A Self-Adaptive Synthetic Over-Sampling Technique for Imbalanced Classification

Gu, Xiaowei and Angelov, Plamen and Almeida Soares, Eduardo (2020) A Self-Adaptive Synthetic Over-Sampling Technique for Imbalanced Classification. International Journal of Intelligent Systems, 35 (6). pp. 923-943. ISSN 0884-8173

[img]
Text (1911.11018)
1911.11018.pdf - Accepted Version
Restricted to Repository staff only until 23 February 2021.
Available under License Creative Commons Attribution-NonCommercial.

Download (857kB)

Abstract

Traditionally, in supervised machine learning, (a significant) part of the available data (usually 50%-80%) is used for training and the rest-for validation. In many problems, however, the data are highly imbalanced in regard to different classes or does not have good coverage of the feasible data space which, in turn, creates problems in validation and usage phase. In this paper, we propose a technique for synthesizing feasible and likely data to help balance the classes as well as to boost the performance in terms of confusion matrix as well as overall. The idea, in a nutshell, is to synthesize data samples in close vicinity to the actual data samples specifically for the less represented (minority) classes. This has also implications to the so-called fairness of machine learning. In this paper, we propose a specific method for synthesizing data in a way to balance the classes and boost the performance, especially of the minority classes. It is generic and can be applied to different base algorithms, for example, support vector machines, k-nearest neighbour classifiers deep neural, rule-based classifiers, decision trees, and so forth. The results demonstrated that (a) a significantly more balanced (and fair) classification results can be achieved and (b) that the overall performance as well as the performance per class measured by confusion matrix can be boosted. In addition, this approach can be very valuable for the cases when the number of actual available labelled data is small which itself is one of the problems of the contemporary machine learning.

Item Type:
Journal Article
Journal or Publication Title:
International Journal of Intelligent Systems
Additional Information:
This is the peer reviewed version of the following article: Gu, X, Angelov, PP, Soares, EA. A self‐adaptive synthetic over‐sampling technique for imbalanced classification. Int J Intell Syst. 2020; 923-943. https://doi.org/10.1002/int.22230 which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22230 This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1700/1709
Subjects:
ID Code:
141493
Deposited By:
Deposited On:
17 Feb 2020 10:00
Refereed?:
Yes
Published?:
Published
Last Modified:
07 Jul 2020 07:09