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Flexible covariate representations for extremes
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Summary: Environmental extremes often show systematic variation with covariates. Three different non-parametric

descriptions (penalised B-splines, Bayesian adaptive regression splines, and Voronoi partition) for the dependence of

extreme value model parameters on covariates are considered. These descriptions take the generic form of a linear

combination of basis functions on the covariate domain, but differ (a) in the way that basis functions are constructed

and possibly modified, and potentially (b) by additional penalisation of the variability (e.g. variance or roughness) of

basis coefficients, for a given sample, to improve inference. The three representations are used to characterise variation

of parameters in a non-stationary generalised Pareto model for the magnitude of threshold exceedances with respect to

covariates. Computationally-efficient schemes for Bayesian inference are used, including mMALA (Riemann manifold

Metropolis-adjusted Langevin algorithm) and reversible jump. A simulation study assesses relative performance of the

three descriptions in estimating the distribution of the T -year maximum event (for arbitrary T greater than the period

of the sample) from a peaks over threshold extreme value analysis with respect to a single periodic covariate. The

three descriptions are also used to estimate a directional tail model for peaks over threshold of storm peak significant

wave height at a location in the northern North Sea.
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1. INTRODUCTION

Different aspects of covariate effects in marginal extreme value modelling have been researched for

many years; Carter and Challenor (1981), Davison and Smith (1990), Coles and Walshaw (1994),

Robinson and Tawn (1997), Scotto and Guedes-Soares (2000), Anderson et al. (2001), Chavez-

Demoulin and Davison (2005), Fawcett and Walshaw (2007), Mendez et al. (2008), Northrop and

Jonathan (2011) and Randell et al. (2016) are useful references. The ultimate goal of much of this
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research is estimation of extreme quantiles (or return values or equivalent) for use in quantification

of environmental risk. For instance, Jonathan et al. (2008) and Jones et al. (2016) demonstrate the

impact of covariate effects on quality of estimation for extreme quantiles of ocean storm severity.

We consider non-stationary marginal extreme value models for ocean storm severity. We characterise

statistical properties of peaks over threshold of storm severity, specifically of storm peak significant

wave height, which varies with a single covariate, storm direction. The extreme value threshold, itself

non-stationary with respect to storm direction, is assumed pre-specified. We then follow Chavez-

Demoulin and Davison (2005) in adopting a non-stationary Poisson model for rate of occurrence of

threshold exceedances and a generalised Pareto model for size of threshold exceedances conditional

on the number of exceedances. One of three forms of covariate representations for the parameters of

the generalised Pareto and Poisson models is then assumed; for clarity, we focus discussion on the

generalised Pareto model.

The three covariate representations introduced in Section 2 take a generic form: they can be

expressed in terms of a linear combination of basis functions on the covariate domain. The covariate

representations differ in the way that basis functions are constructed and potentially modified, and

also by possible penalisation of the variability (i.e. roughness) of basis coefficients during inference.

A key feature of these covariate representations is that they require only the specification of a non-

parametric regression relationship between model parameter and covariate. Further, basis functions

have local support on the covariate domain, providing numerical stability and efficient computation

of basis coefficients (e.g. Currie et al. 2006, Bodin and Sambridge 2009). Moreover, extension to the

kinds of multidimensional covariates typically encountered in oceanography and ocean engineering

is straightforward in terms of tensor products of (marginal) basis representations (e.g. Raghupathi

et al. 2016). Further, the covariate representation can be tailored for a specific application. In some

cases, the functional form for covariate dependence may be suggested by physical consideration (e.g.

Davison and Smith 1990). When sample size is small, evidence for complex covariate effects will be

limited; a simple penalised piecewise-constant covariate representation (e.g. Ross et al. 2018) may be

preferable, providing a flexible semi-parametric representation considerably more easily implemented

than competitors. For periodic covariates, such as those encountered in this study, some authors

(e.g. Robinson and Tawn 1997, Ewans and Jonathan 2008) adopt a Fourier basis for covariates;

computationally, a Fourier basis for covariates is problematic because it does not have compact

support on the covariate domain, increasing the complexity of inference. In this article, we focus
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on a single covariate for ease of description. In a companion paper (Zanini et al. 2020) we extend

discussion to two-, three- and higher-dimensional covariates.

Bayesian inference (see Section 3) provides an intuitive framework for environmental applications of

extreme value analysis. Bayesian inference allows coherent incorporation of prior knowledge, thorough

uncertainty quantification, predictive inference, and when carefully designed, computationally-

efficient inference. Stephenson (2016) provides a useful review. Different Markov chain Monte Carlo

(MCMC) algorithms (e.g. Gamerman and Lopes 2006) can be used to sample from posterior

distributions. Here, we use both direct Gibbs sampling of full conditional distributions and

Metropolis-Hastings (MH) within Gibbs. We find it advantageous in MH sampling from some full

conditionals to exploit gradient and curvature information to improve the quality of proposals. Where

possible, we employ the Riemann manifold Metropolis-adjusted Langevin algorithm (mMALA) as

described by Girolami and Calderhead (2011) and Xifara et al. (2014). Since some of the covariate

representations require that the number of parameters present changes, we also utilise reversible-jump

inference (Green 1995, Richardson and Green 1997); algorithms implemented draw on the work of

Biller (2000), DiMatteo et al. (2001), Brezger and Lang (2006), Bodin et al. (2009), Bodin and

Sambridge (2009) and Randell et al. (2015).

Reversible-jump inference has already been used in extreme value modelling, but not for the

estimation of flexible covariate representations considered here. Bottolo et al. (2003) adopts a mixture

model for non-homogeneous Poisson process parameters. Boldi and Davison (2007) proposes a mixture

of Dirichlet distributions to represent spectral functions for multivariate extremes. El Adlouni and

Ouarda (2009) and Ouarda and El Adlouni (2011) consider linear additive covariate representations.

The current methodology has many shared features with vector generalised additive models (VGAM,

Yee and Wild 1996), and developments of low-rank penalised regression smoothers by Wood and co-

authors (Wood 2003, 2004, 2011, Wood et al. 2016) exploiting Laplace approximations for efficient

frequentist inference. We elaborate on these similarities in the discussion (Section 6).

Objectives

The objective of this work is to assess the relative merits of three covariate representations, primarily

in terms of quality of estimation of the distribution of the size of the largest event observed (the

T -year maximum) in a long return period of T years. We compare estimates for T -year maxima with
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those obtained using simpler covariate representations. We consider relative ease of implementation

of the MCMC algorithms required, complexity of the resulting models, and relative computational

efficiency.

