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Abstract

The superfluid state, often obtained in the laboratory using liquid helium at very low

temperatures, provides the basis for a wide range of interesting experiments. One large

field of research relates to the study of turbulence in a superfluid, referred to as quantum

turbulence due to the importance of quantum mechanical behaviour in the description of

this phenomenon. An important experimental tool in the study of quantum turbulence is

the mechanical resonator, with many different types of oscillator seeing use. Variations in

the resonance can be related to the properties of the fluid through an understanding of

the drag applied to the object.

The many seemingly disparate measurements reported here were performed in the hope of

providing background for future development of improved experimental techniques. In an

effort to develop an improved method for determining oscillator properties, measurements

have been made using a multifrequency lock-in amplifier in superfluid 4He. The results

obtained show that the multifrequency lock-in can be used to obtain results equivalent to

the traditional method while reducing the time required.

Due to the possibility of vastly increased sensitivity to changes in effective mass, tests

were performed in 4He using a new form of oscillator with a 100 nm by 100 nm square

cross-section, significantly smaller than other available devices. The resonant frequency

of these resonators, referred to as nanobeams, was varied from 0.6 MHz to 8.5 MHz by

using beams of different length. Measurements of the resonator response as a function

of temperature show that the beams can successfully probe the fluid, though the current

theory is found to be insufficient to exactly quantify the dependence seen. A possible

observation of turbulence generated by a nanobeam is also reported. Despite an observed

critical velocity significantly different to theoretical predictions, all other measurements

are consistent with a turbulent transition.

As the eventual goal is to use nanobeams for measurements in 3He-B, the drag on high
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frequency oscillators in 3He-B was also studied. Measurements on 4 devices of different fre-

quencies found that the current model of damping remains adequate beyond the expected

frequency limit for this model. Observations of anomalous increases in the damping for a

single resonator in 3He-B are also discussed. As this unexpected damping is only seen for

small, sensitive resonators there is concern that similar effects could hinder interpretation

of future nanobeam measurements in 3He-B. Efforts were made to understand the source

of this damping, and hence explain why it is seen for only one of three nominally identical

oscillators, though no conclusive explanation could be found.
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1 Introduction

When thinking about classical physics from a modern perspective, it is tempting to assume

all the answers are already known. Further consideration reveals this is not the case, with

the problem of fluid turbulence in particular far from being solved. It may however be

possible to obtain a deeper understanding by considering similar problems in superfluids,

as the quantum nature of these systems places restrictions on the motion of the fluid.

Rotational flow is only possible in the form of vortex lines with quantised circulation, so

all turbulent motion must be describable in terms of the interactions of a large number

of these lines. Due to the importance of this quantisation, turbulence in superfluids is

typically referred to as quantum turbulence [1, 2].

The range of superfluid systems accessible by experiments is highly limited, with liquid

helium at very low temperatures historically providing the only experimentally accessible

superfluid system [3–6]. However, recently atomic Bose-Einstein condensates have emerged

as an alternative system for experiments involving superfluids [7, 8]. Despite these recent

breakthroughs, all our experiments are performed in liquid helium to take advantage of

the wealth of prior research performed on this system.

To understand how the liquid state is maintained at these low temperatures, we must

consider the quantum mechanical properties of helium. Due to the full outer shell of

electrons, the interatomic forces between helium atoms are very weak. In addition to this,

helium has a large zero point energy due to its low mass. The combination of these effects

means helium never solidifies under atmospheric pressure. Helium can therefore be cooled

to temperatures at which quantum effects become relevant while still in the liquid state.

As quantum effects become important the two stable isotopes of helium, 3He and 4He,

begin to behave very differently. Due to the different numbers of nuclei, a single 3He atom

is a fermion, while the extra neutron means each 4He atom is a boson. Since fermions and

bosons are described by entirely different statistics this leads to drastic differences in their
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quantum mechanical behaviour. These differences will be discussed in detail in sections

2.1 and 2.2.

One of the most promising methods of investigating quantum turbulence only works in

superfluid 3He as the fermionic nature of this isotope leads to a more complex superfluid

state with a larger number of possible excitations. Interactions between these excitations

and the vortex lines in superfluid 3He can be studied to obtain information about the

vorticity. The excitations, referred to as quasiparticles, undergo Andreev reflection when

approaching vortex lines, a process that results in perfect retroreflection of the excitation

particle with minimal momentum transfer to the vortex line. Properties of the turbulence

can then be derived from effects caused by the reflection of excitations incident on the

vorticity [9–11]. The lack of momentum transfer between excitation and vortex means

this is a non-invasive measurement technique, and so allows us to study the vorticity

without affecting it.

The most advanced application of this technique uses a 5× 5 array of excitation detectors

as a rudimentary camera, referred to as the quasiparticle camera, in an effort to produce

images of vortex lines [12]. A photograph of this array is shown in figure 1.1.

All five pixels in a row are driven using a common electrical line, with these common

connections clearly visible in figure 1.1. By using a summation amplifier to combine signals

from five different generators and ensuring every fork on a common line has significantly

different resonant frequencies this method can be used to reduce the amount of wiring

required without any loss in measurement performance.

Another critical component required to operate the quasiparticle camera is a black-body

radiator, placed in front of the detector. This radiator consists of two vibrating wire

resonators placed inside a box with a single small aperture. One wire is driven to a high

velocity to produce a large number of thermal excitations. This rapidly creates a large

number of thermal excitations within the box, this then creates a beam of these excitations
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Figure 1.1: Photograph of the reverse of the quasiparticle camera array. The camera was
made by drilling a 5×5 array of holes into a copper block and placing a tuning fork within
each hole.

as they exit the box through the aperture. The second wire is used as a thermometer to

measure the temperature within the box and so quantify the amount of energy contained

within the beam. An additional thermometer placed in the bulk fluid allows comparison

of the temperatures inside and outside the box.

A fourth wire, placed between the detector array the black-body radiator, can then be

used to generate vorticity. This vorticity causes some of the thermal excitations to un-

dergo Andreev reflection, reducing the number of quasiparticles that reach the array. By

comparing these results to a fixed reference, calculated for each detector in the absence

of vorticity, the percentage of incident excitations reflected by the vorticity can be calcu-
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lated individually for each detector. As a higher vorticity density corresponds to a larger

number of excitations reflected, this data can then be used to reconstruct a rough image

of the vorticity.

The first test of the quasiparticle camera serves as a successful demonstration of the

concept, with the damping experienced by the pixels clearly observed to decrease when

the vorticity generator is activated [12]. With analysis of further data obtained using

the original camera currently ongoing, planning has begun on possible improvements that

could be applied to a second generation camera.

In this thesis, details are given of seemingly disparate results that will hopefully lay the

groundwork for this second generation camera. First, in section 4, we discuss a novel new

method of operating the detectors used as the camera pixels. Depending on the method

of operation used, the new approach could either reduce the time taken per measurement

or allow more detectors to be operated with a single instrument. This could provide either

a greater time sensitivity or greater number of pixels respectively.

In section 5 we describe measurements of superfluid 4He taken using nanomechanical

oscillators, proving that these nanoscale structures can be used to successfully measure

the properties of a superfluid. This demonstrates that these devices are suitable for use as

detectors in the quasiparticle camera. Due to the tiny size of these oscillators, it should

be possible to reduce the spacing between camera pixels and therefore produce a next

generation quasiparticle camera with vastly improved spatial resolution.

Finally, we describe a range of results that may prove useful in anticipating the response

of nanomechanical oscillators in superfluid 3He. In section 6, we discuss results comparing

measurements of the drag obtained using a range of different oscillations. As the theory

used to explain this drag only applies below a certain frequency, these measurements were

intended to study what happens when this frequency limit is approached. As nanome-

chanical oscillator operate at much higher frequencies than the traditional oscillators, it is
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possible that they will also exceed the frequency limit of the theory and so understanding

this limit will likely prove useful when these devices are used in superfluid 3He.

Section 7 details a series of measurements that show anomalous damping of an oscillator

in 3He, with the damping observed unexplainable in terms of the current theory. These

results do have precedent, with similar anomalies reported previously. These discrepancies

appear to be more likely to occur with highly sensitive oscillators, and so are liable to be

an issue when nanomechanical oscillators are used for measurements in 3He.

Before these discussions of the experiments, a wide range of relevant supporting informa-

tion is provided. Section 2 covers the important theoretical underpinning of the experi-

ments performed. The practical methods used are then described in section 3.

2 Theoretical Details

Due to the quantum nature of phenomena at very low temperatures, there are many

significant differences between the properties of 4He and 3He under these conditions. Both

isotopes were used for different parts of these experiments, and so the properties of both

will be discussed. As the simpler case, we start by describing the properties of 4He.

2.1 Helium 4

2.1.1 Superfluid Helium 4

As the vastly more common isotope, all early experiments involving helium were performed

on this isotope. Though highly uninteresting from a chemical perspective, helium became

important to low temperature research when it was discovered that helium only liquifies

at a temperature of 4.2 K. The unexpected potential of liquid helium was revealed by the

discovery of zero viscosity motion in the fluid, observed below a transition temperature of

approximately 2.17 K at saturated vapour pressure [13,14].
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A theoretical explanation of these unusual properties was then provided by the two-fluid

model [15, 16]. This model explained the behaviour observed by treating the helium as a

mixture of two interpenetrating, non-interacting fluids. The normal fluid, defined by the

density ρN, behaves like a classical fluid with finite viscosity. In contrast the superfluid

component, with density ρS, has zero viscosity and zero entropy. As both components must

be accounted for in the overall helium density ρHe, a simple expression for the densities

can be written:

ρHe = ρN + ρS. (2.1)

The densities of the different fluid components are highly temperature dependent, with the

fluid changing from entirely normal fluid at the transition to become completely superfluid

at zero temperature. The relative fluid densities as a function of temperature are shown

in figure 2.1.

The nature of the superfluid fraction can be explained by considering Bose-Einstein con-

densation [17]. When applied to gases of bosons, Bose-Einstein statistics show that cooling

these bosons below some transition temperature causes the majority of the particles to

condense into the ground state. The Bose-Einstein condensate that forms is then described

by a macroscopic wavefunction. At non-zero temperatures there will always remain a fi-

nite number of bosons above this ground state which are not described by the macroscopic

wavefunction and therefore account for the normal fluid component.

Although we cannot apply Bose-Einstein statistics directly to 4He, the properties of the

superfluid can be well explained by considering the same concepts. By assuming that the

superfluid fraction is analogous to a Bose-Einstein condensate, we can define a macroscopic

wavefunction Ψ for this fraction,

Ψ = |Ψ0|exp(iθ), (2.2)
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where Ψ0 is the amplitude of the wavefunction and θ is a macroscopic phase.

Figure 2.1: Normal and superfluid fractions in 4He as a function of temperature. Note
that below 1 K the fractions barely change, with the fluid consisting of almost exclusively
superfluid in this range.

In addition to this, Landau showed that a gap was required in the dispersion curve for the

superfluid state to remain stable as the fluid moves [16]. Without this gap there would be

zero energy barrier to excitation production during motion of the fluid and superfluidity

would rapidly break down in response to the slightest motion. An example of the simplest

possible dispersion curve that satisfies this condition is given in figure 2.2. The gap energy

is labelled ∆ and occurs at a momentum of p0.

This dispersion curve then introduces the Landau velocity, vL, defined as the lowest ve-

locity which intersects the dispersion curve, vL = ∆
p0

. Above this velocity excitations are

produced, with the energy needed to produce these excitations being taken from the mov-

ing object, resulting in the loss of kinetic energy from the object and so causing a large

7



increase in the drag.

Figure 2.2: Landau’s dispersion relation for 4He, defined by the minima at momentum p0

and energy ∆.

However, all experiments measuring the drag on macroscopic objects in 4He contradict

this, finding that drag increases sharply well below the Landau velocity [18–21]. To ex-

plain this discrepancy requires an alternative drag mechanism in the superfluid. Through

comparisons to classical fluid dynamics, the most obvious explanation for this additional

drag would be the generation of turbulence.

2.1.2 Vorticity

At first glance, a simple argument would appear to suggest that vorticity is impossible in

a superfluid, preventing the formation of more developed turbulence. To start, we define

superfluid vorticity ωS as a way to quantify rotational flow,

ωS = ∇× vS, (2.3)
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where vS is the velocity field for the superfluid. To obtain the superfluid velocity, we

can apply the quantum mechanical momentum operator p̂ = −ih̄∇ to the macroscopic

superfluid wavefunction. When used with the definition of momentum v = p
m this gives:

vS =
h̄∇θ
m

. (2.4)

This can then be used in the expression for vorticity,

ωS =
h̄

m
(∇×∇θ). (2.5)

From the mathematical definitions, it is known that the curl of the gradient of a scalar

field is always zero. Hence ∇×∇θ is zero for all values of θ, the vorticity must always be

zero and the superfluid flow is therefore irrotational.

The same result can be also be obtained by considering the circulation, κ, defined as a

line integral of the velocity over any closed path in a simply connected volume:

κ =

∮
vS · dl, (2.6)

where l is the line element for the closed path chosen. For a singly connected line this can

then be converted into a surface integral by applying Stokes’ Theorem:

κ =

∫
∇× vS · dS, (2.7)

where S is the surface element for the surface bounded by the line l. By applying the

previously proven condition ∇×vS = 0 we find that the circulation must be zero, further

supporting the condition that the superfluid flow must be irrotational.

This calculation becomes more complex if we instead consider a multiply connected volume
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such as an annulus of fluid. Equation 2.6 still applies, but Stokes’ Theorem is no longer

valid. Instead, we can substitute equation 2.4 into equation 2.6,

κ =
h̄

m

∮
∇θ · dl. (2.8)

To preserve the macroscopic wavefunction required for superfluidity the wavefunction must

remain single-valued on full rotations around the loop. Therefore, the phase change on a

full rotation around the loop must be an integer multiple of 2π. Using this we can solve

the line integral in equation 2.8:

∮
∇θ · dl = 2πn, (2.9)

κ =
hn

m
. (2.10)

We therefore see that rotational flow is indeed possible in superfluid, but only for multiply

connected volumes and only if the circulation of the flow is quantised in units of h/m =

9.97× 10−8 m2s−1.

To explain how these vortices can be created in bulk superfluid, we must first derive an

alternative expression for the superfluid velocity flow due to a vortex. This expression can

be obtained by considering equation 2.6 for the case of a circular line element centered on

the core of the vortex.

Due to the nature of the rotational flow around a straight vortex, the superfluid velocity

cannot have a radial component and so will be parallel to the line element at all points.

The dot product of these quantities is therefore equal to the product of their magnitudes.

From symmetry considerations, the superfluid velocity will be the same at all points along

the line element, and so can be removed from the integral:
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κ = vS

∮
dl, (2.11)

where vS and dl are the magnitudes of the superfluid velocity and the line element. Since

integrating over just the line element gives the length of that line, this expression can

be simplified further by replacing the integral with the circumference of the circular path

considered,

κ = 2πrvS. (2.12)

Equation 2.12 can then be rearranged to find the superfluid velocity profile as a function

of the radial distance from the center of the vortex,

vS =
κ

2πr
. (2.13)

Equation 2.13 shows that the superfluid velocity increases asymptotically as the distance

from the vortex centre decreases. There will therefore be a point close to the centre of the

vortex where the superfluid velocity exceeds the Landau velocity, meaning the superfluid

state cannot exist within this volume, referred to as the vortex core. The core then creates

the multiply connected geometry required, with the superfluid vorticity occurring around

this. The size of this core can then be estimated by rearranging equation 2.13:

r0 =
κ

2πvL
. (2.14)

By substituting known values for the circulation quantum and Landau velocity, equation

2.14 predicts the radius of the vortex core is on the order of r0 = 0.1 nm.

In experiments performed on steadily rotating volumes of 4He, a hexagonal lattice of vortex
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filaments appears and the overall behaviour closely mimics that of a classical fluid [22,23].

This observation can be explained by considering the kinetic energy per unit length of a

vortex line, labelled ε. An expression for the energy of the vortex line can be obtained by

integration:

ε =

∫ b

a

∮
1

2
ρSv

2
Sdldr, (2.15)

where the integral dl is the line integral around the vortex and the integral dr integrates

radially from the outside of the vortex core a to some upper cutoff b. For the case of a single

vortex this cutoff is given by the size of the container. If multiple vortices are present, the

cutoff is instead given by the average spacing between vortices. Removing constants from

the integral and substituting the expression for the superfluid velocity gives:

ε =
1

2
ρS

∫ b

a

∮ ( κ

2πr

)2
dldr. (2.16)

Symmetry considerations state that all quantities involved must be invariant under rota-

tion, which simplifies things further:

ε =
ρSκ

2

8π2

∫ a

b

1

r2

∮
dldr. (2.17)

As has already been shown when obtaining the expression for the superfluid velocity profile

around the vortex, the line integral can now be replaced with the circumference of the

line, 2πr:

ε =
ρSκ

2

4π

∫ a

b

1

r
dr. (2.18)

Solving the remaining integral then gives:

12



ε =
ρSκ

2

4π
ln

(
b

a

)
. (2.19)

The experimental observations of vortex lattices in 4He are easily explained by applying

energetic arguments to equation 2.19. Due to the factor of κ2 singly quantised vortices are

energetically favourable and therefore a lattice of vortices is the only stable configuration.

2.1.3 Quantum Turbulence

As rotational flow in superfluid 4He can only exist in the form of singly quantised vortex

lines, superfluid turbulence must also be explained in terms of these vortices. The chaotic

flow patterns characteristic of turbulence can only be created by a disorganised tangle of

vortex lines.

In 4He, two distinct types of quantum turbulence exist. The first to be observed, referred

to as counterflow turbulence, is created when the flow of the normal and superfluid com-

ponents are in antiphase [3,4]. This counterflow arises as a means of heat transport, with

the normal fluid component carrying the heat and an equal and opposite flow of super-

fluid component ensuring there is no overall mass flow. Counterflow turbulence is then

produced when the relative velocity between the two components exceeds some critical

value.

The other possible form, generated by the motion of objects immersed in the fluid, is much

more closely analogous to classical turbulence. A wide variety of different objects have

been used in experiments on this form of turbulence, ranging from large rotating disks [6]

to wire resonators [24,25] and quartz tuning forks [26]. Intriguingly, this form of superfluid

turbulence can be shown to have significant similarities with the classical case [6, 21,27].

Since the existence of the turbulent state requires a large number of vortex lines, a mech-

anism for generating a large number of lines is necessary for turbulence to exist. Exper-
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iments have shown that generating turbulence in 4He is highly dependent on remanent

vortices [28]. These remanent vortices remain stable even in stationary superfluid and exist

as small lengths of vortex line pinned to the microscopic roughness of objects in the fluid

or the walls of the cell [29]. The remanent vortices then expand back into full vortex lines

when exposed to flow above a certain velocity, causing the transition to turbulence [30].

It is this mechanism, and this form of turbulence, that accounts for the large amounts of

drag observed below the Landau velocity.

The ease of generating quantum turbulence implies that these remanent vortices are

present in almost all samples of superfluid 4He, so a very generic explanation is neces-

sary to explain the ubiquity of these remanents. This explanation is provided by the

Kibble-Zurek mechanism, which states that vorticity arises from discontinuities in phase

caused by the move to a macroscopic wavefunction during the transition to superfluid [31].

2.1.4 Damping in Superfluid Helium 4

For oscillating structures in 4He, the most general description of the damping is highly

complicated, with multiple different components contributing to the overall force. Thank-

fully, many of these components of the drag are only relevant under particular conditions.

