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ABSTRACT 

Providing global food security requires a better understanding of how plants function and 

how their products, including important crops are influenced by environmental factors. Prominent 

biological factors influencing food security are pests and pathogens of plants and crops. Traditional 

pest control, however, has involved chemicals that are harmful to the environment and human 

health, leading to a focus on sustainability and prevention with regards to modern crop protection. 

A variety of physical and chemical analytical tools is available to study the structure and function 

of plants at the whole-plant, organ, tissue, cellular, and biochemical levels, while acting as sensors 

for decision making in the applied crop sciences. 

Vibrational spectroscopy, among them mid-infrared and Raman spectroscopy in biology, 

known as biospectroscopy are well-established label-free, nondestructive, and environmentally 

friendly analytical methods that generate a spectral “signature” of samples using mid-infrared 

radiation. The generated wavenumber spectrum containing hundreds of variables as unique as a 

biochemical “fingerprint”, and represents biomolecules (proteins, lipids, carbohydrates, nucleic 

acids) within biological samples. Spectral “biomarkers” generated by biospectroscopy is useful for 

the discrimination of distinct as well as closely related biomaterials, for various applications. 

Applications within the plant and crop sciences has been limited to date, especially for the 

investigation of dynamic biological processes in intact plant tissues. Even more scarce is the 

application of biospectroscopy to plant interactions with pests and pathogens. 

To adequately probe in vivo plant-environment interactions, surface structures of intact 

plant tissues such as leaves, and fruit need to be characterized. Infrared light energy can measure 

plant epidermal structures including the cuticle and cell wall for chemical profiling of different 

varieties and cultivars, as well as physiological applications such as plant health monitoring and 

disease detection. A review of the application of biospectroscopy to study plant and crop biology 

reveals the potential of biospectroscopy as a prominent technology for fundamental plant research 

and applied crop science. The application of biospectroscopy for in vivo plant analysis, to elucidate 

spectral alterations indicative of pest and pathogen effects, may therefore be highly beneficial to 

crop protection. 

Highlighting the in vivo analysis capability and portability of modern biospectroscopy, 

ATR-FTIR provided an invaluable tool for a thorough spectrochemical investigation of intact 

tomato fruit during development and ripening. This contributes novel spectral biomarkers, distinct 
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for each development and ripening stage to indicate healthy development. Concurrently, this 

approach demonstrates the effectiveness of using spectral data for machine learning, indicated by 

classifier results, which may be applied to crop biology. 

Complementary to monitoring healthy growth and development of plants and crops, is the 

detection of threats to plant products that compromise yield or quality. This includes physical 

damage and accelerated decay caused by pests and pathogens. Biochemical changes detected by 

ATR-FTIR using principal component analysis and linear discriminant analysis (PCA–LDA), for 

damage-induced pathogen infection of cherry tomato (cv. Piccolo), showed subtle biochemical 

changes distinguishing healthy tomato from damaged, early or late sour rot-infected tomato. Sour 

rot fungus Geotrichum candidum was detected in vivo and characterized based on spectral features 

distinct from tomato fruit providing biochemical insight and detection potential for intact plant–

pathogen systems. 

Pre-harvest detection of pests and pathogens in growing plants is paramount for crop 

protection and for effective use of crop protection products. Established previously as an 

exceptionally versatile bioanalytical sensor, for post-harvest applications, biospectroscopy was 

applied for the pre-harvest detection of microscopic pathogen Botrytis cinerea fungus infecting 

developing tomato plants. Compact MIR spectroscopy using ATR mode was adapted for the 

biochemical investigation of the plant-microbe interaction S. lycopersicum and B. cinerea, on the 

whole-plant level. Chemometric modeling including principal component analysis, and linear 

discriminant analysis were applied. Fingerprint spectra (1800-900 cm-1) were excellent 

discriminators of plant disease in pre-symptomatic as well as symptomatic plants. Spectral 

alterations in leaf tissue caused by infection are discussed. Potential for automatic decision-making 

is shown by high accuracy rates of 100% for detecting plant disease at various stages of 

progression. Similar accuracy rates using similar chemometric models are obtained for fruit 

development and ripening also. 

Overall, this research showcases the biospectroscopy potential for development monitoring 

and ripening of fruit crops, damage and infection induced decay of fruit in horticultural systems 

post-harvest, complemented by pre-harvest detection of microscopic pathogens. Based on the 

results from experiments performed under semi-controlled conditions, biospectroscopy is ready 

for field applications directed at pest and pathogen detection for improved crop production through 

the mitigation of crop loss.  
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Chapter 1: General Introduction 
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1.1 Introduction 

Plants are essential for sustaining human life. As primary producers, plants harness the 

sun’s energy, for subsequent distribution of chemical energy into the base of the food web (Pimm 

et al. 1991). Animal evolution is fundamentally linked to plant life and ensured that our 

relationship with plants would remain intimate and indispensable (Jordano et al. 2003). Successful 

cultivation of plants and the invention of agriculture was one of the most important milestones 

facilitating the development of complex civilizations; while the ability to produce and store excess 

food led us into a modern world away from the previous hunter-gatherer lifestyle of our ancestors 

(Diamond 2005). This transition and the accompanying manipulation of the natural environment, 

to meet growing horticultural demands over time, became increasingly challenging in the 20th 

century. The world population has been increasing more rapidly since the beginning of the 20th 

century (Figure 1.1). Presently the global population of approximately 7.5 billion people is 

expected to increase and exceed between 9.6 and 12.3 billion by the year 2100 (Gerland et al. 

2014). Meeting the food demands of this fast population rise increases the pressure to produce 

more food, in a safe and sustainable manner to ensure food security and prevent destruction of the 

natural environment. 

  

 

Figure 1.1 Global human population growth curve and rate of population increase from 1760-

2015 including estimated future projections (from Roser and Ortiz-Ospina 2017).  
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As part of ensuring food security in line with the expected human population growth, new 

farming practices, to supersede more traditional ones, were developed in the 1950s as part of the 

‘green revolution’. The green revolution can be regarded as a set of practices aimed at increasing 

worldwide agricultural productivity through knowledge-exchange from fundamental plant 

research to applied horticulture (Evenson and Gollin 2003). Developments in the field of plant 

science have contributed to improved crop production through methods that increase both crop 

yield and quality (Premanandh 2011). These methods are frequently combined to attain 

satisfactory yield and quality of crops. Plant breeding, including trait selection (phenotypic and 

genotypic), is amongst the oldest and most exploited methods used in plant research (Roberts 

1929). Identifying and breeding naturally resilient crops is considered favorable but is time intense 

and expensive (Mahlein 2016). To accelerate the natural selection process for favorable traits, a 

related strategy may be used. Genetic modification (GM) of crops has been used to generate crops 

that are resistant to environmental stresses, in addition to manipulating other traits that can 

potentially improve, for example, crop shelf-life, color and flavor (Qaim and Kouser 2013). 

Significant advancements have been made with GM crops, many of which have been developed 

for increased resistance to disease, pests, and pathogens (Birch and Wheatley 2005). While GM 

crops offer an alternative to increasing crop production and to lengthy selective breeding programs, 

public opinion, and thus marketability of GM crops can be a challenge. Through the relatively 

recent discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9), 

GM crops may be substantially improved, making available virtually any genetic target within the 

plant genome with increasing speed (Bortesi and Fisher 2015). This can be combined with other 

approaches including the precision control of the growth environments, where hydroponic systems 

and artificial growth mediums, irrigation strategies, nutrient supply and optimized lighting, allow 

crop production on both large and small scales. Despite these large technological strides, producing 

enough food to feed all of humanity remains to be achieved (Ray et al. 2013). Today’s farming 

approaches combined with our population boom has led to patchy food security around the globe 

and predictions are suggesting that it will become even more challenging to meet future food 

demands (Ray et al. 2013). Food production and supply will therefore have to improve, due to the 

tremendous pressure to generate more food with less resources, less environmental impact, and 

concurrently addressing the large fraction of the population that is malnourished (IFPIRI 2017).  
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The ability to cultivate crop plants is at the heart of all food production and this ability can 

be threatened. Abiotic and biotic stresses both greatly influence plant growth and development 

affecting yield potential and actual quality of crops (Atkinson and Urwin 2012; Lara 2014). Figure 

1.2 shows the effects of individual and combined stress induced by abiotic (drought) and biotic 

(nematodes) factors. This example illustrates the unpredictable effects of combined stress, which 

may combine in various ways to have observable or more subtle consequences from individual 

types of stress.   

 

 

Figure 1.2 Effects of individual and combined stress induced by abiotic and biotic factors (from 

Atkinson and Urwin 2012).  

 

While these are often regarded separately for plant and crop management purposes, plant 

response to abiotic and biotic factors overlap extensively (Kissoudis et al. 2014; Suzuki et al. 

2014). Crop production from an ecosystem perspective thus considers all of the associated 

organisms (biotic) that live and interact with plants under a given set of environmental conditions 

(abiotic factors) (Suzuki et al. 2014). Harmful organisms that threaten crops are among the most 

important challenges to successful agriculture. Crop pests and pathogens (PP) are highly 
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diversified and include many classes of macroscopic and microscopic organisms. Unlike abiotic 

stress, PPs can adapt to changing conditions found during crop cultivation by evolving, re-

distributing (migrating), and employing various attack strategies that can harm crops (Bebber 

2015). Effects of PPs are therefore diverse ranging from mild losses to the destruction of virtually 

entire crops (Oerke 2006) (see also, Section 1.5). This diversity in PP strategy and resulting effects 

on crops, shows the importance of improving our understanding of PP-host interactions in the 

context of global food security. From a preventative standpoint it is equally important to be able 

to detect early signs of the presence of PP, ideally before plants are significantly compromised. 

Through human manipulation of the food web and increased homogenization of the biosphere, PPs 

have thrived in many instances, leading to the wide use of pesticides as countermeasures (Popp et 

al. 2012). However, due to the negative associations with pesticides, including public pressure, 

modern agriculture is moving towards a more precision approach aimed at utilizing technology for 

reducing pesticide application and integrating traditional and new solutions for crop protection 

(Barzman et al. 2015).  

Crop protection refers to strategies for preventing the adverse effects caused by biotic and 

abiotic factors to ensure healthy crops (ECPA 2019). Modern crop protection is changing due to 

the evolving demands of agriculture worldwide; as such, the intricacy of adapting crop protection 

strategies to a changing world is shown by the involvement of science, enterprise, and the 

government (Popp 2011). Traditionally, crop protection has been associated with the use of 

pesticides; a broad category of chemicals aimed at treating various forms of PPs that cause plant 

disease (Popp et al. 2012). Pesticide use has become the focus of growing concern however due to 

the potential adverse effects of pesticides on the environment and human health when used in 

excess (Lechenet et al. 2014). It has become evident that pesticides are often used at levels much 

higher than needed, if needed at all, to attain specific yield thresholds (Lechenet et al. 2014; 

Vasileiadis 2017). Modern practices encompassed by precision crop protection, are thus favoring 

alternatives to pesticides, where efforts are being made to optimize pesticide productivity and 

minimize overuse.  

Integrated pest management (IPM) is referred to as a holistic approach to crop protection 

that is sustainable and focuses on the prevention and treatment of plant diseases by combining 

methods that are cost effective and environmentally responsible (ECPA 2019). IPM is an evolving 

concept referring to a collection of measures intended to prevent significant negative effects on 
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crops by biological organisms through the sustainable use of best available plant protection 

products (Barzman et al. 2015). It entails methods developed as part of the green revolution, 

including considerations about crop rotation and field ecology, as well as more advanced state-of-

the-art monitoring and information systems upon which decisions are made (Barzman et al. 2015) 

(see also, Sections 1.3 and 1.4.2). While rapid sensors monitoring environmental parameters are 

already routinely used on farming machinery (Pérez-Ruiz et al. 2015), the routine monitoring and 

detection of PPs is not currently part of the agricultural framework. However, sensor types are 

highly diverse, ranging from those that work at great distances (distal sensors) including satellites, 

aircrafts, and unmanned aerial vehicles (UAVs), to ground based sensors attached to tractors, 

handheld units, as well as sensors working at the cellular or molecular level (Mahlein 2016). 

Sensors capable of PP detection in practice, although scarce to date, are currently being developed 

(Mahlein 2016; Martinelli et al. 2014; Sankaran et al. 2010). Part of the reason for the lack of 

sensors for PP detection lies in the biological complexity and variability of plant-PP interactions. 

The early detection of plant diseases, caused by small or microscopic pests, is of paramount 

importance as these are among the most difficult to control (Williamson et al. 2007). Pre-

symptomatic detection, whether direct detection of PPs, or indirect detection of the plant’s 

responses, remains a key aspect of crop protection (Sankaran et al. 2010). Plant disease from initial 

exposure to PP, through disease progression, leading to reduced crop yields, are therefore research 

areas that require increasing attention (Mahlein 2016; Skolik et al. 2018b). Consequently, moving 

towards a more sustainable and precision crop production framework, requires technological 

solutions to better crop production.  

Crop protection by way of IPM depends, at least in part, on effective sensors which provide 

the information necessary to facilitate pest detection. Sensors that do not damage plants during 

analysis are clearly favorable as they reduce sample preparation, facilitating intact analysis, 

thereby increasing measurement speed, and subsequent interpretation of data.  Most of these 

sensors rely on interaction between plants with various ranges of electromagnetic radiation 

(Mahlein 2016).  

Within the class of non-destructive sensors are spectroscopy-based methods relying on 

information gained by measuring the interaction between light and matter. Among these are 

vibrational spectroscopy methods including mid-infrared (MIR) and Raman spectroscopy (Baker 

et al. 2014; Butler et al. 2016). Applications of vibrational spectroscopy in plant research are still 



7 
 

limited, especially applications where the non-destructive nature of these techniques is conserved. 

Even so, the rapid development of the vibrational spectroscopy field into the plant and crop 

sciences is underway; emphasis is being placed on adapting these methods for application outside 

of the laboratory to more heterogenous systems found in commercial growing environments 

(Skolik et al. 2018b). Based on current investigations and with further research and development, 

vibrational spectroscopy will contribute to crop protection and thus aid in the improvement of food 

security worldwide by becoming established as a prominent sensor technology for plant science 

and horticultural applications in particular (Egging et al. 2018; Farber and Kurouski 2018; Skolik 

et al. 2018a; Yeturu et al. 2016).  

 

1.2 Food security 

Global food security remains a major challenge throughout the world. Factors influencing 

food security are multi-faceted and complex. Food security has been defined in the 1996 world 

food summit stating that “all people, always, have physical and economic access to sufficient, safe, 

and nutritious food to meet their dietary needs” (FAO 2016; Porter et al. 2014). Continuously 

supplying safe and nutritious food, in other words providing food security for a global population, 

has been unsuccessful in that a large proportion of the world’s population is malnourished (IFPIRI 

2017). Not only is the current food security deficit of concern, deficits in the production of major 

staple crops suggests that food security will not improve by 2050 (Ray et al. 2013). Required yield 

increases each year for crops of maize, rice, wheat, and soybean need an increase of approximately 

2.4% annually to meet the global food demands projected for 2050 (Ray et al. 2013). In reality, 

these rates are at 1.6%, 1.0%, 0.9%, and 1.3% per year for maize, rice, wheat, and soybean, 

respectively; leaving potentially drastic shortcomings of these crops in coming years (Ray et al. 

2013).  

Figure 1.3 provides an overview of malnutrition worldwide. Especially affected are 

underdeveloped countries where food security is already scarce, but where most people affected 

by food shortages reside (IFPIRI 2017). Central Africa is especially affected by food shortages, 

while most developed nations have low enough rates of malnutrition to not be directly included. 

The greatest need for improvement of food security is therefore necessary in Africa and Asia.  
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Figure 1.3 Malnutrition severity worldwide where data is available showing most malnourished 

people residing in developing African countries. (from Roser and Ritchie 2019; data from FAO 

2018). 

 

Whilst improved agricultural practices are likely to contribute to improved food security 

in developing countries the threat to food security in developed countries is largely due to post-

harvest losses and consumer waste (Godfray et al. 2010). Developing countries have the potential 

to improve food security by adopting conventional solutions, which are commonplace in 

developed nations. Examples of these are potential for land clearing (crop production) and access 

to refrigerated transport (crop supply) (Godfray et al. 2010). Developed countries in contrast lose 

most food to waste, meaning a focus on losses at the post-harvest and consumer stages is needed 

(Godfray et al. 2010). Figure 1.4 gives an overview of food waste in developing and developed 

nations, showing the areas of food production/supply at which loss is incurred in the different 

countries, comparing the UK and US to developing nations.  
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Figure 1.4 Food loss at different stages of food production/supply comparing differences between 

developing and developed nations (from Godfray et al. 2010).  

 

The efficient and sustainable production of enough high-quality crops is critical to the 

achievement of unrestricted food security in both developing and developed nations. Solutions for 

improving food security in developed countries include high-tech concepts such as urban farms, 

rooftop gardens, vertical farming systems, and food sharing programs, aimed at optimizing crop 

production and reducing waste in areas not threatened substantially by food security (Despommier 

2009; McClintock 2010). These high-tech concepts are, however, not available in developing 

nations, where on-farm loss and loss during transport are prominent (Figure 1.4). Recognition of 

the food security crisis has led to developments such as the increased distribution and repurposing 
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of nearly expired or otherwise unmarketable foodstuffs to prevent waste, which is becoming part 

of national policies in some countries such as France among others (Mourad 2015). Waste and loss 

reduction are integral parts of improving food security issues caused by growing pressures of 

population growth, land availability, and climate change. While current levels of food security are 

expected to deteriorate further, both developing and developed nations will be increasingly 

affected (Godfray et al. 2010; Ray et al. 2013).  

PPs cause significant crop loss and thereby threaten food security (Oerke 2006). Apart from 

growing more crops, reducing losses to PPs is one of the most essential starting points for 

increasing agricultural productivity. This includes expanding our understanding of plant-

environment interactions, while developing effective methods allowing precision scheduling of 

crop protection measures, including pesticide application where necessary. Plant interactions with 

PPs are therefore relevant for increasing crop production, firstly through the development of 

detection and monitoring systems, and secondly by expanding our knowledge of how PPs affect 

growth, development, yield, and quality of crops (Barzman et al. 2015; Lara et al. 2014). 

 

1.3 Crop Protection 

Crop protection is an essential component in the armory of countermeasures used against 

the effects of PPs in order to maximize crop productivity and hence food security. First and 

foremost, crop protection has been traditionally associated with the management of plant disease 

caused by PPs (Popp 2011; Popp et al. 2013). Modern crop protection is enveloped by the broader 

field of precision horticulture aimed at sustainably increasing food security (Gebbers and 

Adamchuk 2010). For centuries, farmers have relied heavily on techniques such as crop rotation, 

mixed crop planting, and the use of natural pest control such as predation, parasitism, and 

competition, for crop protection (Dayan et al. 2009). However, this changed along with the green 

revolution with the development of specialized agrochemicals including broad category of 

pesticides which have proved highly effective at increasing crop yields (Popp 2011). Modern 

farming has relied heavily on chemicals to prevent crop losses, despite the known harm caused by 

off-target effects, especially on human and environmental health (Bourguet and Guillemaud 2016). 

To reduce such effects and the overuse of crop protection products, while maintaining the crop 

yield advantages granted by such products, a more precision approach is frequently adopted. IPM 

is one such approach (Barzman et al. 2015) and precision crop protection through IPM can 
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therefore be adapted to essentially any environment and crop type(s) through the application of 

both conventional and specialized approaches. Development of autonomous farming equipment 

boasting innovative sensor systems, data processing centers, and actuation devices, can be highly 

beneficial as crop protection measures may be applied only when and where required, minimizing 

cost, environmental damage and exposure of farmers to dangerous chemical (Pérez-Ruiz et al. 

2015). For this, crop protection is relying evermore on sensor data for real-time diagnostics.  

 

1.4.1 Pesticide productivity 

Crop yield models comparing theoretical crop yields to yields attained through the 

application of pesticides provide strong evidence of the importance of pesticides to the current 

level of food production (Popp 2011). Figure 1.5 shows the yield increases achievable through 

pesticide application. As farming has moved to more homogenous growing environments, crops 

have become more susceptible to PPs, resulting in the regular use of pesticides (Bourguet and 

Guillemaud 2016). Although the benefits of pesticides depend strongly on how they are used, 

evidence suggests that pesticide use is overall beneficial by contributing to crop protection and 

increasing crop yields (Popp 2011; Popp et al. 2012). However, overuse of pesticides is evidenced 

by often little reduction in yield despite no pesticide application at all and has resulted in a re-

evaluation of pesticide productivity in recent years (Lechenet et al 2014; Singbo et al. 2015; 

Vasileiadis 2017). A major reason is that pesticide productivity is difficult to determine and can 

be overstated especially regarding ‘hidden’ or ‘shadow’ costs to ecosystems (Popp 2011; Singbo 

et al. 2015). Further, reducing pesticide use while maintaining the same levels of crop yield indeed 

increases pesticide productivity, which is why pesticide reduction is one of the high-priority targets 

in the quest for a sustainable agriculture (Vasileiadis 2017). Despite this it appears that pesticides 

will remain an essential part of crop production for the foreseeable future, especially if they 

significantly combat crop loss and help move towards the theoretical yield potential of crops (Popp 

2011; Popp et al. 2012). Effects of microscopic pathogens (including viruses) are significantly 

reduced by crop protection, as seen by the crop yield gained (Figure 1.5). Nevertheless, these pests 

cannot be spotted without specialized detection methods and only become evident through 

symptoms, at which point plants may be irreversibly compromised. For timely use of crop 

protection measures, and to optimize pesticide use, safe and site-specific application of such is 

essential, irrespective of where and how they are employed. 



12 
 

  

 

Figure 1.5 Pesticide productivity shown as crop yield benefits achieved by crop protection (from 

Popp 2011).  

 

1.4.2 Integrated Pest Management 

IPM is an important management tool for improving crop production. Conceptualized in 

the late 1950’s by entomologists working with insecticides, IPM today encompasses virtually all 

aspects of plant protection (Barzman et al. 2015). This concept, while not new, may be 

appropriately tailored to facilitate the use of pesticides with other measures to maximize their effect 

and minimize human and environmental exposure. Several principles have been proposed to be 

integral to IPM (Barzman et al. 2015), divided into non-intervention and intervention related 

principles, including: prevention and suppression, monitoring, decision based on monitoring and 

thresholds, non-chemical methods, pesticide selection, reduced pesticide use, (pest) anti-resistance 

strategies, and evaluation (Figure 1.6). Table 1.1 provides a concise summary of each principle 

highlighted in Figure 1.6 showing the actions necessary for crop protection using the IPM 

approach.  

 



13 
 

 

Figure 1.6 Principles of IPM showing the distinct principles relating to both non-intervention and 

intervention measures (from Barzman et al. 2015).  
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Table 1.1 Descriptive summary of IPM principles; see also Figure 1.6 (adapted from Barzman et 

al. 2015).  

IPM Principle Description Action 

   

Principle 1  

 

Prevention and Suppression 

The prevention and/or 

suppression of harmful 

organisms should be 

achieved or supported. 

Crop rotation 

 

Use of adequate cultivation 

techniques (e.g. stale seedbed 

technique, sowing dates and 

densities, under sowing, 

conservation tillage, pruning 

and direct sowing). 

 

Use of resistant and or tolerant 

cultivars and standard or 

certified seed and planting 

material. 

 

Use of balanced fertilization, 

liming and irrigation and or 

drainage practices. 

 

Preventing the spreading of 

harmful organisms by hygiene 

measures 

(e.g. by regular cleansing of 

machinery and equipment). 

 

Protection and enhancement 

of important beneficial 

organisms (e.g. by adequate 
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plant protection measures or 

the utilization of ecological 

infrastructures inside and 

outside production sites). 

 

 

Principle 2 

 

Monitoring 

 

Harmful organisms must be 

monitored by adequate 

methods and tools. 

Observations in the field as 

well as scientifically sound 

warning, forecasting and early 

diagnosis systems, where 

feasible, as well as the use of 

advice from professionally 

qualified advisors. 

Principle 3 

 

Decision-making 

 

For harmful organisms, robust 

and scientifically threshold 

levels defined for the region, 

specific areas, crops and 

climatic conditions must be 

considered before treatments, 

where feasible. 

Based on monitoring the 

professional user must decide 

whether and when to apply 

plant protection measures.  

 

 

 

Principle 4 

 

Non-chemical methods 

 

Sustainable biological, 

physical and other non-

chemical methods must be 

preferred to chemical methods 

if they provide satisfactory 

pest control. 

Application of sustainable 

biological, physical and other 

non-chemical methods. 
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Principle 5 

 

Pesticide selection 

The pesticides applied shall be 

as specific as possible for the 

target and shall have the least 

side effects on human health, 

non-target organisms and the 

environment. 

Application of a specifically 

and carefully selected 

pesticide versus generic pest 

control. 

Principle 6 

 

Reduced pesticide use 

 

The professional user should 

keep the use of pesticides and 

other forms of intervention to 

levels that are necessary 

considering that the level of 

risk is acceptable, and they do 

not increase the risk for 

development of resistance in 

populations of harmful 

organisms. 

 

Pesticide application of 

appropriately selected 

pesticide at minimal levels 

required to prevent crop loss 

(e.g. by reduced doses, 

reduced application frequency 

or partial applications). 

Principle 7 

 

Anti-resistance strategies 

 

Where the risk of resistance 

against a plant protection 

measure is known and where 

the level of harmful organisms 

requires repeated application 

of pesticides to the crops, 

pesticide resistance needs to 

be considered.  

Anti-resistance strategies 

should be applied to maintain 

the effectiveness of the 

products. This may include 

the use of multiple pesticides 

with different modes of 

action. 

 

Principle 8 

 

Evaluation 

 

Crop protection measure 

evaluation, based on pesticide 

use, records, and on the 

monitoring of harmful 

organisms. 

Check the success of 

the applied crop protection 

measures. 
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Globally, the implementation of IPM is limited by lack of experts and technical training, 

issues pertaining to research and outreach, and weak adoption incentives that have limited IPM 

implementation (Parsa et al. 2014). Consequently, compiling strategies with simple components 

(procedures, protocols, technical components, etc.) may increase the adoption of IPM. Principles 

2 and 3 (monitoring and decision based on monitoring/thresholds) rely on accurate information to 

make decisions whether to intervene (Barzman et al. 2015). It is therefore highly likely that if 

effective sensors are developed, which are easy to use and implement in IPM strategies, crop 

protection will become more robust. The effective detection, identification, and quantification of 

PPs in the plant (population) to enable appropriate and precise crop protection remediation 

measures to be implemented thus remains a key area for improvement (Barzman et al. 2015; 

Mahlein 2016; Skolik et al. 2018b).  

 

1.5 Pests and Pathogens of Crops 

Since the beginning of agriculture, the yield potential of crops cultivated by humans has 

been affected by natural but harmful organisms including plants, animals, and PPs. Persistent PPs 

are regarded as one of the most significant biological influences affecting crop production (Oerke 

2006; Bebber et al. 2014). Crop loss to PPs ranging from viruses to large animals and competitive 

plants is considerable at around 35%, although this is highly variable depending on the crop and 

PP (Oerke 2006; Oerke and Dehne 2004). It does nonetheless illustrate the gravity of crop loss to 

biological threats on a large scale. Macroscopic PPs, include large animal herbivores, insects and 

plants (weeds), whilst microscopic PPs include viruses, bacteria, fungi and microscopic animals 

(mites, nematodes,  etc.). Whilst macroscopic PPs can be detected by eye and are thus easier to 

manage without the use of harmful agrochemicals (Oerke 2006), reducing the impact of 

microscopic PP is more challenging as they are more difficult to detect prior to incurring crop loss, 

and thus contribute to a minimum loss of 10% globally (Strange and Scott 2005). This is further 

compounded by the reduced efficacy of crop protection against microscopic compared to 

macroscopic PPs (Oerke 2006). Confounding this issue is the rapid expansion and adaptation of 

pathogens to new territories due to climate change and it is expected that the homogeneous 

distribution of pathogens across all crop areas will occur in the coming decades (Bebber 2015; 

Bebber et al. 2013; Juroszek and Tiedemann 2013). As a result, plant-PP interactions are of high 
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importance to plant pathologists and growers, because they involve complex biological 

interactions that occur at the molecular level (Lucas 2011). Respectively, the threat to crops posed 

by PPs is increasing and to counteract this, adaptable methods for pest detection and control, as 

part of IPM will be imperative.   

 

1.5.1 Evidence of Crop Loss to Pests and Pathogens 

Depending on the crop, annual losses can reach as high as 50%-80% for certain crops such 

as cotton and sugar beet (Chakraborty et al. 2011). Overall, loss potential is highest for weeds 

(34%) and lowest for viruses (5%), with animal pests (18%) accounting for just slightly more than 

pathogens (16%) (Oerke 2006). However, in the context of pesticide efficacy, crop loss due to 

weeds, animal pests, and pathogens (bacteria, fungi, viruses, and other microbes), are reduced 74, 

39, and 37% respectively (Oerke 2006). Nevertheless, it is clear that pathogens present a unique 

challenge to crop protection, which is likely due to their microscopic nature. Therefore, reducing 

crop losses due to plant interactions with microscopic pathogens, bacteria, fungi, and viruses 

specifically, appear to offer the largest room for improvement. Consequently, increasing our 

understanding of plant-PP interactions, especially interactions with difficult to detect microscopic 

pathogens is fundamental to more precise crop production.  

 

1.5.2 Plant-Pest and Pathogen Interactions  

Understanding the molecular details of plant interactions with PPs will improve crop 

protection. PP have developed a broad suite of strategies for interacting with plants which are 

beneficial to the PP but potentially detrimental to plants (Vleeshouwers and Oliver 2014). Whether 

as food, habitat, or both, PPs interact with their plants in diverse ways to exploit weaknesses in the 

plant’s biology (Atkinson and Urwin 2012; Boller and He 2009). In response, plants have adapted 

complex counter strategies as defense against PPs (Fujita et al. 2006). Plant-PP interactions are 

part of an evolutionary arms-race, where both the plant and invader struggle for survival (Boller 

and He 2009). Influences of PPs on plants may result in reduced fitness leading to lower crop yield 

or lead to massive crop loss through the manifestation of plant diseases. This is apparent in the 

context of variable crop loss depending on pest type, host, and environmental conditions (Oerke 

2006). Crop production may therefore be affected directly, for example, through predation or plant 

disease, or indirectly for instance via habitat and resource competition (Miller 1994). Frequently, 
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plants are compromised through interactions with PPs, leading to reduced growth and development 

due to partitioning resources towards defense strategies.  

Exposure to biotic and or abiotic stress triggers changes at the molecular, cellular, and 

physiological levels that overlap in complex ways to prevent harmful effects of PPs. Whether in 

combination of as individual stress types, both biotic and abiotic stress causes massive changes 

that begin through the induction of general stress responses shared between biotic and abiotic 

responses (Fujita et al. 2006; Kissoudis et al. 2014). Initially, stress is perceived by receptors 

specialized for certain types of stress (e.g. osmotic, pathogen) inducing signal transduction 

pathways that include hormone signaling, MAP kinase cascades, and the ROS network (Atkinson 

and Urwin 2012). Signal transduction leads to the altered activity of transcription factors (TF), 

which may be controlled further through post-translational modifications. Altered expression of 

stress linked TF (e.g. HSF, MYB, zinc-finger type TFs) leads to altered gene expression of defense 

response genes that include metabolite production, cell wall fortification, altered ROS distribution, 

and cell death (Atkinson and Urwin 2012) (Figure 1.7). Select defense responses in plants may 

become valuable targets for the detection of PPs in crop systems. Specifically, ROS and abscisic 

acid (ABA) have been shown to influence structures initially confronted with PPs, which include 

the cuticle, cell wall, as well as underlying epidermis (Atkinson and Urwin 2012; Fujita et al. 2006; 

Kissoudis et al. 2014). Here both ROS and ABA have been associated with defense against 

pathogens specifically and the fortification of the epidermis through callose deposition (ABA 

driven) and lignin-crosslinking (ROS linked) (Kissoudis et al. 2014). As these networks influence 

resistance to pathogens, being able to detect these changes initially may present pre-symptomatic 

targets for early disease detection by some sensor technologies.  
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Figure 1.7 Overlap of plant response to abiotic and biotic stress at the cellular and molecular levels 

(from Atkinson and Urwin 2012). 
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1.6 Detection of Plant Pests and Pathogens  

Precision agriculture relies heavily on detailed information obtained from sensors in the 

growing environment (Barzman et al. 2015). Early detection and identification of PPs is one of the 

first steps in negating the potentially catastrophic losses frequently associated with biotic stresses. 

There are many pest control measures available for macroscopic PPs. Although, there is no 

shortage of sensor types which may be developed for microscopic PP detection, identification, and 

or quantification (Mahlein 2016; Martinelli et al. 2014; Sankaran et al. 2010), microscopic pest 

detection remains technically challenging (Mahlein 2016). In particular, the variability of growing 

conditions means that sensors must be highly adaptable to changing environments. Due to the 

destructive nature of many existing approaches, the adoption of non-destructive sensors that do 

not rely on damaging plants/crops is pivotal. Additionally, sensor technologies must be compatible 

with farming equipment if these are to be used on a large scale (Pérez-Ruiz et al. 2015). Sensor 

development for the purposes of PP management therefore remains a challenging endeavor. 

 

1.6.1 Sensor Types 

A combination of sensor types is required to match the biological complexity of crop 

production. Sensors aimed at advancing crop protection and IPM fall into different categories 

depending on their features and identifying effective combinations will provide better safeguarding 

against PPs. Primary differences between sensors is sampling requirements, size, working 

distance, measurement range, spatial resolution, and acquisition time (Martinelli et al. 2014; 

Sankaran et al. 2010). Therefore, sensors must be appropriate for the level of biological 

organization under investigation, which range from the sub-cellular or cellular level to larger tissue 

sections such as leaves, all the way to the measurement of whole plots, fields, or even ecosystems 

(Mahlein 2016). Figure 1.8. shows the range of non-destructive sensor technologies available for 

crop protection and plant phenotyping. If a given sensor measures biological tissues, either at the 

whole plant, tissue, cellular, or sub-cellular levels, destructive sample preparation is often 

unavoidable. Aside from requiring skilled experts, methods requiring sample preparation are 

invasive, requiring sample manipulation, specialized workspaces, considerable preparation time, 

while providing limited amount of information regarding whole plant-environment interactions 

(Skolik et al. 2018b). This renders many approaches ineffective, specifically for in vivo analysis 

of intact crops in the field, or for use by growers. Correspondingly, techniques capable of rapidly 
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generating tissue, cellular, and or biochemically specific profiles of plants non-destructively would 

be immensely valuable to farmers, as well as plant and crop scientists. Effective sensors will then 

provide discriminatory information for detecting either subtle effects, such as ones on the cellular 

level including plant defense biochemistry, or larger scale changes, such as identifying diseased 

areas at the whole plant, field, or ecosystem scale. Various sensor types aimed at disease detection 

or phenotyping may be suitable for both purposes. Combining sensor types is also common, 

especially for optical sensors that operate on similar principles.  

 

 

Figure 1.8 Overview of non-destructive sensor technologies for crop protection (from Mahlein 

2016). 
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1.6.2 Non-Destructive Sensors  

Sensors that do not damage plants and plant products are essential to avoiding crop loss. 

Non-destructive sensors work on the principle of chemical, mechanical, and or structural changes 

(Hahn 2009). These sensor types can be used for disease detection and identification/quantification 

of the associated PPs, as well as for other crop protection strategies such as phenotyping (Mahlein 

2016). Many non-destructive sensors specifically for disease detection depend on measuring the 

interaction between electromagnetic radiation and the sample, with an emphasis on remote sensing 

and autonomous evaluation of these technologies for warning and monitoring schemes in plants 

and crops (Martinelli et al. 2014).  

 

1.6.3 Spectroscopy Based Sensors 

Spectroscopy-based sensors are among commonly used sensors for disease detection 

(Martinelli et al. 2014; Sankaran et al. 2010). Imaging and non-imaging spectroscopic techniques 

using visible, infrared, fluorescence, multiband, and ultraviolet ranges of electromagnetic radiation 

are particularly promising tools because they are adaptable, efficient, and cost effective (Martinelli 

et al. 2014; Sankaran et al. 2010; Hahn 2009). With a high demand for non-destructive methods, 

the rapid and disease-specific information gained from these sensors has been used for disease 

detection particularly in the pre-symptomatic stages both pre and post-harvest (Martinelli et al. 

