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When input distributions to a simulation model are estimated from real-world data, they naturally have

estimation error causing input uncertainty in the simulation output. If an optimization via simulation (OvS)

method is applied that treats the input distributions as “correct,” then there is a risk of making a suboptimal

decision for the real world, which we call input model risk. This paper addresses a discrete OvS (DOvS)

problem of selecting the real-world optimal from among a finite number of systems when all of them share

the same input distributions estimated from common input data. Since input uncertainty cannot be reduced

without collecting additional real-world data—which may be expensive or impossible—a DOvS procedure

should reflect the limited resolution provided by the simulation model in distinguishing the real-world opti-

mal solution from the others. In light of this, our input-output uncertainty comparisons (IOU-C) procedure

focuses on comparisons rather than selection: it provides simultaneous confidence intervals for the difference

between each system’s real-world mean and the best mean of the rest with any desired probability, while

accounting for both stochastic and input uncertainty. To make the resolution as high as possible (intervals

as short as possible) we exploit the common input data effect to reduce uncertainty in the estimated differ-

ences. Under mild conditions we prove that the IOU-C procedure provides the desired statistical guarantee

asymptotically as the real-world sample size and simulation effort increase, but it is designed to be effective

in finite samples.

Key words : Optimization via simulation under input uncertainty, common input data effect, multiple

comparisons with the best

History : First submitted on June 2016; revisions submitted on July 2017 and May 2018.

1



Song and Nelson: Input-Output Uncertainty Comparisons for DOvS
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

1. Introduction

Due to the flexibility of simulation, optimization via simulation (OvS) is a widely accepted tool

to improve system performance. Real-world problems typically involve stochastic processes, e.g.,

demand for a new product or arrivals of patients to an emergency room, which are often modeled

by probability distributions. Stochastic simulation is driven by random variates generated from

these input models to produce outputs that mimic real-world performance. Therefore, when we

make decisions based on the simulation outputs, we are subject to the risk of making suboptimal

decisions when the input models do not faithfully represent the real-world stochastic processes; this

is known as input model risk. Most standard OvS methods do not take into account input model

risk and instead optimize under the assumption that the input models are accurate representations

of the real-world randomness. However, the best system chosen conditional on the input models

may not be the best system with respect to real-world performance when implemented. We refine

this point below and illustrate it further using an inventory management example with estimated

input demand distribution in Section 2. Of course, there may also be a logical discrepancy between

the simulation model and the real-world system but that is beyond the scope of this paper.

The problem of interest is to compare k systems, where the ith system’s performance measure is

its simulation output mean, E[Yi(F
c
i )], under real-world input distribution F c

i (c for correct), where

Yi(·) is the stochastic output performance which depends on the chosen input distribution. When

there are many input processes in the system, F c
i represents the joint distribution of all of the

input random variables. Our specific goal is to find arg maxiE[Yi(F
c
i )] (or arg miniE[Yi(F

c
i )]) with

a statistical guarantee (e.g., 95%) that the selected system is the real-world optimal. As mentioned

earlier, in most cases F c
1 ,F

c
2 , . . . ,F

c
k are unknown, which forces us to use estimates, F̂1, F̂2, . . . , F̂k, to

run simulations and implicitly target E[Yi(F̂i)|F̂i] instead of E[Y (F c
i )] to evaluate the ith system’s
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performance. Typically, F̂i is estimated from finite real-world observations from F c
i and therefore

is subject to estimation error. Input model risk arises as E[Yi(F̂i)|F̂i] depends on random F̂i, and

thus the conditional optimal, arg maxiE[Yi(F̂i)|F̂i], may not be the same as arg maxiE[Yi(F
c
i )]. In

this paper we show that it is possible to provide a meaningful statistical guarantee with respect to

the real-world optimal, rather than the conditional optimal.

To accomplish this we first need to understand how much uncertainty in E[Yi(F̂i)|F̂i] is caused

by the estimation error in F̂i. This is referred to input uncertainty and formally defined as

Var(E[Yi(F̂i)|F̂i]), where the variance is taken with respect to the sampling distribution of F̂i. Typ-

ically, we have only one “observation” of F̂i estimated from the real-world data, which makes it

difficult to evaluate the variance. Another challenge is that the functional form of E[Yi(F̂i)|F̂i] is

generally unknown and can only be estimated via simulations. Several methods have been devel-

oped to quantify the marginal impact of input uncertainty on a single simulated system; see Barton

(2012), Song et al. (2014), and Lam (2016) for surveys.

Unlike simulation stochastic error, which can be reduced by increasing the number of simulation

replications, input uncertainty can only be reduced by collecting more real-world data. However,

real-world data collection is typically much more expensive than simulation replications, or it may

be impossible if an implementation decision has to be made before having another chance to collect

data (e.g., logistics decisions for a natural disaster). Our DOvS procedure is designed to provide

statistical inference on the real-world optimal solution in the presence of input model risk that will

not be further reduced by collecting more real-world data.

Optimization under input model risk is more challenging than conditional DOvS since even with

an infinite number of simulation replications we may not be able to distinguish the real-world best

from the others due to the remaining input uncertainty. But effective DOvS under input model risk

requires more than just quantifying the marginal input uncertainty in each system’s simulation

output; instead we need to compare how systems are affected jointly by input uncertainty.

Recently, several DOvS procedures that incorporate input model risk have been proposed; they

can be categorized into three groups in terms of what they promise to deliver: the first group
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of procedures selects a system that best hedges input model risk by identifying the worst-case

input distributions given real-world data for each system marginally, and then selects the sys-

tem with the best worst-case performance. For a maximization problem this beomes selecting

arg maximinF̂i∈Ui E[Yi(F̂i)|F̂i], where Ui is the uncertainty set that contains the candidates for F c
i

inferred from the real-world data. Such a formulation is used in the distributionally robust opti-

mization literature (Scarf 1958, Delage and Ye 2010, Ben-Tal et al. 2013). The robust selection of

the best procedure of Fan et al. (2013) and the optimal computational budget allocation scheme

of Gao et al. (2017) belong in this category. A benefit of this formulation is that we can always

select a single solution no matter how large input uncertainty is. However, the selected system may,

and often will, perform poorly under the true real-world input distributions. See Section 2.

The second category selects a system with the best performance averaged over input uncertainty,

i.e., arg maxiE
(

E[Yi(F̂i)|F̂i]
)

, where the outer expectation is taken with respect to the sampling

or posterior distribution of F̂i. Corlu and Biller (2015) propose a subset selection procedure that

averages both stochastic and input uncertainties to find a subset of optimal/near-optimal systems

where F̂i is a Bayesian posterior distribution given real-world data. Even if the input uncertainty,

Var(E[Yi(F̂i)|F̂i]), is large the variance of an estimate of E
(

E[Yi(F̂i)|F̂i]
)

may be reduced by more

simulation replications. Hence, with a sufficiently large simulation budget the size of the subset may

be as small as one provided that E
(

E[Yi(F̂i)|F̂i]
)

is distinct for each i. However, E
(

E[Yi(F̂i)|F̂i]
)
6=

E[Yi(F
c
i )] in general, and therefore arg maxiE

(
E[Yi(F̂i)|F̂i]

)
may not be arg maxiE[Yi(F

c
i )]. The

bias of E
(

E[Yi(F̂i)|F̂i]
)

is larger when the number of real-world observations is smaller, causing

this fomulation to pose greater input model risk.

The last category of procedures directly attacks the problem of finding arg maxiE[Yi(F
c
i )]. Corlu

and Biller (2013) present a subset selection procedure that includes the real-world best system

in the subset assuming that maxiE[Yi(F
c
i )] is at least δ > 0 better than the rest of the systems’

true means. This procedure is distinguished from the subset selection procedure in Corlu and

Biller (2015) in that it does not average E[Yi(F̂i)|F̂i] over the distribution of F̂i, but uses δ to
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control the resolution to which the procedure can successfully separate the real-world best from

the rest with a given statistical guarantee. Under the same indifference-zone (IZ) setting, Song

et al. (2015) discuss a ranking-and-selection approach that guarantees the probability of correctly

selecting arg maxiE[Yi(F
c
i )] in the presence of input model risk. Both Corlu and Biller (2013) and

Song et al. (2015) find that δ has an unknown nonzero lower bound, which is an increasing function

of input uncertainty reflecting the fact that the procedures may not distinguish the real-world best

system from the rest if the mean difference is too small relative to input uncertainty. To put it

differently, for δ below an unknown threshold the probability of correctly selecting the optimal (or

including the optimal in the subset) has an upper bound less than 1 so that even with infinite

simulation effort we may not achieve the desired statistical guarantee. Further, assuming an IZ

mean configuration makes both procedures conservative, because they are designed to provide the

statistical guarantee for the case where all suboptimal systems’ means are arg maxiE[Yi(F
c
i )]− δ.

When F c
1 ,F

c
2 , . . . ,F

c
k are assumed known, this only makes us spend more simulation budget than

necessary to correctly select the optimal solution with the target probability. In the presence of

input model risk, however, the problem is much more severe and we may conclude that we cannot

provide the target probability guarantee at all when in fact we could if we did not assume an IZ

configuration.

Our input-output uncertainty comparisons (IOU-C) procedure belongs in the third category.