As a simple example, the turbulent contribution to the drag can be safely ignored if the

velocity is kept below the critical velocity of the object used. Another interesting contri-

bution to the drag is caused by acoustic emission, which can become important for high

frequency oscillators [32]. Sharp increases in drag have also been seen at specific frequen-

cies, with this additional drag attributed to the excitation of acoustic resonances [33,34].

Under the conditions used for our experiments only two components of the drag are rele-

vant, allowing us to neglect all other contributions and consider a simplified picture of the

damping. One of these is the intrinsic drag, which is entirely dependent on the properties

of the oscillator and therefore remains constant regardless of the external conditions. The
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drag is therefore dominated by the other component, caused by the interaction of the

oscillator with the surrounding fluid and referred to as hydrodynamic damping. A solid

theoretical understanding of the drag in this regime can therefore be obtained solely from

study of this hydrodynamic drag [26].

To derive expressions for the hydrodynamic drag we start by treating the dissipative force

as the sum of two components, a drag component proportional to velocity and a mass-

enhancement term proportional to acceleration. The mass-enhancement contribution to

the dissipation can be understood by introducing an effective mass, m∗, which becomes

larger than the base mass of the object m due to the dissipative effects. The first enhance-

ment to the effective mass, caused by the backflow of fluid around the structure, depends

on the total density of the helium, ρHe, and the volume of the object, V . If any normal

fluid is present, the viscous clamping of this component to the device also contributes to

the effective mass. This viscous drag depends on the normal fluid density ρN, the viscous

penetration depth δ, and the surface area of the object S. The effective mass is then found

by adding both mass enhancement terms to the mass of the oscillator:

m∗ = m+ βρHeV +BρNδS, (2.20)

where β and B are dimensionless factors of order unity, determined by the geometry of the

oscillating object. This expression can be expanded by defining the viscous penetration

depth in terms of dynamic viscosity η, normal fluid density and resonant frequency of the

oscillator in helium fHe,

δ =

√
η

πρNfHe
, (2.21)

m∗ = m+ βρHeV +BρNS

√
η

πρNfHe
. (2.22)
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An expression for the frequency shift when immersed in helium can then be obtained by

considering the product of resonant frequency squared and effective mass, which remains

constant:

f2
0m = f2

Hem
∗, (2.23)

where f0 is the resonant frequency in vacuum at low temperature. By rearranging and

applying equation 2.22, we then find:

f2
0

f2
He

= 1 +
βρHeV

m
+
BρNS

m

√
η

πρNfHe
(2.24)

For consistency, it makes sense to express all masses as densities. Converting the object

mass into density:

f2
0

f2
He

= 1 +
βρHe

ρ
+
BρNS

ρV

√
η

πρNfHe
, (2.25)

where ρ is the density of the oscillating object. Equation 2.25 now gives a usable theoretical

values for the shift in resonance frequency as a result of the fluid dissipation. Since fluid

density and dynamic viscosity are both known functions of temperature [35], this equation

can be used to calculate the frequency shift at a given temperature so long as the values

for the geometric coefficients are known from previous experiments.

To derive an expression for the change in resonance width, we must now consider the drag

component of the overall dissipation. The resonance width in fluid, ∆f2, can be described

in terms of an intrinsic width, ∆f2,int, and an associated shift in the width:

∆f2 = ∆f2,int
m

m∗
+

b

2πm∗
, (2.26)
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where b is the coefficient of the drag term. If the flow field around the object is potential,

a solution for this coefficient can be found [26]:

b = CS
√
πρHeηfHe, (2.27)

where C is a geometry dependent constant of order unity. Equation 2.27 can now be used

to obtain the change in resonance width due to the fluid dissipation, labelled ∆f ,

∆f =
CS

2m∗

√
ρHeηfHe

π
. (2.28)

By substituting equation 2.23, the effective mass can be replaced by the more experimen-

tally accessible quantities of vacuum mass and frequency ratio,

∆f =
CS

2m

√
ρHeηfHe

π

(
fHe

f0

)2

. (2.29)

Equation 2.29 can now be used, along with the known temperature dependence of the

density and viscosity, to calculate the change in the resonance width due to hydrodynamic

effects.

2.2 Helium 3

2.2.1 Liquid Helium 3

Before attempting to understand the superfluid phases of 3He, it is worth first discussing

the basic properties of the normal fluid phase. As the two-fluid model can also be applied

to 3He, understanding the behaviour of normal fluid can prove useful when interpreting

results in which both components are present.

Since 3He is a fermion, the simplest way to describe liquid 3He is as a Fermi gas. An
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understanding of Fermi gas behaviour must start with the distribution function, f(E):

f(E) =
1

exp
(
E−EF
kBT

)
+ 1

. (2.30)

At zero temperature this function is very simple, with all states filled below the Fermi

energy, EF, and all states above empty. At higher temperatures the transition becomes

smeared out, with some states below the Fermi energy left empty and some above filled.

The energy range this smearing is seen over is roughly equivalent to kBT . An example of

the distribution function at both zero and finite temperature is shown in figure 2.3.

Figure 2.3: Fermi-Dirac distribution function, comparing behaviour at zero temperature
with that at a finite temperature.

A value for the Fermi energy is therefore essential to understanding the properties of the

Fermi gas, as it defines the boundary between filled and empty states. From statistical

physics, we can obtain an expression for the Fermi momentum, pF and then define the

Fermi energy from this using the classical relation [36]:
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pF = h̄

(
3π2N

V

) 1
3

, (2.31)

EF =
p2

F

2m3
, (2.32)

EF =
h̄2

2m3

(
3π2N

V

) 2
3

, (2.33)

where N is the number of 3He atoms present, V is the volume of the container considered

and m3 is the mass of each 3He atom. The Fermi momentum can also be used to calculate

the Fermi velocity by applying another familiar classical equation,

vF =
pF

m3
. (2.34)

However, this simple Fermi gas explanation is only valid if the particles considered do

not interact with each other. This is obviously untrue for the case of liquid helium, as

interactions between particles are an essential part of any liquid state. The adjustments

required to successfully describe liquid 3He were first described by Landau in a model

referred to as a Fermi liquid [37–39].

The simplest major difference between a Fermi liquid and a Fermi gas is the introduction

of quasiparticles. In Fermi liquid theory the atoms considered previously are replaced by

quasiparticles with effective mass m∗3. In 3He, this effective mass is always larger than

the bare mass m3. In many ways this change leaves the structure of the theory unaltered,

as equations 2.32, 2.33 and 2.34 still apply so long as the bare mass is replaced with the

quasiparticle effective mass.

The second step in defining a Fermi liquid is the definition of an interaction between the

particles. The interaction introduced can be quantified in terms of two infinite sets of

19



coefficients, F s
l and F a

l , referred to as Landau parameters. The superscripts s and a refer

to spin-symmetric and spin-antisymmetric terms respectively. Each of these technically

represents an infinite set of parameters, obtained by summing over the index l, though

fortunately only a few of the low order terms are of experimental relevance. Perhaps the

most important of these is the parameter F s
1 , which can be used to relate the effective

mass to the bare particle mass,

m∗3
m3

= 1 +
F s

1

3
. (2.35)

The other important Landau parameters are F s
0 , which is related to the sound velocity

in the liquid, and F a
0 , which is related to the magnetic susceptibility. However, since

these quantities are not important in the experiments discussed here, the full theoretical

description will be neglected.

2.2.2 Superfluid Helium 3

Since helium 3 is a fermion the atoms must obey the Pauli exclusion principle, meaning

the atoms cannot themselves undergo Bose-Einstien condensation. However, the existence

of superconductivity proves that it is still possible for fermions to form a condensate under

the correct conditions. To explain superfluidity in 3He we will apply a variation on the

theoretical framework used to describe superconductivity, known as BCS theory [40].

As applied to superconductivity, BCS theory solves the problem presented by the Pauli ex-

clusion principle through the formation of Cooper pairs. At very low temperatures a weak,

long-ranged attractive force, caused by phonon exchange due to lattice distortions, can

bind two electrons to create Cooper pairs. The Cooper pairs have integer spin and it is the

Bose-Einstein condensation of these pairs that causes the transition to superconductivity.

The defining feature of the superconductor state as derived using BCS theory is the ap-
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pearance of an energy gap, ∆, between the bound Cooper pair states and the free electron

states. The value of this gap at zero temperature, ∆(0), can be calculated from the critical

temperature of the superconductor, Tc,

∆(0) = 1.76kBTc. (2.36)

This gap represents the energy required to break a single electron out of its Cooper pair.

The existence of this gap explains the stability of superconductivity at low temperatures,

as only interactions with energy greater than the gap are able to break the Cooper pairs

and disrupt the superconducting state.

In conventional superconductors the attraction mechanism that forms the pairs prioritises

interactions between electrons of opposite spins, such that the Cooper pairs produced have

spin S = 0. As electrons can be considered point particles, it is possible for them to occupy

the same point and therefore the Cooper pair can form with no angular momentum, L = 0.

This combination of zero spin and zero angular momentum is known as s-wave pairing.

Due to the large size of 3He atoms in comparison to electrons, the L = 0 pairing used

for electrons is not possible in helium. This means that 3He Cooper pairs must have

non-zero angular momentum and we must therefore consider p-wave pairing. Defined by

the conditions L = 1 and S = 1, this is the simplest case we can still apply to 3He.

A state with total spin S = 1 can be described by three different spin configurations,

corresponding to the three possible projections of this spin. These states are |↑↑〉, with spin

projection Sz = 1, 1√
2
(|↑↓〉+ |↓↑〉), corresponding to Sz = 0, and |↓↓〉 for Sz = −1. A full

understanding of the mathematics behind this p-wave pairing is very complicated [36,41],

and significantly beyond the scope of this work.

Interestingly, much of the theoretical framework used to describe superfluid 3He was de-

rived before the existence of the superfluid state in 3He was confirmed experimentally. The

first suggested solution for p-wave pairing considered a ground state consisting exclusively
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of parallel spins and therefore containing only the states with Sz = ±1 [42], described as an

equal spin pairing ground state. Working from this postulate produces intriguing results,

as the condensate produced from this ground state can be shown to have an anisotropic

gap. The anisotropy is spatial, depending on the angle θ between the momentum of the

quasiparticles and the direction of angular momentum of the Cooper pair, conventionally

set parallel to the z axis. For clarity, the gap parameter for this phase will be labelled ∆A

to distinguish it from the s-wave pairing result detailed above,

∆A(0) = 2.02kBTcsin(θ). (2.37)

Although subsequently shown not to be the most energetically favourable pairing mech-

anism in 3He under the majority of conditions [43, 44] a superfluid phase based around

an equal spin pairing ground state, referred to as the A phase, can be created [45]. In

the absence of magnetic field the A phase only exists at high pressures and temperatures

close to Tc, while applying a large magnetic field allows this phase to be stabilised down

to much lower temperatures.

In an effort to find an approach with greater similarity to the s-wave theory, a ground state

containing all three possible spin projections was also considered [43]. The gap parameter

in this phase, labelled ∆B, is isotropic and can be shown to have exactly the same form

as for s-wave pairing,

∆B(0) = 1.76kBTc. (2.38)

A superfluid phase based on this pairing mechanism, called the B phase, can then be

shown to be energetically preferable to the A phase under most conditions, making the B

phase by far the most common superfluid phase in 3He [43]. One important point that

enables the close comparisons between the B phase and s-wave pairing is the value of the
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total angular momentum, J . Each Cooper pair formed in the B phase is created such that

the total angular momentum satisfies J = L+S = 0. This is achieved when the direction

of the orbital and spin components are opposed and ensures the system is invariant under

rotation, allowing the existence of an isotropic energy gap.

2.2.3 Turbulence in Superfluid Helium 3

Unsurprisingly, the complex nature of superfluid 3He gives a much wider range of possible

vortices than is observed in 4He. However, most of these unusual vortices exist only in

the more unusual phases. For example, continuous vortices with no vortex core have been

observed in 3He-A [46] and half-quantum vortices which only carry half of the expected

quantum of circulation can be created in confined 3He [47].

In 3He-B two main types of vortex are possible, with the type of vortex present depen-

dent on the temperature of the sample and the difference between the types defined by

differences in the vortex core [48–50]. At high temperatures, the vorticity occurs around

a single core made up of a different superfluid phase. In contrast the low temperature

case has two distinct cores and essentially consists of two half-quantum vortices bound

together into a single structure [51]. Regardless of these differences, both types of 3He-B

vortex carry a single circulation quantum and the same arguments made for vortices in

4He apply to both. As the superfluid condensate in 3He-B consists of Cooper pairs, the

circulation quantum in 3He-B is:

κ =
hn

2m3
, (2.39)

where m3 is the mass of a 3He atom and so 2m3 is the mass of a Cooper pair.

As in 4He, the size of the vortex core is approximately equal to the coherence length. In

3He the coherence length varies between ≈ 70 nm at zero pressure and ≈ 10 nm at high
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pressure. Vortex cores in 3He are therefore much larger than in 4He, where the typical

vortex core size is ≈ 0.1 nm.

One other intriguing phenomenon, unique to superfluid helium 3He, is caused by the

exceptionally high viscosity of the normal fluid component. In fact, the viscosity is large

enough that all of the normal fluid can be considered clamped to the walls of the container.

This therefore creates a unique turbulence regime defined by a coupling between the

superfluid and the container walls, uniform throughout the entire experimental volume,

facilitated by the clamped normal fluid [52].

At very low temperatures, where the normal fluid density is negligible, quantum turbulence

in 3He becomes very similar to that observed in the zero temperature limit for 4He. As in

that case experiments show a form of quantum turbulence that appears closely analogous

to classical turbulence despite the complete absence of a normal fluid component [53].

2.2.4 Excitations in Superfluid Helium 3

Due to the complex nature of superfluidity in 3He, a wide variety of different excitations are

possible within the condensate. In addition to some familiar excitations, such as acoustic

phonons, superfluid 3He allows for a range of other more exotic excitations. Many of these

excitation modes are of great theoretical interest, with analogues to Higgs modes [54] and

Majorana excitations [55] proving particularly noteworthy. As the theoretical background

for some of these modes can be very complicated, none of these unusual excitations will

be described here.

The thermal excitations however are of major importance to some of the experiments

performed and will therefore be described in detail. All future uses of the term excitation

therefore refers solely to these thermal excitations. In 3He the thermal excitations are

produced in pairs, as exciting a particle leaves behind an empty space in the otherwise

filled states. These excitations are referred to as quasiparticles and quasiholes respectively.
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All experimental 3He results discussed in this thesis were performed far below the transition

to superfluid, with all measurements taken below 0.3Tc in what is referred to as the ballistic

regime. At these temperatures the low thermal excitation density increases the mean

free path of the excitations to the point where this value vastly exceeds the size of the

experimental cell. The probability of collisions between thermal excitations then becomes

infinitesimally small and can therefore be neglected entirely.

Figure 2.4: Dispersion curve for superfluid 3He-B, showing both particle and hole excita-
tions.

One interesting interaction of quasiparticles in 3He-B, important even in the ballistic

regime, is the possibility for perfect retroflection through a process referred to as Andreev

reflection. The theoretical explanation of this process can be obtained by considering

the dispersion curve for 3He-B, shown in figure 2.4. Andreev reflection is made possible

due to the minima in the dispersion curve around the Fermi momentum. At the Fermi

momentum, a tiny change in momentum can push an excitation to the other side of the

minima and therefore change the character of the excitation. Since quasiparticles have
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velocity parallel to their momentum and quasiholes have velocity antiparallel to their

momentum, this change in character reverses the direction of motion of the excitation

with minimal change in the momentum magnitude.

From this dispersion curve, a value for the Landau velocity in 3He-B can be obtained. As

in 4He, the Landau velocity is given by the gradient of the shallowest line that intersects

the dispersion curve. In 3He-B, this gives:

vL =
∆

pF
. (2.40)

Calculations using this equation at zero pressure give a value of vL = 27 mms−1. Exper-

iments using ions have verified this equation [56], though further experiments found the

case is much more complicated when measuring with larger objects. The actual Landau

velocity in these cases is found to be smaller than expected for oscillatory motion [57] and

larger than expected in linear motion [58]. The theoretical reasons for the reduction in

critical velocity during oscillations are now well understood [59, 60], while the increase in

critical velocity for linear motion remains a mystery.

2.2.5 Drag in Helium 3

In superfluid 3He-B, the drag caused by the motion of an object through the fluid can be

split into three distinct components. The intrinsic component, determined exclusively by

the properties of the structure, does not depend on external factors. At large velocities the

response is dominated by the appearance of a temperature independent excess damping

force. In 3He-B the exact form of this excess damping is complicated, as vortex production

and pair-breaking both become important at very similar velocities. The final component

accounts for the temperature dependence of the damping, which can be understood by

considering the interaction between thermal excitations and the object. Combining these

three contributions gives an expression for the overall drag force:
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F = F0 + FT + Fpb, (2.41)

where F is the total drag, F0 is the intrinsic component, FT is the thermal drag and Fpb

is the pair-breaking (excess damping) contribution.

To allow accurate interpretation of results obtained at non-zero temperatures in 3He-B, a

detailed understanding of the thermal damping component is very important. To explain

the mechanism behind this component we start by considering the heavily simplified case

of a paddle of area A immersed in superfluid 3He-B. Firstly we apply a basic kinetic

theory argument, representing the thermal excitations as a gas of particles, where N is

the number of particles per unit volume. The paddle moves with velocity v while the

particles have velocity vg and momentum pF. To keep things as simple as possible, only

particles with velocity parallel to the object velocity are considered. Due to the relative

velocity collisions are more likely with the front of the paddle and the applied force is:

F = 2ApF

(
N

2
(vg + v)− N

2
(vg − v)

)
, (2.42)

where the two terms on the right-hand side account for collisions with the front and rear

of the paddle respectively. The resulting force is linear in v:

F = 2ANpFv. (2.43)

Experiments have shown that this is incorrect however, with the force measured in 3He-B at

very low temperatures proportional to v but more than 3 orders of magnitude larger [61].

In fact, the kinetic argument cannot possibly apply in 3He as both particle and hole

excitations are present. As holes have momentum antiparallel to their velocity, collisions

with these excitations serve to reduce the drag force. With equal amounts of particles and
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holes present we would therefore expect no net momentum transfer as the contributions

of one type of excitations cancel those of the other.

To understand how the large drag force observed arises, we must consider the possibility

of Andreev reflection. The easiest way to explain the process of Andreev reflection is to

compare the dispersion curve in the stationary bulk fluid to that close to the object. This

comparison is shown in figure 2.5, with the bulk fluid case on the left and the moving fluid

on the right.

Figure 2.5: Dispersion curves for 3He-B in stationary, bulk superfluid (left) and in the
vicinity of the paddle (right). On the left-hand side the direction of motion for each
excitation is represented by the attached arrow and the labels will be used for future
reference. For a detailed description of the Andreev reflection process enabled by the
shifted dispersion curve, see text.

As explained in section 2.2.4, Andreev reflection affects excitations near the minima of

the dispersion curve, allowing small changes in momentum to change the character of the

excitations and so reverse the direction of their motion. Andreev reflection effects become

very important in the presence of moving superfluid, as the flow of the fluid shifts the

dispersion curve. To return to our simple model, we assume the paddle has a positive

velocity (defined here as left to right). As the fluid very close to the paddle must move

with the object the superfluid velocity can be considered equivalent to that of the paddle.
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The shifted dispersion curve in this region is shown on the right-hand side of figure 2.5.

