostatic potential profiles. (a) Electrostatic potential in a pore
model with radial symmetry. The left edge of the smaller rectangle corresponds
to the pore axis. The potential difference (voltage) between the top and the
bottom edges of the domain is 0.1V. (b) Electrostatic potential along the axis of
the pore. Once can see that the voltage drops mainly across the pore and stays
approximately constant in the bulks. This serves as a justification of the linear r
tanh(z) approximation .

overestimates the dielectric properties of the pore, it has been shown viable in

comparing BD simulations and experimental data [91]. For a more sophisticated

analysis, spatially-dependent dielectric permittivity profiles should be estimated
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in MD simulations [91].

3.5 Diffusivity

An important ingredient quantifying the mobility of ions in BD and PNP is the

diffusivity of the ions. In free solution, ions undergo collisions with water molecules

in 3D. In contrast, in a confined environment such as a nanopore, there are fewer

water molecules and so fewer collisions. The ions also interact with the pore (its

charged amino-acids) and each other [215], and therefore, overall the diffusivity in

a channel is usually smaller than that in bulk [216,217].

In the literature there is no commonly accepted model describing the single-

ion diffusivity profile in a narrow channel and its mouths [197]. One method

of extracting this profile is by considering an all-atom MD simulation using the

velocity autocorrelation function [218]. The hydrodynamic approximation can also

be used [219]. One can also use analytical approximations such as the diffusivity

scaling factor k(z) = Dpore/Dbulk [197]. It is also worth noting that, strictly

speaking, different X-, Y -, and Z- diffusivities should be used in different spatial

directions [117].

In the toy model, we use simple bulk diffusivity constants given in Table 3.1.

It is known that under physiological conditions the ionic current is proportional to

the diffusivity [20], therefore this approximation should yield good agreement for

qualitative comparison with experimental data. However, for exact quantitative

predictions one should rely on spatially-dependent diffusivity profiles computed in

MD.
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3.6 Time step

3.6.1 Choice of the time step

The duration of BD simulations exceed the Debye time τD (τD ≈ 100ps in a 1:1 so-

lution of few molar) by several orders of magnitude, as required for the relaxation of

the configuration of the ionic atmosphere [220]. However, to ensure computational

efficiency the time step cannot be too small. It should be bigger than the inverse

of the velocity autocorrelation function [221] to satisfy the Markovian assumption

of the Langevin equation. At the same time, the time step ∆t must be less than

the time between two ballistic collisions. One can estimate the average thermal

velocity as 130 m/s and inter-ion distance 1nm at concentration ∼ 100mM, so that

the time interval between collisions is ≈ 8ps.

The accuracy of a simulation can be compromised when large too time steps

are used [16]. As a result the ions may not investigate all landscape features

or may even fly through the channel [77]. This also suggests that large spatial

displacements of ions and time derivatives of forces should not develop [222]. One

more restriction may come from the integrator used, as often ∆t� 1/γ is expected

to hold, making the simulation too long [130]. However, thanks to the use of the

algorithm from Ref. [134] large time steps can be considered.

3.6.2 Step adaptation

During a simulation, ions can approach each other to within distances of r ≈

2.7Å [78]. This leads to the development of large forces due to the repulsive

term (3.7) which, being included into the digitized scheme (C.1), leads to non-

physically large displacements of both ions. This phenomena is known as long

jump exceptions [132, 133] or steric clash [223]. As a result the continuation of a

simulation may produce unphysical results or errors. Possible ways to avoid this

problem are back retracing [132], reverse tracking [78] and so-called Metropolized

algorithm to reject unrealistic steps [224]. Here we describe an adaptive time step
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method to cope with long jump exceptions widely used in systems with hard-wall

potentials.

The method reads as follows. When ions approach each other closer than the

threshold value r0 = 2.8Å, the algorithm switches to the Euler scheme (3.4) and

the time step is changed according to the rule

∆t∗ = ∆t (r/r0)κ, (3.13)

as it is natural to decrease the step when r → 0 [225]. Parameter κ has to be

chosen carefully. It must satisfy the condition κ > 10 because forces develop as

∼ 1/r10. On the other hand, it cannot be too large because a too small time step

∆t∗ will require larger number of stages to cover the unaltered time interval ∆t.

Therefore, in our simulations we used κ = 14 as a trade-off between accuracy and

computational efficiency, although other choices are possible. It should be also

noted that only a few time step alternations are required per exception event.

In our case, at a relatively high KCl solution concentration of 0.5M, the ratio

between the number of dynamically adjusted steps and the total amount of steps

was typically 230/500001 = 4.5 · 10−4 < 0.1%. To prevent the development of

large forces in a deterministic manner, the time step is decreased by a factor of 10

every 500 steps and by a factor of 100 every 1000 steps, and thus can be seen as

a double comb in Fig. 3.8.

When the adaptive time step is used, computation of the statistical averages

should be adjusted correspondingly. Suppose a variable X is sampled at consec-

utive moments of time tm, such that the sampled values are Xm. In case of the

non-variable time step ∆tm = ∆t0, the time average is found according to the

standard average formula

〈X〉 =

∑M
m=1 ∆t Xm∑M
m=1 ∆t

=
∆t

∑M
m=1Xm

M∆t
=

∑M
m=1 Xm

M
,
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(a)

(b)

Figure 3.8: Showing the adaptation of the time step. (a) Attenuation coefficient
for the time step depending on the inter-ion distance. (b) Variations of the time
step in time. The regular “comb” is produced by planned step attenuations. Three
dynamic step alterations can be seen near t ≈ 3, 6.5, and 7 ns.

In contrast, using the adaptive time step ∆tm requires one to use

〈X〉 =

∑M
m=1 Xm ∆tm∑M
m=1 ∆tm

=

∑M
m=1Xm ∆tm

T
(3.14)

in order to attribute the statistical weights adequately to each sample contribution.

In the formula above T stands for the whole time of the simulation.
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3.7 Boundary conditions and injection schemes

As a BD simulates a finite 3D domain, one has to describe the physical properties

of the geometrical constraints that determine this domain [16]. One therefore

comes to the question of boundary conditions. The properties of the domain walls

are rarely described, as rectangular simulation domains with periodic boundary

conditions are typically used. However, this is not true for cylindrical and spherical

geometry of the reservoirs, as well as the external walls of the GCMC buffers.

When a domain boundary is set to be impermeable, this should be reflected in the

program code.

We divide the algorithms into those that either maintain or vary the number of

particles in the system. There are several subtypes of domains and corresponding

implementation.

Figure 3.9: Schematic representations of how various boundary conditions work.
The cellular membrane is illustrated by two black rectangles, the area between
which represents the channel. The red part of the line represents the incident
part of the trajectory and the blue part illustrates the effect of the particular
boundary type. The reflecting condition prevents an ion from leaving the domain
by reverting it back inside the domain. The periodic condition reinject the ion
on the other side of the domain. The stochastic A-C boundaries describe what
happens when an ion enter a reservoir. The GCMC boundary assumes that buffers
(grey rectangles) are maintained according to the infinite bulk which is included
implicitly.

70



3.7.1 Impermeable boundary (default)

The simplest type of boundary is an impermeable one (Fig. 3.9). It implies that

an ion attempting to leave the domain is scattered back. Thus, if all boundaries

are impermeable, the number of ions in the systems is preserved during the sim-

ulation. This occurs on the inner domain boundary between bulk and the lipid

bilayer. The physical meaning suggests the implementation: one has to impose a

repulsive potential perpendicular to the surface at the point of crossing. In simple

geometries – planar, cylindrical or spherical, – it is trivial, while in a more com-

plicated environment one has to be sophisticated. This implementation suggests

“smooth” reflection regardless of the proximity to the wall. We applied these type

of boundaries at the outer domain boundaries. This is because the number of par-

ticles between GCMC cycles has to be maintained constant. The reflective wall

potential has to be included into the GCMC energy W (nα). The presence of a soft

repulsive wall may alter the density fluctuations in the system [154]. Therefore we

have ensured that this potential develops only within 0.4Å near a wall, which is

much smaller than the size of reservoirs (∼ 3nm).

One can also implement a “hard” wall by detecting crossings, and just reversing

the sign of the particle’s velocity. The simplest way is just to leave the particle

untouched until the next step, where due to the stochastic nature of the noise the

force is likely to change its sign and thus point inwards. In this case, the particle’s

position is simply copied unchanged to the next moment of time, and the particle

loses its initial velocity. If it happened due to a random force pointing outwards,

its sign is likely to change to the opposite in the next step. However, if two ions

came too close to each other near a wall and thus a long jump exception emerged,

a mandatory regular shake-up would unravel them. Both these methods create a

σ =
√

(2D∆t) depletion zone with an erfc(z) profile in the immediate vicinity of

the membrane [135]. For a reservoir of several nanometers extent in all dimensions,

this depletion zone is negligible.

Impermeable boundaries can be applied to a system to speed up a simulation.
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We used those conditions in the X- and Y -dimensions, as well as on the outermost

boundaries along Z axis when the GCMC conditions were applied.

3.7.2 Periodic boundary conditions (at the outer domain

boundary)

Another method of keeping the number of particles constant is to apply the peri-

odic conditions at the outer domain boundaries. This method suggests that, when

a particle leaves the domain through a plane wall, it re-appears at the opposite

wall (Fig.3.9). This is done by adding/deducting the inter-wall distance from the

new coordinate of the particle. This algorithm suggests using a rectangular box,

therefore for a cylindrical wall or other curved surface there is no such a simple

re-injection rule.

This boundary condition is the default in MD. Spurious near-wall depletion is

absent, and the underlying torus topology (opposite domain walls are identified)

forces us to consider only equal concentrations in both bulks. To move beyond this

constraint one can introduce a two-membrane domain [112, 210] but at increased

computational cost due to the increased number of particles involved. Also, one

should ensure at least 1nm in each dimension of the simulation box to suppress

the unphysical effect of ions interacting with their own images when the minimal

image convention is used.

3.7.3 Stochastic boundary

This is one of the classical methods. It implies that when a particles leaves the

channel and enters say reservoir A, another leftmost particle of the same species

in reservoir A is selected and added to reservoir B at the rightmost position. This

effectively closes the electric circuit formed by two bulks and the channel [16].

A possible simplification of the above method is that when a particle crosses

e.g. the left edge of the channel and enters reservoir A, another outermost particle

of the same species in reservoir B is selected and is randomly positioned in reservoir
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A. When no voltage is applied that is satisfactory, while if voltage is applied this

method creates an inhomogeneous spatial distribution of ions.

3.7.4 Injection into a 1D domain

Considering 1D BD, one may want to inject/remove ions from the domain. Such

a necessity emerges e.g. when the reservoirs have to be modelled at two different

concentrations. To do so, one first uses the formula

j = 2πDRC (3.15)

to estimate the injection rate of non-interacting particles. Here, D is diffusivity,

R is the radius of the channel’s mouth and C is ionic concentration. Then, one

generates a set of exponentially distributed times with the time constant τ = 1/j.

