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Abstract
Chronic Kidney Disease (CKD) is a major global public health problem and is one of the fastest

rising major causes of death. Worldwide moderate to severe CKD has a prevalence of ~11%,

whereas in the UK it is ~5%. The objective of our study was to identify key risk factors associated

with the progression of kidney disease both across and within primary kidney diseases; ultimately

this could lead to improvements in patient care and a reduction in disease burden.

We used data collected from secondary care patients who were recruited into the Salford Kidney

Study at Salford Royal NHS Foundation Trust, UK. This ongoing study which commenced

in 2002 is one of the largest of its kind worldwide, and consists of over 3000 non-dialysis

patients with moderate to severe CKD, who are followed-up annually until an end point of either

dialysis, kidney transplant or death. The data recorded at follow-up appointments included

comorbidities, medications, lifestyle factors, socio-demographic information and biochemical

marker measurements.

We used longitudinal modelling, specifically a linear mixed effects model which models population

effects alongside patient-specific variability. We identified risk factors within each of eight primary

disease categories including diabetic nephropathy, glomerulonephritis, hypertensive kidney disease,

renovascular disease, polycystic kidney disease and pyelonephritis. The key risk factors for lower

levels of eGFR are biochemical markers and medications, whereas lifestyle factors and physical

attributes are less important. Medications play an important role; in particular ACE inhibitors

and ARBs are key in diabetic nephropathy and glomerulonephritis, but not in the other diseases.

We found that more rapid progression of kidney disease is associated with biochemical markers

including cholesterol and proteinuria. In contrast, medications and comorbidities are not key in

rapid disease progression. We recommend future work should include more in-depth studies of

each disease category including splitting them into subcategories.

Word count approximately 31,000.
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1 Introduction and background

CKD is recognised as a major global public health problem with a high economic cost to health

systems (1). The 2015 Global Burden of Disease Study (2) reported kidney disease as the 12th

most common cause of death, with CKD mortality increasing by 31.7% between 2005-2015, it

is now one of the fastest rising major causes of death worldwide (3). This growth is generally

considered to be fuelled by overnutrition, inadequate physical inactivity, and ageing populations

(4,5). More broadly the World Health Organization confirms a global shift in which the majority

of global morbidity and mortality is now caused by chronic diseases as opposed to infectious

diseases (6,7). For moderate to severe CKD, stages 3 to 5, the global prevalence was reported

in 2016 to be 10.6% {95% CI: 9.2-12.2%}; see (8). In 2014 Public Health England estimates,

which took account of both diagnosed and undiagnosed cases, indicated a prevalence of 6.1%

{95% CI: 5.3-7.0%} for adults with CKD stages 3 to 5 who were resident in England (9). This

rate is similar to the actual diagnosed prevalence of 4.3% reported by the Quality and Outcomes

Framework during 2012-2013; see (10,11). The prevalence of CKD dramatically increases with

advancing age (12). For example, (13) reported in 2007 that the prevalence in the United States

of CKD stage 3 stratified by age was: 20-39 years (~1%); 40-59 years (~4%); 60-69 years (~14%);

> 70 years (~37%). This study also showed that stage 3 was by far the most prevalent out of all

the five stages of CKD.

CKD is generally associated with decreased quality of life along with an increased risk of

premature death and cardiovascular disease (14). It follows that a rapid decline in kidney function

is associated with an increased risk of both mortality and cardiovascular events (15,16). Conversely,

cardiovascular disease increases the risk of CKD hence these two diseases are closely interrelated

(17). CKD is also frequently comorbid with other common diseases including hypertension,

diabetes, anaemia and mineral/bone disorders (18,19), in fact diabetes and hypertension are

the leading causes of CKD (20,21). For example, during 2017, the United States Renal Data

System (USRDS) reported (in chapter 1) that given adults with CKD (stages 1-5), about 40%

had diabetes, ~32% had hypertension and ~42% had cardiovascular disease (18). The prevalence

of comorbidities increases as CKD progresses and a majority of patients with moderate to severe

CKD have at least one comorbidity (22). The primary causes of end-stage renal disease, as

reported by USRDS, are diabetes 38.2%, hypertension 25.5% and glomerulonephritis 16%; see

table 1.6 in (23). Mortality rates are also substantially higher for certain groups of CKD patients.

In particular the mortality rate for CKD patients with cardiovascular disease is about 2.5 times

higher than for those without cardiovascular disease or diabetes, similarly the mortality rate for

CKD patients with both cardiovascular disease and diabetes is about 3 times higher than for

those without cardiovascular disease or diabetes; see (23) chapter 3. Given that for CKD patients

the risk of complications increases with decreasing kidney function, early intervention aims to

ameliorate the risk of severe complications and reduce the number of patients progressing to
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dialysis or transplant e.g. see (24–26).

To determine how well the kidneys are functioning the level of creatinine in the blood is measured.

This measured value is then used to calculate the estimated glomerular filtration rate (eGFR).

Normal kidney function in healthy adults decreases with age; for example adults of 20-30 years

have an eGFR of ~115 mL/min/1.73m2 whereas it has decreased to ~85 mL/min/1.73m2 in the

60-69 year age group (27,28). The annual rate of decline of eGFR in the healthy population is

approximately 0.36-1.21 mL/min/1.73m2 per year; younger adults tend towards the lower value

and older individuals the upper value; see reviews (28) and (29). It should be noted that in the

general population the aforementioned values vary widely as they not only depend on factors such

age, ethnicity, gender but are also dependent on underlying comorbidities. The National Institute

for Health and Care Excellence (NICE), defines progressive CKD as either an annual fall in eGFR

of > 5 mL/min/1.73m2 or a fall of > 10 mL/min/1.73m2 within 5 years (30). Furthermore it is

generally accepted, as defined by KDIGO in 2012, that rapid progression is a sustained decline

of > 5 mL/min/1.73m2 per year (31). CKD can be divided into several primary disease types

including glomerulonephritis, diabetic nephropathy and polycystic kidney disease. These diseases

are expected to have different rates of decline in eGFR although exact values vary widely in the

literature and are often not directly comparable. However in 2012/13, (32) reported an average

annual decrease for diabetic nephropathy patients of 1.7 mL/min/1.73m2 whereas (33) found an

average annual decrease of about 3 mL/min/1.73m2 in polycystic kidney disease patients. This

suggests that the progression of CKD is nearly twice as fast in polycystic patients; both rates

were for patients with CKD stages 3 to 5.

In this thesis we study the progression of CKD using data collected by the ongoing Salford

Kidney Study (SKS) (34,35) run by Salford Royal NHS Foundation Trust (SRFT), UK. SKS has

one of the largest cohorts in the world of secondary care CKD patients, with over 3000 patient

records collected since 2002. The data includes patients with all primary kidney disease types.

The aims of the SKS are to investigate factors influencing outcomes and progression of renal

disease in CKD patients, including a focus on risk factors associated with more rapid disease

progression. In particular, SKS is a prospective observational study of outcomes of non-dialysis

adult patients with CKD stages 3 to 5 (10 < eGFR 6 60 mL/min/1.73m2). Patients referred

to the renal services at SRFT, and existing CKD patients attending the clinics, are approached

for inclusion in the study and enrolled if written informed consent is obtained. Patients are

followed up annually until they reached predefined study end-points, these are death or initiation

of renal replacement therapy (RRT). SKS defined RRT as chronic haemodialysis, peritoneal

dialysis or kidney transplant. At recruitment and annual nephrology follow-up appointments,

patient socio-demographic and lifestyle choices are recorded along with comorbidities. Concurrent

medications and additionally blood samples are taken and processed to obtain a comprehensive

set of biochemical marker measurements.
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In general, longitudinal data such as the SKS data, is comprised of multiple observations collected

over successive time periods on the same individuals. The data may also include baseline variables

that are collected once e.g. age at study entry. However repeated measurements on the same

individual will not be independent and this must be accounted for when building statistical models.

To this end mixed effects models are an appropriate statistical framework and a well-established

approach; for example see textbooks (36–38). These models consist of both fixed effects and

random effects, which explain the relationships between an outcome variable and explanatory

variables. Fixed effects describe the whole population whereas random effects are associated with

each individual and capture the dependence of repeated measurements. In terms of longitudinal

data the development of such models is attributed to Laird and Ware in 1982 (39); this paper

considers a causal link between air pollution and pulmonary function measured at specified time

intervals. Later in 1988 Diggle (40) introduced an approach whereby the correlation between

successive random effects is described by stationary Gaussian processes; this approach is applied

to two separate repeated measure studies, body weight of rats and blood pressure of rats.

Mixed effects models have been extensively used to study the progression of kidney disease over

time. A broad literature review of statistical methods used for investigating risk factors of CKD

progression is given by (41). One of their conclusions, given longitudinal data where the outcome

of interest is the entire trajectory of renal function over time, is that linear mixed models are

an appropriate tool for estimating both risk factors and their associated confidence intervals.

Given a choice between linear regression to estimate individual slopes and linear mixed effects

models, (42) concludes the latter are preferred for research questions regarding kidney disease

trajectories over time at population level. Similarly in the context of progression of kidney disease

(43) considers the comparative strengths and weaknesses of the Generalized Estimating Equations

(GEE) approach with linear mixed effects models, in part concluding that the mixed effects model

is preferred in relation to missing data since the GEE makes more restricted assumptions; for

details see Appendix 4 in the supplementary material of (44). A further comparative study by

(45) concludes that the linear mixed model is the preferred method for investigating risk factors

associated with renal function trajectories when individuals leave the study due to initiation of

renal replacement therapy.

In this thesis, we performed a longitudinal analysis of the SKS data, to identify markers for

progression in CKD. The patients were assigned to one of 8 subcategories of CKD, we refer to

these as primary disease categories. We applied a linear mixed model (LME) to analyse each of

the 8 primary disease categories separately, and used model selection techniques to identify the

most pertinent risk factors. As a result we were are able to make comparisons across the primary

disease categories.

We start, in Chapter 2, by exploring and summarising the SKS data. In Chapter 3 we define the

LME which forms the basis of all our modelling. In Chapter 4 we show how to interpret step
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changes in the LME model regression parameters in terms of eGFR (rather than log(eGFR)) and

also how to use to estimate the rate of change over time of eGFR from the LME model. We

describe our model selection procedures in Chapter 5 and then having selected the final model

for each primary disease category we then validate each model using diagnostic procedures before

presenting our results in Chapter 6. Our findings are reported in Chapter 7. In Chapter 8 we

discuss our models, results and future research directions. We close, in Chapter 9, with some

concluding remarks.
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2 Summary of SKS data

We begin by describing our procedures for cleaning the raw SKS data. This includes removing

obvious erroneous values and consolidating subsets of data into categories such as primary diseases,

comorbidities and medications. The cleaned dataset has approximately 40 potential risk factors

(explanatory variables) which we use during our exploratory analysis. Finally, after completing

the exploratory analysis, the number of complete records was significantly increased by imputing

missing values thereby increasing the power of our statistical models. Throughout this chapter,

unless otherwise stated, missing values are not imputed.

2.1 Data preparation and cleaning

Using the programming language R (46) we extracted and cleaned the SKS data from the

Microsoft Access database provided by the clinicians at Salford Royal NHS Foundation Trust. All

incorrect data were purged, for example a date with year 1066. The units of all measurements were

converted so as to be consistent e.g. patient heights were standardised to metres. We accounted

for spelling variations and commonly misspelt words e.g. medications ‘doxazosin’ and ‘doxasosin’

were both identified as α-blockers. To reduce the complexity of the data we, with guidance from

the clinicians, categorised various items; notably medications, comorbidities and primary kidney

diseases. The breakdown of these categories is given in Appendix A.1. The biochemical marker

data was provided separately from the Microsoft Access database, so where possible we matched

the biochemical data to each patient using their follow-up appointment dates; we allowed for

differences of up to six weeks between the recorded dates of the biochemical markers and follow-up

appointments. Full details regarding data cleaning are given in Appendix A.1.

2.2 Overview of SKS data

The data from 3,166 patients were collected between 01 October 2002 and 27 February 2017;

participants were recruited throughout this period. Of the patients in this study 37.6% were

female, and 95.7% declared their ethnicity as white.

At baseline, when the patient joined the study, a number of health indicators were recorded.

For example the cohort had 12.2% active smokers and 52.7% ex-smokers. Similarly within the

cohort 29.9% of patients declared they consumed 1 to 14 units of alcohol per week while another

14.7% declared they drank over 14 units per week. Further basic summary statistics of the cohort

at baseline are given in Table 1; note IQR refers to interquartile range. These show that the

cohort are on average older adults who are, as defined by NICE, overweight (47). Within the

general UK population pulse pressure (PP) for adults aged around 65 years is expected to be
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in the upper fifties (48) so the SKS cohort is a little worse than average but 87.1% are taking

antihypertensives.

Table 1: Baseline summary statistics

item units min max median IQR

age year 18.2 94.5 67.4 20.0

BMI kg/m2 13.3 59.9 28.0 7.8

DBP mmHg 40.5 137.0 74.5 14.0

PP mmHg 17.0 146.0 64.0 28.0

SBP mmHg 76.0 218.0 139.0 29.0

Given all patients, including those who have not reached an end point, the average time in the

study was 4.6 years, with 7 patients reaching 14 annual follow-up years. There were 606 patients

who left the study to undergo renal replacement therapy (RRT); in the SKS RRT is defined as

haemodialysis dialysis, peritoneal dialysis or kidney transplant. In addition 952 patients died

while part of the study, and 99 patients who were lost to follow-up. The average time patients

were in the study before RRT or death was 3.9 years. Of the remaining 1313 patients in the

study there were 699 with a time span of more than 2 years 6 months since their last follow-up

appointment.

2.3 Primary kidney disease types

We categorised the patients as having one of the following primary kidney diseases: diabetic

nephropathy, glomerulonephritis, hypertensive kidney disease, obstruction, other, polycystic

kidney disease, pyelonephritis, renovascular disease, unknown. Figure 1 shows their frequencies.
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Figure 1: Primary disease type frequency
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See the Appendix A.1.2 for the clinical breakdown of conditions/diseases within each primary

disease category. The basic characteristics of these diseases are:

• diabetic nephropathy (DN) - chronic loss of kidney function occurring in patients with

diabetes.

• glomerulonephritis (GN) - refers to several kidney diseases many of which are characterised

by inflammation within specific kidney sub-structures.

• hypertensive kidney disease (HKD) - chronic high blood pressure causes damage to the

kidney tissue. Usually these patients do not have a renal biopsy.

• obstruction - obstructive nephropathy - has a number of causes but is characterised by a

blockage in the flow of urine out of the kidney(s).

• polycystic kidney disease (PKD) - is a genetic disorder causing the growth of multiple cysts

within the kidneys.

• pyelonephritis (PN) - inflammation of the kidney often caused by a bacterial infection.

• renovascular disease (RVD) - has a number of causes and is characterised by a progressive

narrowing or blockage of the large renal arteries or veins.

• other - all other primary kidney diseases which are less common and as such they do not

fall into the aforementioned disease categories.

• unknown - refers to chronic renal failure when the aetiology is uncertain, unknown or

unavailable. This is a heterogeneous disease grouping whose common characteristic is that

the patient’s kidney disease is not clinically identified. For example given a patient with

exceptionally slow disease progression it may be unjustified to do an invasive procedure

such as a biopsy to confirm the cause of their disease.

2.4 Comorbidities

Comorbidities were recorded at baseline and thereafter at each follow-up. We collated comorbidities

into the following clinically relevant categories where percentages indicate the proportion of

patients recorded as having a given comorbidity at some point while in the study:

• 78.2% cardiovascular disease

• 35.4% diabetes

• 25.4% other

• 10.1% gastrointestinal disease

• 3.8% had cancer during the study. We note 16.3% had cancer either during the study or at

a previous time.

Under this classification 54.8% of patients have multiple comorbidities. The cancer, cardiovascular

and diabetes categories can be subdivided into specific diseases, for example of the patients with

diabetes 87.2% had type 2. Appendix A.1.3 gives details of the conditions/diseases which are
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included in each comorbidity category.

2.5 Medications

Medication and treatment data were also recorded at baseline and thereafter at annual follow-up

appointments. At baseline 87.1% were taking at least one antihypertensive. Here medications

are grouped as follows where percentages indicate the proportion of patients taking a given

medication at some time during the study:

• 69.2% angiotensin-converting-enzyme (ACE) inhibitor and/or angiotensin II receptor blocker

(ARB)

• 58.9% diuretic

• 54.3% calcium channel blocker (CCB)

• 42.1% β-blocker

• 38.6% α-blocker

• 32.4% vitamin D

• 27.4% EPO treatment (for anaemia)

• 24.4% iron taken orally

• 23.1% iron administered by injection

In addition we noted that 68.9% were on statins and 43.7% took aspirin. All other medications

not mentioned above occurred less frequently in the data than iron taken orally. Details of the

drugs in each category can be found in the Appendix A.1.4.

2.6 Biochemical markers

2.6.1 General biomarkers

In addition the study also measured biochemical markers from blood and urine samples during

annual follow-up appointments and other hospital visits e.g. AKI episodes. Standard laboratory

markers from blood samples included: full blood count (FBC), urea and electrolytes (U&E), liver

function test (LFT), calcium, phosphate, cholesterol, Parathyroid Hormone (PTH). Furthermore

EDTA whole blood, serum, plasma, and citrate plasma samples were processed and stored at

-800C. Table 2 lists the biochemicals pertinent to this thesis; except for creatinine they enter into

our models as explanatory (input) variables.
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Table 2: Summary statistics for biochemical markers at baseline

biochemical units min max median IQR

CRP - c-reactive protein mg/L 0.10 195.0 3.4 6.2

CHO - total cholesterol mmol/L 2.10 16.0 4.4 1.5

CC - corrected calcium mmol/L 1.21 3.0 2.3 0.2

Cr - creatinine µmol/L 51.00 915.0 179.0 126.0

CO2 - total CO2 mmol/L 10.50 44.5 23.0 4.5

Hb - haemoglobin g/L 10.90 195.0 122.0 24.0

HbA1c - haemoglobin A1c mmol/mol 25.00 154.0 50.0 24.0

PO - phosphate mmol/L 0.43 3.2 1.1 0.3

PTH - parathyroid hormone pmol/L 0.32 99.1 7.1 8.7

Pu - proteinuria g/24hr 0.02 17.2 0.3 0.9

We assume the variables are independent in our statistical models, Table 3 confirms there is

no significant correlation between the biochemicals. The only exception is a strong negative

correlation between creatinine and eGFR which is to be expected given the formula for calculating

eGFR includes a creatinine term; see Equation 1.

Table 3: Correlation between biochemical markers for all follow-up years

CC CHO CO2 Cr CRP eGFR Hb HbA1c PO PTH Pu

CC 1 0.1 0.2 -0.2 0.0 0.1 0.0 0.0 -0.1 -0.2 -0.1

CHO 1.0 0.0 -0.2 0.0 0.2 0.1 0.0 -0.1 -0.1 0.2

CO2 1.0 -0.3 -0.1 0.3 0.1 0.1 -0.3 -0.2 -0.2

Cr 1.0 0.1 -0.8 -0.3 0.0 0.6 0.5 0.2

CRP 1.0 -0.1 -0.2 0.0 0 0.1 0.0

eGFR 1 0.3 0.0 -0.5 -0.4 -0.2

Hb 1.0 0.0 -0.4 -0.2 -0.1

HbA1c 1.0 0.1 0.0 0.1

PO 1 0.4 0.3

PTH 1.0 0.1

Pu 1.0
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2.6.2 Estimated glomerular filtration rate (eGFR)

Glomerular Filtration Rate (GFR) is a key indicator of renal function, its estimate eGFR is

derived from a patient’s serum creatinine level, age, sex and race. Creatinine is a compound

produced by metabolism of creatine and is excreted in the urine. In healthy individuals the kidneys

maintain blood creatinine in a normal range, an elevated creatinine level indicates impaired kidney

function. In our statistical models the outcome variable will be eGFR, our primary motivation

for using eGFR as opposed to creatinine is that clinicians advised us that they find eGFR easier

to interpret. Hence eGFR is a clinically reasonable indicator of kidney function. Table 4 gives

the standard definitions of CKD stages in terms of eGFR (30,31); stage 1 is mild impairment

whereas stage 5 signifies kidney failure.

stage 1 2 3 4 5
eGFR >90 89 - 60 59 - 30 29 - 15 <15

Table 4: CKD stage defined by eGFR (mL/min/1.73m2)

There are several equations for estimating GFR (49) however it is mostly agreed that in general the

CKD-EPI equation gives the best estimate (50–52). Additionally given NICE (30) recommends

this equation we use it for calculating eGFR in units mL/min/1.73m2

eGFR = 141×min(Scr/κ, 1)α ×max(Scr/κ, 1)−1.209 × 0.993age×

1.018[if female]× 1.159[if black]
(1)

where

• Scr is serum creatinine with units µmol/L

• κ is 61.9 for females and 79.6 for males

• α is -0.329 for females and -0.411 for males

• min(Scr/κ, 1) indicates the minimum of either Scr/κ or 1

• max(Scr/κ, 1) indicates the maximum of either Scr/κ or 1

• age has units of years

At follow-up appointments we find the median eGFR across all patients is 28.1 with interquartile

range (IQR) 23.3. Hence the patient’s generally have moderate to severe CKD; stages 3 and 4. In

contrast if we consider only acute kidney injury (AKI) episodes the overall median eGFR drops

to 14.6 with IQR 17.8.

Given all patients at follow-up, eGFR follows a right skewed distribution; e.g. ( meaneGFR = 31.5

) > ( medianeGFR = 28.1 ). Figure 2 is used for exploratory purposes only, the qq-plot in panel
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(a) shows the distribution of the log of eGFR to be approximately normal; visual confirmation of

the distribution’s shape is given by the histogram. Applying the Shapiro–Wilk normality test

(53) to the log(eGFR) distribution yields a p-value <0.0001 hence we reject the null hypothesis

and conclude it significantly deviates from normality. In our statistical models we choose to use

log(eGFR) as the outcome variable. Given log(eGFR) is closer to a normal distribution than

eGFR it is expected to give a better empirical fit of our data to the models, for further details

see Chapter 3. From Equation 1 we note that log(eGFR) is equivalent to creatinine adjusted for

age and sex however in our models we will consider using age and sex as explanatory variables

because Equation 1 has been shown not to be optimal for all sub-populations; e.g. (49) and (54).

Note that when we write log(eGFR) this denotes loge(e−1
0 eGFR) where constant e0 equals 1 and

carries the same physical dimensions (units) as eGFR, this ensures the argument of the logarithm

does not have physical dimensions.
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Figure 2: Distribution of log(eGFR) for all patients at follow-up

Considering all log(eGFR) values from a random selection of patients, in Figure 3 we see that the

progression of CKD over time is far from a smooth monotonic function. However these figures

include measurements taken between follow-up appointments when the patients will in some

cases be experiencing an acute episode of illness e.g. AKI. Grouped by disease Appendix A.2,

Figures 54 to 62, depicts Trellis plots for an arbitrary selection of patients showing the log of

their eGFR at each follow-up year; these figures show although there is much individual variation

most patients have an approximately linear downward trend in log(eGFR) as time passes.

Given each primary kidney disease, Figure 4 (a) shows log(eGFR) values for every patient at each

follow-up, where red points are the marginal means at each follow-up time. Figure 4 (b) depicts

the corresponding variances. We note that both the mean and variance are less informative when

there are fewer observations for example in later follow-up years. We observe, in Figure 4 (a), that

successive marginal means (red points) for most disease categories exhibit an overall downward

trend as the number of follow-up years increase. If we naively ignore the correlation between

observations on the same individual and fit straight lines through the marginal mean points for

each disease we find, for instance, that on average PKD patients loose kidney function 1.8 times

faster than those with diabetic nephropathy.
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In Chapter 3 we will use rigorous statistical modelling to explore the progression of disease

while accounting for the explanatory variables discussed above e.g. demographics, comorbities,

medications, etc.
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Figure 3: eGFR progression of an arbitrary sample of 10 patients

2.7 Imputation

Prior to this section we have not imputed missing values. In our cleaned version of the SKS

dataset we assumed all missing data values were missing completely at random unless there was

evidence to the contrary. In particular we assumed each missing value was: independent of the

values of other variables (fields); independent of the value of the observation; and independent of

time. The proportion of missing values in our cleaned dataset was 7.4%. This level of missing

values diminishes the potential statistical power of our models. Therefore to improve statistical

power imputation methods were employed. Appendix A.3 lists all continuous and categorical

variables for which missing values were imputed.

Popular imputation methods include Multiple Imputation (55,56) and Expectation-Maximization

(57) of which there are many extensions and algorithms, two examples respectively are Multivariate

Imputation by Chained Equations (58) and Amelia (59). All such methods are intended for

multivariate data and rely on correlations between variables (inter-variable) to estimate missing

values. In our case we treat each variable (field) for a given patient as a timeseries consequently

these methods cannot be directly applied because a timeseries is univariate and exhibits inter-

time (intra-variable) correlations; for example see (60) for an overview of timeseries imputation

methods. In this thesis we employ imputation algorithms which are specifically intended for use

with timeseries data; in particular we use the R-package imputeTS (61) to impute all missing

values.

For continuous variables (e.g. BMI) we use Kalman smoothing on a structural model fitted by

maximum likelihood; for example (62,63) give methodological details. By design this imputation

method accounts for temporal trends, hence it is appropriate for our data where we often observe

trends e.g. a patient’s BMI may gradually increases/deceases over several successive follow-up years.

All our continuous variables have values which are always positive so to overcome the problem
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Figure 4: eGFR values of study cohort grouped by disease
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of the imputation producing negative values we did the following: (a) use logarithm function

to transform the variable onto the logarithm scale; (b) impute missing values; (c) transform

the variable back to its original scale with the antilogarithm function. In terms of categorical

variables (e.g. weekly alcohol intake) missing values are estimated with Last Observation Carried

Forward/Backward methods where priority is given to Forward imputation, in other words where

possible the last observed value is carried forward in time to subsequent follow-up appointments.

The SKS data explicitly recorded the existence of a comorbidity but did not explicitly record

if it was not present; an empty comorbidity field implied the patient did not have the given

comorbidity at a particular follow-up year. Each patient’s comorbidities were frequently not, or

only partially, recorded at each follow-up. Consequently, the data suggested that many patients

recovered from, and were often subsequently re-inflicted with, long-term health conditions such

as dementia. Since this is implausible for long-term conditions we assumed that each patient’s

condition(s) persisted for all future time after the follow-up at which it was first recorded; this

approach was applied to all comorbidities listed in Appendix A.1.3. Prior to the first instance of

a comorbidity being recorded we assumed that the patient did not have the condition.

At each follow-up all the medications for each patient were typically documented; we assume if

at least one drug/supplement was recorded then all drugs/supplements were recorded. At a given

follow-up, if at least one medication is recorded then we assign the patient as either taking, or not

taking, a drug/supplement in each of our medication categories. Conversely, if no medications

are recorded we impute using the same approach as we used for comorbidities. This is the reason

all medication categories, except for EPO treatment, have the same number of missing records

before imputation (and also after imputation); see Table 5. We dealt with both EPO treatment

and parenteral iron separately from the other medications as these are not recorded as part of

the SKS medication lists. These are administered intermittently so unless recorded we assume

the patient did not receive the treatment.

Biochemical measurements were recorded at follow-up appointments but unlike the rest of the

SKS data they were also recorded at other hospital/clinic visits. The data recorded outside of

follow-up appointments would sometimes relate to episodes of acute illness (e.g. AKI). During

acute illness some, or all, of the biochemical measurements could potentially be very different, for

example as discussed in Section 2.6.2 the cohort median eGFR is 38% lower during identifiable

AKI episodes compared with follow-up appointments. Finding a method to robustly identify

all acute episodes is beyond the scope of this thesis. Consequently to impute missing values at

follow-up appointments we only used measurements recorded at either past or future follow-ups.

In instances where a patient had no recorded values for a given field (over all their follow-ups) we

did not impute values; creating imputation models for these rare instances was beyond the scope

of this thesis. If a patient’s timeseries had only one recorded value we duplicated this value at

all points in the series, we did this for all relevant continuous and categorical variables except
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medications and comorbidities.

Table 5 shows the proportion of missing values for each variable before and after imputation,

as can be seen imputation substantially reduces the number of missing values. In this table we

include the proportion of missing creatinine values because this directly affects, and is the main

contributor to, the proportion of missing eGFR values.

As is seen in Table 5 HbA1c has a very high number of missing values; this is because it is generally

only recorded in patients with diabetic nephropathy. In this sub-group before imputation the

percentage of missing HbA1c is 68.3% and after imputation 30.7%. In the next chapter we will

only use HbA1c for models relating to diabetic nephropathy patients, however given the high

quantity of missing data it may adversely affect the statistical power of such models and given

the large quantity of imputed values it may not be informative; we reserve judgement until we

obtain the model results.

Summary statistics for each continuous variable before and after imputation confirm the imputed

values did not significantly alter the overall distribution of any continuous variable; see results

tabulated in Table 6. For a given patient and follow-up year we define a ‘complete record’ as

having all values for every variable of interest. If HbA1c is omitted, then before imputation

there were 2024 complete records and after 3121, therefore the imputation of missing values will

substantially increase the statistical power of our models. For the remainder of this thesis we use

the cleaned SKS data augmented with imputed values.

15



Table 5: Proportion of missing values before and after imputation over all follow-up years

group item Before (%) After (%)

BMI 16.1 4.3

DBP 4.0 0.8

number of antihypertensives 4.9 0.4

PP - pulse pressure 4.0 0.8

general

SBP 3.8 0.8

CC - corrected calcium 1.9 0.1

CHO - total cholesterol 22.2 3.9

CO2 - total CO2 16.0 2.3

Cr - creatinine 0.0 —

CRP - c-reactive protein 30.9 4.2

eGFR 0.7 —

Hb - haemoglobin 1.6 0.2

HbA1c - haemoglobin A1c 87.8 64.9

PO - phosphate 2.7 0.2

PTH - parathyroid hormone 20.8 2.5

biochemical

Pu - proteinuria 11.4 2.3

comorbidity cancer 3.8 0.1

comorbidity cardiovasular 3.9 0.0

comorbidity diabetes 4.2 0.1

comorbidity gastrointestinal 4.8 0.0

comorbidity other 3.8 0.1

medication ACE and/or ARB 5.3 0.6

medication alpha blockers 5.3 0.6

medication beta blockers 5.3 0.6

medication CCBs 5.3 0.6

medication diuretics 5.3 0.6

medication EPO 7.8 0.0

medication oral iron 5.3 0.6

medication other 5.3 0.6

medication parenteral iron 4.1 0.3

medication vitamin D 5.3 0.6

categorical

weekly alcohol intake 43.2 4.3
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Table 6: Summary statistics, over all follow-up years, for continuous variables before and

after imputation

Before After

item units min max median IQR min max median IQR

general

anti-HT * 0.0 8.0 2.0 2.0 0.0 8.0 2.0 2.0

BMI kg/m2 13.3 65.3 27.9 7.6 13.3 65.3 27.8 7.6

DBP mmHg 40.5 141.5 72.5 15.0 40.0 142.0 72.0 15.0

PP mmHg 17.0 188.0 63.0 26.5 17.0 188.0 63.0 27.0

SBP mmHg 76.0 255.0 137.0 28.0 76.0 281.0 137.0 28.0

biochemical

CC mmol/L 1.0 3.3 2.3 0.2 1.0 3.3 2.3 0.2

CHO mmol/L 2.1 16.0 4.3 1.4 1.9 16.0 4.3 1.4

CO2 mmol/L 6.0 44.5 22.8 4.7 6.0 44.5 22.8 4.5

CRP mg/L 0.1 471.5 3.4 6.4 0.0 471.5 3.3 6.1

Hb g/L 10.9 204.0 123.0 22.0 11.0 220.0 123.0 22.2

HbA1c mmol/mol 24.6 159.0 48.6 22.8 24.6 192.2 44.3 19.4

PO mmol/L 0.2 4.2 1.1 0.3 0.2 4.2 1.1 0.3

PTH pmol/L 0.2 250.4 8.1 9.7 0.1 250.4 7.6 9.1

Pu † g/24hr 0.0 18.5 0.3 0.8 0.0 18.5 0.3 0.8

* number of antihypertensives
† Due to rounding minimum Pu displays as 0.0 whereas before and after imputation it is actually

0.02.

2.8 Baseline variables

There are a number of reasons that a variable may only be present at baseline e.g. it never changes

over time or was only recorded at the first appointment. However in some instances due to the

sparseness of data we reduced a variable to a baseline value using the first recorded instance of

the variable in the patient’s data. For example, if the variable was not recorded at baseline but

was instead recorded at the first follow-up appointment we used this value as if it were recorded

at baseline. Variables reduced to baseline variables were: occupation, smoking status and weekly

alcohol intake.
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3 Linear mixed effects model

We have longitudinal data where each experimental unit (patient) consists of temporally correlated

measurements over consecutive follow-up years. Classic multivariate models are not appropriate

for analysing this grouped and correlated data. Standard extensions, for longitudinal data, to

classical statistical procedures which estimate the parameters in regression models include the

Generalised Estimating Equations (GEEs) (e.g. see (38,64)) and mixed effects models. A GEE is

used to estimate the parameters of a generalised linear model. Specifically it aims to estimate the

average response over the population rather than the regression parameters, the latter enables

prediction of the effect of changing one or more explanatory variables on a given unit. GEEs are a

widely used alternative to the likelihood-based mixed effects model which have the disadvantage

of being more sensitive to the specification of the variance structure. However in our context

we rejected the GEE approach because it is not robust to missing data due to patients missing

follow-up appointments and/or spend differing lengths of time in the study. Our data contains

both of these characteristics in abundance so we turn our attention to mixed effects models as

they are able to accommodate this variability. In general mixed effects models are a commonly

used class of statistical models that are applicable to a wide range of data structures which include

correlated and/or clustered observations, repeated measurements and longitudinal measurements.

It is not uncommon for longitudinal data to be modelled with mixed effects models consequently

there exists an extensive literature; for example see texts (36–39,65).

Mixed effects models consist of both fixed effects and random effects, they describe the relationships

between an outcome variable and explanatory variables. Fixed effects are associated with the

whole population. There can be one or more layers of random effects when the data are grouped

according to one or more classification levels. In this thesis we associate the random effects with

individual experimental units drawn at random from a population. This model allows for clear

identification of both population and individual patient characteristics. From this point onwards

we consider only linear mixed effects (LME) models where the outcome variable is described by a

linear function of the parameters.

Given the dataset described in Section 2 the data are sub-divided into disease categories and

grouped at patient level. The LME model outcome variable is log(eGFR) and all the remaining

variables are potential explanatory variables. In this thesis the combination of fixed effects plus

random effects is interpreted as representing the unobserved GFR, therefore the LME model will

express eGFR as a noisy version of GFR.

Event data which describe patients leaving the study (dropout, RRT or death) are not explicitly

included in the model as we assume these events are missing at random; we did not test this

assumption. It was beyond the scope of this thesis to explore models, e.g. survival models, which

include this time to event data. For reviews relating to event data in the context CKD and mixed
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effects models see for example (41,45).

We consider the following LME model for longitudinal trajectories given i = 1, . . . ,M patients

and j = 1, . . . , ni observations per patient

Yij = µi(tij) + Ui(tij) + εij . (2)

The outcome for patient i at time tij > 0 is denoted Yij . The time since baseline measurement is

tij , both ni and tij vary among patients. This allows us to include patients with intermittent

missing data and/or dropout, and also account for the actual individual measurement times. The

expected value of the outcome is a multiple linear regression of the form µi(tij) = Xi(tij)β. Term

µi(tij) captures the fixed effects with a set of known explanatory variables Xi (ni × p regressor

matrix) and corresponding set of unknown fixed effects regression parameters β (p-dimensional

vector) which are to be estimated. We assume any measurement errors in the explanatory

variables are very much less than εij .

The variability between patients which cannot be explained by the fixed effects is captured by

the random effects described by a second linear regression Ui(tij) = X∗i (tij)bi with a known

regressor matrix X∗i (size ni × q) and corresponding vector of unknown random variables bi
(size q-dimensional vector) which are to be estimated. The distribution of bi are assumed to be

mutually independent multivariate normal random variables with mean zero, that is bi ∼ N(0,Ψ)

where Ψ is a symmetric positive definite (non-degenerate) matrix hence is invertible. In particular

we choose an intercept-and-slope model, the so-called Laird and Ware model (39), as such

X∗i (tij) = (1ni , ti) where ni-dimensional vector ti has elements tij . The first term does not

depend on time so represents the time-constant differences between patients and the second term

represents the time dependent differences (variations in linear slope) between patients.

Random variables εij are mutually independent with εij ∼ N(0, σ2), given outcome Yij they

account for the fact that eGFR is a noisy estimate of GRF. We refer to εi = (εi1, . . . , εij , . . . , εini)T

as within-group errors therefore without placing further constraints on Equation 2 it follows that

εi ∼ N(0, σ2 Ini) where I denotes identity matrix. The errors are assumed to be independent

for different groups (patients); independent of repeated measurements within the same group i;

independent of random effects bi; and homoscedastic, that is having constant variance for both

different groups and repeated measurements within the same group.

Given repeated measurements on patient i it may be necessary to take into account the correlation

and variance of within-group errors to explain the change over time of outcome Yij not explained

by the aforementioned linear regressions. To this end let

εi ∼ N(0, σ2Λi) (3)

19



with variance-covariance matrix Λi. This matrix is symmetric positive definite and decomposed

such that

Λi = V iCiV i. (4)

The variance matrix V i is diagonal and the correlation matrix Ci has diagonal elements equal

to one. This decomposition therefore allows the variance and correlation structures of the

within-group errors to be modelled separately. It follows that

var(εij) = σ2[V i]2jj (5)

and

cor(εij , εij′) = [Ci]jj′ (6)

with j′ = 1, . . . , ni. Hence the correlation structure accounts for repeated measurements within

group i. This formulation assumes εi is independent for different groups i and independent of

random effects bi. In our study we assume the variance structure is homoscedastic var(εij) = σ2

as we found no evidence to the contrary, therefore in the following we will now focus on the

correlation structure. The correlation between two within-group errors εij and εij′ is assumed to

depend on the magnitude of their temporal distance. In particular the correlation structure is

assumed to be isotropic so it depends only on relative distances and not the temporal positions.