As the superfluid velocity is positive, the shift in the dispersion curve due to the flow of the

fluid raises the minimum allowed energy of excitations in the positive momentum branch

(labelled c and d). Therefore only states with energy higher than this raised minima are

allowed to propagate, with all excitations of lower energy undergoing Andreev reflection

and reversing their direction of travel. This means excitations c and d are subject to

Andreev reflection, reducing the number of holes incident on the front of the paddle and

the number of particles colliding with the back. The negative momentum half of the

dispersion curve undergoes a negative shift in the allowed energy, meaning the excitations

in this branch (a and b) can propagate all the way to the paddle. In the ballistic regime

only surface scattering is possible, meaning excitations a and b cannot scatter into the

lower energy states produced by the shift of the dispersion curve and therefore still have

the same energy as they did in the bulk fluid.

In front of the paddle, this means a larger proportion of the interactions are with particles.

The momentum of the excitation is therefore opposite to that of the paddle and leads to

a reduction in the paddle momentum. The reverse is true at the back of the paddle,

with a greater number of interactions involving holes. However, as holes have momentum

antiparallel to their velocity, these collisions also lead to a negative momentum transfer and

apply a drag to the paddle. Through this mechanism, the screening of incoming excitations

due to Andreev reflection leads to a significant increase in the damping experienced by

the paddle.

One interesting consequence of this mechanism is that it places an unavoidable maxima on

the drag possible. At high enough velocities a point must be reached where no excitations

from the reflected branch are able to traverse the flow field. At this point, all collisions in

front of the paddle will be with particles, and all behind the paddle with holes. Beyond

this point additional increases in velocity cannot increase the drag any further and the
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thermal drag must therefore become independent of velocity.

Provided the time taken for excitations to traverse the flow field is significantly smaller

than the oscillation period, the same argument as above should apply to oscillatory motion

as well. However, if the frequency of the oscillations becomes large this may no longer

apply and we may have to consider the possibility of multiple Andreev reflections.

To quantify the thermal drag force due to these effects, we start by considering the force

applied due to excitations with positive momentum. The force applied can be found from

the change in momentum of the excitations during the collisions:

F1,2 = 2pF〈nvg〉, (2.44)

where F1,2 is the force per unit area applied by the negative momentum branch excitations

(a and b), pF is the Fermi momentum and 〈nvg〉 is the average excitation flux. The

excitation flux is obtained from the number density of excitations, n, and the group

velocity of these excitations, vg. As collisions involving these excitations act to slow the

paddle, we define the resulting drag force as positive. The number of collisions can be

obtained by integrating the product of the group velocity of the excitations (vg(E)) and

the density of states for these excitations (g(E)f(E)):

〈nvg〉 =

∫ ∞
∆

vg(E)g(E)f(E)dE. (2.45)

At velocities below those required for pair breaking all thermal excitations must originate

in the bulk fluid, far from the oscillating structure. As the bulk dispersion curve applies to

these thermal excitations, the minimum allowed energy for these states will be equal to the

energy gap for superfluid 3He-B. For excitations in branches 1 and 2 close to the paddle,

the dispersion curve contains energy states below ∆. However, in the ballistic regime the

excitations do not scatter and so the minimum energy of the incoming excitations is still
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equal to the energy gap. Therefore, to cover all available energy states, the integration

must be performed from the gap energy to infinity.

In the ballistic regime, the distribution function can be simplified to a Boltzmann distri-

bution:

f(E) = exp

(
− E

kBT

)
. (2.46)

A further simplification can be obtained by considering the density of states. As the

number of momentum states must be equal to the number of energy states, we can equate

these:

g(E)dE = g(p)dp. (2.47)

The definition of group velocity, vg = dE
dp , can now be used to rearrange equation 2.47:

g(E)dE =
g(p)

vg
dE, (2.48)

g(E)vgdE = g(p)dE, (2.49)

g(p) = vg(E)g(E). (2.50)

Since all states considered are close to the Fermi surface, the assumption g(p) ≈ g(pF) can

be used to simplify things further:

g(pF) = vg(E)g(E). (2.51)
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By applying these simplifications, the integral can now be solved:

〈nvg〉 = g(pF)

∫ ∞
∆

exp

(
− E

kBT

)
dE, (2.52)

〈nvg〉 = g(pF)

[
−kBT exp

(
− E

kBT

)]∞
∆

, (2.53)

〈nvg〉 = g(pF)kBT exp

(
− ∆

kBT

)
. (2.54)

The same procedure can now be applied for the positive momentum branches of the

dispersion curve. In this region, the flow shifts the dispersion curve towards higher energies.

Excitations with energy below the minimum of the shifted dispersion curve will undergo

Andreev reflection and so be unable to participate in the interactions at the surface. The

lower limit of the integral must therefore be adjusted to account for this,

F3,4 = −2pF

∫ ∞
∆+pFv

vg(E)g(E)f(E)dE, (2.55)

where F3,4 is the force per unit area applied by excitations in the positive momentum

branches. In the convention used here, this force must be negative as interactions with

these excitations would reduce the drag experienced by the object. The same simplifica-

tions used previously can be applied here as well:

F3,4 = −2pFg(pF)

∫ ∞
∆+pFv

exp

(
− E

kBT

)
dE, (2.56)

F3,4 = −2pFg(pF)kBT exp

(
− ∆

kBT

)
exp

(
− pFv

kBT

)
. (2.57)
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Using the expression previously obtained for 〈nvg〉, this can be simplified further:

F3,4 = −2pF〈nvg〉exp

(
− pFv

kBT

)
. (2.58)

The expressions for F1,2 and F3,4 can now be combined to find the total drag force per

unit area due to interactions with the thermal excitations, FA:

FA = F1,2 + F3,4, (2.59)

FA = 2pF〈nvg〉
(

1− exp

(
− pFv

kBT

))
. (2.60)

To move from the simplified view described here to a full three-dimensional picture we

introduce two corrections, represented by two geometric coefficients, γ and λ, both of

order 1. The coefficient λ modifies the velocity to account for non-linear variations while

γ adds a pre-factor to the whole equation to adjust the overall magnitude of the force [62].

For example, in the case of a circular wire with length L and diameter d, the corrected

expression is:

FT =
2pFdγ〈nvg〉

λ

(
1− exp

(
−λpFv

kBT

))
, (2.61)

where FT is the total force per unit length L. In general terms d is then the dimension

of the oscillator perpendicular to the flow, introduced when converting to force per unit

length and equivalent to the diameter for this specific case.

As derived earlier, the component of the drag force due to thermal excitations can be

predicted using equation 2.61. Unsurprisingly, this force is heavily temperature dependent

due to the increased density of thermal excitations at higher temperatures. To enable
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comparisons between measurements of the drag taken across a range of temperatures,

equation 2.61 must first be normalised.

To remove the dependence on excitation density, we first need to obtain an expression for

the thermal drag force in the low velocity limit, FT
v→0. In this limit we know that the

energy associated with the flow is much smaller than the thermal energy, pFv � kBT , and

so we can simplify equation 2.61 by considering the Taylor expansion of the exponential.

In this limit the exponent is much smaller than 1 and we can therefore neglect all higher

powers of the expansion:

exp

(
−λpFv

kBT

)
≈ 1− λpFv

kBT
. (2.62)

Using this approximation in equation 2.61 then gives:

FT
v→0 =

2p2
Fdγ〈nvg〉
kBT

v. (2.63)

To demonstrate how much larger the drag becomes when excitation screening due to

Andreev reflection is considered, we can compare equations 2.43 and 2.63. The ratio of

the two forces is then given by
pF〈vg〉
kBT

. At a temperature of 150 µK, the force due to Andreev

reflection is therefore approximately 7.2 × 103 times larger than would be expected from

the kinetic model of drag. This is consistent with experimental measurements [61].

To enable normalisation, the velocity dependence can be removed from equation 2.63 by

taking the derivative:

(
dFT

dv

)
v→0

=
2p2

Fdγ〈nvg〉
kBT

. (2.64)

Dividing the thermal force by this derivative now gives a normalised thermal force, FT
n :
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FT
n =

FT(
dFT

dv

)
v→0

, (2.65)

FT
n =

kBT

λpF

(
1− exp

(
−λpFv

kBT

))
. (2.66)

From equation 2.66, we can see that this normalisation process has successfully removed

the dependence on the excitation density. This expression is however still temperature

dependent, so further normalisation is required. To remove the remaining temperature

dependence we introduce the reduced velocity, v∗,

v∗ =
pFv

kBT
. (2.67)

By repeating the derivation detailed above in terms of v∗, an expression for force can be

obtained with no temperature dependence at all. We refer to this as the reduced thermal

force, FT
r :

FT
r =

(1− exp (−λv∗))
λ

. (2.68)

Therefore, applying equation 2.68 should allow data taken at a wide variety of different

temperatures to be collapsed onto a single dependence.

3 Experimental Methods

3.1 Oscillating Devices

Oscillating structures have long been a cornerstone of low temperature research, as their

ability to accurately probe the properties of the surrounding fluid leads to a wide range
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of potential uses. In the absence of any fluid flow these properties can be used to deduce

the temperature of the fluid, as for sufficiently low velocities thermal effects dominate

the damping experienced by the wire. If the oscillator is driven hard enough, the motion

can be used to generate turbulence in the fluid. Depending on the arrangement of the

devices, changes in the drag can also be used to detect turbulence generated elsewhere in

the experimental volume.

Until recently, perhaps the most common type of immersed oscillator used in superfluid

experiments was the vibrating wire resonator. Typically these resonators are made from

a single loop of superconducting wire and driven to oscillate using the Lorentz force gen-

erated when an alternating current is applied in the presence of an external magnetic

field.

For many applications, the traditional wire resonators have now been replaced by quartz

tuning forks due to a few major advantages the forks provide [26]. In contrast to the wires,

which must be created manually, suitable tuning forks are readily available commercially.

Due to the piezoelectric driving scheme used the forks can also operate in zero magnetic

field, which can be a major advantage in experiments involving a magnetically active

medium such as superfluid 3He. This is also beneficial in nuclear demagnetisation cryostats

as the removal of a necessary field for device operation allows demagnetisation to a lower

final field and hence a smaller base temperature.

Due to rapid advancements in the field of nanofabrication, nanoelectromechanical systems

(NEMS) are becoming increasingly viable as alternatives. The major advantage these

devices promise over traditional approaches is improved measurement sensitivity. While

not yet tested in quantum fluids experiments, other applications of nanoscale oscillators

have shown truly exceptional sensitivity to changes in oscillator effective mass [63–65].

In most cases this is used to enable sensitive measurements of the mass of an object

attached to the beam. In our applications, the effective mass depends on the properties

36



of the surrounding fluid and NEMS should therefore enable more precise determination of

these properties. The tiny size also presents a related drawback however as these devices

are generally fragile, meaning care must be taken to avoid damaging the sensor. This is

particularly problematic for measurements at ultra low temperatures as such experiments

are frequently slow to prepare.

3.1.1 Oscillator Theory

Despite the significant differences between the various types of resonator available, the

response of all kinds of device can be understood in terms of conventional oscillator theory.

Following this approach, the resonators can be treated as a mass on a spring:

ω0 =

√
k

m
, (3.1)

where ω0 is the natural resonant frequency of the system, k is the spring constant and m

is the mass.

For experimental purposes the oscillators will always be driven, using some external force

F = F0e
iωt, where F0 is the amplitude of the force and t is the time. Though the nature

of this force depends on the type of oscillator considered, the general form remains the

same. In the presence of this driving force, the overall equation of motion for the oscillator

becomes:

mẍ = F0e
iωt − kx−mλẋ, (3.2)

F0e
iωt = mẍ+mλẋ+ kx, (3.3)

where x, ẋ and ẍ are the position, velocity and acceleration of the oscillator respectively.
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The term −kx is therefore the restoring force and the term −mλẋ describes the damping

in terms of a damping coefficient λ. This damping coefficient is a complex variable and so

is best considered in terms of a real and imaginary component:

λ = λ2 + iλ1. (3.4)

Describing the damping requires a complex coefficient due to the nature of the drag force

as a combination of two distinct components. Physically, λ1 describes the non-dissipative

drag component caused by the back-flow of fluid around the oscillator. The other coef-

ficient λ2 relates to the dissipative drag. For completeness, it must be noted that the

back-flow will also increase the effective mass of the oscillator. However, since the fluid

mass is typically much smaller than that of the oscillator, this effect contribution will

be neglected for this discussion. Assuming the damping is much smaller than the other

contributions to the force, equation 3.3 can be solved for position using a time dependent

exponential,

x(t) = xeiωt. (3.5)

Differentiating this solution then gives the equations for velocity and acceleration:

ẋ(t) = iωx(t), (3.6)

ẍ(t) = −ω2x(t). (3.7)

Using these, we can now restate equation 3.3 entirely in terms of velocity and then re-

arrange this to get an expression for the velocity in terms of force and the resonance

parameters:
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F = iωmẋ+mλẋ+
mω2

0ẋ

iω
, (3.8)

ẋ =
Fω

m

1

ωλ2 + i(ω2 + ωλ1 − ω2
0)
. (3.9)

To allow us to separate this equation into real and imaginary components, the imaginary

term must be removed from the denominator,

ẋ =
F

m

ω2λ2 + iω(ω2
0 − ω2 − ωλ1)

ω2λ2
2 + (ω2

0 − ω2 − ωλ1)2
. (3.10)

This can now be broken down into the following two terms:

Re(ẋ) =
F

m

ω2λ2

ω2λ2
2 + (ω2

0 − ω2 − ωλ1)2
, (3.11)

Im(ẋ) =
F

m

ω(ω2
0 − ω2 − ωλ1)

ω2λ2
2 + (ω2

0 − ω2 − ωλ1)2
. (3.12)

Splitting the velocity in this way is worthwhile as these components have well defined

physical meanings. The real part describes the component of the velocity in-phase with

the driving force while the imaginary part corresponds to the component out-of-phase with

the driving force, often referred to as the quadrature. Both of these are easily accessible

experimentally for the oscillators discussed here.

By considering the expression for the real component we can estimate the maximum

possible velocity, which will occur when the denominator is minimised. As the powers of

two ensure the terms in the denominator can never become negative this occurs when the

second term in the denominator is equal to zero, meaning the relevant condition is:
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ω2
0 − ω2

1 − ω1λ1 = 0, (3.13)

where ω1 is the frequency at which the maximum velocity occurs. We can then use this

condition to calculate the velocity the oscillator will have at this frequency:

Re(ẋ)max =
F

m

ω2
1λ2

ω2
1λ

2
2

=
F

mλ2
. (3.14)

Equation 3.14 can now be used to derive an expression for the width of the oscillator,

labelled ∆ω2. For all future discussion, we use width to refer to the full width of the peak

as measured at half of the maximum height. We can therefore combine the expression for

the maximum velocity and the general expression for in-phase velocity to calculate the

frequency at which the height has dropped to half its maximum value (labelled ω2):

F

2mλ2
=
F

m

ω2
2λ2

ω2
2λ

2
2 + (ω2

0 − ω2
2 − ω2λ1)2

. (3.15)

By rearranging this, an expression for ω2 can be obtained:

(ω2
0 − ω2

2 − ω2λ1)2 = ω2
2λ

2
2. (3.16)

By assuming that the difference between the frequencies is much smaller than the frequen-

cies themselves, the solutions to this can be found:

ω0 ± ω2 =
λ1 ± λ2

2
, (3.17)

where the dual solutions account for the fact that half-maxima exist both above and below

the peak and appear in the calculation when the square root is taken. The resonance width

∆ω2 can then be calculated as the difference between the two solutions for ω2:
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∆ω2 = λ2. (3.18)

This can then be converted to the measurable frequency width, ∆f2:

∆f2 =
∆ω2

2π
=
λ2

2π
. (3.19)

This expression is not particularly useful in our experiment as the drag coefficient λ2 is

never explicitly measured or calculated. By rearranging equation 3.14 and combining the

result with 3.19, the drag coefficient can be replaced with more experimentally accessible

quantities:

∆f2 =
F

2πmẋmax
. (3.20)

Rearranging this then gives a very useful experimental quantity we refer to as the height-

width-drive,

ẋmax∆f2

F
=

1

2πm
. (3.21)

Although small variations in the effective mass of the oscillator do occur, these are largely

negligible and so equation 3.21 can be considered constant and the height-width-drive

proves very useful in certain measurements and calibrations.

Another important parameter of a resonance worth quantifying here is the quality factor,

Q. This essentially describes the efficiency of the resonance and is defined in terms of the

energy stored Es and the energy lost per cycle El:

Q =
2πEs

El
. (3.22)
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Quality factor is therefore maximised when the energy lost per cycle is small, meaning

highly efficient oscillators will be described by large quality factors. Alternatively, the

quality factor can also be defined in terms of the resonant frequency f0 and resonant

width:

Q =
f0

∆f2
. (3.23)

This expression shows that resonances with a high quality factor are also defined by a

narrow width. Additionally the quality factor is roughly equal to the number of cycles

required for the oscillator to ring down, and is therefore very useful in ensuring a sufficient

amount of time is given for a resonator to return to equilibrium between measurements.

3.1.2 Current Driven Oscillators

Despite the obvious differences, the traditional wire resonators and the NEMS considered

here have very similar modes of operation. In both cases, oscillations are induced by

applying an alternating current, I = I0e
iωt, in the presence of an external magnetic field,

B. This then applies a Lorentz force to the object. Although both traditional vibrating

wire resonators and the NEMS beams tested operate using the same physical mechanism,

a detailed understanding of this process is only necessary for the conventional oscillators.

A different measurement scheme is used for the NEMS that does not require accurate

knowledge of the voltage generated. The method applied for the NEMS is described in

section 3.2.4. As the drive signal is provided in the form of a current, these devices are

referred to as current driven oscillators. The driving force produced is given by:

F = BlI0e
iωt, (3.24)

where l is the spatial dimension of the oscillator perpendicular to the force. The periodic
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nature of the current will therefore produce a periodic force, which causes the wire to

oscillate. The oscillations produced lead to motion of the conductor perpendicular to the

magnetic field, and therefore a voltage will be generated according to Faraday’s law:

V = −d(B ·A)

dt
, (3.25)

where V is the voltage generated, B and A are the field and area vectors respectively. In

our experiments the field is kept constant during measurements, so has no time depen-

dence. The magnitude of the area also does not change, so the time dependence required

is introduced as a change in the angle between the area and the field.

To calculate the voltage, we must first obtain an expression for the area parallel to the

field, labelled A(t) to make the time dependence explicit. For the case of the semi-circular

wire resonators we start by assuming that the area parallel to the field is given by the

product of the area of the semicircle πD2

8 and the angle between this area and the field,

labelled φ. An expression for this angle in terms of the oscillation amplitude x and the

leg spacing D can be found by applying trigonometry:

tan(φ) =
2x

D
. (3.26)

Assuming the amplitude is always significantly smaller than the leg spacing we can apply

the small angle approximation tan(φ) ≈ φ to simplify this, giving φ = 2x
D . We can use this

to calculate the area parallel to the field,

A(t) =
πDx

4
. (3.27)

The voltage generated can now be calculated by combining equations 3.25 and 3.27:
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V = −BdA(t)

dt
, (3.28)

V = −πBDv
4

. (3.29)

The factor of π
4 in this expression is essentially a geometric factor to account for the semi-

circular shape of the wire used. In reality this result will only ever be an approximation

as the derivation assumes that the wires are a perfect semicircle, a fact which definitely

will not be true in practice. Fortunately this difference in shape will not cause too much

change in the geometric factor, so for simplicity’s sake the variations will be neglected.

3.1.3 Vibrating Wire Resonators

Vibrating wire resonators have a relatively long history in fluid research at low tempera-

tures, a fact which can easily be understood by considering some of the strengths of these

devices. As reasonably simple, highly sensitive ways of directly probing the properties of

the experimental fluid, these resonators were for a long time one of the best options when

deciding on a probe for low temperature fluid measurements. Although largely replaced

by quartz tuning forks in many modern experiments, some measurements are still ideally

suited to the traditional wire resonator.