These will be the times when an ion has to be added to the simulation. The latter

is done simply by finding a numerical cumulative sum of the set of times.

In a 1D BD simulation, one then adds a particle according to the injection

moments. To avoid depletion zones in the vicinity of the channel edges, particles

should be added not exactly at the edge but in the adjacent zones with probability

erfc(z) [135]. This is a consequence of the method of images [142, 226] . One

should also ensure that the injection sources are time-step-dependent to avoid the

dependence of the particle profiles on the time step [135]. The problem of this

injection type is that it was designed for non-interacting particles, while these in

a solution do interact and this interaction affects the entry dynamics.

3.7.5 Grand Canonical Monte Carlo

In Ref. [141] the authors introduced a method to generate a source of ions at a

predefined concentration level. It combines the Grand Canonical µVT ensemble

with the Monte-Carlo trials thus allowing the number of particles to fluctuate [141,

218]. The method suggests having a buffer ∼ 5Å thick [140,141] attached to each
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reservoir, and adding/removing particles to it. An adding attempt starts from the

random generation of a coordinate within the buffer. One then attempts computes

the acceptance probability [141]

Pα
creat =

n̄α

nα + 1
e−(∆Wα−µ̄α)/kBT

1 +
n̄α

nα + 1
e−(∆Wα−µ̄α)/kBT

. (3.16)

Here n̄α is the expected number of ions of species α in the buffer, nα is the cur-

rent number of ions α in the buffer (integer), ∆Wα = W (nα + 1)α − W (nα) is

the free energy difference of adding an α ion to the buffer, and µ̄α is the excess

chemical potential for species α. The acceptance criterion means that if a newly

generated random number ξ ∈ [0, 1] satisfies ξ < Pα
creat, this particle is added to

the set of particles in the buffer (“acceptance”). Otherwise, the trial is rejected.

The input excess chemical potentials µ̄α for each ionic species can be calculated

from the microscopic model of ion-ion interactions by combining the hypernet-

ted chain (HNC) equation [227] and the Ornstein-Zernike equation [218], or with

the help of the separate iterative GCMC simulation [228, 229]. The consideration

of electrostatics requires the solution of the Poisson equation to span into the

buffers [140,141]

Similarly, a removal step is implemented. First, one has to ensure that the

buffer is not empty. After that, a particle in the buffer is selected randomly. The

removal probability level in this case reads as

Pα
remove =

1

1 + n̄α/nαe−(∆Wα−µ̄α)/kBT
(3.17)

where ∆Wα = W (nα) −W (nα − 1) is the free energy difference to remove one

ion from the buffer. If another random number is accepted, the coordinates of the

selected particle are removed from the set of current coordinates (“removal” by

assigning NaN values in place of the 3D coordinates). Otherwise, the coordinates

are left untouched [227, p.44]. The physical meaning behind the formulas is to
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allow a step that leads to a lower system’s energy [230].

For microscopic reversibility (the principle of detailed balance), one has to en-

sure that addition and removal steps are attempted with equal probability [110,

p.128]. This suggests equiprobable random switching between addition and re-

moval steps. If neither was selected, the system is left unchanged. In our simu-

lations, the ratio between addition, removal, and BD is respectively 1/4 : 1/4 :

1/2 [141], although other ratios exist, for instance 1/3 : 1/3 : 1/3 [231] or 2/5 :

2/5 : 1/5 [132]. The choice is made as a trade-off between the simulation speed

(GCMC is a time-consuming procedure) and the accuracy of reproducing bulk

concentrations. This implies that having many GCMC attempts (as much as 1000

in [132]) allows one to sample the buffer configuration perfectly. However, that

many attempts significantly slow down the simulation, because the remainder of

the system (ions in reservoirs and, importantly, inside the channel) do not move.

Each GCMC cycle – addition, removal, and BD step – is applied to each ionic

species sequentially, and the whole loop is repeated 10 times. The number of

GCMC attempts should be at least equal to the expected number of ions in the

buffer. Otherwise the buffer will become insufficiently sampled what in turn will

cause incorrect ionic densities in reservoirs and affect ionic currents through the

channel.

The Metropolis algorithm [230] allows us to generate new statistically relevant

configurations [232]. The application of Grand Canonical insertions/deletions al-

lows for less system-size dependence as compared to the Widom’s insertion meth-

ods in the Canonical Ensemble due to the breach of electroneutrality [229]. How-

ever, at high particle densities the GCMC method loses its attractiveness: at-

tempted additions are massively rejected as there is little room to insert a parti-

cle [233,234].

A GCMC bunch (10 trials) maintains the prescribed concentrations within a

time interval. If the bunch is applied at each time step, this means the bulk is

provided continuously. However, if this procedure is applied once per several steps
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(as e.g. in [132]) this would result in two concentrations – buffer and reservoir

– being mixed. This in turn supposes that the concentration takes the mean

(weighted) value between buffer and reservoir values, and is different from the

prescribed value. The less frequently the GCMC bunch is applied, i.e. the less

frequently the buffer concentrations are updated, and the more uncontrolled the

reservoir concentrations become. For instance, applying a GCMC bunch (10 trials)

only once per 1000 time steps resulted in the buffers being positively charged.

One of the main advantages of the GCMC method is its ability to consider

the left and right bulks independently. For instance, one can set up a 0.1mM

KCl solution in the left bulk and a 0.5mM in the right bulk. Another example

is to have KCl on the left and NaCl on the right – this configuration mimics

the standard patch-clamp environment aimed at exploring selectivity in the KcsA

channel [45]. Also, asymmetrical bulks are required to study the blockage of KcsA

by the intracellular Na+ [73]. Finally, one can consider ionic concentrations in the

micromolar range using standard sizes of the simulation domain. Otherwise, one

would need to introduce enormous reservoirs, what in turn incurs high computa-

tional costs [140, 141]. Thus, the simulation of arbitrary experimental conditions

becomes feasible.

Figures 3.10 and 3.11 show the numbers of ions in both buffers and reservoirs

over time. The preset values, set in the GCMC cycle, are shown by circles, con-

firming good operation of the algorithm. The number of ions in a buffer varies

when ions are added or removed or enter from the reservoir. Similarly, the reser-

voir occupancies change when ions appear from either buffer or enter / leave the

reservoir through the ion channel. The overall time-averaged number density along

the domain axis is shown in Fig. 3.12.

3.8 Measurements of current

Once the simulation is set up, it can be run to yield the required observable

quantities. Typically the initial stage of the simulation, about 0.2 µs is considered
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Figure 3.10: Control of buffers in time. The solid lines show the present amount
of K+ (red) and Cl- (blue) ions. Corresponding time-averaged values are given in
pink and cyan, respectively. Preset expected values are illustrated by cyan circles
for both ionic species.

Figure 3.11: Occupancy of both reservoirs in time. Red and blue step curves
show the amount of K+ and Cl- ions, respectively. Corresponding pink and cyan
lines represent the time-averaged values. Cyan stars provide the preset expected
number of ions in the reservoir.
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Figure 3.12: Axial distributions of K+ and Cl- in the reservoirs show good agree-
ment with predefined values in the buffers (cyan and green stars). The dashed
black line indicates the imbalance of the spatial charge density.

as an equilibration interval and therefore not included in the analysis [165].

To measure the main observable – the electric current – one typically counts the

cumulative number of ion crossings through an imaginary surface. Under steady

conditions it may be any cross section of the system [235]. One measures the

number of transitions in one direction NL→R, that in the other direction NR→L,

and finds the net number of crossing N = NL→R−NR→L. Given that there are N

crossing events of ions with valence zm during the time interval T , the current is

calculated according to the textbook definition

I =
Nzmq

T
. (3.18)

This formula, implemented in the current thesis, clearly indicates the necessity

to have longer simulations as the number of crossings N is proportional to the

simulation time. The statistical error of the current correspondingly decreases as

∼ 1√
N

. One can alternatively measure the electric current via the displacement

current using all atoms as is implemented in MD simulations [209, 236], or by

means of Ramo-Shockley theorem [237].

Equation (3.18) implies that only transitions through the pore are counted, so
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the the geometrical boundaries of the pore are involved. The MD method appears

as more straightforward [209] as it only requires the spatial displacements of all

ions within the domain and “unwrapping” of the coordinates when the periodic

boundary conditions are applied. Both these methods rely on the variation of

the 3D coordinates of ions. The Ramo-Shockley approach in addition requires

the calculation of the electric field in the absence of all mobile charges in the

system, including the ions in the bulk solution, in the pore, and the mobile charges

embedded in the protein [237].

3.8.1 Ionic currents through a graphene nanopore

Figure 3.13: Smooth lines: cumulative crossings of the K+ (red), Na+ (green) and
Cl- (blue) through a graphene nanopore, calculated in a BD simulation via the
single-ion PMF 3.6(a). Dashed lines show the traces of 50pA and 100pA currents
corresponding to Na+ (dashed green) and K+ (dashed red) currents found in MD
simulations [87]. Solutions comprise 0.5mM KCl and 100mV voltage is applied.

As an example, we run a simulation with 1-ion PMF, Fig. 3.6, and ion-ion

interaction according to Eq. (3.6). Symmetrical solutions comprise of 0.5mM KCl

and 100mV voltage is applied from the left. In Fig. 3.13, the cumulative number

of pore crossings in time is shown. One can see that K+ ions permeate faster than
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Na+. This is expected as the single-ion potential for K+ is shallower that that

of Na+, so it is easier for the K+ ion to escape the well after e.g. a collision with

another K+ ion. This is a manifestation of the K+/Na+ selectivity, also found in

MD simulations [87]. The discrepancy of a factor of ∼ 2 between BD and MD

currents is expected to stem from the smaller value of the pore’s radius used is

BD.

A PMF for the chloride ions was not available in Ref. [87], and we therefore

modelled it via Eq. (3.9). Due to repulsion from the negative fixed charge of the

COO- and the dehydration barrier, chloride ions permeate less frequently. This

provides an example of the cation/anion selectivity.

3.8.2 Toy model of the KcsA channel

Further, we simulated the ionic currents in a toy model of the KcsA channel. Two

typical experimental configurations are considered: current-voltage curves at fixed

bulk concentrations and current-concentration curves at fixed voltage. The first

type suggested 200mM KCl solutions in both bulks, and application of voltage in

the tanh approximation. The second type of settings supposed KCl solutions in

bulks, the right one being fixed at 200mM and the left one variable. The external

voltage drop in this case was set to zero. Each simulation covered 0.1-1 µs of the

ion’s dynamics.

The results are shown in Fig. 3.14. The top figure demonstrates that current in-

creases with voltage as expected. Each data point and the corresponding error bars

resulted from 5 BD simulations each 1-µ long. The bottom figure demonstrates the

reversal of current when the ratio of left and right concentrations crosses the unit

value. This is expected as the concentration gradient correspondingly reverses.