2014). These sensors rely on changes in plant tissues that alter their optical properties due to 

modifications of chemical components and structural characteristics (Mahlein 2016). Effects of 

crop PPs generally alter the optical properties of plant tissues often in the pre-symptomatic stage 

of plant disease (Mahlein 2016). A major advantage is that these sensors can be easily made 

operational with minimal retooling and can be incorporated into farming machinery for 

autonomous disease detection and monitoring (Pérez-Ruiz et al. 2015). In recent years infrared 

spectroscopy, specifically in the MIR region, have evolved to become strong contenders for 

commercial applications (Butler et al. 2015; Ord et al. 2016; Yeturu et al. 2016). Their prominence 

in this field in conjunction with further development will help usher in a new wave of sustainable 

science aimed at precision crop protection leading to decreased losses and better crop production. 
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1.7 Vibrational Spectroscopy 

Spectroscopy is based on measuring interaction phenomena between electromagnetic 

radiation and matter. Vibrational spectroscopy relies on measurements of the interaction between 

IR radiation and matter (Figure 1.9).  

 

 

Figure 1.9 The electromagnetic spectrum showing the infrared wavelengths used for vibrational 

spectroscopy and adjacent visible range expanded for comparison (from Butler 2016).  

 

Electromagnetic waves having wave-particle duality, contain electric and magnetic 

components and possess properties of discrete particles (photons) and waves (Andrews 2014; 

Stuart 2004). The physicist Max Planck initially described the relationship between photon energy 

I, wavelength (λ) and frequency (ν) of electromagnetic waves. Planck’s constant h relates 

individual photon energy in the context of wave properties, where λ is inversely proportional to 

the frequency ν (i.e. 1/ λ) of the wave, leading to the simplified equation E = hν. MIR vibrational 

spectroscopy relies on the phenomenon of chemical bond vibration. Vibration in this case refers 
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to molecular energy levels higher than the ground-state (Andrews 2014; Stuart 2004). IR photons 

are absorbed by molecules if the photon energy exactly matches that needed to induce bond 

vibration, or the transition from ground to elevated electronic energy levels (Andrews 2014). 

Energy in the MIR matches vibrations of biochemical functional groups present in biological 

samples; energy transitions of vibrational spectroscopy are shown in Figure 1.10 (Baker et al. 

2014). Shown transitions show that energy changes associated with MIR spectroscopy (red box) 

are lower than energy associated with Raman transitions (green box). The higher laser energy used 

by Raman instruments compared to IR spectrometers, leads to higher energy transitions that cannot 

be measured directly (virtual states) and are exceptionally rare (Butler et al. 2016).  

 

Figure 1.10 Electronic transitions associated with light absorption and scattering measured using 

MIR vibrational spectroscopy (red box) and Raman spectroscopy (green box), respectively 

(adapted from Baker et al. 2014).   

 

Molecular bond vibrations can occur due to different light-matter interactions. These 

interactions include absorption, transmission, and reflectance, which are the fundamental 

interactions pertaining to IR spectroscopy (Andrews 2014). During the Raman phenomenon, light 

is scattered either elastically, or inelastically, where the IR radiation is unaltered and altered 
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respectively. As with all systems, energy conservation holds, meaning the energy of the IR source 

beam is accounted for by these interactions; all energy lost to absorption, transmission, reflectance, 

and scattering is equivalent to the source beam. These fundamental interactions rest on the 

principle that MIR electromagnetic radiation supplies the energy to induce electrons to migrate to 

energy levels higher than the zero-point energy (Baker et al. 2016; Sheppard 2006). Discrete 

energy levels imply that molecules have a discrete set of vibrational modes, depending on the 

bonding configurations present. In general, linear molecules will exhibit 3N – 5, whereas for non-

linear molecules 3N – 6 normal vibrational modes occur; N is the number of atoms in the molecular 

arrangement (Andrews 2014). This discrepancy is because linear molecules have one less 

dimensional axis about which to rotate. One of the simplest examples is water (H2O), which is a 

non-linear tri-atomic system leading to [3(3)-6 = 3] vibrational modes including symmetric and 

asymmetric O-H stretch, as well as the scissoring mode (Figure 1.11) (Andrews 2014; Du et al. 

1993). 

 

 

Figure 1.11 Three vibrational modes of water as determined by the formula 3N-6 for non-

symmetrical molecules. 

 

1.7.1 Infrared Spectroscopy  

Modern IR spectroscopy became an analytical staple with the development of the 

Michelson Interferometer combined with Fourier transformation (FT). When measuring the 

absorption of light by a sample, the IR spectrum of a given material is unique. IR light absorption 

results in a change of the dipole moment of a molecule within the sample (Andrews 2014). As 
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seen in the vibrational modes of simple systems such as water, molecules that show strong 

symmetry or do not possess dipoles will not be easily interrogated using IR spectroscopy. 

However, the abundance of atoms and unique configurations present in even simple organic 

molecules, avoids this limitation (Andrews 2014). According to the Beer-Lambert Law, absorption 

is often linear over the defined measurement range making quantitative analysis possible, where 

absorption is proportionate to concentration (Kocsis et al. 2006; Swinehart 1962). The 

development of the Michelson interferometer and combining it with the FT made substantial 

improvements with regards to spectral acquisition speed and quality (Bracewell and Bracewell 

1986). Vibrational spectroscopy, MIR spectroscopy and Raman spectroscopy, has been used 

increasingly used in the plant and crop sciences (Butler et al. 2015, 2017; Egging et al. 2018; 

Farber and Kurouski 2018; Skolik et al. 2018a; Yeturu et al. 2016).   

 

1.7.1.1 Instrumentation  

Common Fourier transformed IR (FTIR) spectrometers are composed of fundamental 

components including an IR source, interferometer, and detector. These components can be 

combined in various ways for specialized applications. The development of the FTIR spectroscopy 

permits the measurement of all IR wavelengths simultaneously and is a major milestone that has 

made FTIR such a widely used analytical method. The Michelson interferometer at the heart of 

the FTIR spectrometer (Figure 1.12) comprises two mirrors, one fixed and one mobile, as well as 

a beam splitter. IR light hitting the beam-splitter is focused upon both the fixed and mobile mirrors; 

when the two waves reflect towards the beam-splitter, they cancel each other out when at 

equivalent pathlengths. Moving the mirror, and thus changing the pathlength, produces waves of 

different phases resulting in an absorbance intensity as a function of distance and time (speed) of 

the mobile mirror; this is called an interferogram (Roddier and Roddier 1987). Applying the FT 

algorithm to the interferogram generates the wavenumber (frequency) absorbance (intensity) 

spectrum (Malacara and Servin 2016). 
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Figure 1.12 Schematic of a modern Michelson Interferometer used in modern MIR spectrometers. 

 

Light sources for IR spectroscopy typically emit polychromatic light in the region 4000-

400 cm-1. This range of the IR spectrum corresponds to the fundamental vibrations of biological 

molecules within cells and tissues (Baker et al. 2014; Martin et al. 2010). Modern IR sources use 

silicon carbide rods that produce adequate light intensity for IR measurements. Also termed globar 

sources, these are the most commonly used for benchtop instruments. For light sources producing 

more intense IR radiation, quantum cascade lasers or synchrotron radiation are also available. 

Quantum cascade lasers can acquire spectra of superior quality over globar sources (Yeh et al. 

2014). Synchrotron radiation, although more difficult to use in practice, can be several orders of 

magnitude brighter than conventional light sources (Miller and Smith 2005). Ultimately, the spatial 

resolution is constrained by the diffraction limit of the IR light. While high intensity lasers are 
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used to improve spectral quality and spatial resolution thereby providing more detailed molecular 

level information, their application is often reserved for specialized applications (Butler et al. 

2017).   

Detectors measure areas from the macro to the microscopic level, on a point-by-point basis 

or as an array. Macroscopic spectral acquisition can be viewed as one large pixel defined by the 

measurement area and falls into the category of point spectra (Chan and Kazarian 2016). Smaller 

microscopic point spectra can be obtained by using micro-spectroscopy, where spectra are 

acquired from microscopic regions as points, lines, or areas. Point spectra are detected by single 

element detectors. Many point spectra can be combined to form an image of a desired sample 

region, or a focal plane array (FPA) detector can be used to acquire IR signals from various points 

simultaneously (Chan and Kazarian 2016). FPA detectors can form diverse arrays containing 

hundreds of pixels with resolution down to the sub-micrometer range (Baker et al. 2014). Rapid 

acquisition using FPA detectors may in turn reduce the signal-to-noise (SNR) ratio (Baker et al. 

2014). Detectors however place large time demands on high resolution line or area spectral 

acquisition for imaging or mapping applications. Commonly used detectors for macro or micro 

measurements include deuterated triglycine sulphate (DTGS) and mercury cadmium telluride 

(MCT) detectors. For most applications these offer adequate sensitivity, where MCT detectors are 

more sensitive but also operate at low temperatures requiring liquid nitrogen, compared to DTGS 

detectors that work at ambient temperatures (Miller and Smith 2005; Stuart 2004).  

 

1.7.1.2 Sampling Modes 

Three main sampling modes predominate in IR spectroscopy: transmission, transflection, 

and reflectance (Figure 1.13). These sampling modes may be combined with microscopes such 

that a high spatial resolution can be achieved.  
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Figure 1.13 Three main sampling modes of IR spectroscopy; transmission, transflection, and 

ATR.  

 

Transmission spectroscopy measures an IR beam that passes through the sample. Samples 

must therefore be contained on an IR transparent substrate. For this, slides made from barium 

fluoride (BaF2) or calcium fluoride (CaF2) are commonly used (Hahn 2014). In contrast to 

transmission measurements, transflection measures the IR beam after it has passed through the 

sample but is bounced back by an IR reflective material, rather than one which is transparent to IR 

radiation. The effect is that the IR beam essentially passes through the sample twice before 

returning to the detector. Transmission and transflection measurements however have drawbacks 

with regards to sample thickness and preparation. Both techniques are limited by the sample 

thickness for different reasons; transmission measurements are limited because the sample needs 

to be thin enough for the IR beam to pass through the sample. Transflection measurements are 

subject to the electric field standing wave effect, and therefore have a lower and upper thickness 

limit (Filik et al. 2012). Strong IR activity by water is another significant problem with IR 

measurements. Excess water can saturate the detector and make spectral acquisition difficult or 

impossible. As a result, samples must be dehydrated or fixed prior to spectroscopic analysis 

(Faolain et al. 2005). However, fixatives such as paraffin, formalin, or ethanol can significantly 

impact the IR signature, confounding interpretation of spectral data.  

A further sampling mode better able to manage the effects of water and sample thickness 

is attenuated total reflectance (ATR) IR spectroscopy (Kazarian and Chan 2013). ATR-FTIR 

employs an internal reflection element (IRE) that makes direct contact with the sample and 
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precisely controls the measurement depth of the IR beam into the sample. This sampling mode 

drastically reduces the limitations of water content and sample thickness. Conventional ATR-FTIR 

is performed in macro mode without the use of microscopic optics. The IRE is a highly refractive 

material for which diamond, germanium, or zinc selenide are routinely used. These materials, 

along with the defined critical angle of the IR beam to the surface, ensure that the incident radiation 

is totally internally reflected (Kazarian and Chan 2013). Total internal reflectance produces an 

evanescent wave at the IRE-sample interface, where IR absorption by the sample attenuates the IR 

beam producing an absorbance spectrum. Because various materials are available for the IRE, 

depth of penetration of the beam into the sample may be a consideration if the sample is sufficiently 

thin, in which case an IR reflective substrate may be appropriate. The depth of penetration depends 

on the angle of incidence of the IR beam, as well as the refractive indices of sample and IRE 

respectively (Chan and Kazarian 2016). Despite the described differences, all sampling modes rely 

on chemical bond vibrations that alter the IR beam energy. 

 

1.7.2 Raman Spectroscopy 

Raman spectroscopy is a complementary method to IR spectroscopy sharing many 

principles. Named after C.V. Raman and K.S. Krishnan (1928), Raman spectroscopy utilizes a 

change in light energy after scattering referred to as inelastic light scattering. Although most light 

is elastically scattered, also termed Rayleigh scattering, Raman scattering in contrast occurs very 

minimally, where approximately 1 out of 108 photons are Raman scattered (Butler et al. 2016). 

These scattering phenomena are shown in Figure 1.14. Theoretically, the incident IR radiation can 

be excited (increase in energy), also known as Stokes scattering, or lose energy to the material 

leading to anti-Stokes scattering. Stokes-Raman is measured as the lower probability event of anti-

Stokes scattering makes it difficult to acquire adequate signal strength, although there are ways of 

measuring anti-Stokes scattering using specialized approaches described elsewhere (Butler et al. 

2016). Raman measures the phenomenon of molecular polarizability; this refers to the distortion 

of electron density around a molecule due to incoming energy (Heller et al. 1982). This change in 

the electron density distribution is considered a vibration.  
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Figure 1.14 Scattering phenomena exploited by Raman spectroscopy showing Rayleigh, Anti-

Stokes Raman, and Stokes Raman scattering, as well as the competing effect of fluorescence (from 

Butler et al. 2016). 

 

In contrast to molecules having a dipole, polarizable molecules may or may not display 

changes in their dipole moment leading to different activities with regards to IR absorption and 

Raman scattering. As with IR spectroscopy, most of the instrumentation applications translate to 

Raman spectroscopy as well, with moderate differences in instrumentation (Butler et al. 2016; 

Baker et al. 2014; Martin et al. 2010).  

 

1.7.3 Spectral Data Analysis 

A spectrum contains an abundance of biochemical information by which to identify and 

discriminate biological samples. Spectral data is highly complex containing potentially hundreds 

of variables. High dimensionality of spectral datasets means that sophisticated analysis methods 

are often required to extract the information of interest. Chemometrics encompasses the data 

analysis methods used to handle IR spectral datasets (Morais et al. 2017; Trevisan et al. 2012). 

Many approaches for data handling and processing exist and depend on the experimental design; 

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwizptjcrs7gAhW7HTQIHcbYDTYQjRx6BAgBEAU&url=https://www.nature.com/articles/nprot.2016.036&psig=AOvVaw0sze8Y8LEHRvDb-Cy7BeJy&ust=1550891370166041
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nevertheless, several aspects are common to most approaches. Generally, raw spectra undergo 

baseline correction and normalization, together termed pre-processing account for confounding 

factors during spectral acquisition (Martin et al. 2010). Following pre-processing, spectra undergo 

either relatively simple analysis such as direct comparisons, univariate analysis, or characterization 

of spectral peaks. If samples are very similar or the natural sample heterogeneity is more 

pronounced than potentially subtle or masked differences that are class dependent, multivariate 

analysis may be employed. In the biological context, multivariate analysis is often necessary due 

to the biological complexity of the samples and the potentially underlying effects that require more 

advanced computational analysis.  

 

1.7.3.1 Pre-processing  

Spectral data pre-processing involves range selection, baseline correction, and 

normalization to account for confounding factors associated with biological materials. An IR 

spectrum contains the biological information of interest, which is influenced by differences in 

sample replicates, substrate, environmental interferences, including instrument and atmospheric 

differences (Morais et al. 2017; Trevisan et al. 2012). Such confounding factors must be accounted 

for before spectra can be compared to one another. Fundamental pre-processing steps including 

baseline correction and normalization approaches are introduced, but further reading is encouraged 

for a more detailed explanation.  

Baseline correction is applied to account for spectral artefacts that need to be corrected for 

prior to subsequent analysis. Effects influencing spectral baselines for IR compared to Raman 

differ and generally require different baseline corrections respectively. IR spectra are affected 

mainly by the oscillating baseline that occurs due to light scattering (Bhargava et al. 1998). 

Differences in light scattering make it unreliable to compare IR spectra without baseline 

correction. In comparison, Raman spectra are affected by variable baselines caused by the 

underlying substrate and autofluorescence (Butler et al. 2015). For example, sloped Raman 

baselines are indicative of fluorescence present specifically in plant tissues (Butler et al. 2015, 

2016). To correct for baseline aberrations, differentiation and rubber-band-like correction are 

almost exclusively used for IR spectra, while polynomial baseline correction is preferred for 

Raman spectra (Baker et al. 2014; Butler et al. 2016).  

Polynomial baseline correction fits an nth-order polynomial to the spectrum, which is 
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subtracted from the original Raman spectrum (Leger and Ryder 2006). Piecewise polynomial 

fitting has recently been proposed as an improvement for determining the polynomial degree 

needed for appropriate baseline correction (Hu et al. 2018). A calculus-based approach to spectral 

baseline correction is differentiation; this changes the fundamental shape of the original spectrum 

to either the first or second derivative spectra (Martin et al. 2010). First order differentiation results 

in spectral peaks to become zero and exaggerating more subtle spectral features often present in 

IR spectra (Baker et al. 2014). Second order differentiation relates to the curvature of the original 

spectral function but similarly to first-order differentiation accentuates spectral features potentially 

not evident in the original IR spectrum (Baker et al. 2014). Due to the introduction of peaks through 

differentiation, the SNR may also decrease, making noisy Raman spectra incompatible with this 

pre-processing step as the number of peaks resulting from differentiation can increase substantially 

(Martin et al. 2010). Rubber-band-like correction uses polygonal lines to find areas within the 

spectrum that are convex and to be subtracted from the baseline (Trevisan et al. 2012). 

Following baseline correction, spectra are normalized to account for sample thickness and 

differences in light absorption and scattering. Inevitable differences in sample thickness or contact 

pressure in the case of ATR-FTIR, can potentially lead to slight differences in light absorption and 

scattering. Again, various normalization steps are available. Spectra may be normalized to a 

consistent spectral feature such as a consistent peak as demonstrated by using the amide I or amide 

II peak present in many biological materials (Baker et al. 2014; Martin et al. 2010). Common pre-

processing steps for IR spectra include baseline correction and normalization (Figure 1.15). Rather 

than normalizing across the whole wavenumber range, peak normalization uses a single peak to 

achieve this (Martin et al. 2010). When it is unclear or when consistent peaks are unavailable, 

normalization across the entire wavenumber range used may be favorable. Here approaches 

including max-min and vector normalization are effective. Min-max normalization is simple, 

setting the minimum intensity of the spectrum, or specific region to zero and then scaling the 

maximum intensity to one (Lash 2012). Vector normalization works by finding the square root of 

the average spectral intensity squared, leading to spectra where the sum of squares of all intensities 

equals one (Lash 2012).  
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Figure 1.15 Pre-processing steps for IR spectra showing several approaches to baseline correction 

and normalization (from Baker et al. 2014). 

 

1.7.3.2 Multivariate Analysis 

Multivariate analysis is an essential part of advanced spectroscopic studies and is required 

for obtaining biologically relevant information. This is because differences between biological 

samples can be very distinct or extremely subtle. Moreover, when differences are plenty but are 

distributed across all samples, the effects may mask more indistinguishable differences between 

specific sample classes of interest. In order to explore the differences detected by vibrational 

spectroscopy, namely those present across the whole dataset, or those specific to a sample class, 

multivariate analysis is compulsory. Multivariate analysis is therefore a powerful tool to explore 

spectral datasets for biological applications (Kelly et al. 2011; Morais et al. 2017; Trevisan et al 

2012).  

 

 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4480339_nihms-700198-f0004.jpg
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1.7.3.2.1 Principal Component Analysis  

Principal component analysis (PCA) has been one of the most effective techniques for the 

analysis of spectrochemical data. As a staple multivariate approach, PCA explains the variance 

within the highly dimensional original spectral dataset. Because it is not practical to compare all 

variables of the original spectrum, PCA reduces the dimensionally of the original spectrum, while 

retaining almost all the dataset variance (Jolliffe 2011; Trevisan et al. 2012). This simplifies the 

comparative variance between spectra in relation to the original wavenumbers. Through 

orthogonal transformation of spectra, PCA forms new axes, principal components (PCs) that best 

describe the dataset variance also known as the covariance (Jolliffe 2011). Reducing the complex 

absorbance-wavenumber spectrum into a single point within the newly generated n-dimensional 

discriminant space, allows for data visualization and pattern recognition (Trevisan et al. 2012). 

Part of this analysis strategy generates the covariance matrix, which describes the original data as 

scores (eigenvalues) along the individual PCs (eigenvectors). Each PC is an eigenvector offering 

a unique visualization of the data within the n-dimensional space. Scores provide a numerical 

variance value along a given PC, where each PC is orthogonal to one another and explains less 

variance than the previous PC (Jolliffe 2011). Figure 1.16 shows a 3-dimensional PCA space with 

orthogonal axes. These 3 PCs are effective at discriminating spectra of healthy corn (green) from 

infected corn (blue and red), into distinct clusters. This data example was generated using a 

handheld Raman device (Farber and Kurouski 2018).  

 

 

Figure 1.16 PCA illustrated on a set of infected corn (blue/red) across their control (green) 

showing the first three orthogonal PCs in a 3-dimensional space (from Farber and Kurouski 2018).   
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As an unsupervised method, PCA provides an overview of general dataset variance where 

class labels do not influence the analysis. Once applied the overall dataset is captured and spectra 

are explained by variance scores along the generated PCs. This permits further computational 

analysis while greatly reducing the dimensionality of the original data. Typically, the number of 

PCs included in subsequent analysis is chosen so that 99% or more of the dataset variance is 

captured (Kelly et al. 2011; Martin et al. 2010; Trevisan et al. 2012) While this is usually achieved 

by including the first 10 PCs, this should be examined prior to further analysis steps. To visualize 

PCA results, either scores plots and or loadings plots are used. PCA allows the variance within the 

dataset to be visualized in the form of either scatter or loadings plots. Simply put PCs are depicted 

in two or three dimensions, where point spectra that are closely clustered are more similar than 

separated ones; in other words, similar scores suggest homogeneity, while dissimilar scores 

represent heterogeneity (Martin et al. 2010).  

 

1.7.3.2.2 Linear Discriminant Analysis  

In contrast to PCA, LDA is a supervised method and extracts class specific differences. If 

materials are similar and the differences between them is subtle or masked by natural heterogeneity 

between samples, supervised methods such as LDA can assist in discerning these differences. 

Unlike PCA, which does not account for class labels, LDA in contrast minimizes intra-class 

differences and maximizes differences between classes, effectively emphasizing class specific 

separation (Kelly et al. 2011; Trevisan et al. 2012). To improve the effectiveness of LDA for 

investigating class specific differences, PCA is coupled with LDA to form PCA-LDA. Figure 1.17 

shows PCA-LDA, where better class specific separation is observed when PCA is combined with 

LDA. Using PCs as input for LDA reduces the number of variables and prevents overfitting 

thereby improving the class specific separation. As previously discussed in relation to PCA (see 

Section 1.7.3.2.1), an adequate selection of PCs should be introduced into LDA, where ideally the 

number of PCs included contain 99% of dataset variance or more. Not including enough PCs can 

result in a loss of variance and thus important dataset information. Including excess PCs may lead 

to the inclusion of noise and lead to overfitting (Trevisan et al. 2012).  
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Figure 1.17 PCA-LDA discriminating guard cells (black) and epidermal cells (white) under 

Calcium sufficient and deficient conditions; 2-dimensional scores plot is shown (from Butler et al. 

2017).   

 

1.7.3.2.3 Classification Algorithms 

Classification algorithms are useful to determine the diagnostic potential of spectral 

information. For decision making purposes relying on spectral data, classification algorithms 

provide quantitative output to assess the performance of the approach. Specifically identifying 

normal form abnormal states such as healthy from diseased tissues, cells, and fluids has been 

achieved, often with high accuracy in many biological systems. Table 1.2 shows classification 

results for identifying healthy and diseased corn samples autonomously from IR spectra (see also 

Figure 1.16). Under certain circumstances it is necessary to derive sensitivity and specificity values 

to determine the appropriateness of these methods (Gajjar et al. 2013; Morais et al. 2017). This is 

particularly true in the field of biomedicine, where samples are derived from, and influence, human 

subjects.  
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Table 1.2 Classification results for autonomous decision-making to detect disease on corn using 

IR spectra (from Farber and Kurouski 2018). 

Class Correct Classification (%) 

Healthy 100 

Diplodia 100 

Fusarium 100 

 

 

There are many classification models available for evaluation and it is noteworthy that 

approaches to spectral data analysis have not been standardized making it potentially difficult to 

compare methodologies. Nevertheless, the potential for automated systems, combining spectral 

data with classification algorithms for autonomous decision-making, to outperform subjective 

human evaluation has been demonstrated (Gajjar et al. 2013). Although there are numerous 

classification models, among the most commonly used classifiers are linear classifiers, Bayesian 

networks, artificial neural network (ANN), support vector machine (SVM), hierarchical cluster 

analysis (HCA), genetic algorithms (GA), and linear discriminant classifier (LDC) (Trevisan et al. 

2012, 2014).  

The primary aim of such models is for machine learning, where a computer effectively 

performs a specified task without explicit instructions. Attention should be given to adequate 

training, testing, and validation of the classification model (Morais et al. 2017; Trevisan et al. 

2012). Further influencing model selection and data analysis strategy is the sample size, where 

both biological replicates as well as the number of spectra collected from each sample need to be 

considered (Beleites et al. 2008; Trevisan et al. 2014). Complementary to PCA and LDA, which 

have been very effective for the analysis of patterns in spectral data, is the LDC; this approach 

benefits from little parameter optimization by fitting a classification model to the dataset (Baker 

et al. 2014; Trevisan et al. 2012). A further yet more complicated classification model is SVM, 

which has also been used extensively for spectral datasets in the context of biological systems. 

Concisely, SVM generates a ‘hyperplane’, which optimally separates ‘support vectors’ that 

represent sections of the dataset (Morais et al. 2017). This model can be used for linear and non-

linear datasets and can be used if less sophisticated models such as LDC perform poorly or overfit 

the model leading to failed fitting of additional data or future observations. While possibly superior 
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under certain circumstances, SVM poses a higher computational burden through more involved 

parameter selection. Regardless of the data model used, if it can be trained, tested, and validated 

then it may be incorporated into machine learning systems that rely on spectral input.  

 

1.7.4 Biospectroscopy in Plant Research  

The application of vibrational spectroscopy in biology is extensive and includes 

examination of plant materials for compound detection and quantification to in vivo analysis of 

dynamic processes (Skolik et al 2018b). However, to date, plant-based applications have not come 

close to the impressive strides made by the biomedical community in the quest to conquer disease 

through detection, quantification, and the development of practical real-world solutions to clinical 

management (Martin 2018). Yet for plant sciences, the versatile methods offered by vibrational 

biospectroscopy, specifically for the investigation of plant spectropathology, have not been fully 

taken advantage of. This leaves a large opportunity for knowledge exchange between biomedical 

and plant sciences with shared goals concerning disease research. Further, the biospectroscopy 

approach fits well with aspects of IPM and precision crop protection. To this end, more progress 

has been made in recent years as the value of plant-based biospectroscopy is becoming realized 

(see Chapter 2) (Butler et al. 2015, 2017; Egging et al. 2018; Farber and Kurouski 2018; Skolik et 

al. 2018a; Yeturu et al. 2016).  

 

1.8 PhD Project Aims and Objectives  

The principal aim of this PhD research is the advancement of MIR spectroscopy as a 

bioanalytical sensor technology for application in the plant and crop sciences. More specifically, 

the general appropriateness of IR spectroscopy as a candidate sustainable, non-destructive, fast, 

and precise tool for in vivo analysis of crop plants pre and post-harvest will be assessed. Whether 

the in vivo analysis capability can be used for baseline characterization of healthy crops and or the 

detection of PPs, especially at early stages will be a primary focus.  

 Initially the potential of biospectroscopy for general use in the plant and crop sciences will 

be evaluated. This will include a review of past and current applications, as well as challenges and 

limitations that need to be overcome to move biospectroscopy further into the agricultural sectors 

(Chapter 2). Recommendations are made on practical steps to using biospectroscopy as an applied 

sensor, by eliminating or minimizing sample preparation and using portable equipment thereby 
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testing if analysis of intact plants and crops is routinely possible. Spectro-chemical alterations 

correlating with known biological processes occurring in primarily epidermal tissue layers will be 

investigated, which are the primary IR targets of intact crops.  

Limited research on intact plant systems to date using biospectroscopy, presents the 

opportunity for spectral baseline characterization for healthy development (Chapter 3) and disease 

research in the model system S. lycopersicum, of which plants and fruit were chosen as the primary 

model system for this PhD research. Monitoring and identification of various stages of healthy 

growth and development using IR spectroscopy affords the initial steps towards analysis of plant-

pathogen systems found in realistic situations. 

Early detection of plant-pathogen interactions at the pre-symptomatic stage is a major objective 

to maximize the use of current, or development of alternative, crop protection measures. These 

objectives will be investigated in pre and post-harvest scenarios on plants and fruit to address 

application potential at various points along the food production/supply chains. Damage as a pre-

symptomatic indicator, and inducer of microbial infection, at the post-harvest stage will be used 

as a case study to determine the feasibility of pathogen detection in marketable ripe tomato crops 

(Chapter 4). By demonstrating the capacity of pathogen detection indirectly (pre-symptomatic) 

and directly (symptomatic) through the generation of spectral biomarkers, tentative disease 

specificity will be established for individual pathogens. Automatic pathogen detection will be 

evaluated using autonomous machine learning algorithms, which may in conjunction with the 

retooling of portable IR instruments, be readily adapted as prototype field sensors.  

Fast acting microscopic pathogens that have the potential to rapidly destroy large amounts of 

crops are specifically detrimental to pest and pathogen induced crop loss. These pathogens are 

typically invisible until apparent through visible symptomatic, at which point adverse effects are 

certain; therefore, the chosen model organism tomato will be studied during its interaction with 

Botrytis cinerea, a model fungus at early and late stages of infection (Chapter 5).  

Effects of pathogens on plant growth and development and thus crop yield is a concern for 

farmers and growers. IR spectroscopy will therefore be applied to the qualitative and quantitative 

assessment of disease associated spectral alterations in their biological context. 
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Abstract 

Plants as our most renewable natural resource are indispensable within earth's biosphere, 

especially for food security. Providing food security in a modern world requires an ever-increasing 

understanding of how plants, and their products, respond to changes in the environment. In this 

respect, a combination of physical and chemical analytical methods can be used to study the 

structure and function of plants at the whole-plant, organ, tissue, cellular, and biochemical levels. 

Vibrational spectroscopy in biology, sometimes known as biospectroscopy, encompasses a 

number of techniques, among them mid-infrared and Raman spectroscopy. These techniques are 

well-established label-free, non-destructive, and environmentally friendly analytical methods that 

generate a spectral “signature” of samples using mid-infrared radiation. The resultant wavenumber 

spectrum containing hundreds of variables as unique as a biochemical “fingerprint” represents the 

biomolecules (proteins, lipids, carbohydrates, nucleic acids) present within a sample, which may 

serve as spectral “biomarkers” for the discrimination of distinct as well as closely related 

biomaterials, for various applications. In plants, biospectroscopy has been used to characterize 

surface structures in intact plant tissues such as leaves and fruit, plant cuticles, and cell walls, as 

well as to study the effects of stress on plant species. Not only does this allow the effective 

discrimination and “chemo-identification” of different plant structures, varieties, and cultivars, it 

also permits chemical profiling of plant tissues for physiological applications such as plant health 

monitoring and disease detection. Technical advancements are starting to overcome the major 

limitations of biospectroscopy such as detection sensitivity, penetration/imaging depth, and 

computational analysis speed, expanding the application of biospectroscopy in the plant and crop 

sciences. Vibrational spectra thereby serve as a basis for localization, identification, quantification 

of key compounds within plants, as well as to track dynamic processes for molecular-level 

analytics and diagnostics. This provides development potential as sensors in automatic decision-

making platforms for areas including precision farming and the food production/supply chain. In 

this chapter we will discuss the application of biospectroscopy to study plant and crop biology and 

consider the potential for advancements to make biospectroscopy a more prominent technology 

for fundamental plant research and applied crop science as part of solutions to agricultural 

challenges both now and in the future.  
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2.1 Introduction 

Plants as primary producers constitute one of the most important natural resources on earth, 

contributing to food security, medicine, energy, and providing a source of a tremendous amount 

of materials and compounds. Yet successful cultivation of plants and distribution of their products, 

specifically for food security, remains a key challenge in the 21st century. While malnutrition 

continues to plague up to one in three humans (IFPRI 2017), environmental and social issues, such 

as climate change, declining natural resources, harmful commercial chemicals, and population 

growth, confound food production. Current models of population rise predict the global total to 

reach between approximately 9 and 12 billion people by the end of the century (Gerland et al. 

2014). The predicted global population rise merits increases between 100% and 110% for crop 

production by the year 2050, prompting an increase in agricultural output by approximately 60%–

110% by the same year (Ray et al. 2013). However, production of at least several major crop 

species, including maize, corn, soybeans, potatoes, is not increasing as necessary to meet predicted 

future demands, and it is likely that global food demand will not be met throughout this century, 

especially in developing nations (Table 2.1) (Godfray et al. 2010; Mahlein 2016; Ray et al. 2013). 

Besides direct economic value, crop losses additionally contribute to subsequent losses for, or 

impacts on, consumers, health systems, global resources, and the environment (Savary et al. 2012). 

Not only does the insufficient production of staple crops contribute to the problem of attaining 

food security, waste is also a major factor throughout the food production and food supply chains 

(Godfray et al. 2010). Pre- and postharvest crop loss contributes to the 40% of all food lost to 

waste in both developed and developing nations (Godfray et al. 2010). This level of loss and waste 

throughout the food system seems removed from a precision and sustainable agricultural 

framework. 
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Table 2.1 Predicted annual crop production and deficits until 2050 in major crops of Maize, 

Rice, Wheat, and Soybean (adapted from Ray et al. 2013). 

Crop Estimated Annual Production 

(%) 

Estimated Annual Deficit  

(%) 

Maize 67 33 

Rice 42 58 

Wheat 38 62 

Soybean 55 45 

 

 

Plant disease is one of the major threats to food security and crop cultivation. Unfavorable 

environmental conditions, pests, and pathogens can destroy whole crops or reduce the quality of 

plant products in both pre- and postharvest situations (Strange and Scott 2005). Nonbiological 

factors negatively affecting plants and crops induce abiotic stress, while biological threats illicit 

biotic stress responses, which if overcome lead to plant disease (Bostock et al. 2014). Biotic and 

abiotic stresses, alone or in combination, negatively influence plant physiology, harming growth, 

and development, leading to reduced crop yields (Suzuki et al. 2014). Especially stress 

combinations can have synergistic effects, leading to more crop loss than the sum of individual 

stresses (Figure 2.1) (Suzuki et al. 2014). This is especially true with combinations of abiotic 

stresses and abiotic–biotic stress combinations (Suzuki et al. 2014). Additionally, reduced crop 

yields (losses) due to pests and pathogens remain significant determinants in effectively increasing 

horticultural production (Oerke and Dehne 2004). Pest and pathogen induced disease can reduce 

global annual yield by 40% for major agricultural crops (Oerke 2006), while similarly, postharvest, 

pathogens can infect produce during transport, storage, and household consumption leading to 

regular losses over 35% (Godfray et al. 2010; Oerke 2006). Such levels of crop loss and food waste 

suggest that current methods of crop protection and postharvest handling of horticultural goods 

are still inadequate under a modern precision farming framework. Part of the reason is the lack of 

commercial analytical and diagnostic tools to detect threats to plants and crops throughout the food 

production and food supply chains (Mahlein 2016). 
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Figure 2.1 Stress interaction matrix showing stress combinations (abiotic/biotic) including 

synergistic (positive) and antagonistic (negative) interactions among others (adapted from Suzuki, 

et al. 2014). 

 

The complexity of plants and their interactions with the environment, including biotic and 

abiotic factors, are therefore prominent research areas requiring analytical and diagnostic tools for 

fundamental plant biology and crop science, in efforts to develop solutions to horticultural losses. 

An increased physiological and molecular-level understanding of how plants respond to changes 

in the environment (biotic and abiotic factors) and how these conditions influence the composition 

of valuable plant substances for human use would therefore be beneficial for making 

improvements in horticulture. For this, a combination of physical and chemical analytical methods 

is available to study static and dynamic structure–function relationships of plants at the whole-

plant, organ, tissue, cellular, and biochemical level. These include both destructive and 

nondestructive methods, such as nucleic acid-based or traditional molecular techniques that are 

destructive, as well as proximal and distal optical sensors such as spectroscopy, remote sensing, 
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and volatile organic compound (VOC) analysis, which are possible nondestructively (Martinelli et 

al. 2015). Combined, these sensor-based methods share common goals aimed at the following 

priorities: plant health monitoring and pre-symptomatic disease detection; identification of 

different plant varieties and cultivars including plants naturally resistant to stress for 

genotyping/phenotyping and taxonomic classification purposes; and increasing mechanistic 

insight into plant physiology and disease (Mahlein 2016; Martinelli et al. 2015). Nondestructive 

optical sensor technologies have gained popularity due to the possibility to study plants in their 

natural context, while gaining biologically important information relevant to fundamental plant 

research and applied crop science (Mahlein 2016). Many of these technologies can therefore 

contribute simultaneously to laboratory based as well as industry applied efforts toward crop 

protection. To this end, various nondestructive optical sensors have shown promise, in the context 

of crop loss and food waste, by contributing knowledge to both fundamental plant research and 

applied crop sciences (Mahlein 2016; Martinelli et al. 2015; Sankaran et al. 2010). 