This distance is described by the function δ = d(pij ,pij′) where pij , pij′ are position vectors for

εij , εij′ respectively. With reference to Equation 6 let the correlation structure be defined by

cor(εij , εij′) = h(δ,ρ) (7)

where autocorrelation function h(·) takes values between -1 and 1 and ρ is a vector of correlation

parameters. Note 1: if we assume no correlation structure then h(·) will be zero everywhere

except on the diagonal. Note 2: h(·) is defined such that if the distance between the position

vectors is zero then h(0,ρ) = 1. Given repeated measurements on each patient i a natural choice

of correlation structure would be a zero mean continuous-time stochastic process, such as a first

order continuous-time autoregressive model (CAR1). This model is defined by h(s, ρ) = ρs where

ρ > 0 and the magnitude of the time difference s > 0 (e.g. s = |tij+1 − tij |). It can be seen that

the correlation function decreases in absolute value exponentially with decay constant τ = −1/lnρ

since h(s, ρ) = eslnρ = e−s/τ ; i.e. events close together are more correlated than distant events.
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Alternatively given many patients have very few follow-up measurements (see Figures 54 to 62) a

compound symmetry (CS) structure may be more suitable, as suggested by Pinheiro and Bates

(66) (see Chapter 5) who state that CS may be useful if each group’s timeseries is short. The

CS model is defined as 0 6 ρ 6 1 with h(k, ρ) = ρ ∀j 6= j′ otherwise h(k, ρ) = 1; integer time

differences are denoted by k = 1, 2, . . . ,. In Section 5.4 we investigate whether there is sufficient

evidence to include a correlation structure in our models.

To fit the model in Equation 2 when εi ∼ N(0, σ2 Ini) we need to estimate β, bi, Ψ and σ. If we

find enough evidence for within-group error correlations then εi ∼ N(0, σ2Λi) hence additional

parameters associated with Ci will need estimating. We fit these LME models within the

maximum likelihood framework using R-package nlme (66,67). This approach uses the conditional

modes of the random effects given the data. A full mathematical description is given in Chapter

2 of (66).
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4 Inferences regarding changes in eGFR

Our primary interest is to determine, for each disease model, the degree to which the fixed

effect explanatory variables explain the outcome at population level. As is usual we inspect each

regression parameter value along with its corresponding statistical significance when reporting the

results in Chapter 7. However these results are relative to log(eGFR), it is not possible to directly

interpret them in terms of eGFR which is the unit that clinicians are typically familiar with. As

a consequence results expressed in log(eGFR) are not fully accessible to the intended audience

of this research; for example a clinician may be interested in the benefits in terms of eGFR of

prescribing a given medication. In Section 4.1 we address this by introducing methodology to

assess the average effect on eGFR of a small step change in a given explanatory variable; we make

use of this when reporting our results in Chapter 7. It may also be of interest to interpret the

model in terms of how quickly the model outcome is on average changing over time, therefore in

Section 4.2 we introduce methodology for investigating the temporal trajectory of both log(eGFR)

and eGFR.

With reference to Equation 2 we rewrite the fitted LME model in component form, with intercept-

and-slope random effect, as follows

Ŷij = β̂0 +
p−1∑
r=1

β̂rX
(r)
i (tij) + b̂i0 + b̂i1tij (8)

where the model parameters have been estimated by maximum likelihood. The intercept and

slope random effects terms are defined respectively as b̂i0 and b̂i1. The outcome Ŷij represents

loge(e−1
0 eGFR(t)). The constant e0 = 1 has units identical to eGFR, this ensures the argument

of the logarithm does not carry physical dimensions (units). The outcome in terms of eGFR(t) is

Ŷ ∗ij = e0e
Ŷij . (9)

4.1 Step changes in explanatory variables

4.1.1 Step changes on log(eGFR) scale

A standard interpretation of Equation 8 is that if we hold all terms constant except one, e.g. variable

X
(r)
i (tij), then for every additional increase of one unit in X(r)

i (tij) we expect the outcome to

change by an average of β̂r. In other words given a change from X
(r)
i (tij) to X(r)

i (tij) + θr, we

define ∆rŶi = Ŷ θij − Ŷij where Ŷij = β̂0 + β̂rX
(r)
i (tij) + . . . and Ŷ θij = β̂0 + β̂r(X(r)

i (tij) + θr) + . . .;

therefore for the rth regression term ∆rŶi = θrβ̂r. The term ∆rŶi describes the amount Ŷij shifts
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when subjected to a change of size θr. Given θr is a constant over time then Ŷij and Ŷ θij have

identical time derivatives therefore a step change of size θr affects only the value of log(eGFR)

and not its rate of change. If θr is applied to the rth explanatory variable across all i patients, it

follows that on average log(eGFR) changes by

∆rŶ = θrβ̂r. (10)

Note that ∆rŶi and ∆rŶ are dimensionless.

We could set θr = 1 for all explanatory variables but given there are orders of magnitude

differences between our variables this could be very misleading when assessing the degree to which

each explanatory variable contributes to changes in either log(eGFR) or eGFR. In practice we

suggest assigning a value to θr which is commensurate with a typical change in the explanatory

variable of interest. One possibility, for the rth explanatory variable from all patients, would be

to set θr equal to the mean of the differences in the absolute value between successive follow-up

appointments; i.e. find the mean of |X(r)
i (tij) −X(r)

i (ti j+1)| over all i and j. However in this

thesis we use the standard statistical approach of setting θr equal to one standard deviation

of the distribution of observations from the rth explanatory variable; i.e. for a given r, one

standard deviation of the distribution of X(r)
i (tij) over all i and j. The exception is categorical

variables which always have θr = 1. Furthermore if (non-categorical) explanatory variables are

standardised then for each such variable θr = 1. Note that standardisation is the process of

putting the variables on the same scale, in this thesis standardisation is performed for each

variable by subtracting the mean and dividing by the standard deviation.

4.1.2 Step changes on eGFR scale

We now extend the ideas in Section 4.1.3 to estimating changes in eGFR as opposed to log(eGFR).

Specifically we want to determine how eGFR varies given a change of size θr in an explanatory

variable. We considered three approaches for estimating this change:

• Proportional change, this is obtained by directly transforming ∆rŶi (see Equation 10) to

the eGFR scale as follows:

e∆rŶi =eβ̂rθr

=eŶ
θ
ij−Ŷij

=Ŷ ∗θij /Ŷ ∗ij

(11)

where Ŷ ∗θij = e0e
Ŷ θij and Ŷ ∗ij = e0e

Ŷij . This is a ratio in eGFR, i.e. Ŷ ∗θij /Ŷ ∗ij , that is the

proportional change in eGFR induced by a change of size θr. We will not use this approach
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when reporting results as we seek a quantity which represents the difference (not a ratio)

in eGFR induced by a change in θr. Two such approaches are given in the following two

bullet points.

• Absolute difference, this is obtained by first considering the expression ∆rŶ ∗ij = Ŷ ∗θij − Ŷ ∗ij .

Writing this out in full we obtain ∆rŶ ∗ij = e0 exp(β̂0 + β̂r(X(r)
i (tij) + θr) + . . . )− e0 exp(β̂0 +

β̂rX
(r)
i (tij) + . . . ), from which it follows that

∆rŶ ∗ij = Ŷ ∗ij(eβ̂rθr − 1). (12)

As such we can assess the effect of θr on ∆rŶ ∗ij . The absolute difference in eGFR at

population level could be defined as

E(∆rŶ ∗) = E(Ŷ ∗ij)(eβ̂rθr − 1) (13)

where E(Ŷ ∗ij) is the expected value of Ŷ ∗ij over the population and all time. For our dataset

E(Ŷ ∗ij) = 31.5 mL/min/1.73m2. However a shortcoming of this approach is that the value

of E(Ŷ ∗ij) is dataset specific and Ŷ ∗ij is highly variable across the population. We therefore

do not report results using this approach.

• Relative change in eGFR, given Equation 12, is defined as

∆rŶ ∗ = ∆rŶ ∗ij/Ŷ
∗
ij = eβ̂rθr − 1 (14)

This approach is not subject to the aforementioned shortcomings therefore we use it when

reporting results in section 7.

Note that Ŷ ∗ij , ∆rŶ ∗ij and ∆rŶ ∗ have the same physical dimensions as eGFR.

4.1.3 Summary of Step changes approaches

Given clinicians typically work on the eGFR scale, and not on the log scale, we report our

results relating to step changes in θr using the relative change approach given in Equation 14.

As described in section 4.1.3 we use θr equal to one standard deviation of the rth explanatory

variable distribution, i.e. the distribution of X(r)
i (tij) over all i and j. It follows that if this

distribution is standardised then the step size will equal one since the standard deviation is one.

4.2 Rates of change over time

The LME model given in Equation 2 has an error term εij ∼ N(0, σ2), as already discussed.

This term may have within-group correlations described by a stochastic process such as the

aforementioned CAR1 model. The time derivative of Equation 2 would necessarily need to account

for the stochasticity of the error term. However it is beyond the scope of this current work to
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consider fitting such models. Here we circumvent this issue by focusing on the time derivative of

the fitted model i.e. the derivative of Equation 8.

The trajectory of explanatory variable X(r)
i (tij) through time may be constant, continuous or

piecewise continuous:

• Each baseline explanatory variable, e.g. ethnicity, is constant over all time hence its time

derivative is zero.

• Each explanatory variable which changes smoothly over time, e.g. biochemical markers, are

continuous functions of time. Although we only have observations at fixed points in time

we may interpolate, e.g. with a spline, between observations; hence the spline’s derivative

represents the variable’s time derivative.

• Each categorical variable which varies over time is a piecewise continuous function in time.

The derivative of such a variable exists everywhere except at time points where it changes

level; at these points there exists a discontinuity. Outside of the discontinuities the variable

is constant with respect to time hence its derivative is zero.

• In this section we consider interaction terms of the form tijX
(r)
i (tij) to be a special case

of X(r)
i (tij). An interaction term between time and a categorical variable is piecewise

continuous function of time whose derivative exists everywhere except where the categorical

variable changes levels; outside of the discontinuities the time derivative1 of tijX(r)
i (tij)

equals X(r)
i (tij).

4.2.1 Time derivative on log(eGFR) scale

With reference to Equation 8 we seek the time derivative of loge(e−1
0 eGFR(t)) i.e.

˙̂
Yij =

p−1∑
r=1

β̂rẊ
(r)
i (tij) + b̂i1 (15)

where dot denotes the first order time derivative e.g. Ẋ = dX/dt. We assume X(r)
i (tij) can be

represented by a continuous function which is differentiable. Time independent and categorical

variables essentially have time derivatives of zero. The regression parameters are not estimated

from Equation 15. They are estimated in the usual way, as described in Chapters 3 and 5, including

those whose corresponding explanatory variable has a time derivative of zero in Equation 15.

The additive nature of Equation 15 allows us to focus on the rth regression term of patient i; its

contribution to the outcome ˙̂
Yij is denoted

˙̂
Y

(r)
ij = β̂rẊ

(r)
i (tij). (16)

1Note: d
dt

(t.X(t)) = t.Ẋ(t) + ṫ.X(t) = t.0 + 1.X(t) = X(t).
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We do not compute Ẋ(r)
i (tij) using a statistical model, for example an intercept-and-slope linear

model, as estimation of the LME model parameters in Equation 2 assumes explanatory variable

observations exhibit negligible noise (e.g. measurement error) compared with the error terms εij .

Here we calculate Ẋ(r)
i (tij) by performing a cubic spline interpolation around the explanatory

variable’s data points, and then compute the spline’s time derivative which we denote Ṡ(r)
i (Xt)

where Xt ≡ X(r)
i (tij). Hence Equation 16 is approximated by

˙̂
Y

(r)
i (t) = β̂rṠ(r)

i (Xt). (17)

The average trajectory is ξ̂(r)
i = 1

T

∫
T
Ṡ(r)
i (Xt)dt hence Equation 17 is then

˙̂
Y

(r)
i = β̂r ξ̂

(r)
i . (18)

At population level, the average rate of change over time of the rth explanatory variable is

estimated by taking its expected value over all patients

E( ˙̂
Y

(r)
i ) = β̂rE(ξ̂(r)

i ). (19)

Moreover the distribution of all ˙̂
Y

(r)
i for the rth explanatory variable can be used to estimate

confidence intervals.

Similarly we estimate the average trajectory over time of the outcome variable, log(eGFR), as

follows. Given Equation 15 for patient i, we perform spline interpolation on all regression terms,

then sum over all terms and finally calculate the ith average trajectory by integrating over time.

The population’s overall trajectory is then the expected value of all the ith average trajectories,

which we denote E( ˙̂
Yi).

Note that ˙̂
Y

(r)
ij , E( ˙̂

Y
(r)
i ) and E( ˙̂

Yi) have dimensions of one over time. In our study the unit of

time is a year.

4.2.2 Time derivative on eGFR scale

It follows from Equations 8, 9 and 15 that the time derivative in terms of eGFR(t) for patient i

is2

˙̂
Y ∗ij = Ŷ ∗ij (

p−1∑
r=1

β̂rẊ
(r)
i (tij) + b̂i1). (20)

2Note: d
dt

loge(f(t)) = ḟ(t)/f(t).
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The influence of a single term, e.g. β̂rẊ(r)
i (tij), on the outcome for patient i is given by

˙̂
Y
∗(r)
ij = Ŷ ∗ij β̂rẊ

(r)
i (tij). (21)

For patient i, as above performing spline interpolation, leads to ˙̂
Y
∗(r)
i (t) = Si(Ŷ ∗) β̂rṠ(r)

i (Xt);

given patient i then Si(Ŷ ∗) denotes the spline interpolation of the outcome’s fitted values. Given

the average trajectory ξ̂∗(r)i = 1
T

∫
T
Si(Ŷ ∗) Ṡ(r)

i (Xt)dt then Equation 21 is estimated with

˙̂
Y
∗(r)
i = β̂r ξ̂

∗(r)
i . (22)

The analogue at population level is given by the expected value of ξ̂∗(r)i over all i

E( ˙̂
Y
∗(r)
i ) = β̂rE(ξ̂∗(r)i ) (23)

and distribution of all ˙̂
Y
∗(r)
i will be used to estimate confidence intervals. In the results section

7.4 we report rates using Equation 23 and corresponding confidence intervals based on a bootstrap

method which does not assume a normal distribution.

Given Equation 20 the expected average trajectory of the outcome, eGFR, for the population,

denoted E( ˙̂
Y ∗i ), is estimated as previously described (see paragraph after Equation 19) i.e. pop-

ulation’s overall trajectory is then the expected value of all the ith average trajectories. This

quantity is also reported in the results section 7.4.

Note that ˙̂
Y
∗(r)
ij , E( ˙̂

Y
∗(r)
i ) and E( ˙̂

Y ∗i ) have units of eGFR per unit time.

4.3 Interpreting sign of regression parameters in terms of temporal

progression

Here we rewrite Equation 8 with an explicit fixed effect explanatory variable for time, that is

Ŷij = β̂0 + β̂1tij +
p−1∑
r=2

β̂rX
(r)
i (tij) + b̂i0 + b̂i1tij . (24)

In our data all continuous explanatory variables always have positive values. We focus on

the first three terms of Equation 24 and rewrite it in terms of eGFR(t) as follows Ŷ ∗ij(t) =

e0exp(β̂0 + β̂1tij + β̂2X
(2)
i (tij) + . . . ). The prefactor e0 exp(β̂0) determines the intercept at t = 0.

The middle term exp(β̂1tij) with β̂1 < 0 gives an exponential rate of decay of eGFR(t) over time,

hence larger values of |β̂1| result in faster decay rates: consequently kidney function deteriorates
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more rapidly. If β̂1 > 0 this would indicate an improvement in kidney function. The last term

exp(β̂2X
(2)
i (tij)) will indicate decreasing eGFR(t) over time when β̂2 < 0 and x

(2)
i (t) > 0 is

monotonically increasing over all time. Likewise kidney function will be worsening if β̂2 > 0 and

x
(2)
i (t) > 0 is monotonically decreasing. Consequently the sign of the regression parameter and

the explanatory variable’s trajectory over time determine whether the regression term contributes

towards an improvement or deterioration in kidney function.

4.4 Interpretion of fixed effects temporal interaction terms

With respect to the log(eGFR) model and its time derivative we consider the interpretation of

the fixed effects interaction terms. In this thesis all interactions are with follow-up time.

4.4.1 Regression model for log(eGFR)

We use interaction terms between a given explanatory variable and follow-up time, which we

denote by explanatoryVariable : followupTime; in mathematical notation this is may be written

x(t) t. For every interaction term we also include the corresponding explanatory variables as

separate terms for example β1t+ β2x(t) + β3x(t) t, hence rearranging gives β1t+ (β2 + β3t)x(t).

The factor (β2 + β3t) describes the time-independent (β2) and time-dependent (β3t) effects on

x(t).

4.4.2 Regression model for rate of change in log(eGFR) over time

A regression model for the rate of change over time of outcome eGFR will be computed by taking

the time derivative of terms such as β1t+ β2x(t) + β3x(t) t, the time derivative of this expression

is β1 + (β2 + β3 t)ẋ(t) + β3x(t). Similarly to Section 4.4.1 the factor (β2 + β3 t) describes the

time-independent (β2) and time-dependent (β3t) effects on ẋ(t) however there is an additional

time-dependent effect through the β3x(t) term. If x(t) is a categorical variable then ẋ(t) = 0

everywhere except at any discontinuities where it is undefined; therefore β1+(β2+β3 t)ẋ(t)+β3x(t)

reduces to β1 +β3x(t) hence in terms of this rates of change model β2 has no effect. Another way of

looking at this is when y(t) = β1t+β2x(t)+β3x(t) t+ . . . is differentiated with respect to time, i.e.

ẏ(t) = β1 + β2ẋ(t) + β3d(x(t) t)/dt+ . . ., the parameters quantify the rate of change of log(eGFR)

per unit time (year). Although we do not fit the differentiated model this interpretation stands.

4.5 Standardised model

From this point onwards, unless otherwise stated, all regression models will use standardised

continuous explanatory variables. The rationale being that this will allow us to assess the relative
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importance of the fixed effects regression parameters once the model is fitted. To standardise

each variable we subtract its mean and divide by its standard deviation. Standardisation is a

widely used technique when comparing model parameters but is open to criticism, for example

the meaning of one standard deviation may be open to debate especially for small sample sizes or

non-normal distributions. In this thesis we consider standardisation to be a pragmatic method of

rescaling the continuous explanatory variables to the same scale. The standardised variables are

dimensionless (no units of measure).

To aid interpretation follow-up time and baseline age are not standardised hence retain their units

of time i.e. years. Given follow-up time is not standardised the model can still be interpreted

in relation to disease progression per year. Furthermore the outcome variable log(eGFR) is not

standardised.

With reference to Section 4.1 when the variables are standardised a unit step change in the

standardised explanatory variable results in a one standard deviation change in the (unstandard-

ised) variable of interest. It follows that, with the standardised quantities denoted by dash, then

βrσr(Xr/σr + θ/σr) = β
′

r(X
′

r + θ
′

r) therefore θ′

r = θr/σr; i.e. if θ
′

r = 1 then θr = σr.
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5 Model selection

First we checked if there existed any significant dependence between the risk factors. To identify

the factors in our models which best describe the progression of kidney disease for each disease we

used a bi-directional selection procedure (based on the Akaike information criterion) on multiple

bootstrap samples; this allows us to gauge parameter uncertainty and helps to guard against

overfitting to the SKS data.

5.1 Dependence among model variables

In our regression models we need to avoid multicollinearity, that is the phenomenon by which one

variable can be linearly predicted from other variable(s) with a substantial degree of accuracy.

Multicollinearity occurs when two or more covariates are highly correlated which leads to unreliable

and unstable estimates of regression parameters.

To assess the strength of correlation between all pairs of covariates we computed the correlation

matrix; results are tabulated in Tables 31 to 36 of Appendix A.4.1. We did not find any

unexpectedly strong correlations. As expected covariates which were computed from, or strongly

related to, other covariates had strong correlations in particular: log(eGFR) and Cr; PP and

SBP; past cancer and no cancer.

To detect multicollinearity among covariates we used the variance inflation factor (VIF) which is

one of the most widely used methods (68). VIF is calculated for each covariate by performing a

linear regression of that covariate on all the other covariates, and then obtaining the coefficient

of determination R2 from that regression. VIF for a given covariate is defined as 1/(1 − R2)

and has a range from 1 upwards where 1 indicates the covariate is completely uncorrelated with

all other covariates. Hence VIF estimates how much the variance of a regression coefficient is

inflated due to its covariate’s association with all the other covariates; for example if the VIF is

1.9 then the variance of the given regression coefficient is 90% larger than would be expected if its

associated covariate was completely uncorrelated with all the others. To compute VIF values for

all potential covariates we employed an algorithm which uses a stepwise procedure, in particular

we use function vifstep from R-package usdm (69). First, the algorithm calculated the VIF for

every variable, then it excluded the variable with the highest VIF provided its VIF exceeded a

predefined threshold, this procedure was repeated until there were no remaining variables with a

VIF greater than the threshold. It is generally agreed that a VIF greater than 10 indicates too

much multicollinearity (e.g. Section 9.4 in (68)) but some authors consider there is too much if

VIF is higher than 5 and others if higher than 2.5; for example see discussion by (70). For our

data with a threshold set at 5 this method excluded SBP, reducing the threshold to 2.5 then

resulted in the exclusion of the number of antihypertensives patients were taking. In addition the

indicator variables derived from the categorical variable for disease also showed some high VIF
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values. Appendix A.4.2 lists the excluded variables and tabulates VIF values for variables whose

VIF values are less than the aforementioned thresholds; see Tables 37 and 38.

In conclusion, having assessed the strength of dependence between variables we decided to exclude

SBP as the clinicians advised their preferred blood pressure measure in the context of this research

was PP. Our VIF analysis indicates that with a threshold of 2.5 we should consider excluding

the number of antihypertensives however we opt to use this variable in our models as the SKS

clinicians advise us of its importance. In this sense we are effectively using a VIF with a threshold

of 5. Some of the indicator variables derived from the categorical variable for disease had relatively

high VIF values however there was an indicator variable for every disease category so some degree

of correlation or anti-correlation is to be expected therefore multicollinearity in this context it is

not a cause for concern. Given log(eGFR) is the outcome variable in our models we will not use

Cr as a covariate, the strong correlation between the two arises because Cr is used to compute

eGFR (Equation 1); if Cr was included it could obscure the effects from other variables which are

our primary interest. We note sex and ethnicity were not strongly correlated with log(eGFR).

This is probably because sex is a small effect in the eGFR formula (Equation 1) and although

ethnicity is a slightly larger effect the vast majority of the SKS cohort were classified as ‘white’

thereby obscuring any strong association.

5.2 Stepwise regression with bidirectional selection and bootstrapping

With the exception of considering dependencies among covariates in the previous section all the

covariate selection has up to this point in the thesis been based on the guidance and expertise

of the renal clinicians at Salford Royal NHS Foundation Trust who designed the SKS study.

This expert knowledge is invaluable for assisting with model selection, but creating statistical

models with a large number of covariates, as we have here, could potentially lead to overfitting.

An overfitted model would describe some of the residual variation (noise) as if this variation

represented part of the underlying model structure or physical process. Hence such models

exaggerate minor fluctuations in the data. Usually there is a trade-off between goodness-of-fit

and parsimony since models with many parameters tend to have a better model fit to the data

but will perform poorly when predicting from other datasets.

Our objective is to create parsimonious models; the simplest models with the least number of

covariates but with greatest explanatory power. There are various methods to estimate the

balance between parsimony and goodness-of-fit, popular methods include:

• Akaike’s Information Criterion, AIC - introduced by Akaike 1973 (71–73) - given the

number of estimated parameters k and the maximum value L̂ of the likelihood function of a

candidate model then AIC = 2k − 2lnL̂. Hence AIC rewards goodness-of-fit as determined

by the likelihood function but includes a penalty which increases with k that suppresses

31



overfitting. The best model from a set of candidate models is the one with the lowest AIC.

Note that AIC does not describe model quality so given a set of poor models the AIC will

select the best one from the poor-quality set.

• Bayesian Information Criterion, BIC - introduced by Schwarz 1978 (74) - uses a penalty

term, similar to AIC, for the number of parameters in the model but the penalty term is

larger hence BIC will often favour fewer parameters; BIC = kln(n)− 2lnL̂ where n is the

number of data points.

Other popular methods include ‘minimum description length’ and ‘Bayes factors’; for a description

and comparison of these methods, see (75).

In this thesis we use AIC. First, AIC is considered asymptotically optimal for selecting the

regression model (with the least mean squared error) from the set of candidates under the

assumption that this set does not contain the ‘true model’ (i.e the process that generated the

data). In contrast under this assumption BIC is not asymptotically optimal; see for example the

comparison of AIC and BIC given by (76) in relation to regression models. Secondly, the risk of

selecting a bad model is minimised with AIC compared with BIC which carries a significant risk

of selecting a poor model from the candidate models; e.g. see simulation study by (77). Lastly,

(77) suggests AIC is preferred when the ‘true model’ is complex relative to all candidate models,

that is when all the candidates substantially oversimplify the underlying physical processes; this is

most likely the case with our dataset as it is very doubtful we have all the required covariates to

completely model the physical processes driving changes in renal function. It is also improbable

that the complexities of renal function are fully described by the simple structure of our linear

regression models.

To assist with model selection we used stepwise regression which is a method of fitting regression

models in which the choice of covariates is carried out by a systematic procedure. In each step of

the algorithm a covariate is considered for addition to, or subtraction from, the set of covariates

based on AIC. We use, from the R-package MASS (78), the function stepAIC which is briefly

described in (78) on page 175. This function implements a bidirectional selection procedure. To

the author’s knowledge neither (78) or the MASS documentation describe the algorithm so its

steps are outlined here:

1. it computes AIC for the regression model with all covariates;

2. it removes each covariate one at a time (backward selection) from the regression model and

calculates the AIC for each model then selects the one with lowest AIC;

3. it again removes covariates one at a time (backward selection) but also in turn adds

covariates in one at a time which were previously removed (forward selection), then the

regression model with the lowest AIC is selected;

4. the combination of backward-forward selection in step 3. is repeated until the model with

the lowest AIC is found.
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An exhaustive search where regression models are computed for every possible combination of

covariates will find the global minima in AIC (or whichever statistic is used) but such a search is

computationally impractical for the number of covariates in our dataset. The aforementioned

bidirectional selection procedure, although typically more robust than applying only a forward or

a backward selection procedure, still presents the risk of unknowingly selecting a model with a

local minima in AIC rather than the desired model with the global AIC minima.

To gauge the level of model selection uncertainty we employed a bootstrap method; the principles of

which were first published by Efron 1979 (79) and are now widely used e.g. see texts (80,81). This

method, which is distribution-independent, is a resampling technique which estimates statistics on

an unobserved population by sampling the observed dataset with replacement. In particular the

observed dataset is randomly resampled with replacement, the bootstrap distribution is generated

by repeating this resampling procedure a number of times. Provided the observed dataset is a

representative sample from the true population the bootstrap method works by treating the true

distribution as being analogous to the bootstrap distribution. It is therefore possible to assess

the properties of the unobserved distribution of the population.

The bootstrapping technique typically assumes all observations are from an independent and

identically distributed population. However this assumption is violated by longitudinal data.

There are multiple observations per patient (cluster), and the data are independent between

patients but temporally correlated within each patient’s records. We respect this data structure

by using the so-called m-out-of-n bootstrap where there are a total of n records grouped into m

clusters; for example (81) page 140 and (82) discuss this type of bootstrap. In terms of our data

the patients, i.e. m clusters, are randomly resampled with replacement while the observations for

each patient remained unchanged so as to preserve temporal correlations. It follows that each

bootstrap sample has the same number of patients (clusters) as the original data although some

patients would almost surely occur more than once.

In summary, for a given dataset the final model will be obtained by using the bootstrap to

estimate selection stability for each explanatory variable under bidirectional stepwise regression.

The exact procedure is summarised below in Section 5.4.

5.3 Training and validation data

To help detect the presence of any under- or over-fitting in the aforementioned model selection

procedures, described in Section 5.2, were performed on a subset of data, training data, and the

resulting model was then validated using the remaining data, validation data. Commonly, training

data consists of 75-80% of the entire dataset and the remaining 25-20% forms the validation

data. In our case, for a given dataset, we obtained the training data by randomly selecting the

desired number of patients (without replacement), therefore the remaining patient data formed
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the validation data. The idea is that if the model selected fits similarly to both the training and

validation data then we surmise that the model adequately describes the data without under- or

over-fitting.

Note that the use of training and validation data is no more than a weak test of overfitting. For

a discussion on its limitations see Section 8.3.

5.4 Summary of model selection procedure

We create a separate LME model for each primary kidney disease group (diabetic nephropathy,

glomerulonephritis, hypertensive kidney disease, obstruction, other, polycystic kidney disease,

pyelonephritis, renovascular disease, unknown) with the exception of obstruction which is excluded

because of too little data. Additionally we make an overall model, called ‘single model all diseases’,

which uses the entire dataset including patients with obstruction. We select our final models for

each disease category as followings:

Step 1. Using the full dataset, strong correlations between covariates were eliminated by completely

discarding several covariates; details given above in Section 5.1.

Step 2. Given Equation 2, for each disease we initially use a parsimonious LME model with random

effect X∗i = 1ni and εi ∼ N(0, σ2 Ini). Each model is fitted by maximising the log-likelihood

so that we can compare models using AIC. Fixed effects for each disease model are selected as

follows:

1. Wherever the dataset was large enough we apportioned 80% of patients (randomly selected)

to the training data and the remaining 20% to the validation data. With this ratio the PKD

and pyelonephritis disease models contained too few patients in the validation data so we

apportioned 75% of patients to the training data and the remaining 25% to the validation

data.

2. We generated 100 bootstrap samples from the training data.

3. The bidirectional model selection procedure was applied to each bootstrap sample. Given

each bootstrap sample a regression model with the lowest AIC was estimated and its fixed

effect regression parameters recorded.

4. We assessed regression model stability across all bootstrap samples by computing the

proportion of samples in which each explanatory variable was included in the regression.

The final model for each disease category was selected using explanatory variables which

occurred in more than 50% of bootstrap samples.

5. The final models were fitted using the validation data to check the robustness of the model

fit to the data.

Step 3. Given our interest is in the progression of disease over time, we augmented the fixed
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effects with interaction terms between each time varying explanatory variable and time since

follow-up. This allows us to estimate the effects on the slope of log(eGFR) over time. The

rationale for not including interaction terms during Step 2. was to limit the size of the parameter

space so as to reduce the chance of overfitting and/or selecting models in a local, rather than a

global, minima. From this point onwards all models include such interactions which we denote as

expanatoryVariable:followupTime. Note that we do not consider all possible interactions between

all explanatory variables as again the parameter space would become too large potentially leading

to sub-optimal models.

Step 4. The fixed effects selected in Step 2. and 3. were for a model with random effect design

matrix X∗i = 1ni and εi ∼ N(0, σ2 Ini); below we refer to this as ‘Model A’. Using these fixed

effects we investigated the model fit by undertaking rudimentary exploratory analysis using

log-likelihood estimates. As is customary in longitudinal analysis we considered models with

different random effects and correlation structures including compound symmetry (CS). The

CS results are not presented here as they did not significantly improve the model fit. Here we

consider the following additional complexities to the model structure:

• Model B: X∗i (tij) = 1ni with correlation Ci described by a CAR1 model

• Model C: X∗i (tij) = (1ni , ti) without within-group correlation

• Model D: X∗i (tij) = (1ni , ti) with correlation Ci described by a CAR1 model

Given the training data the log-likelihood estimates for all models are tabulated in Table 7.

Table 7: Comparison of log-likelihood for different models

Model A Model B Model C Model D

random effect X∗i 1ni 1ni (1ni , ti) (1ni , ti)

correlation Ci none CAR1 none CAR1

diabetic nephropathy -17.7 -0.3 -0.8 1.5

glomerulonephritis -79.1 -55.6 -43.2 -41.0

HKD 45.5 57.5 51.6 58.9

other 12.8 16.5 21.4 22.0

PKD 24.5 34.7 42.8 45.9

pyelonephritis 64.7 67.9 79.0 78.5

renovascular 51.8 61.2 59.5 64.8

unknown -23.7 -23.7 -20.0 -20.1

single model all diseases -488.3 -333.2 -325.8 -302.9

Note: For each disease, the fixed effects derived from Model A are

used in Models B to D.

The model which maximises the log-likelihood for each disease category and so gives the best fit
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to the data is Model D; see Table 7. Model C generally has a higher log-likelihood than Models

A and B, except for diabetic nephropathy, HKD and renovascular where Models C and B have

very similar log-likelihoods.

We acknowledge that simply comparing log-likelihood values between models is naive and that

from a statistical standpoint model comparison requires likelihood ratio tests. However our model

choice is more pragmatic than statistical, in that we took into consideration the known structure

of the data (i.e. we expected to need intercept and slope random effects) and although we would

have preferred to properly consider correlation in the form of a CAR1 model this could not be

achieved within the scope of this thesis as explained below in the second bullet point. Given every

disease category, for our final model structure we chose the more parsimonious model, Model C,

over Model D. This decision was based on the following considerations:

• Given the aforementioned caveats relating to exploring within-group correlations and

likelihood ratio tests we note that the log-likelihood for Model C was only marginally less

than Model D, but still approximately matches or is better than models A and B.

• We encountered problems which we could not resolve when fitting Model D to many of the

bootstrap samples, specifically the R function nlme::lme() for fitting the mixed effects model

reported singularity errors. It is possible that Model D was too complex; a full and detailed

investigation was beyond the scope of this thesis. In contrast a model fit was possible for

all randomly generated bootstrap samples when using Model C.

• For a given fixed effect parameter all 95% confidence intervals overlapped when comparing

these intervals between Models A, B, C and D; note that parameters were selected using

Model A. This comparison held true for all fixed effect parameters in all our disease

categories. We conclude that these parameter distributions are not statistically different

between the models. This means the choice of random effect does not dramatically alter

the distribution of the fixed effect parameter values, therefore from this perspective Models

A to D are all viable choices.

Step 5. Lastly, given the final choice of model, Model C, we repeated the procedure stated in

bullet points of Step 2. above. There was little change in the selected fixed effect terms when

fitting Model C compared with A.

Finally, for the remainder of this thesis we use Model C where the random effects are accounted

for by intercept and slope (followupTime) terms.
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6 Diagnostics

In this chapter we verify the robustness of our models, and hence results, by subjecting them to

diagnostic tests which predominantly aim to check the linear mixed model assumptions.

6.1 LME Model assumptions

Before reporting results we check the models for each disease are robust and adhere to the basic

LME model assumptions, which are:

1. Within-group errors εi are independent and identically normally distributed, with zero

mean and constant variance.

2. Random effects are normally distributed, with mean zero and covariance matrix Ψ, and are

also independent of within-group errors.

We mostly follow diagnostic tests recommended by (66) (e.g. Chapter 4.3) so predominantly

concentrate on displaying diagnostic information in plots since, as (66) points out, they are rarely

contradicted by hypothesis tests.

6.2 Tests using validation data

When considering model fits to the validation data we note the limitations raised in Section 8.3.

In particular we acknowledge that the tests detailed below offer no more than a weak test of

overfitting.

On a parameter-by-parameter basis, we compared model estimates fitted using training data with

those fitted using validation data; in particular we examined fixed effect parameter estimates,

standard errors and confidence intervals. All estimates were very similar, with almost all (training

and validation data) confidence intervals overlapping for each parameter.

We examined the residuals of each disease model fit using diagnostic plots (not shown) similar to

those in Section 6.6, Figures 8-16. When fitting the models with either the training or validation

data we did not find any concerning autocorrelations or deviations from normality. Moreover the

plots displayed very similar characteristics for each dataset, these characteristics can also be seen

in Figures 8-16 which were created when fitting models to the full dataset.

In summary, there was no concerning evidence of overfitting to the training data For the remainder

of this thesis we use the full dataset unless otherwise stated.
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6.3 Examination of confidence intervals

Very wide or indeterminate confidence intervals for the LME model parameters indicate numerical

instability, consequently the fitted model could not be expected to reliably describe the data.

Tables 8 and 9 confirm the confidence intervals for the random effects variance-covariance

parameters and σ, give no cause for concern. Figure 5 displays correlation values from Table 8, it

clearly shows PKD has a relatively high correlation. The fixed effect confidence intervals, not

shown, were also acceptable for each model.

We note in Table 8 that the correlation between random effects is computed from the variance-

covariance matrix S i.e. correlation matrix R = D−1/2 SD−1/2 where D = diag(S) and the

elements of D1/2 are standard deviations.

Table 8: 95% confidence intervals for random effects variance-

covariance parameters

random effects lower CI estimate upper CI

diabetic nephropathy

sd(Intercept) 0.284 0.318 0.356

sd(followupTime) 0.043 0.056 0.074

cor(Intercept,followupTime) -0.174 0.065 0.296

glomerulonephritis

sd(Intercept) 0.359 0.398 0.441

sd(followupTime) 0.044 0.056 0.071

cor(Intercept,followupTime) -0.046 0.193 0.412

HKD

sd(Intercept) 0.299 0.334 0.373

sd(followupTime) 0.028 0.042 0.062

cor(Intercept,followupTime) -0.219 0.102 0.403

other

sd(Intercept) 0.310 0.345 0.384

sd(followupTime) 0.029 0.040 0.057

cor(Intercept,followupTime) -0.179 0.101 0.366

PKD

sd(Intercept) 0.403 0.472 0.554

sd(followupTime) 0.054 0.077 0.110

cor(Intercept,followupTime) 0.383 0.778 0.932

pyelonephritis
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Table 8: 95% confidence intervals for random effects variance-

covariance parameters (continued)

random effects lower CI estimate upper CI

sd(Intercept) 0.298 0.350 0.410

sd(followupTime) 0.023 0.033 0.046

cor(Intercept,followupTime) -0.267 -0.017 0.236

renovascular disease

sd(Intercept) 0.295 0.342 0.396

sd(followupTime) 0.034 0.048 0.066

cor(Intercept,followupTime) -0.059 0.331 0.633

unknown

sd(Intercept) 0.280 0.314 0.352

sd(followupTime) 0.028 0.041 0.061

cor(Intercept,followupTime) -0.476 -0.169 0.174

single model all diseases

sd(Intercept) 0.350 0.365 0.380

sd(followupTime) 0.048 0.053 0.058

cor(Intercept,followupTime) -0.047 0.012 0.071

Table 9: 95% confidence intervals for within-group standard deviation for parameter σ

σ lower CI estimate upper CI

diabetic nephropathy 0.142 0.152 0.164

glomerulonephritis 0.155 0.165 0.175

HKD 0.126 0.136 0.147

other 0.155 0.165 0.177

PKD 0.103 0.116 0.130

pyelonephritis 0.113 0.123 0.135

renovascular 0.125 0.137 0.149

unknown 0.148 0.160 0.173

single model all diseases 0.158 0.162 0.166
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6.4 Observed versus fitted values

For each disease category we show the relationship between the model fitted values and observed

values i.e. log(eGFR). Figure 6 depicts observed values plotted against fitted values obtained

using a model with fixed effects only (excluding random effects). This gives a summary of the

overall quality of the model fixed effects; in all plots there is a reasonable degree of correlation.