All wire resonators used in these experiments were custom-made, starting with a com-

mercial niobium-titanium superconducting wire consisting of many filaments of niobium-

titanium surrounded by copper cladding. To make the resonator, the filaments of niobium-

titanium are first exposed by using acid to remove the cladding. All but one of the many

filaments are then painstakingly removed by hand, leaving a single thin niobium-titanium

wire to serve as the resonator.

All of the vibrating wires used here are in the shape of a semicircular loop, with the legs
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fixed into a sheet of stycast hardened paper. The resonators can be created in many

different diameters by starting with niobium-titanium wires of different filament diameter.

Three different diameters are used here, with 13.5 µm, 4.5 µm and 0.9 µm diameter wires

all included in the 3He cell used.

Due to the exceptional sensitivity provided by its small size, the 0.9 µm diameter wire is

used as the main thermometer for most measurements performed here. The other wires

are used for a wide range of purposes such as additional thermometry, vorticity creation

and heating (quasiparticle production).

Typically, the oscillation frequency of the wires used ranges from 100 Hz to 1 kHz. There

is no correlation between filament size and frequency, with wires of all diameters found to

have frequencies throughout the whole range.

3.1.4 Nanobeams

In recent years the field of nanoelectronics has advanced rapidly, with nanoscale devices

shown to exhibit truly exceptional mass sensitivity in a range of different applications

[63–65]. As probes in helium work by detecting the change in effective mass due to

clamped fluid, these increases in sensitivity could prove highly beneficial to superfluid

research if they can be replicated in this system. The application of these structures to low

temperature helium research is still relativitely new however, so much further development

is necessary before nanoscale structures match the ubiquity of wire resonators or tuning

forks.

In our experiments, the nanoscale structures used were doubly-clamped beams. Our de-

vices consist of a thin, linear beam of aluminium, with an approximately 100 nm by 100

nm square cross-section. A wide range of different beam lengths can be created, with

values ranging from 15 µm to 100 µm. This approach produces beams with an oscillation

frequency on the order of MHz. The suspended beams are fixed at both ends to a larger
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area of aluminium and suspended above a silicon substrate, and so should technically be

referred to as doubly-clamped beams.

In manufacturing terms, the nanobeams are made in a clean room using a range of well

established nanofabrication techniques. The structure of the beam is built by depositing

aluminium onto a silicon wafer, using electron-beam lithography to define the desired

shape. The silicon is then etched away, leaving the aluminium beam suspended. An SEM

image of a sample beam is shown in figure 3.1.

Figure 3.1: SEM image of a sample doubly-clamped beam, taken at room temperature.

An obvious concern visible in figure 3.1 is the shape of the beam, which is clearly not

straight, indicating a lack of tension in the beam. This is due to the temperature, as

the beams are designed to work at cryogenic temperatures while images are all taken at

room temperature. Due to differences in the thermal contraction coefficient between the

aluminium beam and the silicon substrate, the beam is pulled into tension as it is cooled.

There is also the possibility that measurements in fluid will be compromised by effects
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due to the proximity of the substrate surface. In 4He this will not be a problem, as the

height of the beam above the substrate (2 µm) is significantly larger than the viscous

penetration depth throughout the whole superfluid regime. For frequencies of the order

MHz, the penetration depth in 4He reaches a maximum value of about 0.5 µm before the

transition to a purely superfluid regime renders this quantity irrelevant. Unfortunately

this does not hold for 3He however, as the larger viscous penetration depth in 3He means

the beam is likely to exist in a region where a portion of the normal fluid is clamped. The

devices used may therefore need to be redesigned to remove this drawback before they can

be applied to measurements in 3He at temperatures with a finite normal fluid fraction.

3.1.5 Tuning Forks

The use of quartz tuning forks as probes in superfluid helium began with the application of

commercially available tuning forks [26]. Although these commercial forks are still suitable

for many applications, the specialised nature of our measurements mean that the forks

used in these experiments are all custom made. The design used remains very similar, with

the forks consisting of two parallel quartz prongs, referred to as tines. Motion is induced

through the piezoelectric effect, with the voltage applied by contacts on the surface of the

tines. In the fundamental oscillatory mode, the tines of the fork move in anti-phase.

The primary reason to use custom produced forks is the wide variety of different dimensions

available. Common to all forks used was the tine thickness, T = 90 µm. Two possible

values of width were used, W = 25 µm and W = 50 µm. The tine length L was different

for every fork, as this parameter determines the resonant frequency.

In terms of quantum fluids research it was initially hoped that the standardised produc-

tion of commercial tuning forks would mean that all similar forks behaved the same and

so remove the need for individual calibrations. Unfortunately this was quickly proved

incorrect, with no common dependence possible [26]. Quartz tuning forks do however still
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have a variety of advantages when compared to other probes.

One major benefit is availabilty, as suitable forks can be purchased from commerical

sources. However, if custom made tuning forks are used instead, variation of the fork

dimensions allows access to a wide range of oscillation frequencies. For example, the forks

used in the quasiparticle camera included have frequencies ranging from 20 kHz to 100

kHz. If higher frequencies are needed most forks also have a readily available overtone

mode at frequencies approximately 6.3 times that of the fundamental. Though the pattern

of electrodes used to drive the forks should strictly be redesigned to optimise performance

of these overtone modes, previous results have shown successful measurements of overtones

without any such adjustments [32].

When compared to conventional wire resonators, perhaps the most significant advantage

of quartz tuning forks is that they can be operated in the absence of any magnetic field.

This is possible as a result of the different operation scheme used for tuning forks, which

we refer to as voltage driven oscillators. As the name implies, applying an AC voltage

V = V0e
iωt to the electrodes induces oscillations. The resulting motion of the fork then

creates a current through the piezoelectric effect, with the current produced proportional

to the velocity of the oscillations:

I = av, (3.30)

where a, referred to as the fork constant, depends on the properties of quartz and the

dimensions of the tuning fork. A theoretical value of the fork constant, aT is given by [26]:

aT = 3d11Eq
TW

L
, (3.31)

where d11 and Eq are the piezoelectric modulus and Young’s modulus of quartz respec-

tively. To complete the mechanical picture of the oscillations produced, an expression for
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the force can be obtained by considering equation 3.30 and equating the electrical and

mechanical power during oscillations:

F =
aV

2
, (3.32)

where the factor of 2 accounts for the fact that both fork tines are in motion.

Experimentally, the fork constant can be inferred from measurements of the resonance.

By substituting the tuning fork velocity (equation 3.30) and force (equation 3.32) into

equation 3.21, an expression for the fork constant in terms of measurable parameters can

be obtained:

a =

√
4πmeffI∆f2

V
, (3.33)

where the effective mass meff is approximately a quarter of the base mass of a single

tine [32]. Reliable values of the fork constant are very important, as it is this constant

that we use to extract the physically relevant quantities of force and velocity from the

measured values of voltage and current. Typically, the experimental fork constant is

found to be approximately 30% of the theoretical prediction [26]. Previous experiments

have shown that optically measured values of fork velocity are consistent with the values

estimated from the experimental fork constant to within about 10% [66]. We are therefore

confident that this method of estimating the fork constant is trustworthy.

3.2 Measurement Techniques

Due to the wide variety of different devices tested during our experiments, an equally large

selection of approaches to measurement were required. For clarity the techniques used will

be discussed in detail here. With the exception of two of the experiments described, which

were performed using unique methods and will be described individually, the same scheme
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is used for all other measurements. For both tuning forks and vibrating wire resonators,

the drive is provided by a signal generator and the response is detected using a lock-in

amplifier. As wire resonators respond to current and tuning forks respond to voltage, the

exact setup used is different for the two different types of device.

For vibrating wires, a variable resistance drive box is placed between the generator and the

device itself. This drive box converts the voltage supplied by the generator into a current,

with the value of the variable resistor used to set the conversion ratio. A transformer within

the drive box separates the device side of the circuit from the generator. This allows us

to more accurately determine the resistance of the device side and hence the voltage to

current conversion ratio. If further signal reduction is required, 20 dB of attenuation

is added before the drive box. To make detection easier, the returning signal from the

vibrating wires is typically increased using a low temperature transformer.

As tuning forks are voltage driven oscillators, a different measurement scheme is needed

for these devices. To avoid the possibility of damaging the fork with excessive drive force,

the amplitude of the voltage produced by the signal generator is reduced by adding either

60 or 80 dB of attenuation to the generator output. On the measurement side of the

circuit, a custom current-voltage converter [67] is included to convert the response current

into a voltage measurable by the lock-in amplifier.

3.2.1 Frequency Sweep

The simplest of the main measurement techniques used in these experiments, a frequency

sweep (often referred to as an f-sweep) is a way of characterising a resonance regularly

applied to both vibrating wire resonators and tuning forks. In an f-sweep, a fixed drive is

applied to the oscillator and both the in phase and out of phase responses are recorded as

the frequency is varied in steps. The properties of the resonance are then calculated by

fitting a Lorentzian lineshape to the in phase (Vx) and out of phase (Vy) components. If
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using a vibrating wire resonator, equations 3.24 and 3.29 can then be applied to calculate

the force and velocity associated with the resonance. For tuning forks, equations 3.30 and

3.32 must be used instead. An example of the results obtained from an f-sweep is shown

in figure 3.2.

Figure 3.2: Example f-sweep results, taken for a 0.9 µm diameter wire resonator in super-
fluid 3He-B at 140 µK. Fits to a Lorentzian lineshape are performed to each components.
When performing analysis, values for the amplitude, center frequency and width of the
resonance are typically taken from the Vx fit. The Vy fit is mostly used as a diagnostic to
ensure the two fits return similar values.

F-sweeps are useful as the most accurate method for determining the resonant properties of

the device, with the resonant width often the most important of these due to its connection

to damping and so therefore temperature. At the start of each demagnetisation of the

fridge frequency sweeps are performed on all resonators to verify the resonant frequency

and width, as well as ensuring the phase setting of the lock-in amplifier used correctly
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matches that of the resonator.

Due to the inevitability of some background heat leak, the temperature of the experimental

cell rises steadily over time. As the most accurate method of determining resonance

width f-sweeps are often performed regularly throughout the experiment to quantify these

temperature changes. When no measurement is being performed, common practice is to

leave f-sweeps running on all oscillators. A feedback loop within the program used adjusts

the input parameters based on the most recent output, ensuring the resonance is not lost

as the frequency shifts.

3.2.2 Resonance Tracking

Although very accurate, the slow speed of each f-sweep means they are not ideal for

thermometry in situations where the temperature changes rapidly. For more responsive

thermometry we use resonance tracking, sometimes referred to as a time sweep.

In this technique, the values of in phase response Vx and out of phase response Vy are both

monitored. On resonance, the in phase component of the Lorentzian will be at maximum

while the out of phase component will be zero. Therefore, the ratio Vy/Vx will have a

minimum at resonance. By varying the frequency to keep this ratio as small as possible,

the oscillator can be kept on resonance. During a time sweep, the in phase component is

also kept constant by varying the drive.

By applying the height-width-drive (equation 3.21), the value of Vx and the known drive

can be used to find the resonance width, and therefore the temperature, for each data

point taken. As data is typically taken once per second using this technique, resonance

tracking can provide measurements of temperature at a very fast response rate at the

cost of reduced accuracy when compared to an f-sweep. Due to this high response rate

resonance tracking is typically used in parallel with other measurements to provide almost

real-time thermometry data.
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3.2.3 Amplitude Sweep

To investigate how the resonators used interact with the fluid, measurements of the force-

velocity characteristics of an oscillator are often required as a means of determining the

nature of the drag forces experienced by the device. While technically obtainable using a

number of consecutive f-sweeps, this approach is very slow and a more efficient method is

therefore required. Such measurements are instead made using an amplitude sweep, where

the drive is varied while the oscillator is kept on resonance.

The range of an amplitude sweep is often very wide, typically covering multiple orders of

magnitude in applied drive. This can lead to large variations in the measured drag during

a single amplitude sweep, meaning the resonant frequency may also vary significantly.

To keep the oscillator on resonance as the resonant frequency shifts we apply the same

method as for resonance tracking, where the ratio Vy/Vx is minimised. In practice, this

is applied by taking measurements only if this ratio is below a set threshold. If not the

frequency is adjusted slightly, the measurement is retaken and the condition tested again.

To test for hysteresis, amplitude sweeps are usually performed from a low drive to a set

maximum and then back down to the starting value. The results can be considered as two

distinct sweeps, an up-sweep taken with increasing drive and a down-sweep taken with

decreasing drive.

3.2.4 NEMS Measurements

Due to the significantly higher frequencies of the resonators, a different experimental setup

was used with the NEMS. For these measurements, a high frequency network analyser was

used to replace both the generator and the lock-in amplifier of the standard measurement

scheme. While traditional lock-in amplifiers that function at these frequencies do exist,

network analysers have become the standard method within the nanoelectronics commu-

nity for similar measurements due to their improved performance at these frequencies.
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Due to the high sensitivity of nanomechanical devices the input signal must be attenuated

to prevent damage to the beam, with an attenuation of 40 dB typically used. A similar

amount of gain (usually 40 dB) is then added to the returning signal to make it easier to

measure.

In the experiments described here, two main types of measurement were performed using

the network analyser. Despite the different instruments used, frequency sweeps using the

network analyser are very similar to those described in section 3.2.1. The frequency is still

swept through a chosen range of values while the drive is kept constant, though all data

is now recorded by the network analyser.

Power sweeps are another frequently used technique, and are essentially a crude version

of the amplitude sweep. Power sweeps using the network analyser consist of a series of

consecutive frequency sweeps where the power applied to the beam is increased between

sweeps. Power sweeps are usually performed in vacuum and used as calibrations before

other measurements are carried out. Nanomechanical structures typically display a large

amount of non-linearity, so vacuum power sweeps are an important way of ensuring all

future measurements are kept within the linear regime.

The final technique we will use is referred to as a temperature sweep and, like the power

sweep, essentially consists of a number of consecutive frequency sweeps. During a tempera-

ture sweep all parameters of the network analyser are kept constant while the temperature

of the experimental cell is varied. This ensures all differences observed between sweeps

are a result of the temperature changes.

In contrast to the traditional approach, measurements using the network analyser work

in terms of the transmission and reflection of the electrical power applied to the circuit.

Measurements of a resonance can be made by monitoring the transmission. When on

resonance, some of the power provided is used to drive the motion of the beam and the

resonance therefore appears as a drop in the transmitted power. Results from the network
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analyser are given in terms of an electrical scattering matrix element, S21, which can be

defined in terms of the input voltage V1 and the output voltage V2,

S21 =
V2

V1
. (3.34)

By squaring equation 3.34, we can obtain a similar expression in terms of the input power

(P1) and the output power (P2):

|S21|2 =
P2

P1
, (3.35)

where the resistance terms expected when converting voltages to power cancel, as both

input and output are measured at the network analyser ports across a 50 Ω impedance.

In order to relate the measurements to physical properties of the resonance, we need to

obtain an expression for the output power as experienced by the beam, labelled P b
2 . This

can be related to the measured output power using the gain, G:

P b
2 G = P2. (3.36)

To be of practical use, we need to obtain P b
2 in terms of the experimentally measurable

quantities S21 and P1. This can be achieved by substituting equation 3.36 into equation

3.35,

|S21|2 =
P b

2 G

P1
. (3.37)

Rearranging this for P b
2 then gives the expression required:

P b
2 =

P1|S21|2

G
. (3.38)
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Until now, this derivation assumes quantities are given in standard units, with P b
2 and

P1 given in Watts and |S21|2 and G treated as ratios. In reality, the network analyser

measures the input power in dBm, so this must be converted to Watts:

P1[W] = 100.1P1[dBm]. (3.39)

The obtain the power loss caused by the resonance, Pr, we must first extract the change

in the S21 signal due to the resonance. This can be done by subtracting the background,

associated with other power loss such as Ohmic heating, from the measured value of S21

to obtain the amplitude of the peak, S21,Amp. This is then used to calculate the power

loss due to resonance:

Pr =
P1|S21,Amp|2

G
. (3.40)

To convert the measured signal and input power to physical quantities such as the velocity,

we start by equating the two possible definitions of the quality factor (equations 3.22 and

3.23),

f0

∆f2
=

2πEs

El
. (3.41)

As we are working in terms of drops in transmission, in physical terms we can relate the

S21 signal to the energy lost from the resonator, El. By using the frequency to relate

energy per cycle to power, Pr = Elf0, equation 3.41 can be rewritten in terms of power:

1

∆f2
=

2πEs

Pr
. (3.42)

The velocity can now be extracted from this by considering the stored energy Es. Treating
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the resonator as a simple harmonic oscillator, the stored energy is constantly converted

between kinetic energy and potential energy. To find the peak velocity v0 of the oscillations,

we consider the point at which the stored energy is purely kinetic, Es = 1
2mv

2
0. Substituting

this into equation 3.42 and rearranging for velocity now gives the desired expression:

1

∆f2
=

2πmv2
0

2Pr
, (3.43)

v0 =

√
Pr

πm∆f2
. (3.44)

An expression for the associated force can be found from this by using the definition of

mechanical power, P = Fv,

F0 =
√
πmPr∆f2. (3.45)

If necessary, an expression for the maximum displacement of the beam can be found from

the velocity by rearranging the traditional equation for velocity of an oscillator, v = ωx:

x0 =
1

2πf

√
Pr

πm∆f2
. (3.46)

3.2.5 Multifrequency Measurement Methods

One major drawback of the current approach used in operating the quasiparticle camera

is the large number of instruments needed, as every pixel requires a unique lock-in am-

plifier to perform the measurements. An approach that allows measurement on multiple

pixels using a single device is therefore desirable. With this in mind we investigated a

multiple frequency lock-in analyser, referred to as the MLA, which enables excitation and

measurement on up to 42 different frequencies simultaneously, so long as all frequencies
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used are integer multiples of some minimum measurement frequency [68].

The MLA was originally developed for use in atomic force microscopy, where the oscillator

used is a cantilever beam with a tip on one side. Contact between the tip and the surface

being investigated alters the oscillations, with the variation in resonance behaviour used to

deduce properties of the surface. In intermodulation atomic force microscopy the cantilever

is instead driven at two different frequencies close to resonance. Contact between beam and

surface then causes non-linearity in the resonance, introducing intermodulation products

to the frequency spectrum measured. The measured intermodulation products can then

be used to obtain information on the surface [69,70].

For our purposes, we consider two potential use cases of this functionality. By connecting

a large array of oscillators, it may be possible to use the MLA to measure the frequency

characteristics of a large number of devices simultaneously. Performing separate frequency

sweeps on all available MLA channels should in theory allow simultaneous measurements

on 42 different oscillators. Unfortunately the requirement that all frequencies used are

integer multiples of a set base frequency complicates this significantly. This drawback

could potentially be worked around with very careful design of the devices used, but for

now this possibility remains untested.

The MLA should also be able to characterise the resonance of a single oscillator by choos-

ing excitation frequencies spaced around the resonance frequency of the oscillator. By

measuring the response of all of these frequencies simultaneously, a profile of the reso-

nance should be obtainable in a single measurement. This method, which we refer to as a

frequency comb, should produce results equivalent to a conventional f-sweep in a shorter

space of time. As an important note, this method is only valid for a linear resonance. Any

non-linearity in the oscillator could introduce unpredictable intermodulation products and

render the results unreliable.