Mid-infrared (MIR) vibrational spectroscopy of biological materials has developed into a 

versatile tool for fundamental plant research, with development potential as a sensor for applied 

crop sciences. Vibrational spectroscopy in biology known as biospectroscopy encompasses well- 

established label-free, nondestructive, and environmentally friendly analytical methods that 

generate wavenumber spectra of samples using MIR radiation. A wavenumber spectrum contains 

hundreds of variables as unique as a biochemical “fingerprint,” and reflects the biomolecules 

(proteins, lipids, carbohydrates, and nucleic acids) present within a sample (Baker et al. 2014). 

Changes in specific wavenumber variables of the IR spectrum may serve as spectral “biomarkers” 

for the discrimination of distinct as well as closely related biomaterials, for various applications 

(Martin et al. 2010). Among the most common biospectroscopy methods are MIR and Raman 

spectroscopy. General applications of biospectroscopy include the study of biomolecules in vivo, 

cell variability and identification of particular phenotypes, and measuring biochemical processes 

on the cellular and subcellular level both spatially and temporally (Quaroni and Zlateva 2011). 

Measuring concentration gradients, the orientation of biomolecules in living cells, distinguishing 

cellular phenotypes, detection of specific metabolites or compounds, as well as measuring dynamic 

changes in biomolecule abundance and distribution are routine applications of biospectroscopy 

(Martin et al. 2010; Quaroni and Zlateva 2011). Plant and crop science specific application 

highlights of biospectroscopy include the characterization of many valuable plant substances such 
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as primary and secondary metabolites; investigation of plant surface structures including external 

barriers like the cell wall and cuticle; chemo-identification plant varieties and cultivars; as well as 

measuring effects of major abiotic and biotic stress conditions (Heredia-Guerrero  et al. 2014; 

Largo-Gosens et al. 2014; Ord  et al. 2016; Schulz and Baranska 2007; Zimmermann et al. 2015). 

This includes studies on various plant parts including samples from leaves, fruit, roots, stems, and 

pollen, highlighting its applicability to various plant systems (Fu et al., 2016; Ribeiro da Luz, 2006; 

Stewart et al. 1997; White et al. 2016; Zimmermann et al. 2015). Although not widely used to date, 

the generally nondestructive and reagent free sample preparation toward biospectroscopy analyses 

potentially facilitate a wide range of applications that have been underexplored. In order to develop 

biospectroscopy further, specifically toward being an applied sensor for industry and laboratory 

alike, more non-destructive in vivo investigations using biospectroscopy are needed (Butler et al. 

2015). While the number of in vivo studies of biospectroscopy is to date limited primarily by 

technical limitations, sufficient proof of concept exists to warrant further evaluation for intact plant 

and crop analysis without destructive sample preparation as a prerequisite. To this end, recent 

developments show that spectral alterations of measurements taken in vivo within intact plants and 

crops can be physiologically representative (Butler et al. 2015; Fu et al. 2016; Trebolazabala et al. 

2013). Further, semi- and fully portable MIR and Raman spectrometers are available for potential 

field use. Several recent studies have investigated semi-portable and miniature biospectroscopy 

equipment, primarily Raman, for in vivo measurements in tomato fruit (Fu et al. 2016; 

Trebolazabala et al. 2013). Applications of biospectroscopy to date in the laboratory and industry, 

combined with recent developments and the increasing availability of portable biospectroscopy 

systems, suggest that these methods may become rapidly adapted to serve as sensors for field 

applications in various pre- and post-harvest scenarios. Because biospectroscopy is inherently 

inter-disciplinary, research collaborations, knowledge transfer, together with technical 

advancements and the evaluation of fully portable biospectroscopy equipment, will contribute to 

biospectroscopy sensor development, facilitating better crop protection and reducing food waste 

in future food production/supply. Herein, we summarize the main concepts of biospectroscopy 

including sample preparation, spectral acquisition, and data analysis of MIR and Raman 

spectroscopy. Biospectroscopy applications to valuable plant substances, select surface structures 

such as the cuticle and cell wall, identification of varieties and cultivars, as well as plant–

environment interactions, including abiotic and biotic stress, are reviewed. Analysis of crop plants, 
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intact specimens (in vivo or in situ), as well as the use of more portable systems is highlighted.  

We also outline select challenges and limitations specifically relevant to the transition from lab 

instrument to field sensor. Further, we briefly suggest novel directions for biospectroscopy in plant 

and crop sciences. 

 

2.2 Biospectroscopy 

Biospectroscopy refers to a collection of techniques including, but not limited to, MIR and 

Raman spectroscopy for applications in biology. These techniques rely on the interaction between 

infrared (IR) radiation and the functional groups present in biomolecules, to generate a unique IR 

spectrum over the range of wavelengths from 2.5 to 25 μm, converted to energy units in 

wavenumbers (4000–400cm-1). Energy in the IR range causes molecular excitation, vibration, and 

rotation of molecules within a biological sample. Functional groups present in biomolecules, such 

as proteins, lipids, carbohydrates, and nucleic acids, characteristically interact with IR radiation 

(Baker et al. 2014). Biochemically complex samples such as those from biological materials 

therefore produce information rich and highly characteristic spectra for multicomponent analysis 

(Moros et al. 2010). The highly characteristic and unique IR spectra also referred to as samples 

biological “fingerprint” spectrum or IR “signature” are exceptionally useful to distinguish between 

remarkably similar samples based on minute biochemical alterations. IR spectra therefore provide 

the basis for classification and characterization, as well as tracking both large and small 

biochemical changes over time (Quaroni and Zlateva 2011). Distinct light–matter interactions are 

measured by MIR and Raman spectroscopy over the same energy range (4000–400 cm-1), 

producing unique but complementary information, and when used in combination provide a more 

detailed analysis of the sample. Various sample modes allow the probing of different sample areas 

covering spatial resolution from the nanometer scale up to spectra representing areas covering 

square millimeters (Kazarian and Chan 2013), which permits the interrogation of biological 

systems at various levels of biological organization.  

 

2.2.1 Mid-Infrared Spectroscopy 

MIR spectroscopy relies on light absorption. Incident IR light upon a sample causes 

biochemical bonds to vibrate. Vibrational modes of molecule thereby cause specific amounts of 

energy from the incident IR beam to be absorbed, reducing the intensity of the subsequently 
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detected IR beam. The difference in energy between incident and detected IR radiation produces 

a complex interferogram, which is deconvoluted using a FT operator (Stuart 2004). This separates 

the individual wavelengths of the measured IR range into component wavelengths, producing a 

wavenumber spectrum. MIR spectroscopy, in contrast to Raman spectroscopy, relies on a dipole 

moment present only in diatomic or more complex molecules, which is often not a limitation within 

biological materials.  

 

2.2.2 Raman Spectroscopy 

Raman spectroscopy relies on molecular excitation by way of polarization and subsequent 

light scattering. Incident photons from the IR laser source interact with a molecular configuration 

resulting in elastic or inelastic light scattering. Elastic light scattering, known as Rayleigh 

scattering, predominates resulting in no net energy transfer between incident IR radiation and 

sample molecules, providing no information and therefore filtered out (Smith and Dent 2013). 

Alternatively, a net energy decreases or increase in the scattered IR light results in inelastic light 

scattering known as Stokes Raman and anti-Stokes Raman scattering, respectively (Andrews 

2014). Fluorescence can interfere with the detector signal due to its occurrence at similar energy 

transitions as those detected by Raman spectroscopy. Raman scattering measured over the same 

energy range as MIR spectroscopy (4000–400 cm-1) but each measuring distinct light–matter 

interaction phenomena, makes these two methods complementary. Various forms of Raman 

spectroscopy make use of these phenomena in different ways, expanding the application potential 

of these techniques to biological analysis (Butler et al. 2016).  

For a detailed account of MIR and Raman spectroscopy theory, which is out of the context 

of this discussion, more information can be found in the literature (Andrews 2014; Baker et al. 

2016a; Smith and Dent 2013; Stuart 2004). Because of its versatility, it is important to make the 

appropriate choices at each stage of the biospectroscopy process to meet the intended research 

aims and objectives. To aid experimental design and provide an overview, the biospectroscopy 

method may be divided into three component parts including sample preparation, spectral 

acquisition, and computational analysis (Kelly et al. 2011b; Trevisan et al. 2012). A number of 

protocols have become available for new users with guidance on sample preparation, spectral 

acquisition, and computational analysis for a number of samples. These protocols exist for both 
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MIR and Raman spectral analysis of biological materials (Baker et al. 2014; Butler et al. 2016; 

Gierlinger et al. 2012).  

 

2.2.3 Sample Preparation 

Vibrational spectroscopy can measure virtually any type of organic material; however, 

sample preparation may considerably alter the vibrational spectrum compared to the sample in its 

native state. Many types of sample preparation are employed within the plant laboratory including 

physical and or chemical modifications of the sample. Concerning plants, common sample 

preparation may include cutting, drying, grinding, homogenization, fixation, fractionation, 

purification, etc., most of which influence the IR spectrum to some degree. Benefits of sample 

preparation include the ability to take complex biological systems including plant cells and tissues 

and separate them into less complex constituents for a more precise characterization of individual 

substances. Several studies have investigated select effects of sample preparation on IR spectra 

under specific conditions (Bureau et al. 2012; Zohdi et al. 2015). Nevertheless, extensive sample 

preparation consumes time and resources while altering the native architecture of biological 

tissues, which may limit or remove any physiological context of the resultant data, and thus there 

is a general desire to perform analysis in vivo where possible. Despite the ability to measure a vast 

array of sample types, the use of biospectroscopy for in vivo measurements has been surprisingly 

limited, especially in the plant and crop sciences. Nonetheless, biospectroscopy is being applied 

to an increasing amount of in vivo systems, and a number of studies have demonstrated that in vivo 

analysis of whole cells and tissues is readily achieved (Butler et al. 2015; Fu et al. 2016; Heraud 

et al.  2005; Trebolazabala et al. 2013). These studies demonstrate that analysis of both processed 

and native samples is possible, and while different types of sample preparation precede most 

biospectroscopy studies to date, the continued development of in vivo analysis is favorable for the 

nondestructive measurements of physiologically active plants and crops (Butler et al. 2015). 

Additionally, the analysis of plant cells and tissues in vivo requires practically no sample 

preparation, while having the benefit of being physiologically representative under native 

conditions, which contributes to faster spectral acquisition, increasing the relevance for future 

industry applications.  
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2.2.4 Spectral Acquisition 

Instrument choices influence the area of interrogation, sensitivity, spatial resolution, and 

acquisition speed of measurements in biospectroscopy. Three main sampling modes are available 

for biospectroscopy; these are transmission, reflectance, and attenuated total reflection (ATR) 

spectroscopy (Smith 2011). These sampling modes are applicable to both MIR and Raman 

spectroscopy. For MIR in transmission mode, light passes through the sample and, due to the 

energy of MIR, is generally limited to thicknesses up to 20 μm (Smith 2011). Furthermore, because 

most intact biological samples are thicker than this limit, sample preparation is necessary, although 

this has beneficial effects on the quality of resultant spectra (Butler et al. 2017). Thus, for in vivo 

analysis, transmission mode may be limited to specific samples suitable to this acquisition mode. 

In contrast, Raman transmission spectroscopy has a sample thickness capacity in the range of 30 

mm, expanding this sampling mode to thicker plant tissues (Butler et al. 2016). This is because the 

laser sources used for Raman analysis generally have higher energy than regular MIR excitation 

sources and thus penetrate deeper into biological samples. The same is true for traditional Raman 

scattering, where laser light penetration into plant tissues is in the range of several hundred 

micrometers (Butler et al. 2015). For Raman spectroscopy, additional light–matter phenomena 

may be exploited through a number of adaptions of the technique including surface enhanced 

Raman spectroscopy (SERS) and stimulated Raman scattering applied to plant samples (Butler et 

al. 2016; Littlejohn et al. 2015; Zhang et al. 2017). Although not common outside specialized 

applications, MIR spectroscopy utilizing synchrotron radiation from specialized particle 

accelerators can provide an exceptionally bright excitation source for spectral acquisition in 

several specialized adaptions of biospectroscopy to plants and pathogens (Butler et al. 2017; 

Holman et al. 2010; Kaminskyj et al. 2008). 

Sensitivity and selectivity of MIR and Raman spectroscopy are dependent on method and 

instrument choice. Sensitivity is the detection limit for a particular chromophore, as determined 

by its absorption relative to background noise, while the selectivity is the capability of detecting 

specific chromophores within a mixture (Quaroni and Zlateva 2011). Sensitivity and specificity 

parameters may be optimized depending on the aim of the experiment and are important to 

determine if biospectroscopy techniques are suitable for the study, compared to other available 

analytical methods. Spatial resolution covers macroscopic (macro-measurements) areas down to 

nanometer level resolution (micro-measurements) depending on the method used (Baker et al. 
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2016a; Kazarian and Chan 2013). While a significant amount of effort is put into improving spatial 

resolution on the micro and nanometer levels, macroscopic measurements covering several square 

millimeters or centimeters may be more appropriate for measuring physiological processes in 

whole plant organs, especially for rapid routine analysis. Although micro-measurements permit 

the imaging or mapping of specific regions at cellular and subcellular resolution. 

Spectral resolution refers to the number of variables generated in a spectroscopic 

measurement. A spectral resolution of 4 cm-1 would generate roughly twice as many wavenumber 

variables in the spectrum as a spectral resolution of 8 cm-1, thus increasing scan time significantly 

(Quaroni and Zlateva 2011). Depending on instrument choice, and measurement area, spectral 

acquisition time will vary significantly. It is possible to choose sampling modes, which allow the 

optimization of measurement area, penetration depth into the sample surface, as well as spatial and 

spectral resolution, all of which have an impact on spectral quality and acquisition speed (Quaroni 

and Zlateva 2011).  

 

2.2.5 Computational Analysis  

Extracting wavenumber variables from biological samples to serve as “spectral 

biomarkers” related to a specific effect or treatment requires computational analysis in order to 

answer biologically relevant questions. IR and Raman spectra contain hundreds of variables with 

both qualitative and quantitative attributes for analysis (Baker et al. 2014). In general, extracting 

biological information from vibrational spectroscopy data falls into two main categories consisting 

of exploratory and diagnostic frameworks (Trevisan et al. 2012). The exploratory framework 

focuses on data visualization and direct comparisons of spectral groups for primarily qualitative 

analysis and characterization of spectral features (Trevisan et al. 2012). A more involved approach, 

following or combined with an exploratory framework, is the diagnostic framework. This approach 

requires extensive design, validated spectral datasets, combined with machine learning based on 

quantitative features, with the goal of autonomous classification of spectra from specific 

classes/treatments (Trevisan et al. 2012). It should be noted that although conceptually separate, 

the exploratory framework almost always precedes or is used in conjunction with the diagnostic 

framework, as the development of diagnostic frameworks requires validation (discussed later) 

(Trevisan et al. 2012). Common to both frameworks are processing steps including preprocessing, 

normalization, and computational analysis. Preprocessing and normalization are necessary to make 
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spectra comparable to each other by minimizing the influence such as sample thickness and 

instrument variability (Baker et al. 2014; Martin et al. 2010; Trevisan et al. 2012). Computational 

analysis as part of both exploratory and diagnostic frameworks makes use of various chemometrics 

including univariate, multivariate, and ratiometric analysis, which use single variable, multiple 

variables, or ratios of variables, respectively (Kumar et al. 2016b; Trevisan et al. 2012). These 

approaches extract spectral “biomarkers” (wavenumber variables) to serve as indicators of class 

or sample treatment (e.g., normal, abnormal, and diseased) (Kelly et al. 2011b; Martin et al. 2010). 

Among these variables, extracting relevant ones consistent with sample treatment, rather than 

naturally occurring variance as is the often the case with biological samples, can be difficult. In 

cases where high naturally occurring heterogeneity exists, a combination of unsupervised data 

reduction steps combined with supervised methods focusing on the inter-sample differences has 

been effective. Among others, principal component analysis (PCA) and linear discriminant 

analysis (LDA) have been efficient at providing insight into natural population heterogeneity and 

class-specific differences, respectively (Martin et al. 2007, 2010), as part of exploratory inquiry. 

Classifier algorithms including linear discriminant classifier or support vector machines (SVM) 

are commonly used for biospectral datasets as part of diagnostic frameworks (Trevisan et al. 2012). 

A large number of analysis models are available many of which can be combined to form 

composite techniques such as PCA–LDA or PCA–SVM (Trevisan et al. 2012). Ultimately, the 

exact data analysis options are dependent on the questions set out to answer, in addition to the 

goals of individual research groups. Further details pertaining to computational analysis of 

biospectroscopy data, and considerations for exploratory and diagnostic frameworks, can be found 

elsewhere (Kelly et al. 2011b; Trevisan et al. 2012). Combined, the exploratory and diagnostic 

frameworks offer insight into the mechanistic biology of the study, while the diagnostic framework 

evaluates the classification accuracy of spectra belonging to specific sample classes. If the 

accuracy of a diagnostic framework is sufficiently high, it may warrant evaluation in automated 

decision-making platforms for subsequent use in high-throughput systems for commercial 

applications (Stables et al. 2017).  

As part of an effort to increase the biological relevance through mechanistic insight into 

molecular changes relating to spectral biomarkers, on which diagnostic and exploratory 

frameworks rely, catalogues of spectral markers for both MIR and Raman spectroscopy are 

available. These catalogues, originally published in 2007 for Raman and 2008 for MIR, are aimed 
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at providing a guide for the interpretation of spectral bands, with recent updates to these spectral 

catalogues reflecting the increasing use of these spectroscopies (Movasaghi et al. 2007, 2008; 

Talari et al. 2015, 2017). In future, these will likely become available specifically for plant 

materials (Heredia-Guerrero et al. 2014; Largo-Gosens et al. 2014). Biological spectra thus provide 

plant biologists with molecular-level information, while providing industrial horticulturalists with 

rapid classification systems for detecting differences in sample material, thus contributing 

simultaneously to laboratory and field-based applications.  

 

2.3 Biospectroscopy for Fundamental Plant and Research and Applied Crop Science  

 

2.3.1 Valuable Plant Substances 

Preventing crop loss and improving our understanding of valuable substances for human 

consumption require rapid identification and characterization of plant constituents in intact plants 

and crops as well as processed plant products. Plants are composed of, and produce, an impressive 

array of organic substances for human consumption as food and plant-based bio-commodities. The 

quality of these substances often depends on the healthy growth and development of their 

respective plants, whether it is the plant itself that is the target substance, or a derivative product 

collected subsequently. Fruits and vegetables, medicinal compounds, phytonutrients beneficial for 

human health, as well as structural biopolymers are only a few examples of valuable plant 

substances for everyday use. In nature, primary metabolites, or core metabolites, such lipids, 

proteins, carbohydrates, and nucleic acids are essential for the healthy growth and development of 

all plant species; secondary metabolites, although not necessarily essential to survival, confer 

species specificity and provide specialized functions such as plant defense. Metabolites along with 

other classes of plant compounds thereby provide natural markers to study developmental and 

physiological processes in plants. Further, metabolites or other biochemical targets are quality 

indicators in horticultural processes and the food industry. Various primary and secondary 

metabolites, among other plant constituent compounds, are therefore important for research and 

industry (Lohumi et al. 2015; Rodriguez-Saona and Allendorf 2011). This applies to valuable 

substances in processed materials, as well as to intact plant tissues. For a better understanding of 

the biochemical composition of crop plants and their products, continued identification, 

characterization, and quantification of the various classes of plant substances are necessary. 
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Especially the development of nondestructive tools to analyze delicate and potentially highly 

heterogeneous samples, such as fruits, vegetables, and whole plants, would facilitate improved 

crop cultivation and the production of valuable plant products. While the analysis of target plant 

substances is readily achieved in processed materials, tracking multiple plant substances 

simultaneously within whole tissues without destructive effects remains challenging. 

Current uses demonstrate that biospectroscopy is adapted to study the abundance, 

distribution, and change of metabolites and other target substances in plants and crops. 

Biospectroscopy is specialized for measuring single or multiple compounds simultaneously, which 

has significantly contributed to a better understanding of plant constituents, valuable substances 

they produce, and how these substances change under both natural conditions and in response to 

physical and chemical processing. Specifically, the food industry has used the sensitivity of IR and 

Raman spectroscopy extensively for quality control and detecting the corruption of various food 

products based on select compound detection and quantification (Lohumi et al. 2015; Rodriguez-

Saona and Allendorf 2011). However, most commercial food industry applications are limited to 

homogenous bulk samples such as oils, flours, and dairy (Karoui et al. 2010). Transferring the 

food analytics application to more difficult specimens, such as whole production, without any 

sample manipulation remains difficult, although progress is being made using a number of 

economically important crops. Common plant metabolites have been characterized by IR and 

Raman spectroscopy including primary metabolites, such as amino acids (proteins), fatty acids 

(lipids), and carbohydrates besides secondary metabolites including phenolics, terpenoids, 

alkaloids, and polyacetylenes (Baranska et al. 2013; Schulz and Baranska 2007). Biospectral 

analysis of primary metabolites within crop species includes the measurement of wheat protein in 

kernels, lysine distribution in barley, and the study of temperature and water on gluten structure 

under processing conditions (Georget and Belton 2006; Schulz and Baranska 2007; Thygesen et 

al. 2003). Lipid composition of many important plant oils has been investigated as related to the 

food industry (Schulz and Baranska 2007). Biospectral analysis of many common carbohydrates 

has been studied including the characterization of mono-, di-, and polysaccharides including 

cellulose (Schulz and Baranska 2007). Carbohydrates specifically have been studied in various 

tissues including crop species including apricot, carrot root, and onion (Baranska et al. 2013; 

Bureau et al. 2009). More recently, Raman spectroscopy was used to map changes in 

polysaccharide distribution in cell walls of apple during fruit development and senescence (Chylin 
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ska et al. 2016). While these present only a fraction of the literature available that pertains to 

primary metabolite analysis in crop species using biospectroscopy, they readily illustrate the 

capacity for metabolomics analysis based on primary metabolites that serve as both quality 

indicators and markers of dynamic biological processes. 

Secondary metabolite analysis, specifically carotenoids, has gained significant attention 

and has been extensively studied using biospectroscopy approaches. A common goal among these 

studies is the development of alternatives to more traditional analytical chemistry methods such as 

fractionation combined with gas and high-pressure liquid chromatography, which require tissue 

destruction (Baranska et al. 2006b; Kumar et al. 2016a). Tomato fruits and related products such 

as juices have been focus points for biospectroscopy studies of plants, likely due to their nutritional 

value and relevance as a popular crop (Fu et al. 2016; Radu et al. 2016). Secondary metabolites 

associated with fruit ripening, including lycopene, β-carotene, phytoene, and phytofluene, have 

been subject of study using MIR and Raman spectroscopy (Baranska et al. 2006a; Fu et al. 2016; 

Johnson et al. 2003; Radu et al. 2016; Scibisz et al. 2011; Trebolazabala et al. 2013). Several of 

these studies have achieved metabolic profiling in whole tomato fruit, measuring metabolites such 

as lycopene, β-carotene, phytoene, and phytofluene in whole tomato fruit without sample 

preparation (Fu et al. 2016; Trebolazabala et al. 2013). Raman spectroscopy may be exceptionally 

suited for this specific application, as these studies both used semiportable systems capable of 

intact fruit analysis. 

Metabolic profiling of valuable plant substances in vivo using biospectroscopy will help 

develop solutions for the quality control of crops and identify new targets for tracking 

physiological processes. Spectrochemical profiling using biospectroscopy will be especially useful 

in whole tissues, such as leaves and fruit, applied to physiological processes such as plant and fruit 

development, maturation, and decay. With this comes the potential application of biospectroscopy 

to contribute to molecular insight into the mechanism of plant and fruit development in vivo from 

the physiological perspective, while developing new quality control parameters for assessing 

delicate horticultural products. This in turn will facilitate application development for pre- and 

post-harvest sectors, where, for example, the real-time determination of development stage in the 

field may augment visual ripening scales, which remain the default standard (Mahlein 2016). As 

a result, better estimation of shelf life and related applications including the detection of defects in 

crops and produce, nondestructively and in real time, may become possible.  
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2.3.2 Species Identification 

Valuable plant substances act as natural markers on which to identify and classify plant 

varieties and cultivars. As part of modern horticulture and plant research, it is desirable to identify, 

characterize, and classify plant varieties, cultivars, based on a number of sample types. Depending 

on the application, this may be from homogenous samples, such as processed products as part of 

food analytics, to larger specimens such as whole leaves. Because plant substances stretch over 

various levels of biological organization from single metabolites to whole plant organs, there are 

a many natural labels on which to identify species and classify them, as previously discussed, these 

natural labels include metabolites and other nonmetabolic plant substances. Species identification 

based on plant substances is readily achieved with biospectroscopy. There are many examples of 

species differentiation and chemical-based taxonomic classification using biospectroscopy in a 

diverse set of cultivars. Further, species identification has been performed mainly on leaf and fruit 

tissues, with the unique exception of pollen. For most taxonomic studies to date using 

biospectroscopy, samples from plant organs like leaves are dried and/or homogenized, suggesting 

the development for species identification in vivo under natural conditions. Among the many crops 

studied for species identification are mint, ginseng, olive, strawberry, and samples from various 

other plant species including Chinese ornamentals.  

Rösch et al. (2002) used Raman spectroscopy of stem cross sections successfully to 

characterize related mint species (Mentha sp.). Very recently, SERS was successfully applied to 

study inter-cultivar differences between Chinese ornamental (Chrysanthemum sp.) for taxonomic 

purposes (Zhang et al. 2017). Rapid discrimination of strawberry cultivars based on homogenized 

fruits was also effectively performed (Kim et al. 2009). Kim et al. (2004) had also previously used 

MIR spectroscopy for the taxonomic discrimination of seven flower plant species based on 

homogenous samples. Similarly, homogenous dried leaf samples were subject to MIR spectral 

analysis to distinguish plant populations and the effects of temperature on spectral features 

(Khairudin et al. 2014). Aouidi et al. (2012) also used ground leaf tissue to study and distinguish 

five Tunisian olive cultivars (Olea europaea) with MIR spectroscopy.  Ages of ginseng cultivars 

were also determined based on biospectroscopy data, whereas in most previous studies, samples 

were homogenized prior to analysis (Kwon et al. 2014). ATR-FTIR spectroscopy on dried but 

intact sage leaves (Salvia officinalis) was performed by Gudi et al. (2015) for more rapid 
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taxonomic classification, where intact leaves represent more conserved tissue architecture. What 

is interesting is that analysis on whole hydrated leaves was performed close to a decade earlier. 

Ribeiro da Luz (2006) used hydrated whole intact leaves from 15 different native tree species in 

the Washington, DC, area to assess the use of ATR-FTIR spectroscopy for classification of species. 

Using a spectral database, a classification accuracy of over 80% was achieved. This is particularly 

important as whole leaves are more representative samples compared to ground and homogenized 

tissue samples for the development of in vivo species identification.  Uniquely, pollen has been 

used as a discriminating factor for species identification on two accounts, investigating both 

environmental effects and species differences in pollen from 300 plant species without sample 

manipulation (Zimmermann and Kohler 2014; Zimmermann et al. 2015). Taken together, these 

studies show that while work is needed for in vivo species identification using biospectroscopy, 

chemical-based taxonomy on a variety of samples is possible, including intact plant parts. 

Biospectroscopy has contributed to method development for species identification and 

chemical-based taxonomy from a number of plant samples with future applications in 

genotyping/phenotyping. Species identification on various levels of biological organization may 

prove useful to expedite the current time required for conventional phenotyping, which is 

approximately 10 years from initial screening to available cultivar (Mahlein 2016). As 

biospectroscopy is sensitive enough to detect changes within individual nucleotides, as well as 

over macroscopic areas, there is potential for both genotyping and phenotyping applications in 

practice (Kelly et al. 2009, 2011a; Ribeiro da Luz 2006). However, the development of in vivo 

biospectroscopy is becoming a reality for various dynamic processes including physiological 

applications, which are readily transferrable to species identification and thus nondestructive 

phenotyping, or potentially even genotyping when combined with sample preparation (Butler et 

al. 2015; Kelly et al. 2009, 2011a). 

 

2.3.3 Plant Surface Structures 

The cuticle and cell wall contribute significantly to biospectroscopy measurements of intact 

plant tissues in vivo. As essential surface barriers, the cuticle and cell wall are conserved in all 

terrestrial plants and are intricately connected as part of the upper and lower epidermis. In their 

natural arrangements, the cuticle–cell wall layer consists of a complex matrix composed primarily 

of carbohydrates, proteins, and lipids (Domínguez et al. 2011). While the main function of the 
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cuticle is to prevent water loss and regulate gas exchange, it is also involved in defending against 

light damage and microorganism invasion (Domínguez et al. 2011). The cell wall defines cell 

shape and size and gives structural plasticity to plant cells; it is involved in plant growth, cellular 

differentiation, cell–cell communication, water regulation, and defense responses (Cosgrove 

2005). Not only is the cell wall an essential barrier but also source of the most abundant natural 

biopolymer cellulose (Cosgrove 2005). Hence, the cell wall is both physiologically indispensable 

for plants and humans alike. Physiological and environmental cues influence the structure of both 

cuticle and cell wall, making these surface structures important subjects for plant and crop 

sciences. Yet the detailed biophysical properties of plant surface structures are difficult to discern, 

and few methods exist to effectively study the molecular complexity the cuticle and cell walls in 

their native arrangements where the two layers are elaborately intertwined (Domínguez et al. 

2011). 

Biospectroscopy has offered a unique look at both cuticle and cell wall composition 

individually and together. The small penetration depth of MIR radiation into biological tissues 

requires characterization of plant surface structures such as the cuticle and cell wall. MIR radiation 

used by biospectroscopy methods penetrates between a micron and several hundred micrometers 

into biological tissues depending on the method (Butler et al. 2015; Kazarian and Chan 2013).  

 

2.3.4 Cuticle 

MIR and Raman spectroscopy have augmented advances in our knowledge of functional 

groups contained in the cuticle matrix, their structural roles, as well as their macromolecular 

arrangement. Analysis of isolated cuticles was performed as early as (1992) by Chamel and 

Marechal, as well as on tomato by Ramirez et al. (1992). Subsequently several studies look at both 

isolated cuticles and cuticles as part of natural plant structures such as leaves and fruits. 

Biospectroscopy of plant cuticles encompasses many important and economically relevant crop 

plants such as potato, grasses, and tomato, many of which have very different natural 

morphologies. Dubis et al. (1999) used MIR spectroscopy in ATR mode as an analytical tool to 

investigate primarily carbonyl compounds associated with plant species and seasonal variation. 

This study included analysis of leaves from important crops including various cultivars of potato 

(Solanum tuberosum), beside several tree species. Dubis et al. (2001) also studied cuticle wax 

composition in hops (Humulus lupulus). Cuticle fractions from olive leaf, pepper fruit, and apple 
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fruit have also been investigated expanding the application to several important crop species 

(Johnson et al. 2007). Progress toward in vivo applications of biospectroscopy for cuticle structure 

analysis for both agrochemical research and plant science has recently been made in the model 

organism Arabidopsis thaliana and a cuticle-deficient mutant eciferum1 (cer1) (Littlejohn et al. 

2015). Much of this work has led to under- standing not only cuticle composition and constituent 

distribution, but also how cuticles change in response to exogenous factors, and during growth and 

development. To this end, spectroscopic characterization of plant cuticles and constituents, 

including cutin, cutan, waxes, polysaccharides, and phenolics, has recently been reviewed in detail 

by Heredia-Guerrero et al. (2014). 

 

2.3.5 Cell Wall 

Similar to plant cuticles, MIR spectroscopic analysis of plant cell walls was described over 

25 years ago, likely owed to its significance in plant biology and industry (Cosgrove 2005; 

McCann et al. 1992). In 1994, Sene et al. published MIR spectroscopy of cell walls, comparing 

primary cell walls from onion (Allium cepa), carrot (Daucus carota), rice (Oryza sativa), sweet 

corn (Zea mays), and polypogon (Polypogon fugax steud), many of which are important crops. 

Since then, the number of biospectroscopy studies of cell walls has increased significantly. Cell 

walls from various plant organs including leaves, roots, and fruits have been characterized (Largo-

Gosens et al. 2014; Rösch et al. 2002; White et al. 2016). MIR spectroscopy has been used to study 

compositional changes resulting from growth and development, mutations in cell wall-regulating 

genes of cellulose/hemicellulose, and lignin, as well as the effects of biotic and abiotic stress 

(Kumar et al. 2016a; Largo-Gosens et al. 2014). These studies give insight into the molecular 

structure of plant cell walls and changes therein in response to stimuli and contribute to our 

fundamental understanding of this and closely related structures. Industrial-related processes such 

as spectral alterations associated with mechanical stress on plant cell walls, specifically cellulose 

and pectin orientation, were studied by Wilson et al. (2000). Recently, MIR and Raman 

spectroscopy were applied to characterizing non cellulose polysaccharides from cell wall fractions 

of   tomato   during   development (Chylinska et al. 2016). Hence, plant cuticle and cell wall have 

been studied by biospectroscopy in both structure and function and under different conditions 

relevant to biological and industrial processes.  
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2.3.6 Cuticle and Cell Wall Together 

Cuticle and cell walls are studied together when tissues such as leaves, and fruit are 

measured without manipulation (Figure 2.2). This is similar to studies on non-isolated cuticles, as 

part of whole plant organs such as freshly cut leaves. Analysis of leaves by MIR and Raman 

interrogates the cuticle, and palisade parenchyma of the adaxial leaf surface, respectively (Butler 

et al. 2015).  Even ATR-FTIR spectroscopy, which penetrates only between 1 and 5 μm into the 

surface of plant structures, has been sufficient to effectively measure leaves from 32 tree species 

and identify them with good accuracy (Kazarian and Chan 2013; Ribeiro da Luz 2006). These 

studies demonstrate the versatility of biospectroscopy for cuticle and cell wall characterization 

separately and as combined layers as part of plant organs. Further work is needed to increase the 

study of plant cuticles and cell walls in vivo, and while biospectroscopy has contributed to this 

endeavor, analysis of whole plants, rather than freshly harvested leaves, remains elusive (Butler et 

al. 2015). 
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Figure 2.2 Top: Conceptual schematic of ATR-FTIR measurement on plant surface structures. 

CL, cuticluar layer; CP; cuticle proper; CW; cell wall; EC; epidermal cell; EW; epicuticular waxes. 

Bottom: Seventy averaged ATR-FTIR spectra of 4-week-old fully expanded tomato leaf (Solanum 

lycopersicum cv. Moneymaker) over the fingerprint region (1800–900cm-1). 

 

Work done thus far on the surface structure of plants will aid the development of 

biospectroscopy for examining the cuticle and cell wall within whole plants and fruit and how 

these layers change in response to various processes, both naturally and during crop cultivation. 

The ability to measure whole plant organs such as leaves and extract spectroscopic information 

relevant to physiological processes suggests that applications to crop monitoring in whole plants 

in the field or whole fruit before, at, or after harvest becoming a strong probability. Recent progress 

with methods such as ATR- FTIR and Raman spectroscopy has shown that surface structures 
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including cuticle and cell wall in leaves of whole plants and whole fruit can be measured without 

destructive effects entirely in vivo (Butler et al. 2015; Fu et al. 2016; Trebolazabala et al. 2013). It 

has been clear for more than two decades that biospectroscopy methods can contribute to our 

detailed understanding of important plant surface structures including the cuticle and cell walls in 

the lab, but development of biospectroscopy for complete in vivo analysis of plants will expand its 

application potential significantly into the area of commercial horticulture for physiological-based 

monitoring of plants and crops.  