Layout of article

The article is structured as follows. Section 2 introduces the three covariate representations,

namely penalised B-splines (or P-splines), Bayesian adaptive regression splines (BARS) and Voronoi

partition. Section 3 describes Bayesian inference for the shape and scale parameters of a generalised

Pareto model, including specification of sample likelihood and prior structures. It also describes the

MCMC procedures used to sample from the joint posterior distribution of parameters. Section 4

illustrates application of the covariate representations to extreme value modelling of storm peak

significant wave height with respect to storm direction, at a location in the northern North

Sea, including estimation of Poisson rate of extreme value threshold exceedance, estimation of

generalised Pareto parameters, and estimation of the distribution of the size of the T -year maximum.

Section 5 outlines a simulation study conducted to assess predictive performance of the covariate

representations in estimating the distributions of T-year maxima over both the complete covariate

domain, and on subintervals of that domain. Section 6 provides discussion. Technical details are

relegated to the Supplementary Material where possible.

2. COVARIATE REPRESENTATIONS

We are interested in modelling a response Y , the characteristics of which vary systematically with

covariate θ. We assume that the conditional density f(Y |θ) has a known, fixed functional form

parameterised in terms of p variables {ηj(θ)}pj=1, such that each of the functions ηj(θ) (j = 1, 2, ..., p)

varies systematically with θ on covariate domain Dθ. We define each ηj on an arbitrary index set

Iθj of mj unique locations on Dθ; Iθj might correspond to a regular lattice on Dθ, or to the subset

of unique covariate values in a particular sample for analysis. We write the set {ηj;s}
mj

s=1 in vector

form as ηj. For simplicity, we take the covariate domain to be an interval [L,U) of the real line, and

assume that the covariate is periodic on this interval. This description is therefore appropriate for a

single directional or seasonal covariate. The use of higher-dimensional covariates has been considered
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by the current authors elsewhere (e.g. Randell et al. 2016, Feld et al. 2019); extensions of the current

work to higher-dimensional covariates will be reported in a companion article (Zanini et al. 2020).

Since the description of covariate representations applies to all variables ηj, for the remainder of

this section we suppress subscript j for clarity. On the index set Iθ = {θs}ms=1, we then assume that

ηs =
n∑
k=1

Bskβk, s = 1, 2, ...,m, or

η = Bβ (1)

whereB = {Bsk}m;n
s=1;k=1 forms a suitable basis for the covariate domain with real-valued elements, and

allows evaluation of η at each point on Iθ in terms of n > 0 real-valued basis coefficients β = {βk}nk=1.

The focus of statistical inference for givenB becomes estimation of coefficient vector β. A given choice

of B leads to a covariate representation with particular statistical and computational characteristics.

It is likely that, for a given inference task, some covariate representations will prove more attractive

than others, in both computational and physical terms. We consider three choices of basis, leading to

covariate representations in terms of P-splines (e.g. Marx and Eilers 1998, Eilers et al. 2006, Brezger

and Lang 2006, Eilers and Marx 2010), Bayesian adaptive regression splines (e.g. Denison et al. 1998,

Biller 2000, DiMatteo et al. 2001, Wallstrom et al. 2008), and Voronoi partition (e.g. Denison et al.

2002, Costain 2008, Bodin and Sambridge 2009).

2.1. B-splines

A spline is a piecewise polynomial function. Its polynomial pieces are connected at knots. Splines

and their derivatives are typically constructed to be continuous functions. B-splines (or basis splines)

provide basis functions for splines of a particular order; all splines can therefore be constructed as

a unique linear combination of B-splines. B-spline bases of different orders d in one-dimension can

be constructed for arbitrary knot locations r1 ≤ r2 ≤ rm ∈ (L,U), using the Cox - de Boor recursion

formula. A B-spline of order d is defined using exactly d+ 1 knot locations. Construction of B-

spline bases for periodic covariate θ is relatively straightforward; a brief overview is given in the

Supplementary Material. For a periodic covariate, the number n of B-spline coefficients β is equal

to the number of knot locations on the covariate domain, independently of spline order, and the

covariate representation for any model parameter η is defined by the set {rk, βk}nk=1. For instance, we

might use a fixed set of n regularly-spaced knots on (L,U); this is the approach used in the penalised
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B-spline (or P-spline) covariate representation. More generally, we might place knots arbitrarily, and

allow the number of knots n to vary to improve inference; this approach is the motivation for Bayesian

adaptive regression splines (BARS, see Section 3.3).

For a P-spline model, the number n of spline knots is required to be large, so that the resulting set

{ηs}ns=1 easily captures the variability of ηj(θ). To prevent over-fitting, the values of spline coefficients

β are penalised to produce sets {ηs} with an appropriate level of smooth variation (or roughness) as

a function of covariate. In a Bayesian inference, the smoothness requirement is specified in terms of

a prior distribution for β, discussed in Section 3.2. Penalisation can also be used in a BARS model,

although it is not strictly necessary.

2.2. Voronoi partition

A Voronoi partition (or Dirichlet tessellation) partitions the covariate domain into convex polygons

(or cells) such that each polygon contains exactly one generating point (or centroid) and every point

in a given cell is closer (by some definition) to its centroid than to any other centroid. For a set of

n centroid locations {rk}nk=1 ∈ (L,U), a periodic one-dimensional Voronoi partition partitions [L,U)

into n cells. The kth cell consists of every point on the covariate domain whose (shortest wrapped)

Euclidean distance from rk is less than or equal to that from any other rk′ (k′ 6= k). On the index set

Iθ, the covariate representation in Equation 1 applies, with Bsk = 1 if θs belongs to the kth cell, and

Bsk = 0 otherwise. The covariate representation is defined by set {rk, βk}nk=1. Note the equivalence,

in one dimension, of a Voronoi partition and an order-one (i.e. d = 1) BARS characterisation.

3. INFERENCE

Assume now that observations of Y |θ follow a generalised Pareto distribution with parameters shape

ξ(θ), (modified) scale ν(θ) and pre-specified threshold ψ(θ). We seek to estimate functional forms

of ξ(θ) and ν(θ) using Bayesian inference, and thereby estimate return values for Y . We consider

estimation using the three approaches outlined in Section 2, namely P-splines, BARS and Voronoi

partition.

To perform Bayesian inference, we need to specify the sample likelihood (Section 3.1), a prior model

structure (Section 3.2), and a MCMC algorithm to sample from the appropriate target posterior
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distribution (Section 3.3). The latter may include exploring models of different sizes i.e. varying

{nj}.

For clarity and brevity, we describe inference only for the non-stationary generalised Pareto

distribution of threshold exceedance in some detail in the paragraphs following. In practical

applications, models for non-stationary threshold itself, and non-stationary rate of threshold

exceedance would also need to be inferred (Section 4). A typical full inference procedure is outlined

in Section A4 of the Supplementary Material, following the description of Ross et al. (2017).