When using the full model the fitted values include both fixed and random effects, in Figure 7

we observe a marked increase in correlation across all disease categories. This provides evidence

that random effects are needed in our models to help explain log(eGFR). For example, given the

category ‘single model all diseases’ the correlation between observed and fitted values without

random effects is 0.73, whereas when random effects are included the correlation increases to 0.97.

Given Figure 6 we observe, that compared with the other diseases, PKD has a noticeably wider

spread of values. We attribute this to the fixed effects describing the data less well. The dominant

determinant for the progression of kidney disease in PKD patients is typically the extent and rate

of growth of cysts in the kidneys. Our data does not contain information relating to kidney cysts,

therefore this factor cannot be included in the PKD model fixed effects. This possibly explains

why we observe a wider spread in values in Figure 6. This wide spread of values for PKD is not

seen in Figure 7 hence the inclusion of the random effects accounts for the additional variability

not accounted for by the fixed effects.
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Figure 6: Observed values plotted against fitted values obtained using a model with fixed effects
only
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Figure 7: Observed values plotted against fitted values obtained using full model with fixed and
random effects
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6.5 Assessment of residual distributional assumptions

Standardised (or Pearson) residuals are found by subtracting the estimated fitted value vector

from the outcome vector, then dividing through by the corresponding estimated within-group

standard errors. Fitted values are obtained by adding the estimated contributions from both fixed

and random effects vectors. We expect the standardised residuals to follow a standard normal

distribution.

In Figures 8-16 we assess, for each disease, the normality assumptions of the residuals using a

panel of four plots:

• Left plot - standardised (or Pearson) residuals against fitted values. From these plots we

report that the residuals in our LME models are reasonable given the within-group error

assumptions: the residuals are symmetrically distributed around zero with approximately

constant variance.

• Left middle plot - qq-plot with standardised residual quantiles against theoretical quantiles.

These plots confirm that our models have residuals which are plausible under the assumption

of normality. However outside of about -2 to 2 quantiles there are more than expected

extreme positive and negative residuals hence our distributions have long tails. Clearly our

models do not adequately explain the extremes however this is not a significant issue given

our objective is to identify fixed effect parameters and not to make predictions (note that

with our model’s predictions based on the extremes would be poor).

• Right middle plot - cumulative probability for both the standard normal distribution (dotted

black) and standardised residual (solid blue). These plots confirm that our residuals do not

indicate any significant violations of the normality assumption.

• Right plot - empirical autocorrelation function for standardised residuals where lag is the

difference between follow-up years and the shaded area is the 95% CI. These plots show that

there exists some autocorrelation which is not accounted for by the LME model however

we consider this amount of autocorrelation to be acceptable. The large correlations at

large lags are most likely due to the small numbers patients followed-up over many years

e.g. PKD has less than 20 patients beyond four follow-up years. For reference, the number

of patients at each follow-up year are denoted by ‘n=. . . ’ in Figures 63-71.
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Figure 8: Residuals: disease diabetic nephropathy
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Figure 9: Residuals: disease glomerulonephritis
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Figure 10: Residuals: disease HKD
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Figure 11: Residuals: disease other
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Figure 12: Residuals: disease PKD
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Figure 13: Residuals: disease pyelonephritis
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Figure 14: Residuals: disease renovascular
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Figure 15: Residuals: disease unknown
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Figure 16: Residuals - single model all diseases
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Appendix A.5, Figures 63-71, show there is no systematic trend in the mean of the residuals over

time and furthermore the majority of 95% confidence intervals cover zero.

Despite the aforementioned weaknesses we conclude for each disease category that the residuals do

not show any concerning deviation from normality. With reference to Section 6.1 we conclude that

assumption 1 is sufficiently true; i.e. errors are independent and identically normally distributed,

with zero mean and constant variance.

Removing outliers

When we present the results in Chapter 7 we will exclude the following outliers:

• given figure 8 the record with the residual value of 4.1 will be removed from diabetic

nephropathy

• given figure 13 the record with the residual value of 3.3 will be removed from pyelonephritis

• given figure 15 the record with the residual value of 3.2 will be removed from disease

unknown

These outliers were far from any other observations within their disease category and therefore

might skew the parameter estimation. We took this approach since we are unable to determine if

the outliers were due to: a) natural variability not accounted for by our model; b) measurement

error; c) data recording error; or d) sub-optimal imputation. Future work should carefully

investigate outliers as they may be medically informative if caused by unusual but interesting

biological mechanisms not accounted for within our models. However we note that the removal of

the aforementioned outliers made negligible difference to our parameter estimates.
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6.6 Assessment of random effect distributional assumptions

Given each disease category the mean value of each estimated random effect vector is, as required,

approximately zero; range -1.2e-14 to 1.3e-13.

Figures 17 and 18 respectively show the qq-plots of the estimated random effects for slope and

intercept, it can be seen that the assumption of marginal normality is plausible although the

distributions for the slope term deviate from normality beyond about 1 standard deviation.
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Figure 17: qq-plot for standardised random effect intercept term
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Figure 18: qq-plot for standardised random effect slope term

Despite the aforementioned weaknesses we conclude for each disease category that the random

effects do not show any concerning deviation from normality, with reference to Section 6.1 we

conclude that assumption 2 is plausible; i.e. random effects are normally distributed, with mean

zero.
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As an aside we investigate the extent to which there are correlations between the estimated

random effects terms i.e. intercept and slope. We expect that there may be some correlations,

although in terms of our model fitting this is not a concern. For most diseases there is no

significant correlation, the exception is PKD which is highly correlated.
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Figure 19: Estimated random effects plotted against each other
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6.7 Robustness of fixed effect parameters and conclusions relating to

diagnostic results

In this thesis our primary interest is in fixed effects therefore we consider how they are influenced

by the choice of random effects. We rewrite Equation 2 such that

Y i = Xiβ +X∗i bi + εi

= Xiβ + ε∗i
(25)

where ε∗i = X∗i bi + εi and bi ∼ N(0,Ψ). Both X∗i bi and εi are independently distributed as

multivariate normal vectors hence their sum ε∗i is an independently distributed multivariate normal

vector with mean zero and variance-covariance matrix σ2Σi = X∗iΨ(X∗i )T + σ2I. Consequently

Y i are independent multivariate normal random vectors with variance-covariance matrix σ2Σi

and mean Xiβ i.e. Y i|Xi ∼ N(Xiβ, σ
2Σi). The density is

P (Y i|β, σ2) = (2πσ2)−
ni
2 exp

(
−(Y i −Xiβ)TΣ−1

i (Y i −Xiβ)2−1σ−2) |Σi|−
1
2 (26)

where |Σi| is the determinant of Σi. The log-likelihood is

l(β, σ2|y) = C +
M∑
i=1

((Y i −Xiβ)TΣ−1
i (Y i −Xiβ)|Σi|−

1
2 ) (27)

and we note, using matrix algebra, that

(Y i −Xiβ)TΣ−1
i (Y i −Xiβ) = Y T

i Σ−1
i Y i − 2βTXT

i Σ−1
i Y i + βTXT

i Σ−1
i Xiβ. (28)

Differentiating the log-likelihood with respect to β, equating to zero, and evaluating at β = β̂

gives the maximum likelihood estimate for this parameter;

β̂ =
(

M∑
i=1

XT
i Σ−1

i Xi

)−1 M∑
i=1

XT
i Σ−1

i Y i. (29)

Using the law of total expectation, i.e. E(X) = E(E(X|Y )), and given E(ε∗i |Xi) = 0, then
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E(β̂) =
(

M∑
i=1

XT
i Σ−1

i Xi

)−1 M∑
i=1

XT
i Σ−1

i Xiβ

= β.

(30)

It follows that the estimator of fixed effects parameter β is unbiased where the only assumption

required is E(Y i|Xi,X
∗
i ) = Xiβ. This result shows that the LME model gives unbiased estimates

of β̂ even if the random effects and residual assumptions are violated. For example, our intercept-

and-slope random effects assume linear slopes over time but if the patient’s have longitudinal

trajectories which are actually non-linear we will still obtain unbiased estimates of β̂ despite the

departure from normality as depicted in Figure 18; here we assume reasonable fixed effects terms.

Even if the random effects and/or residuals, are not normally distributed, and/or the variances

are not constant, we still obtain unbiased estimates of β̂ but we should be careful when drawing

inferences; estimating standard errors, and calculating confidence intervals and p-values.

If one or more of the LME assumptions are violated our inferences relating to the fixed effects

should still be valid since, as discussed above these models are robust to such violations. We

therefore conclude that our LME model diagnostics do not reveal any deviations from normality

or homoscedasticity which are sufficient to cause us concern regarding the robustness of the fixed

effect parameters estimates.
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7 Results

7.1 Introduction

We present our results based on the LME models for each disease category that we fitted in

Chapter 5. In Section 7.2 we give an overview of regression parameter estimates and report their

details in Section 7.3. These two sections constitute our main findings regarding the key factors

affecting kidney disease. As discussed in Section 4.5 all continuous explanatory variables have

been standardised except for follow-up time and baseline age. For reference only, the equivalent

regression parameter estimates in which variables are not standardised are given in Appendix

A.7. In Section 7.4 we report the rates at which the variables change over time; these results are

of secondary importance relative to Sections 7.2 and 7.3 .

The regression parameter estimates are difficult to interpret from a clinical perspective because

they are relative to the log(eGFR) scale, most clinicians work in terms of eGFR. We therefore

report the relative change in eGFR induced by a step change in the variable of interest, see

Equation 14. A relative change of 5% in eGFR is generally considered to be a clinically significant.

Given standardised variables we set θ′

r = 1 therefore the parameter effects are comparable. In

this thesis a superscript dash is never used to denote a derivative, here we use a superscript dash,

e.g. θ′

r, to denote that the term belongs to the standardised model as described in Section 4.5.

When we report p-value estimates for regression parameter values the null hypothesis is that the

parameter is zero valued i.e. the parameter has no effect on the outcome. We choose to reject

the null hypothesis at the 5% significance level, hence with this interpretation a p-value < 0.05

indicates changes in the predictor are associated with meaningful changes in the outcome.

For each disease model the details of the fixed effect parameter estimates are given in Tables

10 to 20. Additionally Figures 20 to 37 summarise the relative change in eGFR for θ′

r = 1 and

indicate the clinically significant level of a 5% change in eGFR.

When reporting the regression parameters for a given disease we split them into two categories as

follows:

• average effects - describe the average behaviour of the population. These effects related to

explanatory variables which do not have an interaction with time. Parameters with positive

values indicate a higher level in eGFR (less severe kidney disease) whereas negative values

indicate a lower level in eGFR (more severe kidney disease).

• temporal effects - describe the explicit time dependent behaviour of the population. These

effects relate to explanatory variables which have an interaction with follow-up time, that is

X
(r)
i (ti,j) ti,j or equivalently we denote such terms as explanatoryVariable : followupTime

(this is the notation used by R-package nlme). As shown in Section 7.4.1 the eGFR is
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on average decreasing over time, i.e. it has a negative slope over time, for each disease

category. It follows that parameters with positive values reduce the gradient of the slope

of eGFR, that is the slope is less negative (more shallow), which suggests a less rapid

decline in kidney function. Conversely, negative parameter values indicate an increase in

the slope of eGFR, that is the slope is more negative (steeper), which suggests a more rapid

decline in kidney function. Mathematically this can be seen by considering the linear model

y(x, t) = ax + bt + cxt = ax + (b + cx)t where the slope with respect to t is (b + cx). It

follows that if b is negative, then for positive c an increase in x leads to a slope which is less

steep. Conversely for negative b and c, an increase in x results in a slope that is steeper.

The clinicians advised that, within the following three groups, the variables are clinically strongly

associated:

• med.VitaminD, CC, PO, PTH,

• med.ACE.ARB, numberAntihypertensives, DBP, PP and Pu

• med.iron (iron taken orally), med.ParenteralIron, med.Epo and Hb

If one or more variables within a given group are selected by our model selection procedure (see

Section 5.4) then all variables from that group will be used when reporting the results. The

reasoning behind these strong associations is that within each of these groups the medications

change the levels of the biochemical markers, and where applicable the blood pressure markers

(DBP, PP).
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7.2 Overview

In Tables 10 and 11 we present a summary of the fixed effect regression parameters for each disease

model. In these tables the ‘single model all diseases’ column is the model which encompasses

all disease categories including the obstruction category. If a parameter is present in a given

model it is denoted by either star(s) or tilde. One or more stars indicate that we reject the null

hypothesis, hence the parameter is statistically significant. Three stars indicate we reject the null

hypothesis at the significance level of 0.001, two stars at a level of 0.001-0.01 and one star at a

level of 0.01-0.05. Tilde indicates although we do not reject the null hypothesis we still include

the parameter in the model as it has a small effect. The plus and minus signs inside the brackets

indicate the sign of the estimated parameter, for example (-)*** denotes the given parameter

estimate has a negative value and is statistically significant at the 0.001 level.

Key messages

As expected there is much variation across disease categories. Purely in terms of parameter

p-values for the average effects, given in Table 10, we observe the following:

• In every disease model parameters baseline age, vitamin D, Hb, PO and PTH are typically

highly statistically significant.

• Medications play a stronger role than comorbidities.

• Baseline lifestyle parameters (living alone, occupation, smoking and weekly alcohol intake)

do not play as strong a role as we might have anticipated.

• Physical attributes such as BMI, sex and ethnicity generally have a very weak effect.

• Each of the CC, DBP, Hb, PO, PP, Pu, PTH, total Cholesterol and total CO2 factors are

statistically significant in at least one disease category, the exception is CRP which is not

statistically significant anywhere.

• medication med.ACE.ARB is statistically significant for diabetic nephropathy and less so

for glomerulonephritis but it is not significant for the other diseases.

Considering the temporal effects, given in Table 11, we observe:

• The majority of these variables the steepness of their slopes are not statistically significant.

For example the comorbidities very weakly influence the progression of disease.

• In some cases follow-up time is significant, especially so for PKD. This most likely indicates

there are other risk factors which are not in our model.

• For some diseases, the biomarkers DBP, Hb and PTH have a positive effect on the slope

indicating less rapid progression of disease. In contrast PO, Pu, total cholesterol and total

CO2 have a negative effect indicating a more rapid progression of disease.

Where anomalies occur in the signs of parameters they are discussed in detail with reference to

each primary kidney disease within Section 7.3.
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Average effects

Table 10: Average effects - standardised model summary for each disease
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(Intercept) (+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

age0 (−)
∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗

(−)
∗

(−)
∗∗∗

(−)
∗∗∗

bodyMassIndex (−)
∗∗

(+)
∼

CC (−)
∗∗

(+)
∼

(−)
∼

(−)
∗

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∗∗

comorbidityCancercurrent (+)
∼

(−)
∼

(+)
∼

(+)
∼

comorbidityCancerprevious (−)
∗

(−)
∼

(+)
∼

(−)
∼

comorbidityCV1 (−)
∗

(−)
∼

(+)
∼

(−)
∼

(−)
∼

(−)
∗

comorbidityCVover 1 (−)
∗

(−)
∼

(−)
∼

(+)
∼

(−)
∗

(−)
∗∗

comorbidityDiabetestype1 (−)
∼

(−)
∼

comorbidityDiabetestype2 (+)
∼

(+)
∼

(+)
∼

comorbidityGastrointestinal (+)
∼

(+)
∼

comorbidityOther (+)
∼

CRP (+)
∼

(+)
∼

(−)
∼

(+)
∼

DBP (+)
∗

(−)
∼

(+)
∼

(+)
∼

(+)
∼

(+)
∼

(+)
∗

(+)
∗

disease diabetic nephropathy (−)
∗∗

disease glomerulonephritis (+)
∼

disease HKD (−)
∼

disease obstruction (−)
∗∗∗
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Table 10: Average effects - standardised model summary for each disease

(continued)
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disease polycystic kidney disease (−)
∗∗∗

disease pyelonephritis (−)
∗∗

disease renovascular disease (−)
∼

disease unknown (−)
∼

ethnicitynonWhite (+)
∼

familyHistoryIHD0 (−)
∼

(+)
∼

(+)
∼

Hb (+)
∼

(+)
∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∼

(+)
∗

(+)
∗∗

(+)
∗∗∗

(+)
∗∗∗

med.ACE.ARB (+)
∗∗∗

(+)
∗∗

(+)
∼

(+)
∼

(+)
∼

(−)
∼

(−)
∼

(+)
∗∗

med.AlphaBlockers (−)
∼

(−)
∼

(+)
∼

(−)
∼

med.BetaBlockers (+)
∼

(−)
∼

(−)
∼

(+)
∼

med.CCBs (−)
∗∗

(−)
∼

(+)
∼

(+)
∼

(+)
∼

(−)
∗

med.Diuretics (+)
∼

(−)
∗

(−)
∗∗

med.Epo (−)
∗∗

(−)
∼

(−)
∼

(−)
∼

(+)
∼

(−)
∼

(−)
∗∗

(−)
∗

(−)
∗∗∗

med.Iron (−)
∼

(+)
∼

(+)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(+)
∼

med.Other (−)
∗

med.ParenteralIron (−)
∗

(−)
∼

(−)
∼

(−)
∼

(−)
∗

(+)
∼

(+)
∗

(−)
∼

(−)
∼

med.VitaminD (−)
∗∗∗

(−)
∗∗∗

(−)
∗∗

(−)
∗∗∗

(−)
∼

(−)
∗∗

(−)
∗

(−)
∗∗

(−)
∗∗∗

numberAKIepisodes (−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(+)
∗

(−)
∼

numberAntihypertensives (−)
∗

(−)
∼

(−)
∗∗

(−)
∼

(−)
∗∗

(+)
∼

(−)
∼

(−)
∼
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Table 10: Average effects - standardised model summary for each disease

(continued)
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numberClinicVisits (−)
∼

(+)
∗

(+)
∼

(+)
∼

(−)
∼

occupation0ManagerialProfessional (+)
∼

(−)
∼

(+)
∼

occupation0Intermediate (+)
∼

(+)
∼

(+)
∼

occupation0NeverWorkedUnemployed (+)
∼

(−)
∼

(+)
∼

PO (−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

PP (+)
∗

(+)
∼

(+)
∼

(+)
∗

(−)
∼

(+)
∗∗

(+)
∼

(+)
∗

PTH (−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗

(−)
∼

(−)
∗∗

(−)
∗∗∗

(−)
∗∗∗

Pu (+)
∼

(+)
∗∗

(−)
∼

(−)
∗

(+)
∼

(−)
∼

(−)
∗

(+)
∼

sexfemale (−)
∼

smokingStatus0active (−)
∼

(−)
∼

(−)
∼

smokingStatus0ex-smoker (−)
∼

(+)
∼

(−)
∼

totalCholesterol (+)
∼

(+)
∼

(+)
∼

(+)
∼

(+)
∗

totalCO2 (+)
∗∗∗

(+)
∗∗

(+)
∗∗∗

(+)
∗

(+)
∗∗

(+)
∗∗

(+)
∗∗∗

weeklyAlcohol01 to 14 (−)
∗

(−)
∼

(−)
∼

(−)
∼

weeklyAlcohol0over 14 (−)
∼

(+)
∗

(+)
∼

(+)
∼

Note:

regression parameter sign: positive (+); negative (-)

p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *; >0.05 ∼
1 ‘all’ denotes ‘single model all diseases’
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Temporal effects

Table 11: Temporal effects - standardised model summary for each disease
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bodyMassIndex:followupTime (+)
∼

(+)
∼

CC:followupTime (+)
∼

(−)
∼

(+)
∼

(+)
∼

(−)
∼

(+)
∼

(+)
∼

(−)
∼

(−)
∼

comorbidityCancercurrent:followupTime (+)
∼

(+)
∼

(+)
∼

(−)
∼

comorbidityCancerprevious:followupTime (+)
∼

(+)
∼

(−)
∼

(+)
∼

comorbidityCV1:followupTime (+)
∼

(−)
∼

(−)
∼

(+)
∼

(+)
∼

(+)
∼

comorbidityCVover 1:followupTime (+)
∼

(+)
∼

(+)
∼

(−)
∼

(+)
∼

(+)
∼

comorbidityDiabetestype1:followupTime (−)
∼

(+)
∼

comorbidityDiabetestype2:followupTime (+)
∼

(+)
∼

(+)
∼

comorbidityGastrointestinal:followupTime (+)
∼

(−)
∼

comorbidityOther:followupTime (−)
∼

CRP:followupTime (+)
∼

(−)
∼

(+)
∼

(−)
∼

DBP:followupTime (−)
∼

(+)
∗

(+)
∼

(−)
∼

(−)
∼

(+)
∗

(−)
∼

(+)
∼

followupTime (−)
∗∗

(−)
∼

(−)
∗

(−)
∼

(−)
∗∗∗

(−)
∼

(−)
∼

(+)
∼

(−)
∗∗∗

Hb:followupTime (+)
∗∗

(+)
∼

(+)
∼

(−)
∼

(+)
∗

(+)
∗

(+)
∼

(+)
∼

(+)
∗∗

med.ACE.ARB:followupTime (−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(+)
∼

(−)
∼

(−)
∼

med.AlphaBlockers:followupTime (−)
∼

(+)
∼

(+)
∗∗

(−)
∼

med.BetaBlockers:followupTime (−)
∼

(−)
∼

(−)
∼

(−)
∼

med.CCBs:followupTime (+)
∼

(+)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼
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Table 11: Temporal effects - standardised model summary for each disease

(continued)
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med.Iron:followupTime (+)
∼

(−)
∼

(−)
∼

(−)
∼
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∼

(−)
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(+)
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(−)
∗

med.Other:followupTime (+)
∼

med.ParenteralIron:followupTime (+)
∗∗
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∼

(+)
∼

(−)
∼
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∼

(−)
∼

(−)
∼
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∼
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∼

med.VitaminD:followupTime (+)
∼

(−)
∼
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∼
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∼
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∼

(+)
∼

(−)
∼

(−)
∼
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∼

numberAKIepisodes:followupTime (+)
∼
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∼

(−)
∼

(−)
∼
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∼

(−)
∼

(−)
∼

numberAntihypertensives:followupTime (−)
∼

(−)
∼
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∼

(−)
∼
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∗

(−)
∼

numberClinicVisits:followupTime (−)
∗∗∗

(−)
∼

(+)
∼

(+)
∼

(−)
∼

PO:followupTime (+)
∼

(−)
∼

(−)
∼

(−)
∗∗

(−)
∼

(−)
∼

(+)
∼

(−)
∗∗∗

(−)
∗∗

PP:followupTime (−)
∼

(+)
∼

(+)
∼

(+)
∼

(+)
∼

(−)
∼

(−)
∼

(+)
∼

PTH:followupTime (+)
∼

(+)
∗∗∗

(−)
∼

(+)
∗∗

(+)
∼

(+)
∼

(+)
∼

(+)
∗∗∗

(+)
∗∗∗

Pu:followupTime (−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(+)
∼

(−)
∗∗∗

(−)
∼

(−)
∼

(−)
∗∗∗

totalCholesterol:followupTime (−)
∼

(−)
∼

(−)
∗∗

(+)
∼

(−)
∼

totalCO2:followupTime (−)
∼

(−)
∼

(+)
∼

(−)
∼

(−)
∗

(−)
∼

(−)
∗∗∗

Note:

regression parameter sign: positive (+); negative (-)

p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *; >0.05 ∼
1 ‘all’ denotes ‘single model all diseases’
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7.3 Detailed Estimates of regression parameters

For each disease category, the figures in this section show the relative change in eGFR, these

values are computed using Equation 14. The tables also report regression parameter estimates,

standard errors and the proportion of bootstraps in which each variable was selected.

7.3.1 Diabetic nephropathy

Average effects

The key average effects are:

• Lower levels of eGFR are associated with having EPO treatment, vitamin D supplements,

PO and PTH. It is known that iron levels drop as kidney disease worsens, so patients

requiring EPO treatment have lower levels of eGFR. Similarly vitamin D drops as kidney

function worsens, so it is reasonable that these patients require vitamin D supplements.

Poor kidney function can result in higher levels PO and PTH and hence lower levels of

eGFR.

• Lower levels of CC are associated with lower levels of eGFR and therefore indicate poorer

kidney function; this is medically plausible.

• An older age at baseline and higher body mass index are both associated with lower levels

of eGFR. Note that increased body mass index is associated with type 2 diabetes.

• The ACE inhibitors and ARBs (med.ACE.ARB) are associated with higher levels of eGFR.

This suggests that patients taking ACE inhibitors and/or ARBs have better kidney function

compared with those who are not taking these drugs. We note that if eGFR drops to a

very low value then the patient is taken off these drugs.

PP and DBP are less statistically significant (level 0.01-0.05) then the key results stated above.

However we note that from a medical perspective it is expected that PP will increase with

ageing, worsening CKD and increasing cardiovascular disease. Our PP results are consistent with

this view. However as PP increases it is generally expected that DBP will fall; our results are

counterintuitive in this regard.

If HbA1c is included in the model then its corresponding parameter is positive but it has a

significance level greater than 0.05.
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p−value significance:  <0.001    0.001−0.01    0.01−0.05    >0.05

Figure 20: Average effects - relative change in eGFR for standardised model using 95% CIs:
diabetic nephropathy
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Temporal effects

The key temporal effects are:

• Follow-up time is negative. This means that the level of eGFR is falling off over time. This

is to be expected. The significance of follow-up time may indicate that there are additional

risk factors which are not included in the SKS dataset.

• Hb and parenteral iron are associated with slower disease progression (less negative slope in

eGFR). Note that Hb levels can fall as renal disease worsens.

• Pu is associated with a steeper decline in eGFR

If HbA1c is included in the model then its corresponding interaction term HbA1c:followupTime

has a parameter which is negative and significant at the 0.01-0.05 level.
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PTH:followupTime

PP:followupTime

PO:followupTime
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( ∆r Ŷ *)%  = 100(exp( β̂ 'r θ 'r )−1)  with θ 'r = 1

p−value significance:  <0.001    0.001−0.01    >0.05

Figure 21: Temporal effects - relative change in eGFR for standardised model using 95% CIs:
diabetic nephropathy
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Parameter values

Table 12: Standardised model summary for disease diabetic nephropathy

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

(Intercept) 1.00 3.5808 1.2e-01 0.000 ***

age0 0.98 -0.0057 1.8e-03 0.002 ** -0.56

bodyMassIndex 0.52 -0.0623 1.8e-02 0.001 ** -6.04

bodyMassIndex:followupTime 0.0093 5.7e-03 0.102 0.93

CC 0.76 -0.0357 1.3e-02 0.005 ** -3.51

CC:followupTime 0.0019 3.6e-03 0.605 0.19

DBP 0.88 0.0238 1.1e-02 0.033 * 2.41

DBP:followupTime -0.0014 3.8e-03 0.709 -0.14

followupTime 1.00 -0.0378 1.2e-02 0.003 ** -3.71

Hb 0.99 0.0145 1.3e-02 0.269 1.46

Hb:followupTime 0.0140 4.6e-03 0.002 ** 1.41

med.ACE.ARB 0.95 0.1268 3.4e-02 0.000 *** 13.51

med.ACE.ARB:followupTime -0.0178 1.1e-02 0.096 -1.76

med.BetaBlockers 0.51 0.0583 3.3e-02 0.077 6.01

med.BetaBlockers:followupTime -0.0073 9.9e-03 0.463 -0.73

med.Epo 0.98 -0.0865 2.8e-02 0.002 ** -8.28

med.Epo:followupTime 0.0082 8.4e-03 0.332 0.82

med.Iron -0.0285 3.1e-02 0.355 -2.81

med.Iron:followupTime 0.0078 1.1e-02 0.457 0.79

med.ParenteralIron -0.0518 2.6e-02 0.050 * -5.04

med.ParenteralIron:followupTime 0.0260 9.0e-03 0.004 ** 2.64

med.VitaminD 1.00 -0.1334 3.0e-02 0.000 *** -12.49

med.VitaminD:followupTime 0.0035 8.5e-03 0.685 0.35

numberAKIepisodes 0.80 -0.0155 1.2e-02 0.207 -1.54

numberAKIepisodes:followupTime 0.0016 2.7e-03 0.550 0.16

numberAntihypertensives 0.86 -0.0394 1.7e-02 0.018 * -3.87

numberAntihypertensives:followupTime -0.0025 5.2e-03 0.634 -0.25

PO 1.00 -0.1004 1.4e-02 0.000 *** -9.55

PO:followupTime 0.0057 4.1e-03 0.166 0.57

PP 0.72 0.0290 1.2e-02 0.013 * 2.94

PP:followupTime -0.0014 4.2e-03 0.733 -0.14

PTH 1.00 -0.0761 1.5e-02 0.000 *** -7.33

PTH:followupTime 0.0020 2.9e-03 0.483 0.20

Pu 0.0256 1.6e-02 0.105 2.59

Pu:followupTime -0.0174 4.8e-03 0.000 *** -1.73

totalCholesterol 0.60 0.0201 1.5e-02 0.174 2.03

totalCholesterol:followupTime -0.0006 5.0e-03 0.909 -0.06

a proportion of bootstraps in which variable was selected
b p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *
c (∆rŶ ∗)% = 100(exp(β̂′rθ′r) − 1) with θ′r = 1
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7.3.2 Glomerulonephritis

Average effects

The key average effects are:

• Medication med.ACE.ARB is associated with higher levels of eGFR; this indicates better

kidney function.

• Lower levels of eGFR are associated with taking CCBs medication and vitamin D supple-

ments, and also PO and PTH. This is reasonable since hypertension (in part treated with

CCBs) and vitamin D deficiency are associated with poor kidney function. Similarly higher

levels of PO and PTH are associated with poor kidney function.

• Higher levels of Hb and total CO2 are associated with higher levels of eGFR. That is better

kidney function. This is reasonable since low levels of Hb and total CO2 are associated

with poor kidney function.

• Older baseline age is associated with lower eGFR.

• A higher level of Pu is associated with a higher level of eGFR. This result is counterintuitive

since increases in Pu indicate worsening kidney function.
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Figure 22: Average effects - relative change in eGFR for standardised model using 95% CIs:
glomerulonephritis
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Temporal effects

The key temporal effects are:

• DBP is associated with a slower decline in eGFR. This is reasonable since higher levels of

DBP are associated with better renal function in conjunction with better cardiovascular

function.

• Pu is associated with a faster decline in eGFR. This is to be expected since protein in the

urine is associated with poorer kidney function.

• PTH is associated with slower progression of kidney disease i.e. shallower slope in eGFR over

time. This result is counterintuitive as higher levels of PTH are associated with worsening

kidney function.

Although follow-up time is not statistically significant its regression parameter is negative, therefore

the level of eGFR is falling off over time. This is to be expected.

totalCO2:followupTime

Pu:followupTime

PTH:followupTime

PP:followupTime

PO:followupTime

numberAntihypertensives:followupTime
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p−value significance:  <0.001    0.01−0.05    >0.05

Figure 23: Temporal effects - relative change in eGFR for standardised model using 95% CIs:
glomerulonephritis
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Parameter values

Table 13: Standardised model summary for disease glomerulonephritis

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

(Intercept) 1.00 3.8879 1.1e-01 0.000 ***

age0 0.91 -0.0060 1.7e-03 0.000 *** -0.60

CC 0.0073 1.3e-02 0.560 0.73

CC:followupTime -0.0019 3.1e-03 0.538 -0.19

CRP 0.92 0.0219 1.6e-02 0.169 2.21

CRP:followupTime 0.0009 4.0e-03 0.823 0.09

DBP -0.0163 1.1e-02 0.152 -1.62

DBP:followupTime 0.0070 3.2e-03 0.026 * 0.71

followupTime 0.96 -0.0131 1.2e-02 0.277 -1.31

Hb 1.00 0.0477 1.4e-02 0.001 ** 4.89

Hb:followupTime 0.0044 4.2e-03 0.290 0.44

med.ACE.ARB 0.82 0.1015 3.6e-02 0.005 ** 10.69

med.ACE.ARB:followupTime -0.0137 9.2e-03 0.136 -1.37

med.AlphaBlockers 0.60 -0.0294 3.8e-02 0.434 -2.90

med.AlphaBlockers:followupTime -0.0052 1.0e-02 0.608 -0.52

med.BetaBlockers 0.76 -0.0569 3.6e-02 0.119 -5.53

med.BetaBlockers:followupTime -0.0019 1.1e-02 0.865 -0.19

med.CCBs 0.98 -0.1106 3.4e-02 0.001 ** -10.47

med.CCBs:followupTime 0.0002 8.8e-03 0.982 0.02

med.Epo 0.86 -0.0417 3.3e-02 0.202 -4.09

med.Epo:followupTime -0.0064 8.4e-03 0.447 -0.63

med.Iron 0.0350 4.1e-02 0.388 3.56

med.Iron:followupTime -0.0173 1.2e-02 0.143 -1.71

med.ParenteralIron -0.0136 3.4e-02 0.687 -1.35

med.ParenteralIron:followupTime -0.0062 9.6e-03 0.518 -0.62

med.VitaminD 1.00 -0.1598 3.8e-02 0.000 *** -14.77

med.VitaminD:followupTime -0.0112 1.0e-02 0.262 -1.11

numberAKIepisodes 0.53 -0.0067 1.2e-02 0.569 -0.67

numberAKIepisodes:followupTime 0.0019 3.5e-03 0.580 0.19

numberAntihypertensives -0.0056 2.2e-02 0.799 -0.56

numberAntihypertensives:followupTime -0.0006 5.5e-03 0.912 -0.06

PO 1.00 -0.1404 1.5e-02 0.000 *** -13.10

PO:followupTime -0.0017 4.2e-03 0.685 -0.17

PP 0.0138 1.2e-02 0.256 1.39

PP:followupTime 0.0001 3.4e-03 0.977 0.01

PTH 0.98 -0.0918 1.7e-02 0.000 *** -8.77

PTH:followupTime 0.0173 4.8e-03 0.000 *** 1.74

Pu 0.0397 1.3e-02 0.002 ** 4.05

Pu:followupTime -0.0169 4.2e-03 0.000 *** -1.68

totalCO2 1.00 0.0506 1.3e-02 0.000 *** 5.19

totalCO2:followupTime -0.0042 3.3e-03 0.207 -0.42
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Table 13: Standardised model summary for disease glomerulonephritis (contin-

ued)

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

a proportion of bootstraps in which variable was selected
b p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *
c (∆rŶ ∗)% = 100(exp(β̂′rθ′r) − 1) with θ′r = 1
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7.3.3 Hypertensive kidney disease

Average effects

The key average effects are:

• Taking higher numbers of antihypertensive drugs is associated with lower eGFR levels. This

is reasonable because poor kidney function is known to be associated with hypertension.

• Having more than one type of cardiovascular (CV) disease is associated with lower levels of

eGFR. This is consistent given poorer kidney function, which is associated with an increase

in risk of CV disease (and vice versa).

• Lower levels of eGFR are associated with taking vitamin D supplement, and also higher

levels of PO and PTH. Vitamin D deficiency is associated with poor kidney function.

Similarly higher levels of PO and PTH are associated with poor kidney function.

• Higher levels of Hb and total CO2 are associated with higher levels of eGFR. Note that low

levels of both these biochemicals are associated with poor kidney function.

• Patients who are older at baseline have poorer kidney function.

Considering the effects with a significance of 0.01-0.05 we find that drinking more than 1 unit of

alcohol per week and a previous cancer are both associated with lower eGFR levels. Note that

the cancer category is very general as it includes all types of cancer and is not confined to renal

cancer.
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Figure 24: Average effects - relative change in eGFR for standardised model using 95% CIs: HKD
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Temporal effects

The key temporal effects are:

• A high number of clinic visits is associated with a more rapid decline in kidney function.

This would imply that patients with poorer health visit the clinic more frequently.

• Pu is associated with a more rapid decline in kidney function. The presence of protein in

the urine is associated with poor kidney function.