 

2.3.7 Plant-Environment Interactions  

Growth and development of plants, in their natural habitat or in fields and greenhouses, is 

dictated in large part by their interaction with the external environment. When the environment 

becomes unfavorable, plants employ stress and defense responses to cope with suboptimal 

environmental conditions. In the light of climate change, the dynamic interaction between 

pathogens and the environment has become an important consideration (Nutter et al. 2010). 

Climate change and resulting effects likely influence the contribution of individual pests to annual 

crop loss (Figure 2.3). 
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Figure 2.3 Contributions of pest and pathogen types to annual global crop loss. Top: crop loss to 

pests and pathogens for wheat, rice, maize, barley, potatoes, soybean, sugar beet, and cotton, for 

the years 1996–98. Bottom: crop loss to pests and pathogens for wheat, rice, maize, potatoes, 

soybean, and cotton for the years 2001–03 (adapted from Oerke and Dehne 2004, and Oerke 2006, 

respectively).  

 



78 
 

 

Both abiotic and biotic factors influence plant physiology, growth, and development and 

thus crop quality and yield (Suzuki et al. 2014). Pertinent abiotic factors influencing plants include 

drought, salinity, temperature, nutrient deficiency, phototoxicity, ozone (O3), and anaerobic 

stresses (Suzuki et al. 2014) (see also Figure 2.1). Viruses, bacteria, fungi, nematodes, weeds, and 

herbivores are among the main biotic factors relevant to plant survival (Atkinson and Urwin 2012). 

Under natural or field conditions, combinations of abiotic and/or biotic stress occur where different 

stress types may positively or negatively affect each other (Atkinson and Urwin 2012). 

Furthermore, plant response to abiotic and biotic stressors overlaps on the molecular level, sharing 

general response elements such as signaling pathways, while differing in fine-tuned specific 

responses to individual stressors (Bostock et al. 2014; Kissoudis et al. 2014). Because stress 

responses precede plant disease, understanding the mechanisms of plant response to individual 

stresses and in combination could be especially useful for determining “biomarkers of stress 

effects,” while plants are still in the reversible stage of stress (Bostock et al. 2014). During this 

acclimation stage, natural tolerance/resistance to stress prevent adverse effects, which once 

exhausted lead to irreversible strain, disease, and ultimately plant death. For precision crop 

protection and the prevention of plant disease caused by both abiotic and biotic stress, the 

preventative stages of plant disease, namely, the acclimation/resistance stage may be a specifically 

suitable target for biospectroscopy. Pre-symptomatic disease detection would have the added 

benefit of optimizing crop protection measures and reducing the overuse of harmful pesticides, 

which are becoming an increasing public concern. Detection and characterization of stress 

responses before irreversible damage ensues would be beneficial for several reasons including 

concomitant development of health monitoring tools. Elucidation of the intricacies of individual 

and overlapping stress responses by plant biologists would significantly aid in determining targets 

suitable as “stress biomarkers” in different crop species. Crop scientist in turn may be able to apply 

biological stress markers for early disease detection and identifying plants particularly resistant or 

tolerant to different stresses. Indeed, both disease detection and phenotyping are among the most 

important research areas for modern horticulture concerning plant and crop scientists collectively. 

Alternatively, direct detection of visually undetectable pests such as microscopic pathogens is also 

a priority, even though pathogen density is not necessarily indicative of disease severity for plants 

in the field (Mahlein 2016; Nutter et al. 2010). While direct pathogen detection may be difficult in 
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the field, it may be more readily applied to postharvest storage and transport of plant production, 

where infected or contaminated products pose potential health hazards. Thus, from the view of 

researchers, there is a desire to discern the details of individual and stress combinations, both 

abiotic and biotic, in order to identify key factors of plant stress early before damage is done. With 

the right technology, these key factors or biomarkers could help horticulturalists in their quest to 

reduce pre- and postharvest crop loss as a result of plant disease. It is noteworthy, that disease 

detection by default coincides with the development of health monitoring tools, as the control 

subjects used to study dis- ease are defined as healthy counterparts within individual studies. 

Many applications of biospectroscopy have displayed its capacity to contribute to the areas 

of plant disease detection and health monitoring, through the investigation of biotic and abiotic 

stress, together with closely linked processes like leaf senescence. Linked to natural development, 

aging, and disease is the process of senescence, which has also been studied using biospectroscopy 

methods. The process of senescence is important because it is induced by several factors including 

stress and also occurs naturally as plants mature (Gepstein and Glick 2013). Leaf senescence has 

been studied in situ on detached leaves of black cherry (Prunus serotina), sweet pepper (Clethra 

alnifolia), Capsicum annuum, and Nicotiana tabacum using ATR-FTIR spectroscopy (Ivanova 

and Singh 2003). ATR-FTIR spectroscopy has also been used in vivo on leaves of whole plants to 

study plant growth and development including cell expansion and senescence (Butler et al. 2015). 

Several main abiotic and abiotic stresses have been investigated in various plants including 

crops like wheat and tomato. Raman spectroscopy was applied to study mechanistic changes 

related drought stress induced by cutting leaves from spring wheat plants (Wesełucha-Birczynska 

et al. 2012); where drought stress in wheat is particularly relevant to horticultural challenges 

worldwide (Suzuki et al. 2014). Assessment of salt stress has been conducted on both plants and 

fruit. Salt-tolerant halophytes, ice plants (Mesembryanthemum crystallinum), where compared to 

A. thaliana under salt stress conditions and investigated using MIR spectroscopy (Yang and Yen 

2002). Metabolic fingerprinting of tomato fruit extracts grown under high salt stress and normal 

conditions was investigated by Johnson et al. (2003). Salt stress and the effects on cell wall 

structure and leaf cell anatomy in coffee (Coffea arabica) have also been recently investigated (de 

Lima et al. 2014). Khairudin et al. (2014) investigated variable temperature on populations of the 

herb Polygonum minus and observed differences in important metabolites including flavonoids. 

Biospectroscopy to study nutrient stress has only been applied in specialized settings to our 
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knowledge. Interestingly, algae (Micrasterias sp.) have also served as a model system for 

biospectroscopy in which in vivo analysis, nutrient stress, and other anthropogenic abiotic stresses 

have been studied (Heraud et al. 2005; Patel et al. 2008). The effects of nutrient stress were studied 

using Raman spectroscopy on live algal cells in vivo, where the study was additionally used to 

compare data preprocessing effects on outcomes of computational analysis (Heraud et al. 2005). 

Transmission MIR using synchrotron radiation was employed on live and fixed tissue of the model 

plant Asiatic dayflower (Commelina communis) specifically to detect calcium deficiency (Butler 

et al. 2017). Metal stress was investigated through early effects of cadmium, and subsequent partial 

recovery, in clover (Trifolium sp.) leaves using MIR spectroscopy (Wei et al. 2009), as well as by 

Liu et al. (2014), who, similar to de Lima et al. (2014), correlated changes in cell wall structure 

with changes in leaf anatomy  but in navel orange plants (Citrus sinensis). Ozone stress, as well as 

both biotic and abiotic stresses, was measured on sycamore tree (Acer pseudoplatanus) leaves 

exposed to air pollution, ozone, and fungal infection, giving potential mechanistic insight into 

shared stress responses such as reactive oxygen species generation (Ord et al. 2016). 

Studies of biotic stresses, such as viruses, bacteria, and fungal pathogens, using 

biospectroscopy remain relatively limited to date, but progress has been made in the 

presymptomatic detection of disease. Investigations into biotic stress scenarios have also been 

selectively performed with several applications directed at pre-symptomatic disease detection and 

health monitoring in plants and trees. Biospectroscopy studies into biotic stress caused by fungal 

pathogens include the tar spot leaf fungus (Rhytisma acerinum) on Sycamore tree leaves by Ord 

et al. (2016). Plant–plant interference through metabolic profiling to study interspecies competition 

between a monocotyledon Brachypodium distachyon and a dicotyledon A. thaliana has been 

described by Gidman et al. (2003), with potential applications to weed pests. 

Progress has been made in both plant health monitoring and disease detection, to 

demonstrate the applicability of biospectroscopy in these areas. Recently, MIR photoacoustic 

spectroscopy was used for pre-symptomatic detection of powdery mildew infection in Rubus 

corchorifolius, a Korean raspberry cultivar (Du and Zhou 2015). Previously, ATR-FTIR 

spectroscopy as a potential tool in huanglongbing and citrus variegated chlorosis diagnosis in 

leaves of sweet orange trees was explored (do Brasil Cardinali et al. 2012). Finally, and among the 

most recent developments has been the successful health monitoring of whole tomato plants. ATR-

FTIR spectroscopy and Raman spectroscopy have been used, in combination, for the successful 
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and nondestructive monitoring of healthy plant growth and development in intact tomato plants 

(Solanum lycopersicum) (Butler et al. 2015). This study was performed entirely in vivo on plant 

leaves, where spectral alterations were consistent with major physiological processes including 

cell expansion in newer leaves and senescence in more mature leaves. 

Taken together, the above studies show a significant contribution to an exceptionally 

diverse set of plant varieties and cultivars subject to various stress or disease conditions. Although 

as previously explained, the transfer of these studies to applied crop sciences requires further 

development of fully in vivo analysis. However, the progress to date prompts the further evaluation 

of biospectroscopy approaches to study plant–environment interactions, including effects of 

abiotic and biotic stresses, progression of disease, as well as complementary processes such as 

healthy development and natural senescence. Ultimately, the transition to a full nondestructive 

sensor technology will be met once certain technical limitations are overcome.  

 

2.4 Challenges and Limitations  

Development of biospectroscopy as an applied sensor technology requires portable 

instrumentation. There is no doubt that laboratory-based biospectroscopy instruments have 

contributed significantly to the plant laboratory, yet despite the availability of fully portable 

equipment, no commercial applications have been developed. Laboratory-based IR spectrometers 

rarely accommodate the analysis of whole plants, specifically in fields and semi controlled 

environments (CE rooms, glasshouses, etc.), and part of the reason why biospectroscopy 

applications require some form of sample preparation, limiting it as a potential field sensor. Fully 

portable instruments are available for biospectroscopy, and while these have existed for some time, 

they have to our knowledge gone without evaluation. For only a few examples of fully portable 

systems commercially available for material science and related purposes, see 

http://bwtek.com/technology/raman and https://www.agilent.com/en/products/ftir/ftir-compact-

portable-systems for Raman and MIR spectroscopy, respectively. Both Raman and MIR 

spectroscopy offer variable attachments for customized uses. Thus, as part of the challenge of 

validating different instrument configurations, fully portable units currently advertised for more 

traditional material science applications must be evaluated for plant materials in the field. 

Especially because evaluating these instruments could significantly accelerate the development of 

fully portable biospectroscopy sensor systems for plants. Additionally, portable equipment 



82 
 

comparisons with laboratory-based spectrometers would contribute to the issue of validating 

tentative spectral biomarkers generated in the lab, under field conditions. Figure 2.4 shows 

challenges and considerations with regard to differences between laboratory and field, which are 

generally applicable to technologies hoping to bridge the gap between laboratory and field 

applications. 

 

 

 

Figure 2.4 Differences in complexity between laboratory and field conditions showing 

considerations for knowledge exchange between laboratory-based and field-based systems. 

(adapted from Suzuki et al 2014). 

 

The number of available options for sample preparation, spectral acquisition, and data 

analysis makes standardizing biospectroscopy approaches difficult leading to the need for 

extensive validation before technologies become commercially viable. This can be seen as 

analogous to the different conditions present within controlled laboratories compared very high 

variability seen under field conditions. Due to the versatility of biospectroscopy methods, most 

studies use different instruments and data analysis tools. Therefore, spectral wavenumbers, 

extracted and listed as part of a study, are influenced by the experimental design and instrument 

choice, which can make it difficult to compare different studies. Consequently, this may hinder 

the knowledge transfer and progression of biospectroscopy into routine application. In light of this, 

validation is needed to confirm spectral wavenumbers intended to act as “biomarkers of effect,” 

many of which are tentatively assigned, due to the intrinsic ambiguity of extrapolating from 

individual bond vibrations to physiological effects. To augment the progression of biospectroscopy 

toward industry applications beyond its current uses, validation is required in combination with 

complementary methods ranging from traditional approaches like chromatography, to other optical 
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sensors and OMICs technologies (including genomics, proteomics, metabolomics, lipidomics, 

etc.) that rely on multicomponent analysis of various classes of biomolecules. In any case, before 

routine biospectroscopy applications are available, more standardized approaches, as well as 

combinatorial data analysis approach combining multiple lines of experimental inquiry, are 

imperative (Figure 2.5). 

 

 

 

Figure 2.5 Complementary data for biospectroscopy validation and future integration of these 

technologies as part of a multi-sensor platform. 
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2.5 Conclusions and Future Perspectives 

Biospectroscopy is suitably matched to study the fundamental processes important for crop 

protection and will help bridge the gap between laboratory and field applications by facilitating 

interdisciplinary research through knowledge transfer. To tackle the many challenges surrounding 

crop production and supply, innovative solutions to crop loss and food waste in the food system 

are paramount. Closely linked to crop protection is our understanding of the biological processes 

influencing plant development, as well as the details of plant composition as related to valuable 

plant substances. The natural complexity of plants, and the extraction of valuable substances for 

products, means that no single technology will fill the gap, to produce more with less, currently 

challenging modern agriculture. However, in meeting the challenge to fill the gaps leading to 

losses in plant resources, priority will likely be given to methods that yield highly specific data 

rapidly without destructive effects to delicate biological samples. To this end, many nondestructive 

optical sensor technologies are under evaluation, sharing common goals pertaining to crop 

protection and phenotyping (Mahlein 2016). As mentioned, these goals include disease detection; 

species identification for phenotyping and taxonomic classification; and increasing mechanistic 

insight into plant physiology and disease (Mahlein 2016). Further, Lucas (2011) (see also Crute 

2003) outlined criteria for a truly sustainable technology in the context of agricultural productivity: 

 

1.  Based on the use of one or more renewable resources 

2.  Does not break down due to evolutionary change 

3.  Has a broad spectrum of applicability 

4.  Is affordable in the context of the local economy and crop value 

 

It becomes immediately clear from this discussion and previous developments that 

biospectroscopy meets at least the first three points of these criteria. And while affordability is still 

to be determined in this context, biospectroscopy certainly remains a strong candidate sensor for 

development. The progression of biospectroscopy from its humble beginnings in the analytical and 

material science laboratories, for basic compound analysis, has expanded rapidly into the areas of 

plant and crop sciences for the analysis of complex biological materials. The many functions of 

biospectroscopy in the plant laboratory, whose principles potentially extend to applications in the 

field, are plentiful. Biospectroscopy has demonstrated its capacity to meet many of the criteria 
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needed to fulfill specific goals within the plant, crop, and food sciences, which has warranted its 

development toward an applied sensor technology for industry. Despite scarce applications to 

intact plant systems in vivo, there remains exciting potential for biospectroscopy especially in 

expanding these applications. Once challenges, including validation of fully portable instruments, 

are successfully overcome, through integration of biospectroscopy data with complementary 

methods, it may become a broadly applicable and commercially available technology for analysis 

and diagnosis. 

While most biospectroscopy studies analyze primarily solid or semisolid samples, there are 

future prospects in other prominent areas of plant and crop science, which would benefit from gas 

and liquid sampling modes of IR spectroscopy.  Specific examples here include the analysis of 

VOCs such as isoprene, which have become compounds of interest, due to their apparent 

ecological and defense functions (Dudareva et al. 2013). Liquid-based biospectroscopy may prove 

useful for the investigation of changes in the composition of plant biofluids, xylem and phloem 

sap. Biofluid analysis is currently a major topic in the biomedical area of biospectroscopy (Baker 

et al. 2016b), where “liquid biopsies” performed on plants may be a knowledge exchange 

opportunity between plant and biomedical sciences. Another area of interest will be the 

development and combination of artificial intelligence with biospectroscopy, where computers 

will autonomously take on all data analysis and processing without any external subjective 

influence (Figure 2.5).  
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Abstract 

 

Background: Development and ripening of tomato (Solanum lycopersicum) fruit are 

important processes for the study of crop biology related to industrial horticulture. Versatile uses 

of tomato fruit lead to its harvest at various points of development from early maturity through to 

red ripe, traditionally indicated by parameters such as size, weight, color, and internal composition, 

according to defined visual ‘grading’ schemes. Visual grading schemes however are subjective 

and thus objective classification of tomato fruit development and ripening are needed for ‘high-

tech’ horticulture. To characterize the development and ripening processes in whole tomato fruit 

(cv. Moneymaker), a biospectroscopy approach is employed using compact portable ATR-FTIR 

spectroscopy coupled with chemometrics.  

 

Results: The developmental and ripening processes showed unique spectral profiles, 

which were acquired from the cuticle-cell wall complex of tomato fruit epidermis in vivo. Various 

components of the cuticle including cutin, waxes, and phenolic compounds, among others were 

identified, as well as from the underlying cell wall such as celluloses, pectin and lignin like 

compounds. Epidermal surface structures including cuticle and cell wall were significantly altered 

during the developmental process from immature green to mature green, as well as during the 

ripening process. Changes in the spectral fingerprint region (1800-900 cm-1) were sufficient to 

identify nine developmental and six ripening stages with high accuracy using support vector 

machine (SVM) chemometrics.  

 

Conclusions: The non-destructive spectroscopic approach may therefore be especially 

useful for investigating in vivo biochemical changes occurring in fruit epidermis related to grades 

of tomato during development and ripening, for autonomous food production/supply chain 

applications.  

 

Key Words: Tomato, Development, Ripening, Crop biology, MIR spectroscopy, Chemometrics  
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3.1 Background 

 

Global food security relies on the combination of effective crop production, distribution, 

and utilization (Berners-Lee et al. 2018). Crop production and distribution are both becoming 

increasingly challenging whilst population growth and changes in climate are leading to food 

shortages and malnutrition worldwide (IFPRI 2017). Conventional farming practices have 

struggled to increase the production of major crops worldwide (Ray et al. 2013). Due to lack of 

available land for food production, it is expected that much of the increase in crop production will 

occur through higher yields, intensified cropping and a reduction of waste in the supply chain due 

crop loss to climate, pests, pathogens, as well as downstream consumer waste (FAO 2009; Godfray 

et al. 2010). Innovative solutions that maximize crop production and reduce waste are therefore of 

paramount importance to maintaining food security. While numerous approaches to aid with this 

are being developed, technology-based solutions to farming are frequently confounded by the large 

number of crop species (and cultivars) grown and the complexity of plant-environment interactions 

within crop production systems. Therefore, there is an urgent need for the development of novel 

approaches for improving our understanding of crop biology and the development of applied 

farming tools to maximize production, minimize losses and to improve pre- and post-harvest 

production and utilization.  

Tomato (Solanum lycopersicum) is one of the most important crops globally valued at 

124.6 billion US dollars annually (FAO 2017) representing the largest sector of the fleshy fruit 

market (Bapat et al. 2010; FAO 2017). It is widely used as plant model due to its short generation 

time, and well-studied genetic, biochemical, and physiological properties (Tomas et al. 2017). Rich 

in beneficial phytochemicals, tomato fruit are delicate, develop and ripen quickly and are used at 

various stages of their development either whole, or for various processing purposes including 

canned goods, pastes, sauces, juices, etc. (Thakur et al 1996). Each of these products require fruit 

at different stages of development or ripening ranging from early immature to red ripe fruit 

depending on the number of days post anthesis (dpa) (Thakur et al 1996). The development and 

ripening of tomato fruit both of which are parameters important to the horticultural industries 

influencing fruit quality and shelf life (Bapat et al. 2010; Lara et al. 2014). The ability to accurately 

and non-destructively monitor changes occurring during tomato fruit development and ripening 

are therefore of utmost interest to both plant biologists and horticulturalists. 
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The plant epidermal layers and associated surface structures provide the plant-environment 

interface necessary for maintaining plant integrity, regulating fruit growth, and determining shelf 

life (Lara et al. 2014; Segado et al. 2016). Tomato fruit epidermis is composed of an integrated 

heterogeneous multi-layered matrix including the cuticle (cuticle proper and cuticular layer), cell 

wall, and epidermal cells (Yeats and Rose 2013). These layers undergo extensive changes during 

fruit development and ripening. However, to date the molecular mechanisms involved and how 

these changes influence characteristics like morphology, texture, pathogen susceptibility and shelf 

life have not been elucidated fully (Yeats and Rose 2013). In addition, it has been difficult to study 

the cuticle and cell wall separately due to the recalcitrant nature of these tissues (Dominguez et al. 

2015). Therefore, novel approaches to investigate plant surface structures are essential to 

determine how they contribute to the healthy growth and development, or appearance of abnormal 

conditions, in horticultural products. Furthermore, these approaches need to be translatable into 

practical field-based applications to have relevance to both fundamental plant biology studies and 

applied crop science. Although there are a number of analytical tools, traditionally used in the 

laboratory which might be suitable for field-based horticultural applications (Mahlein 2016; 

Martinelli et al. 2015; Sankaran et al. 2010), the tools available to study plant surface structures 

non-destructively are limited.  

Optical sensors based on light-matter interactions have been implicated as effective tools 

for the non-destructive monitoring of plant health and disease detection based on spectral 

signatures (Butler et al. 2015; Mahlein 2016). Particularly mid infrared (MIR) vibrational 

spectroscopy combined with chemometrics has been widely used as a bioanalytical tool that offers 

non-destructive analysis of most types of samples (Skolik et al 2018b). Vibrational spectroscopy, 

also known as surface techniques, typically probes the surface layers of samples to micrometer 

depths and, due to advancements in data analysis, can also be used to analyze complex 

heterogeneous biological samples, termed biospectroscopy. The unique spectrum of biological 

materials between 4000-400 cm-1 (2.5-25 μm wavelengths), produced through light-matter 

interactions between the IR radiation and the sample, contains biochemically specific variables 

useful for biological applications (Kazarian and Chan 2013). Many biological materials absorb 

preferentially in the ‘fingerprint region’ (1800-900 cm-1), therefore this region is often the spectral 

range selected for analysis (Martin et al. 2010). The analysis of spectral data can be divided into 

exploratory and diagnostic analyses (Trevisan et al. 2012). Exploratory data analysis includes data 
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visualization, pattern recognition, and biomarker extraction (Kelly et al. 2011; Trevisan et al. 

2012). Examples of analysis models used for these purposes include unsupervised learning such 

as principal component analysis (PCA), and supervised methods such as linear discriminant 

analysis (LDA) (Trevisan et al. 2012). Diagnostic data analysis aims at evaluating classifier 

performance for autonomous decision making. Various classifiers commonly used include LDA, 

support vector machine (SVM), naïve Bayes, and artificial neural networks (ANN), each of which 

exhibits varying levels of model complexity. MIR spectroscopy together with specialized data 

analysis have been applied to address important horticultural issues including plant health 

monitoring, plant-environment interactions, disease detection, phenotyping, and taxonomic 

relationships (Butler et al. 2015; Ord et al. 2016; Zimmermann et al. 2015). However, the 

development of biospectroscopy-based bioanalytical approaches for crop science that allow plants 

to be studied both in the lab and in a field-environment is essential for its wider adoption as a 

horticultural tool (Skolik et al. 2018b). 

Currently, portable Raman spectrometers, which can measure intact samples are more 

readily available than IR spectrometers with such a capability. Consequently, to date, progress 

towards the development of biospectroscopy-based bioanalytical approaches for the analysis of 

intact crops has been limited primarily to the use of Raman spectroscopy, although this technique 

has only been recently employed for whole sample analysis (Farber and Kurouski 2018; Fu et al. 

2016; Trebolazabala et al. 2013, 2017). Several other techniques outside the MIR range such as 

near-IR (NIR), ultraviolet (UV) and visible light, as well as hyperspectral analysis have been used 

to assess quality parameters in tomato (Huang et al. 2017; Lu et al. 2017; Sirisomboon et al. 2012). 

However, few of these studies provide detailed biochemical insight into the changes occurring in 

vivo during development and ripening and have traditionally focused solely on classification 

performance or correlation between traditional quality parameters and spectral data (Bureau et al. 

2016). Furthermore, the potentially small measurement area, as well as the higher energy of NIR, 

UV, visible, and Raman instruments, increases the light penetration depth into the sample over a 

very small area making it potentially difficult to obtain reliable biological information. MIR 

spectroscopy in contrast offers sampling modes with very well-defined measurement areas and 

light penetration depths (Kazarian and Chan 2013), which permit biochemical investigations when 

combined with known chemical compositions of plant tissues under investigation (Heredia-

Guerrero et al. 2014; Skolik et al. 2018a). Attenuated total reflectance Fourier transform (ATR-
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FTIR) spectroscopy is one method with a very well-defined light penetration depth, where macro 

measurements over larger areas are possible (Kazarian and Chan 2013). In other fields, ATR-FTIR 

has proved exceptional at providing both biochemical insight into biological samples, as well as 

providing strong discriminating power in combination with classification models (Martin et al. 

2010; Skolik et al. 2018a). This suggests a need to evaluate the use of Raman complementary 

methods such as reflectance spectroscopy including ATR-FTIR within crop science. In order to 

increase the capacity for spectroscopy-based methods to provide biochemical information as well 

as classification performance, it is imperative to assess complementary approaches aimed at 

developing multi-sensor platforms, which will be required for complex systems. 

Tomato is widely used as a model system for studying cuticle, cell wall, and epidermis 

during fruit development and ripening. In the present study therefore, we apply a novel approach 

combining multivariate chemometrics for biomarker extraction and assessment of classification 

performance. Biomarker extraction as part of a two-tiered approach is aimed at studying the effects 

of development and ripening on the spectral signatures of tomato fruit. First, exploratory 

multivariate analysis in the form of PCA-LDA was used to extract tentative wavenumber 

biomarkers associated with differences in the nine developmental stages of tomato fruit from 4-36 

dpa, and subsequently the six distinct ripening stages from mature green to red ripe tomato (approx. 

34-55 dpa). Biochemical entities identified as biomarkers are explored. The second tier involves 

SVM classification of the nine developmental and six ripening stages, in order to determine the 

potential for autonomous grading of tomato fruit maturity and ripening stages based on MIR 

fingerprint spectra. 

 

3.2 Results  

 

3.2.1 Spectral Analysis of Tomato Fruit Development 

Tomato fruit development and ripening were split into two distinct processes, as shown 

visually in Figure 3.1. Spectra were acquired from each developmental timepoint including 

ripening. Figure 3.2 shows the class mean raw and pre-processed fingerprint spectra for the 

development (Figure 3.2A and B) and ripening (Figure 3.2C and D) processes. Figure 3.2 clearly 

shows that most sharp absorbance peaks are evident within the fingerprint region between 1800 
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and 900 cm-1. This region holds most of the biochemical information pertaining to the samples and 

was therefore the focus of the investigation.  

 

 

 

Figure 3.1 Tomato fruit of Solanum lycopersicum cv. Moneymaker: developmental (top) and 

ripening (bottom) stages used as individual groups for MIR ATR-FTIR spectral analysis; dpa (days 

post anthesis). 

  

Linear discriminant analysis effectively distinguishes tomato fruit development based on 

PCA factors. Figure 3.3 shows the three linear discriminants LD1, LD2, and LD3 respectively, 

based on LDA of PCA factors. Variable separation was observed along the three LDs, of spectral 

clusters belonging to the nine different times of development. Discriminant function 1 (LD1) was 

effective at separating developmental stages, although clear separation of DS02 from DS03, DS05 

from DS06, and DS07 from DS08 was not observed (Figure 3.3A). This indicates that spectral 

features of these stages show little to no differences with respect to the other developmental classes 

(DS01, DS04, and DS09). While DS02/DS03, DS05/DS06, and DS07/DS08 formed distinct 

clusters with no clear separation, these pairs were very distinct from one another effectively 

forming six distinguishable groups along LD1 (Figure 3.3A). In contrast, discriminant LD2 
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showed a definitive separation of DS02 and DS03 but not of adjacent DS05/DS06 or DS07/DS08 

(Figure 3.3B). Separation of DS05 from DS06 was achieved along LD3 as opposed to no 

observable separation between DS07 and DS08 (Figure 3.3C). Based on spectral data, it appears 

that DS07 and DS08 were most closely related as indicated by multivariate PCA-LDA of the first 

three LDs shown in entirety in Figure 3.3. This is likely due to minimal changes occurring in the 

last few days of tomato fruit maturation, compared to changes occurring well before the mature 

green stage.  

 

 

 

Figure 3.2 ATR-FTIR spectra as class means with raw and pre-processed spectra for development 

(A and B) and ripening (C and D). 
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Figure 3.3 PCA-LDA 1-dimensional scores plots of tomato fruit developmental stages (DS01-

DS09) along LD1 (A), LD2 (B), and LD3 (C).  
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In order to explore further the group clustering observed in the 3-dimensional discriminant 

space, PCA-LDA loadings were extracted for each of the three LDs to determine the specific 

spectral alterations associated with the tomato fruit developmental process. This provides a 

summary of the main biochemical changes occurring during tomato fruit development from DS01-

DS09 between 4 and 36 dpa. Figure 3.4 shows PCA-LDA loadings (LD1-LD3) representing the 

main qualitative wavenumbers discriminating developmental stages of tomato fruit. The top six 

wavenumber biomarkers were selected from each loading to qualitatively characterize the 

biochemical compounds showing the greatest changes. Biomarkers extracted via PCA-LDA 

loadings provide potential biochemical and molecular markers for monitoring fruit development. 

Table 3.1 shows the top six discriminating wavenumbers for each of LD1-3 representing the main 

biochemical functional groups and associated compounds accompanying the developmental 

process in this cultivar. Specific changes were observed in the wavenumber regions 1732-1714, 

1698-1627, 1558-1511, 1467-1464, 1173-1102, and 1017 cm-1.  
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Figure 3.4 PCA-LDA loadings from the first three LDs; LD1 (A), LD2 (B), and LD3 (C) showing 

the top six discriminating wavenumbers responsible for group clustering of LD scores from 

developing tomato fruit (DS01-DS09). 
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Table 3.1 Top six discriminating wavenumbers, corresponding vibrational modes, and 

biochemical assignments for the first three LDs as indicated by individual loadings of tomato 

development.  

PCA-LDA 

Loadings 

Wavenumber (cm-1) Vibrational Mode Biochemical Assignment 

 

 

 

 

 

 

 

LD1 

1714 ν(C=O· · ·H) ester 

ν(C=O) 

Cutin 

Phenolic compounds, 

pectin 

1514 ν(C-C) aromatic 

Amide II, ν(C=N), 

ν(C=C) 

Phenolic compounds 

Proteins 

Lignin 

1467 δ(CH2) scissoring Cutin, glycerolipids,  

wax hydrocarbons 

1164 νa(C-O-C) ester 

ν(C-OH), ν(C-O-C) 

Cutin 

Polysaccharide, cellulose 

1102 νs(C-O-C) ester 

ν(C-O)  

 

νa(PO2) 

Cutin 

Pectin, cellulose, 

carbohydrates 

Phosphate 

1017 ν(C-O), ν(C-C)  

ν(C-OH) 

Pectin, cellulose 

Pectin 

    

 

 

 

 

 

 

LD2 

1732 ν(C=O) ester 

ν(C=O) 

Cutin,  

Lignin, wax, suberin-like 

aliphatic compounds 

1692 ν(C=O· · ·H weak)  

ν(C=O· · ·H strong)  

Cutin 

Cutin 

1627 ν(C=C) phenolic acid 

ν(C=O) 

Amide I 

Phenolic compounds 

De-esterified pectin 

Proteins 
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1558 ν(C=C) phenolic acid Phenolic compounds 

Proteins 

1522 ν(C-C) aromatic 

Amide II, ν(C=N), 

ν(C=C) 

Phenolic compounds 

Proteins 

Lignin 

1106 νs(C-O-C) ester 

ν(C-O)  

 

νa(PO2) 

Cutin 

Cellulose, pectin, 

carbohydrates 

Phosphate 

    

 

 

 

 

 

LD3 

1725 ν(C=O) ester Cutin, pectin, 

phenolic compounds 

1698 ν(C=O· · ·H strong)  

ν(C=O· · ·H weak)  

Cutin 

Cutin 

1511 ν(C-C) aromatic Phenolic compounds 

Lignin 

1464 δ(CH2) scissoring Cutin, glycerolipids,  

wax hydrocarbons 

1173 νa(C-O-C) ester Cutin 

1106 νs(C-O-C) ester 

ν(C-O)  

 

Cutin 

Pectin, cellulose, 

carbohydrates 

(Wavenumber references: Butler et al. 2015, 2017; Heredia-Guerrero et al. 2014; Largo Gosens et 

al. 2014; Movasaghi et al. 2008; Ord et al. 2016). 

 

3.2.2 Spectral Analysis of Tomato Fruit Ripening 

Similar to multivariate analysis of developmental stage, ripening stages of tomato were 

also effectively distinguished along LD1, LD2, and LD3 (Figure 3.5). These LDs were variably 

effective at separating the six distinct ripening stages. Most significant class separation was 

observed along LD1, with the six ripening stages showing clear separation, except RS03 and RS04, 

which showed no separation and were thus the most similar among these groups (Figure 3.5A). 
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Although LD1 was unable to separate RS03 from RS04, LD2 was highly effective at distinguishing 

RS03 from RS04 and all other ripening stages (Figure 3.5B). Variable group clustering was seen 

along LD3, where RS05 was most clearly separated from other groups (Figure 3.5C). As with 

tomato fruit development, ripening stages showed unique class clustering along the different LDs, 

indicating spectral features unique to each class. This raises the intriguing possibility that different 

LDs may be used in a targeted way to identify ripening stages in addition to different 

developmental stages based on this methodology.  
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Figure 3.5 PCA-LDA 1-dimensional scores plots of tomato fruit ripening stages (RS01-RS06) 

along LD1 (A), LD2 (B), and LD3 (C). 
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Spectral biomarkers for ripening extracted through PCA-LDA loadings, identified similar 

cuticle and cell wall components to those identified during development (Figure 3.6); cutin, 

phenolic compounds, lipids, and waxes were identified at wavenumbers 1721, 1719, 1632, 1603 

1561, 1473, 1160, and 1156 cm-1 whilst lignin-like compounds, cellulose, pectin, and other 

polysaccharides were identified at wavenumbers 1719, 1603, 1539, 1504, 1239, 1160, 1156, 1078, 

and 1041 cm-1 (Table 3.2). In addition, several unique spectral biomarkers related to proteins and 

indicative of ripening were identified, including the prominent Amide I, II, and III regions. 

Proteins are prominent components of the cell wall, and to lesser extent plant cuticles, suggesting 

that these proteins may be ripening-dependent based on the multiple protein vibrations seen over 

the fingerprint spectrum. Protein vibrational modes were seen specifically at wavenumbers 1632, 

1575, 1539, 1239, and 1218 cm-1 (Table 3.2). These changes may be associated with the softening 

of the fruit skin and the depolymerization of pectin and other natural polymers during ripening 

(Brummell and Harpster 2001) resulting in alterations to both the accessibility and abundance of 

proteins embedded in the cell wall-cuticle complex. The (C-H) vibration at 1504 cm-1 is potentially 

linked to an increase in the carotenoid content, specifically lycopene, during ripening. The 

ripening-specific biomarker at 1078 cm-1 has previously associated with xyloglucan and is also 

likely to be associated with xyloglucosyltransferase/endohydrolase (XTH) activity in the 

epidermis, which has an active role in fruit softening in tomato (Miedes et al. 2010). Interestingly, 

wavenumber 1041 cm-1 was associated with arabinogalactan. Arabinogalactan-glycoproteins at 

the plant cell surface have been implicated in plant growth and development and may integrate 

changes occurring in the cell wall and cuticle layers during ripening (Ellis et al. 2010; Lamport 

and Varnai 2013). The detection of protein vibrations, which may signify increased protein 

abundance during tomato ripening, reinforces the identity of arabinogalactan as part of 

glycoproteins, and provides a link between xyloglucan and XTH enzyme activity during the 

ripening program.  
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Figure 3.6 PCA-LDA loadings from the first three LDs; LD1 (A), LD2 (B), and LD3 (C) showing 

the top six discriminating wavenumbers responsible for group clustering of LD scores from 

ripening tomato fruit (RS01-RS06). 
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Table 3.2 Top six discriminating wavenumbers, corresponding vibrational modes, and 

biochemical assignments for the first three LDs as indicated by individual loadings of tomato fruit 

ripening.  