3.1. Sample likelihood

For convenience, we denote an observed sample of independent threshold exceedances Y by y =

{yi}nY
i=1 and corresponding covariate values. The sample likelihood can be written

L(ξ,ν|y) = fGP (y|ξ,ν) =

nY∏
i=1

fGP

(
yi|ξA(i), νA(i)

)
where mapping s = A(i) allocates the ith observation from the sample to exactly one member θs ∈ Iθ
of the index set of covariates, and each member of the index set can represent the covariate allocation

of none, one or multiple observations. Note that Iθ is assumed to be common for all parameters

estimated, containing m values, so that ξ = {ξs}ms=1 with ξs = ξ(θs), and ν = {νs}ms=1 with νs = ν(θs).

The density fGP of the generalised Pareto distribution is

fGP(y|ξ, ν) =
1

σ

[(
1 +

ξ

σ
(y − ψ)

)−1/ξ−1]
+

with ν = σ(1 + ξ)

where ξ ∈ (−∞,∞) and σ > 0. For any real x, [x]+ = x when x > 0 and 0 otherwise. When |ξ| ≤ 10−6,

we assume fGP has the exponential form (1/σ) exp(−(y − ψ)/σ) appropriate for ξ → 0. Equation 1

relates values of ξ and ν on Iθ to the corresponding basis coefficients β.

Next we provide a general description of the inference appropriate for all covariate representations,

noting variations as necessary. The description is also relevant for estimation of extreme value

threshold and rate of threshold exceedance, with appropriate change of likelihood (and number of

model parameters p). With reference to Section 2 and the generalised Pareto case, the full parameter

set to be estimated is Ω = {Ωj}pj=1 where Ωj = (nj, rj, λj,βj) and p = 2; for definiteness we assume

j = 1 refers to ξ and j = 2 to ν. Further, for the jth variable, nj is the number of spline knots (or
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Voronoi centroids), rj = {rjk}
nj

k=1 are knot (or centroid) locations, λj is the roughness parameter

and βj = {βjk}
nj

k=1 are spline (or Voronoi) coefficients. Throughout, we use the convention that a

set defined using curly braces (e.g. {a`, b`}n`
`=1 or {a`, b`}` or {a`, b`} in brief) includes all possible

pairs a`, b` (i.e. for all of ` = 1, 2, ..., n`, such that {a`, b`} = ∪n`
`=1(a`, b`)) whereas a set (or vector)

defined using round brackets refers to a specific value of ` only; thus (a`, b`) includes two elements,

one each of a` and b` for a single specific value of `. Inference is performed using modified scale ν,

since maximum likelihood estimators for ξ and ν are asymptotically independent (see e.g. Cox and

Reid 1987, Hosking and Wallis 1987). Results below are discussed in terms of ν.

3.2. Prior structure

Model prior probability density f(Ω) is

f(Ω) =

p∏
j=1

f(Ωj)

where f(Ωj) is the prior probability density for the jth variable. f(Ωj) can be factorised using the

chain rule as

f(Ωj) = f(nj, rj, λj,βj) (2)

= f(nj)f(rj|nj)f(λj|rj, nj)f(βj|λj, rj, nj)

= f(nj)f(rj|nj)f(λj)f(βj|λj, rj, nj).

where prior densities f(nj), f(rj|nj), f(λj) and f(βj|λj, rj, nj) take different forms for the three

covariate representations.

P-splines

For penalised B-splines, the number of spline knots nj (= 1, 2, ...) is fixed, and locations rj of

spline knots (rjk ∈ [ar, br) = [L,U) = [0, 360)◦, k = 1, 2, ..., nj) are pre-specified. Prior specification

thus involves only f(λj) and f(βj|λj, rj, nj). The first of these is

f(λj) = fGmm(λj|aλj, bλj), λj > 0,
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a gamma distribution with pre-specified hyper-parameters aλj > 0 and bλj > 0, typical values for

which are given in the Supplementary Material. Ideally, the vector of knot coefficients βj ∈ Rnj would

take a Gaussian conditional density, so that f(βj|λj, rj, nj) = ((2π)nj/2|P j|1/2)−1 exp
(
−1

2
β′jP jβj

)
.

However for P-splines

P j = P j(λj) = λjD
′
jDj

where Dj is a nj × nj differencing matrix (wrapped for periodic covariate domain) with integer

elements, so that Djβj yields a vector of differences between consecutive elements of βj. Since for

P-splines P j is rank-deficient, an improper conditional prior for βj ∈ Rnj is used, with density

f(βj|λj, rj, nj) ∝ |λj|rank(P j)/2 exp

(
−1

2
β′jP jβj

)
.

This choice of prior for βj is motivated by the work of Lang and Brezger 2004 and Brezger and Lang

(2006), who also provide guidance (based on the work of Hobert and Casella 1996) for the specification

of the gamma prior for λj to ensure a proper posterior for βj. Larger values of λj favour choices of

β for which |Djβj| is nearer zero, corresponding to smoother variation of ηj(θ). Different orders

of differencing result in different roughness penalties; a choice of zero-order difference corresponds

to setting Dj to an identity matrix, amounting to a ridge-type penalty. A first-order difference is

typically adequate.

BARS

For Bayesian adaptive regression splines, we must specify all four terms in Equation 2. The number

nj of knots per variable is given a Poisson prior with parameter an > 0

f(nj) = fPoisson(nj|an)

and the prior location of each knot is taken to be uniformly distributed on the covariate domain

[ar, br), so that

f(rj|nj) =
nj!

V
nj
r

where Vr = br − ar, and the nj! term is included since permutations of the set of knot locations are

indistinguishable. The prior density for the vector of knot coefficients βj and the roughness parameter
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λj are the same as those for P-splines; a zero-order difference penalty is used in the prior for βj.

DiMatteo et al. (2001) suggest setting P j ∝ B′jBj, allowing the prior for βj to reflect the correlation

structure of the spline basis, but this was not found to be particularly useful here.

Voronoi partition

For Voronoi partition, the number nj of cells per variable is typically given a Poisson prior, as for

BARS; however, in our experience, a uniform prior also performs well in practice. Similarly to BARS,

the prior location of each cell centroid is taken to be uniformly distributed on the covariate domain.

We adopt a Gaussian conditional prior for cell coefficients βj with zero-order differences; as for BARS,

a gamma prior for λj is used, although in general there is no need to include a roughness penalty for

the Voronoi covariate representation.

Note that Bodin and Sambridge (2009) assumes that βj is uniformly-distributed on support

(aβj, bβj) ⊂ R, so that f(βj|λj, rj, nj) = f(βj|nj) = V
−nj

βj where Vβj = bβj − aβj.

3.3. MCMC scheme

The posterior distribution of model parameters Ω is not available in closed form. Posterior inference

is therefore made using reversible-jump Markov chain Monte Carlo (RJ-MCMC, Green 1995) by

sampling from full conditionals as outlined below. Two types of proposal schemes are used, the first

to sample from the complete set of full conditional distributions when model size does not change

(applicable to P-splines, BARS and Voronoi), and the second to explore models of different size using

dimension-jumping proposals (for BARS and Voronoi only).