However, we focus on comparisons of systems, not selection, and we do not assume any configura-

tion for the system means, which differentiates our approach from Corlu and Biller (2013) and Song

et al. (2015). By extending the multiple comparisons with the best (MCB) framework of Chang

and Hsu (1992) to incorporate input model risk, IOU-C provides k joint confidence intervals (CIs)

on the true mean differences between each system and the best of the rest that account for both

stochastic and input uncertainties. With any given target probability guarantee, the CIs that con-

tain 0 indicate systems that are statistically inseparable from the real-world optimal.

We restrict our attention to the case where all systems share the same input distributions, i.e.,

F c
i = F c and F̂i = F̂ for i= 1,2, . . . , k, which is a common setting for DOvS problems. For instance,
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we may compare k scheduling rules for an emergency department given the same patient arrival

process. In this case, the estimation error of F̂ from the common real-world data affects all k

systems’ simulation outputs. We call this the common-input-data (CID) effect. One of the novel

contributions of this paper is to model and estimate the joint distribution of CID effects to devise an

efficient comparisons procedure that exploits it. The IOU-C procedure has the following strengths:

1. Since our focus is not on selection of a single best system, we do not need to assume mean

configurations a priori to provide the desired statistical guarantee. Naturally, if the real-world

system means are well-separated then the comparisons become easy and the resulting subset

may include only one system, which is the real-world optimal; we do not need to settle for a

system that best hedges input model risk nor the system with the best performance averaged

over both stochastic and input uncertainties.

2. MCB provides parsimonious comparisons: it is more efficient than all pairwise comparisons

of k systems, and k − 1 comparisons with a control is not sufficient as we do not know the

identity of the real-world optimal system. Moreover, the MCB CIs provide a confidence bound

on how far each system’s performance could be from the best of the rest. This is useful when

there is a secondary criterion to consider; if the best system’s main performance measure is

marginally better than the rest, but the secondary performance measure is much worse than

the next best, then we may choose the next best. This applies to MCB in general, not only

to IOU-C.

3. Narrow MCB CI widths make the size of the subset of systems that are indistinguishable

from the best small. When there is no input uncertainty, the MCB CI widths can be reduced

by simply increasing the simulation effort. However, input uncertainty makes the CI widths

nonzero even with infinite simulation effort. Our biggest contribution in this paper is to make

the comparisons as sharp as possible given the limited real-world input data, and thereby to

provide a small subset even in the presence of input uncertainty, by exploiting the CID effects

and common random numbers.
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4. A large subset size may indicate either 1) the systems’ performance measures are not too

different so any system in the subset could be selected (narrow MCB CIs) or 2) input model

risk is overwhelming so that it is difficult to separate the optimal system from the rest (wide

MCB CIs). In the former case, we can apply a procedure that selects a defensive best with

respect to input model risk among the remaining systems in the subset, which should be

much less conservative than choosing a defensive best from all k systems. In the latter case,

it may be appropriate to postpone the decision until additional real-world data are available

(if possible) or approach the problem differently since the defensive choice is likely to be very

conservative.

The remainder of the paper is organized as follows. In Section 2, we present a simple DOvS

example to illustrate the difficulties that arise when there is input model risk and highlight the

key factors for designing sharp comparisons. In Section 3, we introduce the general framework for

IOU-C procedures. In Section 4, we show how to account for the joint effect of input model risk on

all k systems’ outputs. We revisit the IOU-C procedure in Section 5 to provide computation details

for each step. In Section 6, we show under mild conditions that the IOU-C procedure provides the

desired probability guarantee asymptotically as the real-world sample size and simulation effort

increase. Performance of the procedure is tested in Section 7.

2. Illustration

We use a modified version of the (s,S) inventory problem from Koenig and Law (1985) to pro-

vide insights on DOvS under input model risk. Suppose we have k = 4 candidate (s,S) inventory

policies, (s,S) = (20,50), (20,55), (20,60) and (20,65), where each solution is evaluated based on

the expected cost of operation over a 30-day period. Unknown to us, the true daily demand is

i.i.d. Poisson with mean λc = 26. Figure 1 shows the expected costs of all four policies. Under λc,

(20,55) is the optimal policy that minimizes the real-world expected cost. Since in reality λc is

unknown, suppose we estimate it from real-world observations of the demand. Figure 1 illustrates

how the expected costs of the four policies are affected by the CID effects with four particular cases
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Figure 1 Mean cost of inventory policies for λc = 26 and λ̂= 24,25,27 and 28.

of estimated mean demand λ̂ = 24,25,27 and 28. When λ̂ = 25 or 27, the true optimal solution,

(20,55), still minimizes the cost. However, (20,50) is optimal under λ̂ = 24, whereas (20,60) is

optimal under λ̂= 28. Note that (20,60) is the defensive best solution given U = {24,25,26,27,28}.

Meanwhile, notice that (20,65) does not minimize the expected cost at any value of λ̂, which means

that (20,65) is ruled out as the true optimal solution even if λc is unknown.

In a realistic DOvS problem we do not obtain multiple values of λ̂; we have only one value of

λ̂ estimated from the real-world data. If all solutions are affected exactly the same way by input

uncertainty, then the cost plot for any λ̂ would be parallel to that for λc and for any value of λ̂ the

solution (20,55) would minimize the expected cost. However, as depicted in Figure 1, the solutions

can be affected differently when λ̂ varies, especially when λ̂ is far from λc, which makes the true

optimal solution no longer minimize the expected cost given λ̂.

The insights obtained from this illustration are three-fold. First, if we use a procedure that

assumes all input models are correct, then we may select a suboptimal solution as the best and

falsely provide a much higher statistical guarantee than what is actually attained. In a realistic

DOvS setting, each system’s performance measure is estimated via simulation replications, which

introduces stochastic error. This example shows that even if we spend infinite simulation effort to

eliminate stochastic errors, input uncertainty may cause us to select a suboptimal solution as the

best if we select a system conditional on the estimated λ̂.
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Secondly, even in the presence of input uncertainty, we may be able to provide the same level

of statistical guarantee as the DOvS procedure without input uncertainty (perhaps with increased

simulation effort) if the CID effects are similar across systems. Therefore, it is important to estimate

the joint distribution of the CID effects to make sharp comparisons.

Finally, some solutions are so inferior that we can rule them out even in the presence of input

model risk. This corroborates the use of a CI procedure to identify a subset of near-optimal solutions

even if we are interested in selecting a defensive system with respect to input model risk.

Our IOU-C procedure provides a set of solutions that are statistically inseparable from the

real-world optimal solution where the size of the set depends on the MCB CI widths. Hence, if

the systems are affected similarly by input uncertainty, the procedure should take advantage of

it to provide CIs as narrow as possible. In the next section, we introduce the basic framework of

IOU-C followed by a model to capture the joint effects of input uncertainty on systems’ outputs

in Section 4.

3. Framework for IOU Comparisons

In this section, we provide a high-level framework for IOU-C procedures by extending MCB to

account for input model risk. Without loss of generality, we concentrate on a maximization problem

in the remainder of the paper.

As mentioned in Section 1, when the simulation is run using estimated distribution F̂ , the

conditional mean of the output, E[Yi(F̂ )|F̂ ], is a functional of F̂ . To simplify the notation, we

define ηi(F̂ ) = E[Yi(F̂ )|F̂ ], so ηi(F
c) = E[Yi(F

c)|F c]. Thus, Yi(F̂ ) can be represented as

Yi(F̂ ) = E[Yi(F̂ )|F̂ ] + εi(F̂ ) = ηi(F
c) + bi(F̂ ,F

c) + εi(F̂ ), (1)

where bi(F̂ ,F
c)≡ ηi(F̂ )−ηi(F c) and εi(F̂ ) has mean 0 and finite variance σ2

i (F̂ ). We do not require

normality of the simulation output. Notice that bi(F̂ ,F
c) captures the common-input-data (CID)

effect on system i. If we knew that bi(F̂ ,F
c) = b(F̂ ,F c),∀i, then we could simply ignore input

model risk as all systems are affected exactly the same.
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Much as common random numbers (CRN) make stochastic errors, ε1(F̂ ), ε2(F̂ ), . . . , εk(F̂ ), corre-

lated, the CID effects cause η1(F̂ ), η2(F̂ ), . . . , ηk(F̂ ), to be correlated. However, CRN and CID are

different in nature. CRN are employed across different systems as a variance reduction technique;

we typically assume Corr(εi(F̂ ), ε`(F̂ ))≡ ρi,`(F̂ )> 0, which sharpens the comparison of systems i

and ` by reducing the variance of the difference in simulation outputs, Yi(F̂ )−Y`(F̂ ). Hence, if in

fact CRN causes ρi,`(F̂ )< 0, then we can choose not to employ CRN and run independent simu-

lations. However, the CID effect is a property of the problem itself; we compare different system

designs/policies under the same real-world stochastic processes. Therefore, even if the CID effect

causes negative correlation between bi(F̂ ,F
c) and b`(F̂ ,F

c), we cannot eliminate such correlation.

Our challenge is in accounting for the CID effect and exploiting it when it is favorable.

The following theorem by Chang and Hsu (1992) lets us obtain MCB CIs when F c is known.