PCA-LDA 

Loadings 

Wavenumber (cm-1) Vibrational Mode Biochemical Assignment 

 

 

 

 

 

 

LD1 

1719 ν(C=O· · ·H) ester 

ν(C=O) 

 

Cutin 

Pectin, lipid, 

polysaccharides, 

phenolic compounds 

1603 ν(C-C) aromatic 

ν(COO), ν(C=C) 

Phenolic compounds 

Pectin, lignin 

1561 ν(C-C) aromatic Phenolic compounds  

1215 νaPO2                    

Amide III              

Phosphate 

Proteins 

1156 ν(C-OH) 

νa(C-O-C) ester 

Cellulose, polysaccharide 

Cutin, pectin 

1078 ν(C-O), ν(C-C) 

ν(C-OH) 

νsPO2  

Xyloglucan 

Oligosaccharide 

Phosphate 

    

 

 

 

 

 

 

LD2 

1632 ν(C=C) phenolic acid                  

νs(C-C) ring          

Amide I                

Phenolic compounds 

Cellulose 

Proteins 

1575 ν(C=N)  

ν(C-C) phenyl group 

Proteins 

Phenolic compounds 

1539 Amide II  

ν(C=N) 

Proteins 

Lignin 

1504 ν(C=C) 

ν(C-H) 

Amide II 

Lignin  

Carotenoid  

Protein 
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1473 δ(CH2) scissoring Glycerolipids,  

wax hydrocarbons 

1160 νa(C-O-C) ester 

ν(C-OH), ν(C-O-C) 

Cutin  

Cellulose, polysaccharide 

    

 

 

 

 

 

 

LD3 

1721 ν(C=O) ester 

ν(C=O) 

Cutin, pectin  

Phenolic compounds, 

lipids, polysaccharides 

1561 ν(C-C) aromatic Phenolic compounds  

1239 Amide III  

ν(C-O)  

 

νaPO2 

Proteins 

Pectin 

Cellulose / hemicellulose 

Phosphate 

1218 Amide III              

νaPO2                    

Proteins 

Phosphate 

1156 νa(C-O-C), ester 

ν(C-OH), ν(C-O-C) 

Cutin 

Polysaccharide, cellulose 

1041 ν(C-O), ν(C-C) 

ν(O-CH2) 

Cellulose  

Arabinogalactan 

(Wavenumber references: Butler et al. 2015, 2017; Heredia-Guerrero et al. 2014; Largo Gosens 

et al. 2014; Movasaghi et al. 2008; Ord et al. 2016). 

 

3.2.3 Autonomous Determination of Tomato Fruit Development and Ripening Stages  

Classification using PCA-LDA was satisfactory for the tentative assignment of spectral 

biomarkers but SVM was required for more effective classification of developmental and ripening 

stages. Autonomous sorting of tomato fruit based on their spectral characteristics is an exciting 

possibility. To test the feasibility of using classification performance based on fingerprint spectra, 

both PCA-LDA and SVM were applied (Table S3.1-S3.3; Figure S3.1-S3.2). While the 

classification performance of PCA-LDA was satisfactory (Table S3.1), this approach was used 

primarily for biomarker extraction. To improve classification performance from that achieved by 

PCA-LDA, SVM was applied. While SVM was superior for sheer classification purposes, SVM 
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is a non-linear method and therefore does not provide biochemical information. Table 3.3 shows 

the results for SVM based autonomous classification of developmental stages based on ATR-FTIR 

fingerprint spectra. High accuracy was observed for all developmental grades of tomato, with 

minimal misclassification only between directly related late stages of development (DS08 and 

DS09) between ~34-36 dpa as shown in the confusion matrix for development (Table 3.3). 

Sensitivity and specificity rates for development were correspondingly high (Table S3.2 and 

Figure S3.1).  These results indicate that changes in the epidermal surfaces are sufficient to 

determine with exceptionally high sensitivity and specificity, the developmental stage of whole 

tomato fruit non-destructively with compact equipment. Further, tomato development can be 

distinguished, in this case within ± 4 days of the next developmental stage.  

 

Table 3.3 Confusion matrix showing predictive performance calculated for the SVM chemo-

metric model intended to differentiate tomato fruit developmental stages from their ATR-FTIR 

spectral data.  

 DS01 DS02 DS03 DS04 DS05 DS06 DS07 DS08 DS09 

DS01 100% 0% 0% 0% 0% 0% 0% 0% 0% 

DS02 0% 100% 0% 0% 0% 0% 0% 0% 0% 

DS03 0% 0% 100% 0% 0% 0% 0% 0% 0% 

DS04 0% 0% 0% 100% 0% 0% 0% 0% 0% 

DS05 0% 0% 0% 0% 100% 0% 0% 0% 0% 

DS06 0% 0% 0% 0% 0% 100% 0% 0% 0% 

DS07 0% 0% 0% 0% 0% 0% 100% 0% 0% 

DS08 0% 0% 0% 0% 0% 0% 0% 99% 1% 

DS09 0% 0% 0% 0% 0% 0% 0% 0% 100% 

 

 

Tomato fruit are harvested at different developmental stages depending on their end use to 

ensure the desired qualities unique to each developmental. There are at least 4 maturity grades of 

tomato harvested between 4 to 36 dpa (M1-M4) providing fruit of different quality at maturity 

(Maul et al. 1998; Sargent 1997). Currently, the horticultural industry typically relies on subjective 

visual and/or destructive determination of maturity and ripening stages for tomato grading (Kader 
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and Morris 1976). Therefore, the development of objective and non-destructively approaches to 

determine fruit maturity and ripening stage, while gaining valuable biochemical information, 

would be beneficial to the industry. Here we provide evidence that ATR-FTIR combined with 

chemometric modelling can classify many distinct developmental stages, in this case nine, without 

destructive measurement but high selectivity and specificity (Table 3.3 and Table S3.2). These 

results exceed or are at least on par with other spectroscopic approaches currently used to assess 

fruit maturity and quality parameters (Bureau et al. 2016; Huang et al. 2018; Lu et al. 2017).  

Six horticultural ripening grades are typically distinguished based on color schemes; 

mature green, breaker, turning, pink, light red, and red (Sargent 1997). Spectral data combined 

with chemometrics was also effective at identifying the six distinct ripening grades of tomato. As 

with developmental groups, spectra of the six ripening grades were subjected to SVM analysis 

(Table S3.3 and Figure S3.2). Table 3.4 shows that the six ripening grades were distinguished with 

almost between 99 and 100% accuracy, the only exception being between the adjacent ripening 

grades ‘turning’ and ‘pink’.  

 

Table 3.4 Confusion matrix showing predictive performance calculated for the SVM chemometric 

model intended to differentiate tomato fruit ripening stages from their ATR-FTIR spectral data.  

 Mat. Green Breaker Turning Pink Light Red Red Ripe 

Mat. Green 100% 0% 0% 0% 0% 0% 

Breaker 0% 100% 0% 0% 0% 0% 

Turning 0% 0% 99% 1% 0% 0% 

Pink 0% 0% 0% 100% 0% 0% 

Light Red 0% 0% 0% 0% 100% 0% 

Red Ripe 0% 0% 0% 0% 0% 100% 
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3.3 Discussion 

 

3.3.1 Spectral Characteristics of Tomato Fruit Development 

Discriminant analysis reveals class-dependent clustering of spectral groups and allows the 

extraction of qualitative biomarkers. ATR-FTIR probes the first few microns of the sample, which 

in plants constitutes the external epidermal layers, and therefore provides an overview of the 

biochemical changes at the plant-environment interface during fruit development. The cutinized 

cell wall, which forms a biochemically complex heterogeneous matrix as part of the outer 

epidermis (Yeats and Rose 2013), is composed of various soluble waxes embedded in the main 

polymer cutin (~40-80%), along with a small phenolic fraction (~1-5%) (Dominguez et al. 2015; 

Hunt and Baker 1980). The underlying cell wall consists mainly of cellulose, pectin, various 

polysaccharides, and proteins (Yeats and Rose 2013). During tomato fruit development, the cuticle 

and cell wall undergo structural and compositional changes that are distinct to the stage of 

development, including the transition from cell division to cell expansion, cuticle biogenesis, and 

changes in cell wall thickness (Segado et al. 2016). Consequently, the relative contributions of the 

cell wall and cuticle to the epidermal plant surface varies markedly during fruit development due 

to rapid cell division (2 to 35-40 dpa) and the subsequent cell expansion (Azzi et al. 2015). These 

surface layers therefore present unique in vivo molecular targets for distinguishing between 

developmental stages using ATR-FTIR spectroscopy. 

Multi-component analysis over the fingerprint spectrum (1800–900 cm-1) showed that the 

alterations in these spectral regions were strongly associated with both prominent cuticle and cell 

wall components including their main constituents. Spectral biomarkers strongly associated with 

cutin, waxes, and phenolic compounds were all detected (Table 3.1) and are consistent with 

changes in the cuticle during development 4-36 dpa (Holloway 1982; Hunt and Baker 1980; Yeats 

et al. 2010). Cutin was identified at wavenumbers 1732, 1725, 1714, 1698, 1692, 1467, 1464, 

1173, 1164, 1106, and 1102 cm-1. Waxes, including glycerolipids and suberin-like compounds, 

were identified at wavenumbers 1732, 1467, and 1464 cm-1. Primary phenolic compounds were 

identified at wavenumbers 1627, 1558, 1522, 1514, and 1511 cm-1. Other spectral alterations 

observed originated from cell wall components as part of the cutinized cell wall structure. Spectral 

biomarkers associated with the cell wall identified cellulose, pectin, and various other 

carbohydrate moieties. Cellulose and pectin were related to wavenumbers at 1725 1714, 1106, 
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1102, and 1017 cm-1 respectively. Other carbohydrates, including some lignin like compounds, 

showed overlap with pectin, cellulose, and other moieties at wavenumbers 1522, 1514, 1511, 1164, 

1106, and 1102 cm-1. These results show clearly the power of multivariate analysis of fingerprint 

spectra to provide information about the biochemical changes occurring in the cuticle and cell wall 

during tomato fruit development. However, further work is needed to decipher the exact role of 

these compounds in the context of their IR absorptive properties. Importantly, the developmental 

time frame between 4 and 36 dpa contains at least four horticultural grades used as industry 

standards; the maturity grades M1-M4 correspond approximately to DS06-DS09 (Kader and 

Morris 1976; Maul et al. 1998; Sargent 1997). Therefore, the preliminary characterization, 

qualitative analysis presented here shows the potential for distinguishing developmental stages 

according to horticultural grades, for example the mentioned M1-M4 grades, based on their 

epidermal surface properties through the detection of multiple spectral biomarkers related to 

tomato fruit development. Nevertheless, further investigations are still required to determine the 

structure-function relationships in tissues at different developmental stages and for horticultural 

applications such as maturity grading.  

 

3.3.2 Spectral Characteristics of Tomato Fruit Ripening 

Ripening, although part of the natural development of tomato fruit, is often seen as a 

separate developmental stage due to it separate genetic regulation and distinct color changes. 

Significant shifts in gene expression, and transition in ethylene biosynthesis result in modifications 

of epidermal surfaces of tomato fruit during ripening, which influence post-harvest qualities (Yeats 

et al. 2010; Cara and Giovanni 2008; Lara et al. 2014; Azzi et al. 2015). Changes in the epidermal 

layers of tomato fruit thereby differ significantly from the developmental phase and throughout 

the ripening period. Figure 3.4 shows that during ripening, tomato fruit exhibit both unique and 

common spectral features from those observed for development that separate into distinct spectral 

clusters corresponding to the six ripening stages: mature green, breaker, turning, pink, light red, 

and red ripe (RS01-RS06, see Figure 3.1).  

Distinct biophysical and associated biochemical changes occur in the cuticle and cell wall 

during tomato ripening approx. 35-55 dpa (Bargel and Neinhuis 2005; Segado et al. 2016). The 

observed spectral changes in the epidermal layers are therefore likely to be associated with events 

including cuticle rearrangement, cell wall disassembly, carotenoid accumulation, and the 
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underpinning changes in genetic and metabolic regulation (Cara and Giavannoni 2008; Yeats and 

Rose 2013). Consequently, this exploratory analysis clearly shows that biospectroscopy can 

provide an abundance of chemical information that can contribute to understanding of the changes 

that occur in the epidermal layers during development and ripening. Importantly, the ability to 

analyze intact fruit will enable baseline characterizations of the development and ripening of 

healthy fruit, offering the intriguing possibility of using deviations from the baseline as indicators 

of abnormal development, stress, or disease. For horticultural applications, ripening is particularly 

interesting as the late red ripe stage are key stages for consumer consumption but are also stages 

at which fruit become increasingly susceptible to events such as fruit cracking and pathogen 

infection, which are linked directly to epidermal structure and fruit integrity (Isaacson et al. 2009; 

Lara et al. 2014). 

 

3.3.3 Common Spectral Characteristics of Tomato Fruit Development and Ripening 

Tomato fruit development and ripening show common spectral features relating primarily 

to the cuticle and cell wall components. Discriminant wavenumbers common to both fruit 

development and ripening include the general regions: 1725-1714, 1632-1627, 1561-1558, 1514-

1511, and 1473-1464 cm-1 (Table 3.2 and 3.3). Specifically, these spectral biomarkers include 

wavenumbers at 1725, 1721, 1719, and 1714 cm-1, which are strong absorbance contributions of 

ν(C=O) ester and medium absorbance contribution from ν(C=O· · ·H) ester of cutin. Wavenumbers 

at 1632 and 1627 cm-1 were medium and strong absorbance of ν(C=C) respectively, which were 

indicative of phenolic compounds. Further weak ν(C-C) absorbance of phenolic compounds was 

seen at 1561 and1558 cm-1, while regions including 1514 and 1511 cm-1 related to ν(C-C)~(C=C) 

conjugated aromatic entities of phenolic compounds. In the traditional context of IR spectroscopy, 

these absorbance designations strong, medium, and weak, refer to the highest, intermediate, and 

smallest peak amplitudes respectively, relative to one another in the spectrum (Stuart 2005); these 

reflect both the IR activity of functional groups and their abundance in the sample. Common 

development and ripening spectral biomarkers identified here in intact tomato fruit have also been 

observed in isolated cuticles of both immature green and red ripe tomato fruit (Heredia-Guerrero 

et al. 2014). Similarities seen at 1473, 1467, and 1464 cm-1 were interpreted as indicating δ(CH2) 

scissoring of cutin and waxes present in mature and immature fruit cuticles (España et al. 2014; 

Heredia-Guerrero et al. 2014). Cutin is one of the outermost and abundant compounds in the cuticle 
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and therefore the spectral changes observed in both the intact fruit and isolated cuticles are 

consistent with the changes in cuticular compounds, and especially cutin, during development and 

ripening. ATR-FTIR analysis as a surface technique identifies common biomarkers in the surface 

layers of fruit across the total developmental program from ~4-55 dpa, which are associated mainly 

with changes in the cuticle. However, novel regions in the fingerprint spectrum may provide 

insights into the exact role of the many cuticle functions in fruit development and ripening (Lara 

et al. 2014). 

 

3.3.4 Identifying Tomato Fruit Development and Ripening Stages  

The ability to distinguish nine distinct developmental stages and six common horticultural 

ripening grades of tomato fruit autonomously and non-destructively represents an important 

advance enabling expert growers or industrial food production/supply chains to grade fruit quality 

more effectively. Sensor-based horticultural systems will rely on multiple inputs from various 

sensors. For this reason, it is important to explore and employ different sensors and see these as 

being complementary rather than competitive. Various studies have shown that tomato maturity 

grading and assessing quality parameters can be achieved using spectroscopies that employ 

different wavelengths and ranges of the electromagnetic spectrum between UV, visible and IR 

light. To contribute to the expansion of MIR sensors, it was shown that the present level of 

accuracy was achieved using a compact spectrometer, relatively small data set compared to the 

number of samples available for testing in a horticultural setting, where typically classification 

accuracy increases with larger datasets. Although external validation is necessary to solidify these 

results, this study provides a clear indication of the potential, specifically ATR-FTIR for automatic 

classification of various horticultural products including tomato.   

 

3.4 Conclusions 

Biospectroscopy is a powerful analytical tool and potential sensor technology for linking 

fundamental plant biology and applied crop sciences as part of developing precision horticulture 

systems. The development of surface techniques including MIR spectroscopy that are applicable 

to both homogenous and for heterogeneous substances has opened the door for analysis of intact 

tissues and non-destructive measurements in vivo. However, to date the degree to which MIR 

spectroscopy has been used to study intact plants has been limited, as has the evaluation of portable 
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equipment that may be readily retooled for use in horticultural applications (Farber and Kurouski 

2018). The ATR-FTIR sampling mode, probes the main groups of biochemical compounds within 

tomato fruit epidermal surface layers, such as cutin, wax, and phenolic fractions of the cuticle, as 

well as cellulose, pectin, carbohydrates, and lignin-like compounds as primary cell wall 

constituents (Table 3.1 and Table 3.2), and is thus ideal for the study of plant epidermis as it relates 

to horticultural parameters. Biospectroscopy based multi-compound analysis, within plant organs 

in vivo, offers an alternative methodology to conventional ways of studying cuticle and cell wall 

structure during development or in response to industrial processing (Heredia-Guerrero et al. 2014; 

Largo-Gosens et al. 2014). In this regard, MIR biospectroscopy will prove useful for deciphering 

the molecular details of changing epidermal structures during tomato fruit development and 

ripening. This is critical because the detailed mechanisms behind cuticle formation are debated, 

and little is known about the relationship between cuticle structure and postharvest characteristics 

in whole tomato fruit (Dominguez et al. 2015; Lara et al. 2014). 

As a method for in vivo analysis, as demonstrated here on delicate tomato fruit, ATR-FTIR 

spectroscopy can measure large groups of compounds in epidermal structures of whole tomato 

fruit. Exploratory discriminant analysis (PCA-LDA) associated these groups of compounds with 

specific biomarkers of tomato fruit development and ripening identifying both common and unique 

spectral features reflecting the distinct changes occurring during tomato fruit development and 

ripening. The various compounds reflected by the fingerprint spectra can be tentatively assigned 

to components from epidermal surface layers including the cuticle and cell wall. As part of the 

intact cutinized cell wall, compounds including cutin, waxes, phenolics, cellulose, pectin, and 

lignin were present, which showed major alterations although qualitative interpretation of spectral 

biomarkers remains challenging due to limitations in our knowledge of how the cell wall-cuticle 

complex changes during fruit development (Dominguez et al. 2015; Segado et al. 2016). 

Nevertheless, epidermal layers play important roles in the quality of fruit, as well as in the 

determination of horticultural grades at various points of tomato fruit development (Lara et al. 

2014). Automatic grading of the defined tomato fruit groups was evaluated using the SVM 

classification model indicating that development and ripening can be distinguished at a minimum 

of 15 separate stages (9 for development and 6 for ripening). Importantly, all analyses were entirely 

non-destructive and were performed using a compact portable ATR-FTIR spectrometer suggesting 

the potential for field-based analysis.  
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Most elements needed to transition this approach from a lab-based analytical method to an 

applied sensor technology for routine monitoring are already available including portable 

spectrometers, fast data analysis tools, and the minimal to no sample preparation required for most 

crop plants making this a realistic possibility. To realize this potential, application of 

biospectroscopy to additional model plant systems is needed alongside the evaluation of new 

portable equipment, similar to that recently developed for Raman spectroscopy (Farber and 

Kurouski 2018). With these advances, rapid analysis with optical sensors such as MIR 

spectroscopy will further permit the automatic characterization of healthy fruit development, and 

enabling abnormalities related to damage or disease to be reliably identified. In addition, further 

development of biospectroscopy in the plant and crop sciences will contribute to a better biological 

and biochemical understanding of plant surface layers, and how these affect the traits of plant 

organs such as fruit; thereby, contributing to both molecular plant biology and industrial 

horticulture for better crop production. 

 

3.5 Methods 

 

3.5.1 Plant Growth Conditions 

Individual tomato plants, Solanum lycopersicum cv. Moneymaker, were grown from 

commercial seed (Thompson and Morgan Seeds, UK) in 10 L pots containing Levington’s M3 

growth medium (Levington Horticulture Ltd, Ipswich, UK) to anthesis (approx. 60 days). Plants 

were grown in a heated glasshouse (25 ± 5 °C) with an 18/6 h day/night cycle (minimum 

illumination 500 µmol m-2 s-1 at the plant canopy from 600 W metal-halide lamps) and 50 ± 10% 

humidity. Tomorite fertilizer (Levington Horticulture Ltd, Ipswich, UK) was applied from 

anthesis, at every other watering according to the manufacturer’s instructions. Criteria for 

development and ripening stages was dpa, where the initial class was measured at 4 dpa and 

subsequent classes were separated by 4 days of growth for both the development and ripening 

series respectively. Tomato fruit parameters used in the selection process were recorded for 

development and ripening sets corresponding to those shown in Figure 3.1 and are found in Table 

S3.4 and S3.5.  
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3.5.2 ATR-FTIR Spectroscopy 

Tomato fruit were picked from plants, washed with deionized water, dried and immediately 

measured using ATR-FTIR spectroscopy. Vibrational spectra were acquired from intact tomato 

fruit at 9 developmental stages (DS01-DS09) and 6 ripening stages (RS01-RS06). Whole tomato 

fruit were placed on the sample stage for analysis, with no more than 0.1 kg of applied pressure to 

ensure adequate sample contact. Five points from each fruit were measured around the 

circumference; two spectra were taken at each contact point for a total of 10 measurements per 

fruit. Ten fruits were analyzed, for a total of 100 spectra for each developmental and ripening stage 

making a total of 900 spectra for the development dataset (9 classes) and 600 spectra for the 

ripening dataset (6 classes). Spectra were acquired using a compact portable Bruker Alpha-P 

infrared spectrometer with platinum ATR attachment (Bruker Optics, Coventry, UK), over the 

range 4000-400 cm-1 with a spectral resolution of 8 cm-1, 32 co-additions and a mirror velocity of 

7 kHz. Background spectra were taken prior to sample measurement to account for ambient 

atmospheric conditions. The diamond ATR crystal defined a spatial resolution (sampling area) of 

1 mm2 and was cleaned between measurements with ATR cleaning wipes containing isopropyl-

alcohol (Bruker Optics, Coventry, UK).  

 

3.5.3 Computational Analysis 

Raw spectra truncated to the spectral fingerprint region (1800–900 cm-1) were pre-

processed using the Savitzky-Golay filter and second order differentiation, followed by vector 

normalization to account for differences in sample thickness and ATR diamond contact pressure. 

PCA-LDA was used for exploratory data analysis and biomarker extraction. PCA-LDA was 

performed using the open source IRootlab toolbox (https://github.com/trevisanj/ irootlab) 

specialized for analysis of IR spectra (Trevisan et al. 2013), in conjunction with Matlab 2016a 

(The Maths Works, MA, USA). Principal component analysis reduces the dataset down to factors 

that account for spectral variance; PCA was optimized using IRootlab to ensure the inclusion of 

the primary dataset variance within the first 10 PCs. The first 10 PCs accounted for more than 97% 

and 95% of variance in the development and ripening datasets, respectively (Table S3.6). These 

served as input variables for LDA forming the composite technique PCA-LDA (Trevisan et al. 

2012). Exploratory analysis by way of cluster separation along the three main linear discriminants 
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(LD1, LD2, and LD3) was explored, to determine whether specific clustering of spectral groups, 

belonging to developmental and ripening stages, could be observed. PCA-LDA scores were cross 

validated 10 k-folds. For a qualitative characterization of the main spectral alterations, PCA-LDA 

loadings in combination with a peak-pick algorithm (20 cm-1 minimum separation) was used to 

tabulate the top six most prominent vibrational mode alterations, and their corresponding chemical 

assignments, which were used as tentative biomarkers for development and ripening (Kelly et al. 

2011).  

Testing of classification accuracy of DS01-DS09 and separately RS01-RS06 stages with 

SVM was conducted using the PLS toolbox version 7.9 (Eigenvector Research, Inc., WA, USA); 

in conjunction with Matlab 2016a. Classification of developmental and ripening stages was 

performed using an SVM classifier. The SVM classifier was constructed using 90% of data for 

training and 10% for internal validation. The same data used for PCA-LDA, pre-processed 

fingerprint spectra, were used as input for SVM. This model was developed to improve on the 

classification performance of PCA-LDA (Table S3.1-S3.3 and Figures S3.1-S3.2). SVM was 

cross-validated using 10 k-folds. 

 

3.6 Supplementary Materials 

 

Table S3.1 Predictive performance presented as sensitivity and specificity rates calculated for the 

PCA-LDA chemometric model intended to differentiate tomato fruit developmental and ripening 

stages from their ATR-FTIR spectral data. 

 Grouped data Cross-validation 

Developmental 

Stage (dpa) 

Sensitivity Specificity Sensitivity Specificity 

DS01 (04) 100% 100% 100% 100% 

DS02 (08) 63% 99% 63% 99% 

DS03 (12) 92% 95% 92% 95% 

DS04 (16) 85% 100% 84% 100% 

DS05 (20) 79% 99% 79% 99% 

DS06 (24) 90% 98% 90% 98% 

DS07 (28) 69% 98% 69% 98% 
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DS08 (32) 86% 93% 86% 93% 

DS09 (36) 97% 100% 97% 100% 

Ripening Stage Sensitivity Specificity Sensitivity Specificity 

Mature Green 100% 100% 100% 100% 

Breaker 100% 98% 100% 98% 

Turning 100% 100% 100% 100% 

Pink 90% 100% 89% 100% 

Light Red 100% 100% 100% 100% 

Red 100% 100% 100% 100% 

 

 

Table S3.2 Predictive performance presented as sensitivity and specificity rates calculated for the 

SVM chemometric model intended to differentiate tomato fruit developmental stages from their 

ATR-FTIR spectral data.  

Developmental Stage (dpa) Sensitivity Specificity 

DS01 (04) 100% 100% 

DS02 (08) 100% 100% 

DS03 (12) 100% 100% 

DS04 (16) 100% 100% 

DS05 (20) 100% 100% 

DS06 (24) 100% 100% 

DS07 (28) 100% 100% 

DS08 (32) 100% 99% 

DS09 (36) 99% 100% 
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Table S3.3 Predictive performance presented as sensitivity and specificity rates calculated for the 

SVM chemo-metric model intended to differentiate tomato fruit ripening stages from their ATR-

FTIR spectral data.  

Ripening Stage Sensitivity Specificity 

Mature Green 100% 100% 

Breaker 100% 100% 

Turning 100% 99% 

Pink 99% 100% 

Light Red 100% 100% 

Red 100% 100% 

 

 

 

Figure S3.1 Class predictive probability results for individual spectral classes for development (in 

order DS01-DS09). 
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Figure S3.2 Class predictive probability results for individual spectral classes for ripening (in 

order RS01-RS06).  

 

Table S3.4 Development stages of tomato fruit Solanum lycopersicum (cv. Moneymaker), 

corresponding spectral classes, and their AMS (USDA) grade designation (Kader and Morris 1976; 

Sargent and VanSickle 1996; Maul et al. 1998)  

Developmental 

Stage (dpa) 

Spectral 

Class 

Average Weight 

(grams) 

Average 

Diameter (cm) 

AMS (USDA) 

Classification 

04 DS01  2.8 ± 0.2 0.62 ± 0.02 M-1 

08 DS02 4.9 ± 0.1 1.16 ± 0.03 M-1 

12 DS03 6.8 ± 0.1 1.96 ± 0.07 M-2 

16 DS04 12.8 ± 0.2 2.99 ± 0.04 M-2 

20 DS05 21.5 ± 0.3 4.84 ± 0.09 M-2/M-3 

24 DS06 51.6 ± 0.2 5.39 ± 0.08 M-3 (small) 

28 DS07 88.2 ± 0.5 6.41 ± 0.13 M-3 (medium) 

32 DS08 145.7 ± 1.0 7.01 ± 0.07 M-3 (large) 

36 DS09  176.8 ± 2.3 7.71 ± 0.05 M-4 (extra-large) 
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Table S3.5 Ripening stages of tomato fruit Solanum lycopersicum (cv. Moneymaker), 

corresponding AMS (USDA) ripening and spectral class designation (Sargent and VanSickle 

1996; Maul et al. 1998). Fruit used for ripening stages had an average diameter of 7.31 ± 0.24cm. 

Ripening 

Stage 

Spectral 

Class 

AMS/USDA Description 

Mature Green RS01 Fruit surface is completely green; shade may vary light to 

dark  

Breaker RS02 Break in color from green to tannish-yellow, pink, or red on 

not more than 10% of the surface color 

 

Turning 

 

RS03 

10%-30% of the surface is not green; the aggregate shows a 

definite change from green to tannish-yellow and/or 

pink/red color 

Pink RS04 30%-60% of the surface is not green; the aggregate, shows 

pink or red color 

Light Red RS05 60%-90% of the surface is not green; the aggregate shows 

pinkish-red or red color 

Red (Ripe) RS06 > 90% of the surface is not green; aggregate shows red 

color 

 

Table S3.6 Percentage of variance for PCA-LDA models varying the number of PCs. 

 Developmental Stage (dpa) Ripening Stage 

PC Variance 

(%) 

Cumulative Variance 

(%) 

Variance 

(%) 

Cumulative Variance 

(%) 

1 63.80 63.80 49.15 49.15 

2 16.77 80.58 37.01 86.15 

3 8.77 89.35 3.39 89.54 

4 3.60 92.94 1.57 91.12 

5 2.34 95.28 1.35 92.47 

6 1.00 96.28 0.86 93.33 
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7 0.62 96.91 0.69 94.02 

8 0.49 97.39 0.57 94.59 

9 0.32 97.71 0.44 95.03 

10 0.25 97.96 0.35 95.38 
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Abstract 

Plant-environment interactions are essential to understanding crop biology, optimizing 

crop use, and minimizing loss to ensure food security. Damage-induced pathogen infection of 

delicate fruit crops such as tomato (Solanum lycopersicum) are therefore important processes 

related to crop biology and modern horticulture. Fruit epidermis as a first barrier at the plant-

environment interface, is specifically involved in environmental interactions and often shows 

substantial structural and functional changes in response to unfavorable conditions. Methods 

available to investigate such systems in their native form however are limited by often required 

and destructive sample preparation, or scarce amounts of molecular level information. To explore 

biochemical changes and evaluate diagnostic potential for damage-induced pathogen infection of 

cherry tomato (cv. Piccolo) both directly and indirectly; mid-infrared (MIR) spectroscopy was 

applied in combination with exploratory multivariate analysis. ATR-FTIR fingerprint spectra 

(1800-900 cm-1) of healthy, damaged or sour rot infected tomato fruit were acquired and 

distinguished using principal component analysis and linear discriminant analysis (PCA-LDA). 

Main biochemical constituents of healthy tomato fruit epidermis are characterized while 

multivariate analysis discriminated subtle biochemical changes distinguishing healthy tomato 

from damaged, early or late sour rot infected tomato indirectly based solely on changes in the fruit 

epidermis. Sour rot causing agent Geotrichum candidum was identified directly in vivo and 

characterized based on spectral features distinct from tomato fruit. Diagnostic potential for indirect 

pathogen detection based on tomato fruit skin was evaluated using the linear discriminant classifier 

(PCA-LDC). Exploratory and diagnostic analysis of ATR-FTIR spectra offers biological insights 

and detection potential for intact plant-pathogen systems as they are found in horticultural 

industries. 

  

Key words: MIR spectroscopy, plant-pathogen interaction, multivariate analysis, crop biology, 

Geotrichum candidum 
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4.1 Introduction 

Providing food security for a rapidly growing global population of which a large fraction 

is malnourished is one of the greatest challenges in the modern era (IFPRI 2017). Conventional 

solutions such as increased land clearing and increasing usage of pesticides to produce sufficient 

food are unfavorable due to their environmental impacts and long-term unsustainability. Thus, 

novel alternatives are needed to efficiently produce the approximately 70% more food needed by 

2050 (Beuchelt and Virchow 2012). Crop loss to pests and pathogens throughout food 

production/supply represent a major threat to this aim. Pests and pathogens may reduce crop yield 

by 80%, thereby presenting a significant challenge to crop productivity (Oerke 2006). Detection 

of pests and pathogens within pre- and post-harvest settings is therefore essential to minimize the 

impacts on crop production. The post-harvest consumer stage can be viewed as one of the most 

critical points during food production/supply, because maximum resource allocation has occurred 

at this point, making plant-pathogen interactions especially relevant at this stage. Current methods 

for diagnosing crop health include remote sensing, molecular-based methods and complex 

analytical techniques all of which have drawbacks. Remote sensing, including hyperspectral 

imaging and thermography, are highly responsive to environmental conditions and distance to the 

measured object making it difficult to determine disease specificity (Mahlein 2016). Molecular 

based techniques (for example, polymerase chain reaction (PCR), fluorescent in situ hybridization 

(FISH), and enzyme-linked immunosorbent assay (ELISA) are time consuming and prone to 

contamination (Chitarra and Van Den Bulk 2003; Schaad and Frederick 2002; Wallner et al. 1993). 

Complex analytical methods, for example gas or liquid chromatography coupled to mass 

spectrometry (GC/LC-MS), require extensive sample preparation and are difficult to use in the 

field (Martinelli et al. 2015). 

The development of flexible, non-destructive sensors capable of providing adequate 

detection sensitivity and pathogen specificity are keys goal for the detection of crop pathogens 

(Mahlein 2016; Skolik et al. 2018). This includes the ability to detect early effects of plant stress 

or disease, to differentiate between the effects of abiotic and biotic stresses and between different 

diseases, and to quantify the severity of the stress or disease (Mahlein 2016). While various 

molecular and imaging techniques to detect crop pathogens are under development, the limitations 

of many analytical methods combined with the above criteria for sensor technologies, has led to 



144 
 

the development of label-free, non-destructive spectroscopic techniques that provide information 

about the chemical structure of analysed samples. The spectroscopic approach, originating in 

analytical chemistry, has been translated to the biological sciences mainly through advancements 

in computational analysis and the ability to measure live samples (Chan and Kazarian 2016). 

Application of these techniques to model plant and crop systems has the potential to both provide 

novel insight into plant-pathogen interactions, whilst generating a large number of variables for 

autonomous classification of disease states for detection of pests and pathogens. 

Mid-infrared (MIR) spectroscopy has made substantial headway in the biological sciences 

as a non-destructive and rapid bioanalytical sensor technology (Martin et al. 2010). This is because 

MIR spectra have been effective at providing molecular insights into biological systems, while 

providing a large number of variables on which to discriminate samples. More recently, 

spectrochemical techniques have made substantial progress in the plant and crop sciences, 

specifically with regard to the analysis of dynamic processes and plant biology-related to crop 

production (Butler et al. 2015; Butler et al. 2017; Ord et al. 2016; Skolik et al. 2018). This has 

been effective mainly through the development of new data analysis methods including 

multivariate analysis. For MIR biospectroscopy, data analysis can be split into two main types: 

exploratory and diagnostic. Exploratory analysis is aimed primarily at data visualization and 

pattern recognition (Trevisan et al. 2012). Diagnostic analysis employs the use of classifier 

algorithms to evaluate the potential for diagnosis of sample condition (healthy versus diseased for 

example) (Trevisan et al. 2012). While the two frameworks typically have different objectives, 

they are closely linked and in general, the exploratory precedes the diagnostic framework. Among 

the many available data analysis options, unsupervised principal component analysis (PCA) and 

supervised linear discriminant analysis (LDA) have been used alone or in combination to 

successfully investigate a large number of biological phenomena based on MIR data (Li et al. 

2015; Strong et al. 2017). Both PCA and LDA have formed core components of biospectroscopy 

data analysis. Related classifiers including support vector machine (SVM) and linear discriminant 

classifier (LDC) have also found ample application in the diagnostic framework. Such 

advancements have highlighted the potential for MIR biospectroscopy as an effective sensor 

technology for the plant and crop sciences (Skolik et al. 2018). Despite this progress, the number 

of investigations on intact samples has been limited, which is arguably an important prerequisite 

for the development of fully non-destructive horticultural sensors, and thus more research on intact 
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samples is required. Recently, both attenuated total reflection Fourier-transform infrared (ATR-

FTIR) and Raman spectroscopy have been favored for studying intact samples of important crops 

(Butler et al. 2015; Ord et al. 2016; Fu et al. 2016; Trebolazabala et al. 2013). Raman spectroscopy 

is a complementary method to FTIR spectroscopy and the two are often combined for a more 

robust analysis, as each have specific drawbacks due to the distinct light-matter interactions they 

measure (Baker et al. 2014; Butler et al. 2016). Compared to macro-FTIR, Raman scattering as a 

low probability event can be highly variable, prone to interference from fluorescence, featuring a 

small measurement area typically between 20-30 µm, and uses more intense laser powers 

potentially leading to photobleaching (tissue decomposition) of delicate organic samples (Butler 

et al. 2016; Yeturu et al. 2016). Nevertheless, a strong case has been made by previous experiments 

demonstrating the effectiveness of Raman spectroscopy for direct detection of microbial pathogens 

in intact crops (Egging et al. 2017; Faber and Kurouski 2018; Yeturu et al. 2016). While direct 

detection of a plant-pathogen interaction generates spectral changes suitable for disease detection, 

indirect detection of plant infection through spectral changes in tissues because of pathogen attack 

remains difficult but offers a novel approach especially for early or pre-symptomatic stages of 

disease (Skolik et al. 2018). ATR-FTIR has the advantage of macro-measurements increasing the 

measurement area while also affording a very defined magnitude of light penetration into the 

sample (Kazarian and Chan 2013; Chan and Kazarian 2016) This may be more suitable for analysis 

at the whole-plant level as many experiments still rely on previous removal (cutting) of leaves and 

fruit, which is not truly non-destructive (Trebolazabala et al. 2017; Yeturu et al. 2016). It is 

therefore essential to evaluate Raman complementary methods such as FTIR, as a combination 

approach can overcome the limitations of a single technique, as well as the variable nature of crops 

and plant-pathogen systems covered by modern agriculture.  