Sampling from full conditionals for given model size

For a model of given size, we follow the inference scheme described in Randell et al. (2016). When full

conditionals are available in closed form, we use Gibbs sampling. Otherwise, we use MH within Gibbs.

When the distribution to be sampled is particularly problematic (e.g. posteriors for generalised Pareto

shape and adjusted scale), we exploit gradient and curvature information if possible to generate MH

proposals efficiently. In particular, full conditional distributions for roughness coefficients {λj} are

available in closed form, permitting Gibbs sampling (see Randell et al. 2016). For fixed {nj}, at each

iteration of the MCMC chain, we sample in turn from the full conditional distributions of coefficients
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{βj}, roughness penalties {λj}, and knot locations {rj}. We experimented with different orderings

of parameters and found there to be little difference in performance. Further details are given in the

Supplementary Material.

Reversible jump

RJ-MCMC allows transitions between a current state with a given number of parameters, and a

proposed state with greater (or fewer) parameters, by augmenting the set of parameters for the current

(or proposed) state with extra auxiliary random variables. As a result, the number of parameters in the

(possibly augmented) current and proposed states is equal, and a deterministic bijective mapping can

be defined between them. An appropriate expression for transition acceptance probability is required

to ensure that a detailed balance condition is satisfied, so that the MCMC eventually samples from

the desired “trans-dimensional” target distribution.

In more detail, for current state Ω = (nj, rj, λj,βj), and for each variable j in turn, we propose

reversible dimension-jumping transitions to state Ω∗ =(Ω \ ω, ω∗) where triplet ω = (nj,βj, rj) in

the current state changes to triplet ω∗ = (n∗j ,β
∗
j , r
∗
j) in the proposed state. The transition is accepted

with probability

min

(
1,
f(y|Ω∗)
f(y|Ω)

f(ω∗)

f(ω)

q(ω|ω∗)
q(ω∗|ω)

∣∣∣∣∂(ωa∗)

∂(ωa)

∣∣∣∣) (3)

where f(y|Ω) and f(y|Ω∗) represent the sample likelihood in the respective states, f(ω) and f(ω∗)

represent priors for respective triplets; q(ω∗|ω) is the proposal density for transition from ω to ω∗, and

q(ω|ω∗) is the proposal density for reverse transition. The final term in the expression is the Jacobian

for the transformation of augmented triplets (with superscript “a”). The manner in which augmented

triplets are constructed is dictated by the type of dimension-jumping transition considered: here we

consider two transition types, “birth” and “death”. Birth involves increasing nj to n∗j = nj + 1, by

creating a new knot (centroid) with some location and coefficient. Each of β∗j and r∗j has nj + 1

elements, compared with nj elements for βj and rj. To enable proposal of reversible transitions,

we augment ω with two random variables ur and uβ so that the resulting augmented triplet ωa

= (nj,βj, uβ, rj, ur) has the same number of elements as ω∗; no augmentation of ω∗ is necessary, and

we set ωa∗ = ω∗. Conversely, death involves reducing nj to n∗j = nj − 1. Following a similar logic,

we now augment ωa∗, leaving ωa = ω. Thus we create a deterministic bijection between augmented
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triplets ωa and ωa∗ for any transition type. The expression for the acceptance probability above then

ensures that the detailed balance condition for the transition is satisfied. The distributions of ur and

uβ are discussed below.

The proposal ratio can be written more usefully as

q(ω|ω∗)
q(ω∗|ω)

=
q(nj, rj,βj|n∗j , r∗j ,β∗j)
q(n∗j , r

∗
j ,β

∗
j |nj, rj,βj)

=
q(nj|ω∗)
q(n∗j |ω)

q(rj|ω∗, nj)
q(r∗j |ω, n∗j)

q(βj|ω∗, nj, rj)
q(β∗j |ω, n∗j , r∗j)

=
q(nj|n∗j)
q(n∗j |nj)

q(rj|r∗j , n∗j , nj)
q(r∗j |rj, nj, n∗j)

q(βj|β∗j , r∗j , rj)
q(β∗j |βj, rj, r∗j)

. (4)

Sample likelihood (Section 3.1) and model prior (Section 3.2) have already been discussed, and can

be easily evaluated. Specification of proposal distributions and Jacobian depend on both transition

type and model type; we start with Voronoi partition, since the description is somewhat simpler.

Voronoi partition

For a Voronoi birth transition, we assume that location r+ of the new centroid is sampled uniformly

on the covariate domain so that

r+ = ur, where f(ur) =
1

Vr
and ur ∈ [ar, br).

The corresponding coefficient β+ ∈ R is sampled from a Gaussian density with standard deviation

τβj > 0, centred at the value of coefficient βj+ at the location of r+ in the current state, so that

β+ = βj+ + uβ, where uβ ∼ N(0, τ 2βj).

Using these relationships, as shown in the Supplementary Material, the proposal ratio becomes[
q(ω|ω∗)
q(ω∗|ω)

]
VrnBrt

=
pD
pB

Vr
n∗j

√
2πτβj exp

(
(β+ − βj+)2

2τ 2βj

)

where n∗j = nj + 1 and VrnBrt refers to Voronoi birth. Constants pB ∈ [0, 1] and pD ∈ [0, 1] are

probabilities of attempting a birth and death, which we are free to choose in most cases; sometimes,

it is useful to make these functions of the model size nj. The Jacobian in this case is unity.

For a Voronoi death transition, one of the nj + 1 centroids is eliminated at random. The proposal

ratio is the inverse of that given above, with β+ replaced by the coefficient β− of the eliminated

centroid, and βj+ by the coefficient β∗j− for the Voronoi cell within which the location of the eliminated
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centroid falls in the proposed state. Specifically[
q(ω|ω∗)
q(ω∗|ω)

]
VrnDth

=
pB
pD

nj
Vr

1√
2πτβj

exp

(
−

(β− − β∗j−)2

2τ 2βj

)

where VrnDth refers to Voronoi death. The Jacobian for the Voronoi death transition is again unity.

BARS

For a BARS birth transition, we assume that location r+ of the new knot is sampled uniformly from

the covariate domain as for Voronoi partition above. Given knowledge of knot locations rj and r∗j in

the current and proposed states, we use a regression to establish the bijection between an augmented

coefficient vector βaj = (βj, uβ) for the current state, and the vector β∗j for the proposed state. Suppose

thatBj is the spline basis matrix for the jth variable in the current state (with knot locations rj), such

that the values of the variable on the index set of covariate values is Bjβj. The corresponding spline

basis in the proposed state (with knot locations r∗j = (rj, r
+)) is B∗j . We choose to append the new

knot location to the existing location vector here, for ease of description; in reality we reorder knot

locations so that the elements r∗j create an increasing sequence. Solving the regression B∗jβ
∗
j = Bjβj

provides an estimate β̂
∗
j for β∗j in the proposed state, with β̂

∗
j =

[
(B∗j

′B∗j)
−1B∗j

′Bj

]
βj = Gjβj.