The simulation also agrees qualitatively with the published data on ionic cur-

rents through the KcsA [70,75]. Regarding the quantitative values, the simulated

currents lie close to the experimental data points. The reason for existing quanti-

tative discrepancies is selection of parameters and the simplified character of the
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model. These parameters include the pore radius Rc, and the length of the channel

Lch. The latter is Lch = 4nm while the selectivity filter of the KcsA channel is

1.2nm long. The form of ion-ion interactions inside the channel was parameterized

to mimic 2-3-2 conduction, while in the simulation we also detected occupancy

states with a single K+ ion. It is also worth noting that the diffusivity D and

dielectric permittivity ε inside the channel were considered constant, while MD

studies report attenuation and spatial dependence of these parameters. Finally,

the toy character of the model suggests a simplified ion energy landscape inside the

channel and therefore its the particular features are overlooked. To conclude, good

qualitative agreement is found, but a preliminary calibration of the simulations by

comparison with published data is typically required.

3.9 Summary

In this Chapter, a Brownian dynamics (BD) system has been described. This

BD simulation program has been extensively described with specific focus on the

physical effects and reasoning of the choice of parameters. It has encompassed

the choice of integrators, computation of the transmembrane potential, diffusivity

profile, adaptive time step, and boundary conditions. Each of these components

has been analysed carefully to optimize the performance. Importantly, this BD

system allows to account for the potentials of the mean force (PMF), generated

in a separate molecular dynamics (MD) study. Thus, one gains the opportunity

to account self-consistently for the channel’s atomic structure, ion-ion, ion-water,

ion-ligands and ion-pore interactions with atomic resolution, thus abandoning the

need to approximate these parameters.

Essential properties of the channel arise from the way in which ions interact

with each other and with the channel inside the pore. In that way, one can use

either compound potential or a multi-ion potential of the mean force (PMF). The

former assumes splitting interactions into the ion-channel and ion-ion components.

The main difficulty here arises from the way these are calculated and approximated,

81



(a)

(b)

Figure 3.14: BD simulation results of currents through a toy model of the KcsA
channel. (a) Current-voltage curves represent the increase of current in response
to voltage. Symmetrical bulks are considered, each carrying 500mM KCl solutions.
Results from a BD simulation (blue squares) with errorbars are shown. Dashed
lines represent the experimental data from Refs. [70, 75] for 400mM (black dots),
500mM (green circles) and 800mM (red triangles) in symmetrical solutions. Con-
necting lines provide a guide for the eye. (b) Current-concentration curves at zero
voltage. The concentration of the right bulk is maintained at 200mM while that
of the left bulk varies. When crossing the point of equal concentrations, the cur-
rent reverses its sign, which is an expected outcome of reversing the concentration
gradient.

because interactions differ in free bulk and in the confined environment of an ion

channel. This problem can be circumvented by use of a multi-ion PMF which
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encompasses all the aforementioned interactions. Thus, separate ion-ion or ion-

protein interaction need not be assumed. As long as the dimensions perpendicular

to the pore do not contribute to the ionic current, these can be described by

means of an analytical approximation. Thus, only the Z-components of PMFs in

MD need to be saved.

Analysing the boundary conditions, we find that one has to take into account

the experiment to be mimicked, and computational power required to implement

them. Approaches maintaining the number of ions in the system, such as periodic

or stochastic, impose little burden on the simulation and are easy to implement.

However, these conditions do not allow for the consideration of asymmetrical bulks.

In that regard, the Grand canonical Monte Carlo (GCMC) approach is the most

flexible as it appropriately grasps the variety of the electrophysiological exper-

imental conditions. The GCMC method, however, requires more sophisticated

implementation and is more time consuming. It was shown that the implemen-

tation of both types of boundary – preserving and not preserving the number of

ions, – may be necessary for efficient BD simulation.

In order to confirm that each section of the BD code works properly, a number

of tests has been undertaken. We checked that the system’s energy does not drift in

time and that the numbers of ions correspond to the chosen values. The numbers

of ions in the reservoirs have been demonstrated to agree with the correspond-

ing preset quantities which validates the functioning of the domain boundaries.

Number density profiles were shown to agree with the preset values in the GCMC

buffers. A number of other auxiliary tests, listed in Appendix A, has taken place

as well during construction.

Finally, we have applied our BD simulator to study ionic translocation in two

systems. The first one is a graphene nanopore with a charged rim due to the

carboxylate COO- group for which the PMFs have been evaluated in MD [87]. The

BD simulation reveals not only the conduction of the pore, but also its selectivity.

The pore’s ability to conduct K+ preferentially over Na+ is related to the difference
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between PMFs, while the large rejection of Cl- ions occurs due to the electrostatic

repulsion exerted by the carboxylate oxygen atom.

The second system mimicked the biological KcsA ion channel. The interactions

of an ion with other ions and the channel were approximated as discussed in section

3.3.1. The simulation reproduced the increase of current in response to external

voltage, and the dependence of ionic current on the ratio of bulk ionic concen-

trations. Overall, good qualitative agreement with experimental findings [70, 75]

was found, the quantitative discrepancy being attributed to the toy nature of the

model and the choice of the pore parameters.

Future work to improve the scope of the model might be to introduce multi-

ple scales of adaptive time step. For instance inside the channel a smaller time

step can be chosen to allow ions to study thoroughly all peculiarities of the poten-

tial landscape in the channel [77]. Profiles of diffusivity and dielectric permittivity,

measured in MD, should provide further atomistic accuracy and improve the quan-

titative agreement with experimental data. The program can also be improved by

incorporation of the electrostatic field computed by a 3D FEM Poisson solver.

This suggests tabulating the electrostatic field and using it further as a look-up

table. For simple pore geometries one can use COMSOL Multiphysics [238] or

the finite-volume Poisson solver [177]. More realistic inclusion of electrostatics can

be implemented via Delphi [173], APBS [174] and induced charge computation

methods [239].

To conclude, a BD simulation system incorporating the MD PMFs, has been

built. It allows one to account for a channel’s structure with atomic resolution

of the potential energy landscape, and to compute ionic currents through the

nanochannel. These currents can be further validated by comparison with experi-

ments or with MD simulation data.
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4. Quasiparticles in narrow ion

channels

“Every great and deep difficulty

bears in itself its own solution. It

forces us to change our thinking in

order to find it.”

N. Bohr

4.1 Introduction

As discussed in the Introduction and Methods (chapters 1 and 2, respectively),

the highly-correlated motion of ions in the narrow selectivity filters of ion channels

cannot be described by a mean-field theory. The method capable of grasping this

problem – molecular dynamics – does not allow one to compare single-channel

currents routinely with experimental data. To connect the atomistic structural

features with the continuous description, one needs to account for the ion-ion

correlations. This can be done by virtue of the concept of a quasiparticle.

The notion of a quasiparticle can be used to describe collective ionic motion

in narrow channels [144,240]. This concept reduces the complexity of many-body

motion to the one-dimensional motion of a single quasiparticle in an effective

potential, providing a very clear physical interpretation of permeation [144, 241].

The idea was introduced in relation to a simple toy model, and the quasiparticle
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concept still needs to be connected to the structures of real channels.

Here, we extend this concept and derive an explicit relationship between the

effective potential of a quasiparticle and the multi-ion PMFs related to the struc-

ture of the channel. Thus, the channel’s atomic structure, ion-ion, ion-water,

ion-ligands and ion-pore interactions become automatically incorporated. The

formula is validated on the toy model of ion-ion and ion-channel interactions from

Refs. [144, 240] to simplify the comparison between the theoretical and BD sim-

ulation results. We also investigate the correlation between an entering/leaving

ion and the quasiparticle, which provides physical insight into the dynamics of the

transition process.

The results of this Chapter have been published in Refs. [207,242].

4.2 Methods

4.2.1 The motion of individual ions

As discussed in the Chapter 1, the selectivity filter (SF) of the biological KcsA ion

channel, shown in Fig. 3.1, is only a few angström wide [19]. Due to this narrow-

ness, the permeating ions cannot pass each other and therefore move effectively

in one dimension. This allows us to simplify ionic motion in the SF to dynamics

along the channel’s longitudinal axis z. The Langevin equation of motion for the

kth ion of species α is given by Eq.(3.1), the force begin given by

FN(rαm) = −∂WN(rαm)

∂rαm
(4.1)

where an N -particle PMF is given by Eq. (2.3). The PMF in the selectivity filter

of the KcsA channel is illustrated in the right panel of Fig. 3.6b.

As indicated above, the use of MD-generated PMFs in studies of nanoscale

systems yields several benefits. For instance, it self-consistently includes the ion’s

interactions with other ions in the pore, the effects of dehydration at the entrance
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and inside the channel, the induced charges on the pore walls, and the influence of

the flexible pore structure. Using state-dependent PMFs, we take a step towards

using the dynamical potential landscape [113].

4.2.2 Motion of quasiparticles

Importantly, the one-dimensional motion and strong ion-ion interactions allow

one to describe ionic collective [19] behaviour as the motion of a “quasiparticle”

(QP) [144], represented by the centre of mass qα and relative distances pαm between

neighbouring ions of a given species

qαN =

∑Nα

k=1 z
α
k

Nα
, α = K+, Cl−, . . . (4.2)

pαk = zαk+1 − zαk (4.3)

with respective velocities vα = żα and ṗαk . Here ions are numbered from outside to

inside as in [31] and Nα represents the total amount of ions in the channel. The

inverse coordinate transformation zαk = zαk (qN ,p) is given by Cramer’s rule where,

for clarity of notation, the set of relative distances is written as a vector [144]

p = {p1, p2, . . . , pN−1}. Generalization for multiple species is straightforward, and

unless explicitly stated we omit species’ indices in specifying the ion’s and QP’s

coordinates, for clarity. It is worth noting that the QP defined above [144, 240],

also known as a “quasi-ion” or a “super-ion” [241], represents the centre of mass

of the ions, whereas a “quasi-ion” (“permion”) [153, 243] includes the ion, water

molecules and the protein channel.

The potential energy of the system of ions located at Z = (z1, z2, . . . , zN) is

given by the PMF WN(z1, z2, . . . , zN). By expressing the coordinates of individual

ions zk = zk(q,p) via their centre-of-mass and relative distances {q,p}, one can

express the energy of the system via the parameters of the QP: WN = WN(q,p).

In the spirit of Ref. [144], we use the full Langevin equation (3.1) to describe
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the evolution of the QP’s position qα in time

q̈N = − kBT

mD∗N
q̇ − 1

mN

N∑
k=1

∂WN(zk(q,p))

∂zk
+

√
2(kBT )2

D∗N
ξ(t) (4.4)

p̈k = − kBT

mD∗N
ṗk −

1

m

[
∂WN(zk+1(q,p))

∂zk+1

− ∂WN(zk(q,p))

∂zk

]
+

√
2(kBT )2

D∗N
ξ(t)

(4.5)

The coefficient D∗N represents the transport diffusivity [244]. For interacting par-

ticles, this coefficient differs from a simple product ND between the number of

ions N and diffusivity D given in Ref. [144].