In addition, follow-up time is negative and significant at the 0.01-0.05 level. This means that the

level of eGFR is dropping off over time, which is to be expected. The significance of follow-up

time may indicate that there are key risk factors which are not included in our model.
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Figure 25: Temporal effects - relative change in eGFR for standardised model using 95% CIs:
HKD
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Parameter values

Table 14: Standardised model summary for disease HKD

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

(Intercept) 1.00 4.2133 1.8e-01 0.000 ***

age0 0.97 -0.0100 2.4e-03 0.000 *** -1.00

CC 0.57 -0.0216 1.2e-02 0.079 -2.14

CC:followupTime 0.0017 3.4e-03 0.628 0.17

comorbidityCancercurrent 0.77 0.0606 1.0e-01 0.553 6.24

comorbidityCancercurrent:followupTime 0.0174 2.8e-02 0.536 1.75

comorbidityCancerprevious 0.77 -0.1753 7.0e-02 0.013 * -16.08

comorbidityCancerprevious:followupTime 0.0284 1.5e-02 0.064 2.88

comorbidityCV1 0.70 -0.0991 3.8e-02 0.010 * -9.43

comorbidityCV1:followupTime 0.0174 1.1e-02 0.111 1.75

comorbidityCVover 1 0.70 -0.0810 4.1e-02 0.048 * -7.78

comorbidityCVover 1:followupTime 0.0012 1.1e-02 0.908 0.12

comorbidityOther 0.61 0.0377 4.7e-02 0.423 3.84

comorbidityOther:followupTime -0.0046 9.9e-03 0.645 -0.46

DBP 0.0143 1.0e-02 0.158 1.44

DBP:followupTime 0.0009 3.4e-03 0.788 0.09

ethnicitynonWhite 0.55 0.1617 1.2e-01 0.185 17.55

followupTime 0.67 -0.0267 1.3e-02 0.039 * -2.63

Hb 1.00 0.0508 1.2e-02 0.000 *** 5.22

Hb:followupTime 0.0023 4.5e-03 0.603 0.23

med.ACE.ARB 0.0138 3.1e-02 0.657 1.39

med.ACE.ARB:followupTime -0.0025 9.0e-03 0.783 -0.25

med.CCBs 0.64 -0.0413 3.1e-02 0.180 -4.04

med.CCBs:followupTime 0.0087 8.6e-03 0.307 0.88

med.Epo -0.0075 3.6e-02 0.836 -0.74

med.Epo:followupTime -0.0052 1.1e-02 0.642 -0.52

med.Iron 0.0509 3.3e-02 0.129 5.22

med.Iron:followupTime -0.0139 1.2e-02 0.255 -1.38

med.ParenteralIron -0.0261 3.1e-02 0.402 -2.58

med.ParenteralIron:followupTime 0.0106 1.0e-02 0.303 1.07

med.VitaminD 0.75 -0.1115 3.3e-02 0.001 ** -10.55

med.VitaminD:followupTime 0.0102 1.1e-02 0.334 1.03

numberAKIepisodes 0.69 -0.0109 9.7e-03 0.263 -1.08

numberAKIepisodes:followupTime -0.0003 3.1e-03 0.925 -0.03

numberAntihypertensives 0.64 -0.0469 1.7e-02 0.007 ** -4.59

numberAntihypertensives:followupTime 0.0091 4.8e-03 0.059 0.92

numberClinicVisits 0.70 -0.0041 9.1e-03 0.654 -0.41

numberClinicVisits:followupTime -0.0131 3.5e-03 0.000 *** -1.30

PO 1.00 -0.0763 1.3e-02 0.000 *** -7.35

PO:followupTime -0.0052 3.8e-03 0.180 -0.51

PP 0.0037 1.1e-02 0.736 0.37
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Table 14: Standardised model summary for disease HKD (continued)

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

PP:followupTime 0.0033 3.5e-03 0.345 0.33

PTH 1.00 -0.0593 1.6e-02 0.000 *** -5.76

PTH:followupTime -0.0032 4.8e-03 0.505 -0.32

Pu 1.00 -0.0353 1.9e-02 0.058 -3.47

Pu:followupTime -0.0167 4.8e-03 0.000 *** -1.65

smokingStatus0active 0.94 -0.1210 9.0e-02 0.182 -11.40

smokingStatus0ex-smoker 0.94 -0.1001 5.4e-02 0.063 -9.52

totalCO2 0.85 0.0344 1.2e-02 0.005 ** 3.50

totalCO2:followupTime -0.0030 3.6e-03 0.406 -0.30

weeklyAlcohol01 to 14 0.65 -0.1232 5.3e-02 0.021 * -11.59

weeklyAlcohol0over 14 0.65 -0.0767 6.8e-02 0.263 -7.38

a proportion of bootstraps in which variable was selected
b p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *
c (∆rŶ ∗)% = 100(exp(β̂′rθ′r) − 1) with θ′r = 1

74



7.3.4 Other

Average effects

The key average effects are:

• Lower levels of eGFR are associated with taking a vitamin D supplement and also higher

levels of PO and PTH. This is reasonable since vitamin D deficiency and high levels of PO

and PTH are associated with poor kidney function.

• Higher levels of Hb and total CO2 are associated with higher levels of eGFR, meaning that

the kidney function is better. Poor kidney function is associated with low levels of both of

these biochemicals.

• Patients who are older at baseline have poorer kidney function.

We also note, at the 0.01-0.05 significance level, that a higher number of clinic visits is associated

with higher levels of eGFR. This may indicate that the decline in renal function for these patients

is being better controlled by more frequent monitoring of their condition. Furthermore we observe

that lower levels of CC are associated with lower levels of eGFR. This is medically plausible.
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Figure 26: Average effects - relative change in eGFR for standardised model using 95% CIs: other
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Temporal effects

The key temporal effects are:

• PO is associated with a more rapid decline in kidney function.

• PTH is associated with slower progression of kidney disease. This result is counterintuitive

as higher levels of PTH tend to occur with worsening kidney function.
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Figure 27: Temporal effects - relative change in eGFR for standardised model using 95% CIs:
disease other
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Parameter values

Table 15: Standardised model summary for disease other

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

(Intercept) 1.00 4.0023 1.0e-01 0.000 ***

age0 1.00 -0.0077 1.7e-03 0.000 *** -0.76

CC -0.0269 1.2e-02 0.030 * -2.66

CC:followupTime 0.0057 3.6e-03 0.110 0.57

comorbidityCV1 0.65 -0.0227 3.7e-02 0.540 -2.24

comorbidityCV1:followupTime -0.0167 9.7e-03 0.085 -1.65

comorbidityCVover 1 0.65 -0.0195 4.7e-02 0.681 -1.93

comorbidityCVover 1:followupTime 0.0098 1.3e-02 0.442 0.99

comorbidityDiabetestype1 0.68 -0.1038 2.4e-01 0.660 -9.86

comorbidityDiabetestype1:followupTime -0.0342 6.5e-02 0.596 -3.36

comorbidityDiabetestype2 0.91 0.0844 4.7e-02 0.076 8.81

comorbidityDiabetestype2:followupTime 0.0033 1.1e-02 0.767 0.34

CRP 0.60 0.0179 1.3e-02 0.168 1.81

CRP:followupTime -0.0055 4.4e-03 0.218 -0.55

followupTime 0.99 -0.0133 8.6e-03 0.122 -1.32

Hb 1.00 0.0995 1.5e-02 0.000 *** 10.47

Hb:followupTime -0.0054 4.3e-03 0.212 -0.54

med.BetaBlockers 0.52 -0.0468 3.7e-02 0.206 -4.57

med.BetaBlockers:followupTime -0.0071 9.1e-03 0.437 -0.70

med.Epo 0.89 -0.0422 3.7e-02 0.259 -4.13

med.Epo:followupTime -0.0186 1.1e-02 0.101 -1.84

med.Iron -0.0477 4.0e-02 0.238 -4.66

med.Iron:followupTime -0.0020 1.2e-02 0.867 -0.20

med.ParenteralIron -0.0075 3.8e-02 0.845 -0.75

med.ParenteralIron:followupTime -0.0169 1.1e-02 0.118 -1.68

med.VitaminD 0.96 -0.1557 3.9e-02 0.000 *** -14.42

med.VitaminD:followupTime 0.0115 1.1e-02 0.313 1.15

numberAKIepisodes 0.65 -0.0034 1.5e-02 0.819 -0.34

numberAKIepisodes:followupTime -0.0032 4.3e-03 0.454 -0.32

numberClinicVisits 0.86 0.0236 9.6e-03 0.014 * 2.39

numberClinicVisits:followupTime -0.0022 2.9e-03 0.432 -0.22

PO 1.00 -0.0875 1.5e-02 0.000 *** -8.38

PO:followupTime -0.0124 3.8e-03 0.001 ** -1.23

PTH 0.98 -0.1054 1.7e-02 0.000 *** -10.01

PTH:followupTime 0.0145 4.2e-03 0.001 ** 1.46

totalCholesterol 0.52 0.0281 1.5e-02 0.059 2.84

totalCholesterol:followupTime -0.0022 4.3e-03 0.608 -0.22

totalCO2 1.00 0.0440 1.2e-02 0.000 *** 4.50

totalCO2:followupTime 0.0021 3.7e-03 0.574 0.21
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Table 15: Standardised model summary for disease other (continued)

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

a proportion of bootstraps in which variable was selected
b p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *
c (∆rŶ ∗)% = 100(exp(β̂′rθ′r) − 1) with θ′r = 1
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7.3.5 PKD

Average effects

The key average effects are:

• Older age is associated with lower levels of eGFR.

• Lower levels of eGFR are associated with higher levels of PTH. Note that higher PTH is

associated with poorer kidney function.

At a statistical significance of 0.01-0.05 we also note the following results:

• Lower levels of eGFR are associated with patients receiving parenteral iron and also higher

levels of PO and Pu. Kidney disease can result in anaemia so patients receiving parenteral

iron would be expected to have lower levels of eGFR. Higher levels of PO and Pu are

associated with poorer kidney function.

• Total CO2 is associated with higher levels of eGFR, note that poor kidney function can

cause low levels of total CO2.

• PP is associated with higher levels of eGFR. It is expected that PP will increase with both

age and worsening renal function therefore this result is counterintuitive.
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Figure 28: Average effects - relative change in eGFR for standardised model using 95% CIs: PKD
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Temporal effects

The key temporal effects are:

• Follow-up time is negative which indicates that the level of eGFR is dropping off over time.

Follow-up time is very strongly associated with lower levels of eGFR. This may suggest that

the model is missing at least one risk factor. In PKD patients the continued growth of cysts

in the kidneys progressively impairs their function. Our model does not include variables for

the size, growth rate, and/or number of cysts in the kidneys. If it included such variables it

is possible that follow-up time would be either less significant or not significant.

• Hb, although only significant at the 0.01-0.05 level, is associated with slower progression of

CKD. This result is consistent with PKD patients tending to maintain good levels of Hb

until very late in their disease progression.
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p−value significance:  <0.001    0.01−0.05    >0.05

Figure 29: Temporal effects - relative change in eGFR for standardised model using 95% CIs:
PKD
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Parameter values

Table 16: Standardised model summary for disease polycystic kidney disease

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

(Intercept) 1.00 4.3665 2.1e-01 0.000 ***

age0 0.98 -0.0190 3.5e-03 0.000 *** -1.88

CC 0.90 -0.0214 1.6e-02 0.186 -2.12

CC:followupTime -0.0053 4.4e-03 0.228 -0.53

comorbidityCV1 0.70 0.0029 4.9e-02 0.954 0.29

comorbidityCV1:followupTime -0.0153 1.3e-02 0.250 -1.52

comorbidityCVover 1 0.70 -0.0832 9.1e-02 0.360 -7.99

comorbidityCVover 1:followupTime 0.0073 2.0e-02 0.718 0.74

CRP 0.60 -0.0335 2.1e-02 0.109 -3.29

CRP:followupTime 0.0140 7.8e-03 0.074 1.41

DBP 0.59 0.0195 1.3e-02 0.141 1.97

DBP:followupTime -0.0010 4.1e-03 0.811 -0.10

familyHistoryIHD0 0.58 -0.0645 8.8e-02 0.465 -6.24

followupTime 1.00 -0.0972 2.2e-02 0.000 *** -9.26

Hb 0.90 0.0353 2.1e-02 0.095 3.60

Hb:followupTime 0.0138 5.8e-03 0.019 * 1.39

med.ACE.ARB 0.0087 4.9e-02 0.860 0.87

med.ACE.ARB:followupTime -0.0069 1.2e-02 0.572 -0.69

med.CCBs 0.64 0.0856 4.7e-02 0.069 8.93

med.CCBs:followupTime -0.0147 1.2e-02 0.229 -1.46

med.Diuretics 0.56 0.0149 4.1e-02 0.718 1.50

med.Diuretics:followupTime -0.0188 1.3e-02 0.154 -1.86

med.Epo 0.54 0.0060 7.2e-02 0.934 0.60

med.Epo:followupTime -0.0260 1.8e-02 0.148 -2.57

med.Iron -0.0658 7.0e-02 0.346 -6.37

med.Iron:followupTime 0.0170 2.0e-02 0.403 1.71

med.ParenteralIron 0.69 -0.1571 6.4e-02 0.015 * -14.54

med.ParenteralIron:followupTime 0.0245 1.8e-02 0.171 2.48

med.VitaminD 0.81 -0.0877 5.7e-02 0.125 -8.40

med.VitaminD:followupTime 0.0109 1.2e-02 0.367 1.10

numberAntihypertensives -0.0409 2.9e-02 0.165 -4.00

numberAntihypertensives:followupTime 0.0115 7.7e-03 0.139 1.15

numberClinicVisits 0.64 0.0009 1.6e-02 0.952 0.09

numberClinicVisits:followupTime 0.0000 3.7e-03 0.996 0.00

occupation0ManagerialProfessional 0.59 0.1336 9.8e-02 0.178 14.29

occupation0Intermediate 0.59 0.0491 1.2e-01 0.684 5.04

occupation0NeverWorkedUnemployed 0.59 0.0082 2.0e-01 0.968 0.83

PO 0.98 -0.0471 2.0e-02 0.020 * -4.60

PO:followupTime -0.0059 5.7e-03 0.302 -0.58

PP 0.92 0.0366 1.7e-02 0.033 * 3.73

PP:followupTime 0.0014 4.5e-03 0.759 0.14
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Table 16: Standardised model summary for disease polycystic kidney disease

(continued)

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

PTH 1.00 -0.0786 2.8e-02 0.006 ** -7.56

PTH:followupTime 0.0007 6.9e-03 0.917 0.07

Pu 0.75 -0.0533 2.3e-02 0.023 * -5.19

Pu:followupTime 0.0049 5.9e-03 0.401 0.50

totalCO2 0.79 0.0415 1.6e-02 0.011 * 4.23

totalCO2:followupTime -0.0074 4.9e-03 0.132 -0.74

a proportion of bootstraps in which variable was selected
b p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *
c (∆rŶ ∗)% = 100(exp(β̂′rθ′r) − 1) with θ′r = 1
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7.3.6 Pyelonephritis

Average effects

The key average effects are:

• Lower levels of eGFR are associated with patients taking vitamin D supplements, larger

numbers of antihypertensives, and also PO. Kidney disease can cause vitamin D deficiency

and hypertension so patients taking Vitamin D and a higher number of antihypertensives

are expected to have lower levels of eGFR. Patients with higher levels PO will have poorer

kidney function and therefore lower levels of eGFR.

• Total CO2 is associated with higher levels of eGFR. Note that poor kidney function can

cause lower levels of total CO2.

• An older age at baseline is associated with a lower level of eGFR.

Factors at the 0.01-0.05 significance level are as follows:

• Hb is associated with higher levels of eGFR. Note that poor kidney function may cause low

levels of Hb.

• Drinking more than 14 units of alcohol per week is associated with higher levels of kidney

function. We consider this to be an anomaly due to the wide confidence intervals and the

fact that alcohol consumption is not expected to be associated with higher levels of eGFR.

We also note, although it is not significant, that this model selected the sexfemale variable. Being

female is weakly associated with lower levels of eGFR. This is reasonable because urinary tract

infections are more common in females. These infections can lead to kidney damage and in

particular pyelonephritis.
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Figure 30: Average effects - relative change in eGFR for standardised model using 95% CIs:
pyelonephritis
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Temporal effects

The key temporal effects are:

• Hb is associated with a slower progression of kidney disease.

• Pu and total CO2 are associated with a more rapid progression of kidney disease.

Note that although not statistically significant the follow-up time regression parameter is negative.

This indicates that eGFR falls over time.
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Figure 31: Temporal effects - relative change in eGFR for standardised model using 95% CIs:
pyelonephritis
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Parameter values

Table 17: Standardised model summary for disease pyelonephritis

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

(Intercept) 1.00 3.9291 1.8e-01 0.000 ***

age0 0.86 -0.0081 2.4e-03 0.001 ** -0.81

bodyMassIndex 0.74 0.0233 3.3e-02 0.486 2.36

bodyMassIndex:followupTime 0.0084 6.0e-03 0.164 0.84

CC -0.0212 1.6e-02 0.194 -2.10

CC:followupTime 0.0007 4.5e-03 0.867 0.07

comorbidityCancercurrent 0.70 -0.2215 1.2e-01 0.063 -19.87

comorbidityCancercurrent:followupTime 0.0481 2.9e-02 0.103 4.93

comorbidityCancerprevious 0.71 -0.0708 1.1e-01 0.526 -6.83

comorbidityCancerprevious:followupTime 0.0443 2.3e-02 0.054 4.53

comorbidityCV1 0.53 -0.0553 5.3e-02 0.295 -5.38

comorbidityCV1:followupTime 0.0076 1.3e-02 0.573 0.76

comorbidityCVover 1 0.53 0.0026 7.2e-02 0.971 0.26

comorbidityCVover 1:followupTime -0.0194 1.5e-02 0.202 -1.92

comorbidityDiabetestype2 0.58 0.0616 7.5e-02 0.415 6.35

comorbidityDiabetestype2:followupTime 0.0221 1.7e-02 0.187 2.24

comorbidityGastrointestinal 0.84 0.0851 1.5e-01 0.570 8.88

comorbidityGastrointestinal:followupTime 0.0227 2.1e-02 0.283 2.30

DBP 0.59 0.0211 1.3e-02 0.105 2.13

DBP:followupTime -0.0034 3.8e-03 0.383 -0.33

familyHistoryIHD0 0.55 0.0570 7.7e-02 0.460 5.87

followupTime 0.51 -0.0253 1.5e-02 0.098 -2.50

Hb 0.98 0.0354 1.6e-02 0.027 * 3.60

Hb:followupTime 0.0136 5.3e-03 0.011 * 1.37

med.ACE.ARB 0.0083 4.4e-02 0.850 0.84

med.ACE.ARB:followupTime -0.0091 1.2e-02 0.433 -0.91

med.AlphaBlockers 0.66 -0.0607 5.9e-02 0.303 -5.89

med.AlphaBlockers:followupTime 0.0044 1.5e-02 0.767 0.44

med.CCBs 0.61 0.0521 5.0e-02 0.296 5.35

med.CCBs:followupTime -0.0079 1.2e-02 0.514 -0.79

med.Epo -0.0960 6.4e-02 0.133 -9.15

med.Epo:followupTime 0.0142 1.9e-02 0.448 1.43

med.Iron -0.0292 6.9e-02 0.675 -2.87

med.Iron:followupTime 0.0026 1.5e-02 0.865 0.26

med.ParenteralIron 0.0051 4.6e-02 0.912 0.51

med.ParenteralIron:followupTime -0.0329 2.2e-02 0.128 -3.23

med.VitaminD 0.99 -0.1185 4.3e-02 0.006 ** -11.17

med.VitaminD:followupTime 0.0159 1.0e-02 0.132 1.60

numberAKIepisodes 0.60 -0.0226 1.7e-02 0.174 -2.23

numberAKIepisodes:followupTime 0.0017 6.0e-03 0.770 0.17

numberAntihypertensives 0.85 -0.0922 3.1e-02 0.003 ** -8.81
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Table 17: Standardised model summary for disease pyelonephritis (continued)

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

numberAntihypertensives:followupTime 0.0034 8.0e-03 0.672 0.34

numberClinicVisits 0.52 0.0037 1.2e-02 0.768 0.37

numberClinicVisits:followupTime 0.0006 4.5e-03 0.897 0.06

occupation0ManagerialProfessional 0.72 -0.1897 1.0e-01 0.062 -17.28

occupation0Intermediate 0.72 0.1509 9.9e-02 0.130 16.28

occupation0NeverWorkedUnemployed 0.72 -0.0892 1.7e-01 0.609 -8.53

PO 1.00 -0.0630 1.5e-02 0.000 *** -6.10

PO:followupTime -0.0046 4.3e-03 0.291 -0.45

PP -0.0023 1.7e-02 0.893 -0.23

PP:followupTime 0.0065 4.8e-03 0.178 0.66

PTH 0.74 -0.0280 3.4e-02 0.407 -2.76

PTH:followupTime 0.0072 6.1e-03 0.241 0.72

Pu 0.93 0.0070 1.9e-02 0.715 0.71

Pu:followupTime -0.0252 6.1e-03 0.000 *** -2.49

sexfemale 0.81 -0.1501 8.0e-02 0.064 -13.94

smokingStatus0active 0.93 -0.1343 1.2e-01 0.276 -12.56

smokingStatus0ex-smoker 0.93 0.0052 8.8e-02 0.954 0.52

totalCO2 0.67 0.0551 1.7e-02 0.001 ** 5.66

totalCO2:followupTime -0.0109 4.8e-03 0.023 * -1.08

weeklyAlcohol01 to 14 0.82 -0.1031 8.9e-02 0.251 -9.79

weeklyAlcohol0over 14 0.82 0.2773 1.2e-01 0.021 * 31.96

a proportion of bootstraps in which variable was selected
b p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *
c (∆rŶ ∗)% = 100(exp(β̂′rθ′r) − 1) with θ′r = 1
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7.3.7 Renovascular

Average effects

The key average effects are:

• Hb is associated with higher levels of eGFR. Note that poor kidney function can result in

lower levels of Hb.

• EPO treatment is all associated with lower levels of eGFR. Patients requiring this treatment

will generally have poorer kidney function.

• Higher levels of PO and PTH are associated with lower levels of eGFR and poorer kidney

function.

• PP is associated with higher levels of eGFR. It is expected that PP will increase with both

age and worsening renal function therefore this result is counterintuitive.

Although not as significant as the factors listed above, having more then one cardiovascular

(CV) disease, taking diuretic medications, having an older baseline age and taking vitamin D

supplements are all associated with lower levels of eGFR. Similarly taking parenteral iron is

associated with better kidney function.

Note that the very wide confidence interval on baseline occupation NeverWorkedUnemplyed is

due to there being very few realisations of this factor level. Out of about 560 realisations this

variable has about 5; the exact numbers are documented in Appendix A.6.
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Figure 32: Average effects - relative change in eGFR for standardised model using 95% CIs:
renovascular
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Temporal effects

The key temporal effects are:

• Alpha and/or beta blockers are associated with a less rapid decline in kidney function.

• Total cholesterol is associated with a more rapid decline in kidney function.

DBP, with significance level of 0.01-0.05, is relatively weakly associated with a less rapid decline

in kidney function. This is unexpected because as PP rises (e.g. with age) the clinicians expect

DBP to fall.
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Figure 33: Temporal effects - relative change in eGFR for standardised model using 95% CIs:
renovascular
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Parameter values

Table 18: Standardised model summary for disease renovascular

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

(Intercept) 1.00 4.3841 3.3e-01 0.000 ***

age0 0.73 -0.0109 4.2e-03 0.011 * -1.08

CC -0.0129 1.7e-02 0.453 -1.28

CC:followupTime 0.0003 4.6e-03 0.947 0.03

comorbidityCV1 0.69 -0.0688 7.2e-02 0.339 -6.64

comorbidityCV1:followupTime 0.0262 2.0e-02 0.189 2.66

comorbidityCVover 1 0.69 -0.1726 7.0e-02 0.014 * -15.86

comorbidityCVover 1:followupTime 0.0122 1.9e-02 0.525 1.22

comorbidityDiabetestype1 0.58 -0.0527 2.1e-01 0.800 -5.13

comorbidityDiabetestype1:followupTime 0.0317 5.2e-02 0.544 3.22

comorbidityDiabetestype2 0.65 0.0450 5.0e-02 0.365 4.60

comorbidityDiabetestype2:followupTime 0.0080 1.3e-02 0.538 0.81

comorbidityGastrointestinal 0.60 0.1229 8.6e-02 0.154 13.08

comorbidityGastrointestinal:followupTime -0.0217 2.0e-02 0.288 -2.15

CRP 0.63 0.0307 2.0e-02 0.129 3.12

CRP:followupTime -0.0074 6.0e-03 0.221 -0.74

DBP 1.00 0.0059 1.4e-02 0.672 0.59

DBP:followupTime 0.0107 4.2e-03 0.012 * 1.07

familyHistoryIHD0 0.61 0.0449 6.5e-02 0.493 4.59

followupTime 0.63 -0.0448 2.3e-02 0.056 -4.38

Hb 0.96 0.0465 1.6e-02 0.004 ** 4.76

Hb:followupTime 0.0053 6.0e-03 0.373 0.54

med.ACE.ARB -0.0119 4.0e-02 0.764 -1.19

med.ACE.ARB:followupTime 0.0164 1.2e-02 0.162 1.66

med.AlphaBlockers 0.51 0.0054 3.9e-02 0.889 0.54

med.AlphaBlockers:followupTime 0.0341 1.3e-02 0.008 ** 3.47

med.Diuretics 0.69 -0.0889 3.6e-02 0.015 * -8.50

med.Diuretics:followupTime 0.0065 1.1e-02 0.538 0.66

med.Epo 1.00 -0.1739 5.0e-02 0.001 ** -15.96

med.Epo:followupTime -0.0124 1.7e-02 0.470 -1.23

med.Iron 0.83 -0.0300 3.9e-02 0.444 -2.95

med.Iron:followupTime -0.0183 1.1e-02 0.106 -1.81

med.ParenteralIron 0.0935 4.7e-02 0.049 * 9.80

med.ParenteralIron:followupTime -0.0328 1.7e-02 0.059 -3.22

med.VitaminD 0.85 -0.0931 4.2e-02 0.027 * -8.89

med.VitaminD:followupTime -0.0153 1.6e-02 0.337 -1.52

numberAntihypertensives 0.0048 2.2e-02 0.828 0.48

numberAntihypertensives:followupTime -0.0083 6.9e-03 0.229 -0.82

occupation0ManagerialProfessional 0.55 0.0590 8.3e-02 0.479 6.08

occupation0Intermediate 0.55 0.0224 9.1e-02 0.805 2.27

occupation0NeverWorkedUnemployed 0.3974 4.0e-01 0.319 48.80

93



Table 18: Standardised model summary for disease renovascular (continued)

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

PO 1.00 -0.0929 1.6e-02 0.000 *** -8.88

PO:followupTime 0.0049 5.0e-03 0.329 0.49

PP 0.87 0.0411 1.5e-02 0.005 ** 4.19

PP:followupTime -0.0032 4.7e-03 0.490 -0.32

PTH 0.96 -0.0522 2.0e-02 0.009 ** -5.09

PTH:followupTime 0.0075 7.3e-03 0.304 0.75

Pu 0.88 -0.0121 2.4e-02 0.620 -1.21

Pu:followupTime -0.0056 4.6e-03 0.220 -0.56

smokingStatus0active 0.65 -0.2123 1.2e-01 0.074 -19.12

smokingStatus0ex-smoker 0.65 -0.1537 8.9e-02 0.087 -14.25

totalCholesterol 0.79 0.0076 1.7e-02 0.649 0.77

totalCholesterol:followupTime -0.0153 5.6e-03 0.007 ** -1.52

weeklyAlcohol01 to 14 0.68 -0.0555 8.0e-02 0.491 -5.40

weeklyAlcohol0over 14 0.68 0.1141 9.5e-02 0.229 12.09

a proportion of bootstraps in which variable was selected
b p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *
c (∆rŶ ∗)% = 100(exp(β̂′rθ′r) − 1) with θ′r = 1
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7.3.8 Unknown disease

Average effects

The key average effects are:

• Higher levels of Hb and total CO2 are associated with higher levels of eGFR. Note that

poor kidney function may result in low levels of Hb and total CO2.

• Vitamin D supplements are associated with lower levels of eGFR. Poor kidney function is

associated with vitamin D deficiency.

• Higher levels of PO and PTH are associated with lower levels of eGFR. Poor kidney function

is often associated with higher levels of these biochemicals.

• Older age at baseline is associated with a lower level of eGFR.

Weaker associations with a significance level of 0.01-0.05 are:

• Higher levels of Pu are associated with lower levels of eGFR. Poor kidney function is often

associated with higher levels of protein in the urine.

• DBP is associated with a less rapid decline in kidney function. This is unexpected because

as PP rises, for example with older age and worsening kidney function, the clinicians expect

DBP to fall.

• Higher numbers of AKI episodes are associated with higher levels of eGFR. This is an

anomalous result given AKI would typically be associated with poor kidney function.

However this disease group unknown is heterogeneous so perhaps the results are being

skewed by a sub-group who are more susceptible to AKI.
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( ∆r Ŷ *)%  = 100(exp( β̂ 'r θ 'r )−1)  with θ 'r = 1

p−value significance:  <0.001    0.001−0.01    0.01−0.05    >0.05

Figure 34: Average effects - relative change in eGFR for standardised model using 95% CIs:
unknown
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Temporal effects

The key temporal effects are:

• PO is associated with a more rapid decline in eGFR.

• PTH is associated with slower progression of kidney disease. This result is counterintuitive

as higher levels of PTH tend to occur with worsening kidney function.

There is also a relatively weak association between the number of antihypertensives and slower

progression. However given the heterogeneous nature of this disease group it is perhaps plausible

that a sub-group has their progression slowed by these drugs.
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Figure 35: Temporal effects - relative change in eGFR for standardised model using 95% CIs:
unknown
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Parameter values

Table 19: Standardised model summary for disease unknown

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

(Intercept) 1.00 3.8130 1.4e-01 0.000 ***

age0 0.86 -0.0067 1.8e-03 0.000 *** -0.67

CC 0.57 -0.0162 1.5e-02 0.282 -1.60

CC:followupTime -0.0036 4.5e-03 0.422 -0.36

comorbidityCancercurrent 0.55 0.1650 1.3e-01 0.211 17.94

comorbidityCancercurrent:followupTime 0.0123 5.2e-02 0.814 1.23

comorbidityCancerprevious 0.55 0.0629 6.8e-02 0.356 6.49

comorbidityCancerprevious:followupTime -0.0224 1.9e-02 0.232 -2.21

DBP 0.0265 1.3e-02 0.045 * 2.68

DBP:followupTime -0.0059 4.8e-03 0.225 -0.59

followupTime 0.0238 1.6e-02 0.147 2.41

Hb 0.99 0.0633 1.8e-02 0.000 *** 6.53

Hb:followupTime 0.0021 5.7e-03 0.716 0.21

med.ACE.ARB 0.55 -0.0189 3.8e-02 0.619 -1.88

med.ACE.ARB:followupTime -0.0216 1.3e-02 0.092 -2.14

med.BetaBlockers 0.54 0.0093 4.1e-02 0.820 0.93

med.BetaBlockers:followupTime -0.0163 1.3e-02 0.226 -1.62

med.CCBs 0.70 0.0137 3.6e-02 0.700 1.38

med.CCBs:followupTime -0.0247 1.3e-02 0.057 -2.44

med.Epo 0.85 -0.0755 3.8e-02 0.046 * -7.27

med.Epo:followupTime 0.0075 1.4e-02 0.597 0.76

med.Iron -0.0240 4.0e-02 0.545 -2.37

med.Iron:followupTime 0.0151 1.3e-02 0.237 1.52

med.ParenteralIron 0.67 -0.0176 3.9e-02 0.653 -1.75

med.ParenteralIron:followupTime 0.0110 1.7e-02 0.516 1.11

med.VitaminD 0.99 -0.1207 4.3e-02 0.005 ** -11.37

med.VitaminD:followupTime -0.0134 1.3e-02 0.308 -1.33

numberAKIepisodes 0.63 0.0394 1.7e-02 0.018 * 4.02

numberAKIepisodes:followupTime -0.0054 4.8e-03 0.259 -0.54

numberAntihypertensives -0.0432 2.4e-02 0.067 -4.23

numberAntihypertensives:followupTime 0.0189 7.8e-03 0.016 * 1.91

PO 1.00 -0.0808 1.6e-02 0.000 *** -7.76

PO:followupTime -0.0206 5.3e-03 0.000 *** -2.04

PP 0.0002 1.4e-02 0.987 0.02

PP:followupTime -0.0008 5.0e-03 0.868 -0.08

PTH 0.98 -0.1248 2.0e-02 0.000 *** -11.74

PTH:followupTime 0.0208 5.8e-03 0.000 *** 2.10

Pu 0.82 -0.0377 1.5e-02 0.012 * -3.70

Pu:followupTime -0.0019 6.5e-03 0.765 -0.19

totalCholesterol 0.58 0.0016 1.6e-02 0.922 0.16

totalCholesterol:followupTime 0.0093 5.3e-03 0.079 0.93
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Table 19: Standardised model summary for disease unknown (continued)

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

totalCO2 1.00 0.0528 1.6e-02 0.001 ** 5.43

totalCO2:followupTime -0.0080 5.1e-03 0.119 -0.79

weeklyAlcohol01 to 14 0.51 -0.0494 5.2e-02 0.343 -4.82

weeklyAlcohol0over 14 0.51 0.0834 6.4e-02 0.192 8.70

a proportion of bootstraps in which variable was selected
b p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *
c (∆rŶ ∗)% = 100(exp(β̂′rθ′r) − 1) with θ′r = 1
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7.3.9 Single model all diseases

As shown in Table 20 the model for this category has disease as an explanatory variable. As this

explanatory variable is not directly of interest we do not include it in Figures 36 and 37.

Average effects

The key average effects are:

• High levels of the biochemicals CC, PO and PTH are associated with lower levels of eGFR.

• A higher count of cardiovascular (CV) diseases is associated with lower levels of eGFR.

• Higher levels of Hb and total CO2 are associated with higher levels of eGFR. (Note that

poor kidney function may result in low levels of Hb and total CO2.)

• The ACE inhibitors and ARBs (med.ACE.ARB) are associated with higher levels of eGFR.

• The treatments EPO, diuretics and vitamin D are associated with lower levels of eGFR

• Older age at baseline is associated with a lower level of eGFR.

Weaker associations at the 0.01-0.05 significance level are:

• The treatments CCBs and ‘other medications’ are associated with lower levels of eGFR.

• Higher values of PP are associated with higher levels of eGFR. This result is counterintuitive

as it is expected that PP will increase with age, worsening kidney function and poorer

cardiovascular health.

• Higher levels of total cholesterol are associated with higher levels of eGFR. It is unclear why

this should be the case when higher cholesterol is typically associated with poorer health.

• Higher values of DBP are associated with higher levels of eGFR. This is not expected as

DBP decreases with both age and increased PP.
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Figure 36: Average effects - relative change in eGFR for standardised model using 95% CIs: single
model all diseases
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Temporal effects

The key temporal effects are:

• A negative value of follow-up time indicates that eGFR is falling off over time. The

dominance of follow-up time may indicate that our model and the SKS dataset are missing

at least one key factor.

• Hb is associated with a less rapid decline in eGFR.

• PO, Pu and total CO2 are associated in a more rapid decline in eGFR.

• PTH is associated with a less rapid decline in eGFR. This is an unexpected result as the

risk of increased PTH is associated with poorer kidney function.

We also note that iron taken orally is relatively weakly associated with a more rapid decline in

eGFR. As kidney function reduces there is an increased likelihood of anaemia. One treatment

option for this condition is iron taken orally.
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Figure 37: Temporal effects - relative change in eGFR for standardised model using 95% CIs:
single model all diseases
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Parameter values

Table 20: Standardised model summary for single model all diseases

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

(Intercept) 1.00 3.9816 5.5e-02 0.000 ***

age0 1.00 -0.0070 7.1e-04 0.000 *** -0.69

CC 0.89 -0.0155 4.9e-03 0.002 ** -1.54

CC:followupTime -0.0007 1.3e-03 0.592 -0.07

comorbidityCancercurrent 0.72 0.0259 3.8e-02 0.495 2.62

comorbidityCancercurrent:followupTime -0.0009 9.8e-03 0.926 -0.09

comorbidityCancerprevious 0.72 -0.0488 2.5e-02 0.053 -4.76

comorbidityCancerprevious:followupTime 0.0056 6.2e-03 0.367 0.56

comorbidityCV1 0.80 -0.0329 1.5e-02 0.031 * -3.23

comorbidityCV1:followupTime 0.0003 4.3e-03 0.947 0.03

comorbidityCVover 1 0.80 -0.0485 1.8e-02 0.007 ** -4.74

comorbidityCVover 1:followupTime 0.0059 4.7e-03 0.211 0.60

DBP 1.00 0.0107 4.3e-03 0.013 * 1.08

DBP:followupTime 0.0011 1.4e-03 0.419 0.11

disease diabetic nephropathy 1.00 -0.0963 3.2e-02 0.003 ** -9.18

disease glomerulonephritis 1.00 0.0091 3.4e-02 0.788 0.91

disease HKD 1.00 -0.0536 3.5e-02 0.124 -5.22

disease obstruction 1.00 -0.3433 8.5e-02 0.000 *** -29.05

disease polycystic kidney disease 1.00 -0.1782 4.4e-02 0.000 *** -16.32

disease pyelonephritis 1.00 -0.1395 4.4e-02 0.001 ** -13.02

disease renovascular disease 1.00 -0.0197 4.1e-02 0.633 -1.95

disease unknown 1.00 -0.0556 3.5e-02 0.110 -5.41

followupTime 1.00 -0.0357 8.9e-03 0.000 *** -3.51

Hb 1.00 0.0546 5.5e-03 0.000 *** 5.61

Hb:followupTime 0.0057 1.7e-03 0.001 ** 0.57

med.ACE.ARB 0.97 0.0447 1.4e-02 0.001 ** 4.57

med.ACE.ARB:followupTime -0.0063 3.8e-03 0.099 -0.63

med.AlphaBlockers 0.83 -0.0169 1.4e-02 0.240 -1.67

med.AlphaBlockers:followupTime -0.0052 4.2e-03 0.214 -0.52

med.CCBs 0.72 -0.0311 1.3e-02 0.018 * -3.06

med.CCBs:followupTime -0.0007 3.8e-03 0.847 -0.07

med.Diuretics 0.85 -0.0426 1.3e-02 0.001 ** -4.17

med.Diuretics:followupTime 0.0058 3.9e-03 0.138 0.58

med.Epo 1.00 -0.0745 1.3e-02 0.000 *** -7.18

med.Epo:followupTime -0.0052 3.9e-03 0.184 -0.52

med.Iron 0.54 0.0077 1.4e-02 0.586 0.77

med.Iron:followupTime -0.0090 4.3e-03 0.035 * -0.90

med.Other 0.58 -0.0507 2.4e-02 0.035 * -4.95

med.Other:followupTime 0.0133 7.3e-03 0.067 1.34

med.ParenteralIron 0.71 -0.0228 1.3e-02 0.076 -2.26

med.ParenteralIron:followupTime 0.0007 4.1e-03 0.860 0.07
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Table 20: Standardised model summary for single model all diseases (continued)

parameter propa β̂′r se p-value starsb (∆rŶ ∗)% c

med.VitaminD 1.00 -0.1429 1.4e-02 0.000 *** -13.32

med.VitaminD:followupTime 0.0064 3.8e-03 0.093 0.64

numberAKIepisodes 0.77 -0.0045 4.9e-03 0.360 -0.45

numberAKIepisodes:followupTime -0.0010 1.2e-03 0.408 -0.10

numberAntihypertensives 0.62 -0.0126 9.9e-03 0.202 -1.25

numberAntihypertensives:followupTime -0.0012 2.7e-03 0.675 -0.12

numberClinicVisits 0.99 -0.0065 4.3e-03 0.129 -0.65

numberClinicVisits:followupTime -0.0006 1.2e-03 0.599 -0.06

PO 1.00 -0.1023 5.5e-03 0.000 *** -9.72

PO:followupTime -0.0050 1.6e-03 0.002 ** -0.50

PP 0.92 0.0123 4.8e-03 0.011 * 1.24

PP:followupTime 0.0002 1.5e-03 0.874 0.02

PTH 1.00 -0.0836 6.4e-03 0.000 *** -8.02

PTH:followupTime 0.0093 1.5e-03 0.000 *** 0.94

Pu 0.93 0.0033 5.7e-03 0.561 0.33

Pu:followupTime -0.0116 1.7e-03 0.000 *** -1.15

totalCholesterol 0.62 0.0117 5.6e-03 0.036 * 1.18

totalCholesterol:followupTime -0.0014 1.8e-03 0.421 -0.14

totalCO2 1.00 0.0488 5.1e-03 0.000 *** 5.00

totalCO2:followupTime -0.0059 1.5e-03 0.000 *** -0.59

a proportion of bootstraps in which variable was selected
b p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *
c (∆rŶ ∗)% = 100(exp(β̂′rθ′r) − 1) with θ′r = 1
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7.4 Rates of change over time

Here we estimate the average, population level, rates of change over time using the time derivative

method described in Section 4.2. We use the explanatory variables selected in section 5 but do

not standardise them when fitting the LME model described by Equation 2 in Section 3. The

estimated regression coefficients are used when computing the expected rates over time. Note

that we do not fit the time derivative of the LME model. All rates of change estimates are based

on patients with more than 2 follow-up records. For a given variable the average rates over time

for each individual are computed, after which we use bootstrapping to obtain summary statistics;

we resample with replacement 2,000 times. The 95% confidence intervals are calculated using a

non-parametric bootstrap confidence interval method. Specifically, they are computed using the

adjusted bootstrap percentile method (in particular the bias-corrected and accelerated method,

BCa) provided by the boot::boot.ci() R-function, for details see (83,84). In Sections 7.4.2 to

7.4.11 a quantity is significant if these confidence intervals do not cover zero.