In practice an upgrade to the camera based on multifrequency techniques could of course
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apply both of these possible uses. In the case of 42 separate oscillators connected to

the MLA through a common line, frequency combs could be taken of each device before

the start of a measurement to rapidly and accurately characterise the resonances of every

oscillator. A variant of the resonance tracking method currently used could then be applied

to monitor all 42 devices simultaneously and record how they vary over time. Since the

current measurement scheme requires a unique lock-in amplifier for every camera pixel,

switching to a multifrequency approach may allow us to vastly increase the resolution of the

camera while also reducing the number of instruments needed to take the measurements.

3.3 Thermometry

At very low temperatures accurately determining the temperature of an experiment is not

trivial, with a wide variety of potential methods available. These different approaches all

come with associated advantages and drawbacks, so the choice of which to use must be

made carefully.

The available methods can be split into two categories. These are primary thermometers,

which can be used reliably without any prior calibration, and secondary thermometers,

which must be calibrated before they can be used. Although these definitions imply

primary thermometers are universally better than secondary, in practice primary ther-

mometers are frequently difficult to work with experimentally. Secondary thermometers

are often preferred as they are easier to work with and no less accurate if calibrated

successfully.

Due to the wide variety of measurements performed, a range of different methods were used

to determine the temperature during these experiments. For the measurements performed

in 4He, the vapour pressure of the helium produced due to boil-off of the liquid was used

to deduce the pressure. As the pressure is related to the temperature by the well known

4He phase diagram, this can be considered a primary thermometer.
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However, there is one major issue associated with the use of vapour pressure for thermom-

etry. The relationship between pressure and temperature is only known along the boiling

curve of the phase diagram, and it is therefore possible for this method of finding the

temperature to become inaccurate if the state of the helium drifts away from this boiling

curve. Even worse, it is impossible to tell if this has happened from the pressure mea-

surements. Thankfully this only becomes an issue if the pressure is allowed to increase, so

long as pressure is decreased steadily the helium can be kept safely on the boiling curve

and the temperature readings provided by this approach remain reliable.

For the measurements performed in 3He the thermometry required is more complicated as

the temperature cannot be directly calculated from the cryogenic methods used. As the

cell contains a wide range of different oscillators, it makes sense to use these resonators as

thermometers.

In order to calculate temperature from measurements of these devices, we must combine

the theory of drag in 3He (section 2.2.4) with the theory of oscillating devices (section

3.1.1). As discussed earlier the drag in 3He can be split into three components, F =

F0 +FT +Fpb, where F0 is the intrinsic drag, FT is the thermal component and Fpb is the

drag due to pair-breaking. To determine the temperature we are only interested in the

thermal component.

In experimental terms the width of the oscillator resonance is connected to the drag, with

the width increasing as drag increases. By combining an expression for the thermal width

(equation 3.20) with an equation for the thermal force at low velocity (equation 2.63), an

expression for the thermal width ∆fT
2 can be derived:

∆fT
2 =

FT

2πmv0
, (3.47)
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FT

v0
=
FT
v→0

v
=

2dγp2
F〈nvg〉
kBT

, (3.48)

∆fT
2 =

dγp2
F〈nvg〉

πmkBT
. (3.49)

During the previous discussion of drag in 3He an expression for the quasiparticle flux 〈nvg〉

was obtained (equation 2.54), which can now be substituted into equation 3.49:

∆fT
2 =

dγp2
Fg(pF)

πm
exp

(
−∆

kBT

)
. (3.50)

As all terms outside the exponential on the right-hand side of this equation are constant,

we can simplify this by absorbing these into a single number, which we refer to as the

width parameter, A:

∆fT
2 = Aexp

(
−∆

kBT

)
. (3.51)

The value of this width parameter, different for each wire, is then determined experimen-

tally [71]. To enable use for thermometry, equation 3.51 can be rearranged to find an

expression for the temperature:

T =
−∆

kBln
(

∆fT2
A

) . (3.52)

So long as the value of the width parameter A is known, equation 3.52 can be applied to

calculate the temperature. However, as the width parameter is determined experimentally,

oscillators do not count as primary thermometers. Since there are so many oscillators

present in the cell used here, it would be highly inefficient to perform full calibrations for

each one individually. Conveniently, the width parameter is found to be almost identical
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for devices of the same size. This can be seen by plotting the thermal width of one device

against the thermal width of another with the same dimensions (figure 3.3), as the gradient

of this plot is equal to the width parameter ratio for the two devices. Figure 3.3 Compares

mmm1 and mmm2, both of which are 4.5 µm diameter wire resonators. Comparison to the

black line shows this plot has gradient 1 and the width parameters are therefore identical

for the two lines. Calibrations obtained for a single 4.5 µm wire can therefore be applied

to all other wires of the same diameter.

Figure 3.3: Thermal width of wire mmm2 plotted against thermal width of wire mmm1,
both wires of diameter 4.5 µm. The black line of gradient 1 shows the width parameter is
the same for both wires.

For other devices, temperature is calculated through comparisons to the 4.5 µm wires.

This enables any oscillator in the cell to be used as an accurate thermometer without

requiring lengthy calibrations. To enable the comparison between the calibrated 4.5 µm
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wire and other devices, the resonance response of each device was measured at a wide

range of different temperatures as the cell warms up due to background heat leaks during

an experiment. This data was then used to plot the width of wire Mg (0.9 µm diameter)

against the width of wire mmm2 (figure 3.4).

Figure 3.4: Thermal width of wire Mg plotted against thermal width of wire mmm2.

Figure 3.4 can now be applied to enable thermometry from measurements of Mg. The

thermal width of Mg, ∆fM
2 , can be calculated from the thermal width of mmm2, ∆fm

2 ,

using figure 3.4:

∆fM
2 = B∆fm

2 , (3.53)

where B is the gradient of the line shown in figure 3.4. Combining equations 3.52 and
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3.53, an expression can now be found for the temperature in terms of the thermal width

of Mg and the width parameter of mmm2, labelled Am for clarity:

T =
−∆

kBln
(

∆fM2
AmB

) . (3.54)

Equation 3.54 can then be applied to calculate temperature from the width of Mg without

having to perform full calibrations for this wire. By repeating this method, all oscillators

can be used as thermometers even though only a single 4.5 µm wire has been strictly

calibrated.

All temperature measurements for the 3He experiments are taken by applying this ap-

proach to the oscillators in the cell. Typically all oscillators not otherwise in use during a

measurement are set to undergo resonance tracking before the measurements are started.

The values of this can then be used with the method above to calculate the temperature.

As this often enables simultaneous temperature measurements on a number of oscilla-

tors, the results obtained with different devices can be compared to check for temperature

gradients within the cell.

3.4 Experimental Cell Layouts

To obtain the wide range of different results discussed here, a number of different cells were

used. As discussed in section 3.3 the temperature of all 4He measurements was deduced

from the vapour pressure of the helium. This external thermometry means all devices

included in the 4He cells are left free for other uses. The only devices included in the

first cell, used to test the multifrequency measurement methods described in section 2.2.5,

were two tuning forks. The cell design used for NEMS measurements was very similar, as

this cell simply contained two beams. The beams in the NEMS cell were designed to be

replaceable, allowing the same cell to be used for testing a wide variety of beams.
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In 4He, where cooling from room temperature to base temperature within a day is possible,

simple cells such as these are useful as the cell can be changed between every measurement

if necessary. In 3He, where these time frames are much longer, cells containing a wide

range of devices are much more efficient as they allow multiple distinct measurements to

be performed using a single cell. For this reason all 3He measurements discussed here were

carried out in the same cell, shown in figure 3.5.

Figure 3.5: Diagram of the devices inside the cell used for all 3He measurements, showing
the geometry of the cell. For a more detailed description of the relevant devices, see text.

Although originally designed to be used together as a quasiparticle camera [12], this cell

was chosen for our experiments solely due to the large number and wide variety of devices

included. As such, many of the devices visible in figure were not used at all in our

experiments. A single fork from within the 25 pixel camera array, labelled D2, was used
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for all tuning fork measurements performed here. The four thinnest vibrating wires,

one with diameter 0.9 µm and three with diameter 4.5 µm, were frequently used in our

measurements. The thinnest of these, referred to as Mg, was used as a thermometer

wherever possible as its small size made it the most sensitive for these purposes. As the

same device cannot be used for measurements and thermometry at the same time, any

of the other three wires could be used as a thermometer when necessary. The three 4.5

µm wires are referred to as mmm1, mmm2 and mmm3 and labelled on figure 3.5 for

clarity. Mg was placed on the opposite side of the quasiparticle source to the camera

array and is not visible in figure 3.5. The bulk thermometer on the right hand side of the

quasiparticle source is much thicker than the others, with a diameter of 125 µm, and is

used for thermometry in the normal fluid regime. This wire is therefore primarily used as

a diagnostic tool during fridge operation and is not used in experimental measurements.

4 Multifrequency Lock-in Measurements

As detailed in section 3.2.5, two potential improvements to the quasiparticle camera are

suggested that require the use of an Intermodulation Products multiple frequency lock-in

analyser (MLA) [68]. To check that these new methods are valid, we must first prove that

the MLA is capable of producing results equivalent to those obtained using a traditional

lock-in amplifier. In these experiments, we use a Stanford Research Systems SR830 lock-in

amplifier as the conventional approach.

To test the frequency comb method, measurements were made on a pair of tuning forks.

The fork lengths chosen, L = 2600 µm and L = 2200 µm, gave approximate resonant

frequencies of 12 kHz and 16 kHz respectively. The forks were identical in all other

dimensions, with tine width W = 25 µm, thickness T = 90 µm and a spacing of D = 75

µm between the tines.

Before any comparisons were made between frequency sweeps and frequency combs, some
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basic measurements were taken to test the frequency comb method. As the major potential

advantage of a frequency comb is the possibility of faster measurement times, frequency

combs were performed at a range of different speeds. These measurements were performed

using the 16 kHz fork and, for simplicity, taken in vacuum at room temperature.

Figure 4.1: Four measurements of the in-phase (Vx) component of the resonance for the 16
kHz fork, obtained using frequency combs at a variety of different measurement durations,
showing the improvement of the results with longer measurement times. As frequency
combs were used to obtain these results, the quoted times correspond to the total mea-
surement duration.

Firstly, figure 4.1 shows clearly that the frequency comb approach is capable of produc-

ing an accurate resonance profile. In terms of measurement times, 60 s and 15 s both

give very clear results, with minimal deviation from the expected Lorentzian shape. As

demonstrated by the 5 s and 2 s results, reducing the measurement time further visibly

reduces the accuracy of the profile obtained. However, though noisier, the shape of the
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5 s results is sufficiently close to a Lorentzian lineshape to give reasonably accurate val-

ues of properties such as width and resonant frequency in a remarkably short amount of

time. Although the 2 s results are too inaccurate to be of much use in any experimental

context, it is still remarkable how reasonable the results are given the timeframe of these

measurements. Weighing the necessary trade-off between accuracy and measurement time

the 15 s data seem to provide the best compromise, appearing very similar in accuracy to

the slower measurement despite the shorter time taken.

In preparation for comparisons between frequency sweeps and frequency combs, the exper-

imental setup was designed to allow measurements to alternate between the two methods

without any external changes for experimental convenience. This circuit, shown in figure

4.2, used a summation amplifier to apply the output from both generators to the same

fork. A 20 dB attenuator was used to reduce the input signal and prevent damage to the

sensitive fork. In accordance with the typical approach to fork measurements described

in section 3.2, the fork response was passed through a custom made IV converter [67] to

change the output current into a voltage measurable by the lock-in amplifiers.

As we are primarily interested in the cryogenic performance, the forks were then cooled

using a 4He immersion cryostat. Varying the pressure of the helium bath of the cryostat

gave access to temperatures from 4.2 K down to a base temperature of approximately 1.45

K. The temperature was inferred directly from the pressure above the helium bath. The

forks used for the measurements were immersed directly in the bath of the cryostat.

To provide a simple comparison, measurements of the 12 kHz fork were taken using both

methods with the fork immersed in helium at the base temperature of the cryostat. The

frequency sweep used includes 60 points, with 1 second measurement time per point. For

the frequency comb, 40 points were taken and the measurement was performed in 40 s.

The measurement times chosen here were largely arbitrary, with the exact values used

chosen to ensure there was minimal noise in the data.
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Figure 4.2: Schematic of the circuit used, designed so that measurements could alternate
between the two devices [72].

The results of this, seen in figure 4.3, clearly show very close agreement between the two

methods. This serves as a rough proof of concept by showing that, at least in the most

basic possible case, the new frequency comb does give analogous results to the traditional

method. To enable this agreement, the measured response must be normalised to account

for differences in the size of the drive applied in each method. The normalised signal shown

was obtained by dividing the output current produced by the applied input voltage.

Due to the different approaches used, different values of the excitation voltage applied

were necessary. For the frequency sweep, a constant voltage of 50 mV was applied for

all points in the sweep. As all frequencies are excited simultaneously during a frequency

comb, a smaller per point excitation of 20 mV was chosen to keep the maximum applied

power close to that of the frequency sweep. For comparisons, values of the power were

calculated electrically (P = IV ) with the total power for the frequency comb acquired by

summing over all simultaneously driven frequencies.
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Figure 4.3: Comparison of the in-phase and quadrature components of the 12 kHz tuning
fork resonance as measured with both methods in superfluid 4He at approximately 1.5 K.
The signal is given as a normalised response to account for differences in applied excitation
between the two approaches.

Calculating the peak powers applied, we find that the frequency sweep has a peak power

of approximately 0.4 pW, while the simultaneous measurements of the frequency comb

lead to a higher peak power of 0.6 pW. It is worth noting that the case will be very

different for total power, where the greater excitation magnitude and larger number of

measured points will lead to a higher total applied power for the frequency sweep method.

Although the full calculations depend on the exact values chosen for the applied drive

and number of points measured, in general the peak power will always be higher for the

frequency comb. The parameters must therefore be chosen carefully when applying this

method as excessive peak power will lead to the nucleation of turbulence and so introduce

non-linearity to the system. Although not yet tested experimentally, this non-linearity is

expected to compromise the accuracy of the frequency comb method through the creation
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of unwanted intermodulation products.

Stronger proof of the viability of the frequency comb approach can be obtained by extend-

ing these comparisons to the full temperature range measurable, thereby demonstrating

that the two methods give equivalent results under a wide range of different experimental

conditions. In practice this was achieved by using both methods alternately while the tem-

perature was reduced from 4.2 K to 1.5 K. Values of the resonance frequency and width

were obtained by fitting a Lorentzian to the results of each individual sweep or comb.

Assuming the drag is purely hydrodynamic, theoretical predictions for the temperature

dependence of the damping are given by equations 2.25 and 2.29. The values of ρHe, ρN

and η required for these calculations are taken from Donnelly and Barenghi [35]. Compar-

isons between the theoretical and experimental sets of results ensure the measurements

are consistent with the theory used.

As shown in figure 4.4, comparisons between SR830, MLA and theoretical calculations all

agree very closely throughout the whole temperature range tested. The value of C = 0.404

obtained for the fitting parameter is slightly smaller than previous measurements on 75

µm width forks. Typical values for the 75 µm forks range from C = 0.518 to C = 0.757,

with a trend towards higher values as frequency increases. Prior experiments with larger

forks of similar resonant frequency typically report higher values of the fitting parameter

C, so it is reasonable to assume the lower value recorded for the 25 µm forks used here is

also attributable to the reduced width.

Fits to the frequency ratio (figure 4.5) are clearly not as close, with significant disagreement

between the experimental results and the theoretical predictions at the lowest measured

temperatures. In fact, this discrepancy can largely be removed by treating the vacuum

frequency of the oscillator as an additional fitting parameter. Unsurprisingly the value of

f0 = 11749 Hz given by the fit is very close to the experimentally determined value of

f0 = 11730 Hz. However, as shown in figure 4.6, this small change in vacuum frequency
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Figure 4.4: Resonance width as a function of temperature, measured for the 12 kHz fork
using MLA (red) and SR830 (blue). The black line is a fit to equation 2.29.

causes a significant change in the quality of the fit.

Close inspection reveals that this corrected fit is still not perfect, with some disagreement

now visible in the normal fluid results just above the transition to superfluid. Although the

improvement to the fit in the superfluid regime supports figure 4.6, this new fit can only

be considered valid if a suitable physical explanation for the shift in vacuum frequency

can be found. Thankfully, changes in the vacuum frequency are plausible in the cryostat

used.

As all experiments were performed in the main bath of the cryostat there is a reasonable

possibility of contamination with impurities such as oil or water present in the helium

supply. Due to the low temperature any potential impurity would be solid and therefore

capable of adhering to the surface of the fork. Such unexpected additions to the mass
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Figure 4.5: Frequency ratio as a function of temperature, measured for the 12 kHz fork
using MLA (red) and SR830 (blue). The black line is a fit to equation 2.25.

and profile of the oscillator would inevitably lead to variation in the resonant frequency.

The increase in vacuum frequency seen here is inconsistent with an addition to the effec-

tive mass, but could be explained by an imperfection present from previous experiments

detaching from the fork.

Such variations in effective mass were often observed qualitatively during these experi-

ments, with values of the fitting parameters proving highly difficult to reproduce exactly

over consecutive experiments. Despite the changes in the values of the fitting parameters,

every different set of measurement still showed solid agreement between the measured data

and the theoretical fits. This strongly suggests the model is still valid and the change in

fitting parameters is therefore best explained by variation in one of the values treated as

a constant.

Regardless of these minor issues with the physical interpretation, in terms of the exper-
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Figure 4.6: Frequency ratio as a function of temperature, measured for the 12 kHz fork
using MLA (red) and SR830 (blue). The black line is a fit to equation 2.25, with the
resonance frequency now treated as an additional fitting parameter.

imental techniques tested the results obtained reveal a great deal of success. As shown

in figures 4.4 and 4.6, the values of resonant frequency and width as measured by the

frequency comb approach agree closely with those obtained using traditional frequency

sweeps throughout the whole temperature range tested. Significant amounts of noise are

visible in the results of both methods, though there appears to be little difference in the

magnitude of this noise between the different techniques. Perhaps most importantly, there

is no sign of any systematic offset between the values obtained. This proves that the agree-

ment shown in figure 4.3 is not a specialised case and we can therefore assume that the two

approaches are indeed equivalent so long as the response of the device measured remains

linear.

Before commenting on the plausibility of employing these new methods to improve the
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quasiparticle camera, it is important to note that any such application would require the

use of multifrequency methods in 3He. Although leading to significant differences in terms

of physical properties such as viscosity, changing the experimental fluid to 3He should not

affect the validity of the frequency comb method and we should in theory be able to use

this approach in 3He without any problems. It would however seem sensible to verify this

with some simple measurements in 3He before applying this method to real experiments.

Unfortunately, due to the inaccuracy shown by the very short measurement time results,

the frequency comb is not viable as a replacement for the resonance tracking approach

used currently in the operation of the quasiparticle camera. Currently the vast majority of

tracking measurements are performed with data acquisition rates of either one point per

second or ten points per second. Figure 4.1 clearly shows that results taken at this speed

using the frequency comb method would be too inaccurate to be of any experimental use.

Figure 4.1 does however also show that the frequency comb technique is capable of ob-

taining a highly accurate profile of the resonance in as little as 15 s. In comparison to the

frequency sweeps currently used, this could provide a much faster method of performing

the preliminary resonance measurements required on each fork before the tracking method

can be applied. This would significantly reduce the time required to calibrate the camera.

5 Probing Superfluid 4He with Nanomechanical Resonators

One major field of development in terms of instrumentation is the drive towards miniatur-

isation. The use of microelectromechanical systems (MEMS) and nanoelectromechanical

systems (NEMS) is now well established in other fields [63–65], with some of these devices

showing exceptional sensitivity to changes in mass. However, the application of these

devices to superfluid research is still largely untested. If the sensitivity observed in other

applications can be replicated for our purposes, these devices could prove very helpful in

future.
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Additionally, the small size of these devices may also prove beneficial for future redesigns

of the quasiparticle camera experiment. Using smaller devices may allow us to include

more devices in the same physical area and so add more pixels without increasing the

overall size of the camera.