Applying the chain rule and making use of the definitions (4.2)-(4.3), one arrives

at

q̈N = − kBT

mD∗N
q̇N −

1

m

∂WN

∂qN
+

√
2(kBT )2

D∗N
ξ(t)

p̈k = − kBT

mD∗N
ṗk −

1

m

[
2
∂WN

∂pk
− ∂WN

∂pk−1

− ∂WN

∂pk+1

]
+

√
2(kBT )2

D∗N
ξ(t)

(4.6)

The above equations apply to the diffusion of a QP consisting of a fixed number of

ions. However, during permeation this number varies. For instance, the knock-on

mechanism, when an incoming ion causes the furthermost one to leave the channel,

appears to be inherent to the KcsA potassium channel [19]. The non-constant N

has two important consequences. First, it implies that the set of energy landscapes

WN for a QP is discrete, as we demonstrate explicitly in section 4.3. Secondly, the

discrete changes of pore occupancy lead to spatial jumps of the QP (Fig.4.1(a)).

The positions of a QP before and after a jump are coupled [144]. For instance, for

an N -ion QP located at qN , the entry (exit) of an ion from side S relocates it to

qN+1 (to qN−1) according to [144]

ion enters: qN+1 =
NqN + S

N + 1
, ion exits: qN−1 =

NqN − S
N − 1

(4.7)

as shown in Fig. 4.1(b). Thirdly, the diffusivity, charge, mass, and effective poten-
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Figure 4.1: (a) Example of QP motion in Brownian dynamics simulations, il-
lustrating a 3-ion QP that evolves into a 2-ion QP. Individual ionic trajectories
(black and grey traces) result in the motion of their corresponding QP (red). At
time t ∼ 0.5ns the rightmost ion leaves the channel; two ions remain, and the QP
consequently jumps from q3 to a new position q2. (b) The connection between
the QP coordinates before (plotted on the abscissa) and after (on the ordinate)
a jump. Each BD data point describes a single jump q3 to q2 (a circle) or q2 to
q3 (a cross). The set of q3 to q2 points fall on the steeper pair of parallel lines,
each point corresponding to an individual ion’s entry/exit through either the left
(dashed lines) or the right (solid lines) edge of the channel, as illustrated in the
inset where individual ions are grey and the larger orange circle represents the QP.
The set of q2 to q3 points fall on the similar but shallower pair of lines as described.
In each case, the lines represent the theoretical predictions of Eq. (4.7). The red
square indicates the q3 to q2 jump shown in panel (a), when the rightmost ion exits
the channel (pale grey trajectory). (c) and (d) show the equilibrium distributions
for 2-ion (orange) and 3-ion (blue) QPs. Figures have been taken from Ref. [207].

tial of the quasiparticle simultaneously change their values in a jump-like manner

as well.

Fig. 4.1(a) visualizes motion during a typical simulation. Corresponding to the

trajectories of single ions in the channel (black and grey traces), one observes the

centre-of-mass dynamics according to Eq. (4.6) (red). Ionic diffusion results in

the corresponding diffusion of the quasiparticle. At approximately 0.5ns after the

initial time, one of three ions escapes from the channel which results in the QP

abruptly jumping to a new position. Diffusion of the ion at the boundary back and

forth for some time gives rise to a series of jumps of the QP. These jumps cease

once the ion finally leaves the neighbourhood of the channel and travels further
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into one of reservoirs.

The correlation coefficients between coordinates are found to be within [0.75, 0, 85].

These high values confirm that the strong ion-ion interaction results in high cor-

relation between the individual ions and their centre of mass, the quasiparticle.

Fig. 4.1(b) represents Eq. (4.7) for the QP’s coordinates immediately before

and after a jump. Depending on the side of the entry/exit, the positions of the QP

before and after form two parallel lines. The non-uniform distribution of original

and final positions is due to the presence of interactions, and their centroids define

which transition occurs. For instance, a 3-ion quasiparticle resides in two more

probable positions (maxima of distributions in (c-d)). This means that the three

ions are located closer to the inner side of the channel, and one would expect

the innermost ion to leave the channel. This does happen (transition 3 → 2, red

square), with the QP relocating to the centre.

We also note that in the KcsA selectivity filter K+ ions reside at the binding

sites formed by carbonyl oxygen atoms [19]. Strong interactions with the latter

define the localization of individual ions very precisely [31,124,245]. The exact lo-

calization of individual ions results in a much sharper, almost discrete, distribution

of quasiparticles during permeation.

4.2.3 Coupling PMF WN(r1, r2, . . . ) to the effective poten-

tial U eff

Equation (4.6) describes the dynamics of the position q of the quasiparticle, but

still contains ion-ion distances p. To simplify Eqs. (4.6) further, the underlying

properties of interactions in the channel must be discussed. Due to the strong

interaction between ions, the relative distances pm reach their equilibrium values

rapidly, while the centre of mass moves adiabatically [144]. This allows one to in-

troduce the equilibrium distribution of mutual distances p, in terms of the position
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qN of the QP,

f̄(qN , {pk}) =
e−WN (qN ,p)/kBT∫

· · ·
∫
e−WN (qN ,p)/kBT

∏N−1
m=1 dpm

. (4.8)

Utilizing the equilibrium property (4.8), we multiply both sides of Eq. (4.6) by the

distribution function (4.8) and integrate over all {pk}. We also rewrite Eq. (4.4)

in overdamped form. This yields the Langevin equation for the expected position

of the quasiparticle 〈q〉

〈q̇N〉 =
D∗N
kBT

F eff
N +

√
2D∗Nξ(t) (4.9)

with

F eff
N = −dU eff

N

dq
= −

∫
∂WN(qN ,p)

∂qN
f̄N(qN ,p)

N−1∏
m=1

dpm. (4.10)

In the integral above one has to ensure that the coordinates of individual ions

xk(q,p) lie inside the channel.

Equation (4.10) is the main result of this Chapter. It explicitly couples the

PMF WN and the effective potential U eff
N for a quasiparticle whose dynamics

evolves according to Eq. (4.9). Thus, the notion of quasiparticles reduces the

many-body problem (3.1) to effective one-body motion. Moreover, the coupling

with MD by means of a PMF allows one to introduce atomistic details of the chan-

nel structure. The corresponding probabilistic description, given by the coupled

differential Chapman-Kolmogorov equations, is a matter for future study.

4.2.4 Simplifying assumptions for BD modelling

In order to verify the applicability of Eq. (4.10), we run Brownian dynamics simula-

tions in the toy model of ion-ion and ion-channel interactions proposed in Ref. [144].

This model envisages N ions interacting with each other and with the channel,
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the energy PMF of the system being given by

WN =
N∑
m=1

[
U(zm) +

N∑
k>m

V (|rm − rk|)
]
. (4.11)

The energy comprises the ion-channel interaction

U(z) = −U0 e
−(z/a)2 (4.12)

and the ion-ion potential

V (r) =
c1c2e

−r/d

4πε0εr
+
F0r0

9

(r0

r

)9

, (4.13)

where the first term represents the screened Coulomb interaction [144] with shield-

ing constant d and dielectric permittivity ε, and ionic charge c, while last term

includes short-range repulsion between ions at small distance [78]. The parameters

take the following values: a = 9Å, d = 2.8Å, U0 = 10.5kBT , F0 = 2 × 10−10N,

r0 = 2.8Å, ε = 1 inside the channel and ε = 80 in the bulk, D = 2 × 10−9m2/s.

We consider the case of zero applied electrostatic field.

The force Eq. (4.10) acting on the QP reduces to

F eff
N (qN) = −

∫
∂U(zm(qN ,p))

∂qN
f̄(qN ,p) dp. (4.14)

The toy model (4.11) simplifies the comparison of the analytical calculations

Eq. (4.14) with the PMF WN computed [121] in simulations from the equilibrium

distributions PN via

WN = −kBT logPN +Woff (4.15)

up to an arbitrary offsetting constant Woff . We consider explicitly the two distinct

PMFs corresponding to when there are either 2 or 3 individual K+ ions in the

channel.
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Figure 4.2: Two-dimensional (left column) and three-dimensional (right column)
PMFs WN , derived from BD simulations, represented in terms of the coordinates
of individual ions (top row) and quasiparticles (bottom row), the significance of
the colours being indicated by the colorbar. Slices of 3D PMFs are shown. Orange
sleeves trace the surface of constant potential energy 1kBT . The permeation paths
are indicated by black lines. Figures have been taken from Ref. [207].

4.3 Simulation results

In order to calculate the effective potential from Eq. 4.10, one has to transform the

coordinates {zm} → {qN ,p} and thus derive WN(qN ,p). This method becomes

attractive in the light of modern front-end studies of nanodevices which rely heavily

on MD. Thus, PMF maps for many nanoscale systems have already been built.

On the top row of Fig. 4.2 we illustrate the PMFs of Eq.(4.11), obtained from

BD simulations for two (a,b) and three (c,d) ions. Between jumps, ions move along

the permeation pathway (shown by a solid black line). For instance, considering

a two-ion case, an entering ion pushes its neighbour, so that the latter eventually
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Figure 4.3: The effective potential U eff
N calculated from the BD simulations using

Eq. (4.10) (dots and crosses), and theoretically via Eq. (4.14) (solid lines), for
the quasiparticles consisting of 1, 2, and 3 individual ions. U eff

1 (solid grey line)
coincides with U0 in Eq. (4.12). This diagram demonstrates how the multi-ion
PMFsWN , shown in Fig. 4.2, produce the 1D effective potential of the quasiparticle
using formula (4.10). Figure has been taken from Ref. [207].

leaves the channel. Theoretical and simulation predictions match well (not shown),

as they do in Figs. 1-2 of Ref. [241].

Under the coordinate transformation Eq. (4.2), the PMFs from the top row

in Fig. 4.2 are transformed into the PMFs of a quasiparticle, bottom row. The

two-ion permeation process outlined above can now be reinterpreted in terms of

permeation by a quasiparticle. Following the path on Fig. 4.2(c), one finds that

the distance between ions decreases, passes through a minimum and then increases

again, being accompanied by the overall displacement of the QP to the right. The

spatial displacement of the QP eventually leads to charge translocation through

the filter, i.e. to the electric current.

Finally, we compute the effective potentials U eff
N . As shown in Fig. 4.3, the

implementation of formula (4.10) shows very good agreement between BD sim-

ulations and the theoretical predictions Eq. (4.14). One can see that the 2-ion
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effective potential (solid blue line) inherits the minimum from the 1-ion potential

well U0 (solid grey line), but becomes shallower and wider. This occurs due to

the repulsive interactions which increase the ion-ion distances. Furthermore, the

3-ion effective potential (solid black line) become even wider and gains two local

minima located around ±0.7nm. The increased width of the effective potential

and its flatness imply that the QP is less localized. This energy landscape thus

defines the spatial range over which the charge is transferred during a permeation

event.

4.4 Correlations between ion and the QP

The transformation of one QP into another, and consequently ionic transport

through the channel, is associated with an outermost ion leaving or entering the

channel [22]. With this in mind, we first discuss the distributions of single ions

in the channel, and then elucidate their transition dynamics depending on the

position of the QP.