First, in Section 7.4.1 we give the expected rate of change of the outcome variable eGFR for

each disease category. This is estimated with E( ˙̂
Y ∗i ) as described in Section 4.2.2. These results

constitute our main findings regarding rates. Secondly, in Sections 7.4.2 to 7.4.11 we show the

breakdown of the estimated rates for each disease category. In particular we compute E( ˙̂
Y
∗(r)
i )

with Equation 23. These results are shown in Figures 39 to 47 and tabulated in Tables 22 to 30.

These results are supplementary to those reported in Section 7.4.1.

7.4.1 Overall average rate of decline for each disease

Figure 38 shows the average annual rate of decline in eGFR for each disease category; details

are given in Table 21. We consider all these rates to be significant in so much as the confidence

intervals do not cover zero. As shown the entire cohort, ‘single model all diseases’ labelled ‘All’,

is on average loosing eGFR at a rate of -1.1 mL/min/1.73m2/year. In contrast PKD has the

highest rate at -3.5 mL/min/1.73m2/year.

In 2013, using the SKS data, Hoefield (85) reported that PKD and diabetic nephropathy patients

exhibited on average a 2.7 (± 0.3) and 0.7 (± 0.3) ml/min/1.73m2/year faster rate of decline

in eGFR, respectively, compared to patients with glomerulonephritis. In these terms, with our

model, we report patients with PKD and diabetic nephropathy have on average a 2.5 (± 0.1)

and 0.6 (± 0.05) ml/min/1.73m2/year faster rate of decline in eGFR, respectively, compared

to those with glomerulonephritis. Given the whole cohort Hoefield (85) reports a median of

-1.2 (IQR: -3.6, 0.2) ml/min/1.73m2/year whereas we report a median of -0.9 (IQR: -2.1, 0.1)

mL/min/1.73m2/year. Furthermore our estimates for average annual rates of decline of diabetic

nephropathy and PKD, 1.5 mL/min/1.73m2/year and 3.5 mL/min/1.73m2/year, respectively,

are similar to those reported elsewhere. For example (32) reports the average rate of decline for
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diabetic nephropathy as 1.7 mL/min/1.73m2/year (32), and (33) reports ~3 mL/min/1.73m2/year

for PKD. Clearly our model gives similar estimates to those reported previously.
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Figure 38: Estimated rate of decline in eGFR by disease

Table 21: Summary for rates of change in eGFR across all diseases

disease category E( ˙̂
Y ∗i ) CI

diabetic nephropathy -1.54 (-1.86,-1.23)

glomerulonephritis -0.94 (-1.33,-0.59)

HKD -0.92 (-1.25,-0.62)

other -0.42 (-0.75,-0.08)

PKD -3.48 (-3.94,-3.03)

pyelonephritis -1.04 (-1.46,-0.66)

renovascular disease -0.33 (-0.60,-0.08)

unknown -0.42 (-0.70,-0.11)

single model all diseases -1.08 (-1.20,-0.97)

Note:

E( ˙̂
Y ∗i ) has units mL/min/1.73m2/year
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7.4.2 Diabetic nephropathy

On average across the population the dominant terms:

• bodyMassIndex:followupTime, CC:followupTime, Hb:followupTime, PO:followupTime con-

tribute to a less rapid decline in kidney function; i.e. terms have positive slope.

• DBP:followupTime, med.ACE.ARB:followupTime, numberAntihypertensives:followupTime,

PP:followupTime, PTH and Pu:followupTime contribute to a more rapid decline in kidney

function; i.e. terms have negative slope.

Note that each term is comprised of a regression parameter multiplied by the averaged time

derivative of the corresponding explanatory variable, see Equation 23.
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⋅

i  
*(r) )

p−value significance:  significant not significant

Figure 39: Rate estimates with 95% CIs for diabetic nephropathy
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Table 22: Estimated average rate of change over time for disease diabetic

nephropathy

parameter E( ˙̂
Y
∗(r)
i ) CI

overall trend

outcome variable -1.54 (-1.86,-1.23)

biochemical

CC -0.04 (-0.09,0.01)

CC:followupTime 0.75 (0.70,0.82)

Hb -0.01 (-0.03,0.01)

Hb:followupTime 2.89 (2.67,3.16)

PO -0.13 (-0.27,0.02)

PO:followupTime 0.65 (0.61,0.70)

PTH -0.22 (-0.30,-0.13)

PTH:followupTime 0.06 (0.05,0.07)

Pu 0.01 (-0.03,0.07)

Pu:followupTime -0.38 (-0.63,-0.28)

totalCholesterol -0.01 (-0.04,0.01)

totalCholesterol:followupTime -0.05 (-0.06,-0.05)

catagorical

med.ACE.ARB:followupTime -0.38 (-0.42,-0.34)

med.BetaBlockers:followupTime -0.06 (-0.08,-0.05)

med.Epo:followupTime 0.05 (0.04,0.06)

med.Iron:followupTime 0.04 (0.03,0.06)

med.ParenteralIron:followupTime 0.08 (0.06,0.11)

med.VitaminD:followupTime 0.02 (0.02,0.03)

general

bodyMassIndex 0.03 (-0.01,0.12)

bodyMassIndex:followupTime 1.22 (1.13,1.36)

DBP 0.00 (-0.04,0.04)

DBP:followupTime -0.23 (-0.25,-0.22)

numberAKIepisodes -0.05 (-0.08,-0.03)

numberAKIepisodes:followupTime 0.02 (0.01,0.03)

numberAntihypertensives -0.06 (-0.12,0.00)

numberAntihypertensives:followupTime -0.14 (-0.16,-0.12)

PP 0.04 (-0.03,0.09)

PP:followupTime -0.14 (-0.15,-0.13)

Note:

E( ˙̂
Y
∗(r)
i ) has units mL/min/1.73m2/year
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7.4.3 Glomerulonephritis

On average across the population the dominant terms:

• DBP:followupTime, Hb:followupTime and PTH:followupTime contribute to a less rapid

decline in kidney function.

• med.ACE.ARB:followupTime, PO:followupTime, PTH, Pu:followupTime and to-

talCO2:followupTime contribute to a more rapid decline in kidney function.
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p−value significance:  significant not significant

Figure 40: Rate estimates with 95% CIs for glomerulonephritis
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Table 23: Estimated average rate of change over time for disease glomeru-

lonephritis

parameter E( ˙̂
Y
∗(r)
i ) CI

overall trend

outcome variable -0.94 (-1.33,-0.59)

biochemical

CC 0.05 (0.03,0.07)

CC:followupTime -1.27 (-1.37,-1.17)

CRP 0.08 (0.03,0.17)

CRP:followupTime 0.02 (0.02,0.03)

Hb 0.04 (-0.05,0.13)

Hb:followupTime 1.26 (1.17,1.38)

PO -0.06 (-0.24,0.11)

PO:followupTime -0.25 (-0.27,-0.23)

PTH -0.43 (-1.59,-0.18)

PTH:followupTime 0.63 (0.49,1.14)

Pu 0.04 (-0.02,0.22)

Pu:followupTime -0.44 (-0.63,-0.35)

totalCO2 -0.05 (-0.15,0.04)

totalCO2:followupTime -1.19 (-1.30,-1.09)

catagorical

med.ACE.ARB:followupTime -0.44 (-0.49,-0.40)

med.AlphaBlockers:followupTime -0.03 (-0.05,-0.03)

med.BetaBlockers:followupTime -0.02 (-0.02,-0.01)

med.CCBs:followupTime 0.00 (0.00,0.00)

med.Epo:followupTime -0.03 (-0.04,-0.02)

med.Iron:followupTime -0.07 (-0.10,-0.05)

med.ParenteralIron:followupTime -0.02 (-0.03,-0.01)

med.VitaminD:followupTime -0.04 (-0.05,-0.02)

general

DBP 0.01 (-0.02,0.04)

DBP:followupTime 1.88 (1.74,2.03)

numberAKIepisodes -0.02 (-0.05,-0.01)

numberAKIepisodes:followupTime 0.02 (0.01,0.04)

numberAntihypertensives 0.00 (-0.01,0.01)

numberAntihypertensives:followupTime -0.03 (-0.04,-0.03)

PP 0.02 (-0.01,0.04)

PP:followupTime 0.01 (0.01,0.02)

Note:

E( ˙̂
Y
∗(r)
i ) has units mL/min/1.73m2/year
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7.4.4 Hypertensive kidney disease

On average across the population the dominant terms:

• CC:followupTime, Hb:followupTime, PP:followupTime and numberAntihyperten-

sives:followupTime contribute to a less rapid decline in kidney function.

• numberClinicVisits:followupTime, PO:followupTime, Pu:followupTime and to-

talCO2:followupTime contribute to a more rapid decline in kidney function.
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p−value significance:  significant not significant

Figure 41: Rate estimates with 95% CIs for HKD
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Table 24: Estimated average rate of change over time for disease HKD

parameter E( ˙̂
Y
∗(r)
i ) CI

overall trend

outcome variable -0.92 (-1.25,-0.62)

biochemical

CC -0.06 (-0.09,-0.02)

CC:followupTime 0.75 (0.69,0.82)

Hb -0.01 (-0.08,0.06)

Hb:followupTime 0.51 (0.47,0.57)

PO -0.13 (-0.26,-0.04)

PO:followupTime -0.65 (-0.71,-0.61)

PTH -0.09 (-0.15,-0.04)

PTH:followupTime -0.09 (-0.10,-0.08)

Pu -0.09 (-0.15,-0.06)

Pu:followupTime -0.30 (-0.42,-0.23)

totalCO2 -0.04 (-0.11,0.01)

totalCO2:followupTime -0.61 (-0.67,-0.56)

catagorical

comorbidityCancercurrent:followupTime 0.01 (0.00,0.03)

comorbidityCancerprevious:followupTime 0.07 (0.04,0.11)

comorbidityCV1:followupTime 0.11 (0.08,0.15)

comorbidityCVover 1:followupTime 0.01 (0.01,0.02)

comorbidityOther:followupTime -0.03 (-0.04,-0.02)

med.ACE.ARB:followupTime -0.05 (-0.06,-0.04)

med.CCBs:followupTime 0.14 (0.12,0.16)

med.Epo:followupTime -0.01 (-0.02,-0.01)

med.Iron:followupTime -0.06 (-0.08,-0.04)

med.ParenteralIron:followupTime 0.02 (0.01,0.03)

med.VitaminD:followupTime 0.04 (0.03,0.06)

general

DBP 0.01 (-0.03,0.04)

DBP:followupTime 0.18 (0.16,0.20)

numberAKIepisodes -0.03 (-0.05,-0.02)

numberAKIepisodes:followupTime 0.00 (0.00,0.00)

numberAntihypertensives 0.03 (-0.03,0.09)

numberAntihypertensives:followupTime 0.57 (0.52,0.64)

numberClinicVisits -0.04 (-0.05,-0.04)

numberClinicVisits:followupTime -0.43 (-0.48,-0.39)

PP 0.01 (0.00,0.02)

PP:followupTime 0.37 (0.34,0.41)

Note:

E( ˙̂
Y
∗(r)
i ) has units mL/min/1.73m2/year
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7.4.5 Other

On average across the population the dominant terms:

• CC:followupTime, numberClinicVisits, PTH:followupTime and totalCO2:followupTime

contribute to a less rapid decline in kidney function.

• Hb:followupTime and PO:followupTime contribute to a more rapid decline in kidney

function.
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p−value significance:  significant not significant

Figure 42: Rate estimates with 95% CIs for disease other
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Table 25: Estimated average rate of change over time for disease other

parameter E( ˙̂
Y
∗(r)
i ) CI

overall trend

outcome variable -0.42 (-0.75,-0.08)

biochemical

CC -0.06 (-0.12,0.00)

CC:followupTime 3.24 (3.02,3.50)

CRP 0.04 (0.01,0.08)

CRP:followupTime -0.09 (-0.15,-0.07)

Hb 0.08 (-0.07,0.25)

Hb:followupTime -1.41 (-1.52,-1.30)

PO -0.13 (-0.27,0.02)

PO:followupTime -1.69 (-1.82,-1.58)

PTH -0.21 (-0.37,-0.08)

PTH:followupTime 0.40 (0.34,0.46)

totalCholesterol -0.03 (-0.09,0.02)

totalCholesterol:followupTime -0.31 (-0.34,-0.28)

totalCO2 0.14 (0.06,0.25)

totalCO2:followupTime 0.49 (0.45,0.53)

catagorical

comorbidityCV1:followupTime -0.15 (-0.19,-0.11)

comorbidityCVover 1:followupTime 0.08 (0.06,0.10)

comorbidityDiabetestype1:followupTime 0.00 (-0.03,0.00)

comorbidityDiabetestype2:followupTime 0.02 (0.02,0.03)

med.BetaBlockers:followupTime -0.06 (-0.08,-0.05)

med.Epo:followupTime -0.07 (-0.10,-0.05)

med.Iron:followupTime -0.01 (-0.01,0.00)

med.ParenteralIron:followupTime -0.03 (-0.05,-0.02)

med.VitaminD:followupTime 0.05 (0.04,0.06)

general

numberAKIepisodes -0.01 (-0.02,0.00)

numberAKIepisodes:followupTime -0.03 (-0.06,-0.02)

numberClinicVisits 0.23 (0.19,0.31)

numberClinicVisits:followupTime -0.07 (-0.10,-0.06)

Note:

E( ˙̂
Y
∗(r)
i ) has units mL/min/1.73m2/year
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7.4.6 PKD

On average across the population the dominant terms:

• Hb:followupTime and numberAntihypertensives:followupTime contribute to a less rapid

decline in kidney function.

• CC:followupTime, PO:followupTime and totalCO2:followupTime contribute to a more rapid

decline in kidney function.
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p−value significance:  significant not significant

Figure 43: Rate estimates with 95% CIs for PKD
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Table 26: Estimated average rate of change over time for disease PKD

parameter E( ˙̂
Y
∗(r)
i ) CI

overall trend

outcome variable -3.48 (-3.94,-3.03)

biochemical

CC -0.06 (-0.12,-0.01)

CC:followupTime -2.69 (-3.09,-2.35)

CRP -0.04 (-0.11,0.01)

CRP:followupTime 0.17 (0.13,0.26)

Hb -0.11 (-0.16,-0.06)

Hb:followupTime 3.30 (2.93,3.83)

PO -0.24 (-0.34,-0.15)

PO:followupTime -0.89 (-1.01,-0.80)

PTH -0.29 (-0.41,-0.20)

PTH:followupTime 0.02 (0.02,0.03)

Pu -0.12 (-0.19,-0.05)

Pu:followupTime 0.12 (0.10,0.14)

totalCO2 -0.10 (-0.20,0.03)

totalCO2:followupTime -1.67 (-1.96,-1.43)

catagorical

comorbidityCV1:followupTime -0.09 (-0.14,-0.06)

comorbidityCVover 1:followupTime 0.02 (0.01,0.04)

med.ACE.ARB:followupTime -0.17 (-0.20,-0.14)

med.CCBs:followupTime -0.16 (-0.23,-0.12)

med.Diuretics:followupTime -0.20 (-0.29,-0.14)

med.Epo:followupTime -0.02 (-0.03,-0.01)

med.Iron:followupTime 0.04 (0.02,0.08)

med.ParenteralIron:followupTime 0.02 (0.01,0.04)

med.VitaminD:followupTime 0.02 (0.01,0.03)

general

DBP 0.00 (-0.04,0.05)

DBP:followupTime -0.24 (-0.27,-0.21)

numberAntihypertensives -0.05 (-0.14,0.01)

numberAntihypertensives:followupTime 0.55 (0.47,0.67)

numberClinicVisits 0.01 (0.01,0.01)

numberClinicVisits:followupTime 0.00 (0.00,0.00)

PP 0.14 (0.06,0.22)

PP:followupTime 0.18 (0.15,0.21)

Note:

E( ˙̂
Y
∗(r)
i ) has units mL/min/1.73m2/year
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7.4.7 Pyelonephritis

On average across the population the dominant terms:

• bodyMassIndex:followupTime, Hb:followupTime and PP:followupTime contribute to a less

rapid decline in kidney function.

• totalCO2:followupTime contributes to a more rapid decline in kidney function.
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p−value significance:  significant not significant

Figure 44: Rate estimates with 95% CIs for pyelonephritis
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Table 27: Estimated average rate of change over time for disease pyelonephritis

parameter E( ˙̂
Y
∗(r)
i ) CI

overall trend

outcome variable -1.04 (-1.46,-0.66)

biochemical

CC -0.06 (-0.11,-0.01)

CC:followupTime 0.39 (0.35,0.43)

Hb -0.02 (-0.08,0.05)

Hb:followupTime 3.54 (3.16,3.99)

PO -0.01 (-0.13,0.15)

PO:followupTime -0.70 (-0.78,-0.64)

PTH -0.06 (-0.11,-0.03)

PTH:followupTime 0.17 (0.14,0.25)

Pu 0.00 (-0.01,0.02)

Pu:followupTime -0.54 (-0.70,-0.42)

totalCO2 -0.12 (-0.24,-0.02)

totalCO2:followupTime -2.13 (-2.39,-1.90)

catagorical

comorbidityCancercurrent:followupTime 0.01 (0.00,0.03)

comorbidityCancerprevious:followupTime 0.04 (0.01,0.10)

comorbidityCV1:followupTime 0.05 (0.03,0.07)

comorbidityCVover 1:followupTime -0.10 (-0.16,-0.06)

comorbidityDiabetestype2:followupTime 0.12 (0.07,0.20)

comorbidityGastrointestinal:followupTime 0.08 (0.03,0.15)

med.ACE.ARB:followupTime -0.18 (-0.21,-0.14)

med.AlphaBlockers:followupTime 0.02 (0.02,0.04)

med.CCBs:followupTime -0.07 (-0.10,-0.05)

med.Epo:followupTime 0.02 (0.01,0.03)

med.Iron:followupTime 0.00 (0.00,0.01)

med.ParenteralIron:followupTime -0.06 (-0.09,-0.03)

med.VitaminD:followupTime 0.07 (0.04,0.10)

general

bodyMassIndex 0.01 (-0.01,0.03)

bodyMassIndex:followupTime 1.21 (1.08,1.38)

DBP -0.01 (-0.06,0.05)

DBP:followupTime -0.76 (-0.86,-0.68)

numberAKIepisodes -0.06 (-0.18,-0.02)

numberAKIepisodes:followupTime 0.01 (0.00,0.05)

numberAntihypertensives -0.13 (-0.29,0.01)

numberAntihypertensives:followupTime 0.16 (0.13,0.18)

numberClinicVisits 0.03 (0.03,0.04)

numberClinicVisits:followupTime 0.02 (0.02,0.02)

PP -0.01 (-0.01,0.00)

PP:followupTime 0.76 (0.68,0.85)
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Table 27: Estimated average rate of change over time for disease pyelonephritis

(continued)

parameter E( ˙̂
Y
∗(r)
i ) CI

Note:

E( ˙̂
Y
∗(r)
i ) has units mL/min/1.73m2/year

7.4.8 Renovascular

On average across the population the dominant terms:

• DBP:followupTime, Hb:followupTime and PO:followupTime contribute to a less rapid

decline in kidney function.

• numberAntihypertensives:followupTime and totalCholesterol:followupTime contribute to a

more rapid decline in kidney function.
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p−value significance:  significant not significant

Figure 45: Rate estimates with 95% CIs for renovascular
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Table 28: Estimated average rate of change over time for disease renovascular

disease

parameter E( ˙̂
Y
∗(r)
i ) CI

overall trend

outcome variable -0.33 (-0.60,-0.08)

biochemical

CC -0.02 (-0.05,0.01)

CC:followupTime 0.17 (0.16,0.19)

CRP 0.04 (0.00,0.19)

CRP:followupTime -0.12 (-0.24,-0.08)

Hb -0.01 (-0.08,0.09)

Hb:followupTime 1.33 (1.22,1.48)

PO -0.08 (-0.23,0.05)

PO:followupTime 0.70 (0.65,0.77)

PTH -0.14 (-0.27,-0.07)

PTH:followupTime 0.30 (0.26,0.36)

Pu -0.03 (-0.05,-0.02)

Pu:followupTime -0.12 (-0.17,-0.09)

totalCholesterol -0.01 (-0.03,0.00)

totalCholesterol:followupTime -1.75 (-1.94,-1.60)

catagorical

comorbidityCV1:followupTime 0.14 (0.09,0.21)

comorbidityCVover 1:followupTime 0.24 (0.21,0.29)

comorbidityDiabetestype1:followupTime 0.01 (0.00,0.03)

comorbidityDiabetestype2:followupTime 0.07 (0.05,0.09)

comorbidityGastrointestinal:followupTime -0.12 (-0.20,-0.07)

med.ACE.ARB:followupTime 0.33 (0.28,0.39)

med.AlphaBlockers:followupTime 0.47 (0.37,0.57)

med.Diuretics:followupTime 0.13 (0.11,0.15)

med.Epo:followupTime -0.04 (-0.07,-0.03)

med.Iron:followupTime -0.09 (-0.13,-0.06)

med.ParenteralIron:followupTime -0.05 (-0.07,-0.03)

med.VitaminD:followupTime -0.07 (-0.10,-0.05)

general

DBP 0.00 (-0.01,0.01)

DBP:followupTime 2.01 (1.84,2.21)

numberAntihypertensives 0.00 (-0.01,0.01)

numberAntihypertensives:followupTime -0.59 (-0.67,-0.52)

PP -0.07 (-0.18,0.01)

PP:followupTime -0.33 (-0.36,-0.30)

Note:

E( ˙̂
Y
∗(r)
i ) has units mL/min/1.73m2/year
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7.4.9 Unknown disease

On average across the population the dominant terms:

• Hb:followupTime, numberAntihypertensives:followupTime, PTH:followupTime and totalC-

holesterol:followupTime contribute to a less rapid decline in kidney function.

• CC:followupTime, DBP:followupTime, PO:followupTime and totalCO2:followupTime con-

tribute to a more rapid decline in kidney function.
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p−value significance:  significant not significant

Figure 46: Rate estimates with 95% CIs for disease unknown
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Table 29: Estimated average rate of change over time for disease unknown

parameter E( ˙̂
Y
∗(r)
i ) CI

overall trend

outcome variable -0.42 (-0.70,-0.11)

biochemical

CC -0.07 (-0.09,-0.04)

CC:followupTime -1.61 (-1.74,-1.49)

Hb -0.04 (-0.12,0.03)

Hb:followupTime 0.43 (0.39,0.47)

PO -0.06 (-0.18,0.06)

PO:followupTime -2.49 (-2.68,-2.35)

PTH -0.29 (-0.42,-0.18)

PTH:followupTime 0.62 (0.56,0.71)

Pu -0.04 (-0.08,0.00)

Pu:followupTime -0.03 (-0.04,-0.02)

totalCholesterol 0.00 (0.00,0.00)

totalCholesterol:followupTime 1.18 (1.06,1.32)

totalCO2 0.09 (0.01,0.20)

totalCO2:followupTime -1.58 (-1.72,-1.45)

catagorical

comorbidityCancercurrent:followupTime 0.01 (0.00,0.02)

comorbidityCancerprevious:followupTime -0.06 (-0.10,-0.03)

med.ACE.ARB:followupTime -0.41 (-0.47,-0.35)

med.BetaBlockers:followupTime -0.17 (-0.22,-0.13)

med.CCBs:followupTime -0.30 (-0.36,-0.24)

med.Epo:followupTime 0.03 (0.02,0.05)

med.Iron:followupTime 0.07 (0.05,0.10)

med.ParenteralIron:followupTime 0.03 (0.02,0.05)

med.VitaminD:followupTime -0.05 (-0.07,-0.03)

general

DBP -0.01 (-0.06,0.04)

DBP:followupTime -1.10 (-1.19,-1.02)

numberAKIepisodes 0.14 (0.06,0.30)

numberAKIepisodes:followupTime -0.07 (-0.13,-0.03)

numberAntihypertensives -0.01 (-0.06,0.03)

numberAntihypertensives:followupTime 0.94 (0.83,1.07)

PP 0.00 (0.00,0.00)

PP:followupTime -0.09 (-0.09,-0.08)

Note:

E( ˙̂
Y
∗(r)
i ) has units mL/min/1.73m2/year
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7.4.10 Single model all diseases

On average across the population the dominant terms:

• DBP:followupTime, Hb:followupTime, med.Other:followupTime and PTH:followupTime

contribute to a less rapid decline in kidney function.

• CC:followupTime, med.ACE.ARB:followupTime, PO, PO:followupTime, PTH,

Pu:followupTime, totalCholesterol:followupTime and totalCO2:followupTime contribute to

a more rapid decline in kidney function.
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Figure 47: Rate estimates with 95% CIs for single model all diseases
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Table 30: Estimated average rate of change over time for single model all

diseases

parameter E( ˙̂
Y
∗(r)
i ) CI

overall trend

outcome variable -1.08 (-1.20,-0.97)

biochemical

CC -0.05 (-0.06,-0.03)

CC:followupTime -0.36 (-0.38,-0.35)

Hb -0.02 (-0.05,0.02)

Hb:followupTime 1.34 (1.30,1.40)

PO -0.13 (-0.18,-0.07)

PO:followupTime -0.65 (-0.66,-0.63)

PTH -0.22 (-0.34,-0.18)

PTH:followupTime 0.28 (0.26,0.31)

Pu 0.00 (0.00,0.01)

Pu:followupTime -0.22 (-0.26,-0.19)

totalCholesterol -0.02 (-0.03,-0.01)

totalCholesterol:followupTime -0.17 (-0.18,-0.17)

totalCO2 0.00 (-0.03,0.03)

totalCO2:followupTime -1.28 (-1.33,-1.24)

catagorical

comorbidityCancercurrent:followupTime 0.00 (0.00,0.00)

comorbidityCancerprevious:followupTime 0.02 (0.01,0.02)

comorbidityCV1:followupTime 0.00 (0.00,0.00)

comorbidityCVover 1:followupTime 0.05 (0.05,0.06)

med.ACE.ARB:followupTime -0.14 (-0.15,-0.13)

med.AlphaBlockers:followupTime -0.04 (-0.04,-0.04)

med.CCBs:followupTime -0.01 (-0.01,-0.01)

med.Diuretics:followupTime 0.08 (0.08,0.09)

med.Epo:followupTime -0.02 (-0.02,-0.02)

med.Iron:followupTime -0.04 (-0.04,-0.03)

med.Other:followupTime 0.40 (0.38,0.41)

med.ParenteralIron:followupTime 0.00 (0.00,0.00)

med.VitaminD:followupTime 0.03 (0.02,0.03)

general

DBP 0.00 (-0.01,0.01)

DBP:followupTime 0.23 (0.22,0.24)

numberAKIepisodes -0.01 (-0.02,-0.01)

numberAKIepisodes:followupTime -0.01 (-0.01,-0.01)

numberAntihypertensives -0.01 (-0.01,0.00)

numberAntihypertensives:followupTime -0.06 (-0.06,-0.06)

numberClinicVisits -0.05 (-0.06,-0.05)

numberClinicVisits:followupTime -0.02 (-0.02,-0.02)

PP 0.01 (0.01,0.02)
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Table 30: Estimated average rate of change over time for single model all

diseases (continued)

parameter E( ˙̂
Y
∗(r)
i ) CI

PP:followupTime 0.03 (0.02,0.03)

Note:

E( ˙̂
Y
∗(r)
i ) has units mL/min/1.73m2/year

7.4.11 Summary

The terms which most frequently occurred overall the disease categories were:

• Hb:followupTime contributing to a less rapid decline in kidney function.

• CC:followupTime, PO:followupTime and totalCO2:followupTime contributing to a more

rapid decline in kidney function.

7.5 Counterintuitive results

There are a few clinically counterintuitive results reported above, two of the most commonly

occurring relate to PP and DBP. Given the variety and quantity of blood pressure moderating

drugs that most patients are taking it is difficult, and beyond the scope of this current work, to

draw any conclusions regarding these results. The other frequently occurring unexpected result

relates to the interaction term for PTH with follow-up time, we focus on this below.

As reported in Sections 7.2 and 7.3 we consistently found the counterintuitive result that the

interaction of PTH with follow-up time is associated with a slower progression of kidney disease,

hence it is associated with a shallower slope in eGFR over time. This result is, for example,

observed in Table 11. In some LME models the interaction term for PTH with follow-up time

(denoted as PTH:followupTime) has a regression parameter with a positive sign and is also

statistically significant at the 0.05 level. We seek to determine if this effect is an artefact of the

LME model or a real effect present in the SKS data. Throughout this analysis we use the ‘single

model all diseases’ data.

We begin by exploring the data. We compute the average time derivative per patient of a given

variable by applying the techniques described in Section 4.2. That is for a given patient and

variable with values at discrete time points, we compute the derivative of the spline and then

find its expected value to obtain the average slope over time. This allows us to generate Figures

48 and 49 both of which show the average quantities per patient. Figure 48 shows that steeper

slopes in log(eGFR) are associated with higher levels of PTH; correlation -0.35. In Figure 49 we

observe that steeper slopes in log(eGFR) are associated with steeper slopes in PTH; correlation
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-0.43. The results in these figures are clinically plausible, but inconsistent with the aforementioned

counterintuitive LME model results relating to the interaction term for PTH with follow-up time.

We therefore surmise that this counterintuitive result is an artefact of the LME model and not

the SKS data.
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Figure 48: Average time derivative of log(eGFR) per patient versus average PTH per patient
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Figure 49: Average time derivative of log(eGFR) per patient versus average time derivative of
PTH per patient

We now seek to identify the reason why our LME model may be giving a clinically counterintuitive

result for the interaction term relating to PTH and follow-up time. We modify our intercept-and-

slope LME model such that the fixed effects are reduced to the following terms β0 + β1XPTH +

β2XPTHt + β3t; note that t is follow-up time and the outcome variable is log(eGFR). With

this reduced model we again find the counterintuitive result that the regression coefficient of

the interaction term, β2, is positive and statistically significant at the 0.01 level. If we use this

reduced model but instead use a subset of the data for which the average rate of change of eGFR

is negative for each patient, we find that the regression coefficient β2 is positive but is no longer

135



statistically significant at the 0.05 level. When the PTH:followupTime regression coefficient is

not statistically significant we interpret this to mean that PTH does not markedly influence the

progression of disease, that is at population level PTH does not significantly increase or decrease

the slope of eGFR.

We conclude, taking into account the reduced LME model using only negative eGFR slopes,

that the difference between the PTH:followupTime parameter estimate versus the eGFR slopes

in Figure 48 is due to the former being a population level estimate and the latter being an

individual level estimate. In the former case our LME model is estimating the effect of PTH on

the average slope of log(eGFR) given the population, but this average slope may not actually exist

for any individual. In the latter case we are considering the average effect of PTH on individual

log(eGFR) slopes, this is what the clinicians are interested in and what informs their clinical

intuition. In summary, the so-called ‘counterintuitive’ result regarding PTH:followupTime is a

consequence of the way our model is summarising the data at population level.

7.6 Correlation between baseline eGFR and its rate of change

In 2013, using the SKS data, Hoefield (85) reported a link between the rate of change of eGFR

and baseline eGFR, in particular patients with a higher baseline eGFR had on average a faster

decline in kidney function. Disease categories considered were PKD, diabetic nephropathy and

glomerulonephritis. In the Results section of (85) Hoefield states, “Patients with stage 3a CKD at

inception into the cohort were associated with more rapid median rates of decline in renal function

at -2.06 ml/min/year compared with -1.24, -1.15 and -0.93 ml/min/year in those with CKD

stages 3b, 4 and 5, respectively. . . . Estimated average decline in eGFR was between 0.8 and 1.6

ml/min/year slower in those patients with eGFR <45 ml/min compared to those with eGFR >45

ml/min at baseline.” However, as discussed in the following, this appears to be inconsistent with

our analysis. Note that 45 ml/min equates to 3.8 on the log(eGFR) scale.

By using the techniques described in Section 4.2 we calculated the average time derivative of

log(eGFR) per patient, i.e. E( ˙̂
Y i). That is for given values at discrete time points we computed

the derivative of the spline and then found its expected value to obtain the average slope over

time of log(eGFR). For each patient in each disease group Figure 50 displays the average slope

in log(eGFR) against baseline log(eGFR). This figure indicates that for most disease categories

patients with lower baseline eGFR tend to have faster rates of decline in kidney function. For

patients within each kidney disease category we computed the correlation between baseline

log(eGFR) and average slope in log(eGFR). Excluding PKD we found that no disease had a

correlation greater than 0.27. In contrast PKD had a relatively high correlation of 0.47. It follows

that PKD patients with the steepest negative slopes and fastest rates of decline on average enter

the study with lower log(eGFR) values; this correlation is directionally different from Hoefield

(85). Similarly, as shown in Figure 50, other diseases in our study also have weak correlations
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which are also directionally different from Hoefield (85). We therefore conclude that our results

appear inconsistent with Hoefield (85). Future work could investigate the exact details of the

data and model used by Hoefield (85) and thereby aim to determine the source of this apparent

contradiction.
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Figure 50: Average slope in log(eGFR) per patient versus baseline log(eGFR)
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8 Discussion

8.1 Summary of main results

The aim of this research was to identify key risk factors associated with the progression of kidney

disease both across and within eight primary kidney diseases. We used data collected from more

than 3000 secondary care patients who had moderate to severe chronic kidney disease and were

followed up until they reached an end point of dialysis, kidney transplant or death. Potential

risk factors recorded at each annual follow-up appointment included comorbidities, medications,

lifestyle factors, socio-demographic information and biochemical marker measurements.

To assess the importance of each of these potential risk factors for each disease we used standard

longitudinal modelling techniques, specifically the LME model. We employed commonly used

techniques, including bootstrapping, to access model fit and select the pertinent regression

parameters for each model. Our main interest was in the fixed effects regression parameters which

were used to identify key population level risk factors for each disease category.

First, given our LME for each disease category, we considered the population average level of

eGFR: in our models these were the non-interaction terms. We found the risk factors for lower

levels of eGFR included biochemical markers and medications, in contrast lifestyle parameters and

physical attributes were less important. From a biological perspective we expect the biochemical

markers to reflect worsening kidney function, this is consistent with our findings. It may be of

future interest to examine the biochemical markers more closely as the differences we observed

between diseases could be of clinical value in terms of potential treatment options. Medications

play an important role, most notably ACE inhibitors and/or ARBs result in higher levels of

eGFR for diabetic nephropathy and glomerulonephritis but not in the other diseases. Also of

clinical interest is the role of anaemia management, this enters into our results through iron and

EPO medications which we have shown to be strongly associated with diabetic nephropathy. In

our results lifestyle parameters did not play a significant role, this could be because these risk

factors contained so much missing data that we found it necessary to reduce them to baseline

variables (e.g. smoking status, occupation, alcohol intake). As expected, baseline age was a

clear risk factor. Body mass index was only strongly associated with diabetic nephropathy, this

association is unsurprising in light of the fact that being overweight is a risk factor for type 2

diabetes. Interestingly, although not significant, the model did identify sex as associated with

pyelonephritis. This association is clinically plausible given females are more susceptible to urinary

track infections which can contribute to pyelonephritis.

Secondly, given our LME for each disease category, we consider the rate of progression of eGFR

over time. In our models these are the interaction terms with time, i.e. explanatoryVariable

: followupTime. These temporal effects are harder to interpret clinically as they relate to a
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population trajectory which may never be observed in clinical practice where the focus is on

individuals. This population level effect has in part led to results which go against clinical intuition,

e.g. high levels of PTH being associated with less rapid decline in kidney disease. However our

model did identify that rapid progression of kidney disease is associated with biochemical markers

including PO, PTH and total CO2: this is biologically plausible. In general we found that

medications and comorbidities were not key in rapid disease progression. In the future more work

is needed to consider a wider range of statistical methods which could lead to clearer identification

of risk factors relating to the progression of kidney disease over time. Perhaps a more nuanced

approach could better identify risk factors such as comorbidities and/or medications.

Thirdly, we used a more novel approach towards understanding disease progression by considering

time derivative of the fitted LME model. We found, given all disease categories, that PKD had the

most rapid progression of kidney disease, with a loss in eGFR of 3.5 mL/min/1.73m2/year whereas

the rest of the categories show a loss of around 0.5-1.5 mL/min/1.73m2/year: these results are

consistent with previous work. In addition we also reported the breakdown of rates for each risk

factor: these results were consistent with our aforementioned results. This is unsurprising given

they have the same model at their foundation. Given each continuous variable it may have been

more informative to combine the non-interaction and interaction term into a single term, this

would then describe all time variability of the given risk factor in single quantity. This approach

might better describe the relative importance of the risk factors and could lead to a resolution of

the counterintuitive results mentioned in the previous paragraph. Further research is needed into

the best approaches for determining risk factors in relation to rates of change over time of an

outcome of interest.

Many of the risk factors we identified match clinical intuition and thereby confirm what is already

known in clinical practice. However in some instances our results point towards a need for further

clinical studies, most notably the common clinical practice of prescribing ACE inhibitors and

ARBs regardless of the kidney disease type. Our identification of key risk factors relating to kidney

disease progression has implications for the monitoring and treatment of future chronic kidney

disease patients. Below in Sections 8.4 and 8.5 we discuss these in more detail, specifically potential

implications in terms of mental health, socio-economic factors, medications and personalised

healthcare.