Our experiments were all performed in a simple 4He cryostat. All cooling in this setup

is then achieved by pumping on the helium, reducing the pressure of the gas produced

and so causing cooling due to the shape of the phase diagram. Due to the relatively high

power of the vacuum pump used a base temperature of approximately 1.3 K was possible

using this approach.

All measurements were taken using a network analyser, using a simple electrical setup.

As the network analyser both generates and measures the signal, no other external device

was needed. However, due to the small size of the beam, the power applied must be kept

low to avoid damaging the device. To achieve this a system of attenuators and amplifiers

reduces the outgoing signal to prevent damage to the beam and then boosts the returning

signal so that it can be easily detected.

As shown in unpublished preliminary measurements performed in Lancaster, beams such

as these typically exhibit a large amount of non-linearity as the applied power increases.

Before any other measurements can be performed the input power at which the non-

linearities appear must therefore be located to ensure all future measurements are kept

below this. The simplest way to do this is to record the resonance characteristics at a

wide range of input powers, as the appearance of non-linearities is dramatic enough to be

easily visible in these plots. These measurements were performed in a vacuum to ensure

they corresponded to the lowest damping case possible.

Performing these measurements for our 50 µm beam gave the characteristics shown in

figure 5.1. From figure 5.1 we can observe multiple different non-linearities. At 2.5 pW

input power a split resonance begins to appear, with a secondary peak appearing at
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Figure 5.1: Output power before amplification as a function of frequency for measure-
ments at a wide range of different input powers, showing the onset of non-linearity in the
resonances.

frequencies just below that of the main resonance. At input powers above 1.6 × 101 pW

we also see the shape of both resonances become Duffing-like. At the highest input power

tested, 6.3× 102 pW, the secondary peak vanishes as the Duffing effects dominate. Small

additional peaks also appear above and below the main resonance at higher powers. Above

7.9× 101 pW, two new features appear, one at around 1.15 MHz and the other at roughly
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1.22 MHz. However, the feature at 1.22 MHz is hard to spot at even higher powers,

presumably due to the increased importance of the Duffing non-linearity for these powers

overwhelming the effects of this small feature.

With the vacuum calibrations completed, the beam was immersed in 4He to see if nanome-

chanical structures could replicate results obtained with larger oscillating structures. Sim-

ilar to the measurements described in section 4, the properties of the beam resonance were

monitored as the temperature of the 4He was reduced from 4.2 K to 1.3 K. As the simplest

possible way to prove that the properties of the beam were changing due to the surround-

ing helium, the resonance response was plotted at a range of different temperatures. All of

these measurements were taken using an applied power of −30 dBm, this drive was kept

constant to ensure all changes observed are due to variations in the drag applied.

Figure 5.2: Oscillator velocity as a function of frequency for measurements at temperatures
ranging from 1.32 K to 4.15 K.
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Figure 5.2 shows the results of this, revealing data that is entirely consistent with the

expectations due to immersion in helium. Comparing the data taken at 2.61 K and

4.15 K show little change, with very little difference between the two data sets. This is as

expected, as both of these are above the transition to superfluid and little variation should

occur due to such small temperature changes in normal fluid. All the data taken below the

superfluid transition also behave exactly as expected, with the amplitude of the resonance

increasing steadily as the temperature falls. This is easily explained by the decrease in

drag as the fraction of superfluid present increases. The velocities shown in figure 5.2

were obtained using equation 3.44. The values of width needed for this calculation were

obtained by fitting to the raw measurements.

To provide even stronger confirmation of the successful measurement of superfluid prop-

erties using NEMS, the variations observed with temperature need to be quantified and

compared to the relevant theoretical predictions. The method used here is identical to that

applied in section 4. As detailed in section 2.1.4, expressions for the changes in resonance

width and resonant frequency as temperature changes can be derived. The expressions

obtained are restated below as equations 5.1 and 5.2:

f2
0

f2
He

= 1 +
βρHe

ρ
+
BρNS

ρV

√
η

πρNfHe
, (5.1)

∆f2 =
CS

2m

(
f2

He

f2
0

)√
ρHeηfHe

π
, (5.2)

where β, B and C are geometrical coefficients, expected to be of order unity.

By taking many measurements as the cryostat is cooled, the experimental results can be

compared to these theoretical predictions across the whole range of temperatures available.

Agreement between these will therefore prove that the temperature dependence of the

sweeps shown in figure 5.2 is indeed caused by the changes in the properties of the helium.
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In practice this comparison is performed by attempting to fit equations 5.1 and 5.2 to

the measured data, treating the geometrical coefficients as fitting parameters. The tem-

perature dependence of these equations appears in the variation of the properties of the

helium (ρHe, ρN and η) with temperature [35]. If the measured data agrees with the pre-

dictions the theoretical fits should match well to the data using a sensible value of the

fitting parameters.

Figure 5.3: Comparison between experiment and theory for the frequency shift observed
as the helium temperature changes.

Figure 5.3 shows very good agreement between actual measurements of the frequency shift

and the behaviour predicted from changes in the helium properties due to the transition

to superfluid. As expected the most significant feature in this plot is the dramatic change

due to the superfluid transition at 2.2 K, a feature clearly visible in both data sets. As

further proof, both calculated and measured data show the same curvature across the whole
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temperature range measured. This agreement is best below the transition to superfluid,

with additional noise above the transition leading to greater spread in this region. However,

even with this noise the general shape of the different sets of data still agree well.

Further evidence for the success of these measurements can be found by considering the

obtained values of the geometric coefficients, β = 1.18 and B = 1.19. These values are

of order 1, as anticipated, and also agree well with values obtained in similar experiments

using more traditional resonators such as vibrating wires and tuning forks.

Figure 5.4: Comparison between experiment and theory for the change in width measured
as the cryostat is cooled.

While figure 5.4, comparing measurements of frequency width to predictions, still shows

good agreement between both sets of data it does also reveal some discrepancies. Above

the superfluid transition the theory and experimental results do match across the whole

range of values, though this regime contains a significant amount of noise with a large
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spread visible even between data at very similar temperatures. Since this issue can be

adequately explained by additional noise it does not contradict the agreement between

the data sets.

However, a much more interesting discrepancy occurs at the lowest temperatures mea-

sured. Below temperatures of approximately 1.7 K the agreement between theory and

experiment breaks down somewhat, with the measurements consistently higher than the

theoretical prediction. Since this only occurs for a small subset of the total data range it

does not invalidate our theory, but it does show that the model used is incomplete.

A likely reason for this discrepancy can be found by considering the viscous penetration

depth of superfluid 4He, shown earlier as equation 2.21 and restated here for convenience:

δ =

√
η

πρNfHe
. (5.3)

As stated in section 2.1.4, the derivation of the hydrodynamic damping model used as-

sumes the viscous penetration depth is smaller than the size of the oscillator. Due to the

very small size of the beams used this condition may not be true, in which case the model

used is unlikely to be completely accurate. To test this suggestion, values for the viscous

penetration depth were calculated across the whole temperature range of the experiment.

The results obtained are shown in figure 5.5. Comparing figures 5.4 and 5.5 appears to

confirm our suspicions, with the breakdown of the hydrodynamic damping model happen-

ing at a temperature of 1.7 K, the same temperature at which the viscous penetration

depth becomes equivalent to the size of the resonator.

There are however several other potential additions to the theory that could explain the

extra damping visible. One potential explanation would be acoustic emission, as this is a

known damping mechanism not included in the model used. Additionally acoustic effects

typically become relevant at high frequencies and so may be more important for high

frequency NEMS than the lower frequency devices used traditionally. The additional drag
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Figure 5.5: Calculated values of viscous penetration depth for the beam used as a func-
tion of temperature. The dashed line shows the width of the beam and intersects the
penetration depth at a temperature of approximately 1.7 K.

measured could also be explained by the generation of vorticity, another mechanism not

considered in our theory that could easily produce additional drag. Although vorticity

production generally only occurs at velocities above those considered here, the novelty

of performing these measurements with such small devices means there are no previous

results to refer to. Unfortunately without significant further work these effects cannot

be modelled, so all efforts to explain the breakdown in agreement between experiment

and theory remain purely speculation. Of course, now we know the beams are pushing

the limits of the theoretical model used, it is possible that the damping is still purely

hydrodynamic and the model no longer applies.

To expand these results, similar measurements were also performed using other beams of
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different length. Beams with length 15 µm, 25 µm, 75 µm and 100 µm were all tested.

These correspond to vacuum frequencies of 8.47 MHz, 4.60 MHz, 0.972 MHz and 0.602

MHz respectively. The results obtained were very similar to those presented above for the

50 µm beam. All devices clearly showed the influence of the fluid, with dramatic changes

in the resonant properties around the transition to superfluid.

Measurements of width as a function of temperature for these other beams closely match

those shown in figure 5.4, with most results fitting well in the superfluid regime just

below the transition temperature. Similar to the 50 µm beam, all others tested also show

disagreement between experiment and hydrodynamic theory at the lowest temperatures

measured. As suggested by figure 5.5, the temperatures at which the theory breaks down

correlate reasonably well with those at which the penetration depth becomes larger than

the beam width.

In order to allow clear comparison of the fits for a range of different devices, a new method

for comparing theory and experimental results was applied. This method was based on

manipulation of equation 5.2. From this equation, we see that a plot of width (∆f2) as a

function of frequency ratio

[(
fHe
f0

)2
]

would be expected to appear as a straight line with

gradient equal to the constants on the right-hand side of the equation. Any disagreement

between theory and experiment should then appear in this plot as a deviation from the

straight line behaviour.

In practice, the entire right-hand side of equation 5.2 is calculated first. This should then

collapse results for all different beams onto a common straight line dependence of gradient

1. The results of this for all 5 beams tested are shown in figure 5.6.

The results shown in figure 5.6 are largely consistent with what we would expect, although

some aspects remain difficult to explain conclusively. The data for the 15 µm and 25 µm

beams both fit well to the line of gradient 1 across the full range of data taken, implying

that the theory works well for these two devices. With respect to the 15 µm beam this is
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Figure 5.6: Width as a function of normalised frequency ratio for beams of different length.
The black line of gradient 1 is included as a visual aid. The frequency ratio is normalised
by calculating the right-hand side of equation 5.2

not quite true however, as the fit to frequency ratio for this beam fails in the normal fluid

regime. This is turn highlights one drawback of the method used in figure 5.6, as only the

quality of the fit to width is represented in this normalisation method. Issues with the fit

to frequency ratio do not appear in figure 5.6 as C is the only geometric constant present

in the normalisation. This is unlikely to be a serious issue however, as for all other devices

the fit to frequency ratio appears much more reliable than the fit to width.

Figure 5.6 also appears much as expected with regards to the 50 µm and 100 µm beams.

Both of these devices fit reasonably well to the theory above and just below the transition

to superfluid, with the disagreement becoming most visible at low temperatures. This is

what we see in figure 5.6, as results for both devices lie close to the line of gradient 1 at
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large values of the width and only begin to diverge as the width falls.

The one hardest aspect of figure 5.6 to understand is the data taken for the 75 µm beam,

which does not collapse onto the dependence expected. To help with the interpretation of

this result, the full plot of width as a function of temperature for this beam is shown in

figure 5.7.

Figure 5.7: Width as a function of temperature for the 75 µm long beam, showing the
reduced quality of the hydrodynamic fit for this device.

From figure 5.7, two main differences are visible between the experimental data and the

theoretical fit. The first is a fairly major disagreement between the two data sets in the

normal fluid regime. This is unlikely to explain the issues seen in figure 5.6, as a similar

problem is also present in the data for the 25 µm beam without preventing these results

from collapsing to the expected dependence. In practical terms, this disagreement in the

normal fluid regime is likely related to the errors used when fitting. As the width can
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be more accurately measured for the well defined resonances observed in the superfluid

regime, these points have a lower uncertainty and are therefore given more prominence

when calculating the fits.

The second issue appears in the data just below the transition to superfluid, where another

disagreement between the theoretical and experimental data is clearly visible. For most

other beams the points just below the superfluid transition are typically where the fit is

most reliable, suggesting this is likely the reason for the incorrect scaling of the 75 µm

data in figure 5.6.

The discrepancy in the 75 µm data at high widths could potentially be due to an incorrect

value of C, as errors in this parameter will lead to corresponding errors in the normali-

sation. The incorrect gradient as width decreases cannot possibly be explained by fitting

problems however and must therefore be caused by problems with the experimental re-

sults. This could potentially be due to the measurement power used as the data for the

75 µm beam was taken at a lower power than all other data, leading to less well defined

resonances and therefore increased uncertainty in the calculated values of the resonant

parameters.

Distinct deviations from the expected linear dependence are also visible in figure 5.6 for

data taken with the 50 µm and 100 µm beams at low widths. This suggests the hy-

drodynamic model is less applicable to beams with low resonant frequencies. A possible

explanation for this can be found by considering the viscous penetration depth. As shown

in equation 5.3, the viscous penetration depth is inversely proportional to frequency and

so will be larger for longer beams. Since the hydrodynamic model used is expected to

break down when the viscous penetration depth becomes comparable to the beam width,

we would expect the theoretical fits to be less reliable for these devices.

Overall, we can draw two main conclusions from these results. Due to the rapid changes in

width seen at temperatures of approximately 2.17 K, we can be certain that the beams are
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indeed probing the properties of the fluid. However, as demonstrated by the discrepancies

shown in figure 5.6, we must also conclude that the damping experienced by these devices

cannot be explained purely in terms of hydrodynamic drag. A more advanced model of

the damping is therefore necessary to fully understand future measurements.

In addition to these measurements of the damping, efforts were also made to investigate

the force-velocity characteristics of NEMS immersed in superfluid in an effort to test the

possibility of turbulence generation using nanoscale oscillators. For this purpose, these

measurements were performed using the 15 µm, 25 µm, 75 µm and 100 µm beams. Of

these, the results taken for the 75 µm and 100 µm beams are uninteresting, remaining

entirely within the linear regime.

In contrast to these trivial measurements the results obtained using the 15 µm beam

show unexpected behaviour but are nearly impossible to interpret, with the non-linearity

inherent in these devices complicating the results. The final set of data does however

provide reasonably compelling evidence of interesting behaviour, with measurements of

the 25 µm beam showing an increase in drag that could be interpreted as the generation

of turbulence. The relevant force velocity plots, measured both in vacuum and in fluid at

a temperature of approximately 1 K, are shown in figure 5.8.

Figure 5.8 clearly shows the expected signature of the transition to turbulence, with an

increase in the drag visible above a certain critical velocity. This evidence is strengthened

by the switch from one straight line dependence into another, as this implies a change

in damping regime rather than an anomalous change in the drag. However, for this

particular dataset there are two issues that must be resolved before the results can be

considered conclusive. The first is related to the non-linearity expected in all measurements

using NEMS. By comparing the f-sweep results in fluid to those taken in vacuum, we

can show that the non-linearity observed in vacuum does not appear in any of the fluid

measurements.
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Figure 5.8: Device velocity as a function of force for the 25 µm beam, measured in both
vacuum and superfluid at approximately 1 K. The dotted black lines are guides for the
eye, added to emphasise the point at which the gradient changes in the fluid data.

Figure 5.9 provides additional evidence supporting the interpretation of these results as

turbulence, as it shows that the non-linearity present in the vacuum results is not seen

in fluid measurements. In vacuum the force-velocity results remain linear right up to the

transition to the Duffing-like non-linearity shown in figure 5.9. If the change in gradient

visible for the fluid results in figure 5.8 was caused by the inherent response of the beam,

we would expect to see the same form on non-linearity observed in vacuum. This is not the

case, with the fluid results remaining mostly linear up to the highest velocities measured.

The second issue complicating the interpretation of the results in figure 5.8 is related to

the fitting process used to extract values of the amplitude, width and resonant frequency

from frequency sweep results. As shown in figure 5.9, the fluid data is slightly non-
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Figure 5.9: Raw frequency sweep data used to obtain the highest velocity data points
included in figure 5.8. Note the difference in resonance profile, with significant non-
linearity visible in the vacuum data but not seen in fluid.

linear at high velocities with a small secondary peak observed below the main resonance.

This peak causes imperfections in the fitting and therefore introduces a possible error

to the calculated values of the resonance properties. Due to the position of the non-

linearity, this fitting problem primarily manifests as issues with accurately determining

the background. This then leads to slightly overestimated values of the peak amplitude

but does not significantly affect the determination of width and resonant frequency.

As described in section 3.2.4, the force and velocity are both proportional to the power

lost due to resonance, which is itself dependent on the amplitude of S21 squared. This

means errors in the value of amplitude will appear equally in velocity and force and so

affect the values of both but not the relationship between them. The errors expected are

therefore incapable of causing the change in gradient observed in figure 5.8, so we must
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once again conclude that the generation of turbulence is the most plausible explanation.

Another point worth considering when discussing turbulence is the critical velocity at

which the transition to the turbulent state occurs. Theoretical studies [73, 74] suggest

that the onset velocity for turbulence in superfluid 4He should be given by the following

equation:

vc = 2.6
√
κω, (5.4)

where κ is the circulation quantum. For the 25 µm beam used here, the frequency of 4.6

MHz can be used to calculate an expected critical velocity of vc = 1.76 ms−1. This is vastly

different to the experimentally determined value, which we estimate from figure 5.8 to be

approximately 7.2 mms−1, almost three orders of magnitude smaller than the expected

value. The imperfections in amplitude fitting for the fluid data could be responsible for

changing the values of velocity used, but this change could not possibly be large enough

to account for the full difference between prediction and measurement. It is possible that

the size of the NEMS is responsible for this, as no other observations of turbulence using

nanoscale oscillators are available for comparison. The theory should apply regardless of

size however, so this explanation seems somewhat unlikely. As it would be premature

to simply discard our observations, the most reasonable course of action would be to

attempt similar measurements using other NEMS to see if the results described here can

be replicated.

In terms of future directions, there are two main possibilities from here. Firstly, a better

understanding of the drag force experienced by the NEMS is essential for further appli-

cation of these devices in 4He. As the physical dimension of these devices is roughly

equivalent to the viscous penetration depth at the relevant temperatures, neither of the

traditional simplifications used to solve similar theoretical problems are fully appropriate

for this case. Therefore our best hope is to consider additional contributions to the drag,
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such as that caused by acoustic emission, and investigate the combination of this and the

hydrodynamic drag.

Although the discrepancies observed in figure 5.6 casts some doubt on the validity of the

model used at very low temperatures, the clear change in behaviour visible at the superfluid

transition temperature in figures 5.3 and 5.4 is enough to confirm that the beams used are

successfully probing the properties of the helium. Since our ultimate aim is to use these

devices in 3He, a perfectly accurate model of drag in 4He is not necessary for these goals

as the theoretical background for the damping is entirely different in 3He. Therefore, now

we are confident that NEMS can be used to successfully probe liquid helium, a possible

next step is to obtain a complete understanding of high frequency drag in superfluid 3He.

This should provide useful background for the long-term goal of using NEMS in 3He.

The second avenue of investigation relates to the intriguing if inconclusive results shown

in figure 5.8. Turbulence generation appears to be the most plausible explanation for

the increase in drag observed experimentally, though the velocity at which the potential

turbulence is observed is very different to theoretical predictions. It would therefore be

very interesting to repeat the measurements using another beam of the same size. If

the results can be reproduced similar experiments using beams of different length, and

therefore different resonant frequencies, could provide a way of investigating how changes

in frequency affect the critical velocity.