Figure 4.4 shows the distribution of 1, 2, and 3 ions inside the pore. For 1

ion, this is given by the Boltzmann distribution P ∼ e−U(q)/kBT as in this case

the ion and quasiparticle coincide. When two ions occupy the pore the ion-ion

repulsion creates a two-headed distribution at approximately ±0.5nm. With three

occupying ions, the outermost ion gains the freedom to reach the edge of the pore

and eventually leaves it.

The probabilities of each occupancy state are shown by the inset. The pore

primarily accommodates 1 - 3 ions, with a negligible chance of a 4-th ion enter-

ing. This occupancy distribution in fact represents the probability to find each

individual QP inside the pore. Switching from one QP to another suggests an

ion leaving or entering the channel, and thus produces ionic current – the main

experimental observable. For a better understanding let us consider the individual

ions’ trajectories and these of the QPs.

The transition processes describing either an ion entering the pore from the
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Figure 4.4: Distribution of 1, 2, and 3 ions inside the pore. The inset displays the
probability of each occupancy state. Figure has been taken from Ref. [242].

bulk, or exiting from the pore, need further clarification. With that in mind, we

introduce a cylinder of radius and height 5-Å at each end of the channel, represent-

ing the channel’s mouths. Thus the dynamics of the entering and leaving processes

can be monitored. The inset of Fig. 4.5 shows the distribution of residence times

(identically, of the cis trajectories [161]), showing how long on average an ion stays

in the mouth. Here, the trans trajectory corresponds to an ions crossing the chan-

nel, and the cis trajectory describes the ion approaching and leaving the channel

from the same side without crossing the channel.

However, these times should also depend on the location of the QP. To pro-

vide some preliminary insight into this question, we fix a pair of ions at a 2nm

separation inside the channel and analyse the corresponding changes in the dis-

tribution near the pore’s edges. This mimics the ionic configuration at a specific

position of the QP analogous to Fig. 4.4. For clarity, we consider three values of

q2 = {−0.5, 0, 0.5}nm. Eventually, the number density of K+ ions in the mouths

and the channel is measured.

One can see that once the QP is localised closer to the left (right) edge of

the channel, ions do not enter the channel from that side, but penetrate from the

“free” right (left) mouths of the channel. If the QP is at the centre of the pore
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Figure 4.5: Distribution of the mobile ions in the channel and the mouths when
a pair of ions in the pore is kept immobile. Thus the QP’s location q2 is fixed.
Inset: distribution of the residence times in the mouth. Figure has been taken
from Ref. [242].

then it provides an equal probability of entrance by an ion from either mouth.

The increased distribution in the channel or near the mouths suggests an increased

probability of entry, and therefore higher probability of permeation.

These findings can be understood in light of the screened Coulomb interaction

Eq. (4.13) between the ions. Thus, the bulk ions can be influenced by ions in the

channel at a finite distance (∼ d in our simulations).

This interactions between bulk and channel ions define which transition occurs.

If the QP approaches the edge of the pore it prevents an ion entering from the

bulk on this side but allows an ion to enter on the opposite side. When an ion

enters, it pushes the remaining ions such that the outermost ion leaves the channel

(knock-on conduction). This is an example of a trans trajectory [161,246].

These transitions are vital to understanding the channel’s permeation mecha-

nism. One often assumes non-interacting ions moving in a mean field [138,154,182],
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based on the unconditional probability densities [153,246]. However, this approach

evidently ignores the correlations between ions emerging from their interaction.

A more sophisticated analysis requires the use of conditional probability densi-

ties [153] that are closely related to the pair-distribution functions [153]. This

improved description of the transition process under arbitrary experimental con-

ditions – voltage, concentrations, and chemical composition [15] – can thus pave the

way to a more adequate definition of the transition rates in the kinetic [42,176,182]

theories.

4.5 Summary

We have derived the effective potential of a quasiparticle [144] from the potential of

the mean force [91]. The notion of quasiparticles allows one to reduce the collective

motion of strongly interacting ions to the motion of a single particle in this effective

potential. The inclusion of the PMF couples the effective potential with the energy

landscape created by all ions, water molecules, ligands and the X-ray structure of

the channel. Application of the derived relation, demonstrated to an analytical toy

model of interactions in the KcsA channel, enabled comparison of separate 2- and

3-ion analytical PMFs with those obtained from Brownian dynamics simulations,

and thus simplified the comparison between theory and simulations. The method

has direct application to modern molecular dynamics studies of nanoscale systems,

in which PMFs are the primary targets for study of permeation mechanisms.

It was shown that during permeation a quasiparticle undergoes both diffusion

and discrete jumps in space, motion leading to the electric current – the major

experimental observable. We show that the motion of the bulk ions in the mouths

and the transitions between different QPs are correlated. Namely, the presence of

the QP near one of the channel’s edges suggests a higher exit probability from that

edge and a higher entry probability on the opposite side. This appears important

to kinetic and rate theories where the transition process is the key to successive

description of conduction and selectivity.
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Thus, the notion of the quasiparticle couples the molecular dynamical calcula-

tions with the experimentally measured current-voltage and current-concentration

characteristics of the channel. It connects the atomic structure, the multi-scale

theoretical methods and eventually leads to experimentally verifiable predictions.

Further work may include BD simulations incorporating MD-generated PMFs

in e.g. the real KcsA channel [31,124]. It will be important to see how the K+/Na+

selectivity is reflected in the properties of the quasiparticle. Another direction of

possible development is the establishment of connection with continuous methods.

This suggests writing a set of coupled differential Chapman-Kolmogorov (DCK)

equations for each separate occupancy state, describing diffusion and transitions

of particles between states. Integration of the set of coupled DCK equations along

the channel axis would provide a further link to the kinetic rate theory [176].
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5. Using RDFs to quantify

hydration

“The aim of science is to make

difficult things understandable in a

simpler way...”

P.A.M. Dirac

As discussed in the Introduction chapter 1, the ionic potential during per-

meation affects the conduction and selectivity of a biological ion channel. The

potentials of the mean force (PMFs), representing these potentials, contain a large

energy contribution arising from the ion’s solvation by individual water molecules.

In this Chapter, we consider a graphene pore as a simple analogue of a biological

ion channel, in an attempt to decompose the PMF into a series of analytically

tractable terms. In doing so, we propose a novel method of calculating the dehy-

dration energy by means of the concept of a radial density function (RDF). This

method introduces the atomic-level information of the ion-solvent interactions, and

hence goes beyond the recent modification of the Born formula [158,247].

5.1 Introduction

Several models exist to describe ionic hydration. The basic estimation is given by

the Born formula which calculates the difference in the energy of the electrostatic
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fields, created by a single ion of radius R, in two dielectrics (see Appendix B for the

detailed derivation). This model assumes continuous isotropic dielectric solvent.

Considering a dielectric and vacuum, the Born formula reads as

∆Gdehydr =
(1

ε
− 1
) (Ze)2

4πε0R
(5.1)

The more advanced models generalize the Born formula by accounting for the size

of each ionic species present [248–250].

Recently, Zwolak and co-workers [1,158,247,251] introduced a shell model based

on the Born formula. The authors first assume the hydration cloud to consist of a

number of spherical layers according to the minima of the ion-water RDF. Each of

these layers is assumed to carry a specific amount of energy estimated by means

of the Born’s idea [158,247]

∆Gi
dehydr =

(1

ε
− 1
)(Ze)2

4πε0

( 1

RO
− 1

RI

)
(5.2)

where RI and RO stand for the inner and outer shell radii, respectively.

The second assumption states that when an ion enters a nanopore, the dehy-

dration barrier is given by the spherical surface area removed during dehydration

from each layer. Using geometrical estimations, Zwolak et al. estimate the fraction

of the removed area as [158,247]

1− fi =

√
1−

(Rp

Ri

)2

(5.3)

Here Rp is the pore’s radius and Ri is the radius of each spherical layer. Thus,

the total dehydration barrier suggests the summation of the contributions from all

layers [158,247]

∆G =
∑
i

∆Gi
dehydr(1− fi). (5.4)

One of the difficulties of the Born approximation in general, and consequently

Zwolak’s model, is the choice of the ion’s radius. On the nanoscale, this quantity
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is poorly defined [121] and can change in different solutions [252, 253]. Another

difficulty is the treatment of water as a structureless continuum. These models

approximate the solvent as a homogeneous isotropic dielectric. However, it is

known that the solvent molecules near an ion are distributed unevenly [110] as

governed by the radial density function (RDF) (see Fig. 5.2). The latter can be

measured in X-ray and neutron scattering experiments, as well as Monte-Carlo

and molecular dynamics simulations [110, 218]. Water distributions are routinely

measured in artificial nanopores and nanotubes [254–256].

Here, we utilize the RDF to describe, at least qualitatively, the water distri-

bution near a graphene pore and an ion near the pore entrance. We also provide

an approximation for the solvation contribution to a single-ion PMF when the ion

traverses the graphene pore, and provide preliminary results for K+ and Na+ ions.

5.2 Theory

The system comprises fixed graphene atoms in a hexagonal lattice, an ion (for

definiteness we assume K+ although this is equally applicable to other ions), and

a water box (Fig. 5.1). A hole in the lattice was created by removing one hexagon

of carbon atoms in the centre.

Assuming additivity of pairwise interactions, the energy of a water molecule in

the field created by the graphene atoms and the ion is given by

W (r) = WI−W (r− rion) +

NC∑
n

WC−W (r− rCn ) +
Nw−1∑
m

WW−W (r− rWm ). (5.5)

Here WI−W stands for the ion-water, WC−W represents the carbon-water, and

WW−W introduces the water-water interactions. NC and Nw are the numbers

of carbon atoms and water molecules, respectively. It is worth noting that the

interactions of a water molecule with an ion or a carbon atom depend on the water

model [257], and ultimately should include the distance to and the orientation of

the water molecule. For simplicity these contributions are implied in WI−W and
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(a)

(b)

Figure 5.1: MD setup to study the spatial distribution of water molecules. (a)
The hole in the graphene layer. Graphene lattice is shown in cyan, water molecules
are represented by red-and-white triangles, K+ and Cl- are shown by golden and
blue spheres, respectively. (b) A K+ ion at the entrance to the pore.

WC−W .

Direct application of the above analytic formula does not appear feasible due

to the large number of degrees of freedom. Instead, we construct an approxi-

mation using the concept of the radial density function (RDF). It is known that

the potential of the mean force (PMF) W is rigorously related to the RDF g(r)

via [110,218,258]

W(r) = −kBT ln (g(r)). (5.6)
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This allows one to approximate the potential (5.5) via

W (r) =WI−W (r− rion) +

NC∑
n

WC−W (r− rCn ). (5.7)

Note that when using the PMF the interactions with water are already implicitly

included.

Formula (5.7) assumes that the water spatial density ρ(r) satisfies

ρ(r) = ρ g(r) = ρ e−W(r)/kBT

= ρ e
− 1
kBT

[
WI−W (r−rion)+

∑NC
n WC−W (r−rCn )

]
= ρ e−WI−W (r−rion)/kBT ·

NC∏
n

e−WC−W (r−rCn )/kBT .