8.2 SKS Data

8.2.1 Strengths

Since 2002 the ongoing SKS study has recruited over 3000 secondary care patients who are

followed-up annually. SKS has well defined end-points which in part ensures patients have

comparable stages of kidney disease; patients are removed from the study once they commence
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RRT or die. In addition biochemical data is collected outside follow-up appointments, during

routine clinic visits and during acute episodes of illness e.g. AKI. This is a very rich dataset

containing, after cleaning and before imputation, 1,103,163 distinct units of information. SKS is

one of the largest and longest ongoing studies of its kind in the world. There is a similar ongoing

study, The Chronic Renal Insufficiency Cohort (CRIC), which since 2001 has recruited about 5500

adult CKD patients from 11 clinical sites across the United States, this study also has the core

aims of investigating risk factors for CKD progression and links to cardiovascular disease (86,87).

There is a significant ethnic difference between SKS and CRIC in that by design CRIC has 40%

African American and 10% Latino/Hispanic or Asian/Pacific Islander. Both studies capture a

broad range of potential risk factors for each patient, these include biochemical, comorbidity,

medication, lifestyle and socio-economic demographic data.

8.2.2 Limitations and weaknesses

There is clearly a limit on that which can reasonably be recorded at a follow-up appointment

by a clinician whose first priority is to patient care rather than data collection. This trade-off

has resulted in considerable incomplete records in the data, in total about 71% of all follow-up

appointment data has at least one field missing; mostly because it was not recorded but sometimes

because it was incorrect so was deleted by our ‘data cleaning’ procedures. In addition the

biochemical data collected from each patient at their follow-up appointment typically takes several

days to be processed and is recorded in a separate database. This makes matching the biochemical

data with the SKS data non-trivial, if no match is found and imputation is not possible the whole

follow-up appointment record is unusable when modelling. If creatinine is not measured at a

follow-up then all the data from that appointment will be discarded as we do not impute the

model outcome variable.

The significant quantity of missing data resulted in us resorting to imputation methods to gain

statistical power in our models. This meant we had to make several pragmatic decisions as

follows. If a patient is recorded as having a comorbidity we assume they have the condition for

all future time, which is a reasonable assumption for all chronic conditions. We relied on the first

instance of a comorbidity being recorded correctly; if a given patient was mistakenly recorded

as having a particular comorbidity we then propagate this error through all their subsequent

follow-ups since there is no mechanism by which we can determine the recording mistake. At a

given follow-up, if at least one medication is recorded then we assign the patient as either taking,

or not taking, medications in all of the aforementioned medication categories. We therefore

assume all medications have been correctly recorded in the SKS data at the follow-up. Only at

follow-up appointments where no medications are recorded do we impute this data.

Where possible continuous variables are imputed using the Kalman method as described in

Section 2.7. However this does not allow upper and lower bounds on the values it returns so
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potentially it could return negative values. This would lead to erroneous imputed values since all

our continuous variables are take positive values. Our pragmatic solution was first to transform

each field onto the log scale, secondly perform imputation by the Kalman method, and finally

transform back to the original scale. We expect this to cause some minor dependencies since a

log transformation will result in an approximately linear imputation on the log scale instead of

on the original scale. However if the measured values are falling or rising according to a power

law on their original scale, as many biological systems/markers do, they will be linear on the log

scale in which case linear imputation is ideal.

8.2.3 Recommendations

We used imputation to replace missing values, but this was performed on each subject separately

where each field for which we imputed values was treated as a timeseries. All subjects and fields

were therefore treated as if they were mutually independent and all values once imputed were

treated as if they were real measured values with no acknowledgement of uncertainty; clearly this

could lead to over-confidence in the model results and future work should consider addressing

this. It would be of interest to investigate more sophisticated imputation methods. Multiple

Imputation by Chained Equations (MICE), e.g. see (58,88), is a very popular method which uses

a series of regression models where each variable with missing values is modelled conditional on

the other variables within the data. As such each variable can be modelled with respect to its

distribution; e.g. continuous variables are modelled with linear regression and binary variables

with logistic regression. Assuming we believe all values are missing at random then a timeseries

extension of MICE should improve our imputation, but to the author’s knowledge no such method

exists. Perhaps in the future such a method could be developed. With a view to improving upon

our strategy of transforming to a log scale prior to imputation, future work should also consider

imputation methods that would assure the imputed (biochemical) values were always positive.

For categories, such as medications, where drugs could be prescribed intermittently rather than

attempting to impute data it may of interest to investigate if it would be more appropriate to

give a medication category three levels ‘taking drug’, ‘not taking drug’ and ‘unknown if taking

drug’. The final level ‘unknown if taking drug’ may allow for the model to take better account of

the missing data.

The original raw SKS dataset was far from clean as detailed in Appendix A.1. As a result

considerable time and effort was spent cleaning it before any analysis could commence. We

recommend, for example, recording all measured values of a given variable in the same units.

Furthermore many issues with poorly recorded or missing data could relatively easily be overcome

by incorporating user-friendly front-end software on the SKS Microsoft Access database. This

front-end software could be used by the clinician or nurse to enter the data into the database;

Figure 51 shows an illustrative example.
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Figure 51: Illustration of front-end software for entering data to database

Benefits of front-end software include:

• when appropriate, automatically update fields using data from previous follow-ups

(e.g. chronic comorbities, such as amputation) so that once it is recorded it is automatically

recorded at all future appointments unless the user takes action to remove it (e.g. if

amputation was erroneously recorded)

• appointment dates would be accurate and use a consistent format i.e. free from reverse

ordering year/month/day

• units of measurements would be consistent e.g. height in metres and weight in kilograms

• database table names and table column headings would by default use consistent naming

conventions

• the front-end software could automatically run checks to make sure certain types of data

were realistic e.g. dates of birth, DBP is less than SBP, remove erroneous characters

• where possible drop-down menus would contain lists (e.g. of comorbidities, medications) to

ensure consistent data and avoid erroneous character entries and misspellings

• free text boxes could be used for additional information e.g. less common medications or

rarer comorbidities

• the medications the patients were taking at the last follow-up could be displayed on the

screen, the accuracy of the patient self-reporting or a clinician reading other medical notes

could perhaps be improved if the medication changes since the last follow-up were more

obvious.

However such a front-end would not be without its drawbacks. The front-end would need

142



maintaining, for example it may need updating if the underlying structure of the database changes

e.g. a new field is added. Moreover if the front-end constrains the range of values too much this

could potentially make it impossible to record unusual/unexpected values. Such outliers could

represent vital information from both a medical and/or research perspective.

Front-end software can be added to any Microsoft Access Database, in the past the author of

this thesis has programmed such software using SQL embedded in Visual Basic. Such software

could not guarantee clean data but it could hope to reduce both missing values and recording

mistakes. Overall, front-end software could dramatically improve the data quality, reduce the

need to impute data, substantially decrease the quantity of intricate data cleaning code, and

crucially improve the statistical power of the models.

8.3 Statistical model

8.3.1 Strengths

We have shown that our models have good fits for all disease categories and where known that

our parameter estimates are clinically plausible. These claims are in part supported by both

the literature and expertise of the SKS clinicians. We used multiple bootstrap samples during

the model selection procedure to help guard against overfitting to our data. This also allowed

us to take into account parameter uncertainty when selecting the final model for each disease.

We were able to utilise the LME model which is a long-standing standard framework frequently

used for longitudinal analysis. This allowed us to use established software for fitting our models.

Unlike the Generalised Estimating Equation (GEE) framework, another standard approach for

estimating parameters in longitudinal linear regression models, the LME can accommodate

missing longitudinal data (e.g. missing annual follow-ups) and differing lengths of time in the

study; these characteristics are abundant in our data.

8.3.2 Limitations and weaknesses

For model selection we used a stepwise regression procedure with AIC as there were a large

number of potential explanatory variables and no underlying theory on which to base model

selection beyond some advice from the clinicians. To make selecting explanatory variables from

a large pool more robust to overfitting we repeated the stepwise regression procedure on 100

bootstrap samples for each disease model. We consider this an acceptable number of bootstrap

samples. However, although more bootstrap samples would obviously add greater statistical

weight to our parameter selection, we were constrained by computation time. The largest dataset

was for ‘single model all diseases’ which took ~100 hours to process with 100 bootstrap samples

on a single processor (Intel(R) Core(TM) i7 CPU @ 2.70GHz); we parallel processed by disease
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model. The final model for each disease was chosen using parameters which occurred in more

than 50% of all bootstrap samples but this percentage was an arbitrary choice. Note that the

lengthy computation time meant we only split our data into training and validation data as

cross-validation was impractical. If future work aims to check overfitting on a subset(s) of data it

should consider using cross-validation techniques.

Fitting the final selected model obtained using stepwise regression has a long history of being

criticised in the literature especially when parameter estimates, p-values and confidence intervals

are reported without adjusting them to account for the model building process e.g. see (89,90).

For example, Harrell (91), states that parameter estimates are biased away from zero, while

standard errors and p-values are biased toward zero. In practice there may be no reasonable way

of correcting for these problems. We acknowledge the stepwise regression procedure with AIC

is imperfect which is why we employed it within a bootstrapping scheme. A deep analysis of

uncertainties which accounts for the model building procedure is beyond the scope of this thesis,

hence our final selected models are reported without incorporating model selection uncertainty.

We also note that we report results without accounting for uncertainty induced by imputing

missing values.

Machine learning involves using algorithms which can learn from, and make predictions on, data.

In this context it is commonplace to fit a model to training data and assess the relevant aspects

of the fit using validation data; for example see (92) for a review relating to the evaluation of

regression models. In terms of a regression model, such as an LME, if predictions are the aim

then it is reasonable to fit the model to the training data and assess the quality of predictions

using validation data. Here our focus is on identifying the regression parameters pertinent to

each disease category. However we have a large pool of regression parameters each of which may,

or may not, be selected in each of our final disease models; as a result overfitting to our data is a

potential hazard. We would like our model to generalise to future SKS data and new datasets,

therefore in our context a legitimate concern is overfitting to the current SKS data. To this end

we undertook model selection on the training data and then determined if the final model selected

also fitted within reason to the validation data. In Section 6.2, we examined parameter estimates,

confidence intervals and residuals, given each disease’s final model for each dataset (training

and validation). This approach is open to criticism, the small sample size of the validation data,

as compared to the training data, will always result in wide confidence intervals on parameter

estimates. As a result a comparison of parameter estimate confidence intervals between these

two datasets is a weak test of overfitting. Although for LME models the maximum likelihood

estimates are consistent, the bias in a small sample is potentially large. As a consequence differing

estimates between training and validation datasets are a necessary but not sufficient condition for

concluding that overfitting has occurred. If one of our models had failed to fit to the validation

data then this would have alerted us to the possibility of a potential problem with that model fit

and would have prompted further investigations into the selected model. After selecting the model
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with our bootstrapping procedure we used training and validation data on the understanding

that it offers no more than a final weak test of overfitting. Future work should consider the use of

training and validation datasets in greater detail, if the decision is made to use them, then robust

evaluation procedures, such as those described by (92), should be implemented.

A further shortcoming of the use of training and validation datasets was that it would have

prevented us from creating a model for disease ‘obstruction’ as there was insufficient data; in

total (before splitting) there were 23 patients with a total of 49 follow-up records. It was beyond

the scope of this thesis to consider constructing a separate model for this small group of patients.

We acknowledge that the LME model assumes any measurement error in explanatory variables is

negligible compared with the within-group errors εij (see Equation 2), in essence we are treating

explanatory variable observations as exact; this is the usual assumption in the literature. Although

beyond the scope of this thesis, it would not be unreasonable in the future to consider the extent

to which this assumption is reasonable in clinical practice particularly in relation to biochemical

measurements and other biological measurements such as blood pressure. If this assumption

was shown to be suboptimal then such explanatory variables may be both time-dependent and

stochastic; for example see (65) Chapter 12.3 for a framework relating to longitudinal models

with stochastic covariates. A way forward would be with a joint modelling framework where each

such variable in our existing LME model is replaced by a stochastic process; this could be fitted

using a 2-stage process which first fits each explanatory variable model and secondly fits the

longitudinal LME model.

We observe a noteworthy quantity of autocorrelation in the residual plots of Figures 8-16. We

explored all relevant predefined correlation structures (compound symmetry (CS), first order

continuous-time autoregressive (CAR1) and a general correlation matrix with no additional

structure) available in the software we used (i.e. R-package nlme (66,67)) but none of these

substantially reduced the residual autocorrelation. In the following we refer to two of the models,

Model C and Model D, defined in Section 5.4 Step 4.; note that thesis results are based on Model

C. Both models have identical fixed effect terms along with intercept-and-slope random effect

terms. These models differ only in their correlation structure. In Model C the within-group

correlation structure Ci is not defined, whereas Model D has correlation Ci defined as the CAR1

model. We use as an exemplar renovascular disease to plot the autocorrelation for Models C and

D, see Figure 52. Model D with correlation structure CAR1 is barely an improvement on Model

C in which a correlation structure is not defined. Within the scope of this thesis we were unable

to better, or more fully, account for the correlation structure inherent in the data.

As previously described, when selecting the model in Section 5.4 we encountered problems

specifically relating to difficulties fitting multiple bootstrap samples when using a CAR1 model

(i.e. Model D). Future work should consider in far greater detail the within-group correlation

structure of the LME model in the context of the data. If the difficulties we encountered can be
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Figure 52: Residual autocorrelation for Models C and D

overcome then likelihood ratio tests, rather than pragmatic decisions, should be used to determine,

for each disease separately, the model which best describes the data. Different within-group

correlation structures may be optimal for different diseases.

In Section 4.2 we considered the time derivative of the LME model. By focusing on the fitted

model we were able to ignore the stochastic nature of the LME model given in Equation 2. It

would be of future interest to consider in much greater detail the time derivative of the LME model

prior to fitting. This would involve taking into account the stochastic nature of the model which

is encoded in the within-group error term; this term may also include an explicit within-group

correlation structure. If the time derivative of the LME model can be fitted this may better

address the issue of understanding the progression of kidney disease on an individual level and

circumvent the population level counterintuitive results discussed in Section 7.5.

The residual plots in Figures 8-16 show that our LME models do not account well for all patients

as there are some outliers. This does not cause us concern in relation to determining fixed effects

which is our main focus but it would be problematic if we were interested in predictions; we could

not make reliable predictions for outliers. Our models assume that random effects and within-

group errors follow multivariate normal distributions. However if we replaced these distributions

by their corresponding multivariate t-distributions with identical means and variance-covariance

matrices then the random effects and within-group errors should be more robust to outliers;

heavier/longer tails will better accommodate some, if not all, outliers. If we were interested in

predictions this would almost certainly result in more robust inference; e.g. see (93) Chapter 9

for details.

8.3.3 Recommendations

The correlation structure chosen for an LME model will directly affect any predictions made using

the model. If in the future our LME models were to be applied to patient-specific predictions of

kidney disease progression then it would be necessary to determine an appropriate correlation

structure for each LME model presented in this thesis; it may be that different diseases require

different correlation structures.
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Sometimes the biochemical markers measured at annual follow-up appointments are also measured

between these appointments when the patient attends a clinic or is admitted into hospital. At

present we are not including these SKS data in our analysis. It may be of interest to investigate

ways of utilising this additional information in our models, especially when it is possible to confirm

that the measurements did not relate to an acute episode of illness, such as AKI. One way to

utilise this extra data would be to use it to aid the imputation of biochemical measurements at

follow-up appointments.

In instances where the model could maintain sufficient statistical power it would be of interest to

sub-divide the heterogeneous disease categories used in this thesis. In particular the clinicians

advised that it would be of future interest to sub-divide the heterogeneous disease category

‘other’ and also sub-divide glomerulonephritis into about 4 sub-categories. Likewise some of the

comorbidity categories could be sub-divided, notably the cardiovascular category is particularly

heterogeneous with a mix of chronic and acute conditions. Similarly it may prove informative to

include more medication categories; this is a very rich data source within the SKS dataset which

in the future could be exploited more fully.

8.4 Implications regarding disease progression

8.4.1 Mental Health

It may be of interest to consider recording each patient’s mental heath state despite, to the

author’s knowledge, a directional causal link from mental to physical health not being clearly

identified in the literature. Such a link may be difficult or impossible to identify, given a person’s

mental and physical health may interact with each other in very complex ways; future scientific

advances can hope to precisely identify the biological mechanisms. For example (94) investigates

how past physical/mental health influences current physical/mental health (a clear directional

link was not found) and (95) discusses how negative emotions could be responsible for diseases

whose onset and course may be influenced by the immune system. Scott et. al. (96) uses data

from 40,000 adults from 17 countries to assess the relationship of depression and/or anxiety with

chronic physical conditions. They conclude that their work points towards: a) mental health

disorders leading to physical conditions; or b) the same factors being conducive to both multiple

mental health disorders and physical conditions. Poor mental health, e.g. depression or anxiety,

may contribute towards a patient making poor lifestyle choices, such as insufficient exercise, poor

diet, drinking too much alcohol, etc. In terms of CKD these choices could in turn contribute to

an increase in the patient’s risk of CKD and/or rapid kidney disease progression. For instance

(97) studies how anxiety and depression are associated with unhealthy lifestyle in patients at risk

of cardiovascular disease. To the author’s knowledge there is no equivalent study for CKD.
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8.4.2 Socio-economic factors

In our models we did not find a strong connection with socio-economic risk factors, although these

are likely to influence patient lifestyle choices, therefore perhaps further consideration could be

given to these factors as alluded to in the previous section. For example perhaps for each patient

it may be of interest to record their Index of Multiple Deprivation (IMD), lifetime earnings,

education level, level of engagement with primary care health services, and so on.

8.4.3 Disease progression with respect to baseline eGFR

In Section 7.6 we reported our finding that on average PKD patients with lowest baseline eGFR

also had the fastest rates of decline in kidney function. Ideally these patients need to be referred

from primary to secondary care much sooner so as to explore treatment (medication) options

which could slow their rapid kidney function decline to end point (RRT or death).

Our observation of steeper eGFR decline correlating with lower baseline values relates to most

disease categories which we studied. On a population wide level, as shown in Figure 50, this

relation does not apply to every patient. Although it does seem reasonable to expect more rapid

decline to be associated with low baseline eGFR, this correlation would appear to be in conflict

with the findings of Hoefield (85). Given Hoefield and ourselves both used SKS datasets, future

work could compare the differences between our respective models and data. For example such

analysis should include: a) evaluation of differences in data cleaning procedure; b) the effect of

the updates carried out by the SKS clinicians in 2019, which were applied to our dataset, that

related to confirming or reassigning the primary disease category of each patient; and c) the

consequences of our study using an extra four years of data.

8.5 Future work

8.5.1 Joint longitudinal and survival modelling

A natural extension of the work presented in this thesis would be to give consideration to

survival analysis which accounts for time until a pre-specified event occurs, i.e. time-to-event;

such methodology is widely used, for example see textbook by Hosmer (98) and reviews (99,100).

In survival analysis the ‘risk set’ contains patients at risk of experiencing an event, this consists

of patients who have been followed-up until a certain time but have not yet experienced the

event of interest e.g. death. Survival analysis accounts for the fact that the survival time is

censored for patients who do not experience the outcome of interest within the observation period,

furthermore it is unknown when, or whether, such patients will experience the event in the future.

Consequently censored time-to-events are a type of incomplete data, specifically they occur
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when the patient: a) is lost to follow-up; b) experiences another event which makes follow-up

impossible or meaningless; c) has not experienced the event of interest within the observation

period. Censoring is assumed to be independent and randomly occurring, that is at a given time

point patients who are censored are representative of those still at risk; e.g. it is assumed to be a

random occurrence if a patient is lost to follow-up due to migrating a significant distance and

that such a patient will be at a similar risk of experiencing the event of interest as one who is

still in the study.

In the SKS data the time-to-event would be time from baseline to RRT or death. There is

significant censoring in this data given 99 patients were recorded as lost to follow-up and a further

699 patients had a gap of 2.5 years or more since their most recent follow-up appointment. Our

longitudinal models take no account of these events so they overlook this potentially informative

source of censored information. Survival analysis provides an appropriate framework to account

for time-to-event data.

Given the SKS data we propose that survival analysis is undertaken with a variant of the Cox

model (101,102) that allows for time-varying explanatory variables e.g. see discussions (103),

(104), and Hosmer book (98) Chapter 7.3. We note that Asar (105) demonstrates for kidney

data, similar to ours, that joint modelling with a Cox proportional hazard regression model and a

longitudinal LME model is better than performing separate longitudinal and survival analyses.

This is because the joint model makes optimal use of all available data and correctly handles

irregularly measured time-varying explanatory variables, thus the joint model achieves unbiased

estimates of model parameters (105). Consequently future work could investigate the use of this

joint modelling framework to develop, for each kidney disease category, an understanding of how

the typical pattern of disease progression is influenced by time-to-event data along with baseline

and time-varying explanatory variables. In addition it may also be informative to investigate

constructing a joint model that is specifically designed to investigate how treatment effects

influence time-to-event outcomes.

In the context of CKD progression it would also be interesting to study the effects of competing

risks. These occur when patients could potentially experience one or more events or outcomes

which ‘compete’ with the outcome of interest. The competing risk either modifies the chance

that the event of interest occurs, or masks/hinders its observation. Of particular clinical interest

in our case are the competing risks of cardiovascular disease, initiation of RRT and/or mortality.

However these competing risks are asymmetric in that cardiovascular disease and RRT would

precede death, but death automatically censors cardiovascular disease and initiation of RRT.

Likewise in the SKS study initiation of RRT automatically censors cardiovascular disease. See

Lau (106) for a general discussion of competing risk methods, Noordzij (107) for a discussion

of competing risks methods for survival analysis applied to kidney disease and (108) for details

regarding joint modelling of longitudinal and survival data in the presence of competing risks.
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It would be of interest to consider extending our LME models for longitudinal data to latent

class linear mixed models which additionally account for unobserved heterogeneity within a

population (patients in a disease category). This heterogeneity is modelled by classifying ‘similar’

individuals into unobserved sub-groups (latent classes) each of which is less heterogeneous

(i.e. more homogeneous). In the longitudinal case each latent class is characterised by its own

mean trajectory; e.g. see overview by Berlin in the two part article (109) and (110). Furthermore,

it could also be informative to consider a joint modelling framework of a latent class mixed

model for longitudinal data with a survival model for time-to-event data. In such a joint model

individuals would be characterised by a class-specific linear mixed model (with fixed and random

effects) for their longitudinal data along with a class-specific survival model for their time-to-event

data. Details of this type of joint modelling where time-to-event data is accounted for using

proportional hazard models are given by Proust-Lima (111) and implemented in the R-package

LCMM (112). At present we do not know if there are any informative latent classes within our

disease models but it would be worth exploring this avenue. For example if a clear indication

of latent classes was found in the glomerulonephritis disease category this could suggest that

this category, which we know to be heterogeneous, should be split by the clinicians into several

sub-disease categories; these sub-categories could then be modelled separately. Alternatively, if

we found that a well-defined homogeneous disease category, e.g. PKD, appeared to have two or

more latent sub-classes we would consider, in conjunction with the SKS clinicians, the possibility

that there were one or more key explanatory variables missing from this disease model.

8.5.2 Personalised healthcare

An area of increasing interest throughout the health sector, including the NHS, is personalised

healthcare (113), that is the individualisation of treatment by identifying patients who are most

likely to respond positively to a particular treatment regime. This is beneficial to patients as

they receive the most appropriate treatment plan and has the added advantage that healthcare

providers do not waste funding on treatments that deliver insignificant benefit, no benefit or cause

harm to the patient; for example see discussions (114–116). The models in this thesis have the

potential to contribute towards personalised healthcare. For example we have shown that ACE-

inhibitors and ARBs are particularly beneficial to diabetic nephropathy and glomerulonephritis

patients but on average are not beneficial to the remainder of the cohort; the clinicians advise us

that they routinely prescribe these drugs across the entire cohort regardless of primary kidney

disease. Future work could hope to more accurately identify each patient that would benefit from

ACE-inhibitors and/or ARBs.

In the future our models could be used to pave the way towards personalised real-time predictions

of kidney disease progression, assuming the following issues can be adequately resolved: outliers;

LME model within-group correlation structure; and cleaner recording of patient data in the SKS
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database. This thesis uses longitudinal LME models to explore population effects but such models

have also been considered for personalised predictions; for example a longitudinal LME model

for personalised real-time predictions of primary care CKD patients which uses a few covariates

(e.g. baseline age, comorbidity indicators and sex) is proposed by Diggle (117).

However, if personalised prediction is a future aim, it is commonly advised in the literature that

joint modelling of longitudinal and time-to-event data improves the predictive capability and so

leads to more informative inferences; e.g. see review by Hickey (118) and also Brankovic (119)

who focuses on joint models for personalised prognosis in CKD patients. In this context for each

kidney disease category we would envisage a joint model consisting of a Cox proportional hazard

model and a longitudinal LME model of the kind explored in this thesis. However for personalised

prediction models to be of use in clinical practice they will need to be straightforward to interpret

by the clinician, the underlying data will need to be sufficiently clean and up-to-date, and the

models will need to undergo rigorous validation (120).

We envisage personalised predictions could, using a web page linked to the SKS data, display

a graph of the predicted rate of decline of kidney function for a given patient at the time of

their follow-up appointment; illustration given in Figure 53. Furthermore an algorithm could

be embedded in the web page to predict which treatments would be most likely be beneficial to

the patient conditional on the population average for their given primary kidney disease type;

e.g. how would the patient’s trajectory change if they started taking a β-blocker. Provided the

web page was designed to be user-friendly there is no reason why the clinician, and perhaps an

interested patient, could not look at the predicted trajectories during the follow-up appointment.

Such a system would not replace the expertise of the clinician but it could contribute towards

better patient outcomes.
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Figure 53: Illustration of web app for predicting personalised kidney disease progression

8.5.3 Treatment specific investigations

From a patient care perspective it would be useful to build further models which could give more

insight into which treatments slow progression. Possible lines of inquiry are:

• A more detailed investigations with respect to our ACE-inhibitors and/or ARBs medication

category; for example we could split this category in two subcategories. The SKS clinicians

inform us that clinical practice assumes ACE inhibitors and ARBs will slow progression in

all primary kidney disease categories. This assumption is based on two clinical studies (121)

and (122) which showed improvements in renal patients with type 2 diabetes; in clinical

practice it is assumed that this applies to all renal patients not just those with type 2

diabetes. However we found that ACE-inhibitors and ARBs only strongly affect progression

in diabetic nephropathy. It may be that a clinical trial is needed to confirm what effect if

any these drugs have on progression in other diseases.

• The SKS clinicians inform us that there is particular clinical interest is the area of anaemia

management. Anaemia contributes to both poor quality of life and increases the risk of

adverse outcomes, in particular cardiovascular events and death. Treatment of anaemia

improves quality of life. However there is not sufficient evidence to confirm that it slows the

progression of kidney disease or improves cardiovascular outcomes; for example see review

(123). More detailed modelling of the SKS data could perhaps clarify this.

• It is known that EPO treatment is associated with increased risk of CV events, e.g. see

review article (124). It would be of interest to determine if alternative anaemia treatments

152



such as intravenous iron would reduce the risk of CV events. Again more detailed modelling

of the SKS data may shed some light on this.

• During early 2016 the drug Tolvaptan became available on the NHS, it is used to slow the

growth of cysts in PKD patients; for example see review (125). It would therefore be of

future interest, using the SKS data, to investigate the effects of this drug on the progression

of PKD. We anticipate PKD patients treated with Tolvaptan will have slower kidney disease

progression.

8.5.4 Further work relating to counterintuitive results

In Section 7.3 we reported several clinically counterintuitive results. After which, in Section 7.5

we took a deeper look at these results focusing on the interaction term of PTH with follow-up

time. We showed there was not a clinically unexpected artefact in the SKS data relating to

the slope of eGFR with respect to PTH, e.g. see Figures 48 and 49. This meant that clinical

intuition matched the SKS data but not the LME model results in Section 7.3. We concluded

that the counterintuitive result relating to the interaction term for PTH with follow-up time was

a consequence of the way our LME model summarised the data at population level.

Future work should take a deeper look at each clinically counterintuitive result from our LME

models. It should first determine if the data at individual level matches clinical intuition. If this

is the case, then future work should consider alternatives to the LME models presented in this

thesis. One option may be to construct a regression model which makes use of the average slope

of eGFR (as it is computed in Section 4.2).
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9 Conclusion

To study the key risk factors in progression of kidney disease we used data collected from over

3000 secondary care non-dialysis patients with CKD stages 3 to 5; these patients were followed-up

annually until the first occurrence of one of the following end points: dialysis, kidney transplant

or death. We accounted for a wide range of longitudinally recorded risk factors including

comorbidities, medications, lifestyle choices, socio-demographic information and biochemical

marker measurements. The role of these risk factors was considered both, between, and within,

eight primary kidney disease categories including: diabetic nephropathy, glomerulonephritis,

hypertensive kidney disease, pyelonephritis, renovascular disease and polycystic kidney disease.

To identify key risk factors at population level we used standard longitudinal modelling techniques,

in particular a linear mixed effects model with intercept and slope random effects. We robustly

estimated the population level (fixed) effects in all our disease models so were able to identify key

risk factors for the progression of kidney disease.

Key risk factors for lower than average levels of eGFR are biochemical markers and medications,

conversely lifestyle and physical attributes are less important. More rapid progression of kidney

disease is associated with biochemical markers, in contrast medications and comorbidities are not

key in rapid progression. Moreover we find that PKD has the most rapid progression out of all

our categories with a loss in eGFR of 3.5 mL/min/1.73m2/year whereas the remainder have a

loose around 1 mL/min/1.73m2/year.

We suggest future work should include efforts to more cleanly record data as this could substantially

improve statistical power of the statistical models. We also recommend future work should include

more in depth studies of each disease category including splitting them, where appropriate, into

subcategories; this would be particularly pertinent to glomerulonephritis as is contains several

distinct disease types. Additionally we propose consideration should be given to using joint

modelling of longitudinal and time-to-event data. Such models could be used to: study the effects

of ‘time-to-event’ censoring; investigate treatment effects; and potentially make personalised

forecasts of kidney disease progression.

We hope that this thesis research may contribute towards improvements in patient care and

possibly a reduction in the burden of disease at both patient and national level.
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Appendix

A.1 Data cleaning and preparation

We prepared and cleaned the SKS data as follows:

• Fixed common mis-spellings and removed erroneous characters in fields.

• All measurements were converted so they had consistent units

• Matched follow-up appointments with biochemical records by finding closest biochemical

date to follow-up date. Generally the mismatch between dates was less than a few days.

When date difference was larger than six weeks we assumed there was no match.

• At each consultation two measurements of systolic and diastolic were recorded. We sub-

tracted mean systolic from diastolic blood pressure to compute mean pulse pressure.

• After converting units to kilograms and metres BMI was computed as weight/(height)2.

• eGFR was calculated using Equation 1 after ensuring consistent units.

• The urine protein rate (mg/24hr) and PCR (g/mol) measurements were combined into a

single quantity ‘proteinuria’ (mg/24hr); note for example PCR 50mg/mmol=50g/mol is

equivalent to urinary protein rate 0.5g/24hr=500mg/24hr.

• HbA1c measured in %Hb was converted to mmol/mol, where HbA1c(mmol/mol) = 10.929

× ( HbA1c(%Hb) - 2.15 ).

• Units of alcohol per week were summarised into three categories: less than 1, 1 to 14 and

over 14. We defined these categories to be in-line with UK Chief Medical Officers’ guidelines

issued during 2016 (126).

• Smoking status was defined as: ex-smoker, active smoker, non-smoker.

• Ethnicity was defined as follows: white, Asian, black, Chinese, other. Of these categories

the last four contain small numbers of patients so they were grouped into a single category

labelled ‘non-white’.

• The primary occupation of patients, in some cases prior to retirement, was recorded by

SKS using the 8 classes defined by the Office of National Statistics (ONS) under their

socio-economic classification (127). To increase our statistical power we reduced the number

of occupation classes using the ONS guidelines in Section 7 Classes and collapses of (127).

The categories we used are:

– Higher managerial, administrative and professional occupations (abbreviation Manage-

rialProfessional)

– Intermediate occupations (abbreviation Intermediate)

– Routine and manual occupations (abbreviation RoutineManual)

– Never worked and long-term unemployed (abbreviation NeverWorkedUnemployed)

• AKI episodes were identified as at least 3 days of consecutive creatinine measurements; this

implied the patient had been admitted to hospital.
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A.1.1 End of study markers

If a patient withdraw from the study, and the reason was recorded, these reasons were defined as

either lost-to-follow-up, death or RRT. In this thesis we added two additional categories; presumed

lost-to-follow-up and ongoing to capture patients with no recorded reason for leaving. For these

patients, if their last follow-up date was more than than 2 years 6 months before 27 February

2017 (most recent date in data), then we recorded them as presumed lost-to-follow-up, otherwise

we assumed they were still in the study so defined them as ongoing. This cut-off was set to over

2.5 years because some of the cohort had follow-ups which were two years apart and moreover

follow-ups were not separated by precisely one or two calendar years. The date of departure from

the study is usually only known/recorded for patients who die or undergo RRT.

Note that if follow-ups are two years apart then their annual follow-up index skips a year. For

example, if a patient is seen at follow-up ‘1’ (first follow-up) and then is next seen two years later

their follow-up index jumps to ‘3’, i.e. ‘2’ is skipped.

A.1.2 Primary kidney disease categories

Kidney diseases were grouped into 9 primary disease categories:

• diabetic nephropathy: single disease - no subgroups.

• glomerulonephritis: crescentic and focal segmental glomerulonephritis, Goodpasture’s syn-

drome, Henoch-Schonlein purpura, IgA nephropathy, Lupus erythematosus, membranopro-

liferative, membranous nephropathy, Wegener’s Granulomatosis, and renal vascular disease

due to polyarteritis.

• hypertensive kidney disease: renal vascular disease due to hypertension or due to malignant

hypertension, and ischemic renal disease / cholesterol embolism (standard diagnostic (EDTA)

codes 71,72 and 75).

• obstruction: obstructive uropathy - no subgroups.

• other : kidney disease which does not come under any of the other 8 categories.

• polycystic kidney disease: single disease - no subgroups.

• pyelonephritis, due to obstructive uropathy, urolithiasis, vesico-ureteric reflux without

obstruction, associated with neurogenic bladder and other cause.

• renovascular, due to polyarteritis and other reason.

• unknown: type of renal disease not diagnosed.

A very small minority of patients had more than one primary kidney disease recorded. Typically

early during their time in the study they were assigned a diagnosis of ‘unknown’ then later given

a diagnosis from one of the other categories. In such cases we assigned their primary kidney

disease as the diagnosed disease hence in this thesis each patient only has one primary kidney

disease type.
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A.1.3 Comorbidity categories

Comorbidities were collated into 5 groups as follows:

• cardivascular : amputation, angina, cardiac arrest, cerebrovascular disease, coronary inter-

vention, heart failure, myocardial infarction, peripheral vascular disease

• gastrointestinal: peptic ulcer disease, liver disease

• cancer : any type of cancer, not necessarily kidney cancer, which may either be ‘current’ or

‘previous’

• diabetes: type 1 and 2

• other : parathyroidectomy, dementia, chronic obstructive pulmonary disease, congenital

abnormalities

A.1.4 Medication categories

Drugs were categorised as follows:

• ACE inhibitor : captopril, cilazapril, enalapril, fosinopril, imidapril, lisinopril, perindopril,

quinapril, ramipril, trandolapril

• ARB: candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, valsartan

• alpha-blocker : alfuzosin, doxazosin, indoramin, mirtazapine, prazosin, tamsulosin, terazosin,

trazodone, yohimbine

• beta-blocker : acebutalol, atenolol, betaxolol, bisoprolol, celiprolol, metoprolol, nebivolol,

propranolol, sotalol, timolol

• combined alpha- and beta-blocker : carvedilol, labetalol

• calcium channel blocker : amlodipine, diltiazem, coracten, felodipine, lacidipine, lercanidipine,

nicardipine, nifedipine, securon, verapamil

• diuretic: amiloride, bendroflumethiazide, bendrofluazide, bumetanide, chlorthalidone,

chlorothiazide, co-amilozide, co-amilofruse, eplerenone, frusemide, hydrochlorothiazide,

indapamide, metolazone, spironolactone, thiazide, torasemide, xipamide

• EPO: treatment using EPO was originally recorded in one of three groups (epoetin alpha,

beta or darbepoetin), here we group them in a single category.

• iron (taken orally): ferrous sulphate, ferrous fumarate, iron, ferrous gluconate, iron sulphate,

ferrograd, fersamal

• vitamin D: alfacalcidol, cholecalciferol, vitamin D

The SKS data records each patient as either taking or not taking parenteral iron. The drugs

administered are not recorded.
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A.2 Trellis plots of eGFR against follow-up for individual patients

Each figure contains Trellis plots based on the first 24 patients in the SKS data with a given

primary disease. The points on each plot are log(eGFR) at each follow-up year for which data

were recorded; a maximum of 10 years are plotted. Superimposed on each plot is a straight line

derived from a linear model for the given patient where the outcome variable is log(eGFR) and

the covariate is follow-up year; this model uses eGFR values from all follow-up years hence is not

truncated at 10 years.
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Figure 54: Progression of disease for 24 patients with diabetic nephropathy
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Figure 55: Progression of disease for 24 patients with glomerulonephritis
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Figure 56: Progression of disease for 24 patients with HKD
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Figure 57: Progression of disease for 24 patients with obstruction
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Figure 58: Progression of disease for 24 patients with disease other
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Figure 59: Progression of disease for 24 patients with polycystic kidney disease
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Figure 60: Progression of disease for 24 patients with pyelonephritis

174



StudyID: 66 StudyID: 78 StudyID: 86 StudyID: 87 StudyID: 91 StudyID: 98

StudyID: 216 StudyID: 221 StudyID: 30 StudyID: 4 StudyID: 53 StudyID: 64

StudyID: 156 StudyID: 180 StudyID: 187 StudyID: 188 StudyID: 210 StudyID: 211

StudyID: 103 StudyID: 114 StudyID: 116 StudyID: 13 StudyID: 14 StudyID: 145

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

follow−up year

lo
g(

eG
F

R
)

Figure 61: Progression of disease for 24 patients with renovascular disease
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Figure 62: Progression of disease for 24 patients with disease unknown
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A.3 Data imputation

We imputed missing values, for each patient, at follow-up appointments, as follows:

• Continuous variables: we used the ‘Kalman smoothing on a structural model’ method to

estimate missing values for: BMI, DBP, number of antihypertensives, SBP. Additionally

using this method we also imputed the following biochemical markers: CC, CRP, Hb,

HbA1c, PO, PTH, Pu, CHO, CO2. This imputation was performed with the na.kalman

function from R-package imputeTS (61). If the timeseries had less than 3 measured values

then imputation with the function na.kalman was not possible so in these instances we

used the spline version of na.interpolation from R-package imputeTS. Before imputation we

transformed all the aforementioned continuous variables using the natural logarithm, then

after imputation transformed back to the original scale using the exponential function; this

ensures all imputed values are positive.