Theorem 1. [Chang and Hsu 1992] Let η̂i(F
c) be an unbiased estimator of ηi(F

c) for i= 1,2, . . . , k,

x+ = max(0, x) and x− = max(0,−x). If for each i individually

Pr{η̂i(F c)− η̂`(F c)− (ηi(F
c)− η`(F c))≥−wi`, for all ` 6= i} ≥ 1−α, (2)

then we can make the joint probability statement

Pr

{
ηi(F

c)−max
` 6=i

η`(F
c)∈ [D−i ,D

+
i ], for all i

}
≥ 1−α,

where D+
i = (min` 6=i[η̂i(F

c)− η̂`(F c) +wi`])
+
,I = {i :D+

i > 0}, and

D−i =


0, if I = {i}

− (min`∈I, 6̀=i[η̂i(F
c)− η̂`(F c)−w`i])− , otherwise.

Theorem 1 states that MCB CIs can be constructed from multiple comparisons with a fixed control

system— that is, Equation (2)— by treating each system i as a control. Note that D+
i is positive

only if for all ` 6= i the upper CI bound of ηi(F
c)− η`(F c) from (2) is positive. We can conclude

that the systems with D+
i = 0 are inferior to the best with probability ≥ 1− α. If there is only

one system with D+
i > 0, then we can conclude that system is the best with probability ≥ 1−α.
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Otherwise, all systems i with D+
i > 0 form a subset of the possible best and the value of D+

i is how

much better than the best each one might be.

When F c is known, η̂i(F
c) is simply Ȳi(F

c), where the bar indicates a sample average from n

replications. Then the interval widths, wi`, depend only on the joint distribution of {ε̄i(F c)}ki=1.

Hence, as n increases, wi` decreases. In the presence of estimated input distributions, wi` should

depend on both stochastic and input uncertainty; the interval widths are larger and the increase

depends on how differently system i and ` are affected by input uncertainty. Clearly, more systems

are likely to have D+
i > 0 when the wi` are larger making it more difficult to determine the inferior

systems. Therefore, we desire to make wi` as small as possible given input uncertainty while still

preserving the statistical guarantee. Estimating the distribution of CID effects helps greatly in this

regard as opposed to using a conservative probability inequality such as the Bonferroni inequality.

Even when the interval widths are large, if ηi(F
c) is much smaller than some η`(F

c), then we

may still have D+
i = 0. Thus, the difficulty of the comparisons depends on the true system means,

ηi(F
c), i= 1,2, . . . , k, as well as input uncertainty. This echoes the inventory example in Section 1:

when input uncertainty is small, i.e., λ̂ is closer to λc, the real-world best solution is still optimal

at λ̂ 6= λc; on the other hand, if a solution like (20,65) is inferior by enough, it remains suboptimal

for any value of λ̂.

From (1), Ȳi(F̂ )− Ȳ`(F̂ )− (ηi(F
c)−η`(F c)) = bi(F̂ ,F

c)− b`(F̂ ,F c) + ε̄i(F̂ )− ε̄`(F̂ ). Therefore, if

Ȳi(F̂ ) is used as η̂i(F
c), then the left-hand side of (2) can be rewritten as

Pr
{
Ȳi(F̂ )− Ȳ`(F̂ )− (ηi(F

c)− η`(F c))≥−wi`,∀` 6= i
}

= Pr
{
bi(F̂ ,F

c)− b`(F̂ ,F c) + ε̄i(F̂ )− ε̄`(F̂ )≥−wi`,∀` 6= i
}
.

If wi` =w
(1)
i` +w

(2)
i` for some w

(1)
i` ,w

(2)
i` > 0, then

Pr
{
bi(F̂ ,F

c)− b`(F̂ ,F c) + ε̄i(F̂ )− ε̄`(F̂ )≥−(w
(1)
i` +w

(2)
i` ),∀` 6= i

}
≥Pr

{
bi(F̂ ,F

c)− b`(F̂ ,F c)≥−w(1)
i` , ε̄i(F̂ )− ε̄`(F̂ )≥−w(2)

i` ,∀` 6= i
}

= E
[
Pr
{
bi(F̂ ,F

c)− b`(F̂ ,F c)≥−w(1)
i` , ε̄i(F̂ )− ε̄`(F̂ )≥−w(2)

i` ,∀` 6= i
∣∣∣ F̂}]

= E
[
1
{
bi(F̂ ,F

c)− b`(F̂ ,F c)≥−w(1)
i` ,∀` 6= i

}
Pr
{
ε̄i(F̂ )− ε̄`(F̂ )≥−w(2)

i` ,∀` 6= i
∣∣∣ F̂}] , (3)
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where 1{·} is the indicator function. Note that (3) holds since conditional on F̂ , bi(F̂ ,F
c)−b`(F̂ ,F c)

is constant. Given the conditional distribution of ε̄i(F̂ )− ε̄`(F̂ ), suppose for any F̂ and 0<α2 < 1/2

we can find w
(2)
i` ,∀` 6= i, such that

Pr
{
ε̄i(F̂ )− ε̄`(F̂ )≥−w(2)

i` ,∀` 6= i
∣∣∣ F̂}= 1−α2. (4)

Then term (3) becomes Pr
{
bi(F̂ ,F

c)− b`(F̂ ,F c)≥−w(1)
i` ,∀` 6= i

}
· (1−α2). Therefore, by finding

w
(1)
i` , i 6= `, that satisfy Pr{bi(F̂ ,F c)− b`(F̂ ,F c)≥−w(1)

i` ,∀` 6= i}= 1−α1 for 0<α1 < 1/2, we have

Pr{Ȳi(F̂ )− Ȳ`(F̂ )− (ηi(F
c)−η`(F c))≥−(w

(1)
i` +w

(2)
i` ),∀` 6= i} ≥ (1−α1)(1−α2). Hence, the overall

statistical guarantee of the IOU-C procedure is (1−α1)(1−α2) from Theorem 1. The following is

a general framework for IOU-C procedures:

IOU-C Procedure

1. Select 0<α1, α2 < 1/2 such that 1−α= (1−α1)(1−α2) for given 0<α< 1/2.

2. Collect real-world observations from F c and compute its estimator F̂ .

3. For each system i, use F̂ as an input model and run n replications, Yi1(F̂ ), Yi2(F̂ ), . . . , Yin(F̂ ).

Compute Ȳi(F̂ ) = Σn
j=1Yij(F̂ )/n.

4. (Interval widths due to CID effects) For each system i, find w
(1)
i` > 0,∀` 6= i, that satisfy

Pr{bi(F̂ ,F c)− b`(F̂ ,F c)≥−w(1)
i` ,∀` 6= i}= 1−α1.

5. (Interval widths due to stochastic error) For each system i, find w
(2)
i` > 0,∀` 6= i, that

satisfy Pr{ε̄i(F̂ )− ε̄`(F̂ )≥−w(2)
i` ,∀` 6= i|F̂}= 1−α2.

6. For each system i, set wi` = w
(1)
i` +w

(2)
i` ,∀` 6= i. Use Theorem 1 to derive 1− α simultaneous

comparisons CIs.

Accounting for stochastic error in an MCB procedure has been well-studied (Hsu 1996). Esti-

mating the distribution of bi(F̂ ,F
c) marginally has been addressed in the input uncertainty quan-

tification literature. However, to find interval widths w
(1)
i` , i 6= `, we need to estimate the joint

distribution of bi(F̂ ,F
c), i= 1,2, . . . , k focusing on how differently the systems are affected by F̂ ;

this is new.
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In the following section we introduce a model to represent ηi(F̂ ) that enables us to estimate the

unknown distributions of the stochastic errors and the CID effects. In Section 5, we employ it to

obtain interval widths that fully account for the estimation errors.

4. Model of CID Effects

From this section on, we focus on the case when F c has a known parametric distribution family, F ,

with an unknown parameter vector, θc. Non-parametric F c or unknown parametric distribution

family is relevant future work. Thus, F̂ = F (·|θ̂) with estimated parameter θ̂ based on real-world

observations. Similarly, Yi(F̂ ) = Yi(θ̂), bi(F̂ ,F
c) = bi(θ̂,θ

c), and εi(F̂ ) = εi(θ̂). Note that F may

be a collection of distributions of all input processes. For instance, q independent real-world input

processes can be represented by a set of parametric distributions F = {F1,F2, . . . ,Fq} with param-

eter vector θ= {ϑ1,ϑ2, . . . ,ϑq}. If we use p to denote the dimension of θc, then p≥ q. Suppose we

collect m1,m2, . . . ,mq real-world observations from each of q input processes and compute the max-

imum likelihood estimator (MLE) θ̂ = {ϑ̂1, ϑ̂2, . . . , ϑ̂q} of F . We use m= (m1 +m2 + · · ·+mq)/q

to represent the average number of observations from the q input processes.

Further suppose ηi is a smooth function of θ̂ that is continuously differentiable at θc. Then,

using the first-order Taylor series approximation

ηi(θ̂)≈ ηi(θc) +β>i (θ̂−θc), (5)

where βi ≡∇ηi(θc). If we assume (5) to be exact, then bi(θ̂,θ
c) = β>i (θ̂− θc) and βi represents

how much ηi(θ̂) is affected by each element of θ̂. This model is also used in Cheng and Holland

(1997, 1998) and Lin et al. (2015) to quantify marginal input uncertainty in simulation output.