(5.8)

Using the relations

gI−W (r) = e−WI−W /kBT (5.9)

gC−W (r) = e−WC−W /kBT (5.10)

between RDFs and PMFs, we rewrite expression (5.8) as

ρ(r)

ρ
= gI−W (r− rion) ·

NC∏
n

gC−W (r− rCn ) (5.11)

which is the first main result of this Chapter. It allows us to compute the density

of water wetting a given set of atoms in terms of RDFs. This formula corresponds

to the well-known Kirkwood superposition approximation [120]. It has also been

generalized to describe the ice-water interface [259] or to include the 4-th order

correlations [260]. Here, we for the first time apply this relation to describe the

ion’s solvation structure in artificial nanopores. The next step is to evaluate the

solvation energy of an ion arbitrarily located in that system. It can be done as

follows.

First, given the RDF, one can calculate the interaction energy of the ion with a
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water molecule via Eq. (5.9). Collecting these interactions with all water molecules

from the entire system, one arrives at

G = ρ

∫
V

u(r)g(r)dr. (5.12)

This integral runs over the volume V occupied by water. In conjunction with

Eq. (5.11), formula (5.12) represents the second important result of this Chapter.

It provides a method to evaluate the ionic solvation energy at an arbitrary spatial

point.

5.2.1 Decomposition of the PMF

Eq. (5.12) provides an analytical tool to calculate the PMF of a given ion for a

pore of specified chemical composition. Indeed, the single-ion PMF in the pairwise

limit can be decomposed according to [259]

W =
∑

all FCs

WI−FC +
∑
lattice

WI−L +
∑

all waters

WI−W . (5.13)

The energy contributions in this formula include the interactions of the ion with

fixed chargesWI−FC , lattice atomsWI−L, and water moleculesWI−W (hydration);

spatial coordinates are omitted for clarity. The interaction with the fixed charge

can be approximated via e.g. the screened Coulomb law (3.6). The form of the

interaction with the lattice can be taken directly from a molecular dynamics force

field [110].

Formula (5.12) can be adapted to any lattice and any ion type. The RDFs can

be measured experimentally in X-Ray studies, evaluated via the RISM theory or

Kirkwood-Buff theory, or measured in MD simulation [110, 261, 262]. Thus, one

can consider the difference in the sieving ability without running a heavy-duty MD

simulation. Equation (5.13) can be applied to study the selectivity by e.g. MoS2

or graphene nanopores for the same ionic species, or to consider how well does the

graphene pore selects between different ionic species. We have made preliminary
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analyses of K+/Na+ selectivity by an uncharged nanopore in the Results section.

5.3 Simulation results

The MD simulation details can be summarized as follows. We used VMD [58] to

build the system, and NAMD [263] with a CHARMM27 force field for molecular

dynamics simulations at T = 300K with the time step 0.5fs and the velocity Verlet

algorithm. The TIP3P [264] water model was used. All carbon atoms were fixed by

setting the beta parameter to 1. The system first undergoes equilibration during

the initial 1000 steps in the Nosé-Hoover thermostat at pressure p = 1 atm, with

the remaining simulation running under the NVT conditions. No electric field is

applied. The production runs took 5 ns to yield statistically significant numbers.

Trajectories are further read by an MDTools script in MATLAB [265], and

further analysed by a home made script to generate the distributions. RDFs were

measured for a free atom (C or K+) in water surroundings. When the K+ RDF

was measured, another free Cl- ion was added to neutralize the system. Finally,

RDFs were measured using the VMD plugin gofr.

5.3.1 Water density

The first step towards predicting the water structure is to describe the water

distribution near the pore (Fig. 5.1a). First, we run a separate MD simulation to

measure the RDFs for water-ion and water-carbon pairs. The results are shown

in Fig. 5.2(a) and (b) with the corresponding PMFs (5.9) given in (c) and (d).

Due to the electric interaction between the ion and the negative oxygen of a water

molecule, one observes a highly pronounced peak at r ≈ 2.7Å. The water-carbon

interaction does not involve electric interactions and is therefore not so emphasised.

Both distributions tend to 1 as r →∞ as expected from theory [110]. These RDFs

agree well with published data [266].

Next, we added a honeycomb lattice of fixed carbon atoms in the XY plane of
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(a) (b)

(c) (d)

Figure 5.2: Radial density functions (RDFs) for (a) K+ and (b) Na+. RDFs for
ion–O- (blue), ion–H+ (cyan), and C–O- (black), measured for unrestrained atoms
in water. Potentials of the mean force (PMFs) corresponding to the ion–O- (blue),
ion–H+ (cyan), and C–O- (black) interactions. The PMFs for (c) K+ and (d) Na+

are calculated from the corresponding RDFs via Eq. (5.9).

the simulation box. A pore was made by cutting out a hexagon of carbon atoms

near the centre of the graphene sheet (Fig. 5.1). MD density profiles are shown in

Fig. 5.3(a). One can see the water structure near the graphene wall and the pore.

Water molecules form layers in the axial direction. This pattern is reproduced by

means of Eq. (5.11) on Fig. 5.3. This inhomogeneous distribution represents one

of the limitations of the Born formula (5.1).

After averaging over angles, the water density profile is shown by the blue

distribution in Fig. 5.4. Although the dips and peaks of the two curves match,

their amplitudes are actually different. This is expected as the RDF represents

the density in a 3D sphere while the axial density implies cylindrical geometry.

In the latter, for instance, each water molecule interacts with more carbon atoms

compared to a free bulk.

The second test suggested adding an ion to the system. Two configurations
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Graphene nanopore

(a) (b)

Ion in the pore centre

(c) (d)

Ion at the pore entrance

(e) (f)

Figure 5.3: Water distribution near a graphene wall for (a, b) the bare pore, (c, d)
a K+ ion in the pore centre, and (e, f) a K+ ion away from the pore. (a, c, e) Water
distribution, all-atom MD simulation. (b, d, f) Superposition of RDFs, analytic
Eq. (5.11). One can see that the qualitative structure of the water distribution
(ridges and valleys, islands of high and low density) is reproduced well. At the
same time, there is a numerical difference between the simulation results and the
theoretical predictions. The orange concentric circles represent the maxima the
intact hydration shells, corresponding to the RDFs in Fig. 5.2a, and are given as
a guide for the eye.
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Figure 5.4: Axial distribution of water molecules in an MD simulation (blue)
matches the peaks and lows of the carbon-water RDF (cyan), although it reveals
different numerical values. This discrepancy is expected to emerge from the dif-
ference in geometries: cylindrical in the first case vs. spherical in the latter. The
potassium-water RDF (red) is given for comparison.

were considered: the ion located exactly in the middle of the pore, and 4Å away

from the pore centre. For simplicity, ions were frozen at their respective loca-

tions, i.e. the ionic coordinates did not change in time. The results of measured

distributions are shown in Fig. 5.3(c-f). The change of water structure is obvi-

ous. The attraction between positive K+ ion and negative water oxygens leads to

highly populated areas at the pore entrances. Interestingly, these areas are sepa-

rated by “islands” very seldom visited by water molecules. Finally, when an ion is

dislocated at the pore entrance, the water distribution clearly represents a super-

position of two contributions: planar density oscillations from the wall and circular

oscillations from the ions [267]. All the above effects are readily reproduced by

our method (Fig. 5.3(d)).

It is expected these structural effects can manifest themselves indirectly in ex-

perimental studies. The properties of the water structure near the pore and in free

bulk differ, and this difference should be revealed in the terahertz spectrum [268].

Water dipoles also have a preferred orientation near the pore and the ion, which

significantly reduces the dielectric constant and thus can be verified via scanning

dielectric microscopy [214]; although, this task at the sub-nanometer scale involves

significant experimental challenges. The alteration of the vibrational properties of
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water molecules near the pore and/or the ion should produce noticeable finger-

prints in two-dimensional infrared spectra, similar to the ones reported for two

alternative permeation mechanisms in the biological KcsA channel [67].

5.3.2 Profile of the solvation energy

We have also undertaken preliminary estimations of the PMF using our approach

by means of formula (5.12). Only the ion-water interactions were considered in

order to focus on the hydration contributions. Figure 5.5(a) shows the hydration

(a)

(b)

Figure 5.5: (a) Preliminary estimations of the desolvation profiles by means of
Eq. (5.12). The difference between K+ and Na+ profiles gives rise to the K+ over
Na+ selectivity. (b) K+ PMFs obtained in a MD simulation [1] for a slightly differ-
ent geometry of the graphene nanopore. Adapted with permission from Ref. [1].
Copyright (2017) American Chemical Society.

profiles (in arbitrary units), computed via Eq. (5.12). According to the differ-

ence in RDFs, and consequently PMFs, of K+ and Na+ ions as shown in Fig. 5.5,

smaller Na+ ions interact more strongly with the surrounding water molecules.

This gives rise to a higher desolvation barrier seen in panel (a). In other words,
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this graphene pore is K+-selective, which agrees with literature [85]. For compar-

ison, we show the PMF from an uncharged graphene pore Fig. 5.5(b) [1] which

is contains a ∼ 5kBT energy barrier. The barrier for Na+, according to ab initio

MD [269], is higher and may vary within 8-54 kBT . Both profiles reveal a qualita-

tively similar shape, the quantitative differences being attributed to the structural

difference between the pores’ geometries and the preliminary nature of the calcu-

lations. Nevertheless, the profile, obtained via Eq. (5.12), can be rescaled by the

peak value for the dehydration barrier, Fig. 5.5(b), and be further included into

the Nernst-Planck equation (2.5) to analytically evaluate the ionic current through

the given nanopore.

5.4 Discussion

In contrast to the Born approximation and its amended versions [247, 248], our

method does not require the inclusion of the ionic radii – a parameter which is

vaguely defined on the nanoscale [122] and may vary in different solvents [252,253].

We have illustrated, both by an MD simulation and by calculation, that the water

density is inhomogeneous near the nanopore thus breaching one of the assump-

tions behind the Born approximation. The RDFs can be obtained experimentally

in X-ray or neutron scattering studies [110], RISM [261], or in a separate MD

simulation, and thus the interaction between arbitrary ionic species (e.g. K+ or

Na+), solvent (e.g. H2O or D2O) and lattice configuration (MoS2, graphene etc.)

can be incorporated.

The method can be improved in a number of ways. First, the currently static

lattice of atoms and the ion should instead undergo thermal fluctuations around

their corresponding locations according to the molecular forces. A Taylor ex-

pansion of the potential energy up to the quadratic term should provide for the

analytically tractable approximation. Secondly, the orientation of water molecules,

especially in the vicinity of the nanopore, should be considered. It has recently

been demonstrated that the orientation of water molecules affects the forces ex-
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erted on the entering ion, which in turn affects the pore’s transport properties [270].