Motivated by this result, we set

β∗j =



0
...

Gj 0

0

1


×

βj
uβ

 = F jβ
a
j

where uβ ∼ N(0, τ 2βj). This expression provides a bijection between the sets βaj = (βj, uβ) and β∗j .

The proposal ratio for BARS birth becomes[
q(ω|ω∗)
q(ω∗|ω)

]
BrsBrt

=
pD
pB

Vr
n∗j

√
2πτβj exp

(
(β+ − gjβj)2

2τ 2βj

)

=
pD
pB

Vr
n∗j

√
2πτβj exp

(
u2β

2τ 2βj

)
13



Environmetrics E. Zanini,E. Eastoe,M.J. Jones,D. Randell,P. Jonathan

where β+ is now the last element of β∗j , and gj is the last row of Gj, and BrsBrt refers to BARS

birth.

For a death transition, we select a knot at random to be possibly eliminated; each knot is considered

for elimination with probability 1/nj. Once the location vectors rj and r∗j are established, coefficient

vector β∗j is calculated using βa∗j = (β∗j , uβ) = F−1j βj, where F−1j is the inverse of F j above (for a

birth). The proposal ratio for a death is essentially the inverse of that shown above for birth, as

discussed in the Supplementary Material. There also we show that the Jacobian term for a birth is

|F j|, and for a death is |F j|−1.

Note that the Supplementary Material also outlines optional “local” knot birth and death steps

(not used in the current work) which have been considered by others (e.g. DiMatteo et al. 2001).

4. APPLICATION

To illustrate the use of the three different covariate representations in extreme value analysis, we

consider the problem of estimating characteristics of a severe ocean wave environment. The severity

of an ocean storm, in terms of the magnitude of surface gravity waves it generates, is quantified

using significant wave height (HS). HS is a measure of the energy content (or roughness) of the

ocean surface, and can be defined as four times the standard deviation of ocean surface elevation at

a spatial location for a specified period of observation. The overall severity of a storm can be usefully

summarised in terms of the highest value of HS observed, over a set of contiguous consecutive time

intervals (referred to as sea states) corresponding to the time period of the storm; this value is referred

to as storm peak HS.

The application sample corresponds to storm peak HS and associated (dominant) wave direction

generated from a physical “hindcast” model of the ocean environment for a northern North Sea

location, for the period September 1957 to December 2012. These data were previously considered by

Randell et al. (2016). The hindcast model utilises pressure field, wind field and wind-wave generation

models in particular to simulate the ocean environment, and is calibrated to observational data from

instrumented offshore facilities, moored buoys and satellite altimeters in the neighbourhood of the

location for a period of time, typically decades. Further details of the specific hindcast used (based

on the WAM wave model) are available from Reistad et al. (2011).
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Extreme sea states in the North Sea tend to be associated with winter storms originating in the

Atlantic Ocean and propagating eastwards across the northern part of the North Sea. Directions

of propagation of extreme seas vary considerably, due to long fetches associated with the Atlantic

Ocean, Norwegian Sea and the North Sea itself, and land shadows of the British Isles and Scandinavia.

Extreme sea states from the directions of Scandinavia to the east and the British Isles to the south-

west are unlikely. Storm peak HS and direction are isolated from sea-state time-series using the

procedure described in Ewans and Jonathan (2008). The resulting storm peak HS sample consists of

1076 values.

Figure 1 shows a plot of storm peak HS (in metres) versus direction, with direction from which a

storm travels expressed in degrees clockwise with respect to north. The land shadow of Norway reduces

the rate and size of occurrences of events when θ ∈ (45◦, 210◦). The rate and size of occurrences

increases with direction at around 210◦, corresponding to Atlantic storms from the south-west passing

the Norwegian headland. We therefore expect considerable directional variability in model parameter

estimates. Figure 1 also shows directional extreme value threshold ψ used, with non-exceedance

probability for given θ of τ = 0.8.

The overall modelling strategy is outlined algorithmically in Supplementary Material A4. The

threshold ψ is estimated by first characterising the distribution of Ỹ |θ (for Ỹ = storm peak HS) for

the full sample ỹ = {ỹi}
nỸ
i=1 of nỸ storm peak HS (as opposed to just threshold exceedances) using a

non-stationary gamma distribution with likelihood

LGmm(α,κ|ỹ) = fGmm (ỹ|α,κ) =

nỸ∏
i=1

fGmm

(
ỹi|αA(i), κA(i)

)
.

Here, the gamma density is fGmm(y|α, κ) = καyα−1 exp(−κy)/Γ(α) for shape α > 0 and rate (or scale)

κ > 0, and mapping A is defined as for generalised Pareto estimation. We allow α and κ parameters

to vary smoothly with θ using a P-spline parameterisation for definiteness. For each θ, ψ is then

defined as the quantile of the fitted distribution with pre-specified non-exceedance probability τ .

[Figure 1 about here.]

The rate of occurrence of threshold exceedances Y of ψ is assumed to follow a non-stationary

Poisson process with rate ρ varying with direction. Following Chavez-Demoulin and Davison (2005)

and Randell et al. (2016), we approximate the corresponding intensity on index set Iθ of m directional

sub-intervals of length d, taking d small enough so that ρ is assumed constant on each sub-interval.
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Then, for a vector of counts c = {cs}ms=1 of occurrences of threshold exceedances on the index set

f(c|ρ) = exp

(
−d

m∑
s=1

ρs

)
m∏
s=1

ρcss ,

where ρ = {ρs}ms=1 is the corresponding Poisson count rate, assumed to vary smoothly with θ using

some covariate representation.

The objective of the current work is to compare different covariate representations. However the

P-spline gamma model used to estimate extreme value threshold ψ is used for all extreme value fits.

Hence the sample of threshold exceedances for subsequent Poisson and generalised Pareto modelling

is fixed, enabling fair comparison of different covariate representations for the Poisson and generalised

Pareto models. We arbitrarily choose to use the same representation for both rate and size of threshold

exceedance, although this choice is not necessary; that is, when a Voronoi partition is used for the

shape ξ and scale ν of the generalised Pareto distribution, it is also used for rate ρ. For conciseness

of presentation, we focus on estimation of generalised Pareto parameters and resulting distributions

of T -year maxima for long return periods T , incorporating models for all of threshold, rate and size.

Figure 2 illustrates the posterior distribution of ξ, ν and ρ for each of P-spline, BARS and Voronoi

representations. All estimates of ρ reflect directional characteristics of HS from Figure 1; the same is

true of estimates for ν. The estimated ξ is essentially constant with direction, and relatively uncertain;

these features are particularly clear for the Voronoi representation. The P-splines parameter estimates

are somewhat more uncertain that those for other covariate representations. The piecewise-constant

nature of the Voronoi parameter estimates is particularly clear for ξ. Overall, there is good agreement

between the sets of parameter estimates for the three covariate representations.