Under (5), the distribution of bi(θ̂,θ
c) is characterized by the sampling distribution of θ̂ − θc

and βi. Typically, knowing the exact sampling distribution of θ̂−θc is difficult, but under some

regularity conditions we can approximate it with the asymptotic distribution of θ̂ (Amemiya 1985):

√
m(θ̂−θc)

D−→N(0,Σ(θc)) as m→∞, (6)
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where Σ(θc) is the asymptotic variance-covariance matrix of θ̂. When F c is a set of q > 1 input

distributions, we can define the asymptotic distribution in (6) by assuming the ratios of the numbers

of observations, m1/m,m2/m, . . . ,mq/m, converge to positive constants as m→∞ (Cheng and

Holland 1997). In this case, Σ becomes a function of the limiting ratios as well as θc.

Given {β1, β2, . . . , βk}, we can approximate the joint distribution of {β>i (θ̂ − θc)}ki=1 by the

following multivariate normal distribution:

β>1 (θ̂−θc)

β>2 (θ̂−θc)

...

β>k (θ̂−θc)


∼N


0,

1

m



β>1 Σ(θc)β1 β
>
1 Σ(θc)β2 · · · β>1 Σ(θc)βk

β>2 Σ(θc)β1 β
>
2 Σ(θc)β2 · · · β>2 Σ(θc)βk

...
...

. . .
...

β>k Σ(θc)β1 β
>
k Σ(θc)β2 · · · β>k Σ(θc)βk




. (7)

This joint distribution is key since it includes the CID effects across all k systems. Under

Model (5), bi(θ̂,θ
c) − b`(θ̂,θ

c) = (βi − β`)
>(θ̂ − θc), which captures how differently two sys-

tems i and ` are affected by the common input model F (·|θ̂). The joint distribution of (βi −

β`)
>(θ̂ − θc),∀` 6= i can be derived from (7). For instance, if i = 1, the joint distribution of{

(β1−β2)
>(θ̂−θc), (β1−β3)

>(θ̂−θc), . . . , (β1−βk)>(θ̂−θc)
}

is

N


0,

1

m



(β1−β2)
>Σ(θc)(β1−β2) (β1−β2)

>Σ(θc)(β1−β3) · · · (β1−β2)
>Σ(θc)(β1−βk)

(β1−β3)
>Σ(θc)(β1−β2) (β1−β3)

>Σ(θc)(β1−β3) · · · (β1−β3)
>Σ(θc)(β1−βk)

...
...

. . .
...

(β1−βk)>Σ(θc)(β1−β2) (β1−βk)>Σ(θc)(β1−β3) · · · (β1−βk)>Σ(θc)(β1−βk)




.

(8)

Clearly, Model (5) is an approximation as it drops terms nonlinear in (θ̂− θc), and therefore

does not fully capture the the finite-sample bias in Ȳi(θ̂) in general. If we assume that ηi(θ̂) is twice

differentiable in θc, then the remainder not captured by Model (5) is Op(||θ̂− θc||2) =Op(m
−1),

which converges faster than input uncertainty as m increases and therefore does not affect our

asymptotic argument for the IOU-C procedure in Section 6.

We also need the joint distribution of the stochastic errors across all k systems to form the CIs.

To make the overall interval widths as narrow as possible, we adopt CRN and run the same number
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of replications, n, for all k systems using F (·|θ̂). Since IOU-C is based on MCB and MCB CIs are

constructed from Equation (2), the variance-covariance matrix of {εi(θ̂)− ε`(θ̂)}k`=1, 6̀=i, which we

denote by Vi(θ̂), is of interest.

For the traditional MCB problem without input uncertainty, Nelson (1993) shows that we

can obtain the exact coverage probability for MCB CIs under a normality assumption when the

variance-covariance matrix of the stochastic errors has the following property known as sphericity:

V (θ̂) =



2ψ1(θ̂) + τ 2(θ̂) ψ1(θ̂) +ψ2(θ̂) · · · ψ1(θ̂) +ψk(θ̂)

ψ1(θ̂) +ψ2(θ̂) 2ψ2(θ̂) + τ 2(θ̂) · · · ψ2(θ̂) +ψk(θ̂)

...
...

. . .
...

ψ1(θ̂) +ψk(θ̂) ψ2(θ̂) +ψk(θ̂) · · · 2ψk(θ̂) + τ 2(θ̂)


, (9)

where τ 2(θ̂) >

√
k
∑k

i=1ψi(θ̂) −∑k

i=1ψi(θ̂) to ensure that V (θ̂) is positive definite. Sphercity

causes the structure of Vi(θ̂) to simplify so that all k − 1 variance terms become 2τ 2(θ̂) and

all pairwise covariances are τ 2(θ̂), which reduces estimating the full V (θ̂) to estimating τ 2(θ̂).

Nelson (1993) shows mathematically and empirically that the MCB procedure assuming sphericity

provides robust coverage even when the true variance-covariance matrix of the simulation outputs

departs significantly from the sphericity assumption. Moreover, Nelson and Matejcik (1995) propose

an MCB procedure that provides exact finite-sample coverage when sphericity and normality are

assumed.

The IOU-C procedure introduced in the following sections allows V (θ̂) to have a general struc-

ture. The procedure can be simplified under the sphericity assumption. We comment on these

changes when relevant.

5. Computing Confidence Interval Widths

In this section, we provide the details of Steps 4–5 of the IOU-C procedure in Section 3. We start

by estimating the joint distributions of the CID effects and stochastic errors using Model (5) in

Section 4 and compute w
(1)
i` and w

(2)
i` from them. In Section 6, we show these CI widths provide

the desired statistical guarantee asymptotically as m and n increase under mild conditions.
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5.1. Interval Widths due to CID effects

As derived in Section 3, w
(1)
i` is determined by the distribution of the difference between CID effects

of two systems, bi(θ̂,θ
c)− b`(θ̂,θc). Under Model (5), bi(θ̂,θ

c)− b`(θ̂,θc) = (βi−β`)>(θ̂−θc) and

therefore, w
(1)
i` is the α1-quantile of (βi−β`)>(θ̂−θc). However, it turns out to be difficult to find a

pivotal quantity that provides the distribution of (βi−β`)>(θ̂−θc). On the other hand, there are

several methods to estimate gradients β1, β2, . . . , βk (Fu 2015) and the distribution of θ̂−θc can be

approximated by its asymptotic distribution (6). We propose two variations of IOU-C procedures

in the following.

One way to approximate the joint distribution of the CID effects is to plug estimates,

β̂1, β̂2, . . . , β̂k, into (7) and compute w
(1)
i` by finding multivariate normal quantiles. We call this the

plug-in IOU-C procedure and show that it provides the desired statistical guarantee asymptotically

in Section 6 given our choice of gradient estimator.

The plug-in procedure ignores the estimation errors of β̂1, β̂2, . . . , β̂k. While this does not affect

the asymptotic guarantee, it may result in lower coverage probability than desired for small m and

n. Alternatively, we propose the all-in IOU-C procedure that solves
(
k
2

)
optimization problems to

obtain interval widths that incorporate the estimation errors of the gradients.

Let B>i = {(βi−β1)
>, (βi−β2)

>, . . . , (βi−βi−1)>, (βi−βi+1)
>, . . . , (βi−βk)>}. We denote the

following optimization problem as Pi`:

min (βi−β`)>(θ̂−θc) (10)

subject to Bi ∈CR1,α11
, (11)

(θ̂−θc)∈CR2,α12
(12)

where CR1,α11
⊂R(k−1)p contains Bi with probability 1−α11 and CR2,α12

⊂Rp includes θ̂−θc with

probability 1−α12. Note that θ̂ in (10) and (12) is a random variable rather than the particular

realization of θ̂ estimated from the m real-world observations. Thus, we treat θ̂ − θc as a p-

dimensional vector of decision variables for Pi`. In words, Pi` finds the smallest inner product,
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(βi − β`)>(θ̂ − θc), given separate confidence regions for βi − β` and θ̂ − θc. Clearly, Pr{Bi ∈

CR1,α11
, (θ̂−θc)∈CR2,α12

} ≥ 1−α11−α12. Suppose we choose α11, α12 > 0 such that α1 = α11+α12.

Then, by equating the optimal soluiton of Pi` with −w(1)
i` for all ` 6= i for each i we achieve

Pr{(βi−β`)>(θ̂−θc)≥−w(1)
i` ,∀` 6= i} ≥ 1−α1. (13)

Note that the joint confidence region for Bi in (11) is shared by all Pi` for all ` 6= i, which is essential

to provide the joint probability guarantee in (13). If for each Pi` we use a confidence region just

for βi−β` instead of (11), then we cannot guarantee (13).

In the development in Sections 5.1.1–5.1.2, we provide asymptotically valid CR1,α11
and CR2,α12

,

and employ a tool for incorporating the effect of CRN to reformulate Pi` as

min (βi−β`)>(θ̂−θc)

subject to (Bi− B̂i)>V−1i (Bi− B̂i)≤ χ2
(k−1)p,α11

, (14)

m(θ̂−θc)>Σ−1(θ̂)(θ̂−θc)≤ χ2
p,α12

, (15)

where Vi is a consistent estimator of the variance-covariance matrix of B̂i. Here, χ2
ν,β is the (1−β)-

quantile of the χ2 distribution with ν degrees of freedom.