Doing so suggests the inclusion of the water-water interactions, in contrast to the

current coarse-grained treatment of the water molecule implied by the RDF. The

orientation and motility of solvent molecules is known to contribute to dielectric

permittivity [271], which is a vital input to calculate the electrostatic field in-

side the pore [161]. Finally, it is reasonable to generalize our method to account

for the 3D cloud of solvent or ligand molecules [44] instead of using the spher-

ically symmetrical approximation. This can be done with the help of spherical

harmonics, and appears essential to quantify the ion-ligand interaction inside the

nanopore. As already discussed (see Chapter 1), the later interaction is the key to

the nanopore’s selectivity.

5.5 Summary

The properties of biological nanopores are most comprehensively given by a poten-

tial of the mean force (PMF), which quantifies how an ion interacts with other ions,

the pore and surrounding water. The interplay between the two latter components

defines the selectivity of a pore. Efficient quantitative description, self-consistently

accounting for the pore structure, atomic composition and ions in the pore, is hence

vital for the prediction of ionic currents through mutated biological channels and

the design of functionalized artificial nanopores.

In this Chapter, an analytical theory to describe water density Eq. (5.11) and

a method to evaluate the solvation energy (5.12) of an ion in a water environment

is presented. For the first time, that approach is applied to artificial graphene

nanopores. The proposed method relies on the use of the 1D bulk radial density

function (RDF) in estimating the water density near the nanopore, as well as it

automatically accounts for the pore shape, type of atoms the lattice consists of,

type of solvent, and the ion’s location near the pore entrance. Thus, one becomes

capable of describing water density and evaluating the solvation energy of an ar-

bitrary ion in a nanopore made of arbitrary material, which appears of primary
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importance in molecular modelling [262, p.38]. This method does not require

heavy-duty MD simulations, and thus is expected to provide an efficient analytical

tool predicting the conductive and selective properties of artificial nanopores from

their atomic structure.
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6. Concluding remarks

6.1 Summary

In brief, this thesis has presented:

• A review of the physiological properties of ion channels and artificial nanopores

(see Chapter 1). This included a discussion of conductive and selective prop-

erties of the biological KcsA K+ channel and artificial nanopores.

• A description and discussion of the experimental, computational and theo-

retical techniques to describe ion channels’ properties (chapter 2), including

detailed analysis of their strengths and weaknesses. It was concluded that the

most promising combination is BD with a multi-ion MD-generated PMFs,

because this allows one to combine the atomistic details and computational

speed.

• A detailed description of the Brownian dynamics simulation technique (see

Chapter 3), with specific focus on the selection of settings to reflect the key

physical effects. A large number of tests was performed to validate the BD

simulation. A “stitching” procedure, required when using a multi-ion PMF

in a BD simulation, was proposed.

• A comparison of the computational efficiency, physical contribution and ac-

companying side effects of treating the domain boundaries in atomistic sim-

ulations. For simulations with a fixed number of particles, periodic, cyclic
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or stochastic boundaries are the optimal choice. However, to simulate a sys-

tem with a chemical gradient, the more computationally demanding GCMC

routine should be used. The GCMC algorithm is most suitable in light of

comparison with multi-variable electrophysiological experiments. The effect

of the channel’s walls still has to be considered to complement MD-generated

PMFs inside the channel.

• A study of the quasiparticle’s motion in a toy model of the KcsA channel (see

Chapter 4). This included derivation of the equation of motion of the QP,

the connection between the QP’s effective potential and a multi-ion PMF,

and the correlation between the QP and an entering/leaving ion.

• A method to describe the distribution of water surrounding an ion at the

nanopore entrance in terms of the radial density function (RDF) (see Chap-

ter 5). Using this distribution, one can evaluate the dehydration barrier

and further provide an analytical decomposition of a single-ion PMF. Com-

parison between our method and MD simulations revealed good qualitative

agreement for the water density and the PMF profiles.

6.2 Conclusions

Narrow biological ion channels demonstrate a wide range of phenomena — conduc-

tion, selectivity, blocking — due to the presence and interplay between the ion-ion,

ion-water, ion-pore, and other interactions. A consistent and accurate description

of this multi-faceted picture has become a long-lasting topic of theoretical and

computational research. The ultimate aim of our research is to correctly predict a

channel’s properties starting from its atomically-resolved crystal structure.

The primary focus of the thesis was to describe the correlated motion of the

ions adequately accounting for the atomic interactions, including the effect of the

channel and other ions. The approach connected the genuine multi-ion potential

of the mean force (PMFs) and the concept of quasiparticle, with further valida-
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tion by virtue of Brownian dynamics simulations. In addition, we have proposed

a method to analytically evaluate the dehydration barrier – one of the main com-

ponents of the PMF determining ionic selectivity – thus improving the existing

approach. It is believed the results will find application to other narrow channels

and functionalised artificial nanotubes, where single-file conduction and ion-water

interactions play key roles.

The main results of the thesis are listed and detailed below:

1. A significant development of the BD simulation procedure. It allows for ar-

bitrary chemical composition of bulk solutions, arbitrary concentrations in

bulks, transmembrane electrostatic potential and the inclusion of the MD-

generated multi-ion PMFs. The latter allows one to maintain the speed of

BD and exploit the atomistic accuracy of MD via an implicit inclusion of

the channel’s X-ray structure. We estimated the current-voltage and current

concentration curves for a graphene nanopore and a toy model of the biolog-

ical KcsA ion channel. We also undertook a comparison with the available

experimental data for the KcsA channel, and found good qualitative agree-

ment. The BD system can be further adapted to investigate selectivity,

blocking, channel mutations, and the effect of pore fluctuations. Thus, this

BD system allows one to connect the atomistic structure and the biophysical

experiments with ion channels in natural environment under a wide range of

experimental conditions.

2. We have derived a formula (4.10) connecting the multi-ion PMF and the

effective potential for the QP. Using a toy model of the ion-channel and

ion-ion interaction in the biological KcsA ion channel, excellent agreement

between the BD simulation and the predictions of the formula has been

demonstrated. The multi-ion PMF allows one to account self-consistently

for the ion-ion, ion-water, ion-ligands and ion-pore interactions with atomic

resolution. Thus, the concept of QP represents the fundamental importance

for narrow ion channels with single-file conduction mechanism, as it connects
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an arbitrary multi-ion atomic PMF with measurements in real biological ion

channels.

3. A demonstration for the first time of the correlation between an ion, enter-

ing/leaving the channel, and the QP. It has been shown that when the QP

is closer to the channel edge, ions are unlikely to enter. Conversely, the en-

trance probability increases when the QP is located far from the edge. These

results provide an important insight into the dynamics of the ion’s transition

what proves an essential ingredient in the statistical and kinetic theories.

4. An analytical theory of ion dehydration in narrow pores was introduced based

on approximation of the radial distribution functions. This approach allows

one to evaluate the distribution of water molecules near an ion entering a

graphene pore, and to evaluate the energy barrier cause by desolvation. Our

method goes beyond the recently-proposed layered Born model with geomet-

rical constraints [247]. Namely, our method automatically accounts for the

pore shape, type of atoms the lattice consists of, type of solvent, and the ion’s

location near the pore entrance. Analytically tractable decomposition of a

PMF and in particular efficient analytical estimation of dehydration barriers

is essential for designing selective artificial nanopores in order to construct

high-throughput water desalination membranes.

6.3 Future work

Future work may develop along the following lines.

Extensive BD simulations with MD PMFs. An obvious application of the

BD system described in Chapter 3 is to use the multi-ion PMFs to study both alike

and valence selectivity in KcsA. Some of these PMFs have already been derived

in MD studies of the KcsA ion channel [21, 272]. One should be able to compare

these results with experimental data.
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Another closely related direction is to computationally study the effect of point

mutations. To do so, one will need to transform one of the amino acids lining the

pore into another. For instance, it has been shown experimentally that changing

serine (S) to aspartate (D) in the NaChBac biological ion channel switches its

selectivity from Na+ to Ca2+ [18, 273]. The BD simulation can predict the I-V

and I-C relations for the mutants that has not yet been studies experimentally.

Differential Chapman-Kolmogorov (DCK) theory. Another essential step

towards building a multi-scale theory of conduction and selectivity in narrow ion

channels is to describe the motion of the quasiparticle probabilistically. Using the

Langevin equation (4.9) in the effective potential, one can immediately write the

corresponding Fokker-Planck equation

∂ρm
∂t

= −Dm
∂

∂q

[
∂U eff

m (q)

∂q
ρm +

∂ρm
∂q

]
+Wm+1→mρm+1 +Wm−1→mρm−1

−Wm→m+1ρm −Wm→m−1ρm

(6.1)

This equation accounts for the QP’s diffusion (first line), and transitions between

states (remaining lines). The key point here is to quantify the QP’s diffusivity Dm

and the rate Wm→n between states. It is important to note that these parameters

change in different states of the QP, as do the charge and mass of the QP. In

Chapter 4 we have already demonstrated that the potential U eff
N changes with

the number of ions in the channel, and obtained some preliminary results on the

distribution of transition rates in Chapter 4. Combining all parameters to together

in Eq. (6.1), one can estimate the electric current and compare it with available

experimental data.

Using the multi-ion PMFs, one should also be able to explain selectivity using

the language of quasiparticles. In doing so, the definition of the QP has to be

rewritten to incorporate multiple species. The difference in the effective potentials

for these QPs should reveal a difference that results in the selectivity of this ion
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channel.

Using quasiparticles to quantify gating. It is known that the opening of an

ion channel is associated with the motion of the S4 helix [52, 274]. Each S4 helix

carries 4 positive charges, usually arginines, that are tied to the helix. Such a

system represents an ideal candidate for a quasiparticle, as the charges move in a

concerted manner [52]. Thus, it is proposed to derive the effective potentials in

which this S4 quasiparticle moves, using Eq. (4.10), and to describe the transloca-

tion of the gating charge with atomic accuracy. These theoretical predictions can

be further compared with experimental gating currents [275].
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A. List of BD tests

A BD simulation can be validated against the following checks:

1. Setting: 1D motion, no external potentials, no ion-ion interactions, no bound-

aries.

Expected outcome: One should recover the Einstein relation 〈x2〉 = 2Dt.

2. Setting: 1D domain with a potential U(z), non-interacting particles, reflect-

ing boundaries.

Expected outcome: Distribution must coincide with ρ ∼ exp(−U(z)/kBT )

after an appropriate normalization.

3. Setting: 1D domain, open boundaries, non-interacting particles, asymmetri-

cal bulk concentrations.

Expected outcome: One should recover the distribution (and compare to an

analytical solution or BVP in MATLAB) and the resulting flux.

4. Setting: Non-interacting particles, 3D BD domain, no electric field, equal

ionic concentrations.

Expected outcome: No statistically significant current flows.

5. Setting: Non-interacting particles, 3D BD domain, no electric field, asym-

metrical ionic concentrations.

Expected outcome: The current should satisfy the analytical solution given

by the Fick’s law.
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6. Setting: Non-interacting particles, 3D BD domain, non-zero electric field,

equal ionic concentrations.

Expected outcome: The flux should satisfy the analytical solution given by

the Nernst-Planck equation (2.5).