Here we use ATR-FTIR spectroscopy to study the effects of damage and ambient infection 

by the sour rot causing agent G. candidum, both directly and indirectly, in commercially obtained, 

consumer-stage (red ripe) intact cherry tomatoes. Conventional spectral analysis for the 

characterization of main absorbance peaks of tomato and fungus G. candidum is followed by 

exploratory and diagnostic multivariate analysis to probe subtle biochemical changes induced 

indirectly by damage and infection. Changes to the surface of tomato fruit are characterized in 

response to damage and sour rot infection using the tandem technique of PCA-LDA to maximize 

inter-class differences between damage, infected, and control fruit. The diagnostic potential of this 



146 
 

approach is evaluated using the tandem classifier PCA-LDC, to distinguish damaged and infected 

tomato fruit from healthy controls indirectly and autonomously. 

 

4.2 Materials and Methods 

 

4.2.1 Sample Preparation and Storage 

Vine cherry tomatoes cv. Piccolo were obtained from a local supermarket (Sainsbury’s 

Lancaster Main Store, UK). All analyses were performed prior to the advertised expiration date, 

which at the time of purchase presented a window of 8 days. Tomatoes were removed from their 

commercial packaging taken off the vine and adapted to room temperature (23 ±1⁰C) and 35-40% 

relative humidity for 2 h prior to initial analysis. Loose tomatoes were split into two sets, a control 

series accounting for changes occurring in naturally ripening tomatoes over the analysis timeframe 

(Figure 4.1a-c). As well as a set of tomatoes punctured through the stem scar, at 0 h, to a depth of 

approximately 1 cm with a 21-gauge sterile syringe needle leaving the remainder of the skin intact 

(Figure 4.1d). Damaged tomatoes were thus susceptible to ambient infection at the puncture site, 

which was visible starting at 48 h post puncture, and full colonization of the punctured stem scar 

was observed at 96 h post puncture (Figure 4.1f). Control and damaged tomatoes were dark stored 

in cardboard boxes under identical conditions to compare pathogen development and allow stem 

scar infection with ambient fungal spores. Damaged tomato fruit (0 h) were subsequently analyzed 

opposite their shelf-life matched controls, allowed to age naturally, at 48 and 96 h post puncture, 

to assess pathogen infection caused by initial damage. Prior to analysis, tomato fruit were washed 

thoroughly with de-ionized water to remove dust and debris, as well as fungal growth and fluid 

exudate present on fruits at the early infection (48 h) and late infection (96 h) stages, prior to 

spectral acquisition, in order to characterize changes in fruit skin, without contribution from the 

fungus itself (analyzed separately) or exudates from the site of infection. The fungal-fruit complex 

on fully colonized tomatoes at 96 h post puncture (Figure 4.1f) was analyzed to obtain spectra 

from the fungus in its native state on tomato fruit. 
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Figure 4.1 Symptoms associated with tomato fruit damage (d), early (e), and late (f) infection of 

tomato fruit by G. candidum compared to their age-matched controls (a-c). 

 

4.2.2 ATR-FTIR Spectroscopy 

MIR spectra were acquired from intact tomato fruit, using a Bruker Tensor 27 IR 

spectrometer with Diamond ATR Helios attachment (Bruker Optics, Coventry, UK). Spectra were 

acquired over the range 4000-400 cm-1 with a spectral resolution of 8 cm-1, 3.84 cm-1 data spacing, 

32 co-additions and a mirror velocity of 2.2 kHz for optimum signal to noise ratio (Martin et al. 

2010; Baker et al. 2014). Background spectra were taken prior to each sample to account for 

ambient atmospheric conditions. The diamond ATR crystal defined a spatial resolution (sampling 

area) of approximately 250 µm × 250 µm. Whole fruit were placed on the sample stage with no 

more than 0.1 kg of applied pressure. Between sample measurements, ATR cleaning wipes 

containing isopropyl-alcohol (Bruker Optics, Coventry, UK) were used to clean the ATR diamond 

crystal between measurements. Five points from around the fruit circumference were measured, 

two spectra from each of the 5 points for a total of 10 measurements per fruit. Ten (10) spectra per 

fruit generally supply enough replicates for PCA-LDA analysis, which provide intra-class 
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differences (i.e. variance specific to 0 h control vs 0 h damage, 48 h control vs 48 h early infection, 

and 96 h control vs 96 h late infection) while minimizing the effect of natural tissue heterogeneity 

potentially masking the subtle effects underpinning plant response to pathogen. Six fruits were 

measured for each treatment group. Measurements of G. candidum were taken in vivo without 

modification as part of the tomato-pathogen complex at late infection state (96 h post-puncture). 

The fungal mass completely covered the ATR crystal during measurements; six separate samples 

(10 spectra from each fungal sample) of G. candidum were measured to obtain a representative in 

vivo spectrum. 

 

4.2.3 Pre-Processing and Computational Analysis 

All computational analysis was conducted using the open source IRootlab toolbox 

(https://github.com/trevisanj/irootlab) specialized for analysis of IR spectra (Trevisan et al. 2013), 

in conjunction with Matlab 2016 (The Math Works, MA, USA), unless otherwise stated. Raw 

spectra were truncated to the spectral fingerprint region between 1800–900 cm-1, which is the 

primary region where biomolecules absorb IR radiation. Fingerprint spectra were pre-processed 

using the Rubber band-like baseline correction algorithm and maximum normalized to account for 

differences in sample thickness and ATR diamond contact pressure. Class mean spectra were used 

for direct analysis. Exploratory PCA reduces the dataset down to factors that account for spectral 

variance; PCA was optimized using the IRootlab pareto function, where the first 10 PCs accounted 

for more than 99% of the variance in the dataset [see Supporting Information (SI) Figure S4.1]. 

These served as input variables for LDA forming the composite technique PCA-LDA (Trevisan et 

al. 2012). While PCA reduces the complexity of the spectral data, it is unsupervised, does not 

account for class labels, views all classes as one and therefore does not distinguish between control, 

damaged, or infected tomatoes for the purposes of extracting class specific differences (Trevisan 

et al. 2012). Combined with a supervised approach, LDA following PCA (PCA-LDA), maximizes 

the spectral differences between classes (control vs damage/infected), and thus allows the 

extraction of the class-specific biomarkers associated with damage and subsequent sour rot (Martin 

et al. 2010; Kelly et al. 2011; Trevisan et al. 2012). Pairwise comparisons between two classes 

generate one linear discriminant (LD), which summarizes the main class-specific differences 

between control and afflicted tomato fruit. This linear discriminant can be visualized as cluster 

plots, where each spectrum is defined as a point where overlap and separation of points indicate 
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similar or dissimilar features respectively (Trevisan et al. 2012). PCA-LDA loadings provide a 

‘spectrum-like’ graph indicating the wavenumbers at which variance between classes is most 

pronounced, as indicated by the peak magnitude (variance). Peak maxima are used as ‘spectral 

biomarkers’ indicative of the biological process under investigation (Kelly et al. 2011).  

Exploratory analysis by way of cluster separation along LD1 was explored, to determine 

whether significant alterations between control and damaged/infected groups were evident. In each 

case, a pairwise comparison conducted of damaged, early, and late infected tomatoes at 0, 48, and 

96 h, with their shelf-life matched controls. For a characterization of the main spectral alterations, 

PCA-LDA loadings, in combination with a peak-pick algorithm (20 cm-1 minimum separation) 

identifying peak maxima, was used to tabulate the top six most prominent wavenumber alterations 

(spectral biomarkers). Identified spectral biomarkers were given chemical assignments matched to 

previously characterized spectral biomarkers, considering parameters including species, tissue 

type, instrumentation (method, measurement area, interrogation depth, data analysis), and 

biological interaction (plant-pathogen).  

Group classification was evaluated using PCA in combination with a linear discriminant 

classifier (PCA-LDC), which tests autonomous classification accuracy based on spectral 

differences (Butler et al. 2017; Gajjar et al. 2013; Friedman et al. 2001). PCA-LDA and PCA-LDC 

were cross-validated using 10 k-folds. Further information regarding analysis of biospectroscopy 

data can be found at (https://github.com/trevisanj/irootlab) and in the literature (Trevisan et al. 

2012; Kelly et al. 2011).  

To test for statistically significant differences in PCA-LDA scores along the primary LD 

between controls, damaged, and infected tomato, LD1 scores for each biological sample were 

averaged and tested for significance using unpaired two-tailed t-tests (Graphpad, Prism 2014). 

 

4.3 Results and Discussion  

 

4.3.1 Spectral Characterization of Surface Structures of Intact Tomato Fruit Solanum 

lycopersicum  

Spectra from whole tomato fruit surface structures reflect prominent biochemical 

components present in the cuticle and cell wall. There were no differences visible in the appearance 

of control, undamaged tomato fruit during the 96 h analysis window (Figure 4.1a-c).  In contrast, 
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damaged tomato (0 h) had a small puncture wound from the syringe at which fungal infection 

developed (Figure 4.1d-f).  Figure 4.2 shows the primary absorbance intensities of intact tomato 

fruit corresponding to Figure 4.1; for the control set at 0, 48, and 96 h (Figure 4.2a) and damaged 

(0 h), early infected (48 h), and late infected (96 h) (Figure 4.2b) over the baseline corrected and 

normalized ATR-FTIR fingerprint spectrum over the region (1800-900 cm-1). Comparison of 

spectra from both control and damage/infected classes shows that the top six main vibrational 

bands, and chemical assignments, were identical as depicted in Figure 4.2 and Table 4.1. 

Absorbance intensities shown in Figure 4.2 and assigned in Table 4.1 reflect prominent 

biochemical components of plant surface structures including cutin, phenolic compounds, waxes, 

and potentially volatile organic chemicals (VOCs) (Baldassarre et al. 2015). Several of these 

compounds had been identified previously from the inner or outer face of isolated tomato cuticles 

(España et al. 2014; Heredia-Guerrero et al. 2014); despite differences in spectral resolution and 

equipment used to characterize isolated tomato cuticles (España et al. 2014). This is consistent 

with the thickness of the cuticle during the late red ripe stage of tomato fruit (España et al. 2014; 

Heredia-Guerrero et al. 2014) and the shallow interrogation depth of the ATR-FTIR beam (~1-

3μm). Cuticle components readily identified include vibrational modes associated with the main 

polymer cutin at wavenumbers 1728, 1462, 1165, and 1103 cm-1 (España et al. 2014; Heredia-

Guerrero et al. 2014). Phenolic compounds are among other cuticle constituents that strongly 

absorb IR radiation, and were identified by absorption at 1605 cm-1 (España et al. 2014; Heredia-

Guerrero et al. 2014). We also identified an absorption peak at 1223 cm-1 that is not present in 

isolated cuticle (Heredia-Guerrero et al. 2014) but which has been previously associated with 

monoterpenes, more specifically geranyl-acetate, a structural component of many VOCs (Ord et 

al. 2016; Rodríguez et al. 2013; Schulz and Baranska 2007). Tomato fruit produce a characteristic 

profile of secondary metabolites including VOCs during ripening (Petro-Turza, 1986; Buttery et 

al. 1987, 1990) and it is likely that monoterpenes characteristic of VOCs present at the red-ripe 

stage, represent a unique contribution to the fingerprint spectrum of intact tomato fruit compared 

to isolated cuticle (Rodríguez et al. 2013). Alternatively, it is possible that the absorption at 1223  

cm-1 may simply be a broad absorption band related to the previously identified δ(OH) mode 

between 1246-1243 cm-1 associated with both cutin and polysaccharides (Heredia-Guerrero et al. 

2014). Both cuticle and underlying plant layers including the cell wall have been well studied using 

MIR based biospectroscopy (Heredia-Guerrero et al. 2014; Largo-Gosens et al. 2014). However, 
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due to several caveats, the number of studies on intact, and hence physiologically competent, 

samples have been limited, limiting also the development of vibrational spectroscopy for applied 

horticulture (Skolik et al. 2018). Characterizing spectral features of tomato fruit in vivo, such as 

the cuticle, provides a first but important step in this endeavor and will contribute significantly to 

the sustainability of crop protection measures. Yet the role of the cuticle, and other epidermal 

structures as part of the tomato fruit skin, in post-harvest quality, shelf-life, and pathogen 

susceptibility remains debated especially at the molecular level, in part due to the difficult nature 

of this recalcitrant layer and the intimate relationship with the underlying cell wall (Dominguez et 

al. 2015; Lara et al. 2014). To shed light on this, analytical surface techniques such as ATR-FTIR 

spectroscopy are ideal, as demonstrated by the ability to measure delicate intact fruit truly non-

destructively in vivo using ATR-FTIR (Figure 4.2). But before the molecular in vivo details can be 

uncovered, surface characterization of intact fruit is necessary to aid the interpretation of more 

subtle changes hidden in the spectral data, which can only be extracted through multivariate 

analysis, similar to how previous cuticle component characterization aids the interpretation of the 

tomato fruit skin in vivo shown in Figure 4.2 (Heredia-Guerrero et al. 2014). Comparing between 

isolated constituents and their native arrangements, in fruit or otherwise, will remain necessary to 

aid in the identification of candidate target compounds to serve as spectral biomarkers for varying 

conditions, especially dynamic physiologically driven ones, including plant-pathogen interactions. 

It is therefore important to characterize the candidate plant compounds being measured by 

biospectroscopy techniques, for appropriate interpretation of spectral data from physiologically 

competent samples in vivo. Further, indirect detection of damage to the fruit surface (cuticle, cell 

wall, epidermis) and pathogens affecting crops, such as tomato which are easily compromised by 

damage leading to infection, would be of utmost interest for commercial development. Once 

characterized, changes in the MIR signature caused by abnormalities such as damage, pathogen 

infection, or stress, will prove useful for monitoring fruit condition as it pertains to shelf life 

through the post-harvest food system, thereby improving crop utilization. 
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Figure 4.2 ATR-FTIR spectrum of intact tomato fruit S. Lycopersicum cv. Piccolo, over the 

fingerprint region (1800-900 cm-1); a control series at 0 (light grey), 48 (grey), and 96 (black) h; 

b 0 h damaged (light grey), 48 h early infection (grey), and 96 h late infection (black). 
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Table 4.1 Primary absorbance peaks of intact tomato fruit S. Lycopersicum cv. Piccolo 

Wavenumber (cm-1) Vibrational Mode Biochemical Assignment References 

1728 ν(C=O)     ester Cutin [1], [2], [3] 

1605 ν(C-C)      aromatic Phenolic compounds, Pectin [1], [2], [4] 

1462 δ(CH2)      scissoring Cutin and other waxes, 

Polysaccharides 

[1], [2], [4] 

1223 νa(C-O-C) ester          Monoterpene [2], [3], [4] 

1165 νa(C-O-C) ester Cutin, Cellulose, Pectin [1], [2], 

[3], [4] 

1103 νs(C-O-C) ester Cutin, Cellulose, Pectin [1], [2], 

[3], [4] 

[1] Heredia-Guerrero et al. 2014; [2] Movasaghi et al. 2008; [3] Ord et al. 2016; [4] Schulz and 

Baranska 2007  

 

4.3.2 Spectral Alterations Associated with Tomato Fruit Damage and Sour Rot Infection by 

Geotrichum candidum 

The MIR spectrum of fruit surface structures is altered in response to damage through the 

stem scar and subsequent infection by G. candidum. Artificially damaged tomatoes (Figure 4.1b), 

exposed to ambient conditions showed no initial signs of fungal infection after 24 h (data not 

shown), whilst at 48 h post-puncture (early infection) clear signs of infection were evident around 

the puncture site (black arrows) (Figure 4.1d), and at 96 h post-puncture (late infection) substantial 

pathogen growth had covered the puncture site (Figure 4.1f). Based on visible symptoms starting 

at 48 h post puncture (Figure 4.1d, f) the pathogen was determined to be G. candidum, a non-

specific fungus known as a ubiquitous contaminant of tomato processing equipment (Thornton et 

al. 2010). Because the mean spectra of control and damage/infected tomatoes (Figure 4.2a and 

4.2b) were nearly identical, with respect to direct comparison of main vibrational bands (Figure 

4.2 and Table 4.1), PCA-LDA was employed to investigate if class-specific effects were detectable 

between control and compromised tomatoes. This approach was intended to determine if any 

changes caused by damage and pathogen infection were observable indirectly without 

contributions from the fungus itself.  
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Class specific differences for damage, early, and late infection were observed for tomato 

fruit compared to their healthy counterparts, as determined by multivariate analysis using PCA 

and LDA in tandem (PCA-LDA). Pairwise comparisons (class versus control) lead to the 

generation of a single LD, in this case generating three PCA-LDA scores plots (Figure 4.3a-c). 

Figure 4.3 shows a clear separation of clusters belonging to each paired class, indicating 

differences in spectra acquired from controls and damaged, early, and late infected (Figure 4.3a, 

b, and c respectively). Separation along LD1 indicates significant differences within fingerprint 

spectra, which are specific to damage and infection. PCA-LDA scores plots reveal significant data 

cluster separation, with statistical differences between damaged (p=0.003), early infected 

(p=0.0001), and late infected (p=0.0003) fruit, compared to their shelf-life matched controls. This 

suggests that spectral changes are most pronounced for the early infected stage, showing the largest 

degree of separation along LD1 (Figure 4.3b), followed by the late infected stage (Figure 4.3c) 

and damaged fruit (Figure 4.3a) respectively. Loadings plots (Figure 4.3d-f) indicate the 

wavenumber regions responsible for the observed cluster separation within the PCA-LDA scores 

plots (Figure 4.3a-c) (Martin et al. 2007; Trevisan et al. 2012). Wavenumbers identified through 

peaks within loading pots, represent the areas with the highest degree of variance. Table 4.2 

summarizes the top six discriminating wavenumbers identified from PCA-LDA loadings plots. 

These top six wavenumbers, identified via the peak picking algorithm described, are assigned as 

tentative spectral biomarkers responsible for the class-specific differences. Spectral biomarkers 

identified by PCA-LDA were considered a match if these were within ±10 wavenumbers of those 

identified within the other classes. It is noteworthy that because PCA-LDA potentially extracts 

very subtle differences within complex tissue architectures, biomarkers identified this way may 

not originate from the prominent cuticle components evident in the fingerprint spectra shown in 

Figure 4.2 but may represent small fractions of molecules embedded in the epidermal matrix. For 

this reason and without extensive validation of their origin, biomarkers are assigned tentatively. 
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Figure 4.3 PCA-LDA 1-dimensional scores plots showing class specific cluster separation 

indicative of spectral differences between damaged, early, and late infection opposite their shelf-

life matched controls (a-c); corresponding loadings show specific wavenumbers responsible for 

clustering along LD1 (d-f). 

 

Several wavenumbers identified for the various fruit conditions showed overlap, where 

biomarkers as discriminators for initial damage were also identified as discriminators for early and 

late infection. Vibrational modes at 1701, 1632-1628, 1254-1246 cm-1 were seen to be consistent 

between initial fruit damage and early G. candidum infection. Absorption at 1701 cm-1 was the 

only exact match between these two classes. These three wavenumber regions are assigned as 

carbonyl groups in fatty acid esters of cutin (1701 cm-1) (España et al. 2014); carbon-carbon bonds 

in phenolic cuticular compounds (1632-1628 cm-1) (Heredia-Guerrero et al. 2014); and hydroxyl 

group deformation in cutin or other polysaccharides (1254-1246 cm-1) (Heredia-Guerrero et al. 

2014), which are part of the epidermal surface. Alternatively, the region from 1254-1246 cm-1 has 
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been associated with the Amide III band of proteins or methylene functional groups of 

phospholipids (Mogashavi et al. 2008), which are also potential targets of ATR-FTIR as part of 

the epidermis. Consistency within wavenumbers was also observed between those indicative of 

damage and those identified within late stage G. candidum infection, specifically absorption bands 

at 1582-1574, 1520, and 1215 cm-1. Interestingly, both absorption at 1520 and 1215 cm-1 were 

exact matches to wavenumbers related to initial fruit damage and may therefore play a role in both 

damage response and response to pathogens (Table 2). Absorption bands between 1582-1574  

cm-1 are strongly associated with the amide II band of proteins (Mogashavi et al. 2008). The 

absorption band at 1520 cm-1 is potentially a shoulder region of the amide II peak but more likely 

associated with carbon-carbon bonds in phenolic compounds (Heredia-Guerrero et al. 2014), 

although this region has also been associated with alkene groups in aromatic compounds, or the 

imine group in nucleic acids (Mogashavi et al. 2008). Class unique wavenumbers occur only in 

the early and late infection stages (upon appearance of visual symptoms). All absorption bands 

identified in damaged tomato occur also in either early or late infection and generate no unique 

absorbance peaks within the top six tentative biomarkers. Wavenumbers unique to early infection 

include absorbance at 1747 and 1366 cm-1 (Table 2). Vibrational modes at 1747 cm-1 are associated 

with double bonds in carbonyl and alkene functional groups of cutin, wax and suberin-like 

compounds, as well as lipids in general (España et al. 2014; Heredia-Guerrero et al. 2014). Besides 

compounds including cutin and waxes, also cellulose, pectin, polysaccharides, and sesquiterpenes 

are biomolecules which have vibrational modes that absorb at 1366 cm-1 (Largo-Gosens et al. 

2014; Heredia-Guerrero et al. 2014; Mogashavi et al. 2008). These spectral biomarkers appear to 

be unique to early infection of tomato fruit (Table 2). In contrast, late infection of tomato fruit 

shows specific absorbance at 1724 and 1466 cm-1 and are associated with carbonyl vibration of 

cutin, lipids, polysaccharides, or phenolic esters; and methylene vibration of cutin or other waxes 

respectively (Heredia-Guerrero et al. 2014; Mogashavi et al. 2008). Taken together, these results 

indicate prominent changes occurring simultaneously across several compounds including lipids, 

proteins, and carbohydrates, many of which represent prominent components of the epidermal 

structure including cuticle and cell wall components.  

Spectral alterations associated with tomato fruit damage are partially retained during 

subsequent early and late pathogen infection. Initially, tomato damage induces a wounding 

response, as colonization by G. candidum has not yet occurred (Figure 4.1d; Figure 4.3a, d), 
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suggesting that the observed spectral alterations are specific to wounding, entailing a stress 

response. Both metabolic activity and VOC composition change in response to plant wounding; at 

the red ripe stage, damage elicits changes in the VOC profile (Baldassarre et al. 2015). 

Wavenumbers identified as discriminators for fruit damage may therefore reflect prominent 

changes to the VOC profile, potentially combined with upregulation of genes involved in defense 

reactions and the resulting changes in metabolism (Baldassarre et al. 2015). As VOCs diffuse 

through plant surface layers, their interaction with the cuticle, cell wall, or epidermis in general 

may produce alterations in these layers leading to the observed spectral changes (Penuelas and 

Llusia 2001). As damage has a direct effect on post-harvest deterioration and shelf life through 

various biochemical and physiological events (Watada and Qui 1999), rapid damage detection of 

tomato fruit using spectrochemical analysis would help prevent subsequent infection and spoilage 

induced by spreading microorganisms such as G. candidum. Spectral biomarkers from the initial 

response to wounding are retained in part during subsequent early and late infection (Table 4.2). 

Although several spectral biomarkers are consistent between damaged and early as well as late 

infected tomatoes, both early and late infection show unique spectral characteristics as well. It 

therefore seems plausible that changes in tomato fruit surfaces resulting from damage, share 

common biochemical alterations with early and late stage infection for example through a general 

stress response transitioning into a pathogen specific response, explaining the overlap in 

biomarkers previously described (Table 4.2). As an increasing number of genetic and metabolic 

changes are induced by wounding and subsequent infection, the change in spectral profile likely 

reflects the move from damage response to plant-pathogen interaction, explaining the development 

of unique biomarkers at the early and late infection stages (Table 4.2).  
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Table 4.2 Top six discriminating class-specific wavenumbers and tentative chemical assignments, 

from LD1 loadings plots associated with tomato fruit damage, early infection or late infection 

versus control classes. 

Class Wavenumber 

(cm-1) 

Vibrational 

Mode 

Biochemical Assignment References 

 

 

 

 

 

 

Damaged 

1701 * ν(C=O· · ·H)         

                              

Fatty acid esters 

Cutin 

[3], [6] 

1628 * ν(C=C)                  

νs(C-C) ring          

Amide I 

Phenolic compounds  

Pectin 

Proteins 

[1], [2], [3], 

[4], [6] 

1574 ^ Amide II Proteins [5], [6] 

1520 ^ ν(C-C) aromatic  

Amide II               

C=N or C=C 

Phenolic compounds 

Proteins 

Nucleic acids? 

[2], [3], [4], 

[5], [6] 

1254 * δ(OH)                   

Amide III              

νa(CH2)                 

Cutin / polysaccharides 

Proteins 

Phospholipids 

[2], [3], [5], 

[6] 

1215 ^ νaPO2                  

Amide III              

Phosphate 

Proteins 

[5], [6] 

     

 

 

 

 

 

 

 

Early 

Infection 

1747 ν(C=O)                 

ν(C=C)                 

Aliphatics            

Polysaccharides 

Lipids (fatty acids) 

Suberin 

[2], [4], [5], 

[6] 

1701 * ν(C=O· · ·H) Fatty acid esters 

Cutin 

[3], [5], [6] 

1659 + ν(C=C)                 

Amide I 

Pectin 

Proteins 

[4], [5], [6] 

1632 * ν(C=C)                  

νs(C-C) ring          

Amide I 

Phenolic compounds 

 

Proteins 

[2], [3], [4], 

[5], [6] 
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1366 δ(CH2)                                          

 

νs(COO)               

δs(CH3)                

Cutin and waxes 

Cellulose 

Fatty acids 

Sesquiterpenes 

[2], [4], [5], 

[6] 

1246 * δ(OH)                   

Amide III              

νa(CH2)                 

Cutin / polysaccharides 

Proteins 

Phospholipids 

[2], [3], [5], 

[6] 

     

 

 

 

 

 

Late 

Infection 

1724 ν(C=O)                  

                              

                              

Cutin and lipids 

Pectin / polysaccharide 

Phenolic ester 

[1], [2], [3], 

[4], [6] 

1651 + ν(C=C)                  

Amide I 

Pectin 

Proteins 

[1], [5], [6] 

1582 ^ Amide II               Proteins [5], [6] 

1520 ^ ν(C-C) aromatic  

Amide II               

C=N or C=C 

Phenolic compounds 

Proteins 

Nucleic acids 

[1], [2], [3], 

[5], [6] 

1466 δ(CH2)                  Cutin and waxes [1], [3], [4], 

[6] 

1215 ^ νaPO2                    

Amide III              

Phosphate 

Proteins 

[5], [6] 

 

Overlap between wavenumbers ±10 was considered; * indicates overlapping wavenumbers 

between damaged and early infection; ^ between damaged and late infection; + between early and 

late infection. Bold wavenumbers indicate class specific wavenumbers. Table References: [1] 

Butler et al. 2015; [2] Butler et al. 2017; [3] Heredia-Guerrero et al. 2014; [4] Largo Gosens et al. 

2014; [5] Movasaghi et al. 2008; [6] Ord et al. 2016. 
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Spectral alterations in plant surface structures of tomato, related to plant-pathogen 

interactions have been previously identified and may be related to conserved changes in epidermal 

surface structures in response to stress through the reactive oxygen species (ROS) network. Plant-

pathogen interactions induce complex signaling networks leading to the induction of the 

hypersensitive response (HR) and/or systemic acquired resistance (SAR), both of which involve 

significant alterations to metabolism including lignification, suberization, callose deposition, 

changes in ion fluxes and lipid peroxidation (Camejo et al. 2016). The HR also involves the 

activation of programmed cell death (PCD). This is often accompanied by an oxidative burst 

generating ROS in the form of superoxide radical (O2
-), hydrogen peroxide (H2O2) and hydroxyl 

radical (·OH) accumulation (Apel and Hirt 2004; Hakmaoui et al. 2012; Suzuki et al. 2011). More 

generally, ROS signatures are altered in response to abiotic and biotic stresses alone and in 

combination (Camejo et al. 2016; Choudhury et al. 2017). Further, the oxidative burst, initiated 

during plant-pathogen interactions with fungi, generates ROS, which influence structural features 

of both cuticle and cell wall (AbuQamar et al. 2017). Part of the response to damage and pathogen 

attack, specifically at the late ripening stage is accelerated fruit softening caused by cutin 

depolymerization, which occurs naturally during the ripening program (Saladie et al. 2007). 

Observed changes are therefore likely associated with a stress response initiated by fungal 

infection at a distance (in this case infection at the stem scar) and not caused by fungal released 

cutinases leading to cutin hydrolysis and depolymerization (Chen et al. 2001). The region 1750-

1700 cm-1 has been implemented in the measurement of cutin in tomato cuticles, with the potential 

to determine the degree of cutin esterification (España et al. 2014). This region was not only 

identified as a major cuticle component of intact tomato fruit (Table 1) but was also extracted by 

PCA-LDA for all classes (Table 2) making this spectral region a potentially robust biomarker 

indicative of spectral alterations associated with cuticle dependent shelf-life and pathogen 

susceptibility. ROS signatures, or more specifically downstream targets of ROS present in 

epidermal surface structures such as the cuticle and cell wall, may therefore offer suitable targets 

for the detection and potential quantification of both abiotic/biotic stresses in various combinations 

(AbuQamar et al. 2017; Choudhury et al. 2017). Wavenumbers associated with the categories of 

damage, early, and late infection (Table 2), have also been identified as biomarkers related to 

abiotic and biotic stress in the epidermal surface structures of intact leaves of Acer pseudoplatanus 

(Sycamore) (Ord et al. 2016). Importantly, in this and the study by Ord et al. (2016), ATR-FTIR 
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spectroscopy coupled with the composite technique PCA-LDA was employed emphasizing the 

effectiveness of this technique to extract biochemical information from dynamic biological 

processes. Spectral biomarkers identified in A. pseudoplatanus were associated with abiotic 

stresses caused by ozone and vehicle air pollution, as well as biotic stress caused by the tar spot 

leaf fungus Rhytisma acerinum. Changes in the cuticle and cell wall, as well as ROS signaling, are 

early events in the response of plants to environmental stress making it plausible that certain 

biochemical and biophysical changes occurring in plant surface structures in response to stress are 

conserved between species. Consequently, the observed alterations in the spectral signature of A. 

pseudoplatanus leaves (Ord et al. 2016) may be linked to the generation of ROS in response to 

stress providing the connection between these biomarkers. This would explain the appearance of 

spectral biomarkers in tomato fruit related to damage and biotic stress, which have been previously 

associated with both abiotic and biotic stresses in surface structures of the distantly related A. 

pseudoplatanus. Although spectral biomarkers identified here in tomato match with stress 

biomarkers reported previously, the biomarkers occur in different combinations, which may be 

due to a combination of factors including inter-species differences, difference in tissue type, or 

differences conferred by disease (stress) specificity. Nevertheless, the identification of such a large 

number of spectral biomarkers point to strong commonalities between these two, different species, 

and suggests that spectral alterations relate to dynamic physiological changes pertaining to biotic 

and abiotic stress responses. While difficult to confirm through spectrochemical analysis alone, 

once additional data become available, the link between changes in the MIR signature, changes in 

epidermal structures, plant stress, and specific signaling pathways such as ROS, will become 

increasingly clear.  

 

4.3.3 In Vivo Spectral Characterization of Sour Rot Pathogen Geotrichum candidum  

Interaction of G. candidum with tomato fruit in vivo appears to alter the MIR spectrum 

characteristic of typical fungi. The fungus G. candidum was measured on the tomato fruit as 

depicted in Figure 4.1f at 96 h post puncture. To date, MIR has been primarily used to study fungal 

pathogens from isolated and prepared samples (Salman et al., 2012, 2010). G. candidum is an 

economically important pathogen as it induces sour rot in many fruit and vegetable crops including 

tomato (Cantu et al. 2008). Its ubiquitous occurrence, as part of the human micro-biome, soil, as 

well as horticultural processing equipment, makes pathogenic strains of G. candidum a threat to 
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crops (Thornton et al. 2010). Further, G. candidum can improve the conditions for infection by 

other pathogens thus contributing to further infection or synergistic pathogen interactions (Suzuki 

et al. 2014; Wade et al. 2003).  

Figure 4.4 shows the ATR-FTIR fingerprint spectrum of G. candidum in vivo on tomato 

fruit. The main six vibrational bands of G. candidum in vivo are shown in Table 3. Identified 

vibrational bands are distinct from those of tomato fruit (Figure 4.2 and Table 4.1) and contain 

several absorbance peaks consistent with those of other fungal pathogens (Salman et al., 2012, 

2010). Absorbance peaks at 1639, 1547, 1404, and 1034 cm-1 could be assigned to a typical fungal 

MIR spectrum (Salman et al., 2012, 2010). In comparison, vibrational bands at 1342 and 1238, 

which are prominent peaks of G. candidum in vivo, appear to be much less pronounced or even 

absent depending on the fungal species under study (Salman et al. 2012). Main absorbance peaks 

of G. candidum in vivo, show vibrational modes associated with proteins between 1639-1342 cm-

1. Specific absorbance peaks over this region include 1639, 1547, and 1404 cm-1, corresponding to 

the fundamental protein vibrations amide I, amide II, and (C-N) vibration respectively (Movasaghi 

et al. 2008; Salman et al., 2012, 2010). Vibration at 1034 cm-1 is also readily identified as belonging 

to the Chitin (C-O) bond (Salman et al., 2012, 2010). Absorbance at 1639, 1547, 1404, and 1034 

cm-1 are thus all consistent with those previously characterized in fungal isolates of Colletotrichum, 

Fusarium, Rhizoctonia and Verticillium species (Salman et al., 2012, 2010). However, the 

vibrational mode identified here at 1238 and 1342 cm-1 does not appear to be a common constituent 

of other fungal pathogen isolates (Figure 4.4). Phosphate (PO4
2-) vibrational band at 1238 cm-1 is 

strongly associated with nucleic acids such as part of the DNA or RNA phosphate backbone 

(Mogashavi et al. 2008). Polysaccharide vibration (CH2), atypical of fungi was also identified as a 

strong peak of G. candidum as part of the tomato fruit-pathogen complex (Figure 4.4). It is likely 

that the discrepancy between the spectrum of G. candidum and those of other species is a result of 

in vivo analysis. The unique interaction between fungi and their host plants could influence the 

measured composition of the fungus, when compared to MIR spectra of fungal isolates, which are 

homogenized and taken out of their biological context. Although it cannot be ruled out that lack 

of sample preparation (dehydration and homogenization) prior to spectral acquisition, led to a 

higher water content and more heterogeneous arrangement, which influenced the MIR spectrum 

(Figure 4.4). The fundamentally different biochemical composition of fungal pathogens to that of 

tomato fruit is reflected in their respective MIR fingerprint spectra (Figures 4.2 and 4.4). This 
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fundamental difference in composition has led to the direct detection of fungal pathogens within 

plant tissues using differences in MIR spectral data. However, here we demonstrate that the typical 

fungal spectrum may have very unique features when measured intact. What remain to be seen is 

whether the differences arise due to simple fungal heterogeneity, or whether the interaction 

between plant and pathogen is the driving force for changes in its MIR fingerprint. Regardless, the 

characterization of pathogens in their native state, and as part of in vivo host-pathogen systems, is 

necessary to fully evaluate MIR for the non-destructive and rapid analysis of plant-pathogen 

interactions outside of the laboratory under the many variable conditions in which they occur.  

 

 

Figure 4.4 ATR-FTIR fingerprint spectrum of in vivo sour rot pathogen G. candidum present on 

tomato fruit at the 96 h late infection stage.  