Although Pi` is a non-convex optimization problem and difficult to solve to optimality in general,

it has a bilinear objective function with separable convex constraints for Bi and θ̂ − θc. Once

θ̂−θc is fixed, the resulting problem has a quadratic constraint with a linear objective function,

which can be solved to optimality easily; given θc− θ̂, the optimal value of Bi obtained from the

Karush-Kuhn-Tucker (KKT) conditions for the modified problem is B̂i−Viν`
√
χ2
(k−1)p,α11

/ν>` Viν`,

where ν` = e` ⊗ (θ̂− θc) for (k − 1)× 1 `th unit directional vector e` and A⊗B represents the

Kronecker product of matrices A and B. Thus, the corresponding optimal objective function value

is

(β̂i− β̂`)>(θ̂−θc)−
√
χ2
(k−1)p,α11

ν>` Viν`

= (β̂i− β̂`)>(θ̂−θc)−
√
χ2
(k−1)p,α11

(θ̂−θc)>Vi(`, `)(θ̂−θc), (16)
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where the equality is obtained by plugging in ν` = e`⊗ (θ̂−θc) and given Vi(`, `), the p× p block

diagonal matrix of Vi corresponding to β̂i− β̂`.

In the following section, we propose a gradient estimation method that we use for both plug-in

and all-in IOU-C procedures as well as the confidence regions for Pi` derived from the gradient

estimators. Readers may skip Sections 5.1.1–5.1.2 without loss of continuity.

5.1.1. Gradient Estimation and Confidence Regions of Pi` From (6), we have CR2,α12
={

θ̂−θc :m(θ̂−θc)>Σ−1(θ̂)(θ̂−θc)≤ χ2
p,α12

}
, which provides 1−α12 asymptotic coverage proba-

bility as m increases under mild conditions (Amemiya 1985). Notice that Σ(θc) in (6) is replaced

with its plug-in estimator, Σ(θ̂).

Defining CR1,α11
that provides the correct asymptotic probability coverage requires more effort.

We fit Model (5) by linear regressions to obtain β̂1, β̂2, . . . , β̂k as well as CR1,α11
. Suppose we sam-

ple the regression design points, θ̂
(1)
, θ̂

(2)
, . . . , θ̂

(B)
, from N(θ̂,Σ(θ̂)/m), which is the estimated

asymptotic distribution of θ̂ in (6) where θc is replaced by θ̂. For each θ̂
(b)

, we run one replication

from each system to obtain Y1(θ̂
(b)

), Y2(θ̂
(b)

), . . . , Yk(θ̂
(b)

) using CRN. For each system i, we fit

a linear regression model with response vector Yi =
(
Yi(θ̂

(1)
), Yi(θ̂

(2)
), . . . , Yi(θ̂

(B)
)
)>

and design

matrix X = [1B : C], where 1B is a B-dimensional column vector of 1’s and C is the B× p matrix

whose rows are (θ̂
(1)− θ̂)>, (θ̂

(2)− θ̂)>, . . . , (θ̂
(B)− θ̂)>. From the least squares method, the esti-

mator of βi is β̂i = (C>(IB − 1B1>B)C)−1C>Yi, where IB is the B×B identity matrix. Note that

(C>(IB −1B1>B)C)−1 is the lower p× p submatrix of (X>X)−1, which we denote by Spp.

For finite m and B, β̂i is not an unbiased estimator of βi ≡ ∇ηi(θc) as the design points of

the regressions are centered at θ̂ instead of θc. The following proposition states the asymptotic

normality and consistency results of our gradient estimator when m and B increase at the right

rate under Assumption 1 in Section 6; this result is of independent interest.

Proposition 1. As m → ∞, for all i 1)
√
B/m(B̂i−Bi)

∣∣∣ θ̂ converges weakly uniformly to

N(0, Vi(θ
c)⊗Σ−1(θc)) in probability, if B =mγ for 0<γ < 2, and 2) β̂i

p−→ βi, if B =mγ for γ > 1.
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The proof of Proposition 1 can be found in Section EC.5 of the electronic companion of this

paper. In general, a sequence of distributions {Fm(·)} is said to converge weakly uniformly to

F c(·) if supx |Fm(x)−F c(x)| → 0. Suppose we replace Fm(·) with conditional distribution F (·|θ̂).

If supx |F (x|θ̂)−F c(x)| p−→ 0, then F (·|θ̂) is said to converge weakly uniformly to F c(·) in proba-

bility. Proposition 1 applies this convergence scheme for B̂i whose distribution is conditional on θ̂

guaranteeing that for any θ̂ estimated from the real-world sample of size m, the confidence region

for βi provides the same coverage.

Notice that different rates are required for B to obtain asymptotic normality of
√
B/m(B̂i−Bi)

and consistency of β̂i, respectively. Design points for the regression sampled from N(θ̂,Σ(θ̂)/m)

become more and more concentrated near θ̂ as m increases. Therefore, if we increase B too slowly,

then X>X becomes singular and we cannot achieve consistency of β̂i. On the other hand, asymptotic

normality of
√
B/m(B̂i −Bi) holds for smaller B than consistency because of the scaling factor,√

B/m. At the same time, if we increase B too fast relative to m, then the bias in β̂i due to the

nonlinearity of ηi(θ̂) does not fade away fast enough as m increases; therefore
√
B/m(β̂i− βi) no

longer has a finite mean. Although consistency of β̂i is of independent interest, the normality result

in Proposition 1 is what provides the asymptotic probability guarantee for the plug-in and all-in

IOU-C procedures. See Section 6 for further discussion.

The proposed gradient estimator is not a typical choice of stochastic gradient estimator,

however, it is particularly advantageous for IOU-C as it is easy to form confidence region

CR1,α11
for Bi. Lemma 2 in Section EC.5 shows Spp is a consistent estimator of Σ−1(θc) under

Assumption 1. Let eib = Yi(θ̂
(b)

)− β̂>i (θ̂
(b) − θ̂) for i = 1,2, . . . , k and b = 1,2, . . . ,B and e−i,b =

(e1b, e2b, . . . , e(i−1)b, e(i+1)b, . . . , ekb)
>− eib1k−1, where 1k−1 is (k− 1)× 1 vector of ones. From these,

we can compute V̂i, the sample variance-covariance matrix of e−i,1,e−i,2, . . . ,e−i,B. Lemma 5 in

Section EC.5 shows that V̂i is a consistent estimator of Vi(θ
c) under Assumption 1. Thus, CR1,α11

=

{Bi : (Bi− B̂i)>V−1i (Bi− B̂i)≤ χ2
(k−1)p,α11

} is an asymptotic 1−α11 confidence region for Bi, where

Vi ≡ V̂i⊗Spp. Therefore, Vi(`, `) in (16) is V̂i(`, `)Spp, where V̂i(`, `) is the `th diagonal element of

V̂i.
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If we assume sphericity for V (θ̂), then

Vi = 2τ̂ 2



1 1/2 · · · 1/2

1/2 1 · · · 1/2

...
...

. . .
...

1/2 1/2 · · · 1


⊗Spp, (17)

where τ̂ 2 =
∑k

i=1

∑B

b=1(eib − ēi· − ē·b + ¯̄e)2/(k− 1)(B − p− 2) given ēi· =B−1
∑B

b=1 ei(θ̂
(b)

) for i=

1,2, . . . , k, ē·b = k−1
∑k

i=1 ei(θ̂
(b)

) for b = 1,2, . . . ,B, and ¯̄e = k−1
∑k

i=1 ēi·. Therefore, Vi does not

depend on i and Vi(`, `) = 2τ̂ 2Spp for any ` 6= i, which further simplifies (16).

Note that using the same design points, θ̂
(1)
, θ̂

(2)
, . . . , θ̂

(B)
, or applying CRN for the linear regres-

sions is not necessary; the framework of IOU-C procedure allows fitting k regressions completely

independently to obtain the joint confidence region for Bi. However, doing so makes wi`, i 6= `, wider

causing the procedure to be less efficient.

Remark: In fact, the joint asymptotic coverage probability of CR1,α11
and CR2,α12

is greater

than 1 − α11 − α12. In Lemma 6 in Section EC.5, we show that the two events {Bi ∈ CR1,α11
}

and {θ̂−θc ∈CR2,α12
} are asymptotically independent, therefore, their joint asymptotic coverage

probability is actually (1−α11)(1−α12).

Remark: The sample size B required for consistency of our gradient estimator β̂i is smaller

than that of the simultaneous perturbation stochastic approximation gradient estimator (SPSA,

Spall 1992). The SPSA gradient estimator converges to the true gradient in Op(B
−1/3) when θc

is known by choosing the optimal perturbation constant. Since θc is unknown for our problem,

we estimate βi using an estimator of ∇ηi(θ̂) whose bias cannot be improved from O(m−1). By

selecting the perturbation constant to match the bias, the variance of the SPSA estimator becomes

O(m/B). As a result, B =O(m3) to balance the variance and bias, which is larger than our choice

for B.
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5.1.2. Reformulation of Pi` Employing our choices for the confidence regions, con-

straints (11) and (12) of Pi` are replaced by (14) and (15). Since CR2,α12
is a symmetric hyper-

ellipsoid with respect to the origin,

− inf
Bi∈CR1,α11

, (θ̂−θc)∈CR2,α12

(βi−β`)>(θ̂−θc) = sup
Bi∈CR1,α11

, (θ̂−θc)∈CR2,α12

(βi−β`)>(θ̂−θc).