6 Frequency Dependence of Thermal Drag in 3He-B

To enable accurate interpretation of results obtained using an oscillating device in fluid,

a detailed model of the drag force applied by the motion of the object is very important.

As discussed previously in section 2.2.5, the drag experienced by oscillating structures in

superfluid 3He-B can be split into three distinct components as shown in equation 6.1:
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F = F0 + FT + Fpb, (6.1)

where F is the total drag force and F0, FT and Fpb are the intrinsic, thermal and pair

breaking components respectively.

By following the derivation described in section 2.2.5, an expression can be obtained to

normalise the thermal force for an oscillating structure such that all results for a device

collapse onto the same dependence. For clarity, the expected dependence is restated in

equation 6.2,

FT
r =

(1− exp (−λv∗))
λ

. (6.2)

This model is not valid for all oscillators however, as the derivation of this expression

is strictly only true if the time for an excitation to traverse the flow field around the

oscillator is much shorter than the period of the oscillations. In this case the flow field can

be considered stationary with regards to the excitations and the assumption of a static flow

field used in the derivation is valid [62]. Due to this, equation 6.2 is unlikely to be valid for

particularly high frequency oscillators such as the nanobeams discussed in section 5. By

studying other more readily accessible high frequency oscillators we can test the limits of

equation 6.2 and obtain a better understanding of the thermal drag force applied to high

frequency oscillators. This knowledge will hopefully prove useful on future experiments

based around nanobeams in 3He.

To make this possible, we must define the point at which the current theoretical model

breaks down. By calculating rough values for the relevant time periods, we can quantify

this limit and so check if the devices used satisfy this criterion. All of our experiments are

performed in the low temperature, low pressure regime, where the average group velocity

of an excitation is roughly equal to one third of the Fermi velocity:
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vg ≈
vF

3
. (6.3)

This can then be used to calculate an approximate value for the time taken for an excitation

to traverse the flow field, tex:

tex ≈
3L

vF
, (6.4)

where L is in general terms the length of the oscillator transverse to the direction of

oscillation, given by the diameter for the specific case of a vibrating wire resonator and

the thickness for a tuning fork. For the derivation of equation 6.2 to remain valid this

must be shorter than the time taken for the oscillations to change direction, equivalent to

half the oscillator period:

3L

vF
<

1

2f0
, (6.5)

f0 <
vF

6L
. (6.6)

By considering this limit, we have an easy way of checking whether equation 6.2 can be

safely applied to a device. However, this limit also provides an interesting way of testing

the theory. Theoretically the case where the flow field cannot be treated as stationary

becomes very difficult to solve. However, the high frequency responses of tuning fork

overtone modes means approaching the limit shown in equation 6.6 experimentally should

be relatively straightforward. By attempting to apply equation 6.2 regardless, we can

investigate how the results change for devices outside of the stationary flow regime.

To obtain data at relatively low frequency, two conventional wire resonators were used.

The wires chosen for this were mmm3, with frequency 355 Hz and diameter 4.5 µm, and
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Mg, with frequency 843 Hz and diameter 0.9 µm. Higher frequencies were obtained using

fork D2, with resonant frequency 25.4 kHz. Using the first overtone mode of the same

fork, labelled D2ov1, enabled measurements at a frequency of 158 kHz.

With the devices chosen, we can use the physical dimensions to estimate the frequency

required to exceed the condition stated in equation 6.6. For these calculations, an approx-

imate value of vF = 60 ms−1 will be used for the Fermi velocity. By using the diameters

listed above as the physical dimension, wires Mg and mmm3 were found to have frequency

limits of f0 ≈ 11 MHz and f0 ≈ 2 MHz respectively. These limits are far larger than

the actual frequencies, proving that the flow can safely be considered stationary for both

wires.

For the fork, the choice of physical dimension is not trivial, and can have significant

implications for the results. Using the tine thickness (90 µm) gives a limiting frequency

of f0 ≈ 110 kHz while the tine width (50 µm) corresponds to a limit of f0 ≈ 200 kHz.

In comparison to the actual frequencies of the modes we can see that the fundamental is,

unsurprisingly, significantly below both possible limits. The interpretation for the overtone

mode is more complex, as the frequency of this mode lies between the two calculated limits.

Previously, the thickness has been used in earlier examples of similar analysis [62], so use

of this value makes sense for the sake of consistency. Both possible limits are to the same

order of magnitude as the actual frequency, however, which means the condition that

the excitation travel time remains much shorter than the oscillation period is violated

regardless. We therefore expect to see some deviation between theoretical predictions and

experimental reality in the results for D2ov1.

For each of the three devices, measurements were then taken at a range of different tem-

peratures. Experimentally, each data set was obtained using an amplitude sweep. As

described in section 2.2.3, the measurements from each amplitude sweep can be used to

obtain values for the drag force and the velocity of the oscillator.
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Since we are interested in the effects of Andreev reflection on the drag force, only the

thermal component of the force is relevant here. If a value is known for the intrinsic drag,

the thermal drag force can be easily obtained by subtracting the intrinsic component from

the total measured force. Fortunately, the cryostat base temperature of approximately 110

µK is low enough that the intrinsic drag can be measured experimentally. The intrinsic

force-velocity characteristics for the relevant devices are shown in figure 6.1.

Figure 6.1: Intrinsic Force-Velocity plots for the four devices used. As all measurements
shown were performed separately, the exact temperature is different for each sweep. The
results for Mg, mmm3 and D2ov1 were all measured at approximately 110 µK, while the
data for D2 was measured at a slightly higher temperature of approximately 120 µK.

At sufficiently low temperatures, the thermal contribution to the drag is negligible and so

the damping should be constant up to the point at which pair-breaking effects appear. This

is true of all data shown in figure 6.1, as the low velocity response matches the straight line

behaviour expected. Recent results have shown that acoustic effects can become important
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in 3He-B at frequencies above approximately 100 kHz [75], and are therefore likely to be

present in the results for D2ov1. These acoustic effects are temperature independent

however, meaning we can still extract the thermal contribution to the damping of D2ov1

by subtracting the force shown in figure 6.1 from measurements at higher temperatures.

Figure 6.2: Force-Velocity plots for Mg at a range of temperatures. The points in black
correspond to the intrinsic sweep shown above.

The effects of the thermal component on the overall drag is immediately apparent when

comparing the intrinsic data to measurements taken at higher temperatures. As tempera-

ture increases the extra excitations present will exert an additional force on the oscillator

and so the initial drag should be higher than observed for the intrinsic sweep. As velocity

increases Andreev reflection becomes important, shifting the balance of excitations col-

liding with the oscillator and increasing the drag experienced. At higher velocities the

increase in drag becomes less pronounced as the damping tends towards the maximum
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possible value due to collisions with thermal excitations. Once pair-breaking occurs the

drag due to thermal effects becomes negligible in comparison and so temperature changes

should not change the behaviour in this region. All of these effects are confirmed by the

force-velocity characteristics measured for wire Mg at a range of temperatures (figure 6.2).

As shown in figure 6.1 the intrinsic drag is much larger for the tuning fork, with the

overtone mode D2ov1 experiencing a drag force approximately three orders of magnitude

larger than the force on Mg. The difference this larger intrinsic drag makes with regards to

the overall drag can be seen by comparing figure 6.2 to a force-velocity plot of the D2ov1

data (figure 6.3).

Figure 6.3: Force-Velocity plots for D2ov1 at a range of temperatures. The points in black
are taken from the intrinsic sweep shown in figure 6.1.

Figure 6.3 shows that the force-velocity behaviour for D2ov1 follows the same general

trend as the data for Mg, although there are significant differences. A major difference
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can be seen in the thermal component of the damping. For Mg, the effects of Andreev

reflection on the thermal damping are visible in all sets of data plotted, with a significant

deviation from the low velocity gradient observable in the 180 µK results. For D2ov1

the influence of Andreev reflection is much subtler, with the gradient measured at 145

µK and 160 µK staying mostly constant right up to the transition to pair-breaking. The

expected signature of Andreev reflection is visible in the higher temperature (195 µK and

210 µK) data, though even here the effects are much less obvious than for Mg. Despite

this reduction in the importance of Andreev reflection on the overall response of D2ov1,

the fact that the data for this high-frequency mode still follows the general behaviour

expected suggests that the model used remains relevant beyond the predicted limits.

Another difference in the thermal damping of D2ov1 when compared to Mg can be under-

stood by considering the relative sensitivity of the two devices. The differences in thermal

sensitivity can easily be seen by considering the force-velocity plots for Mg (figure 6.2 and

D2ov1 (figure 6.3). For Mg, the thermal contribution to the drag changes the total force

by three orders of magnitude for a temperature change of just 70 µK. In contrast the

thermal force for D2ov1 only covers two orders of magnitude for a temperature change of

100 µK.

To quantify comparisons between these results, the data must be normalised using the

procedure detailed in section 2.2.3. The first step in this process is to obtain the thermal

component of the force by subtracting the intrinsic behaviour from the higher temperature

data. The results of this for the D2ov1 data are given in figure 6.4.

The plots of thermal force for D2ov1 demonstrate the changes expected in this component

as the temperature increases. The extra drag due to additional thermal excitations at

higher temperatures is shown by the increase in the gradient at low velocities. The cur-

vature away from this initial gradient visible at higher velocities in the high temperature

data shows the rate of drag increase slowing as the Andreev reflection contribution tends
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Figure 6.4: Thermal force as a function of peak velocity for D2ov1, showing data taken at
a range of different temperatures.

towards its maximum value.

Unfortunately producing an equivalent plot for Mg is difficult due to the additional sensi-

tivity of this oscillator. The vastly different scale of the thermal force for this wire means

we must use a logarithmic scale for the thermal force to give equal prominence to all

datasets, though this also makes the results more difficult to interpret.

Figure 6.5 shows the thermal component of the drag force as calculated for Mg. Due to the

logarithmic scale used here, the expected behaviour in the absence of Andreev reflection

is not represented as simply as on a linear scale and so it is not possible to visually

observe the presence of the Andreev reflection effects. The increase in drag due to the

increased density of excitations at higher temperature is however very easily observable

by comparing the forces measured at low velocity.
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Figure 6.5: Thermal force as a function of peak velocity for Mg. The logarithmic scale
for the y-axis is necessary to show all data due to the high sensitivity. Deviations from
the expected behaviour above 6 mms−1 are due to the onset of pair-breaking, for further
details see text.

One obvious feature of figure 6.5 is the major deviations from the expected trend in

the first two datasets above velocities of 6 mms−1. These discrepancies are artefacts of

the thermal force calculation process, appearing when the intrinsic force is subtracted.

Due to the exceptionally shallow gradient of the velocity-force plot (figure 6.2) in the

pair-breaking regime, small differences in the exact transition velocity can correspond to

large differences in the force. These large variations in the force than create the visible

measurement artefacts when the intrinsic force is subtracted.

Despite this simple explanation, close inspection of the exact nature of these artefacts does

lead to an interesting observation. The peaks visible in figure 6.5 above 6 mms−1 appear

at the same velocities for all results. Even the relatively smooth results taken at 180 µK

101



show a small peak at velocities just below 8 mms−1 at a location entirely consistent with

the peaks seen in the much noisier lower temperature results. The reproducible nature of

these features strongly implies that this is not simply a random effect but rather something

that warrants closer inspection.

A closer look at the data in the pair-breaking regime of the velocity-force plots for Mg

(figure 6.2) reveals the origin of this effect. The force-velocity characteristics beyond the

pair-breaking transition are not smooth as would be expected. Instead, the characteristics

consist of plateaus in which the velocity hardly changes interspersed with regions where

the velocity increases comparatively rapidly. The regions of rapid velocity change, which

we will refer to as steps for simplicity, appear to occur at the same velocity for all datasets

while remaining somewhat variable in terms of force. This then clearly explains the mea-

surement artefacts seen in figure 6.5, with the peaks corresponding to the velocities at

which the steps occur. Other measurements of a similar phenomenon will be discussed in

more detail in section 7.

With the thermal force known, the next step in the normalisation process involves finding

the gradient of the linear plots of thermal force against velocity. Since Andreev reflection

does not occur at low velocities, dividing the total thermal force by the gradient at low

velocity removes the dependence on the excitation density and leaves just the effects of

Andreev reflection. Plotting this against the reduced velocity v∗ = pFv
kBT

should remove all

temperature dependence and so collapse measurements from a wide range of temperatures

to a single dependence. The results of this for D2ov1 are shown in figure 6.6.

As derived in section 2.2.3 results for any temperature should be described by equation

6.2, where FT
r is the normalised force and v∗ is the normalised velocity. Although some

spread is still visible in the data, the agreement between the data sets in figure 6.6 proves

that the normalisation works as intended.

For D2ov1, however, this is a surprising result. As the frequency of this device is outside
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Figure 6.6: Reduced Force-Velocity plot for D2ov1, showing the range of temperatures
investigated. The black line is a fit to equation 6.2, with λ treated as a fitting parameter.

the limit defined by equation 6.6, equation 6.2 should no longer be valid for this device.

The value of λ calculated for D2ov1 is significantly smaller than any values measured

in previous experiments. At low values of lambda the significance of Andreev reflection

on the overall response of the device reduces. This implies that crossing the frequency

limit (equation 6.6) reduces the importance of the Andreev reflection contribution without

breaking the form of the model. More data from different devices would be necessary

to confirm this however. Another alternative, also consistent with the results, is that

the model becomes steadily less applicable beyond the limit rather than breaking down

dramatically.

However, the fit to the D2ov1 data shown in figure 6.6 is not perfect, with the fit values

slightly larger than the measured at low reduced velocities and slightly smaller at high
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reduced velocities. This effect becomes even more pronounced if the measurements are

extended to higher values of reduced velocity. Results at higher values of reduced velocity

are however close to the transition to pair-breaking, so the problems with the fit could

alternatively be attributed to effects due to pair-breaking. As shown in figure 6.3 the

transition to pair-breaking for D2ov1 is rather smooth, making it difficult to locate the

exact point at which the change of regime takes place and therefore difficult to determine

exactly where the reduced velocity data should be cut.

With the effectiveness of equation 6.2 confirmed by figure 6.6, the same normalisation

procedure can now be applied to measurements taken with the other devices. To make

the differences between the two devices as clear as possible, data from all these devices

are shown on the same axes in figure 6.7.

Figure 6.7 clearly proves the validity of equation 6.2, as data for all four different devices

can be collapsed successfully onto a device specific dependence matching equation 6.2.

The four data sets fit the trend suggested by the D2ov1 results, with smaller values of λ

observed for the higher frequency oscillators.

The values of λ obtained here are roughly consistent with past measurements, with a

previous experiment obtaining λ = 0.69 for a 4.5 µm diameter vibrating wire resonator

(labelled mmm7) and λ = 0.45 for a quartz tuning fork (referred to as F1 here) [62]. The

wire resonator mmm7 had a diameter of 4.5 µm, the same as wire mmm3 used here, and

a resonance frequency of 740 Hz. Fork F1 however was significantly larger than D2, with

tine width 100 µm and thickness 220 µm. The tine length of 2.3 mm gave F1 a resonance

frequency of 32.3 kHz.

To better demonstrate the trend deduced from figure 6.7, figure 6.8 shows the relation-

ship between λ and frequency. Before plotting, the frequency was normalised using the

dimension of the device and the excitation group velocity. The equation used for this

normalisation was obtained by rearranging equation 6.6:
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Figure 6.7: Combined plot of reduced Force-Velocity data taken for all 4 devices. Values
of the constant lambda are obtained by fitting the data to equation 6.2. The black line of
gradient 1 shows the behaviour expected without Andreev reflection.

6f0L

vF
< 1. (6.7)

Plotting lambda as a function of 6f0L
vF

therefore shows how lambda changes as the limit

is approached, the results of which give strong evidence of the reduced importance of

Andreev reflection in high frequency motion. Devices close to the high frequency limit

clearly show reduced prominence in the effects of Andreev reflection, represented by the

smaller values of lambda.

Less encouragingly there is a very significant amount of spread visible in figure 6.8, which

strongly implies the tendency towards lower values of lambda close to the limit is a rough

105



Figure 6.8: Lambda as a function of normalised frequency for a range of devices. For full
details of the normalisation applied see text. Results for mmm7 and F1 are taken from
Bradley et al [62].

trend rather than a strong dependence. Since the limiting condition depends on both fre-

quency and dimension, careful choice of both parameters could enable more rigorous tests

of the trend observed by enhancing the range of parameters accessible. As an example,

using the second overtone of a tuning fork would increase the frequency without changing

the device size and so allow us to vastly exceed the limit. Unfortunately we were not able

to obtain a response sufficient for measurements on this mode for any of the forks in the

cell. This suggests any fork intended for this purpose would require adjustments to the

pattern of the fork electrodes to optimise response for the overtone mode.

It is also worth applying this limit to predict how a nanomechanical oscillator might behave

in 3He. Considering the nanomechanical oscillators discussed in section 5, we use the beam
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width (100 nm) as the physical dimension. In terms of frequency, these resonators ranged

from ≈ 0.6 MHz to ≈ 8.5 MHz based on the length of the beam. Applying these values

gives 6f0L
vF

= 6 × 10−3 for f0 = 0.6 MHz and 6f0L
vF

= 8.5 × 10−2 for f0 = 8.5 MHz. Both

of these results are significantly below 1, implying nanomechanical resonators of this type

should also follow equation 6.2. Additionally, this would also place results obtained using

these objects around the untested range in the middle of figure 6.8, providing an intriguing

extension of the result discussed here.

7 Anomalous Damping of a Wire Resonator in Superfluid

3He-B

7.1 Expected Damping in Superfluid 3He-B

As described in section 2.2.3, the damping on an oscillating object in superfluid 3He-B

can be split into three distinct components. Typical measurements of this damping, such

as those shown in figure 7.1, are described very well by this model.

The three different components of the total damping force are all visible in figure 7.1. The

most basic contribution, present at all possible parameters, is the intrinsic component.

Due to its small magnitude, this component is typically overwhelmed by the others at

all but the lowest temperatures. As temperature increases additional thermal excitations

are added to the system, introducing a thermal contribution to the damping. Andreev

reflection due to the motion of the object then alters the proportion of particles and holes

incident on the object and therefore increases the drag (see section 2.2.5 for a detailed

description of this mechanism). This thermal drag is linear with velocity for small values of

velocity, tending towards a fixed maxima set by the excitation density at larger velocities.

As velocity increases further pair-breaking becomes possible, the large amount of energy

lost due to this process leading to a vast increase in the drag force.
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Figure 7.1: Force-Velocity plot for mmm3, a 4.5 µm diameter vibrating wire with resonant
frequency 355 Hz, at a temperature of approximately 150 µK. For a full description of how
the different contributions to the total drag manifest in the results, see text.

7.2 Observed Deviations from Expected Damping

For the majority of the devices tested, the observed damping matches the expected be-

haviour very well. One of the vibrating wires tested did not match the predictions however,

with unexpected plateaus appearing in the force-velocity characteristics of a 4.5 µm diam-

eter wire resonator of resonant frequency 460 Hz we refer to as mmm1. It is important to

note that there is nothing special about this wire, and we would therefore naively expect

it to provide more or less identical results to other wires of the same thickness.

Figure 7.2 shows the response of wire mmm1, with two major plateaus clearly visible at

velocities of approximately 2 mms−1 and 4 mms−1. In physical terms, these plateaus mean

the force applied is increasing without any associated increase in the velocity and therefore
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Figure 7.2: Force-Velocity plot for vibrating wire mmm1, showing multiple unexpected
plateaus. Each measurement shown was taken during a different demag, showing that the
plateaus remain present.

must correspond to vastly increased damping. As the velocities involved fall well below

the transition to pair-breaking, these measurements cannot be explained by the current

theory.