 

Table 4.3 Primary absorbance peaks of fungal pathogen G. candidum in vivo on tomato fruit 

Wavenumber (cm-1) Vibrational Mode Biochemical Assignment References 

1639 Amide I Proteins  [1], [2] 

1547 Amide II Proteins  [1] 

1404 ν(C-N) Proteins [2] 

1342 ν(CH2)  Polysaccharides  [3] 

1238 ν(PO4
2-)  Nucleic Acids  [3] 

1034 ν(C-O)   Chitin  [1] 

[1] Salman et al. 2012; [2] Salman et al. 2010; [3] Movasaghi et al. 2008 
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4.3.4 Autonomous Indirect Detection of Damage and Infection Based on Alterations to 

Tomato Fruit Surfaces 

Diagnostic classifiers based on PCA-LDC are effective at detecting tomato fruit damage 

and infection indirectly and autonomously. PCA-LDC is one of many classifier algorithms used 

as training/test datasets to evaluate the potential for autonomous classification based on MIR 

spectra (Butler et al. 2017; Strong et al. 2017). To evaluate the potential for autonomous detection 

of damage, early, and late infection, compared to healthy shelf-life matched controls using MIR, 

spectra of intact tomato fruit were used as training/test datasets for the PCA-LDC classifier (Figure 

4.5). Discrimination of classes using PCA-LDC has recently been applied to plant tissues with 

high accuracy (Butler et al. 2017). Classification of healthy controls, compared to their initially 

damaged but non-infected counterparts, showed the lowest observed accuracy at 78% for healthy 

controls, while freshly damaged tomatoes were identified correctly 83% of the time (Figure 4.5a). 

In comparison, tomato fruit showing early signs of sour rot were accurately classified at 97%, and 

92% for healthy controls at 48 h post puncture (Figure 4.5b). Late-stage G. candidum infected 

tomatoes correctly classified 83% similar to freshly damaged tomatoes, was in contrast to the 

classification of control group at 96 h, which showed a classification accuracy of 96% (Figure 

4.5c). This was consistent with the separation observed along the primary LD for these classes 

(Figure 4.3), as well as with the classification rates achieved by Butler et al. (2017) investigating 

calcium nutrient deficiency in tissues of Commelina communis. Interesting is the slightly higher 

classification accuracy at early compared to late stage infection (Figure 4.5b and 4.5c). Late stage 

infection leading to tissue breakdown and fruit softening is likely more closely related to the 

natural ripening process represented by control fruit at 96 h across late infection leading to slightly 

lower classification accuracy (Figure 4.5c). Alternatively, the switch from damage to pathogen 

response may be more pronounced in comparison to shelf life changes at 48 h, which may lead to 

the higher classification compared to the 96 h analysis point (Figure 4.5b). This is beneficial as 

detection of early infection is favorable over detection at later disease stages.  
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Figure 4.5 Classification rates (%) of damage, early, and late infection compared with shelf-life 

matched controls, extracted from PCA input to linear discriminant classifier (PCA-LDC). 

 

These collective data suggest that correct classification of infected tomato fruit improves 

with disease progression. Demonstrating that this is possible indirectly based only on changes in 

fruit epidermis not yet afflicted by pathogens, will be important to be able to detect damaged 

tomato fruit, prior to the development of the symptoms of fungal infection in order to reduce food 

waste through the repurposing of the affected crops. In addition, the early detection of fungal 

infection would help prevent the effects and spread of post-harvest disease. It is well documented 

that damage to delicate fruits and vegetables leads to rapid spoilage (Tournas 2005) and thus early 

symptoms of damage may also serve as a pre-symptomatic indicator for imminent infection by 

ambient microorganisms. To this end, classifier performance may be further optimized by 

increasing the number of factors (PCs) fed into the LDC. For commercial development, 

appropriate training and test datasets would likely improve classification accuracy further. 

Nevertheless, preliminary classification accuracy of around 80% upwards is promising and 

certainly provides precedence for further development of spectrochemical analyses as a tool for 

crop protection.  

 

4.4 Conclusions and Future Perspectives  

Spectrochemical analysis combined with multivariate analysis offers a non-destructive 

sensor technology for the analysis of intact crops, active pathogens, and plant-pathogen 

interactions. Spectral characterization of intact tomato fruit showed prominent components from 

the cuticular layer of the plant epidermis including cutin, phenolic compounds, waxes, and VOCs. 
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During healthy growth and plant-environment interactions, these compounds are notably modified 

with consequences for fruit quality and thereby provide unique groups of compounds serving as 

targets of dynamic processes pertaining to crop biology. At the environmental interface, the cuticle 

is of specific importance due to its role, as part of the cell wall, in the determination of fruit qualities 

such as susceptibility to cracking and pathogen infection (Isaacson et al. 2009; Lara et al. 2014). 

Multivariate analysis (PCA-LDA) can effectively discriminate healthy and compromised 

tomato fruit, based on damage and sour rot infection by G. candidum, effectively detecting 

pathogens indirectly. Spectral alterations in tomato fruit epidermis caused by damage and sour rot, 

induced changes in cuticle structure, which were assigned as tentative biomarkers. Damage, early 

and late stage infected fruit thus showed unique spectral profiles, while partial overlap of spectral 

markers between damage and early infection, as well as damage and late infection suggests a 

potential for disease specificity at these distinct stages. Disease specificity based on unique spectral 

markers is tentatively linked to complex and evolving stress responses. While the exact connection 

between spectral biomarkers of compromised tomato fruit and specific stress responses remains 

unclear, they are linked either directly or indirectly to plant responses such as ROS, SAR, and the 

HR. Clear alterations observed between healthy and damaged tomatoes further suggests the 

potential to identify damaged fruit prior to pathogen colonization. This may prevent disease spread, 

or to repurpose unmarketable specimens. Spectra of fungal pathogens and tomato fruit are 

fundamentally different offering direct detection of colonized pathogens within the intact fruit-

pathogen complex. 

Automatic detection of damage, early, and late infection through changes in fruit epidermal 

surface layers was evaluated based on the related classification model PCA-LDC. Indirect 

detection of damage and infection was shown to be effective with detection accuracy improving 

with disease development. Classification of tomato fruit damage and infection may be improved 

through knowledge transfer, the use of more sophisticated classification models, and trials with 

larger sample cohorts available to commercial growers. 

Adapting spectrochemical analysis for fundamental plant science has been successful, yet 

more work is required to exploit the sensor potential of MIR spectrochemical analysis in complex 

crop systems. Herein, we demonstrate the ability to analyze individual parts of plant-pathogen 

complexes in vivo and show that effects of damage and infection generate unique spectral 

signatures reflecting common stress responses in fruits. These signatures are effective for the 
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autonomous detection of compromised fruit crops non-destructively and both direct and indirect 

detection of fruit pathogens. This opens the door for future work, which may focus increasingly 

on intact or native plant systems. Portable spectrochemical analysis equipment including MIR and 

Raman probes are becoming increasingly available and just beginning to be explored for crop 

analysis (Egging et al. 2018; Farber and Kurouski 2018; Fu et al. 2016; Trebolazabala et al. 2013; 

Yeturu et al. 2016). Rapid developments in MIR spectrochemical analysis for plant and crop 

science, will likely to lead to concrete large-scale applications for crop protection and production 

in the near future.  

 

4.5 Supplementary Materials 

 

Figure S1: PCA optimization using the Matlab pareto-function.  
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Abstract 

Sensor-based detection of pests and pathogens in a high throughput and non-destructive 

manner is essential for mitigating crop loss. Infrared (IR) sensors in the form of vibrational 

spectroscopy provide both biochemical information about disease, as well as a large number of 

variables for chemometrics. This approach is highly adaptable to most biological systems 

including interactions between plants and their environments. Fast-acting necrotrophic fungal 

pathogens present a specific group of pests with adverse effects on food production and supply 

and are therefore pertinent to food security. Botrytis cinerea and Solanum lycopersicum are models 

for the study of fungal and crop biology respectively. Herein we use a compact mid-IR 

spectrometer with attenuated total reflection (ATR) attachment to measure the plant-microbe 

interaction between S. lycopersicum and B. cinerea on intact leaves at the whole-plant level. 

Chemometric models including exploratory principal component analysis (PCA) solely, and as a 

classifier in combination with linear discriminant analysis (PCA-LDA) are applied. Fingerprint 

spectra (1800-900 cm-1) were excellent discriminators of plant disease in both visually 

symptomatic as well pre-symptomatic plants. Major biochemical alterations in leaf tissue as a 

result of infection are discussed. Diagnostic potential for automatic decision-making platforms is 

shown by high accuracy rates of 100% for detecting plant disease at various stages of progression. 

Keywords: Infrared spectroscopy, Tomato, Botrytis cinerea, Chemometrics, Crop biology, Pest 

Detection, Sensors 
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5.1 Introduction 

The challenges to sustainable crop production and supply are considerable and include 

population rise, depletion of natural resources, and climate change. Combined with these, crop loss 

and food waste to either pests and pathogens, or due to general waste, puts a heavily burden on 

humans and the environment (Wunderlich and Martinez 2018). Conventional but outdated farming 

strategies are compounding these issues because traditional methods are only being slowly 

replaced by more sustainable approaches. The example of fungicides use illustrates that these are 

only marginally effective, expensive, and yet routinely overused (Bourguet and Guillemaud 2016; 

Vasileiadis 2017). Alternatives to chemical pest control are thus favorable, especially with the 

growing concern about harmful residues of crop protection products in food (Singbo et al. 2015). 

One approach therefore may be to focus on the early detection of plant disease to remediate 

imminent threats, or prevent further disease spread.  

Crop loss to destructive pests and pathogens poses a substantial threat to food security and 

the economy. Around one third of global annual crop loss can be attributed to pests and pathogens 

(Oerke 2006) including macroscopic pests such as weeds, herbivorous animals, and insects, and 

microscopic pathogens such as viruses, bacteria, and fungi. In contrast to macroscopic pests, 

microscopic pathogens are invisible without the use of tools, becoming apparent in horticultural 

environments only through adverse effects (symptoms) they cause. Moreover, the current 

horticultural standard for detection of these pathogens relies on the appearance of plant disease 

symptoms and is thus subjective (Mahlein 2016). Microscopic pests thus remain especially 

challenging for plant and crop scientists to manage (Williamson et al. 2007), primarily due to their 

microscopic nature, but also because they employ a vast combination of pathogenic strategies for 

survival (El Oirdi et al. 2011). The ubiquitous distribution of microbial pathogens and their long-

standing interactions with host plants throughout plant evolution makes these plant-pathogen 

interactions highly complex and diversified (Dayan et al. 2009). 

Fungi are pests that have evolved to invade plants by various means and with varying 

consequences. Three main strategies distinguish fungal pathogens. These include biotrophism, 

hemi-biotrophism, and necrotrophism. Biotrophs complete their life cycle without killing the host 

plant and rather establish a nutritional mode that depends on living plant cells (Vleeshouwers and 

Oliver 2014). Hemibiotrophs begin their life cycle with a biotrophic strategy and can switch to a 

necrotrophic mechanism, which results in cell death (Vleeshouwers and Oliver 2014). 
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Necrotrophic pathogens therefore have the potential to destroy entire plants and crops rapidly. 

Botrytis cinerea is an important necrotroph capable of causing extensive damage to food crops, 

both pre- and post-harvest, and is therefore widely studied as a model necrotoph. High genetic 

diversity, various modes of attack, a broad host range, and the ability to remain quiescent, make 

B. cinerea a formidable threat to crops infecting most plant tissues including seeds, seedlings, 

roots, stems, leaves, flowers, young and mature plants, fruit, and plant waste (Williamson et al. 

2007). The range of host species numbering over 200 provide a diverse source of potential 

inoculum which can be ubiquitous in horticultural environments as mycelia, conidia, or prolonged 

periods as sclerotia, making control of this pathogen particularly difficult (Elad and Stewart 2007). 

Many fungicides have become ineffective over time due to pathogen adaptation leading to 

potential overuse of these pesticides making this approach costly and unsustainable in a 

horticultural context (Lechenet et al. 2014, 2017). Therefore, new approaches for the management 

of pathogenic fungi are required to optimize crop protection measures. To this end, a more detailed 

understanding of plant-pathogen interactions and the way they manifest during crop cultivation is 

an essential prerequisite for improving crop utilization and minimizing crop loss due to 

microscopic pathogens. 

The rapid and early detection of fungal pathogens in the crop-growing environment 

remains a key challenge. This is especially so when there is requirement for the non-destructive 

analysis of crops during growth leaving them unaltered in the process, for example, when 

monitoring whole plants and crops in the field, or produce within the food supply chain. These 

criteria favor adaptable sensors capable of analysis at both pre- and post-harvest stages without 

damaging the crop; this is in marked contrast to destructive methods which require reagent 

preparation, labeling, extensive sample preparation, and provide potentially limited information 

with regards to pathogen detection. Within the array of non-destructive sensors, spectroscopic 

methods have been used successfully in horticultural settings and are becoming increasingly 

adaptable for field applications (Egging et al. 2018; Farber and Kurouski 2018; Trebolazabala et 

al., 2013, 2017; Yeturu et al. 2016). These methods have the advantage of being capable of the 

fast, non-destructive analysis of a diverse set of sample types, which provide the biochemical 

information on which to build models of disease specificity (Martin et al. 2010). Sensor-based 

early disease detection has the potential to contribute to the sustainable intensification of crop 

production, by improving the effectiveness with which crop protection measures are applied and 
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thereby considerably reducing disease spread through precision agriculture. 

Progress in sensor technology, computational analysis, and established machine learning 

methods offers new opportunities for this approach through the development of mobile devices for 

the early detection and identification of plant disease (Behmann et al. 2014). Surface techniques 

have been widely used for analytical chemistry and have recently been developed as sensors for 

heterogeneous biological materials including cells, tissues, and whole plants. Analytical surface 

techniques include infrared vibrational spectroscopy, a non-destructive sensor conferring data with 

high chemical specificity in the form of a highly characteristic infrared spectrum. The ability to 

measure almost any sample type without preparation or labeling using mid-infrared (MIR) 

vibrational spectroscopy in biology (biospectroscopy), has made it a valuable tool for studying 

biological systems at the tissue, cell, and molecular levels in plants and crops (Skolik et al. 2018b). 

One method that has stood out in the biological context and adaptability to in vivo measurements 

non-destructively is attenuated total reflectance (ATR) Fourier transform infrared (FTIR) 

spectroscopy, which uses a high refractive index material interface to make direct sample contact, 

resulting in highly reproducible spectra from living tissues (Chan and Kazarian 2016). Further 

benefits of ATR-FTIR is the very well-defined depth of interrogation into the sample and its ability 

to circumvent the effects of water in plant leaves when practically applied (Butler et al. 2015). 

This makes MIR spectroscopy in ATR mode favorable for whole tissue analysis including whole 

plants.  

Extracting information from complex biological samples requires computational analysis 

such as linear and non-linear data models (chemometrics) (Morais and Lima 2017). Chemometrics 

such as multivariate analysis using supervised and unsupervised methods including principal 

component and linear discriminant analysis (PCA and LDA respectively) as well more complex 

models including support vector machine (SVM) and artificial neural networks (ANN) have also 

been used in various amalgamations to answer questions in the biomedical, environmental, plant 

and crop sciences (Trevisan et al. 2012). Biospectroscopy in combination with advanced 

computational analysis therefore has the potential to contribute to the development of sustainable 

farming practices and precision agriculture, and to help achieve the goal of producing more food 

with the same amount of land by reducing crop losses to pests and pathogens through the adoption 

of ‘high-tech farming’ approaches. 

Tomato S. lycopersicum is an ancient crop which is widely used for the study of crop 
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biology (Kimura and Sinha 2008). Plants and fruit of tomato are among the many species 

susceptible to pathogen infection by B. cinerea at all stages of development (Elad and Stewart 

2007; Williamson et al. 2007). Tomato interaction with fungi thereby presents an excellent model 

to investigate challenging plant-pathogen interactions with rapid disease progression for the 

purposes of sensor development. This study applies MIR biospectroscopy within a realistic 

growing environment to investigate the effectiveness of this approach within an agricultural 

context using the interaction between glasshouse-grown tomato (S. lycopersicum cv. 

Moneymaker) and B. cinerea. Chemometric approaches including PCA and PCA-LDA were used 

to investigate spectral alterations in leaves in response to B. cinerea at the whole-plant level. PCA 

is an unsupervised multivariate analysis approach that investigates dataset variance without 

considering class label and thus provides insight into dataset variance, specifically whether the 

biological effects under investigation are the main source of variance, or whether supervised 

models (LDA) are required to extract class-specific differences which are subtler than can be 

extracted via PCA alone. Further, both PCA and LDA are linear multivariate models that provide 

loadings, which may be interpreted as spectral biomarkers. This provides a novel approach, 

combining exploratory multivariate analysis (PCA and LDA) for biomarker extraction, with 

diagnostic evaluation through classifier simulation. Evaluated in the whole-plant context 

investigating primary changes in leaf tissue due to infection and disease progression, as well as 

classification of infection category based on class labels (time after infection) to show the practical 

applicability of portable ATR-FTIR spectroscopy for the study of plant-pathogen interactions. 

 

5.2 Materials and Methods 

 

5.2.1 Plant Growth Conditions 

Tomato plants, Solanum lycopersicum cv. Moneymaker (Thompson and Morgan, Ipswich, 

UK) were grown from seed in 1 L pots containing Levington’s M3 growth medium (Levington 

Horticulture Ltd, Ipswich, UK) for 3 weeks under glasshouse conditions (40-60% relative 

humidity, 23.5-28.5°C) with an 18/6 h day/night cycle (minimum illumination 500 µmol m-2 s-1 at 

the plant canopy from 600 W metal-halide lamps). Plants were watered daily between 8-9 am to 

holding capacity. 

 

https://www.google.de/search?q=Ipswich&stick=H4sIAAAAAAAAAOPgE-LUz9U3SMo2Ly5U4gAxC9JSLLU0Msqt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKr9MSiosxioHBG4SJWds-C4vLM5AwA0iBVgEsAAAA&sa=X&ved=2ahUKEwiUmdWQkrHiAhWtIjQIHauHBOcQmxMoATAXegQIDBAH
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5.2.2 Botrytis cinerea Inoculum Preparation and Infection of Plants 

Plants were inoculated with a suspension of spores of B. cinerea according to Asselbergh 

et al. (2007) and optimized for plants grown under the specified glasshouse conditions. Frozen (-

80°C) 8 mL stock plugs of potato dextrose agar (PDA) containing mycelium of B. cinerea [strain 

R16] (Faretra and Pollastro 1991), were placed in the center of Petri dishes containing freshly 

prepared PDA medium. The Petri dishes were incubated in a dark growth chamber (Percival AR-

36L3) at 22°C and 100% humidity for 5 days until complete mycelial coverage of the PDA 

medium, after which they were exposed to a near-UV (UVA; 350-500 nm) light cycle (12 h 

dark/light; intensity: 28 µmol m-2 s-1; bulb: Fluora L 18 W/77, Osram, Munich, Germany) for 7 

days to induce sporulation (Schumacher 2017). Loose spores were washed into a 50 mL falcon 

tube, using approx. 15 mL deionized water. The remaining PDA plate containing mycelium and 

spores was cut into pieces using a sterile scalpel and added to a separate falcon tube containing 

0.01% Tween-20 (Polyoxyethylenesorbitan monolaurate) in 20 mL deionized water, and 

subsequently vortexed for 3 min. After intense mixing, the solution was gravity filtered through 

double-layered 20 µm nylon mesh into a 50 mL falcon tube to separate spores from mycelial debris 

and PDA medium. Filtrate containing spores in 0.01% aqueous Tween-20, as well as the separate 

loose spores, were centrifuged for 15 min at 15,000 rcf at 15°C. Supernatant was removed by 

decanting and spores were re-suspended and combined in 15 mL molecular grade water (Sigma 

Aldrich, St. Louis, Missouri). The concentration of spores determined via hemocytometer was 

adjusted to 5×105 spores mL-1 in 0.05 M KH2PO4 and 33 mM glucose respectively (Asselbergh et 

al. 2007). This solution was prepared 3 h before application to allow pre-germination of spores, 

prior to infection of plants. Individual tomato plants were briefly removed from the greenhouse, 

placed into a containment area where only the shoot was exposed, and uniformly sprayed from 

above with approx. 1 ml of spore solution at approx. 45° from plant canopy at 20 cm distance. This 

was repeated four times rotating plants 45° after each. Control plants were treated with a mock 

solution containing only 0.05 M glucose, 33.3 mM KH2PO4, and no spores. Following inoculation, 

plans were returned to the glasshouse to promote infection. Humidity was maintained at 100% for 

24 h using a glasshouse mister (Easy Irrigation, UK) combined with water timer (Easy-Control 

1882, Gardena, Ulm, Germany) producing a 50 µm droplet diameter spray for 15 min every 2 h. 

Twenty plants were used for each treatment (20 mock/20 infected); 19 out of 20 plants infected 

developed symptoms, while the 20 mock controls remained asymptomatic throughout the 
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experiment. Eight plants from each treatment (mock and infected) were reserved to confirm 

symptom development independent of ATR-FTIR analysis. Symptoms were assessed visually at 

the three measured time points and used as class criteria. Detailed description of symptoms is 

summarized in Table 5.S1 and shown in Figure 5.1. Described symptoms and time of onset after 

exposure to fungal pathogen were consistent with various stages of infection as previously 

described (Asselbergh et al. 2007; Audenaert et al. 2002; El Oirdi et al. 2011) and thus covered 

the range of disease progression relevant for crop protection.  

 

5.2.3 ATR-FTIR Spectroscopy 

Vibrational spectra from tomato plant leaves were taken using a Bruker Alpha IR 

spectrometer with Platinum ATR attachment (Bruker Optics, UK). Spectra were acquired over the 

range 4000-400 cm-1 with a spectral resolution of 8 cm-1, 32 co-additions and a mirror velocity of 

7.5 kHz for optimum signal to noise ratio and acquisition speed. Background spectra were taken 

prior to each sample to account for the ambient atmosphere. The diamond ATR crystal defined a 

spatial resolution (sampling area) of 1 mm2. ATR cleaning wipes containing isopropyl-alcohol 

(Bruker, UK) were used to clean the ATR diamond crystal between sample measurements. 

A total of 16 leaves (4 controls, 4 infected plants) were measured for the three different 

categories (pre-symptomatic, intermediate symptomatic, advanced symptomatic). Ten spectra 

were collected per each leaf, resulting in 80 spectra for each category (240 spectra in total). Five 

spectra were taken from each of the two main leaflets, comprising each biological replicate (whole 

plant). Four plants (n=4) were measured for controls and infected plants respectively at each 

timepoint. Spectra taken from symptomatic leaves at 96 and 144 h post infection were from regions 

of remaining healthy tissue (for an example of acquisition points on healthy and infected leaves, 

see Figure 5.1). Plants were maintained under a portable 600 W high-pressure sodium lamp 

(Omega lighting, Berkeley, CA) source (minimum of 500 µmol m-2 s-1) during spectral acquisition 

to simulate glasshouse conditions during whole plant analysis. 
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Figure 5.1 Examples of spectral acquisition points on leaves of whole tomato plants. 

Measurements were taken from healthy looking tissue of infected leaves as shown (this was only 

necessary in symptomatic tissue (infected leaves at 96 and 144 h).  

 

 



186 
 

5.2.4 Computational Analysis 

All pre-processing and data analysis were carried out using the PLS toolbox version 7.9 

(Eigenvector Research, Inc., WA, USA) in conjunction with MATLAB 2016a (The Math Works, 

MA, USA). Pre-processing of raw spectra was performed by selecting the MIR fingerprint region 

(1800–900 cm-1), baseline correction using automatic weighted least squares (AWLS) followed by 

vector normalization. Initially, the mean-centered pre-processed spectral data were evaluated by 

means of principal component analysis (PCA) (Bro and Smilde 2014). PCA is an exploratory 

analysis method that reduces the original variables (i.e., wavenumbers) to a few number of 

principal components (PCs) accounting to the majority of the original data variance. Each PC is 

orthogonal to each other, where the first PC accounts to the maximum explained variance followed 

by the second PC and so on. The PCs are composed of scores and loadings, where the first 

represents the variance on sample direction, thus being used to assess similarities/dissimilarities 

among the samples; and the latter represents the contribution of each variable for the model 

decomposition, thus being used to find important spectral markers. PCA was the method of choice 

for analyzing this dataset since it is simple, fast, and combine exploratory analysis, data reduction, 

and feature extraction into one single method. PCA scores were used to explore overall dataset 

variance and any clustering related to plant infection independent of class label, while the loadings 

on the first two PCs were used to derive specific biomarkers indicative of plant infection at 

different stages (infection category). PCA was used to explore overall dataset variance, which was 

related to plant infection independent of class label. This was to determine whether the dataset 

variance was caused primarily by the infection (observed symptoms) and to rule out other 

underlying effects such as naturally occurring tissue heterogeneity.  

Discriminant analysis was performed to distinguish the samples into control and infected 

in a predictive multivariate fashion. This was achieved by means of principal component analysis 

linear discriminant analysis (PCA-LDA). In PCA-LDA, a linear discriminant analysis (LDA) 

classifier is employed in the PCA scores (Morais et al. 2018). LDA finds the best linear 

discriminant direction between the groups, maximizing the distance between the classes and 

minimizing the samples distance within each class. The PCA-LDA classification score for each 

sample (𝑐𝑓(𝒕𝑖)) can be estimated in a non-Bayesian form by a Mahalanobis distance calculation 

as follows (Morais et al. 2018): 
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𝑐𝑓(𝒕𝑖) = (𝐭𝑖 − 𝐭̅𝑘)
T𝐂pooled

−1 (𝐭𝑖 − 𝐭̅𝑘)        (1) 

 

where 𝐭𝑖 is a vector containing the PCA scores for all selected PCs for a given sample i; 𝐭̅𝑘 is the 

mean PCA scores vector for class k; 𝐂pooled is the pooled covariance matrix; and the superscript 

T represents the matrix transpose operation. 

PCA-LDA models were built using 70% of the samples in the training set, where the 

number of selected PCs was optimized via 10-k fold cross-validation. The model validation was 

performed with 30% of the samples, where metrics such as accuracy, sensitivity and specificity 

were estimated. The sample splitting into training and validation sets was performed using the 

Kennard-Stone algorithm (Kennard and Stone 1969). For this dataset, four PCs were sufficient to 

account for more than 95% cumulative variance in each case (Table S5.2). 

 

5.3 Results and Discussion 

 

5.3.1 Botrytis cinerea Infection Induces Spectral Alterations in Tomato Plant Leaves 

Spectral alterations are observed in leaf tissue of B. cinerea infected tomato plants 

compared to healthy control plants. Primary absorbance peaks of tomato leaves, determined from 

the class means from pairwise comparisons of control and infected tissue over time (Figure 5.2), 

show the strongest peaks in the carbohydrate fingerprint region (1200-900 cm-1), as well as the 

upper fingerprint (UF) region from 1800-1500 cm-1. While the UF region is generally associated 

with strong protein vibrations, this region also contains vibrations from water, lipids, nucleic acids, 

as well as various other compounds (Berthomieu and Hienerwadel 2009; Movasaghi et al. 2008). 

Water absorbs strongly in the region around 1600 cm-1, which is part of the fingerprint region 

under investigation. It becomes apparent however from the class mean spectra comparisons 

between control and infected plants that the broad peak including the region 1600 cm-1 is variable 

and not decreasing in infected plants compared to controls, which is inconsistent with water loss 

caused by cuticle breakdown and tissue degradation due infection. It is therefore likely that this 

region is indeed a mixture of plant compounds that primarily include biomolecules rather than 

water. The whole-plant study by Butler et al. (2015) also employed the use of ATR-FTIR to 

circumvent the effects of water on IR measurements, and analysed whole plant leaves of tomato.  
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In plants, the region between 1800-1500 cm-1 is also strongly influenced by polysaccharide 

and cutin vibrations abundant in the cutinized cell wall of plant epidermis (Movasaghi et al. 2008; 

Heredia-Guerrero et al. 2014; Dominguez et al. 2011). While overall absorbance is lower over the 

region 1500-1200 cm-1, several distinct peaks are nonetheless evident. Figure 5.2A-C shows the 

unprocessed class mean spectra for healthy control plants, versus plants exposed to B. cinerea; 

pre-processed class means (baseline corrected and normalized) are shown in Figure 5.2D-F for 

comparison (see Figure 5.S1 original raw spectra). Comparison of healthy and infected tomato 

leaves shows spectral variations in the pre-symptomatic (PS) stage at 48 h (Figure 5.2A and D), at 

which point plants do not yet show any visual symptoms associated with B. cinerea infection 

(Figure 5.1, 48 h PS). Clear differences at PS stage are only observed in the region from 1800-

1500 cm-1 (Figure 5.2D), but not over the carbohydrate region between 1200-900 cm-1, which 

become clear at the intermediate symptomatic (IS) at 96 h and advanced symptomatic (AS) at 144 

h (Figure 5.2E and F). Importantly, plants measured at the PS stage developed visual symptoms at 

later stages, consistent with those observed at IS and AS, confirming the presence of B. cinerea at 

the PS stage. From class mean spectra, clear alterations in the region between 1500-1200 cm-1 are 

not observed until 144 h (Figure 5.2F). Specifically, differences in the carbohydrate fingerprint 

region are not observed PS, although slight variation is seen between 1750-1400 cm-1 (Figure 

5.2D). Spectral divergence similar to that seen at PS between 1750-1400 cm-1, is shifted to between 

1650-1300 cm-1 at IS and clear alterations to the carbohydrate region between 1200-900 cm-1 

emerge at IS (compare Figure 5.2D and E). The differences in these regions, indicate important 

alterations in the underlying biochemical architecture of leaf tissue caused by pathogen infection, 

which is evident from direct comparison of mean fingerprint spectra of control and infected tomato 

plants. Increased spectral shifts clearly coincide with the development of visual symptoms on 

leaves. As infection with B. cinerea progresses, characteristic tissue changes occur including the 

described development of large lesions covering most of the leaf area, black necrotic tissue, visible 

hyphae and conidiophores indicating pathogen sporulation (Figure 5.1 and Table S5.1). 
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Figure 5.2 Pairwise comparisons of control (black) and B. cinerea infected (red) spectra taken 

from leaves of whole tomato plants over the fingerprint region. Mean spectral classes at 48, 96, 

and 144 h (A-C) and corresponding pre-processed mean spectra (D-F). 

 

Increasing changes in the carbohydrate and UF regions of plants affected by B. cinerea 

suggest structural changes in plant leaf polysaccharides, proteins, lipids and waxes, as well as 

potentially nucleic acids. A clear decrease in the absorption over the carbohydrate fingerprint 

region (1200-900 cm-1) during the infection process, is associated with changes in biochemical 

composition of polysaccharides present in the surface layers of the epidermis and expected to arise 

mainly from changes in the cuticle and cell wall (Largo-Gosens et al. 2014; Heredia-Guerrero et 

al. 2014). Changes in carbohydrates, proteins, and moisture content, are consistent with processes 

such as cuticle and cell wall degradation resulting in water loss, following pathogen invasion 

(Asselbergh et al. 2007; Audenaert et al. 2002; El Oirdi et al. 2011). The two main regions, 1750-

1500 and 1200-900 cm-1 clearly show the largest differences and may be of considerable 
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importance in the detection of leaf tissue modifications associated with necrotrophic pathogen 

attack in vivo based on MIR spectra, where the UF and carbohydrate sections of the MIR spectrum 

show the largest variation (Figure 5.2). Although the region between 1500-1200 cm-1 showed only 

slight changes in the class mean spectra over the infection period, it may present an alternative 

target region to probe the subtler changes occurring B. cinerea infection, which can only be 

extracted through multivariate analysis of the fingerprint spectral data. 

 

5.3.2 Disease Progression Generates Unique Spectral Profiles and Specific Biomarkers at 

Distinct Stages of Botrytis cinerea Infection 

B. cinerea infection generates spectral profiles unique to PS, IS, and AS stages of disease 

progression. Based on the observable differences in the class mean spectra, unsupervised PCA 

analysis was performed which showed that B. cinerea infection was responsible for at least 85% 

of the variance observed in the spectral data, using the described data analysis approach. For this 

dataset, four PCs were enough to account for a minimum of 95% total variance for each group 

(Table S5.2).  

Consistent separation of spectral classes (infection categories PS, IS, and AS) was observed 

along the first two PCs, which accounted for a minimum of 84.89%% of overall dataset variance. 

At the PS stage, separation along PC1 accounted for 65.52% of dataset variance, while PC2 

accounted for 27.96% accounting for a total of 93.48% variance and producing the best class 

separation using PCA (Figure 5.3A). Spectra from IS and AS plants also showed clear separation 

from their respective controls along PC1 and PC2 (Figure 5.3B and C). For plants showing IS, 

class separation along PC1 and PC2 explained 73.97% and 10.92% of dataset variance, 

respectively, while AS plants showed PC variance at 63.18% (PC1) and 22.56% (PC2), explaining 

a total variance of 84.89% and 85.72% respectively. Better class separation and accountancy of 

variance suggests that biochemical changes were most pronounced in PS stages of plant infection, 

based on results of unsupervised component analysis. For PS detection of plant disease, it is 

encouraging that the best separation is achieved for the PS category where no visual symptoms are 

apparent in contrast to leaves clearly infected and colonized by B. cinerea at later stages (IS and 

AS).  
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Figure 5.3 PCA 2-dimensional scores plots (A-C) and corresponding loadings (D-F) of pairwise 

control (black) versus B. cinerea infected (red) tomato leaf spectra at 48 (A and D), 96 (B and 

E), and 144 (C and F) h. 

 

To associate vibrational modes with dataset variance and the observed separation of 

infected classes based on PC1 and PC2 scores (Figure 5.3A-C), PCA loadings for PC1 and PC2 

were generated (Figure 5.3D-F). Major wavenumber peaks within PC loadings represent the main 

vibrational modes, and thus functional groups and associated compounds, altered because of 

infection. Compared to PCA scores (Figure 5.3A-C), loadings provide highly specific 

‘wavenumber biomarkers’ responsible for spectral variations between healthy and diseased plants 

(Kelly et al. 2011). Table 5.1 summarizes these tentatively assigned spectral biomarkers for PS, 

IS, and AS (Figure 5.3D, E, and F, respectively). Similar wavenumber biomarkers identified over 
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various regions of the fingerprint spectrum are common to all disease stages, where only a small 

fraction of wavenumbers, specifically 1748, 1645, 1580, 975, and 945 cm-1 are uniquely assigned 

to a specific category (Table 1; bold wavenumbers). Aside from these unique biomarkers similar 

compounds are identified at all stages of disease progression. Compounds generally related to B. 

cinerea infection are identified over the regions 1600-1590, 1539-1537, 1149-1148, 1105-1088, 

1063-1061, 1038-1037, and 1000-995 cm-1, which were consistent with alterations in the two 

strongest absorbing UF (1800-1500 cm-1) and carbohydrate (1200-900 cm-1) regions identified 

from the class mean spectra in Figure 5.2. The large degree of overlapping spectral markers 

between PS, IS, and AS plants indicates alterations in similar biochemical compounds through 

disease progression over time and thereby links biomarkers from each distinct disease stage. 
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Table 5.1 Biomarkers specific to infection categories PS, IS, and AS, identified by primary peaks of PCA loadings, representative of 

the main biochemical differences between infected and control plants.  