It is important to confirm that inferences are not overly sensitive to threshold choice: in general we

seek the lowest value of threshold non-exceedance probability τ such that estimates for generalised

Pareto shape parameter ξ are relatively stable for all higher thresholds whilst admitting a sufficiently

large sample. The choice of τ = 0.8 was informed by inspection of plots of estimated ξ and median

T -year maxima on θ for different τ .

[Figure 2 about here.]

For each covariate representation, Figure 3 summarises the complexity of covariate representation

for each of ξ, ν and ρ, using densities of both knot (or centroid) locations r, and the number n of

knots. For BARS and Voronoi representations, knot (centroid) locations are approximately evenly
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spread on the covariate domain for ξ, with some suggestion that more knots are located around 230◦

corresponding to the end of the land-shadow of Norway; this direction also sees a higher density

of knots for ρ, and also to some extent for ν. BARS locates more knots around 0◦ compared to

Voronoi. For P-splines, the 20 knots are evenly spaced on the covariate domain. For the Voronoi case,

approximately 7 centroids on average are used to describe ρ and ν, but the spread of the distribution

for ν is somewhat narrower; the mode of the posterior density is at unity for ξ. The fact that a greater

number of centroids is selected to describe the variation of ρ and ν with covariate, compared with the

number of centroids used to describe the variation of ξ with covariate, is consistent with expectation

that in general the sample is more informative for ρ and ν than for ξ.

Figure 4 shows the posterior density of roughness coefficients λ for each of ξ, ν and ρ in each covariate

representation. The P-splines model employs a different prior for spline coefficients β compared with

BARS and Voronoi: as described in Section 3.2, a difference penalty is used for P-splines, whereas

BARS and Voronoi use a (zero-order) ridge-type penalty. For ν and ρ, roughness coefficients for BARS

and Voronoi are very similar. The Voronoi representation requires less penalisation for ξ, associated

with a lower number of centroids in Figure 2, compared to BARS.

The prior density for n was set to a Poisson distribution with expectation 5 (see Supplementary

Material) for both BARS and Voronoi representations. Since the estimated posterior distribution

for n also lies around 5, to confirm that prior specification is not too influential, the analysis was

repeated for Poisson priors on n with expectation 3 and 15, and a uniform prior on [1, 30]. Posterior

estimates for these cases were very similar to those shown in Figure 3.

[Figure 3 about here.]

[Figure 4 about here.]

Using estimated Poisson and generalised Pareto models, the distribution of MT , the T -year

maximum storm peak HS event in any covariate bin centred on the index set Iθ follows a generalised

extreme value distribution (Ross et al. 2017)

FMT
(x|ξs, νs, ρs) = exp (−Tρs(1− F (x|ξs, νs)) for location s ∈ Iθ

where F (y|ξs, νs) is the generalised Pareto cumulative distribution function. Since occurrences of

storm peak HS in different covariate bins are independent, the corresponding distributions of

the T -year maximum storm peak HS event over all covariate bins is simply FMT
(x|ξ,ν,ρ) =
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∏m
s=1 FMT

(x|ξs, νs, ρs). The posterior predictive cumulative distribution function for the T -year

maximum storm peak HS is

FMT
(x) =

∫
ξ,ν,ρ

FMT
(x|ξ,ν,ρ)f(ξ,ν,ρ)dξdνdρ (5)

where f(ξ,ν,ρ) is the estimated joint posterior density of ξ, ν and ρ. We evaluate this integral using

Monte Carlo integration (Ross et al. 2017).

Figure 5 illustrates estimates for the posterior predictive distribution of M1000, in terms of 2.5%,

25%, 50%, 75% and 97.5% percentiles for each covariate representation. Corresponding estimates

(not shown) were generated for other return periods. There is good agreement between estimates

for M1000, both per directional sector and omni-directionally, and also for different return periods,

suggesting consistency between all of P-spline, BARS and Voronoi representations as would be

hoped. In the NE, E, SE and S sectors, where storms are less severe, the estimate for M1000 and

its uncertainty is reduced, particularly for the Voronoi representation. Overall, P-splines provide

somewhat more uncertain estimates than BARS and Voronoi: because of its reliance on equally-spaced

knots and global roughness penalty, this representation is not sufficiently flexible to accommodate

local directional characteristics.

[Figure 5 about here.]

It is illustrative to compare the empirical tail of threshold exceedances against posterior predictive

tail both for different directional sectors, and for all directions. Figure 6 suggests that an extreme

value model with any of the P-spline, BARS or Voronoi covariate parameterisations of ξ, ν and

ρ provides a reasonable description of the sample. Omni-directionally, there is greater similarity

between tail functions from P-splines and BARS. Voronoi gives more certain estimates for NE, E, SE

and S sectors in particular. In summary, based on visual comparison of quality of fit, there is little

to choose between the competing covariate representations.

[Figure 6 about here.]

5. SIMULATION STUDY

A simulation study provides more structured comparison of P-spline, BARS and Voronoi partition

covariate representations. We generate nS = 100 samples, each containing exactly nO = 1000
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observations of threshold exceedances with a generalised Pareto distribution. The true Poisson

rate ρ of occurrence of threshold exceedance, and known shape ξ and scale ν of size of threshold

exceedances, are assumed to vary systematically with covariate (“direction”) θ. Functional forms

of ξ(θ), ν(θ) and ρ(θ) are generated using the sum of 10 weighted (wrapped) Gaussian kernels of

standard deviation 30◦, randomly located on the periodic covariate domain; weights are drawn at

random from suitable distributions, so that variation of ξ, ν and ρ with θ approximately reflects that

of the sample considered in Section 4. In particular, rate of occurrence of events on [180◦, 270◦) was

constrained to be low compared to other regions of the covariate domain. Corresponding distributions

for T -year maxima are easily calculated. We choose a specific value of T corresponding to a period

of 10× the period of the sample, so that if we assume the sample of nO events represents TO years,

we are estimating the distribution of the 10TO-year maximum, M10TO . For illustration, Figure 7 gives

the “true known” directional variation of each of ξ, ν and ρ with θ for a typical realisation, along

with the corresponding distribution of M10TO for 8 octants, and omni-directionally.

[Figure 7 about here.]

Figure 8 illustrates model fit for each of ξ(θ), ν(θ) and ρ(θ) for the sample realisation illustrated

in Figure 7. The figure suggests excellent estimation of ρ, and reasonable estimation of ν and ξ. As

might be expected, credible intervals for ξ in particular are relatively large. However, variation of ρ,

ν and ξ with covariate is identified by each of P-spline, BARS and Voronoi representations. Visual

inspection of corresponding figures (not shown) for other sample realisations suggests consistent

fitting performance. We infer that all covariate representations give reasonable models for the n

simulated cases considered.

[Figure 8 about here.]