In other words, [−w(1)
i` ,w

(1)
i` ] provides a symmetric two-sided (1 − α11)(1 − α12) CI for

(βi − β`)
>(θ̂ − θc). Because we only need one-sided CIs for our procedure, we can set

Pr
{

(β̂i− β̂`)>(θ̂−θc)≥−w(1)
i` ,∀` 6= i

}
= 1 − (α11 + α12 − α11α12)/2, i.e., α1 = (α11 + α12 −

α11α12)/2, which makes w
(1)
i` smaller.

The following proposition lets us focus on the boundary points of the feasible region of Pi` to

obtain its optimal solution.

Proposition 2. For all i 6= `, the optimal objective function value of

min (βi−β`)>(θ̂−θc)

subject to (Bi− B̂i)>V−1i (Bi− B̂i) = χ2
(k−1)p,α11

,

m(θ̂−θc)>Σ−1(θ̂)(θ̂−θc) = χ2
p,α12

,

is the same as the optimal objective function value of Pi`.

The proof of Proposition 2 can be found in Section EC.1, which relies on showing that an optimal

solution of Pi` is found at the boundary of two hyperellipsoidal constraints on Bi and θ̂−θc. From

Proposition 2, we devise a random search algorithm for Pi` in Section EC.2.

5.2. Interval Widths due to Stochastic Error

In Section 3, we showed that the interval widths due to input uncertainty and the inter-

val widths due to stochastic error can be obtained separately if we find w
(2)
i` ,∀` 6= i that

satisfy (4) for any given F̂ = F (·|θ̂). Since we focus on the asymptotic coverage of the

IOU-C intervals as n,m → ∞, the joint distribution of {ε̄i(θ̂) − ε̄i(θ̂)}k`=1, 6̀=i converges to
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N(0, Vi(θ
c)) under Assumption 1. Similar to V̂i in Section 5.1, we can compute the esti-

mator, V̂i(θ̂), of Vi(θ
c) by computing the sample variance-covariance matrix of Y−i,j =(

Yij(θ̂)−Y1j(θ̂), Yij(θ̂)−Y2j(θ̂), · · · , Yij(θ̂)−Yi−1,j(θ̂), Yij(θ̂)−Yi+1,j(θ̂), · · · , Yij(θ̂)−Ykj(θ̂)
)>

for j = 1,2, . . . , k. Given V̂i(θ̂), (w
(2)
i1 ,w

(2)
i2 , · · · ,w(2)

i,i−1,w
(2)
i,i+1, · · · ,w(2)

ik ) is a (k − 1)-dimensional

1−α2 vector quantile of N(0, V̂i(θ̂)/n), which can be obtained via the Multidimensional Quantile

Estimation algorithm in Section EC.3. Since
√
nε̄i(θ̂), i= 1,2, . . . , k converges weakly to a normal

distribution conditional on θ̂ under Assumption 1, w
(2)
i` ,∀` 6= i, satisfy (4) for any θ̂ as n increases.

Both V̂i(θ̂) and V̂i are consistent estimators of Vi(θ
c). However, the former is obtained from n

replications of each system and the latter is from the the regression residuals. To provide a correct

statistical guarantee with our procedure, the replications should be run independently from the

regressions using different random numbers so that w
(1)
i` and w

(2)
i` are independent conditional on

θ̂.

Under the sphericity assumption on V (θc), estimating Vi(θ
c) simplifies to estimating τ 2(θc)

from n replications of the k systems. Nelson and Matejcik (1995) provide an MCB procedure

with fixed interval lengths by assuming normality of simulation outputs and sphericity of V (θc)

when θc is known. Applying their method, we can set w
(2)
i` =

√
2
n
sTk−1,(k−1)(n−1),1/2,α2

,∀` 6= i, where

Tk−1,(k−1)(n−1),1/2,α2
is the 1−α2 quantile of a multivariate-t distribution of dimension k− 1 with

(k− 1)(n− 1) degrees of freedom and common correlation 1/2 and

s2 =
1

(k− 1)(n− 1)

k∑
i=1

n∑
j=1

(
Yij(θ̂)− Ȳi(θ̂)− Ȳ·j(θ̂) + ¯̄Y (θ̂)

)2

, (18)

given Ȳ·j(θ̂) = k−1
∑k

i=1 Yij(θ̂) for j = 1,2, . . . , n, and ¯̄Y (θ̂) = k−1
∑k

i=1 Ȳi(θ̂).

Another benefit of the sphericity assumption is that we can account for the estimation error

in s2. For any finite n, V̂i(θ̂) has estimation error. If we assume normality of simulation output,

then w
(2)
i` =

√
2
n
sTk−1,(k−1)(n−1),1/2,α2

gives the exact 1−α2 coverage for the interval widths due to

stochastic error for any finite n.



Song and Nelson: Input-Output Uncertainty Comparisons for DOvS
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

5.3. Plug-in and All-in IOU Comparisons Procedures

We first present the all-in IOU-C procedure that incorporates the interval width computation

discussed in Sections 5.1–5.2. See Assumption 1.(ii) for the definition of Σ(·) in Step 3.(b).

All-in IOU-C

1. Select 0<α1, α2 < 1/2 such that 1−α= (1−α1)(1−α2) for given 0<α< 1/2.

2. Compute θ̂. Using F (·|θ̂) as the common input model, run n replications of all k systems with

CRN, Yi1(θ̂), Yi2(θ̂), . . . , Yin(θ̂), for i= 1,2, . . . , k. Compute Ȳi(θ̂) = Σn
j=1Yij(θ̂)/n.

3. (Interval widths due to CID effects)

(a) Select 0<α11, α12 < 1 such that α1 = (α11 +α12−α11α12)/2.

(b) Generate θ̂
(1)
, θ̂

(2)
, . . . , θ̂

(B)
from N(θ̂,Σ(θ̂)/m).

(c) For each b = 1,2, . . . ,B, use CRN to simulate all k systems to obtain

Y1(θ̂
(b)

), Y2(θ̂
(b)

), . . . , Yk(θ̂
(b)

).

(d) For each i, fit a linear regression to compute β̂i using response Yi =(
Yi(θ̂

(1)
), Yi(θ̂

(2)
), . . . , Yi(θ̂

(B)
)
)>

and design matrix [1B : C], where the bth row of C

corresponds to θ̂
(b)>

.

(e) From the residuals of the regressions in (d), compute V̂i for i= 1,2, . . . , k.

(f) For each combination (i, `), i 6= `, solve Pi` and set −w(1)
i` equal to its optimal solution.

4. (Interval widths due to stochastic error) From the replications in Step 2, compute V̂i

for i = 1,2, . . . , k and apply the Multidimensional Quantile Estimation algorithm in Section

EC.3 to find w
(2)
i` ,∀` 6= i.

5. For each combination (i, `), i 6= `, set wi` =w
(1)
i` +w

(2)
i` . Use Theorem 1 to derive 1−α simul-

taneous comparisons CIs.

As mentioned in Section 5.1–5.2, we can simplify Steps 3(e) and 4 by assuming sphericity of V (θc).

The plug-in procedure has the same steps as the all-in IOU-C except that Steps 3(e)–(f) are

replaced by the following step:

Plug-in IOU-C
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3. (e) For each i, plug in β̂1, β̂2, . . . , β̂k to (8) (by replacing 1 with i). Compute the (k − 1)-

dimensional (1−α1) quantile {wi`,∀` 6= i} of the plug-in distribution.

We can once again apply the Multidimensional Quantile Estimation algorithm in this step.

As pointed out in Section 3, the CIs obtained from IOU-C are wider than MCB CIs as we have the

interval widths due to input uncertainty added to those due to stochastic error. Not surprisingly,

the CIs from all-in IOU-C are wider than those from plug-in IOU-C as the former account for the

estimation error in the gradients. Splitting 1−α into 1−α1 and 1−α2 to obtain the interval widths

due to input and stochastic uncertainty independently makes the combined interval widths from

the all-in procedure larger. Moreover, the optimal solution to Pi` tends to provide conservative

w
(1)
i` . In fact, solving Pi` for all ` 6= i for fixed θ̂−θc has the same implication as obtaining 1−α11

simultaneous CIs for (θ̂− θc)>(β̂i − β̂`) for all ` 6= i given CR1,α11
, which is known as Scheffé’s

method (Seber and Lee 2003). Scheffé’s method tends to be conservative because it is designed to

provide valid simultaneous CIs for any set of linear combinations of the regression coefficients. This

conservatism also affects the CIs obtained from IOU-C. We empirically compare the performance

of both all-in and plug-in IOU-C procedures in Section 7.

6. Asymptotic Validity

In this section, we provide the conditions under which the plug-in and all-in IOU-C procedures

provide an asymptotic 1−α probability guarantee as m,B and n increase.