• Catagoical variables: we imputed missing values using Last Observation Carried For-

ward/Backward; when possible Forward was given priority over Backward. This method

was applied to comorbidities and weekly alcohol intake. At a given follow-up, if no medi-

cations were recorded then this method was used to impute values across all medication

categories, otherwise all drugs were assumed to have been recorded leading to the med-

ications’ categories being populated as appropriate. Note that EPO treatment is never

imputed. We used the na.locf function from R-package imputeTS.

A.4 Dependence between all model variables

A.4.1 Correlation

To assess the correlation between all pairs of explanatory variables we computed a single correlation

matrix. This matrix is split into 9 similarly sized sub-matrices which are labelled by (row, column);

for example sub-matrix (1,1) is the top left portion of the correlation matrix, similarly sub-matrix

(1,2) is the top middle portion and so on. Due to symmetry we only tabulated the upper triangular

matrix elements. Tables 31 to 36 show the sub-matrices; correlation values greater than 0.5 are

in boldface.
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Table 31: Correlation between variables: sub-matrix(1,1)
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Table 32: Correlation between variables: sub-matrix(1,2)
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Table 33: Correlation between variables: sub-matrix(1,3)
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Table 34: Correlation between variables: sub-matrix(2,2)
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unknown 1.0 -0.1 0.0 0 0 0.0 -0.1 0.0 0 0.0 -0.1 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0
ethnicitynonWhite 1.0 0.0 0 0 0.0 0.0 -0.1 0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 0.0
familyHistoryIHD0yes 1.0 0 0 0.0 0.0 0.0 0 0.0 0.0 0.1 -0.1 0.0 0.0 0.0 0.1 0.0
followup 1 1 0.0 -0.1 0.0 -0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
followupTime 1 0.0 -0.1 0.0 -0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Hb 1.0 -0.1 0.0 0.4 0.0 -0.1 0.0 0.0 -0.2 -0.3 -0.1 -0.2 -0.2
HbA1c 1.0 0.1 -0.1 0.1 0.1 0.0 0.0 0.2 0.0 0.1 0.1 0.0
livingStatus0alone 1.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
logeGFR 1 0.1 -0.1 0.0 -0.1 -0.2 -0.3 -0.1 -0.1 -0.2
med.ACE.ARByes 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
med.AlphaBlockersyes 1.0 0.0 0.2 0.2 0.1 0.1 0.1 0.0
med.BetaBlockersyes 1.0 0.1 0.1 -0.1 0.0 0.0 0.0
med.CCBsyes 1.0 0.1 0.1 0.1 0.0 0.0
med.Diureticsyes 1.0 0.2 0.1 0.1 0.1
med.Epoyes 1.0 0.1 0.1 0.3
med.Ironyes 1.0 0.0 0.0
med.Otheryes 1.0 0.0
med.ParenteralIronyes 1.0
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Table 35: Correlation between variables: sub-matrix(2,3)
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pyelonephritis 0.0 0.0 -0.1 0.0 -0.1 -0.1 0.1 -0.1 -0.1 0.0 0.0 -0.1 0.1 0.0 0.0 0.1 -0.1 -0.1 0.0
renovascular 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0 0.1 0.0 -0.1 0 -0.1 0.1 0.1 0.0 0.0 -0.1 0.0
unknown 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0 0.0 0.0 -0.1 0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
ethnicitynonWhite 0.0 0.0 0.0 0.0 0.1 0.0 0.1 -0.1 -0.1 0.1 0.0 -0.1 0.0 0.0 0.0 0.1 0.0 -0.1 0.0
familyHistoryIHD0yes 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0 0.0 0.0 0.0 0 0.1 0.0 0.0 0.0 0.0 -0.1 0.0
followup 0.1 0.1 0.0 0.2 0.0 0.0 0.0 0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1
followupTime 0.1 0.1 0.0 0.2 0.0 0.0 0.0 0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1
Hb -0.2 -0.1 -0.1 -0.1 0.0 0.0 0.0 -0.4 -0.2 -0.2 -0.1 0 -0.2 0.0 0.0 0.1 0.1 0.0 0.1
HbA1c 0.1 0.0 0.1 0.0 0.0 -0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 -0.1 -0.1
livingStatus0alone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.2 0.0 -0.1 0.0 0.0 -0.1 0.0
logeGFR -0.4 -0.1 -0.2 -0.2 0.0 0.1 0.0 -0.5 -0.2 -0.5 -0.2 -0.1 -0.1 0.0 -0.1 0.1 0.3 0.0 0.1
med.ACE.ARByes -0.1 -0.1 0.3 0.0 0.0 0.0 0.1 0 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1
med.AlphaBlockersyes 0.1 0.0 0.4 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 -0.1 -0.1 0.1 -0.1 0.0 0.1 0.0
med.BetaBlockersyes 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0 0.1 0.1 0.0 0 -0.1 0.0 0.0 -0.1 0.0 0.0 0.1
med.CCBsyes 0.0 -0.1 0.5 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 -0.1 0.0 0.1 -0.1 -0.1 0.1 0.0
med.Diureticsyes 0.1 0.0 0.5 0.1 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.1 0.1 -0.1 0.1 -0.1 0.1 0.0 -0.1
med.Epoyes 0.2 0.0 0.1 0.2 0.1 0.0 0.0 0.2 0.0 0.2 0.1 0 0.1 -0.1 0.1 -0.1 -0.1 0.0 0.0
med.Ironyes 0.1 0.0 0.1 0.0 0.0 -0.1 0.0 0.1 0.1 0.1 0.0 0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0
med.Otheryes 0.1 0.0 0.1 0.1 0.0 0.0 -0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 -0.1 0.0 0.0 0.0
med.ParenteralIronyes 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0 0.1 0.0 0.0 0.0 -0.1 0.0 0.0
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Table 36: Correlation between variables: sub-matrix(3,3)
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med.VitaminDyes 1 0.1 0.0 0.1 0.0 -0.1 0.0 0.2 0.1 0.3 0.0 0 0.1 0.0 0.0 -0.1 -0.1 0.0 -0.1
numberAKIepisodes 1.0 -0.1 0.0 0.0 0.0 0.0 0 0.0 0.1 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1
numberAntihypertensives 1.0 0.1 0.1 -0.1 0.0 0.1 0.2 0.1 0.1 0.1 -0.1 -0.1 0.1 -0.2 0.0 0.1 0.1
numberClinicVisits 1.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0
occupation0ManagerialProfessional 1.0 -0.3 -0.1 0 0.0 0.0 0.0 0 -0.2 -0.1 0.1 -0.1 0.0 0.1 0.2
occupation0Intermediate 1.0 -0.1 -0.1 -0.1 -0.1 0.0 -0.1 0.1 0.0 -0.1 0.0 0.0 0.1 0.0
occupation0NeverWorkedUnemployed 1.0 0 0.0 0.0 0.0 0 0.1 0.1 -0.1 0.0 0.0 -0.1 0.0
PO 1 0.1 0.4 0.2 0 0.1 0.1 0.0 0.0 -0.2 0.0 0.0
PP 1.0 0.1 0.2 0.9 0.0 0.0 0.1 0.0 0.0 -0.1 0.0
PTH 1.0 0.2 0.1 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0
Pu 1.0 0.2 0.0 0.1 -0.1 0.2 -0.1 0.0 -0.1
SBP 1 0.0 0.0 0.0 0.1 0.0 -0.1 0.0
sexfemale 1.0 0.0 -0.2 0.2 0.0 -0.1 -0.2
smokingStatus0active 1.0 -0.4 0.1 -0.1 -0.1 0.0
smokingStatus0ex-smoker 1.0 -0.2 0.0 0.0 0.1
totalCholesterol 1.0 0.0 -0.1 0.0
totalCO2 1.0 0.0 0.0
weeklyAlcohol01 to 14 1.0 -0.3
weeklyAlcohol0over 14 1.0
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A.4.2 Variance inflation factor

We computed the VIF with the vifstep function from R-package usdm (69). As described in
Section 5.1 the function uses a stepwise procedure to exclude highly correlated variables with a
VIF above a given threshold. Here we do not include eGFR or Cr.

With a VIF threshold of 5 the method excluded: disease other, SBP, followupTime. With these
variables excluded, the VIF values for the remaining variables are given in Table 37.

Reducing the threshold to 2.5 results in the method excluding: disease other, SBP, followupTime,
numberAntihypertensives, disease diabetic nephropathy. With these variables excluded, the VIF
values for the remaining variables are given in Table 38.

Table 37: Variance inflation factor using all data: threshold 5

Variables VIF

numberAntihypertensives 4.7
disease diabetic nephropathy 3.5
comorbidityDiabetestype2 2.1
med.Diureticsyes 2.1
disease glomerulonephritis 2.0
age0 2.0
disease HKD 1.9
comorbidityDiabetestype1 1.9
disease renovascular disease 1.8
comorbidityCVover 1 1.8
HbA1c 1.8
med.BetaBlockersyes 1.7
med.CCBsyes 1.7
disease unknown 1.6
med.ACE.ARByes 1.6
med.AlphaBlockersyes 1.6
disease pyelonephritis 1.5
Hb 1.5
PO 1.5
sexfemale 1.5
smokingStatus0active 1.5
smokingStatus0ex-smoker 1.5
disease polycystic kidney disease 1.4
comorbidityCV1 1.4
PTH 1.4
weeklyAlcohol0over 14 1.4
bodyMassIndex 1.3
med.Epoyes 1.3
occupation0ManagerialProfessional 1.3
occupation0Intermediate 1.3
PP 1.3
Pu 1.3
totalCholesterol 1.3
weeklyAlcohol01 to 14 1.3
followup 1.2
CC 1.2
comorbidityGastrointestinalyes 1.2
DBP 1.2
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Table 37: Variance inflation factor using all data: threshold 5 (continued)

Variables VIF

ethnicitynonWhite 1.2
med.VitaminDyes 1.2
totalCO2 1.2
disease obstruction 1.1
comorbidityCancercurrent 1.1
comorbidityCancerprevious 1.1
comorbidityOtheryes 1.1
CRP 1.1
familyHistoryIHD0yes 1.1
livingStatus0alone 1.1
med.Ironyes 1.1
med.Otheryes 1.1
med.ParenteralIronyes 1.1
numberAKIepisodes 1.1
numberClinicVisits 1.1
occupation0NeverWorkedUnemployed 1.1
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Table 38: Variance inflation factor using all data: threshold 2.5

Variables VIF

age0 2.0
comorbidityDiabetestype2 2.0
comorbidityCVover 1 1.8
comorbidityDiabetestype1 1.8
HbA1c 1.8
disease glomerulonephritis 1.6
Hb 1.5
PO 1.5
sexfemale 1.5
smokingStatus0active 1.5
smokingStatus0ex-smoker 1.5
disease HKD 1.4
disease renovascular disease 1.4
comorbidityCV1 1.4
med.Diureticsyes 1.4
PTH 1.4
weeklyAlcohol0over 14 1.4
disease polycystic kidney disease 1.3
disease pyelonephritis 1.3
disease unknown 1.3
bodyMassIndex 1.3
med.Epoyes 1.3
occupation0ManagerialProfessional 1.3
occupation0Intermediate 1.3
PP 1.3
Pu 1.3
totalCholesterol 1.3
weeklyAlcohol01 to 14 1.3
followup 1.2
CC 1.2
comorbidityGastrointestinalyes 1.2
DBP 1.2
ethnicitynonWhite 1.2
med.ACE.ARByes 1.2
med.AlphaBlockersyes 1.2
med.BetaBlockersyes 1.2
med.CCBsyes 1.2
med.VitaminDyes 1.2
totalCO2 1.2
disease obstruction 1.1
comorbidityCancercurrent 1.1
comorbidityCancerprevious 1.1
comorbidityOtheryes 1.1
CRP 1.1
familyHistoryIHD0yes 1.1
livingStatus0alone 1.1
med.Ironyes 1.1
med.Otheryes 1.1
med.ParenteralIronyes 1.1
numberAKIepisodes 1.1
numberClinicVisits 1.1
occupation0NeverWorkedUnemployed 1.1
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A.5 Linear mixed effects model: residuals by follow-up year

Figures 63-71 show the standardised residual distributions at each follow-up year, they confirm
there is no systematic trend over time and that the 95% CI typically covers zero.
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Figure 63: Residuals for diabetic nephropathy model by follow-up year with 95% CIs
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Figure 64: Residuals for glomerulonephritis model by follow-up year with 95% CIs
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Figure 65: Residuals for HKD model follow-up year with 95% CIs
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Figure 66: Residuals for disease Other model by follow-up year with 95% CIs
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Figure 67: Residuals for polycystic kidney disease model by follow-up year with 95% CIs
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Figure 68: Residuals for pyelonephritis model by follow-up year with 95% CIs
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Figure 69: Residuals for renovascular model follow-up year with 95% CIs
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Figure 70: Residuals for unknown disease model follow-up year with 95% CIs
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Figure 71: Residuals for single model all diseases by follow-up year with 95% CIs
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A.6 Observation counts per factor level for each disease category

The distribution of observations among factor levels for each disease category are tabulated in
Tables 39-47; the column labelled reference is the factor reference level used in the LME models.

Table 39: Count of observations in each factor level for disease diabetic nephropa-
thy

factors reference

level no current previouscomorbidityCancer
count 794 13 72

level no 1 over 1comorbidityCV
count 237 259 383

level type2 type1comorbidityDiabetes
count 714 165

level no yescomorbidityGastrointestinal
count 771 108

level no yescomorbidityOther
count 678 201

level White nonWhiteethnicity
count 840 39

level no yesfamilyHistoryIHD0
count 490 389

level with others alonelivingStatus0
count 734 145

level no yesmed.ACE.ARB
count 207 672

level no yesmed.AlphaBlockers
count 543 336

level no yesmed.BetaBlockers
count 574 305

level no yesmed.CCBs
count 420 459

level no yesmed.Diuretics
count 236 643

level no yesmed.Epo
count 604 275

level no yesmed.Iron
count 665 214

level no yesmed.Other
count 3 876

level no yesmed.ParenteralIron
count 740 139

level no yesmed.VitaminD
count 591 288

level RoutMan ManaProf Interm Unemploccupation0*

count 502 308 53 16

level male femalesex
count 604 275

level non-smoker active ex-smokersmokingStatus0
count 283 101 495

level under 1 1 to 14 over 14weeklyAlcohol0
count 491 246 142

* abbreviations: RoutMan=RoutineManual, ManaProf=ManagerialProfessional, In-
term=Intermediate, Unempl=NeverWorkedUnemployed
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Table 40: Count of observations in each factor level for disease glomerulonephri-
tis

factors reference

level no current previouscomorbidityCancer
count 997 16 109

level no 1 over 1comorbidityCV
count 699 256 167

level no type1 type2comorbidityDiabetes
count 986 9 127

level no yescomorbidityGastrointestinal
count 1038 84

level no yescomorbidityOther
count 886 236

level White nonWhiteethnicity
count 1080 42

level no yesfamilyHistoryIHD0
count 679 443

level with others alonelivingStatus0
count 931 191

level no yesmed.ACE.ARB
count 216 906

level no yesmed.AlphaBlockers
count 867 255

level no yesmed.BetaBlockers
count 845 277

level no yesmed.CCBs
count 636 486

level no yesmed.Diuretics
count 649 473

level no yesmed.Epo
count 911 211

level no yesmed.Iron
count 1011 111

level no yesmed.Other
count 56 1066

level no yesmed.ParenteralIron
count 1014 108

level no yesmed.VitaminD
count 938 184

level RoutMan ManaProf Interm Unemploccupation0*

count 479 367 250 26

level male femalesex
count 743 379

level non-smoker active ex-smokersmokingStatus0
count 442 116 564

level under 1 1 to 14 over 14weeklyAlcohol0
count 412 458 252

* abbreviations: RoutMan=RoutineManual, ManaProf=ManagerialProfessional, In-
term=Intermediate, Unempl=NeverWorkedUnemployed

192



Table 41: Count of observations in each factor level for disease HKD

factors reference

level no current previouscomorbidityCancer
count 771 20 90

level no 1 over 1comorbidityCV
count 345 200 336

level no type2comorbidityDiabetes
count 727 154

level no yescomorbidityGastrointestinal
count 784 97

level no yescomorbidityOther
count 691 190

level White nonWhiteethnicity
count 846 35

level no yesfamilyHistoryIHD0
count 497 384

level with others alonelivingStatus0
count 691 190

level no yesmed.ACE.ARB
count 280 601

level no yesmed.AlphaBlockers
count 582 299

level no yesmed.BetaBlockers
count 503 378

level no yesmed.CCBs
count 350 531

level no yesmed.Diuretics
count 365 516

level no yesmed.Epo
count 726 155

level no yesmed.Iron
count 732 149

level no yesmed.Other
count 26 855

level no yesmed.ParenteralIron
count 795 86

level no yesmed.VitaminD
count 655 226

level RoutMan ManaProf Interm Unemploccupation0*

count 424 263 171 23

level male femalesex
count 580 301

level non-smoker active ex-smokersmokingStatus0
count 333 64 484

level under 1 1 to 14 over 14weeklyAlcohol0
count 429 301 151

* abbreviations: RoutMan=RoutineManual, ManaProf=ManagerialProfessional, In-
term=Intermediate, Unempl=NeverWorkedUnemployed
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Table 42: Count of observations in each factor level for disease other

factors reference

level no current previouscomorbidityCancer
count 733 62 187

level no 1 over 1comorbidityCV
count 459 284 239

level no type1 type2comorbidityDiabetes
count 776 5 201

level no yescomorbidityGastrointestinal
count 882 100

level no yescomorbidityOther
count 747 235

level White nonWhiteethnicity
count 956 26

level no yesfamilyHistoryIHD0
count 542 440

level with others alonelivingStatus0
count 868 114

level no yesmed.ACE.ARB
count 442 540

level no yesmed.AlphaBlockers
count 789 193

level no yesmed.BetaBlockers
count 714 268

level no yesmed.CCBs
count 637 345

level no yesmed.Diuretics
count 655 327

level no yesmed.Epo
count 840 142

level no yesmed.Iron
count 855 127

level no yesmed.Other
count 36 946

level no yesmed.ParenteralIron
count 910 72

level no yesmed.VitaminD
count 802 180

level RoutMan ManaProf Interm Unemploccupation0*

count 484 280 172 46

level male femalesex
count 606 376

level non-smoker active ex-smokersmokingStatus0
count 371 134 477

level under 1 1 to 14 over 14weeklyAlcohol0
count 486 320 176

* abbreviations: RoutMan=RoutineManual, ManaProf=ManagerialProfessional, In-
term=Intermediate, Unempl=NeverWorkedUnemployed
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Table 43: Count of observations in each factor level for disease PKD

factors reference

level no current previouscomorbidityCancer
count 383 5 14

level no 1 over 1comorbidityCV
count 242 102 58

level no type2comorbidityDiabetes
count 374 28

level no yescomorbidityGastrointestinal
count 307 95

level no yescomorbidityOther
count 299 103

level White nonWhiteethnicity
count 399 3

level no yesfamilyHistoryIHD0
count 247 155

level with others alonelivingStatus0
count 337 65

level no yesmed.ACE.ARB
count 98 304

level no yesmed.AlphaBlockers
count 304 98

level no yesmed.BetaBlockers
count 286 116

level no yesmed.CCBs
count 230 172

level no yesmed.Diuretics
count 255 147

level no yesmed.Epo
count 363 39

level no yesmed.Iron
count 358 44

level no yesmed.Other
count 46 356

level no yesmed.ParenteralIron
count 373 29

level no yesmed.VitaminD
count 336 66

level RoutMan ManaProf Interm Unemploccupation0*

count 153 150 75 24

level male femalesex
count 202 200

level non-smoker active ex-smokersmokingStatus0
count 160 49 193

level under 1 1 to 14 over 14weeklyAlcohol0
count 162 136 104

* abbreviations: RoutMan=RoutineManual, ManaProf=ManagerialProfessional, In-
term=Intermediate, Unempl=NeverWorkedUnemployed

195



Table 44: Count of observations in each factor level for disease pyelonephritis

factors reference

level no current previouscomorbidityCancer
count 416 10 34

level no 1 over 1comorbidityCV
count 258 114 88

level no type2comorbidityDiabetes
count 397 63

level no yescomorbidityGastrointestinal
count 425 35

level no yescomorbidityOther
count 360 100

level White nonWhiteethnicity
count 447 13

level no yesfamilyHistoryIHD0
count 235 225

level with others alonelivingStatus0
count 370 90

level no yesmed.ACE.ARB
count 166 294

level no yesmed.AlphaBlockers
count 369 91

level no yesmed.BetaBlockers
count 351 109

level no yesmed.CCBs
count 299 161

level no yesmed.Diuretics
count 310 150

level no yesmed.Epo
count 424 36

level no yesmed.Iron
count 413 47

level no yesmed.Other
count 35 425

level no yesmed.ParenteralIron
count 430 30

level no yesmed.VitaminD
count 345 115

level RoutMan ManaProf Interm Unemploccupation0*

count 211 116 111 22

level male femalesex
count 216 244

level non-smoker active ex-smokersmokingStatus0
count 200 63 197

level under 1 1 to 14 over 14weeklyAlcohol0
count 242 143 75

* abbreviations: RoutMan=RoutineManual, ManaProf=ManagerialProfessional, In-
term=Intermediate, Unempl=NeverWorkedUnemployed
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Table 45: Count of observations in each factor level for disease renovascular

factors reference

level no current previouscomorbidityCancer
count 472 25 65

level no 1 over 1comorbidityCV
count 82 100 380

level no type1 type2comorbidityDiabetes
count 382 3 177

level no yescomorbidityGastrointestinal
count 487 75

level no yescomorbidityOther
count 419 143

level White nonWhiteethnicity
count 558 4

level no yesfamilyHistoryIHD0
count 269 293

level with others alonelivingStatus0
count 437 125

level no yesmed.ACE.ARB
count 203 359

level no yesmed.AlphaBlockers
count 308 254

level no yesmed.BetaBlockers
count 287 275

level no yesmed.CCBs
count 201 361

level no yesmed.Diuretics
count 172 390

level no yesmed.Epo
count 491 71

level no yesmed.Iron
count 458 104

level no yesmed.ParenteralIron
count 526 36

level no yesmed.VitaminD
count 445 117

level RoutMan ManaProf Interm Unemploccupation0*

count 337 130 90 5

level male femalesex
count 371 191

level non-smoker active ex-smokersmokingStatus0
count 84 101 377

level under 1 1 to 14 over 14weeklyAlcohol0
count 305 147 110

* abbreviations: RoutMan=RoutineManual, ManaProf=ManagerialProfessional, In-
term=Intermediate, Unempl=NeverWorkedUnemployed
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Table 46: Count of observations in each factor level for disease unknown

factors reference

level no current previouscomorbidityCancer
count 677 14 75

level no 1 over 1comorbidityCV
count 304 190 272

level no type1 type2comorbidityDiabetes
count 615 2 149

level no yescomorbidityGastrointestinal
count 633 133

level no yescomorbidityOther
count 561 205

level White nonWhiteethnicity
count 745 21

level no yesfamilyHistoryIHD0
count 406 360

level with others alonelivingStatus0
count 559 207

level no yesmed.ACE.ARB
count 276 490

level no yesmed.AlphaBlockers
count 571 195

level no yesmed.BetaBlockers
count 480 286

level no yesmed.CCBs
count 439 327

level no yesmed.Diuretics
count 389 377

level no yesmed.Epo
count 626 140

level no yesmed.Iron
count 621 145

level no yesmed.Other
count 33 733

level no yesmed.ParenteralIron
count 682 84

level no yesmed.VitaminD
count 608 158

level RoutMan ManaProf Interm Unemploccupation0*

count 363 229 147 27

level male femalesex
count 441 325

level non-smoker active ex-smokersmokingStatus0
count 262 69 435

level under 1 1 to 14 over 14weeklyAlcohol0
count 453 209 104

* abbreviations: RoutMan=RoutineManual, ManaProf=ManagerialProfessional, In-
term=Intermediate, Unempl=NeverWorkedUnemployed
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Table 47: Count of observations in each factor level for single model all diseases

factors reference

level no current previouscomorbidityCancer
count 5563 183 701

level no 1 over 1comorbidityCV
count 2752 1600 2095

level no type1 type2comorbidityDiabetes
count 4320 221 1906

level no yescomorbidityGastrointestinal
count 5677 770

level no yescomorbidityOther
count 4931 1516

level Ot DN GN Ob PKD PN RVD HKD Undisease†

count 982 1223 1122 49 402 460 562 881 766

level White nonWhiteethnicity
count 6254 193

level no yesfamilyHistoryIHD0
count 3563 2884

level with others alonelivingStatus0
count 5247 1200

level no yesmed.ACE.ARB
count 2006 4441

level no yesmed.AlphaBlockers
count 4596 1851

level no yesmed.BetaBlockers
count 4278 2169

level no yesmed.CCBs
count 3406 3041

level no yesmed.Diuretics
count 3168 3279

level no yesmed.Epo
count 5274 1173
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Table 47: Count of observations in each factor level for single model all diseases
(continued)

factors reference

level no yesmed.Iron
count 5413 1034

level no yesmed.Other
count 236 6211

level no yesmed.ParenteralIron
count 5788 659

level no yesmed.VitaminD
count 4998 1449

level RoutMan ManaProf Interm Unemploccupation0*

count 3150 1961 1139 197

level male femalesex
count 4014 2433

level non-smoker active ex-smokersmokingStatus0
count 2247 743 3457

level under 1 1 to 14 over 14weeklyAlcohol0
count 3211 2065 1171

* abbreviations: RoutMan=RoutineManual, ManaProf=ManagerialProfessional, Interm=Intermediate, Un-
empl=NeverWorkedUnemployed

† abbreviations: DN=diabetic nephropathy, GN=glomerulonephritis, Ob=obstruction, Ot=other, PKD=polycystic kidney disease,
PN=pyelonephritis, RVD=renovascular, HKD=hypertensive kidney disease, Un=unknown
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A.7 Unstandardised model

We now consider the unstandardised model fixed effect regression parameters for our disease
categories. Unlike the standardised model we work in the original units of measure for each
explanatory variable i.e. there is no re-scaling. For the sake of comparability with the standard-
ised results we set the step change in each parameter equal to one standard deviation of the
corresponding explanatory variable i.e. θr = σr relates to θ′

r = 1 since θ′

r = θr/σr (Section 4.5
gives more details). The advantage here is that we do not make an arbitrary rescaling of any
regression parameters and therefore the results are easier to interpret, particularly in relation
to rates of change with respect to time (see Section 4.4). As discussed in Section 4.5 we report
results in terms of the relative change in eGFR induced by a step change in the parameter of
interest. As previously p-values are reported at the 0.05 significance level.

For each disease model the details of the fixed effect parameter estimates are given in Tables 48
to 57. Additionally Figures 72 to 80 summarise the relative change in eGFR for θr = σr and also
indicate the clinically significant level of a 5% change in eGFR.

A.7.1 Overview
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Table 48: model summary for each disease
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(Intercept) (+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∗∗∗

age0 (−)
∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗

(−)
∗

(−)
∗∗∗

(−)
∗∗∗

bodyMassIndex (−)
∗∗

(+)
∼

bodyMassIndex:followupTime (+)
∼

(+)
∼

CC (−)
∗∗

(+)
∼

(−)
∼

(−)
∗

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∗∗

CC:followupTime (+)
∼

(−)
∼

(+)
∼

(+)
∼

(−)
∼

(+)
∼

(+)
∼

(−)
∼

(−)
∼

comorbidityCancercurrent (+)
∼

(−)
∼

(+)
∼

(+)
∼

comorbidityCancercurrent:followupTime (+)
∼

(+)
∼

(+)
∼

(−)
∼

comorbidityCancerprevious (−)
∗

(−)
∼

(+)
∼

(−)
∼

comorbidityCancerprevious:followupTime (+)
∼

(+)
∼

(−)
∼

(+)
∼

comorbidityCV1 (−)
∗

(−)
∼

(+)
∼

(−)
∼

(−)
∼

(−)
∗

comorbidityCV1:followupTime (+)
∼

(−)
∼

(−)
∼

(+)
∼

(+)
∼

(+)
∼

comorbidityCVover 1 (−)
∗

(−)
∼

(−)
∼

(+)
∼

(−)
∗

(−)
∗∗

comorbidityCVover 1:followupTime (+)
∼

(+)
∼

(+)
∼

(−)
∼

(+)
∼

(+)
∼

comorbidityDiabetestype1 (−)
∼

(−)
∼

comorbidityDiabetestype1:followupTime (−)
∼

(+)
∼

comorbidityDiabetestype2 (+)
∼

(+)
∼

(+)
∼

comorbidityDiabetestype2:followupTime (+)
∼

(+)
∼

(+)
∼

comorbidityGastrointestinal (+)
∼

(+)
∼

comorbidityGastrointestinal:followupTime (+)
∼

(−)
∼

comorbidityOther (+)
∼

comorbidityOther:followupTime (−)
∼

CRP (+)
∼

(+)
∼

(−)
∼

(+)
∼

CRP:followupTime (+)
∼

(−)
∼

(+)
∼

(−)
∼
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Table 48: model summary for each disease (continued)
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DBP (+)
∗

(−)
∼

(+)
∼

(+)
∼

(+)
∼

(+)
∼

(+)
∗

(+)
∗

DBP:followupTime (−)
∼

(+)
∗

(+)
∼

(−)
∼

(−)
∼

(+)
∗

(−)
∼

(+)
∼

disease diabetic nephropathy (−)
∗∗

disease glomerulonephritis (+)
∼

disease HKD (−)
∼

disease obstruction (−)
∗∗∗

disease polycystic kidney disease (−)
∗∗∗

disease pyelonephritis (−)
∗∗

disease renovascular disease (−)
∼

disease unknown (−)
∼

ethnicitynonWhite (+)
∼

familyHistoryIHD0 (−)
∼

(+)
∼

(+)
∼

followupTime (−)
∗∗

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(+)
∼

(−)
∼

Hb (+)
∼

(+)
∗∗

(+)
∗∗∗

(+)
∗∗∗

(+)
∼

(+)
∗

(+)
∗∗

(+)
∗∗∗

(+)
∗∗∗

Hb:followupTime (+)
∗∗

(+)
∼

(+)
∼

(−)
∼

(+)
∗

(+)
∗

(+)
∼

(+)
∼

(+)
∗∗

med.ACE.ARB (+)
∗∗∗

(+)
∗∗

(+)
∼

(+)
∼

(+)
∼

(−)
∼

(−)
∼

(+)
∗∗

med.ACE.ARB:followupTime (−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(+)
∼

(−)
∼

(−)
∼

med.AlphaBlockers (−)
∼

(−)
∼

(+)
∼

(−)
∼

med.AlphaBlockers:followupTime (−)
∼

(+)
∼

(+)
∗∗

(−)
∼

med.BetaBlockers (+)
∼

(−)
∼

(−)
∼

(+)
∼

med.BetaBlockers:followupTime (−)
∼

(−)
∼

(−)
∼

(−)
∼

med.CCBs (−)
∗∗

(−)
∼

(+)
∼

(+)
∼

(+)
∼

(−)
∗

med.CCBs:followupTime (+)
∼

(+)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

med.Diuretics (+)
∼

(−)
∗

(−)
∗∗
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Table 48: model summary for each disease (continued)
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med.Diuretics:followupTime (−)
∼

(+)
∼

(+)
∼

med.Epo (−)
∗∗

(−)
∼

(−)
∼

(−)
∼

(+)
∼

(−)
∼

(−)
∗∗

(−)
∗

(−)
∗∗∗

med.Epo:followupTime (+)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(+)
∼

(−)
∼

(+)
∼

(−)
∼

med.Iron (−)
∼

(+)
∼

(+)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(+)
∼

med.Iron:followupTime (+)
∼

(−)
∼

(−)
∼

(−)
∼

(+)
∼

(+)
∼

(−)
∼

(+)
∼

(−)
∗

med.Other (−)
∗

med.Other:followupTime (+)
∼

med.ParenteralIron (−)
∗

(−)
∼

(−)
∼

(−)
∼

(−)
∗

(+)
∼

(+)
∗

(−)
∼

(−)
∼

med.ParenteralIron:followupTime (+)
∗∗

(−)
∼

(+)
∼

(−)
∼

(+)
∼

(−)
∼

(−)
∼

(+)
∼

(+)
∼

med.VitaminD (−)
∗∗∗

(−)
∗∗∗

(−)
∗∗

(−)
∗∗∗

(−)
∼

(−)
∗∗

(−)
∗

(−)
∗∗

(−)
∗∗∗

med.VitaminD:followupTime (+)
∼

(−)
∼

(+)
∼

(+)
∼

(+)
∼

(+)
∼

(−)
∼

(−)
∼

(+)
∼

numberAKIepisodes (−)
∼

(−)
∼

(−)
∼

(−)
∼

(−)
∼

(+)
∗

(−)
∼

numberAKIepisodes:followupTime (+)
∼

(+)
∼

(−)
∼

(−)
∼

(+)
∼

(−)
∼

(−)
∼

numberAntihypertensives (−)
∗

(−)
∼

(−)
∗∗

(−)
∼

(−)
∗∗

(+)
∼

(−)
∼

(−)
∼

numberAntihypertensives:followupTime (−)
∼

(−)
∼

(+)
∼

(+)
∼

(+)
∼

(−)
∼

(+)
∗

(−)
∼

numberClinicVisits (−)
∼

(+)
∗

(+)
∼

(+)
∼

(−)
∼

numberClinicVisits:followupTime (−)
∗∗∗

(−)
∼

(+)
∼

(+)
∼

(−)
∼

occupation0ManagerialProfessional (+)
∼

(−)
∼

(+)
∼

occupation0Intermediate (+)
∼

(+)
∼

(+)
∼

occupation0NeverWorkedUnemployed (+)
∼

(−)
∼

(+)
∼

PO (−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

PO:followupTime (+)
∼

(−)
∼

(−)
∼

(−)
∗∗

(−)
∼

(−)
∼

(+)
∼

(−)
∗∗∗

(−)
∗∗

PP (+)
∗

(+)
∼

(+)
∼

(+)
∗

(−)
∼

(+)
∗∗

(+)
∼

(+)
∗

PP:followupTime (−)
∼

(+)
∼

(+)
∼

(+)
∼

(+)
∼

(−)
∼

(−)
∼

(+)
∼
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Table 48: model summary for each disease (continued)
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PTH (−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(−)
∗∗

(−)
∼

(−)
∗∗

(−)
∗∗∗

(−)
∗∗∗

PTH:followupTime (+)
∼

(+)
∗∗∗

(−)
∼

(+)
∗∗

(+)
∼

(+)
∼

(+)
∼

(+)
∗∗∗

(+)
∗∗∗

Pu (+)
∼

(+)
∗∗

(−)
∼

(−)
∗

(+)
∼

(−)
∼

(−)
∗

(+)
∼

Pu:followupTime (−)
∗∗∗

(−)
∗∗∗

(−)
∗∗∗

(+)
∼

(−)
∗∗∗

(−)
∼

(−)
∼

(−)
∗∗∗

sexfemale (−)
∼

smokingStatus0active (−)
∼

(−)
∼

(−)
∼

smokingStatus0ex-smoker (−)
∼

(+)
∼

(−)
∼

totalCholesterol (+)
∼

(+)
∼

(+)
∼

(+)
∼

(+)
∗

totalCholesterol:followupTime (−)
∼

(−)
∼

(−)
∗∗

(+)
∼

(−)
∼

totalCO2 (+)
∗∗∗

(+)
∗∗

(+)
∗∗∗

(+)
∗

(+)
∗∗

(+)
∗∗

(+)
∗∗∗

totalCO2:followupTime (−)
∼

(−)
∼

(+)
∼

(−)
∼

(−)
∗

(−)
∼

(−)
∗∗∗

weeklyAlcohol01 to 14 (−)
∗

(−)
∼

(−)
∼

(−)
∼

weeklyAlcohol0over 14 (−)
∼

(+)
∗

(+)
∼

(+)
∼

Note:
regression parameter sign: positive (+); negative (-)
p-value significance levels: <0.001 ***; 0.001-0.01 **; 0.01-0.05 *; >0.05 ∼

1 ‘all’ denotes ‘single model all diseases’
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A.7.2 Diabetic nephropathy

Table 49: Estimated changes in outcome for changes in parameters for disease
diabetic nephropathy

E(∆rŶ ∗)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

CC -0.2360 8.4e-02 0.1 -3.42 -1.03
CC:followupTime 0.0124 2.4e-02 5.6 7.15 2.15
Hb 0.0010 8.6e-04 17.1 1.64 0.49
Hb:followupTime 0.0009 3.0e-04 304.5 32.22 9.67
PO -0.3684 5.3e-02 0.3 -9.93 -2.98
PO:followupTime 0.0210 1.5e-02 2.9 6.27 1.88
PTH -0.0060 1.2e-03 11.8 -6.82 -2.05
PTH:followupTime 0.0002 2.2e-04 52.3 0.83 0.25
Pu 0.0134 8.2e-03 1.6 2.10 0.63
Pu:followupTime -0.0091 2.5e-03 5.3 -4.69 -1.41
totalCholesterol 0.0181 1.3e-02 1.1 2.10 0.63

biochemical

totalCholesterol:followupTime -0.0005 4.5e-03 11.0 -0.56 -0.17

med.ACE.ARB 0.1268 3.4e-02 1.0 13.51 4.05
med.ACE.ARB:followupTime -0.0178 1.1e-02 1.0 -1.76 -0.53
med.BetaBlockers 0.0583 3.3e-02 1.0 6.01 1.80
med.BetaBlockers:followupTime -0.0073 9.9e-03 1.0 -0.73 -0.22
med.Epo -0.0865 2.8e-02 1.0 -8.28 -2.48
med.Epo:followupTime 0.0082 8.4e-03 1.0 0.82 0.25
med.Iron -0.0285 3.1e-02 1.0 -2.81 -0.84
med.Iron:followupTime 0.0078 1.1e-02 1.0 0.79 0.24
med.ParenteralIron -0.0518 2.6e-02 1.0 -5.04 -1.51
med.ParenteralIron:followupTime 0.0260 9.0e-03 1.0 2.64 0.79
med.VitaminD -0.1334 3.0e-02 1.0 -12.49 -3.75

catagorical

med.VitaminD:followupTime 0.0035 8.5e-03 1.0 0.35 0.10

age0 -0.0057 1.8e-03 1.0 -0.56 -0.17
bodyMassIndex -0.0099 2.9e-03 5.9 -5.67 -1.70
bodyMassIndex:followupTime 0.0015 9.0e-04 69.8 10.86 3.26
DBP 0.0021 1.0e-03 11.3 2.44 0.73
DBP:followupTime -0.0001 3.4e-04 178.3 -2.22 -0.67
followupTime -0.2179 7.9e-02 1.0 -19.58 -5.87
numberAKIepisodes -0.0324 2.6e-02 0.4 -1.14 -0.34
numberAKIepisodes:followupTime 0.0034 5.8e-03 1.4 0.50 0.15
numberAntihypertensives -0.0277 1.2e-02 1.4 -3.84 -1.15
numberAntihypertensives:followupTime -0.0017 3.6e-03 7.5 -1.29 -0.39
PP 0.0014 5.8e-04 19.3 2.83 0.85

general

PP:followupTime -0.0001 2.1e-04 171.0 -1.21 -0.36

Note: both E(∆rŶ ∗) and E(Ŷ ∗ij) have units mL/min/1.73m2 and θr = σr
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Pu:followupTime