In a typical application, primary interest lies in estimation of extreme values associated with

long return periods. It is natural to assess the three covariate representations in this respect. For

each sample realised, we estimate the distribution of M10TO omni-directionally, and also for each

of 8 directional octants centred on cardinal and semi-cardinal directions, using P-spline, BARS

and Voronoi partition representations. We assess the performance of a covariate representation by

comparing the distribution of M10TO from the estimated extreme value model with the truth. This

comparison is summarised in terms of two quantities: an offset (the median of the estimated posterior
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predictive distribution minus the true median), and a Kullback-Leibler (KL) divergence statistic (used

e.g. for similar comparisons in Jones et al. 2016).

Distributions of estimated median offset for P-spline, BARS and Voronoi representations over the

nS samples are illustrated in Figure 9, for each directional octant and omni-directionally, together

with the corresponding distributions of KL divergence statistics. The distribution of median offset

is centred close to zero for all directional sectors. Omni-directionally, the estimated median value

of median offset is approximately -0.3, 0.3 and 0.4 for P-spline, BARS and Voronoi representations.

Variability of median offset is also somewhat lower for BARS. KL divergence for BARS is generally

somewhat lower than for P-splines, which is lower than for Voronoi. Omni-directionally for KL

divergence, there is little to choose between the covariate representations.

Figure 9 also shows median offsets and KL divergence for estimates based on independent, stationary

Poisson and generalised Pareto fits to each directional octant (in light green), alongside corresponding

omni-directional median offset and KL divergence. Further, the figure shows omni-directional median

offset and KL divergence for a stationary (covariate-free) model (in dark green). Figure 9 suggests

that median offsets for M10TO from independent stationary octant fits are generally reasonable when

the sample size is sufficient; for SW, W and W octants, for which ρ is small (Figure 7), variability in

median offset increases. Resulting omni-directional median offset also shows relatively large bias of

approximately -2.1 (independent) and 1.0 (covariate-free). KL divergence for M10TO from independent

stationary octant fits is generally larger than for P-splines, BARS and Voronoi; but there are some

octants (e.g. N) for which Voronoi intervals are wider. We attribute this to the piecewise constant

nature of the Voronoi representation. Omni-directionally, independent stationary octant (light green)

and stationary (covariate-free, dark green) models perform more poorly than P-spline, BARS and

Voronoi covariate representations.

[Figure 9 about here.]

Figure 10 shows densities for the number n of BARS knots or Voronoi centroids, estimated by

averaging the corresponding posterior densities from models for each of the nS sample realisations,

for each of ξ, ν and ρ. Perhaps not surprisingly, general features of the figure are somewhat similar

to those of Figure 3 (bottom row). The posterior probability mass of n for ρ using BARS is similar

to the prior (a Poisson distribution with expectation 5). The mode of the corresponding posterior

probability mass using Voronoi is approximately 9, reflecting the greater number of Voronoi cells
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required to capture variability in ρ with θ (c.f. Figure 8). The posterior masses of n for ν and ρ using

Voronoi are somewhat wider than those for BARS knots. For ξ however, the mode of the posterior

mass of n is displaced from the prior to near unity, corresponding e.g. to a scalar (covariate-free)

constant estimate for ξ for Voronoi.

[Figure 10 about here.]

6. DISCUSSION AND CONCLUSIONS

We have considered different covariate representations for the parameters of extreme value models,

and demonstrated that, for one-dimensional covariates, each of P-spline, Bayesian adaptive regression

spline and Voronoi partition representations provides reasonable estimates of extreme value parameter

variation with a covariate, and of extreme quantiles corresponding to specific intervals of the covariate

domain. Successful application of the P-spline representation typically relies on over-specifying the

number of components (i.e. knots) in the covariate representation whilst penalising the roughness

of parameter variation with covariate to optimise model fit. The BARS and Voronoi partition

representations allow the number of basis components (i.e. BARS knots and Voronoi cells) itself

to be estimated using reversible-jump MCMC inference, and the locations of knots and centroids

to be changed. This flexibility increases the complexity of inference, but eliminates the need for

difference penalisation; further it potentially reduces the complexity of the resulting model, and may

increase model interpretability. P-spline and BARS-based parameter estimates are by construction

smoother with covariate than those achieved by Voronoi partition, but in terms of estimation of

extreme quantiles, there is little difference in performance between approaches.

There is no requirement that the same covariate representation be used for estimation of all

parameters. In the current work, we might have chosen different covariate representations for the

extreme value threshold ψ, exceedance rate ρ and generalised Pareto shape ξ and (modified) scale ν,

but chose not to for simplicity.

We assumed a common P-spline representation for parameters of the gamma model used to estimate

extreme value threshold ψ, so that the sample of threshold exceedances for subsequent rate and size

modelling is fixed. The fixed sample is advantageous for purposes of comparing subsequent inferences.

However, estimation of (non-stationary) extreme value threshold is itself challenging. It is possible
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that a particular covariate representation, coupled with an appropriate model, might prove more

useful than others in this estimation. In the current application, for example, the rapid change in the

characteristics of HS at around 230◦ suggests that a higher density of knots (or centroids) is required

near that direction. As noted in Jones et al. (2016), in practical application, careful estimation of

non-stationary ψ is at least as important for reliable inference as estimation of ρ, ν and ξ; see also

Scarrott and MacDonald (2012) and Northrop et al. (2017). Any non-stationarity of extreme value

threshold should be examined and identified either before or alongside non-stationarity of Poisson

and generalised Pareto parameters. Indeed, intuition suggests, for modelling of magnitudes of events,

that non-stationarity should be introduced sequentially and only as required, first in (a) extreme

value threshold, before (b) generalised Pareto scale and finally (c) generalised Pareto shape. In the

current work, we assume the extreme value threshold has already been identified without error.

All covariate representations have been implemented in a computationally-efficient manner in

MATLAB software for non-stationary extreme value analysis. Full Bayesian inference (i.e. estimation

of ψ, ρ, ν and ξ, and of T -year maxima for T ∈ [102, 108] years) for a one-dimensional covariate (e.g.

for the hindcast data from Section 4 or for any of the 100 simulated samples in Section 5) can be

completed in approximately five minutes on a workstation with reasonable performance specification.

For a typical implementation of VGAM for marginal extreme value analysis (e.g. Yee and

Stephenson 2007), we might adopt functional forms for generalised Pareto parameters ξ and

ν of the form ηj =
∑q

k=1 fjk(θ(k)), j = 1, 2, for q covariates {θ(k)}qk=1 and 2q smooth functions

{fjk(θ(k))}2,qj=1,k=1, where each fjk is a function of a single covariate θ(k). The variation of fjk with θ(k)

might be described using a P-spline, with global smoothness constraint(s) on the covariate domain. In

the current study with a one-dimensional covariate, this VGAM description is closely related to the

P-spline approach. However, a typical VGAM implementation would not allow optimal estimation of

the number and placement of knots (or centroids), achieved using BARS and Voronoi representations.