As mentioned in Section 5.1.1, β̂i is not an unbiased estimator of βi for finite m since the

design points of the regression are centered at θ̂. Moreover, Model (5) approximates ηi(θ̂) with a

linear function of θ̂, while ηi(θ̂) is typically nonlinear in θ̂. Therefore, for both plug-in and all-in

procedures we need 1) asymptotic normality of MLE θ̂, 2) consistency of β̂i, and 3) Model (5) to

be an exact representation of ηi(θ̂) in the limit (m→∞) to prove an asymptotic guarantee. For

the all-in procedure, we need not only consistency of β̂i, but also its asymptotic normality stated

in Proposition 1 to ensure w
(1)
i` , i 6= `, provide CIs with the correct asymptotic coverage. For both

procedures, the Central Limit Theorem for Ȳi(θ̂), i = 1,2, . . . , k, as n→∞ provides the correct
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asymptotic coverage of w
(2)
i` , i 6= `. Below, we state a list of assumptions under which we show the

asymptotic probability guarantee of plug-in and all-in IOU-C.

Assumption 1.

(i) For F (·|θ), we have θc, θ̂∈Θ, where Θ is a compact set in Rp.

(ii) All of the necessary regularity conditions are satisfied for θ̂ to have, as m→∞,

(a) (Consistency) θ̂
a.s.−−→θc.

(b) (Asymptotic normality)
√
m(θ̂−θc)

D−→N(0,Σ(θc)), where Σ(θc) = I−1(θc) and I(·)

is the Fisher information matrix of F (·|θc).

(iii) For each i, ηi(·) is twice continuously differentiable in a neighborhood of θc.

(iv) For any θ∈Θ, εi(θ)|θ∼ (0, σ2
i (θ)), where 0<σ2

i (θ)<∞, and σ2
i (θ) is a continuous function

of θ at θ=θc.

(v) For each i and θ̂
(b) i.i.d.∼ N

(
θ̂,Σ(θ̂)/m

)
given θ̂∈Θ

(a) All elements of E
[√

mσ2
i (θ̂

(b)
)(θ̂

(b)− θ̂)
∣∣∣ θ̂] are bounded in Θ.

(b) All elements of E
[
mσ2

i (θ̂
(b)

)(θ̂
(b)− θ̂)(θ̂

(b)− θ̂)>
∣∣∣ θ̂] are bounded in Θ.

(c) E
[
ε4i (θ̂

(b)
)
∣∣∣ θ̂] is bounded in Θ.

(d) There exists u? ∈R such that

E

[
ε3i (θ̂

(b)
)

{
Var

(
εi(θ̂

(b)
)
)−1

+ (θ̂
(b)− θ̂)>Cov

(
εi(θ̂

(b)
)(θ̂

(b)− θ̂)
)−1

(θ̂
(b)− θ̂)

}3/2
∣∣∣∣∣ θ̂
]
<u?

for all θ̂∈Θ.

(vi) For each (i, `), i 6= `, we have an oracle to solve Pi` to optimality.

(vii) Given probability 0< δ < 1 and the distribution of a D-dimensional multivariate normal ran-

dom vector Z = {Z1,Z2, . . . ,ZD}, we find an exact δ-quantile q(δ) = {q1(δ), q2(δ), . . . , qD(δ)}

such that Pr{Zd ≤ qd(δ),∀d}= δ.

Assumption 1(i) is one of the regularity conditions required for Assumption 1(ii), however, we state

it separately as it is frequently referred to in other conditions and the proofs in Section EC.5.

The regularity conditions in Assumption 1(ii) can be found in Amemiya (1985). Assumption 1(iii)
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provides smoothness conditions on ηi(θ̂) to guarantee consistency of β̂i. The continuity of σ2
i (θ̂)

in Assumption 1 (iv) causes the dependence of the distribution of εi(θ̂) on θ̂ to fade away as θ̂

converges to θc, making V̂i and V̂i(θ̂) consistent estimators of Vi(θ
c).

One challenge to show asymptotic validity of both plug-in and all-in IOU-C is that the resulting

interval widths are conditional on the particular θ̂ computed from the real-world sample in Step 2.

Thus, we need to show that the procedures provide the desired probability guarantee uniformly

over θ̂ as m→∞. Assumption 1(v) enables us to obtain such consistency over θ̂∈Θ. In particular,

Assumption 1(v)(a)–(c) ensure the conditional moments of (θ̂−θc) and εi(θ̂) on θ̂ to be bounded

for any θ̂ ∈ Θ so that they converge to the right moments in the limit. Assumption 1(v)(d) is

a sufficient condition to apply the Berry-Esseen theorem in the proof of Lemma 4, which is an

intermediate step to prove Proposition 1. The conditions in Assumption 1(v) are fairly mild: for

instance, these moment conditions are satisfied if σ2
i (θ̂) is a polynomial in θ̂.

Assumption 1(vi) may appear strong since we solve Pi` by the random search algorithm in

Section EC.3. We show that the Random Search algorithm’s probability of finding a solution within

an ε optimality gap converges to 1 exponentially as its sample size L increases in Section EC.3.

Nevertheless, we are not too concerned with the optimality gap of the random search algorithm

due to the inherent conservatism of the all-in procedure discussed in Section 5.3. Even if it finds a

suboptimal solution of Pi` and therefore makes w
(1)
i` smaller than at optimality, the all-in procedure

shows good empirical performance. In fact, the results in Section 7 show that the all-in procedure

is still conservative even if we use the random search to solve Pi`.

Assumption 1(vii) states that given the plug-in distribution of CID effects and Vi(θ̂), we can

find the exact multidimensional quantile vectors for −w(1)
i` and −w(2)

i` , respectively. The Multi-

dimensional Quantile Estimation algorithm in Section EC.3 samples Q points from the plug-in

distribution to find the Monte Carlo estimator of the quantile. As Q→∞, the Monte Carlo esti-

mator converges to the true 1− δ quantile of the given multivariate normal distribution. If desired,

one could use an upper confidence bound for this value.
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Theorem 2 states that both plug-in and all-in procedures provide an asymptotic 1−α probability

guarantee under Assumption 1. The proof of the theorem can be found in Section EC.3.

Theorem 2. Under Assumption 1, if B = mγ ,0 < γ < 2, then as m → ∞, n → ∞

Pr
{
Ȳi(θ̂)− Ȳ`(θ̂)− (ηi(θ

c)− η`(θc))≥−wi`,∀` 6= i
}
→ (1−α1)(1−α2) given 1) wi`, i 6= `, from the

plug-in IOU-C procedure, or 2) wi`, i 6= `, from the all-in IOU-C procedure.

Theorem 2 requires B = mγ for 0 < γ < 2, which is the condition for asymptotic normality of√
B/m(B̂i − Bi) in Proposition 3 in Section EC.5. In fact, we do not need consistency of B̂i

itself for either the all-in or plug-in IOU-C procedure. For the former, asymptotic normality is

sufficient to provide confidence region for Bi with the correct asymptotic probability coverage.

For the plug-in procedure, we essentially approximate the asymptotic distribution of β>i (θ̂− θ)

by N(0, β̂>i Σ(θ̂)β̂i/m). Hence, even if β̂i has op(m
1/2) error, β̂>i Σ(θ̂)β̂i/m= β>i Σ(θc)βi/m+ op(1)

and β>i (θ̂− θ)
D−→N(0, β̂>i Σ(θ̂)β̂i/m) by the continuous mapping theorem as m→∞. Note that

β̂i = βi + op(m
1/2), if B =mγ ,0<γ < 2.

Both procedures require k(B + n) simulations in total. Since γ can be arbitrarily close to 0, B

need not be too large to provide the asymptotic probability guarantee. For the plug-in procedure,

a different gradient estimation method may be used as long as it has op(m
1/2) error. An alternative

approach to estimate the gradients is to use the method of Wieland and Schmeiser (2006), which

uses the MLE computed from the input random variates generated from F (·|θ̂) within each repli-

cation of Yi(θ̂) as the corresponding design point to fit the regression models, and therefore does

not require additional simulation effort beyond the n replications spent for each of k systems.

7. Experiment Results

In this section, we demonstrate the performance of the plug-in and all-in IOU-C procedures using

an (s,S) inventory problem modified from Koenig and Law (1985) and compare them to the results

from the conditional MCB procedure, which ignores input uncertainty by assuming θ̂ = θc and

only accounts for the stochastic error representing the current state of practice. We present the

results from these experiments graphically, deferring the detailed numerical results to Section EC.4.
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We also summarize application of IOU-C to a series of test cases with known ηi(θ
c) in which we

controlled mean and CID effect configurations of the systems as well as the nonlinearity of ηi(θ
c).

The objective function for the (s,S) inventory problem is the expected average cost per period

over 30 periods. The problem has three stochastic input processes, demand per period, lead time,

and yield of the delivered order. The demand per period is a sequence of i.i.d. Poisson random

variables with a common mean of 10. The order and unit shipping costs are $50 and $0.5, respec-

tively, and the holding cost of inventory and the back-order cost are $1 and $3 per unit, per period,

respectively. The lead time until the placed order arrives follows a geometric distribution with

probability of success 0.5. The actual number of units that arrive has a binomial distribution where

the probability that each unit in the order arrives is 0.95. Therefore, θc = (10,0.5,0.95).