7. Setting: 1D domain with a potential U(z), interacting particles [276].

Expected outcome: Two distribution peaks must appear with their maxima

located at the energy minima. The distribution is also analytically/numerically

derivable.

8. Setting: Field-free domain, interacting particles [276].

Expected outcome: Maxwellian velocity distributions, the characteristic value

of particle velocity is 130 m/s, velocity correlation functions (should be expo-

nential with τ = 1/γ). The BD integrator should maintain the temperature

constant [110,222].

9. Setting: 3D BD domain with charged particles.

Expected outcome: Positive particles move along the field (i.e. against the

voltage drop), negatively charged particles should move in the opposite di-

rection.

10. Ions do not interact across the membrane.

11. Setting: Large fixed charge.

Expected outcome: all counter-charges pile up at entrance or in the channel,

while the alike charges get repelled.

12. Setting: Only one ionic species is present in the form of a localised group

within an infinite domain.

Expected outcome: A rapid expansion (burst) of the ionic cloud due to ionic

repulsion should occur. Although this sounds obvious, it immediately verifies

whether the correct sign in ion-ion forces is being used.
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13. When modelling the KcsA channel, negative ions do not pass through the

channel.

14. Bulk and buffer concentrations remain constant during a simulation at the

prescribed value for each species. In other words, they do not grow in num-

bers or get depleted.

15. Rule of thumb for the reservoirs: 100mM solution corresponds to 0.06 part

/ nm3, N = 7.3 particles in 120nm3.

16. Rule of thumb for ionic currents: 1 pA = 1 particle per 160 ns.

17. The ultimate validation: simulation currents corresponds to the experimen-

tally measured values in a channel under various experimental conditions

(voltage drop, concentration, species present).
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B. Derivation of the Born formula

Assume a continuous isotropic solvent of dielectric permittivity ε surrounding a

spherical ion of radius R and charge Ze (e > 0). The electric induction vector

reads as

D =
Zer

4πε0r3
. (B.1)

Using the relation

D = ε0E + P

connecting D with the electric field and the polarization vectors, and the consti-

tutive relations in isotropic dielectric

P = χε0E = (ε− 1)ε0E

we arrive at

P(r) =
(

1− 1

ε
D
)
.

The energy of the ion in the electric field equals the energy of the electrostatic

field [277]

Uε =
1

2

∫
All space

E D dV =
1

2

∫
All space

E D r2 dr dΩ

= 4π
ε0
2ε

∫ ∞
R

( Ze

4πε0r2

)2

r2 dr = −(Ze)2

4πεε0

1

R
.
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The energy difference of moving the ion from medium with ε1 to a medium with

ε2 is

∆Ghydr = Uε2 − Uε1 = −
( 1

ε2
− 1

ε1

)(Ze)2

4πε0

1

R
. (B.2)

For ε1 = 1 this formula transforms into the Born formula [277]

∆Ghydr = Uε2 − Uε1 = −
( 1

ε2
− 1
)(Ze)2

4πε0

1

R
. (B.3)
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C. The van Gunsteren and

Berendsen’s integrator

Equation (3.1) has to be digitized in order to be processed on a computer. For

clarity, we omit the super- and subscripts representing the ionic species or the ion’s

number. The rule to update ionic coordinates reads as follows [134]

r(tn + ∆t) =r(1 + exp (−γ∆t))− r(tn −∆t) exp (−γ∆t)

+
F(tn)

m

(∆t)2

γ∆t

[
1− exp (−γ∆t)

]
+

Ḟ(tn)

m

(∆t)2

(γ∆t)2

[γ∆t(1 + exp (−γ∆t))

2
− (1− exp (−γ∆t))

]
+ Ξn(∆t) + exp (−γ∆t)Ξn(−∆t) +O[(∆t)4].

(C.1)

The essential step is to sample Ξn(∆t) and Ξn(−∆t) that are correlated. This is

do by means of following steps [134].

C(γ∆t) = 2γ∆t−+4 exp (−γ∆t) (C.2)

G(γ∆t) = exp (γ∆t)− 2γ∆t exp (−γ∆t) (C.3)

E(γ∆t) =16[exp (γ∆t) + exp (−γ∆t)]− 4
[

exp (2γ∆t) + exp (−2γ∆t)
]

− 24− 4γ∆t
[

exp (γ∆t)− exp (−γ∆t)
]

+ 2γ∆t
[

exp (2γ∆t)− exp (−2γ∆t)
] (C.4)

125



Care should be taken with numerically rounding-off small numbers when comput-

ing coefficients C, G, and E in MATLAB. Otherwise the output becomes complex

with small imaginary values. The minimal accuracy in MATLAB (call eps func-

tion) is 2.2204× 10−16, and so one should add 1× 10−16 to any denominators that

are likely to be small.

To simplify further formulas, it is convenient to introduce

σ2
2[1− r2] =

√
D

γ

E(γ∆t)

C(γ∆t)
(C.5)

r
σ2

σ1

=
G(γ∆t)

C(γ∆t)
(C.6)

so that

Ξn(−∆t) = r
σ2

σ1

Ξn−1(∆t) + σ2
2[1− r2]Ξ (C.7)

where Ξ is a newly generated N × 3 array of random Gaussian numbers of unit

variance.

The velocity of the particles can be evaluated by means of

v =
H(γ∆t)

∆t

{[
r(tn + ∆t)− r(tn −∆t)

]
+

[
F(tn)

m

(γ∆t)2

(γ∆t)2
− Ḟ(tn)

m

(∆t)3

(γ∆t)3

]
G(γ∆t)

+
[
Ξn(−∆t)−Ξn(∆t)

]}
(C.8)

with

H(γ∆t) =
γ∆t

exp (γ∆t)− exp (−γ∆t)
. (C.9)

In the limit or large time steps, the algorithm (C.1) simplifies to

r(tn + ∆t) = r(tn) +
F(tn)∆t+ 1

2
Ḟ(∆t)2

mγ
+ Ξn(∆t) (C.10)

where Ξn(∆t) is the appropriately sized set of Gaussian random numbers with
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zero mean and variance 〈
Ξn

2(∆t)
〉

=
2kBT

mγ
∆t. (C.11)
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Glossary

Activation A transition from a non-conductive to a conductive con-

formation of an ion channel.

AMFE Anomalous mole-fraction effect (AMFE) implies that

the dependence of the conduction on the mole fraction of

the present ionic species has a minimum. In other words,

the channel reveals smaller currents when exposed to bi-

ionic same-sign ionic solutions than if exposed to a pure

solution of either electrolyte.

Binding site A site in the pore of a biological ion channel where ions

predominantly reside (bind) during permeation.

Bjerrum length The characteristic separation between two charges at

which the magnitude of the electrostatic energy becomes

equal to the thermal energy.

Born energy The solvation energy of an ion, calculated as the energy

of the electrostatic field in the dielectric surrounding the

ion.

Carbonyl group The -CO- functional group of atoms, which carries a neg-

ative charge.

Carboxyl group The -COO- functional group of atoms, which carries a

negative charge.
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Current saturation A sublinear dependence of ionic current on the con-

centration of ions in an electrolyte as a consequence

of single-file conduction in narrow channels. This phe-

nomenon is often referred to as Michaelis-Menten satu-

ration due to the analogy with enzyme kinetics.

Debye-Hückel theory A simplified model describing the properties of elec-

trolytes. It uses the Poisson and Boltzmann equations

to describe the equilibrium electric field around a single

ion and consequent properties of the electrolyte solution.

Debye length The characteristic length in the linearized Debye-Hückel

theory at which the electrostatic field around an ion

weakens by a factor of e.

Electrical double layer A structure forming at the surface of an object exposed

to a solution of electrolyte.

Excess chemical po-

tential

The difference between the chemical potential of a given

species and that of an ideal gas under the same condi-

tions (in particular, at the same pressure, temperature,

and composition)

Functionalization In the context of artificial nanopores, the modification

of the original pore structure for a given application, by

adding functional groups, fixed charges, or embedding

atoms of a different species.

Gate The domain of an ion channel mechanically controlling

the openness of the pore.

Gating charge The charge of the positive amino acid residues on the

S4 helix of the voltage sensor domain of a voltage-gated

ion channel

Ion channel A pore-forming protein enabling the permeation of ions

across the cellular membrane.
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Ionic Coulomb block-

ade (ICB)

An oscillating dependence of the ionic current through

a nanopore in response to increasing the charge embed-

ded in the pore. This phenomenon occurs due to the

discreteness of the electric charge and is therefore funda-

mentally analogous to the electronic Coulomb blockade.

Knock-on conduction A type of ion permeation in narrow nanopores, in which

the ion entering from one side interacts with ions within

the pore and thus eventually expels the outermost ion

on the far side.

Ligand An ion or molecule (functional group) that binds to a

central metal atom to form a coordination complex.

Patch-clamp tech-

nique

An electrophysiological method allowing one to study

the conductive properties of the cellular membranes and

individual ion channels of biological cells.

Potential of mean

force (PMF)

The statistically averaged potential energy of a subsys-

tem, thermodynamically averaged over the irrelevant de-

grees of freedom.

Radial density func-

tion (RDF)

A function proportional to the probability of finding a

particle at a specified distance from the reference parti-

cle.

Selectivity The property of an ion channel to conduct preferably

one ion species while hampering that for the others.

Selectivity filter A (usually narrow) part of the pore responsible for con-

ferring the channel’s selective properties.

Self-energy barrier An electrostatic barrier emerging at the interface of two

media with different dielectric permittivity due to repul-

sion exerted by image charges.
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Hernández Sánchez. Single-walled carbon nanotubes: Mimics of bio-

logical ion channels. Nano Lett., 17(2):1204–1211, 2017. PMID: 28103039.

[37] Juan J. Nogueira and Ben Corry. The Oxford Handbook of Neu-

ronal Ion Channels, chapter Ion Channel Permeation and Se-

lectivity. Oxford Handbooks Online, 2019. published online,

URL: https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/

9780190669164.001.0001/oxfordhb-9780190669164-e-22.

[38] Ben Corry. Na+/Ca2+ selectivity in the bacterial voltage-gated sodium chan-

nel NavAb. PeerJ, 1:e16, 2013.

134

https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190669164.001.0001/oxfordhb-9780190669164-e-22
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190669164.001.0001/oxfordhb-9780190669164-e-22
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[67] Wojciech Kopec, David A. Köpfer, Owen N. Vickery, Anna S. Bondarenko,

Thomas L. C. Jansen, Bert L. de Groot, and Ulrich Zachariae. Direct knock-

on of desolvated ions governs strict ion selectivity in K+ channels. Nat.

Chem., 10:813–820, 2018.

[68] Huong T. Kratochvil, Joshua K. Carr, Kimberly Matulef, Alvin W. Annen,

Hui Li, Micha l Maj, Jared Ostmeyer, Arnaldo L. Serrano, H. Raghuraman,

Sean D. Moran, J. L. Skinner, Eduardo Perozo, Benôıt Roux, Francis I.
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