Infection 

Category 

Component Wavenumber (cm-1) Vibrational Mode Biochemical Compound References 

 

 

Pre-symptomatic  

(48 h PI) 

PC-1 

(65.6%) 

 

1590 a 

Amide I 

νas(COO)  

 

ν(C=N) 

ν(NH2)  

Proteins 

Pectin (non-esterified) 

Lignin 

Nucleic acids 

[5], [6], [8] 

 

1098 a 

ν(C-O-C) ester  

ν(C-O)  

 

ν(C-C)  

νs(PO4
2-) 

Cutin 

Cellulose  

Pectin (as acetyl-ester) 

Polysaccharides 

DNA/RNA 

[1], [2], [4], 

[5], [6], [8], 

[9]   

 

1061 a 

ν(C-O)  

 

ν(C-C) 

 

δ(C–OH)  

δ(O-CH)  

Cellulose (particularly C3-O3H 

secondary alcohols)  

Polysaccharides 

Pectin  

Secondary metabolites 

(monoterpenes from leaf) 

[1], [3], [5], 

[6], [9]   

 

 

 

 

995 a ω(CH2)  Cellulose 

Secondary metabolites  

[5], [7], [9] 

 



194 

 

ν(C-O) ring 

stretching  

ν(C-C) ring 

breathing  

 

(monoterpenes from fruit) 

 

PC-2 

(27.9%) 

1645 Amide I (incl. 

secondary structure 

in β-sheet motifs) 

δ(O-H) 

 

ν(C=C)  

Proteins 

 

Pectin 

Adsorbed water 

Secondary metabolites  

(ethylene, monoterpenes from 

fruit, sesquiterpenes) 

[1], [2], [3], 

[6], [8], [9]  

1580 Amide I  

ν(C–C) ring stretch 

Proteins 

Phenolic compounds 

[7], [8] 

1092 c ν(C-O)  

 

νs(PO4
2-) 

Pectin (also as acetyl-ester) 

Cellulose 

DNA/RNA 

[1], [5], [8] 

975 ν(OCH3) 

ω(CH2) 

ω(RH-C-C-RH) 

Pectin 

Protein phosphorylation 

Secondary metabolites  

(monoterpenes from leaf) 

[6], [8], [9] 

      

 1592 a Amide I Proteins [5], [6], [8] 
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Intermediate 

Symptomatic 

(96 h PI) 

PC-1 

(74.0%) 

νas(COO)  

 

ν(C=N) 

ν(NH2)  

Pectin (non-esterified) 

Lignin 

Nucleic acids 

1149 d ν(C-O-C)  

 

Pectin (ring and its glycosidic 

linkage) 

Non-cellulosic carbohydrates 

Arabinogalactan 

[1], [5], [6], 

[9] 

 

1063 a ν(C-O)  

ν(C-C) 

 

 

δ(C-OH)  

δ(O-CH)  

Cellulose (particularly C3-O3H 

secondary alcohols)  

Polysaccharides 

Pectin  

Secondary metabolites  

(monoterpenes from leaf) 

[1], [3], [5], 

[6], [9] 

 

 

1000 a ν(C-O)  

ν(C-C) 

ν(O-C-H)  

Cellulose  

Pectin   

[1], [5], [9] 

 

PC-2 

(10.9%) 

1748 ν(C=O)  

  

Pectin (also as ester) 

Polysaccharides 

Lipids 

Wax and suberin-like compounds 

Secondary metabolites  

[1], [3], [5], 

[6], [9] 
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(monoterpenes from leaf) 

1592 a Amide I 

νas(COO)  

 

ν(C=N) 

ν(NH2)  

Proteins 

Pectin (non-esterified) 

Lignin 

Nucleic acids 

[5], [6], [8] 

 

1539 d Amide II (incl. 

secondary structure 

in β-sheet motifs) 

ν(C=N)  

δ(NH2) 

Proteins 

Lignin 

Nucleic acids 

 

[1], [3], [5], 

[7], [8] 

 

1105 a ν(C-O)  

ν(C-C) 

 

νs(C-O-C) ester  

νs(PO4
2-)  

Pectin (as acetyl-ester) 

Cellulose 

Polysaccharides 

Cutin 

DNA/RNA 

[1], [2], [4], 

[5], [6], [8], 

[9] 

 

1038 d ν(C-O)  

ν(C-C) 

ν(CCO) 

ν(O-CH3)  

ν(CH2OH) 

Cellulose 

Pectin (also as acetyl-ester) 

Polysaccharides 

Xyloglucan 

Arabinogalactan  

Galactan 

[3], [5], [8], 

[9] 
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Advanced 

Symptomatic 

(144 h PI) 

PC-1  

(63.2) 

1600 a ν(COO) 

 

ν(C=C) 

ν(C-C) 

ν(C=N) 

ν(NH2)  

Pectin 

Lignin  

Secondary metabolites (aromatic 

and phenolic compounds) 

 

Nucleic acids 

[3], [4], [5], 

[6], [8], [9] 

 

1148 d ν(C-O-C)  

 

Pectin (ring and its glycosidic 

linkage) 

Non-cellulosic carbohydrates 

Arabinogalactan 

[1], [5], [6], 

[9] 

 

1088 c νs(C–O–C) Pectin 

Xyloglucan 

Arabinogalactan  

Secondary metabolites  

(monoterpenes from leaves) 

[5], [9] 

 

1063 a ν(C-O)  

 

ν(C-C) 

 

δ(C–OH)  

δ(O-CH)  

Cellulose (particularly C3-O3H 

secondary alcohols)  

polysaccharides 

Pectin  

Secondary metabolites  

(monoterpenes from leaf) 

[1], [3], [5], 

[6], [9] 
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996 a ν(C-O) ring 

stretching  

ν(C-C) ring 

breathing 

Cellulose 

 

Nucleic acids 

[1], [5], [7] 

PC-2 

(22.6%) 

1598 a ν(COO) 

ν(C-C) 

ν(C=C) 

 

ν(C=N) 

ν(NH2)  

Pectin 

Lignin 

Secondary metabolites  

(aromatic compounds) 

Nucleic acids 

[3], [4], [5], 

[6], [8], [9] 

 

1537 d Amide II (incl. 

secondary structure 

in β-sheet motifs) 

ν(C=N)  

δ(NH2) 

Proteins 

Lignin 

Nucleic acids 

[1], [3], [5], 

[7], [8]  

1102 a ν(C-O-C) ester  

ν(C-O)  

 

ν(C-C)  

νs(PO4
2-) 

Cutin 

Cellulose  

Pectin (as acetyl-ester) 

Polysaccharides 

DNA/RNA 

[1], [2], [4], 

[5], [6], [8], 

[9] 

1037 d ν(C-O)  

ν(C-C) 

Cellulose 

Pectin (also as acetyl-ester) 

[3], [5], [8], 

[9] 
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ν(CCO) 

ν(O-CH3)  

ν(CH2OH) 

Polysaccharides 

Xyloglucan 

Arabinogalactan  

Galactan 

945 ω(CH2)  Pectin 

Protein phosphorylation 

Secondary metabolites  

(monoterpenes from leaf) 

[5], [8], [9] 

Table References [1] Abidi et al. 2014; [2] Butler et al. 2015; [3] Butler et al. 2017; [4] Heredia-Guerrero et al. 2014; [5] Largo-

Gosens et al. 2014; [6] Monti et al. 2013; [7] Movasaghi et al. 2008; [8] Ord et al. 2016; [9] Schulz and 

Baranska 2007 

Bold wavenumbers represent unique spectral markers for each class. a : wavenumber overlap between all infection categories (PS, IS, 

and AS); b : wavenumber overlap between infection categories PS and IS only (not observed); c : wavenumber overlap between 

infection categories PS and AS only; d : wavenumber overlap between infection categories IS and AS only; ν: vibration; δ: 

deformation; ω: wagging. 
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Vibrational modes at 1645, 1539, and 1038 cm-1 may contain absorbance peaks generated 

directly by the fungal pathogen, although these have not been assigned to nucleic acids previously 

(Salman et al., 2010, 2012). Contribution to absorbance at these wavenumber regions may come 

from fungal constituents including proteins (1645 and 1539 cm-1) and chitin at 1038 cm-1 (Salman 

et al., 2010, 2012). The ATR-FTIR data represents the complex interaction of tomato leaf tissue 

and fungal mass as a mixture effect and further research will determine in detail the contributions 

of each organism to the observed spectral changes. A small fraction of wavenumbers 1748, 1645, 

1580, 975, and 945 cm-1 were unique either to PS, IS, or AS. Categorically, 1645, 1580, and 975 

cm-1 were unique markers to the PS disease stage, while 1748 and 945 cm-1 were associated with 

IS and AS, respectively (Table 5.1). In contrast to IS and AS stages, the PS stage showed the 

highest number of unique markers, compared to only one for both IS and AS stages. This is 

consistent with the higher degree of variance explained for PS along PC1 and PC2 compared to IS 

and AS plants. While PS markers covered both upper (1645 and 1580 cm-1) and lower (975 cm-1) 

regions of the fingerprint spectrum, IS showed unique absorbance only at 1748 cm-1, whereas AS 

was uniquely identified by absorbance at 945 cm-1. Unique fingerprint changes in the PS stage 

were associated with changes in the UF and carbohydrate regions, specifically the Amide I region 

of proteins (1645 and 1580 cm-1) and polysaccharides associated with pectin (975 cm-1) (Abidi et 

al. 2014; Butler et al. 2015; Butler et al. 2017; Monti et al. 2013; Ord et al. 2016; Schulz and 

Baranska 2007). Alternatively, these regions can also be related to changes in phenolic compounds 

of secondary metabolites, and protein phosphorylation (Heredia-Guerrero et al. 2014; Ord et al. 

2016; Schulz and Baranska 2007). The IS stage showed a single unique wavenumber at 1748 cm-

1. This wavenumber corresponds predominantly to changes in carbohydrates and or lipids, 

including pectin and waxes, likely reflecting substantial changes in plant epidermal layers such as 

the cuticle and cell wall (Abidi et al. 2014; Butler et al. 2017; Largo-Gosens et al. 2014). 

Onset of visual symptoms, at both IS and AS, are likely linked to processes including 

programmed cell death (PCD) and tissue necrosis (Dieryckx et al. 2015; Hoeberichts et al. 2003). 

At the other extreme of the fingerprint spectrum, a vibrational mode at 945 cm-1 is a unique spectral 

biomarker to the AS stage. Compounds related to this wavenumber include pectin, protein 

phosphorylation, and secondary metabolites, plausibly reflecting continued pectin degradation, 

alterations in protein structure through covalent modifications (phosphorylation), and or changes 
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in secondary metabolite production, as a response to the necrotrophic mode of B. cinerea (Largo-

Gosens et al. 2014; Ord et al. 2016; Schulz and Baranska 2007).  

Determining the exact identity of IR compounds and their related processes require 

replicate experiments, as currently available methods do not permit reliable biochemical validation 

of entities exactly, which remains a significant drawback of spectroscopy-based approaches. For 

this reason, identifying target compounds relevant for plant-pathogen interactions with 

necrotrophic fungi is a vital first step in pathogen detection and generating disease specificity 

based on spectral biomarkers, especially within whole-plant systems using MIR spectroscopy.  

 

5.3.3 Detecting Disease Progression Directly by Discrimination and Classification of 

Infection Category 

To determine the effectiveness of direct pathogen detection based on plant tissue 

modifications, classification algorithms may be especially useful as they do not rely on the 

validation of biochemical entities to be effective. This dual approach, combining exploratory with 

diagnostic data analysis, provides data that may help answer specific biological questions as well 

as immediate discriminatory information for detecting plant disease autonomously (Kelly et al. 

2011; Trevisan et al. 2012). Direct detection of plant infection throughout disease progression can 

be achieved autonomously by combining spectral data with multivariate analysis and machine 

classifiers. Biochemical information in the form of MIR spectra has been combined previously 

with supervised multivariate analysis and diverse classification algorithms to assess computer-

based decision-making for autonomous diagnostics performance using MIR spectral input for 

disease detection in animal models (Martin et al. 2007; Morais and Lima 2017; Trevisan et al. 

2012). Complete class separation was attained for PS, IS, and AS plants after exposure to B. 

cinerea; Figure 5.4 shows PCA-LDA scores plots and clear separation of healthy plants from PS 

(A), IS (B), and AS (C) across DF1. Based on the complete data separation observed along DF1, 

diagnostic potential for plant disease detection was evaluated via classifier output (Table 5.2). 

PCA-LDA classification accuracy was equal to 100% in the validation set and was thus highly 

effective for disease detection for all groups (PS, IS, AS). All groups of plants were classified with 

100% sensitivity and specificity. The models were trained with 4 PCs (Table 5.S2), having a 

training accuracy of 100% for all types of infection comparisons (Table 5.2), and a cross-validation 

accuracy of 98% for IS and 100% for both PS and AS (Table 5.S3). 
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Figure 5.4 Cross-validated PCA-LDA scores plots of pairwise control (black) versus B. cinerea 

infected (red) tomato leaf spectra at 48 (A), 96 (B), and 144 (C) h. Training data (circles); 

validation data (squares). 
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Table 5.2 Validation set classification results of control versus infected tomato plants using 

PCA-LDA.  

Infection Category Accuracy Sensitivity Specificity 

Pre-symptomatic 100% 100% 100% 

Intermediate Symptomatic 100% 100% 100% 

Advanced Symptomatic 100% 100% 100% 

 

Perfect classification rates strongly suggest that biospectroscopy, combined with 

chemometric classifiers, offers a suitable approach to the development of diagnostic tools for plant 

disease. Importantly, the accurate classification of PS plants demonstrates that early identification 

of B. cinerea infection can be achieved in completely intact tomato plants, prior to the onset of 

symptoms on which current diagnostics approaches rely. Therefore, detection of PS plants is 

especially valuable, because the PS disease stage offers a longer window for the application of 

crop protection measures, which are becoming part of specialized modern approaches including 

integrated pest management (IPM) and precision crop protection (Barzman et al. 2015). 

 

5.4 Conclusions and Perspectives 

MIR biospectroscopy is a capable technology applicable to the development of precision 

sensors aimed at mitigating crop loss due to pests and pathogens. However, although 

biospectroscopy presents a novel analytical technique, it has as yet been little used in the plant and 

crop sciences, especially for applications to dynamic intact plant-pathogen systems (Skolik et al. 

2018a). Here it was demonstrated that biospectroscopy in the form of semi-portable ATR-FTIR 

was effective at non-destructive in vivo analysis of plant-pathogen interaction between B. cinerea 

and S. lycopersicum at the whole-plant level (Figure 5.1). Clear differences in the class mean 

spectra were observed primarily in the UF and carbohydrate regions (Figure 5.2). This was 

consistent with specific spectral biomarkers extracted via multivariate analysis by way of cluster 

analysis and through PCA loadings (Figure 5.3 and Table 5.1). This revealed that the majority of 

variance within the spectral data of the MIR fingerprint were due to plant infection. The main 

biochemical variations and their potential compound identity were tentatively assigned and 
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discussed. The most predominant modifications were detected in the spectral UF and carbohydrate 

regions, which were consistent with changes occurring in plant leaves because of colonization and 

attack by B. cinerea including tissue degradation and necrosis (Asselbergh et al. 2007; El Oirdi et 

al. 2011). Supervised PCA-LDA analysis completely segregated infected from non-infected plants 

at PS, IS, and AS stages of plant disease, showing promisingly high classification accuracy for 

applied disease detection in the field (Figure 5.4 and Table 5.2). With a classification accuracy of 

100%, this approach appears highly suitable for pre- and post-symptomatic disease detection.  

Rapid sensor-based disease detection will contribute to reductions in crop loss and increase 

food security overall, by facilitating the optimization of crop protection products, limit their 

overuse, while also reducing human and environmental exposure to harmful chemicals. However, 

further research is required with respect to MIR biospectroscopy-based disease detection to 

increase the range of studies performed on intact plants in vivo focusing on model plants/crops, as 

well as the evaluation of portable equipment suitable for the field (Skolik et al. 2018b). 

Additionally, slight re-tooling of currently available MIR spectroscopy equipment, will permit 

further proof-of-concept field trials to be instigated in the near future as has recently been achieved 

through the use of portable and handheld Raman spectrometers (Egging et al. 2018; Farber and 

Kurouski 2018; Yeturu et al. 2016). An unexplored aspect of MIR biospectroscopy is the use of 

acquisition modes for liquid and gaseous samples, which to date remain virtually unexplored, but 

offer additional potential for disease detection and plant-environment interactions relevant to crop 

biology (Skolik et al. 2018b). While the spectrochemical analysis of intact plant-pathogen systems 

is still in the beginning stages, the rapid growth of this field and the largely untapped potential of 

this technology will ensure its future contribution to the fields of plant and crop science. 
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5.5 Supplementary Material 

 

Table 5.S1 B. cinerea infected tomato and observed symptomatic used for ATR-FTIR analysis 

(corresponding to Figure 5.1) 

Infection Category Description 

Mock Control Plants  

(48, 96, and 144 h) 

Asymptomatic: 

No visual symptoms were observed at any time during the study. 

Plants were observed for an additional 5 d to ensure no 

development of symptoms post analysis.  

Infected Plants 48 h Pre-symptomatic:  

No visual symptoms observed: plants as described for mock 

controls. Plants measured at 48 h post infection were observed 

for an additional 5 days to ensure pathogen colonization and 

symptom development as described for 96 and 144 h post 

infection.  

Infected Plants 96 h 

 

Intermediate symptomatic:  

Early stages of infection visually apparent: vein and tissue 

discoloration (yellowing), isolated small variable lesions 

covering <50% of leaf area, slight leaf curling observed.  

Infected Plants 144 h 

 

Advanced symptomatic:  

Late stages of infection: yellowing and large lesions covering 

>50% of leaf area, necrotic and or desiccated tissue, visible 

hyphae, pathogen sporulation.   

 

 

 



206 

 

 

 

 

Figure S5.1 Raw spectral data for pairwise comparisons at 48 (PS), 96 (IS), and 144 (AS) h 

(blue: controls; red: infected). 
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Table S5.2 Principal component analysis (PCA) explained variance for each infection category. 

Principal 

Component 
Pre-symptomatic 

Intermediate 

Symptomatic 

Advanced 

Symptomatic 

 Variance Cumulative 

Variance 

Variance Cumulative 

Variance 

Variance Cumulative 

Variance 

1 65.52% 65.52% 73.97% 73.97% 63.18% 63.18% 

2 27.96% 93.48% 10.92% 84.89% 22.54% 85.72% 

3 3.86% 97.34% 7.23% 92.12% 8.36% 94.08% 

4 1.62% 98.96% 3.34% 95.46% 2.45% 96.53% 

 

 

Table S5.3 Confusion matrices for cross-validated PCA-LDA. 

Time (hours)  Control Infected 

48 h (PS) Control 100% 0% 

Infected 0% 100% 

96 h (IS) Control 100% 0% 

Infected 2% 98% 

144 h (AS) Control 100% 0% 

Infected 0% 100% 
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6.1 Discussion 

Rapid identification of plant disease in the field, caused by PPs, remains a formidable 

challenge. Numerous approaches are available to manage plant PPs in crops, that are based on 

different aspects of the plant-pathogen interaction (Barzman et al. 2015). From an IPM approach, 

PPs need to be managed at various times throughout the growth of the crop, depending on their 

distribution and abundance in crop systems (Barzman et al. 2015). This ranges from detection of 

PPs in growing mediums prior to planting, to managing compromised post-harvest crop products 

such as damaged or decaying fruit (Skolik et al. 2018b; Van Gent-Pelzer et al. 2010). There are 

many sensor technologies available which are potentially of use for the detection of PPs. 

Traditional approaches have focused on late-stage detection using genetic confirmation using 

polymerase-chain reaction (PCR) or serological assays (Martinelli et al. 2014). Many of these 

specialized approaches however, are based on complex plant biology and are in the experimental 

phases and therefore their use is limited by either the need for experts with the appropriate technical 

experience or because they are not easily implemented under highly variable field conditions 

(Mahlein 2016; Martinelli et al. 2014; Sankaran et al. 2010; Skolik et al. 2018b). The primary 

sensor types under evaluation currently are molecular techniques including (PCR) and enzyme 

linked immuno-sorbent assay (ELISA), VOC sensors, and light-based sensors (bio-photonics, 

spectroscopic, hyperspectral, remote sensing, etc.) (Martinelli et al.2014; Sankaran et al. 2010).  

While the principal aim of such experimental methods is to detect the early onset of plant 

disease, this is especially difficult with microscopic PPs, the presence of which is not readily 

observed. Consequently, microscopic PPs remain difficult to detect and manage (Williamson et al. 

2007; Bebber 2015). Analytical techniques that are both robust and rapid enough to be employed 

for purposes of disease management, specifically for detecting PP effects on crop plants pre-

symptomatically in the field, are therefore desperately needed (Skolik et al. 2018b). The research 

reported in this thesis investigates the potential of MIR vibrational biospectroscopy to detect plant 

disease at various stages from pre-symptomatic through disease progression pre- and post-harvest. 

Attention was focused on the extraction of biochemical information from intact crops in the form 

of spectral biomarkers, in order to begin to develop disease-specific spectral biomarkers, while 

concurrently evaluating machine learning-based approaches for autonomous decision-making 

systems based on spectral data. This combined approach is examined throughout the research in 
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order to evaluate the potential of developing non-destructive autonomous detection of PPs for 

commercial applications in food production and in the supply chain.  

The application of MIR biospectroscopy in plant and crop science requires the 

establishment of the fundamental principles required to advance these methodologies for intact 

plant analysis and early disease detection. Chapter 2 considers the development of this approach 

as a horticultural sensor and applications focused on intact crop plants and thus in vivo analysis, 

applicable to the detection of PPs in crops and environmental interactions in general (Skolik et al. 

2018b). This chapter explores the primary components involved in biospectroscopy studies, 

including sample preparation, spectral acquisition, and computational analysis. These concepts 

apply to the complementary methods MIR as well as Raman spectroscopy (Skolik et al. 2018b). 

In particular, the issue of non-destructive sample analysis and in vivo analysis of plant tissues is 

discussed. The application of biospectroscopy to fundamental plant research and crop science is 

considered with regards to the identification and classification of valuable plant components and 

identifying specific species or cultivars, for which destructive sample preparation is acceptable or 

even necessary (Schulz and Baranska 2007,). For in vivo analysis however, a major focus is the 

analysis of intact plant tissues, more specifically those that can be interrogated by MIR and Raman 

lasers (Baker et al. 2014; Butler et al. 2016). These include the plant epidermis and fundamental 

surface structures contained therein, such as the cuticle and cell wall (Figure 2.2). Therefore, plant 

surface structures including the cuticle and cell wall are emphasized primary contributors to the 

plant spectral fingerprint. 

For a true biological interpretation of dynamic processes (biochemistry / physiology) 

occurring within plants, analysis must be performed on the native tissue architecture in vivo. If this 

is the case, then the plant epidermis becomes the main target of biospectroscopy approaches. Plant 

epidermis can then be used to investigate plant-environment interactions, which include the 

interaction between plants and PPs in vivo (Egging et al. 2018; Skolik et al. 2018a). The limited 

number of studies in this area to date demonstrate that in vivo analysis of intact plant materials is 

not yet routine but certainly possible with both ATR-FTIR and Raman spectroscopy (Butler at al. 

2015; Skolik et al. 2018a). 

Parameters of biospectroscopy methods, specifically sample preparation, spectral 

acquisition, and data analysis are discussed, in the context of moving towards more in vivo 

measurements and thereby gaining more biologically relevant information. In addition, 
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recommendations are made as to how to advance ‘whole-plant’ MIR biospectroscopy for 

researchers new to MIR biospectroscopy of plants. Among these recommendations are specific 

considerations including portable equipment, measurement area of the laser and penetration depth 

into the sample. It was determined, based on this research, that macro-FTIR measurements were 

more suitable for the interrogation of tissue sections on the whole-plant level than previously used 

Raman or micro-FTIR measurements (Egging et al. 2018; Farber and Kurouski 2018; Yeturu et 

al. 2016). The popularity of Raman spectrometers is because they are currently available in a more 

portable format compared to the more suitable but less portable ATR-FTIR spectrometers (Skolik 

et al. 2018b). MIR spectroscopy measurements in the field are arguably impeded by increased 

sensitivity to water and thus humidity compared to Raman spectroscopy, which is not influenced 

by excess water (Butler et al. 2019; Maréchal 2011). Due to the better performance of ATR-FTIR 

in macro mode, this was therefore used as the standard throughout, although where possible, 

portable spectrometers were used to compare their performance to bench-top instruments and 

thereby facilitate the transition of lab-field based measurements.  

To promote the transition of these approaches from the laboratory into field environments, 

portable macro ATR-FTIR was chosen for non-destructive crop analysis in fruit of S. lycopersicum 

during development and ripening (Chapter 3). This provided a complementary approach to 

baseline characterization of healthy fruit, which had previously been established in whole plants 

of S. lycopersicum (Butler et al. 2015). Taken together, these studies provide baseline spectral 

signatures for both tomato plants and fruit during development from young plants through to 

maturity, fruit development and ripening all using ATR-FTIR spectroscopy (Figure 3.2-3.6 and 

Table 3.1 and 3.2). Previous studies related to development and ripening of intact tomato fruit, 

using portable Raman spectroscopy have been performed (Fu et al. 2016; Trebolazabala 2013, 

2017). These studies, aside from using Raman compared to MIR spectroscopy, focused on other 

aspects of tomato fruit development/ripening and not specifically the biology of both processes. 

To address this, development and ripening were measured over time at intervals of 4 days, 

providing nine developmental stages and six ripening stages for analysis (Skolik et al. 2019). 

Multivariate analysis provided a summary of spectral biomarkers for the development and ripening 

processes, as these are often investigated separately. Furthermore, spectra of fruit were input for 

classification with SVM leading to accuracy of more than 99% for autonomous monitoring of 

development and ripening (Table 3.3 and 3.4). While similar accuracy rates have been reported 
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for tomato fruit, considerably lower numbers of classes were used, or dealt with only one of the 

developmental or ripening processes (Fu et al. 2016; Trebolazabala et al. 2013, 2017). Expanding 

on the previous studies, a more detailed study was performed, where the developmental timeframe 

was divided into nine classes; ripening was split into six groups as these were horticulturally 

relevant (Figure 3.1). Spectral data including compounds tagged as spectral biomarkers (Table 3.1 

and 3.2), advance the biochemical understanding of S. lycopersicum fruit development/ripening 

from a spectrochemical perspective, which could be combined with other sensors and biochemical 

assays to elucidate the molecular details of specific changes to the cuticle and cell wall (Egging et 

al. 2018; Skolik et al. 2018b). Additionally, this research provides a more detailed spectral analysis 

of both development and ripening than previously performed, providing information that can be 

integrated with other data as more is learned about the molecular biology of these processes 

(Segado et al. 2016; Seymour et al. 2013). Classifier performance may be developed for detailed 

crop screening and the potential identification of abnormalities to ensure high post-harvest quality 

of fruits and prevent disease induced crop loss (Skolik et al. 2018a). However, it is first essential 

to characterize changes in the spectral fingerprint during the development and ripening of tomato 

fruits prior to investigating effects caused by environmental factors including PPs in order to 

ensure that biomarkers indicative of disease can be distinguished from those associated with 

normal developmental and biochemical/physiological processes. 

Following baseline characterization of whole tomato fruit in Chapter 3, ATR-FTIR 

spectroscopy was used to investigate the potential of this approach for studying whole tomato 

cultivars exposed to PPs. Chapter 4 presents research illustrating the application of ATR-FTIR 

spectroscopy for the non-destructive detection, both directly and indirectly, of PP effects on fruit. 

Although previous studies have shown direct pathogen detection within plant tissues (Egging et 

al. 2018; Yeturu et al. 2016), it has been difficult to detect the effects of pathogens on fruit 

indirectly. Thus, the demonstration of both direct and indirect detection potential in the same 

system represents a significant stride towards elucidating the spectrochemical changes associated 

with biochemical mechanisms in tomato fruit disease. It was first shown that the spectral 

fingerprint of plant tissue is altered at sites distant from the actual infection and initial damage, 

where no direct damage or infection was present (Figure 4. 3). Conceptually this can be extended 

to investigate the indirect effects of PPs on plant tissues that are removed from the site of insult. 

Additionally, the demonstration that damage can be used as a pre-symptomatic indicator of disease 
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or of fruit decay potential caused by opportunistic organisms such as the investigated G. candidum 

represents an exciting advance (Skolik et al. 2018a). Direct detection of the fungal pathogen G. 

candidum on tomato fruit following damage showed significant spectral alterations to the fungal 

signature when forming a complex with tomato fruit in vivo (Figure 4.4). Assessment of damage 

and decay using more portable equipment to facilitate field-based measurements would be the next 

steps to implementing biospectroscopy commercially.  

Limitations to this approach is the external validation of this technique using a real-life 

sample set. Even though the experimental data generated was on real-world samples with no 

sample preparation, it was not strictly performed under industry conditions, where datasets would 

be much larger and measurement conditions more variable. Larger datasets would likely increase 

the detection accuracy, while variable measurement conditions may offset this performance by 

requiring more optimized modeling before commercial implementation. Nevertheless, is highly 

likely that the demonstrated results translate and be achieved in practice (Farber and Kurouski 

2018). Future work will include the assessment of damage and decay using more portable 

equipment to facilitate field-based measurements (Egging et al. 2018). 

The ability to detect PP-induced disease in whole plants was assessed in young tomato 

plants infected with grey mould (B. cinerea) (Chapter 5). Although disease detection was effective 

at all stages of infection studied, both pre- and post-symptomatic disease stages, the pre-

symptomatic stage was the most interesting in that early detection was effective prior to the onset 

of any visual symptoms (Skolik et al. 2019). This contrasts with studies requiring extensive sample 

preparation (Farber and Kurouski et al. 2018), experts for visual determination of symptoms 

(Egging et al. 2018) or relying on pre-symptomatic leaves from clearly symptomatic plants and 

therefore requiring cutting (Yeturu et al. 2016), which as described in Chapter 2 is destructive 

sample preparation. Thereby, the research presented in Chapter 5 represents the pre-symptomatic 

condition more accurately, under analysis conditions that do not alter the native state of the plant 

(Figure 5.1). 

Plants infected with B. cinerea, were exposed uniformly to the pathogen, making it possible 

to show direct pathogen detection potential only. As all plant parts measured were exposed and 

potentially contained fungal material, it was not possible to rule out the direct contribution of this 

to the spectral fingerprint. During disease, plant and pathogen can be seen as a mixture matrix 

containing both plant and pathogen tissues (Figure 5.1). Thus, direct detection will generally be 
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the norm for future sensor systems (Egging et al. 2018; Farber and Kurouski et al. 2018; Yeturu et 

al. 2016). Importantly, Chapter 5 focused on whole-plant analysis addressing the pre-symptomatic 

stage in greater detail than has been done previously. Discriminant biomarkers and class separation 

between infected and healthy plants were able to be produced using PCA alone (Figure 5.3 and 

Table 5.1), making PCA-LDA highly effective. This was shown with classification accuracy of 

100% for all stages of disease (Table 5.2). 

It is likely that the indirect disease detection achieved on fruit (Chapter 4) can be translated 

to plant analysis for pre-harvest applications. Cuticle and cell wall components were identified as 

discriminating compounds in spectral fingerprints of fruit during development, ripening, damage, 

and infection by G. candidum, and leaves infected with B. cinerea. It is therefore plausible that the 

spectral biomarkers identified tentatively as part of this research (see biomarker tables in Chapters 

3-5 for specific compound classifications), or a subset of these will be confirmed by further 

research as markers ultimately used in the field. This is because surface structures described in 

Chapter 2 are key biological barriers involved in plant-environment interactions, which are general 

biospectroscopy targets (Skolik et al. 2018b). As these epidermal structures are features of both 

plants and leaves, it is expected that biospectroscopy will be equally applied to pre and post-harvest 

systems.  

The ATR-FTIR approach demonstrated here on whole tomato plants infected with B. 

cinerea, complements similar spectroscopic approaches shown previously on whole crops, which 

provides the basis for a multi-sensor approach to disease detection (Mahlein 2016). Potential future 

applications of this approach range from disease detection to monitoring and studying disease 

progression including some of the major biochemical changes happening in tomato plant tissue 

infected with fungal pathogens. These studies therefore provide the initial data upon which to 

develop biospectroscopy-based approaches to reduce the effects of pathogens as well as damage 

on crop loss involving tomato fruit.  

 

6.2 Conclusions 

Advancement of biospectroscopy as a sensor technology for application in the plant and 

crop sciences is progressing rapidly (Butler et al. 2015; Canteri et al. 2019; Herredia-Guerrero et 

al. 2014). These methods are sustainable, non-destructive, fast, and precise for in vivo analysis of 

crop plants pre and post-harvest (Canteri et al. 2019; Skolik et al. 2018b). Furthermore, 
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biospectroscopy is adaptable to a variety of crops and plant-pathogen systems (Canteri et al. 2019; 

Egging et al. 2018; Farber and Kurouski et al. 2018). The experimental data presented in this thesis 

indicates that vibrational spectroscopy can generate high quality spectra of intact plant leaves and 

fruit, demonstrating greenhouse applicability which is likely to be translated to the field in the near 

future. Analysis without sample preparation is readily achieved using this approach, increasing the 

applicability of these techniques to real-world situations. ATR-FTIR performed well under semi-

controlled greenhouse conditions (Skolik et al. 2019), meaning that translation into the field in the 

form of portable instruments is likely, if the limitation of water sensitivity can be overcome.  

Both baseline characterization and the successful pathogen detection in the model system 

S. lycopersicum highlights the discriminatory power of spectral data for whole plant analysis in 

various scenarios, demonstrating clearly the potential for pest detection (Chapter 4 and 5). 

Multivariate analysis provides a novel approach for identifying the biochemical/physiological 

changes related to the observed alterations in spectra, caused by healthy growth and development 

or by disease. Specifically, alterations in the spectral signatures (Chapter 3-5) were due to 

biological processes occurring in epidermal tissues of fruit and leaves that were the primary MIR 

targets in intact crops. The early detection of plant-pathogen interactions at the pre-symptomatic 

stage, which was a major objective of the research, was demonstrated effectively under pre- and 

post-harvest conditions in chapter 5 and chapter 4 respectively. This important result demonstrates 

the potential from MIR spectroscopy to inform crop protection measures that can be applied early 

before adverse effects become apparent. Once adapted for commercial use, biospectroscopy has 

the potential to significantly reduce crop loss in the future.  

 

6.3 Future Perspectives 

The future of biospectroscopy is bright in the plant and crop sciences, as the current trend 

of increasing applications of IR spectroscopy in biology continue. More than half a century ago, 

infrared vibrational spectroscopy became of increasing interest for the investigation of biological 

systems (Mantsch and Shaw 2002). As Shaw and Mantsch (1999) put it at the turn of the century, 

“The idea of using vibrational spectroscopy to explore the properties of living organisms is as 

absurd as it is compelling”. Today however, continued display of the applicability of 

biospectroscopy to in vivo systems suggests a possible paradigm shift to include routine analysis 

of active processes, making this approach less ‘absurd’ and more ‘compelling’ than ever before. 
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As part of this continued expansion in the plant and crop sciences, several key issues remain to be 

addressed (Skolik et al. 2018b). Validation and standardization of data analysis and either 

development of customized platforms for difficult plants/crops or frameworks adaptable to diverse 

conditions, crops, and cultivars. High throughput biospectroscopy approach with respect to 

minimal sample preparation (whole plants and plant products) and continued studies in vivo such 

that spectral data obtained retains biological relevance. Optimization of spectral acquisition, 

specifically the number of spectra required for adequate classification and reproducible spectral-

biomarker identification. Continuing studies using portable equipment and comparing the quality 

of spectral data to bench-top or lab-based instruments. Retooling and implementing such 

spectroscopic equipment for field use is another practical and final challenges, granting various 

portable instruments are already available. Development of computational analysis methods: 

extraction of biomarkers and identification of data analysis models generating appropriate disease 

specificity extracted using chemometrics.  

Biospectroscopy will therefore contribute to deciphering the many, yet unknown, processes 

within the realm of fundamental plant biology, which will be translated, through knowledge-

exchange, to building a sustainable and modern farming. With the exceptionally rapid evolution 

of MIR biospectroscopy to date, come countless opportunities to further apply these methods to 

virtually any biological system, whether static or dynamic, but it is the latter of these that will 

prove to push the boundaries of this field in the coming future.  
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Appendix I: Academic Activities 

 

Conference Contributions 

 

Exploiting novel sensors for detecting abiotic and biotic stress in crops 

Contribution: 20-minute oral presentation 

 

June 2016 

Lancaster Environment Center Postgraduate Research Conference 

Contribution: 15-minute oral presentation / Poster presentation 

 

July 2016 

AHDB PhD Student Conference       

Contribution: Poster 

 

November 2016 

Lancaster Environment Center Christmas Conference 

Contribution: 15-minute oral presentation 

 

December 2016 

Lancaster Environment Center Postgraduate Research Conference 

Contribution: 15-minute oral presentation 

 

July 2017 

AHDB PhD Student Conference 

Contribution: 10-minute oral presentation 

 

November 2017 

University of Central Lancashire (Laboratory Meeting) Data Review  

Contribution: 30-minute oral presentation  

 

March 2018 
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Other Activities 

 

AHDB Industry Visits  

 

2015-2018 

Daresbury Laboratory  

Research Associate (High Energy Laboratory) 

2015 

 

Lancaster Environment Center 

Associate Lecturer 

2016-2018 

 

Brilliant Club 

Tutor 

2015-2019 
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