We consider k = 23 (s,S) inventory policies: {(s,S) : s ∈ {10,20,30,40,50,60,70}, S ∈

{50,60,70,80}, s < S} ∪ (25,35). Table 1 shows the expected cost of each solution. Note that the

expected cost of the optimal solution, i= 1: (25,35), is $0.21 lower than that of the second best,

i = 2: (10,50), which makes this example more interesting as the two lowest objective function

values are close. Each replication of the simulator is a batch mean of 100 iterations of the 30-period

simulation. This enhances the performance of IOU-C since it makes the joint distribution of Yi(θ̂
(b)

)

and θ̂
(b)

close to multivariate normal. We consider the negative of expected cost as the objective,

which results in a maximization problem.

We assume that the distribution families are known, but θ̂ is estimated from data using MLEs.

At each run of IOU-C, m= 100 or m= 400 “real-world” observations from the true demand, lead

time, and yield distributions are collected to estimate θ̂. This is impossible in a real-world problem

as we only have one set of real-world observations.

We set γ = 1.1, which gives B = dm1.1e= 159 for m= 100 for the number of design points to fit

the linear regressions. A total of L= 1,000 values of (θ̂−θc) were sampled in the random search

algorithm (see Section EC.2) to approximate the optimal solutions of Pi`, i 6= `. Each system was

simulated n= 100 times using θ̂ to obtain the interval widths due to stochastic uncertainty. The
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Table 1 Expected cost per period of 23 (s,S) inventory policies estimated from Monte Carlo simulations. The

standard errors are presented in the parentheses.

i 1 2 3 4 5 6 7 8 9 10 11 12

s 25 10 20 30 40 10 20 30 40 50 10 20

S 35 50 50 50 50 60 60 60 60 60 70 70

E[cost] 56.28 56.48 63.25 74.92 90.75 72.04 80.26 92.79 108.74 129.64 90.37 99.94

(0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.03) (0.02) (0.02)

i 13 14 15 16 17 18 19 20 21 22 23

s 30 40 50 60 10 20 30 40 50 60 70

S 70 70 70 70 80 80 80 80 80 80 80

E[cost] 113.79 130.90 152.46 176.32 114.67 126.11 141.38 159.94 182.32 207.23 236.52

(0.02) (0.03) (0.03) (0.04) (0.02) (0.02) (0.03) (0.03) (0.04) (0.04) (0.05)

target probability guarantee is set to 1− α = 0.9, where 1− α1 = 0.92/3 and 1− α2 = 0.91/3 are

used to obtain the interval widths due to CID effects and stochastic uncertainty, respectively. We

set α11 = α12 = 0.0703 for the confidence regions in Pi` by solving (α11 + α12 − α11α12)/2 = α1

as discussed in Section 5.1.2. We also did not assume sphericity of the simulation error variance-

covariance matrix for the experiments presented in this section.

Figure 2 shows the results averaged across 1,000 runs of all three procedures when the number of

“real-world” observations is m= 100. When creating the “real-world” data, we resampled the yield

observations for 6 runs when all 100 yield observations were equal to 1 corresponding to the case

where there is no evidence of input uncertainty based on the observations. The x-axis of Figure 2

represents ηi(θ
c)−max` 6=i η`(θ

c) for i = 1,2, . . . ,23. Sorted in increasing order, the x-axis marks

ηi(θ
c)−max` 6=i η`(θ

c) of i = 1,2,3,6,4,7,11,5,8,12,9,13,17,18,10,14,19,15,20,16,21,22, and 23

from left to right. The right-hand-side of the y-axis represents the joint coverage probability of the

IOU-C (or MCB) CIs and the left-hand-side shows the probability that each system is in S0, which

is the set of solutions containing 0 in their IOU-C (or MCB) CIs.
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Figure 2 shows that i= 1 is included in S0 in all runs of the all-in IOU-C procedure; however,

several systems other than i= 1 are also frequently included in S0. On average, the all-in IOU-C

procedure includes 7.30 systems in S0 and its estimated simultaneous coverage probability of CIs is

1.000 (solid line), which indicates that the all-in procedure is conservative as the desired coverage

was set to 0.9. On the other hand, the plug-in IOU-C procedure only contains i= 1 and 2 in S0

while all other systems are correctly determined to be inferior in all 1,000 runs. The average subset

size of the plug-in procedure is 1.82, which is much smaller than that of all-in IOU-C, yet the

estimated simultaneous coverage probability of the plug-in procedure is 0.874 (dashed line). The

true best system, i = 1, is included in S0 in all 1,000 runs, which shows that the plug-in IOU-C

procedure has good performance despite ignoring the estimation error in the gradients. Figure 2

shows that the conditional MCB procedure contains only i= 1 or 2 in S0 in all 1,000 runs. However,

it includes i= 1 in S0 only 58.1% of the time; 41.9% of the time i= 1 was ruled to be inferior to

i= 2. This demonstrates that, depending on the real-world sample, the conditional MCB procedure

may conclude the best system to be inferior. In a real-world experiment, it is impossible to know

that such a false conclusion is made because all we have is the one set of real-world data. The

average size of S0 is 1.03 for this procedure, which is the smallest among all three procedures since

it ignores input uncertainty. Figure 2 also shows that the simultaneous MCB coverage probability

of the conditional procedure is 0.235 (dotted line), which is far lower than 0.9.

Figure 3 shows the results from all three procedures when the “real-world” sample size is

increased to m= 400 and B to d4001.1e= 729. The all-in IOU-C procedure still includes i= 1 and 2

in S0 in all 1,000 runs, while the average size of S0 drops to 3.27 as input uncertainty is smaller than

when m= 100. The simultaneous coverage probability of the all-in IOU-C CIs remains at 1.000.

The average size of S0 for the plug-in procedure is 1.84 and the simultaneous coverage probability

of the CIs is 0.872. The average size of S0 for the conditional MCB procedure is 1.09, while i= 1

is still ruled as an inferior system 33.7% of the time. The simultaneous coverage probability of the

CIs from conditional MCB is 0.229, which is still much lower than 0.9, although increased from
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the m = 100 case. Upper and lower bounds from all three procedures for m = 100 and 400 are

presented in Tables 2–3 in Section EC.4, respectively.

From the results of the all-in procedure when m= 400, i= 6 is never included in S0, whereas i= 4

is included in S0 31.7% of the time, although i= 6 has a smaller mean than i= 4. The averages of

(β̂4− β̂1)
>Σ(θ̂)(β̂4− β̂1)/m and (β̂4− β̂2)

>Σ(θ̂)(β̂4− β̂2)/m from 1,000 runs are 3.02 (standard error

= 0.02) and 1.75(0.01), respectively. On the other hand, the averages of (β̂6− β̂1)
>Σ(θ̂)(β̂6− β̂1)/m

and (β̂6− β̂2)
>Σ(θ̂)(β̂6− β̂2)/m are 0.393(0.005) and 0.795(0.012), respectively, which shows that

the CID effects to i = 6 is closer to those to i = 1 or i = 2 making it easier to rule i = 6 to be

inferior.

In this particular (s,S) inventory example, the plug-in IOU-C procedure shows excellent per-

formance by including the best system in S0 with probability greater than 1− α. However, for

small m and B the plug-in procedure may fail to include the best system in S0 if its gradient

estimate is poor. The all-in IOU-C procedure is protected against such an error by accounting for

the estimation error in the gradients at the price of its conservatism. For small m and B, w
(1)
i`

from the all-in procedure is large reflecting that the gradient estimator has large uncertainty and

includes more systems than the plug-in procedure for finite m and B. We also tested versions of

the all-in and plug-in procedures under the sphericity assumption. While the overall trends remain

the same, both all-in and plug-in procedures included more solutions in S0. Detailed results can be

found in Section EC.4.

We close this section by summarizing what we learned from the controlled experiments in which

we applied the all-in IOU-C procedure to compare k = 10 systems with 5-dimensional common

multivariate normal input models (p = 10). For each i, ηi(θ̂) = ηi(θ
c) + bi1

>
p (θ̂ − θc) + ci(θ̂ −

θc)>(θ̂−θc), where ci was adjusted relative to bi to control the nonlinearity of ηi(θ
c). The case

ci = 0,∀i was also tested to see the performance when ηi(θ
c) is truly linear. We tested different bi

to examine the impact of equal, increasing, and decreasing amounts of input uncertainty among k

systems. The true means of the systems, η1(θ
c), η2(θ

c), . . . , η10(θ
c), were set to be increasing and
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equally spaced, where the difference in means of systems i and i+ 1 was controlled relative to bi

and ci to test the impact of the relative size of input uncertainty to the mean differences.

The size of S0 is smaller when input uncertainty is relatively small compared to their mean

differences. Also, the procedure was robust to the nonlinearity of ηi(θ
c) compared to the linear case.

When all k systems are affected exactly the same by input uncertainty, i.e., bi = b,∀i, all-in IOU-C

effectively rules out the inferior systems. When better systems have higher input uncertainty, i.e.,

bi = b× i,∀i, all-in IOU-C detects the inferior systems quite well as they also have smaller input

uncertainty. The systems close to i= 10 are more frequently included in S0 since they have closer

means to the best and higher input uncertainty, which makes it difficult to tell them apart from

the best. When inferior systems have higher input uncertainty, that is, bi = b× (k− i+ 1),∀i, more

systems are included in S0 since it is difficult to rule out the inferior systems with high input

uncertainty. All of these findings coincide with the results from the (s,S) inventory problem.
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