Moreover, when applied to two- and higher-dimensional covariates, a typical VGAM would only allow

additive descriptions of the form
∑q

k=1 fjk(θ(k)) for generalised Pareto parameter ηj, in contrast to

the more general description fj(θ(1), θ(2), ..., θ(q)) in the current approach.

Further, Wood (2003) presents an approach to estimation of low-rank smoothers, motivated by

approximate solutions to thin plate regression spline models. Since estimation of thin plate spline

models in multiple dimensions is computationally demanding, this approach is beneficial when the

approximate solution can be achieved considerably more efficiently. Jonathan and Ewans (2011)
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report the application of thin-plate splines to non-stationary extreme value analysis. Thin plate spline

approaches are naturally multidimensional. Typically, for a q-dimensional covariate, (a) Euclidean

distance is assumed as the natural metric for distance between two points in covariate space, and

(b) function penalisation is applied globally on the covariate domain. Characteristic (a) is common

to the Voronoi representation in the current work. Characteristic (b) is assumed by all of P-spline,

BARS and Voronoi representations, but is less critical for BARS and Voronoi since spline knot and

Voronoi cell numbers and locations are also estimated. Wood (2004) proposes generalised additive

models (GAMs) with multiple smoothing parameters and improved numerical stability. Krivobokova

et al. (2008) propose a fast approach to adaptive penalised splines, in which the spline smoothing

parameter itself is also modelled as (another) penalised spline, and the Laplace approximation used for

marginal likelihood estimation. Wood (2011) considers fast estimation of semi-parametric generalised

linear models, amounting to optimisation of Laplace approximate restricted maximum likelihood

or maximum likelihood criteria. This work is extended by Wood et al. (2016) to encompass non-

exponential family models. The covariate representations here also prove useful in general regression

settings beyond extreme value analysis of peaks over threshold; estimation strategy described is

largely independent of likelihood form. Indeed, in other studies, we have found the representations

useful for non-stationary exponential and non-exponential family models.

This study of covariate representations focusses on application to marginal extreme value modelling,

but we believe that some of its findings might prove more generally useful. When extending the

current work to multidimensional covariates (Zanini et al. 2020), it might prove useful to adopt

(e.g.) a two-dimensional tensor product spline basis, consisting of a P-spline representation for

seasonal variation and a BARS representation for direction. Further, for strongly coupled covariates

(e.g. direction and season for storm peak HS in the South China Sea, Randell et al. 2015) a two-

dimensional Voronoi partition will probably prove an adequate parsimonious description. For yet

higher-dimensional covariates, it is likely that a BARS or (in particular) a Voronoi representation will

prove computationally considerably more efficient to estimate, notwithstanding slick computational

techniques such as GLAMs (Currie et al. 2006) available for covariate descriptions in terms of

penalised tensor products of B-splines.
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FIGURES

Figure 1. North Sea application. Storm peak significant wave height HS (in metres) on direction (dots), together with directional extreme value

threshold ψ (blue line, corresponding to τ = 0.8) estimated using a P-spline covariate representation, with 30 knots evenly-spaced on the covariate

domain.
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Figure 2. North Sea application. Posterior distributions of generalised Pareto shape ξ (top), scale ν (centre) and Poisson rate ρ (bottom), for each

of P-splines (left), BARS (centre) and Voronoi (right) representations. Each panel shows posterior mean (full line) and 95% credible interval (dotted

line) as a function of direction.
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Figure 3. North Sea application. Estimated posterior density of knot and centroid locations (top), and estimated posterior density of number of

knots (bottom) for each of ξ (left), ν (centre) and ρ (right). Each panel shows estimates for BARS (red) and Voronoi (cyan) representations. Vertical

black lines show the number of P-spline knots used. The P-spline knot locations are evenly spaced on the covariate domain.
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Figure 4. North Sea application. Estimated posterior density for roughness coefficient λ for each of ξ (left), ν (centre) and ρ (right). Each panel

shows estimates for P-splines (black), BARS (red) and Voronoi (cyan). Note that the P-splines model exploits a difference penalty, whereas BARS

and Voronoi use a (zero-order) ridge-type penalty.
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Figure 5. North Sea application. Posterior predictive distribution for M1000, the 1000-year maximum storm peak HS , summarised using box-whisker

plots in terms of 2.5%, 25%, 50%, 75% and 97.5% percentiles, for (triplets of) P-splines (black, left), BARS (red, centre) and Voronoi (cyan, right)

corresponding to 8 directional sectors centred on the cardinal and semi-cardinal directions, and over all directions (“Omni”).
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Figure 6. North Sea application. Illustration of model validation for the P-spline (black), BARS (red) and Voronoi (cyan) representations, shown in

terms of estimates for the distribution of storm peak HS corresponding to the period of the original sample, plotted as log10(1 − P ) to accentuate

tail behaviour, for cumulative distribution function P. For comparison, the dotted blue curve is an empirical estimate for the same tail distribution

obtained by sorting the sample of threshold exceedances. The black, red and cyan curves summarise the predictive distribution of the quantile

estimate (for given tail probability 1 − P ) under the directional model, as the median (solid) and 2.5% and 97.5% values (dashed), estimated using

numerical integration. The left hand panel corresponds to the omni-directional case, and the right hand panels to estimates for each of 8 directional

octants centred on cardinal and semi-cardinal directions.
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Figure 7. Simulation study. Left hand side: variation of true ξ (top), ν (centre) and ρ (bottom) with θ for one of the nS realisations. Right hand side:

the corresponding cumulative distribution of the 10TO-year maximum, for each of 8 directional octants centred on the cardinal and semi-cardinal

directions, and over all directions (“Omni”, in black).
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Figure 8. Simulation study. Posterior distributions of generalised Pareto shape ξ (top), scale ν (centre) and Poisson rate ρ (bottom), for each of

P-splines (left), BARS (centre) and Voronoi (right) representations, for sample realisation discussed in Figure 7. Each panel shows posterior mean

(full line) and 95% credible interval (dotted line) as a function of direction. The true parameter value as a function of direction (also given in

Figure 7) is shown as a broken (dot-dashed) line.
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Figure 9. Simulation study. Distribution for estimated median offset (top) and Kullback-Leibler (KL) divergence (bottom) for 8 directional octants

centred on the cardinal and semi-cardinal directions, and over all directions (“Omni”). Box-whisker plots are constructed using 2.5%, 25%, 50%,

75% and 97.5% percentiles of the corresponding distribution, for return period 10TO, for (quadruplets of) P-splines (black, left), BARS (red, centre

left), Voronoi (cyan, centre right) and independent stationary fits per octant (light green, right). Omni-directional estimates of median offset and

KL divergence from a stationary (covariate-free) model are also shown (dark green, far right).
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Figure 10. Simulation study. Estimated posterior density of number of knots for each of ξ (left), ν (centre) and ρ (right) from the simulation study.

Each panel shows estimates for BARS (red) and Voronoi (cyan) representations. Vertical black line shows the number of P-spline knots.
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