Pu
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PTH
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PP
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numberAntihypertensives:followupTime

numberAntihypertensives
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numberAKIepisodes

med.VitaminD:followupTime
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med.ParenteralIron:followupTime

med.ParenteralIron
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Hb:followupTime

Hb
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DBP:followupTime

DBP

CC:followupTime
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bodyMassIndex:followupTime

bodyMassIndex

age0
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( ∆r Ŷ *)%  = 100(exp( β̂r θr )−1)  with θr = σr

p−value significance:  <0.001    0.001−0.01    0.01−0.05    >0.05

Figure 72: Relative change in eGFR for un-standardised model using 95% CIs: diabetic nephropa-
thy
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A.7.3 Glomerulonephritis

Table 50: Estimated changes in outcome for changes in parameters for disease
glomerulonephritis

E(∆rŶ ∗)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

CC 0.0523 9.0e-02 0.1 0.77 0.23
CC:followupTime -0.0135 2.2e-02 5.6 -7.28 -2.18
CRP 0.0018 1.3e-03 19.9 3.55 1.07
CRP:followupTime 0.0001 3.2e-04 71.0 0.50 0.15
Hb 0.0027 8.1e-04 17.1 4.69 1.41
Hb:followupTime 0.0002 2.3e-04 304.5 7.85 2.36
PO -0.4846 5.0e-02 0.3 -12.86 -3.86
PO:followupTime -0.0058 1.4e-02 2.9 -1.67 -0.50
PTH -0.0091 1.7e-03 11.8 -10.20 -3.06
PTH:followupTime 0.0017 4.7e-04 52.3 9.36 2.81
Pu 0.0190 6.3e-03 1.6 3.00 0.90
Pu:followupTime -0.0081 2.0e-03 5.3 -4.19 -1.26
totalCO2 0.0154 3.8e-03 3.5 5.61 1.68

biochemical

totalCO2:followupTime -0.0013 1.0e-03 56.0 -6.94 -2.08

med.ACE.ARB 0.1015 3.6e-02 1.0 10.69 3.21
med.ACE.ARB:followupTime -0.0137 9.2e-03 1.0 -1.37 -0.41
med.AlphaBlockers -0.0294 3.8e-02 1.0 -2.90 -0.87
med.AlphaBlockers:followupTime -0.0052 1.0e-02 1.0 -0.52 -0.16
med.BetaBlockers -0.0569 3.6e-02 1.0 -5.53 -1.66
med.BetaBlockers:followupTime -0.0019 1.1e-02 1.0 -0.19 -0.06
med.CCBs -0.1106 3.4e-02 1.0 -10.47 -3.14
med.CCBs:followupTime 0.0002 8.8e-03 1.0 0.02 0.01
med.Epo -0.0417 3.3e-02 1.0 -4.09 -1.23
med.Epo:followupTime -0.0064 8.4e-03 1.0 -0.63 -0.19
med.Iron 0.0350 4.1e-02 1.0 3.56 1.07
med.Iron:followupTime -0.0173 1.2e-02 1.0 -1.71 -0.51
med.ParenteralIron -0.0136 3.4e-02 1.0 -1.35 -0.41
med.ParenteralIron:followupTime -0.0062 9.6e-03 1.0 -0.62 -0.19
med.VitaminD -0.1598 3.8e-02 1.0 -14.77 -4.43

catagorical

med.VitaminD:followupTime -0.0112 1.0e-02 1.0 -1.11 -0.33

age0 -0.0060 1.7e-03 1.0 -0.60 -0.18
DBP -0.0015 1.1e-03 11.3 -1.70 -0.51
DBP:followupTime 0.0007 2.9e-04 178.3 12.36 3.71
followupTime -0.0286 6.7e-02 1.0 -2.82 -0.85
numberAKIepisodes -0.0269 4.7e-02 0.4 -0.94 -0.28
numberAKIepisodes:followupTime 0.0077 1.4e-02 1.4 1.12 0.34
numberAntihypertensives -0.0040 1.6e-02 1.4 -0.56 -0.17
numberAntihypertensives:followupTime -0.0004 3.9e-03 7.5 -0.32 -0.10
PP 0.0008 7.1e-04 19.3 1.57 0.47

general

PP:followupTime 0.0000 2.0e-04 171.0 0.10 0.03

Note: both E(∆rŶ ∗) and E(Ŷ ∗ij) have units mL/min/1.73m2 and θr = σr
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Figure 73: Relative change in eGFR for un-standardised model using 95% CIs: glomerulonephritis
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A.7.4 Hypertensive kidney disease

Table 51: Estimated changes in outcome for changes in parameters for disease
HKD

E(∆rŶ ∗)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

CC -0.1470 8.3e-02 0.1 -2.14 -0.64
CC:followupTime 0.0113 2.3e-02 5.6 6.51 1.95
Hb 0.0031 7.5e-04 17.1 5.40 1.62
Hb:followupTime 0.0001 2.7e-04 304.5 4.41 1.32
PO -0.3039 5.2e-02 0.3 -8.27 -2.48
PO:followupTime -0.0206 1.5e-02 2.9 -5.77 -1.73
PTH -0.0057 1.6e-03 11.8 -6.53 -1.96
PTH:followupTime -0.0003 4.6e-04 52.3 -1.60 -0.48
Pu -0.0345 1.8e-02 1.6 -5.22 -1.57
Pu:followupTime -0.0163 4.6e-03 5.3 -8.24 -2.47
totalCO2 0.0104 3.7e-03 3.5 3.73 1.12

biochemical

totalCO2:followupTime -0.0009 1.1e-03 56.0 -4.91 -1.47

comorbidityCancercurrent 0.0606 1.0e-01 1.0 6.24 1.87
comorbidityCancercurrent:followupTime 0.0174 2.8e-02 1.0 1.75 0.53
comorbidityCancerprevious -0.1753 7.0e-02 1.0 -16.08 -4.82
comorbidityCancerprevious:followupTime 0.0284 1.5e-02 1.0 2.88 0.86
comorbidityCV1 -0.0991 3.8e-02 1.0 -9.43 -2.83
comorbidityCV1:followupTime 0.0174 1.1e-02 1.0 1.75 0.53
comorbidityCVover 1 -0.0810 4.1e-02 1.0 -7.78 -2.33
comorbidityCVover 1:followupTime 0.0012 1.1e-02 1.0 0.12 0.04
comorbidityOther 0.0377 4.7e-02 1.0 3.84 1.15
comorbidityOther:followupTime -0.0046 9.9e-03 1.0 -0.46 -0.14
ethnicitynonWhite 0.1617 1.2e-01 1.0 17.55 5.26
med.ACE.ARB 0.0138 3.1e-02 1.0 1.39 0.42
med.ACE.ARB:followupTime -0.0025 9.0e-03 1.0 -0.25 -0.07
med.CCBs -0.0413 3.1e-02 1.0 -4.04 -1.21
med.CCBs:followupTime 0.0087 8.6e-03 1.0 0.88 0.26
med.Epo -0.0075 3.6e-02 1.0 -0.74 -0.22
med.Epo:followupTime -0.0052 1.1e-02 1.0 -0.52 -0.16
med.Iron 0.0509 3.3e-02 1.0 5.22 1.57
med.Iron:followupTime -0.0139 1.2e-02 1.0 -1.38 -0.42
med.ParenteralIron -0.0261 3.1e-02 1.0 -2.58 -0.77
med.ParenteralIron:followupTime 0.0106 1.0e-02 1.0 1.07 0.32
med.VitaminD -0.1115 3.3e-02 1.0 -10.55 -3.17
med.VitaminD:followupTime 0.0102 1.1e-02 1.0 1.03 0.31
smokingStatus0active -0.1210 9.0e-02 1.0 -11.40 -3.42
smokingStatus0ex-smoker -0.1001 5.4e-02 1.0 -9.52 -2.86
weeklyAlcohol01 to 14 -0.1232 5.3e-02 1.0 -11.59 -3.48

catagorical

weeklyAlcohol0over 14 -0.0767 6.8e-02 1.0 -7.38 -2.21

age0 -0.0100 2.4e-03 1.0 -1.00 -0.30
DBP 0.0013 9.2e-04 11.3 1.48 0.44
DBP:followupTime 0.0001 3.1e-04 178.3 1.50 0.45
followupTime -0.0391 7.6e-02 1.0 -3.83 -1.15
numberAKIepisodes -0.0409 3.6e-02 0.4 -1.43 -0.43
numberAKIepisodes:followupTime -0.0011 1.2e-02 1.4 -0.16 -0.05
numberAntihypertensives -0.0391 1.4e-02 1.4 -5.36 -1.61
numberAntihypertensives:followupTime 0.0076 4.0e-03 7.5 5.86 1.76
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Table 51: Estimated changes in outcome for changes in parameters for disease
HKD (continued)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

numberClinicVisits -0.0020 4.5e-03 2.4 -0.48 -0.14
numberClinicVisits:followupTime -0.0064 1.7e-03 10.4 -6.42 -1.93
PP 0.0002 6.0e-04 19.3 0.39 0.12

general

PP:followupTime 0.0002 1.9e-04 171.0 3.14 0.94

Note: both E(∆rŶ ∗) and E(Ŷ ∗ij) have units mL/min/1.73m2 and θr = σr
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Figure 74: Relative change in eGFR for un-standardised model using 95% CIs: HKD
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A.7.5 Other

Table 52: Estimated changes in outcome for changes in parameters for disease
other

E(∆rŶ ∗)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

CC -0.1869 8.6e-02 0.1 -2.72 -0.82
CC:followupTime 0.0396 2.5e-02 5.6 24.74 7.42
CRP 0.0009 6.6e-04 19.9 1.84 0.55
CRP:followupTime -0.0003 2.3e-04 71.0 -1.97 -0.59
Hb 0.0057 8.6e-04 17.1 10.30 3.09
Hb:followupTime -0.0003 2.5e-04 304.5 -9.04 -2.71
PO -0.3167 5.5e-02 0.3 -8.60 -2.58
PO:followupTime -0.0448 1.4e-02 2.9 -12.14 -3.64
PTH -0.0087 1.4e-03 11.8 -9.85 -2.95
PTH:followupTime 0.0012 3.5e-04 52.3 6.48 1.94
totalCholesterol 0.0237 1.3e-02 1.1 2.76 0.83
totalCholesterol:followupTime -0.0019 3.7e-03 11.0 -2.04 -0.61
totalCO2 0.0124 3.5e-03 3.5 4.50 1.35

biochemical

totalCO2:followupTime 0.0006 1.0e-03 56.0 3.32 1.00

comorbidityCV1 -0.0227 3.7e-02 1.0 -2.24 -0.67
comorbidityCV1:followupTime -0.0167 9.7e-03 1.0 -1.65 -0.50
comorbidityCVover 1 -0.0195 4.7e-02 1.0 -1.93 -0.58
comorbidityCVover 1:followupTime 0.0098 1.3e-02 1.0 0.99 0.30
comorbidityDiabetestype1 -0.1038 2.4e-01 1.0 -9.86 -2.96
comorbidityDiabetestype1:followupTime -0.0342 6.5e-02 1.0 -3.36 -1.01
comorbidityDiabetestype2 0.0844 4.7e-02 1.0 8.81 2.64
comorbidityDiabetestype2:followupTime 0.0033 1.1e-02 1.0 0.34 0.10
med.BetaBlockers -0.0468 3.7e-02 1.0 -4.57 -1.37
med.BetaBlockers:followupTime -0.0071 9.1e-03 1.0 -0.70 -0.21
med.Epo -0.0422 3.7e-02 1.0 -4.13 -1.24
med.Epo:followupTime -0.0186 1.1e-02 1.0 -1.84 -0.55
med.Iron -0.0477 4.0e-02 1.0 -4.66 -1.40
med.Iron:followupTime -0.0020 1.2e-02 1.0 -0.20 -0.06
med.ParenteralIron -0.0075 3.8e-02 1.0 -0.75 -0.22
med.ParenteralIron:followupTime -0.0169 1.1e-02 1.0 -1.68 -0.50
med.VitaminD -0.1557 3.9e-02 1.0 -14.42 -4.33

catagorical

med.VitaminD:followupTime 0.0115 1.1e-02 1.0 1.15 0.35

age0 -0.0077 1.7e-03 1.0 -0.76 -0.23
followupTime -0.0273 7.4e-02 1.0 -2.70 -0.81
numberAKIepisodes -0.0095 4.1e-02 0.4 -0.33 -0.10
numberAKIepisodes:followupTime -0.0090 1.2e-02 1.4 -1.28 -0.39
numberClinicVisits 0.0102 4.2e-03 2.4 2.48 0.74

general

numberClinicVisits:followupTime -0.0010 1.2e-03 10.4 -1.01 -0.30

Note: both E(∆rŶ ∗) and E(Ŷ ∗ij) have units mL/min/1.73m2 and θr = σr
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Figure 75: Relative change in eGFR for un-standardised model using 95% CIs: other
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A.7.6 PKD

Table 53: Estimated changes in outcome for changes in parameters for disease
PKD

E(∆rŶ ∗)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

CC -0.1517 1.1e-01 0.1 -2.21 -0.66
CC:followupTime -0.0375 3.1e-02 5.6 -18.89 -5.67
CRP -0.0027 1.7e-03 19.9 -5.32 -1.60
CRP:followupTime 0.0011 6.4e-04 71.0 8.46 2.54
Hb 0.0023 1.3e-03 17.1 3.92 1.18
Hb:followupTime 0.0009 3.7e-04 304.5 30.68 9.21
PO -0.1898 8.1e-02 0.3 -5.25 -1.57
PO:followupTime -0.0236 2.3e-02 2.9 -6.59 -1.98
PTH -0.0071 2.5e-03 11.8 -8.03 -2.41
PTH:followupTime 0.0001 6.2e-04 52.3 0.34 0.10
Pu -0.0998 4.4e-02 1.6 -14.37 -4.31
Pu:followupTime 0.0093 1.1e-02 5.3 5.02 1.51
totalCO2 0.0135 5.2e-03 3.5 4.88 1.47

biochemical

totalCO2:followupTime -0.0024 1.6e-03 56.0 -12.59 -3.78

comorbidityCV1 0.0029 4.9e-02 1.0 0.29 0.09
comorbidityCV1:followupTime -0.0153 1.3e-02 1.0 -1.52 -0.46
comorbidityCVover 1 -0.0832 9.1e-02 1.0 -7.99 -2.40
comorbidityCVover 1:followupTime 0.0073 2.0e-02 1.0 0.74 0.22
familyHistoryIHD0 -0.0645 8.8e-02 1.0 -6.24 -1.87
med.ACE.ARB 0.0087 4.9e-02 1.0 0.87 0.26
med.ACE.ARB:followupTime -0.0069 1.2e-02 1.0 -0.69 -0.21
med.CCBs 0.0856 4.7e-02 1.0 8.93 2.68
med.CCBs:followupTime -0.0147 1.2e-02 1.0 -1.46 -0.44
med.Diuretics 0.0149 4.1e-02 1.0 1.50 0.45
med.Diuretics:followupTime -0.0188 1.3e-02 1.0 -1.86 -0.56
med.Epo 0.0060 7.2e-02 1.0 0.60 0.18
med.Epo:followupTime -0.0260 1.8e-02 1.0 -2.57 -0.77
med.Iron -0.0658 7.0e-02 1.0 -6.37 -1.91
med.Iron:followupTime 0.0170 2.0e-02 1.0 1.71 0.51
med.ParenteralIron -0.1571 6.4e-02 1.0 -14.54 -4.36
med.ParenteralIron:followupTime 0.0245 1.8e-02 1.0 2.48 0.74
med.VitaminD -0.0877 5.7e-02 1.0 -8.40 -2.52
med.VitaminD:followupTime 0.0109 1.2e-02 1.0 1.10 0.33
occupation0ManagerialProfessional 0.1336 9.8e-02 1.0 14.29 4.29
occupation0Intermediate 0.0491 1.2e-01 1.0 5.04 1.51

catagorical

occupation0NeverWorkedUnemployed 0.0082 2.0e-01 1.0 0.83 0.25

age0 -0.0190 3.5e-03 1.0 -1.88 -0.56
DBP 0.0020 1.4e-03 11.3 2.30 0.69
DBP:followupTime -0.0001 4.2e-04 178.3 -1.77 -0.53
followupTime -0.0662 1.1e-01 1.0 -6.40 -1.92
numberAntihypertensives -0.0305 2.2e-02 1.4 -4.21 -1.26
numberAntihypertensives:followupTime 0.0085 5.8e-03 7.5 6.61 1.98
numberClinicVisits 0.0005 7.5e-03 2.4 0.11 0.03
numberClinicVisits:followupTime 0.0000 1.8e-03 10.4 0.01 0.00
PP 0.0024 1.1e-03 19.3 4.73 1.42

general

PP:followupTime 0.0001 2.9e-04 171.0 1.55 0.47
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Table 53: Estimated changes in outcome for changes in parameters for disease
PKD (continued)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

Note: both E(∆rŶ ∗) and E(Ŷ ∗ij) have units mL/min/1.73m2 and θr = σr
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Figure 76: Relative change in eGFR for un-standardised model using 95% CIs: PKD
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A.7.7 Pyelonephritis

Table 54: Estimated changes in outcome for changes in parameters for disease
pyelonephritis

E(∆rŶ ∗)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

CC -0.1468 1.1e-01 0.1 -2.14 -0.64
CC:followupTime 0.0052 3.1e-02 5.6 2.93 0.88
Hb 0.0023 1.0e-03 17.1 3.98 1.19
Hb:followupTime 0.0009 3.4e-04 304.5 30.72 9.22
PO -0.2828 6.7e-02 0.3 -7.72 -2.31
PO:followupTime -0.0204 1.9e-02 2.9 -5.74 -1.72
PTH -0.0019 2.3e-03 11.8 -2.25 -0.68
PTH:followupTime 0.0005 4.2e-04 52.3 2.60 0.78
Pu 0.0061 1.7e-02 1.6 0.95 0.29
Pu:followupTime -0.0218 5.3e-03 5.3 -10.91 -3.27
totalCO2 0.0154 4.8e-03 3.5 5.61 1.68

biochemical

totalCO2:followupTime -0.0031 1.3e-03 56.0 -15.73 -4.72

comorbidityCancercurrent -0.2215 1.2e-01 1.0 -19.87 -5.96
comorbidityCancercurrent:followupTime 0.0481 2.9e-02 1.0 4.93 1.48
comorbidityCancerprevious -0.0708 1.1e-01 1.0 -6.83 -2.05
comorbidityCancerprevious:followupTime 0.0443 2.3e-02 1.0 4.53 1.36
comorbidityCV1 -0.0553 5.3e-02 1.0 -5.38 -1.61
comorbidityCV1:followupTime 0.0076 1.3e-02 1.0 0.76 0.23
comorbidityCVover 1 0.0026 7.2e-02 1.0 0.26 0.08
comorbidityCVover 1:followupTime -0.0194 1.5e-02 1.0 -1.92 -0.58
comorbidityDiabetestype2 0.0616 7.5e-02 1.0 6.35 1.91
comorbidityDiabetestype2:followupTime 0.0221 1.7e-02 1.0 2.24 0.67
comorbidityGastrointestinal 0.0851 1.5e-01 1.0 8.88 2.66
comorbidityGastrointestinal:followupTime 0.0227 2.1e-02 1.0 2.30 0.69
familyHistoryIHD0 0.0570 7.7e-02 1.0 5.87 1.76
med.ACE.ARB 0.0083 4.4e-02 1.0 0.84 0.25
med.ACE.ARB:followupTime -0.0091 1.2e-02 1.0 -0.91 -0.27
med.AlphaBlockers -0.0607 5.9e-02 1.0 -5.89 -1.77
med.AlphaBlockers:followupTime 0.0044 1.5e-02 1.0 0.44 0.13
med.CCBs 0.0521 5.0e-02 1.0 5.35 1.61
med.CCBs:followupTime -0.0079 1.2e-02 1.0 -0.79 -0.24
med.Epo -0.0960 6.4e-02 1.0 -9.15 -2.75
med.Epo:followupTime 0.0142 1.9e-02 1.0 1.43 0.43
med.Iron -0.0292 6.9e-02 1.0 -2.87 -0.86
med.Iron:followupTime 0.0026 1.5e-02 1.0 0.26 0.08
med.ParenteralIron 0.0051 4.6e-02 1.0 0.51 0.15
med.ParenteralIron:followupTime -0.0329 2.2e-02 1.0 -3.23 -0.97
med.VitaminD -0.1185 4.3e-02 1.0 -11.17 -3.35
med.VitaminD:followupTime 0.0159 1.0e-02 1.0 1.60 0.48
occupation0ManagerialProfessional -0.1897 1.0e-01 1.0 -17.28 -5.18
occupation0Intermediate 0.1509 9.9e-02 1.0 16.28 4.88
occupation0NeverWorkedUnemployed -0.0892 1.7e-01 1.0 -8.53 -2.56
sexfemale -0.1501 8.0e-02 1.0 -13.94 -4.18
smokingStatus0active -0.1343 1.2e-01 1.0 -12.56 -3.77
smokingStatus0ex-smoker 0.0052 8.8e-02 1.0 0.52 0.16
weeklyAlcohol01 to 14 -0.1031 8.9e-02 1.0 -9.79 -2.94

catagorical

weeklyAlcohol0over 14 0.2773 1.2e-01 1.0 31.96 9.59
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Table 54: Estimated changes in outcome for changes in parameters for disease
pyelonephritis (continued)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

age0 -0.0081 2.4e-03 1.0 -0.81 -0.24
bodyMassIndex 0.0037 5.3e-03 5.9 2.20 0.66
bodyMassIndex:followupTime 0.0013 9.6e-04 69.8 9.74 2.92
DBP 0.0020 1.2e-03 11.3 2.31 0.69
DBP:followupTime -0.0003 3.7e-04 178.3 -5.57 -1.67
followupTime -0.0892 9.4e-02 1.0 -8.53 -2.56
numberAKIepisodes -0.0926 6.8e-02 0.4 -3.21 -0.96
numberAKIepisodes:followupTime 0.0072 2.4e-02 1.4 1.04 0.31
numberAntihypertensives -0.0748 2.5e-02 1.4 -10.01 -3.00
numberAntihypertensives:followupTime 0.0027 6.5e-03 7.5 2.07 0.62
numberClinicVisits 0.0021 7.0e-03 2.4 0.50 0.15
numberClinicVisits:followupTime 0.0003 2.5e-03 10.4 0.34 0.10
PP -0.0001 1.0e-03 19.3 -0.26 -0.08

general

PP:followupTime 0.0004 2.9e-04 171.0 6.88 2.06

Note: both E(∆rŶ ∗) and E(Ŷ ∗ij) have units mL/min/1.73m2 and θr = σr
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Figure 77: Relative change in eGFR for un-standardised model using 95% CIs: pyelonephritis
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A.7.8 Renovascular

Table 55: Estimated changes in outcome for changes in parameters for disease
renovascular

E(∆rŶ ∗)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

CC -0.1076 1.4e-01 0.1 -1.57 -0.47
CC:followupTime 0.0025 3.8e-02 5.6 1.41 0.42
CRP 0.0013 8.4e-04 19.9 2.59 0.78
CRP:followupTime -0.0003 2.5e-04 71.0 -2.18 -0.65
Hb 0.0031 1.1e-03 17.1 5.40 1.62
Hb:followupTime 0.0004 4.0e-04 304.5 11.38 3.41
PO -0.4033 6.8e-02 0.3 -10.82 -3.25
PO:followupTime 0.0213 2.2e-02 2.9 6.35 1.91
PTH -0.0071 2.7e-03 11.8 -8.06 -2.42
PTH:followupTime 0.0010 9.9e-04 52.3 5.47 1.64
Pu -0.0169 3.4e-02 1.6 -2.60 -0.78
Pu:followupTime -0.0079 6.4e-03 5.3 -4.08 -1.22
totalCholesterol 0.0072 1.6e-02 1.1 0.83 0.25

biochemical

totalCholesterol:followupTime -0.0143 5.3e-03 11.0 -14.59 -4.38

comorbidityCV1 -0.0688 7.2e-02 1.0 -6.64 -1.99
comorbidityCV1:followupTime 0.0262 2.0e-02 1.0 2.66 0.80
comorbidityCVover 1 -0.1726 7.0e-02 1.0 -15.86 -4.76
comorbidityCVover 1:followupTime 0.0122 1.9e-02 1.0 1.22 0.37
comorbidityDiabetestype1 -0.0527 2.1e-01 1.0 -5.13 -1.54
comorbidityDiabetestype1:followupTime 0.0317 5.2e-02 1.0 3.22 0.97
comorbidityDiabetestype2 0.0450 5.0e-02 1.0 4.60 1.38
comorbidityDiabetestype2:followupTime 0.0080 1.3e-02 1.0 0.81 0.24
comorbidityGastrointestinal 0.1229 8.6e-02 1.0 13.08 3.92
comorbidityGastrointestinal:followupTime -0.0217 2.0e-02 1.0 -2.15 -0.65
familyHistoryIHD0 0.0449 6.5e-02 1.0 4.59 1.38
med.ACE.ARB -0.0119 4.0e-02 1.0 -1.19 -0.36
med.ACE.ARB:followupTime 0.0164 1.2e-02 1.0 1.66 0.50
med.AlphaBlockers 0.0054 3.9e-02 1.0 0.54 0.16
med.AlphaBlockers:followupTime 0.0341 1.3e-02 1.0 3.47 1.04
med.Diuretics -0.0889 3.6e-02 1.0 -8.50 -2.55
med.Diuretics:followupTime 0.0065 1.1e-02 1.0 0.66 0.20
med.Epo -0.1739 5.0e-02 1.0 -15.96 -4.79
med.Epo:followupTime -0.0124 1.7e-02 1.0 -1.23 -0.37
med.Iron -0.0300 3.9e-02 1.0 -2.95 -0.89
med.Iron:followupTime -0.0183 1.1e-02 1.0 -1.81 -0.54
med.ParenteralIron 0.0935 4.7e-02 1.0 9.80 2.94
med.ParenteralIron:followupTime -0.0328 1.7e-02 1.0 -3.22 -0.97
med.VitaminD -0.0931 4.2e-02 1.0 -8.89 -2.67
med.VitaminD:followupTime -0.0153 1.6e-02 1.0 -1.52 -0.46
occupation0ManagerialProfessional 0.0590 8.3e-02 1.0 6.08 1.82
occupation0Intermediate 0.0224 9.1e-02 1.0 2.27 0.68
occupation0NeverWorkedUnemployed 0.3974 4.0e-01 1.0 48.80 14.64
smokingStatus0active -0.2123 1.2e-01 1.0 -19.12 -5.74
smokingStatus0ex-smoker -0.1537 8.9e-02 1.0 -14.25 -4.28
weeklyAlcohol01 to 14 -0.0555 8.0e-02 1.0 -5.40 -1.62

catagorical

weeklyAlcohol0over 14 0.1141 9.5e-02 1.0 12.09 3.63

age0 -0.0109 4.2e-03 1.0 -1.08 -0.32
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Table 55: Estimated changes in outcome for changes in parameters for disease
renovascular (continued)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

DBP 0.0005 1.2e-03 11.3 0.60 0.18
DBP:followupTime 0.0009 3.7e-04 178.3 18.40 5.52
followupTime -0.0970 1.1e-01 1.0 -9.24 -2.77
numberAntihypertensives 0.0037 1.7e-02 1.4 0.52 0.16
numberAntihypertensives:followupTime -0.0064 5.3e-03 7.5 -4.67 -1.40
PP 0.0019 6.7e-04 19.3 3.70 1.11

general

PP:followupTime -0.0001 2.1e-04 171.0 -2.50 -0.75

Note: both E(∆rŶ ∗) and E(Ŷ ∗ij) have units mL/min/1.73m2 and θr = σr
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Figure 78: Relative change in eGFR for un-standardised model using 95% CIs: renovascular
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A.7.9 Unknown disease

Table 56: Estimated changes in outcome for changes in parameters for disease
unknown

E(∆rŶ ∗)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

CC -0.1060 9.8e-02 0.1 -1.55 -0.47
CC:followupTime -0.0237 2.9e-02 5.6 -12.39 -3.72
Hb 0.0036 1.0e-03 17.1 6.42 1.93
Hb:followupTime 0.0001 3.3e-04 304.5 3.67 1.10
PO -0.3078 6.2e-02 0.3 -8.37 -2.51
PO:followupTime -0.0787 2.0e-02 2.9 -20.34 -6.10
PTH -0.0123 2.0e-03 11.8 -13.51 -4.05
PTH:followupTime 0.0020 5.7e-04 52.3 11.27 3.38
Pu -0.0342 1.4e-02 1.6 -5.18 -1.55
Pu:followupTime -0.0018 5.9e-03 5.3 -0.93 -0.28
totalCholesterol 0.0015 1.5e-02 1.1 0.17 0.05
totalCholesterol:followupTime 0.0091 5.1e-03 11.0 10.48 3.14
totalCO2 0.0154 4.5e-03 3.5 5.59 1.68

biochemical

totalCO2:followupTime -0.0023 1.5e-03 56.0 -12.17 -3.65

comorbidityCancercurrent 0.1649 1.3e-01 1.0 17.93 5.38
comorbidityCancercurrent:followupTime 0.0123 5.2e-02 1.0 1.23 0.37
comorbidityCancerprevious 0.0629 6.8e-02 1.0 6.49 1.95
comorbidityCancerprevious:followupTime -0.0224 1.9e-02 1.0 -2.21 -0.66
med.ACE.ARB -0.0189 3.8e-02 1.0 -1.88 -0.56
med.ACE.ARB:followupTime -0.0217 1.3e-02 1.0 -2.14 -0.64
med.BetaBlockers 0.0093 4.1e-02 1.0 0.93 0.28
med.BetaBlockers:followupTime -0.0163 1.3e-02 1.0 -1.62 -0.49
med.CCBs 0.0138 3.6e-02 1.0 1.39 0.42
med.CCBs:followupTime -0.0247 1.3e-02 1.0 -2.44 -0.73
med.Epo -0.0755 3.8e-02 1.0 -7.27 -2.18
med.Epo:followupTime 0.0075 1.4e-02 1.0 0.76 0.23
med.Iron -0.0240 4.0e-02 1.0 -2.37 -0.71
med.Iron:followupTime 0.0151 1.3e-02 1.0 1.52 0.45
med.ParenteralIron -0.0176 3.9e-02 1.0 -1.75 -0.52
med.ParenteralIron:followupTime 0.0110 1.7e-02 1.0 1.11 0.33
med.VitaminD -0.1207 4.3e-02 1.0 -11.37 -3.41
med.VitaminD:followupTime -0.0134 1.3e-02 1.0 -1.33 -0.40
weeklyAlcohol01 to 14 -0.0494 5.2e-02 1.0 -4.82 -1.45

catagorical

weeklyAlcohol0over 14 0.0834 6.4e-02 1.0 8.69 2.61

age0 -0.0067 1.8e-03 1.0 -0.67 -0.20
DBP 0.0024 1.2e-03 11.3 2.71 0.81
DBP:followupTime -0.0005 4.3e-04 178.3 -8.92 -2.67
followupTime 0.1521 9.4e-02 1.0 16.43 4.93
numberAKIepisodes 0.1381 5.8e-02 0.4 4.99 1.50
numberAKIepisodes:followupTime -0.0190 1.7e-02 1.4 -2.70 -0.81
numberAntihypertensives -0.0335 1.8e-02 1.4 -4.62 -1.39
numberAntihypertensives:followupTime 0.0147 6.1e-03 7.5 11.60 3.48
PP 0.0000 7.2e-04 19.3 0.02 0.01

general

PP:followupTime 0.0000 2.5e-04 171.0 -0.71 -0.21

Note: both E(∆rŶ ∗) and E(Ŷ ∗ij) have units mL/min/1.73m2 and θr = σr
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Figure 79: Relative change in eGFR for un-standardised model using 95% CIs: unknown
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A.7.10 Single model all diseases

Table 57: Estimated changes in outcome for changes in parameters for single
model all diseases

E(∆rŶ ∗)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

CC -0.1071 3.4e-02 0.1 -1.57 -0.47
CC:followupTime -0.0050 9.3e-03 5.6 -2.73 -0.82
Hb 0.0033 3.3e-04 17.1 5.74 1.72
Hb:followupTime 0.0003 1.0e-04 304.5 10.89 3.27
PO -0.3825 2.1e-02 0.3 -10.29 -3.09
PO:followupTime -0.0186 5.9e-03 2.9 -5.23 -1.57
PTH -0.0074 5.6e-04 11.8 -8.34 -2.50
PTH:followupTime 0.0008 1.3e-04 52.3 4.39 1.32
Pu 0.0021 3.7e-03 1.6 0.33 0.10
Pu:followupTime -0.0075 1.1e-03 5.3 -3.88 -1.16
totalCholesterol 0.0102 4.9e-03 1.1 1.18 0.35
totalCholesterol:followupTime -0.0012 1.5e-03 11.0 -1.35 -0.41
totalCO2 0.0142 1.5e-03 3.5 5.17 1.55

biochemical

totalCO2:followupTime -0.0017 4.3e-04 56.0 -9.27 -2.78

comorbidityCancercurrent 0.0259 3.8e-02 1.0 2.62 0.79
comorbidityCancercurrent:followupTime -0.0009 9.8e-03 1.0 -0.09 -0.03
comorbidityCancerprevious -0.0488 2.5e-02 1.0 -4.76 -1.43
comorbidityCancerprevious:followupTime 0.0056 6.2e-03 1.0 0.56 0.17
comorbidityCV1 -0.0329 1.5e-02 1.0 -3.23 -0.97
comorbidityCV1:followupTime 0.0003 4.3e-03 1.0 0.03 0.01
comorbidityCVover 1 -0.0485 1.8e-02 1.0 -4.74 -1.42
comorbidityCVover 1:followupTime 0.0059 4.7e-03 1.0 0.60 0.18
disease diabetic nephropathy -0.0963 3.2e-02 1.0 -9.18 -2.75
disease glomerulonephritis 0.0091 3.4e-02 1.0 0.91 0.27
disease HKD -0.0536 3.5e-02 1.0 -5.22 -1.57
disease obstruction -0.3433 8.5e-02 1.0 -29.05 -8.72
disease polycystic kidney disease -0.1782 4.4e-02 1.0 -16.32 -4.90
disease pyelonephritis -0.1395 4.4e-02 1.0 -13.02 -3.91
disease renovascular disease -0.0197 4.1e-02 1.0 -1.95 -0.58
disease unknown -0.0556 3.5e-02 1.0 -5.41 -1.62
med.ACE.ARB 0.0447 1.4e-02 1.0 4.57 1.37
med.ACE.ARB:followupTime -0.0063 3.8e-03 1.0 -0.63 -0.19
med.AlphaBlockers -0.0169 1.4e-02 1.0 -1.67 -0.50
med.AlphaBlockers:followupTime -0.0052 4.2e-03 1.0 -0.52 -0.16
med.CCBs -0.0311 1.3e-02 1.0 -3.06 -0.92
med.CCBs:followupTime -0.0007 3.8e-03 1.0 -0.07 -0.02
med.Diuretics -0.0426 1.3e-02 1.0 -4.17 -1.25
med.Diuretics:followupTime 0.0058 3.9e-03 1.0 0.58 0.17
med.Epo -0.0745 1.3e-02 1.0 -7.18 -2.15
med.Epo:followupTime -0.0052 3.9e-03 1.0 -0.52 -0.16
med.Iron 0.0077 1.4e-02 1.0 0.77 0.23
med.Iron:followupTime -0.0090 4.3e-03 1.0 -0.90 -0.27
med.Other -0.0507 2.4e-02 1.0 -4.95 -1.48
med.Other:followupTime 0.0133 7.3e-03 1.0 1.34 0.40
med.ParenteralIron -0.0228 1.3e-02 1.0 -2.26 -0.68
med.ParenteralIron:followupTime 0.0007 4.1e-03 1.0 0.07 0.02
med.VitaminD -0.1429 1.4e-02 1.0 -13.32 -4.00
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Table 57: Estimated changes in outcome for changes in parameters for single
model all diseases (continued)

category parameter β̂r se θr (∆rŶ ∗)% E(Ŷ ∗ij) = 30

catagorical

med.VitaminD:followupTime 0.0064 3.8e-03 1.0 0.64 0.19

age0 -0.0070 7.1e-04 1.0 -0.69 -0.21
DBP 0.0010 3.9e-04 11.3 1.10 0.33
DBP:followupTime 0.0001 1.2e-04 178.3 1.80 0.54
followupTime -0.0079 3.0e-02 1.0 -0.78 -0.24
numberAKIepisodes -0.0134 1.5e-02 0.4 -0.47 -0.14
numberAKIepisodes:followupTime -0.0030 3.7e-03 1.4 -0.44 -0.13
numberAntihypertensives -0.0088 6.9e-03 1.4 -1.24 -0.37
numberAntihypertensives:followupTime -0.0008 1.9e-03 7.5 -0.60 -0.18
numberClinicVisits -0.0025 1.7e-03 2.4 -0.60 -0.18
numberClinicVisits:followupTime -0.0002 4.7e-04 10.4 -0.26 -0.08
PP 0.0006 2.5e-04 19.3 1.24 0.37

general

PP:followupTime 0.0000 7.7e-05 171.0 0.21 0.06

Note: both E(∆rŶ ∗) and E(Ŷ ∗ij) have units mL/min/1.73m2 and θr = σr
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Figure 80: Relative change in eGFR for un-standardised model using 95% CIs for single model
all diseases
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