In an effort to minimise noise in these results the measurements were performed slowly,

with a total of 1000 points per sweep. A typical measurement would therefore take roughly

4 hours to measure 2000 points, one sweep with increasing drive and another as the drive

is decreased back down.

In comparisons between the three different temperatures tested, figure 7.2 suggests the size

of the plateaus is temperature dependent. A slight temperature dependence is definitely
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present, with the length of the plateaus reducing at higher temperature, though this effect

is heavily exaggerated by the logarithmic scale used in figure 7.2. The strength of the

temperature dependence also seems different for the two major plateaus observed, with

the feature at 2 mms−1 appearing much more heavily temperature dependent than that

at 4 mms−1. This potentially suggests a different mechanism is responsible for the two

plateaus, though interpretation is difficult.

A detailed study of figure 7.2 also reveals further intriguing details. In addition to the

large plateaus, there are two smaller deviations from the smooth behaviour expected at

velocities of approximately 3.4 and 3.6 mms−1. Also of note are changes in the gradient

around the first plateau, with the gradient becoming noticeably steeper after the plateau.

These results can therefore only be explained by a mechanism that can explain both the

massive increase in damping and the subsequent reduction. Similar analysis of the gradient

around the second plateau is unfortunately complicated by its proximity to the pair-

breaking regime. As shown by figure 7.1 the transition to pair-breaking can be relatively

smooth for some vibrating wires, particularly at higher temperatures. It is therefore

difficult to separate gradient changes due to the pair-breaking transition from potential

gradient changes associated with the plateau.

Another feature worth discussing in this plot is the obvious hysteresis, with clear differences

between increasing and decreasing drive measurements. To emphasise the plateaus, these

measurements were taken slowly to allow 1000 points per sweep. Due to this the sweeps

take a long time, creating a significant temperature difference between the start and end

of the measurements. For the data shown in figure 7.2, the measurements were started at

109 µK and finished at 114 µK. The excitation density is therefore higher at the end of

the measurements, leading to increased thermal damping and giving rise to the hysteresis.

In an attempt to find a more reliable way of identifying the location of the deviations from

the linear behaviour seen in figure 7.2, the derivative of force with respect to velocity was
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calculated and plotted as a function of velocity. The plot of this derivative for the data

discussed above is shown in figure 7.3.

Figure 7.3: Plot of the derivative of force with respect to velocity, calculated from the
force-velocity characteristics of the 110 µK data shown in figure 7.2. The large spikes are
caused by rapid changes in the gradient of the force-velocity plot and should therefore
correspond to the observed plateaus.

As Figure 7.3 demonstrates, the derivative of force with respect to velocity is useful for

identifying plateaus in the force-velocity characteristics as the changes in gradient around

these features are clearly represented as spikes in the derivative. The five main spikes seen

in figure 7.3, at 2.1 mms−1, 3.4 mms−1, 3.6 mms−1 4.1 mms−1 and 5.5 mms−1 can all be

related to features visible in figure 7.2.

Another interesting observation can be made by considering the relative sizes of the spikes.

Due to the nature of the derivative, a larger spike relates to a sharper change in the gradient
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of the force-velocity plot. By comparing figure 7.2 and figure 7.3, the differences in peak

size are clearly reflected in the force-velocity plot. On the most basic level, this is shown in

the 3.4 mms−1 and 3.6 mms−1 features, as there are much smaller than any of the others.

Unfortunately, with no theoretical explanation to turn to the meaning of these differences

is currently unclear.

To reduce the contribution of noise to the overall results, each point used in the calculation

of the derivative was obtained by averaging over the nearest 5 points in the raw data. Due

to the large size of the raw data sets, this process could be applied without sacrificing

definition in the final results. We can therefore feel confident that all significant features

visible in the derivative plots correspond to a relevant feature in the force-velocity plots.

Comparisons between the different sets of results in figure 7.2 show major similarities.

The plateaus observed are present in all the measurements, despite the fact each was

taken during a different demag. These features are therefore reproducible, which strongly

suggests that these observations must have some physical explanation.

7.3 Potential Physical Explanations

When contemplating possible explanations for the anomalous damping observed, we must

consider the physical meaning of the force-velocity characteristics obtained to ensure the

theory provided can sufficiently explain what is seen. At the plateaus additional force

is applied to the wire without a corresponding increase in velocity, meaning that energy

provided to the system through the increase in force is being converted to a form we cannot

measure using the techniques applied. Therefore, applying conservation of energy to this,

any mechanism used to explain the results seen must be able to account for this excess

energy.

The most obvious way to explain these observations is to assume that this excess energy

is lost into the system in the form of vorticity. One benefit of this approach is that it can
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potentially explain why only one of the 4.5 µm diameter wires tested shows this behaviour.

Experiments in 4He have shown that vortex generation depends heavily on small lengths

of vortex line that are always present in the system [73]. These remanent vortices persist

by attaching to boundaries [29], implying that the properties of an object surface can

alter the number of attached vortices and hence affect the generation of turbulence. If

we assume the same remains true in 3He, it follows that differences in the microscopic

structure between two wires could allow only one to readily produce vorticity.

To test this possibility, we can calculate the total length of vortex line required to account

for the lost energy due to one of the plateaus. Using the expression for power in terms

of force and velocity (P = Fv) we can estimate the change in power across a plateau,

∆P = v∆F , where ∆F is the change in force across the plateau. By applying the definition

of power (E = Pt) the time taken to traverse the plateau can be used to estimate the

energy lost, ∆E = ∆Pt = v∆Ft

As a test, this can then be applied to the plateau observed at 4 mms−1 in the 110 µK

data from figure 7.2. Using this calculation, we find that the total energy converted to

vorticity in the 250 seconds it takes to traverse the plateau is approximately 0.39 pJ.

As shown in section 2.1.2, an equation for the energy of a vortex line can be derived. For

clarity, this expression is restated below:

E

l
=
ρSκ

2

4π
ln

(
b

ξ

)
, (7.1)

where ξ is the superfluid coherence length. Rearranging this to find the length of vortex

line:

l =
4πE

ρSκ2ln
(
b
ξ

) . (7.2)
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These measurements were performed at 110 µK and 0 bar pressure. These parameters can

be used to obtain the values of ρS, κ and ξ. For the characteristic length scale, b, there

are two options available, with both the wire diameter (4.5 µm) and the typical spacing

between vortices (≈ 100 µm [76]) plausible choices. Using equation 7.2 to estimate the

total length of vortex line produced for both possible choices of the characteristic length

scale, b = 4.5 µm gives l = 1.61 Mm, while b = 100 µm gives l = 0.914 Mm.

This will be an overestimate however, as this approach only considers the energy of the

superfluid component. In reality there will also be an energy associated with the normal

fluid core of the vortex that must also be accounted for. This core energy can be estimated

by applying Fermi liquid theory to this region at an effective temperature of the superfluid

critical temperature, Tc = 929 µK at 0 bar pressure. To calculate the energy we must

first obtain expressions for the volume of the vortex core and the number of normal fluid

excitations present. The volume of the vortex core Vc can easily be found by treating the

core as a cylinder with length l and radius equal to the coherence length:

Vc = πξ2l. (7.3)

The number of excitations can be estimated using Fermi liquid theory. An expression for

the number of excitations in terms of the Fermi momentum can be obtained by rearranging

equation 2.31:

N =
V p3

F

3π2h̄3 . (7.4)

The final thing necessary is the energy of each of these excitations. The energy of a single

excitation can be calculated using the temperature:

EP = 1.76kBTc + kBT. (7.5)
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The energy of the excitations considered here can be estimated by assuming the temper-

ature is equal to the critical temperature of the superfluid:

EP = 2.76kBTc. (7.6)

The total energy associated with the vortex core is given by the number of excitations

multiplied by the energy of each, E = NEP. An expression for the energy per unit vortex

line length can now be obtained by combining equations 7.3, 7.4 and 7.6:

E

l
=

0.92kBTcξ
2p3

F

πh̄3 . (7.7)

The total energy of the vortex line is then given by adding the contribution of the superfluid

(7.1) to that of the normal fluid core (7.7):

E

l
=
ρSκ

2

4π
ln

(
b

ξ

)
+

0.92kBTcξ
2p3

F

πh̄3 . (7.8)

Applying equation 7.8, we find that a total line length of l = 3.59 cm is necessary to account

for the the 0.39 pJ of energy lost during the plateau. This result is vastly different to the

l = 1.61 Mm result calculated from just the superfluid component, showing that the energy

in the vortex core is many orders of magnitude larger than the superfluid contribution.

By considering the frequency of the oscillator, the amount of vortex line produced during

a single cycle can also be estimated by dividing the total line length by the number of

cycles. Multiplying the time taken to cross the plateau and the frequency of the oscillator

then gives the number of oscillations completed during this time.

Using 441.7 Hz as the frequency of the resonator we find that 1.1× 105 complete oscilla-

tions occur while traversing the plateau considered here. By applying this we find that

approximately 0.33 µm of vortex line would need to be produced per oscillation to account
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for the energy discrepancy measured.

To provide further context for this result we can also estimate the expected size of vortex

ring produced by the resonator used. The typical vortex ring production mechanism is

known to be most efficient if the frequency of the oscillations is the same as the Kelvin

wave resonance frequency of the vortex produced. The resonant frequency of the Kelvin

wave on a vortex ring can be estimated by using the equation below [1]:

ω =
κk2

4π
ln

(
1

kξ

)
, (7.9)

where k is the wavenumber of a vortex ring of length a, k = 1
a . Solving equation 7.9

numerically, we find that vortex production is most efficient for rings of length a ≈ 7 µm

for the 442 Hz wire used here.

The results obtained can now be combined to estimate the number of vortex rings produced

per cycle by dividing the line length per cycle by the typical vortex size. Using the numbers

calculated above, we therefore find that 4.7×10−2 vortex rings would need to be produced

per cycle to explain the energy loss measured. This roughly corresponds to the production

of 1 ring every 21 cycles, or alternatively 21 rings per second. The fact that rings are not

produced every cycle appears to imply that we would expect the drag to increase only for

the oscillations which produce a ring. However the rate of ring production is significantly

larger than the rate at which measurements are taken, meaning many rings are emitted

between each recording and any discrete behaviour will be obscured by this.

Overall this result seems fairly plausible, with a believable amount of vorticity produced.

However, for completeness, we will also consider the possibility of excitation emission as

a potential explanation for the observed behaviour. To test the validity of this hypothesis

we first calculate the typical energy of an excitation at the temperature considered here by

applying equation 7.5. Deciding on the value of temperature to use for T is not trivial, as

although the temperature of the experimental volume is known the excitations will exist
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at some undetermined higher temperature. In practice this choice is not hugely important,

as the temperatures involved are much smaller than the critical temperature and so the

result will be dominated by the first term. Using an estimated value of T = 200 µK, the

quasiparticle energy is found to be EP = 2.46× 10−26 J.

Dividing the total energy lost across the plateau (calculated previously to be E = 0.39

pJ) by the energy of a single quasiparticle shows that approximately N = 1.59 × 1013

quasiparticles must be produced in total to account for this lost energy. Using 250 s as

the time taken, this is found to correspond to roughly 6.34 × 1010 quasiparticles created

per second.

Since it is difficult to get an intuitive grasp on the plausibility of this result, we can test it

by calculating the thermal quasiparticle number at the temperature of these measurements

and comparing the two values. The thermal quasiparticle number can be obtained from

the quasiparticle flux. An equation for the quasiparticle flux, derived in section 2.2.5, will

be restated here for clarity:

〈nvg〉 = g(pF)kBT exp

(
− ∆

kBT

)
, (7.10)

where 〈nvg〉 is the quasiparticle flux and g(pF) is the density of states in momentum space.

An equation for g(pF) can then be obtained by applying Fermi liquid theory:

g(pF) =
m∗3V pF

π2h̄3 , (7.11)

where m∗3 is the effective mass of the helium and V is the volume of the cell. Combining

equations 7.10 and 7.11, we obtain a value of 〈nvg〉 = 1.07×1011 m−2s−1 for the quasipar-

ticle flux. Dividing this by the group velocity vg = 15.3 ms−1 gives a thermal excitation

density of 5.63× 1010 m−3 at a temperature of 110 µK.

Comparing these two results, we see that the number of excitations produced per second
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is very similar to the total number of thermal excitations present at the temperature of

these measurements. A naive reading of this result would suggest that we should therefore

expect a large temperature increase due to the plateau, which is not seen in practice. A

more detailed interpretation is difficult however, as the change in the thermal excitation

number depends on the balance of the heat produced by background heat leaks and the

heat removed as excitations are absorbed by the copper surrounding the cell. Since we

cannot accurately quantify either of these effects, detailed calculations of the exact heat

balance are not possible.

Though both proposed solutions are possible, we speculate that vortex emission appears

more likely. The interpretation of this possibility is largely complete, returning a rea-

sonable value for the amount of vorticity produced with minimal assumptions required.

Although the values calculated for excitation production give roughly the correct order

of magnitude, more detailed analysis is impossible without a full understanding of the

heat balance within the cell. Without this the analysis remains incomplete and we cannot

say for certain that excitation creation can adequately explain the energy loss observed.

In addition to this, it is more difficult to theoretically justify the emission of excitations

below the transition to pair-breaking.

In terms of future experiments, there are few obvious ways to extract further useful infor-

mation from the devices currently available to us. Repeat experiments found the anoma-

lous signals to be reproducible between experiments, which proves that some physical

phenomena is responsible but provides us with no clear way to adjust our measurements

to learn more. Another device in the same cell showing similar features would be very

helpful, as it would allow us to compare and contrast between the two sets of plateaus at

the same time. Without an understanding of the origin of the plateaus we cannot engineer

this ourselves however, meaning a deeper knowledge if this phenomenon remains out of

reach for now.
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Due to the ambiguity surrounding the origin of these plateaus, it is very difficult to pre-

dict whether or not they will be an issue for measurements using NEMS in 3He. Since

most observations of similar phenomena occur using highly sensitive probes, the extra

sensitivity possible using NEMS may prove to have negative consequences by increasing

the probability of observing these effects. In the long term this may not necessarily prove

to be a bad thing however, as each additional device capable of observing these plateaus

gives us an additional chance to investigate.

One of the most confusing aspects of the plateaus is that they are clearly visible on some

wires but completely absent on other more or less identical oscillators. Perhaps the most

compelling explanation attributes this to differences in roughness of the oscillators on a

microscopic scale, with such difference common in almost all devices used. While this

roughness is likely to still be present in NEMS the differences in the scale of the devices

should significantly affect the types of roughness possible.

Additionally, due to the vastly more precise methods used to produce NEMS, it is likely

that these devices will be significantly smoother on a microscopic scale when compared

to vibrating wires. Whether these changes make the observation of plateaus more or less

likely is hard to predict. Either case is likely to be beneficial however. If plateaus are

not seen, results obtained using NEMS will be easier to interpret and these objects will

prove useful as precise probes for future studies. If plateaus are seen more regularly we

are more likely to be able to perform a more detailed study on this phenomenon, hopefully

revealing the underlying mechanism.

8 Conclusions

In this thesis, we have described a significant amount of background work, performed in

the hope of laying some of the groundwork for a future improvement of the quasiparticle

camera used for imaging turbulence in 3He. In an effort to improve the instrumentation,
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we have tested a new method for rapidly measuring the properties of a resonance. This

method, referred to as a frequency comb, uses a multiple frequency lock-in amplifier to

excite 40 frequencies equally spaced around the resonance simultaneously.

This allows us to determine the properties of the resonance in a single measurement, and

has been shown to produce accurate results in as little as 15 s. In terms of future applica-

tions by far the biggest potential advantage is provided by this increase in measurement

speed. The most obvious use for a frequency comb is as a rapid way of performing the

resonance measurements necessary to calibrate the oscillators in the cell at the start of a

new cooldown.

Next, we report on the first successful use of a nanomechanical resonator as an experi-

mental probe in liquid helium 4He. Measurements of the oscillator resonance from 4.2 K

down to 1.3 K clearly show the influence of the liquid. Little variation is seen in the reso-

nance properties between 4.2 K and 2.2 K, with rapid change seen below the transition to

superfluid. An attempt to fit a hydrodynamic damping model to the measured resonance

properties across this temperature range was mostly successful, with fits to the shift in

resonance frequency fitting well. Fits to the width match well throughout the majority of

the temperature range but diverge somewhat below approximately 1.7 K. This disagree-

ment is attributed to the size of the oscillators, as the width is of similar size to the viscous

penetration depth at low temperatures, violating one of the assumptions used to derive

the applied model.

Despite this issue, this result is an important foundation for future uses of NEMS in quan-

tum fluids research, proving that nanoscale devices can be used in a superfluid. Although

unlikely to replace tuning forks as the resonator of choice when convenience is required,

the promise of increased sensitivity should present a wide range of situations in specialist

experiments where NEMS prove very useful. With regards to the quasiparticle camera

the most exciting opportunity provided by NEMS is miniaturisation, which could lead to
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significantly increased spatial resolution.

Using the NEMS, we have also obtained force-velocity characteristics for the 25 µm beam

that show an increase in drag resembling the transition to a turbulent state. Unfortunately

the measured critical velocity of 7.2 mms−1 is very different to the value of 1.76 ms−1

predicted theoretically using the device properties. All other evidence is consistent with

the generation of turbulence however, so we cannot say for certain yet if the result is

genuine or not. The most obvious way to move forward is to attempt similar measurements

using different sizes of beam to see if the experimental results can be reproduced.

We have also used a range of different devices to investigate the effects of frequency on the

thermal damping component of drag in 3He in the low temperature limit. By using the

first overtone mode of a tuning fork, we have managed to exceed the limit at which the

theoretical model applied is expected to break down. Surprisingly the model still seems

to be applicable beyond this limit, though the thermal component investigated appears to

become less prominent for high frequency oscillators. Since the relevant limiting condition

depends on device dimension as well as frequency, the NEMS devices applied earlier are

predicted to fall well below the limit and so should be well described by the current

theoretical model. This is promising as it implies we may be able to successfully interpret

measurements of the drag taken using NEMS in 3He without requiring large amounts of

additional theoretical work.

Finally, we have also investigated observations of additional drag in superfluid 3He that

cannot be explained using the current theoretical approach. Measurements show that

the anomalous plateaus seen in the force-velocity plots are highly reproducible using one

resonator and completely absent from other nominally identical oscillators.

In an effort to understand the physical origin of these results, both vorticity production

and excitation emission have been investigated as potential explanations. Calculations

show both are numerically plausible. In terms of vorticity a vortex ring of approximate
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length 7 µm would need to be produced every 21 oscillator cycles to account for the energy

lost due to the anomalous damping. This corresponds to 21 rings per second, a result that

appears believable.

In terms of excitations, approximately 6.3×1010 quasiparticles would need to be created

per second to balance out the lost energy. This is roughly equal to the total number of

thermal excitations present at the temperature of this measurement. Further interpreta-

tion is difficult however as the rate of change of thermal excitation density is not known.

In light of this, and considering the theoretical difficulty in justifying excitation production

below the transition to pair breaking, we conclude that the anomalous damping is most

likely caused by the generation of vorticity.

Further experimental investigation of this phenomenon is difficult, as only two devices have

been observed exhibiting this behaviour. The only devices currently known to produce

these plateaus are a vibrating wire with diameter 0.9 µm [77] and the 4.5 µm diameter

discussed here. As these are the most sensitive resonators currently used, it is possible

some NEMS may also demonstrate this behaviour, potentially providing us with a new

avenue for further investigation of this unusual phenomenon.
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